-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by University of Birmingham Research Archive, E-theses Repository

(GEOMETRIC CONTROL OF OSCILLATORY
INTEGRALS

by

DAVID BELTRAN PORTALES

A thesis submitted to
The University of Birmingham
for the degree of
DocCTOR OF PHILOSOPHY

School of Mathematics
The University of Birmingham
MAY 2017


https://core.ac.uk/display/83926339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITYOF
BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.



ABSTRACT

The aim of this thesis is to provide a geometric control of certain oscillatory integral
operators. In particular, if 7" is an oscillatory Fourier multiplier, a pseudodifferential
operator associated to a symbol a € ST’ or a Carleson-like operator, we obtain a weighted
L? inequality of the type

J|Tf|2w < Cf|f|2MTw.

Here C' is a constant independent of the weight function w, and the operator My, which
depends on the corresponding 7', has an explicit geometric character. In the case of
oscillatory Fourier multipliers and of Carleson-like operators we also determine auxiliary

geometric operators g; and g, and establish a pointwise estimate of the type

(T f)(x) < Cga(f)(2)-

Finally, we include a careful study of a method developed by Bourgain and Guth in Fourier
restriction theory, that allows making progress on the Fourier restriction conjecture from
their conjectured multilinear counterparts. Our conjectured progress via multilinear esti-

mates has been recently obtained by Guth.
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NOTATION

We typically use the letter C' to denote a constant, that may change from line to line, and
whose dependence on the relevant parameters will be specified when necessary. We shall
write A < B if there exists a constant C' such that A < C'B. The relations A 2 B and
A ~ B are defined similarly.

Given a cube Q < R? and k € N, we denote by kQ the concentric cube whose sidelength
is k times that of . In the case k = 2, we write Q instead of 2Q.

Let (X, 1) be a measure space. Given a set £ < X, we denote by u(E) the measure of
E, which in the case of the Lebesgue measure we denote by |F|. We say that a property
holds almost everywhere in a set X, and we use the notation a.e. x € X, if it holds except
for subsets of X of measure zero.

For 1 < p < oo, we define LP(X, i) as the space of measurable functions f : X — C

such that

o= ([ 1) < e

The space L*(X, 1) corresponds to those functions satisfying
[flleo :=sup{C = 0: p({x e X : |f(z)| > C}) > 0} < 0.

Given a fixed p, its conjugate exponent p’ is defined by the relation % + z% =1.

We define the weak-LP spaces L»*(X, ) as the space of measurable functions f :



X — C such that

1 f lpyo0 = S;i%/ﬁ({x e X :|f(x)] > AN < .

Observe that LP(X,u) < LP®(X, ). In this thesis, X will typically be R? and when
dp = dz is the Lebesgue measure, we use the notation LP(R?) or simply L. For a weight
function w, that is, a nonnegative locally integrable function, and du = wdx, we use the
notation LP(w).

We denote by M the Hardy—Littlewood maximal function, defined by

1

M) = sup o f F)ldy,

where B is a ball in R? containing the point .
Given a multi-index v = (71,...,7) € N? and a function f : R? — C, we write

¥ =gz - x)" and
ohlf

~— am Y’
ox{' - 0x)

DY f(z) = 0.f(z)
where |y| = + -+ + 4. Given x € R, we denote by |z] its integer part.

We say function f belongs to the Schwartz class S(R?) if f € C°(R%) and

sup |2°DP f(2)| < w0

zeRd

for all «, 3 € N,

The Fourier transform of a function f € S(R?) is defined as

fie) = | e =<stayin



INTRODUCTION

This thesis has its origins in a long-standing conjecture of Stein for the disc multiplier.
In 1978, at the Williamstown conference in Harmonic Analysis, Stein [125] suggested the

possibility that a two-weight inequality of the type

| rrpws<c ] irme ()

might hold for any weight function w with constant C' independent of w, where T denotes
the disc multiplier, that is f\f = XB(0,1) f , and M is a variant of the universal maximal

function

Nw(z) = supﬁf w;
R

Raz
here the supremum is taken over all arbitrary rectangles in R? containing the point 2. This
conjecture had as supporting evidence the connection made by Fefferman [50] between the
disc multiplier and Besicovitch sets, which allowed him to prove that the disc multiplier
is unbounded on LP(RY) for p # 2 when d > 2; we note that for d = 1 the study of the
disc multiplier reduces to that of the Hilbert transform. This question (), which was
also raised by Cérdoba [34] in the more general context of Bochner—Riesz multipliers,
is still very much open. Positive results were obtained in the case of radial weights by
Carbery, Romera and Soria [21], and numerous authors have contributed with partial

progress [19, 29, 23, 8, 82|. If true, such a conjecture would be striking, as it involves



control via a weighted inequality of a highly oscillatory and cancellative operator by a
positive maximal function.

Motivated by the above conjecture of Stein, Bennett, Carbery, Soria and Vargas [8]
established a version of this conjecture on the circle. That work was followed by that of
Bennett and Harrison [10], who studied weighted L? inequalities for certain oscillatory
kernels on the real line. Later, Bennett [7] took a Fourier multiplier perspective on such
questions on the real line. In all cases, the authors managed to control those oscillatory
operators by positive, geometrically-defined maximal functions.

One of the main results of this thesis is a higher dimensional version of the result in
[7], for broader classes of oscillatory Fourier multipliers. This is the content of Chapter

2, which is based on the joint work with Bennett in [5]. The classes of multipliers under

cilel®

DL for any «, 8 € R. As in the one-dimensional case,

study are modelled by mg, g :=
the controlling maximal functions are positive operators and involve fractional averages
over certain approach regions. Also, the maximal functions are closely related to certain
Kakeya-type maximal operators, very much in the spirit of Stein’s conjecture.

Our weighted L? inequalities follow from a stronger pointwise result. In particular, we

are able to identify two auxiliary operators, g; and ¢o, such that the estimate

91(Tnf)(x) < Cga(f)(2) (*)

holds, where T, denotes the operator associated to the multiplier m. A weighted estimate
of the type (f) for 7,,, may be then obtained from those for the auxiliary operators g; and
go. In our case, g; and g, are novel square functions of Littlewood—Paley type that reflect
on the geometric properties of the multipliers under study. We remark that our results on
the multipliers m, g have obvious interpretations in the setting of oscillatory convolution

kernels and dispersive partial differential equations.



A classical non-translation-invariant generalisation of the Fourier multipliers is given
by the pseudodifferential operators. Given a smooth function a € C*(R¢ x RY), referred

to as the symbol, define the associated pseudo-differential operator T, by

~

T.f(z) = J ¢, €) F(E)de,

Rd

where f € S. We focus ourselves in the symbol classes 5%, introduced by Hormander in

[69]. We say that a € S7% if it satisfies the differential inequalities
|070galz,&)] < (1 +[¢l)ymrlottor

for all multi-indices v, € N%, where m € R and 0 < J,p < 1. Observe that the model
oscillatory multipliers mq g € S, a0 for 0 < a < 1. Thus, the symbol classes S
constitute a generalisation of the classes of multipliers studied in Chapter 2 for 0 < p < 1.

In Chapter 3 we study how to extend the techniques presented for the multiplier case
to this pseudodifferential operator context. With additional appropriate applications of
the symbolic calculus and the Cotlar—Stein almost orthogonality principle, we are able to
control the operators Ty, where a € 57, by maximal operators via weighted L? inequalities
of the type (). This constitutes the second main result of this thesis, which may be
found in [3]. In contrast to the multiplier case, our proof does not follow from a pointwise
estimate of the type (x). The question of obtaining pointwise control remains open, except
for the case m < d(p — 1)/2, where techniques closer to Calderén—Zygmund theory may
be applied.

We remark that the weighted estimates of the type (f) obtained for the oscillatory
Fourier multipliers and the Hormander symbol classes allow one to recover the optimal
Lebesgue space bounds for such objects via the appropriate bounds on the controlling

maximal function M in each case.



In Chapter 4, we address the question of obtaining pointwise and weighted control for
the Carleson operator, a crucial operator in harmonic analysis related to the almost ev-
erywhere convergence of Fourier series. This is motivated by a future line of investigation,
which consists in obtaining control for maximal multiplier operators. Given a multiplier

m and writing m,(§) := m(t) for any t > 0, we define its maximal multiplier operator as

~

T, f(x) := sup|(mq f)"(z)|.

t>0

Obtaining control for the operator T7% in the context of the multipliers m, s would pro-
vide control for a central operator in partial differential equations such as the maxi-
mal Schrodinger operator. A first attempt towards answering this general question is
to study what happens when considering easier families of multipliers. If, for instance,
one considers a multiplier m of global bounded variation on R, it is easy to observe that
T f(z) < |f(x)] +|Cf(x)], where C denotes the Carleson operator. Obtaining control for
C provides control for 7} in this case.

The weighted theory for the Carleson operator is much closer in spirit to that of
Calderon—-Zygmund operators, as it implicitly uses the fact that the Carleson operator is
bounded in LP(R) for 1 < p < . Certain pointwise control for the Carleson operator
along the lines of (x) was obtained by Rubio de Francia, Ruiz and Torrea [118], who
established that

M*(Cf)(x) < C(M(f*) ()"

for any s > 1; here M# denotes the Fefferman-Stein sharp maximal function.

In the context of Calderén—Zygmund operators, more sophisticated variants of the
above pointwise estimate have been highly effective very recently. For instance, they play
a central role in Lerner’s alternative proof of the As-conjecture [85], previously resolved by

Hytonen [75]. Further developments in that direction have led to pure pointwise estimates



for Calderon—Zygmund operators, in which the auxiliary operator g; on the left hand side
of (%) is entirely absent; see [87, 32, 79, 86].

Following the ideas of Lerner [86], and inspired by the work of Di Plinio and Lerner
[42], we have obtained a pure pointwise estimate for the Carleson operator. Namely, we

show that

1 ; 1/r
estel < Casite) = 5 (1 [, U)ot

for any 1 < r < o0, where S is a family of cubes @) satisfying certain almost-disjointness
properties. Such a pointwise estimate allows one to deduce weighted estimates for the
Carleson operator from those for the operator A, s. In particular we obtain weighted L?
inequalities of the type () with controlling maximal function M = M?I+1 which denotes
the (|p] + 1)—fold composition of M. This improves on the previously known maximal
operator Mw = (M (w?®))"/*, where 1 < s < c0. Our weighted estimate is along the lines
of that of Pérez [108] for Calderén—Zygmund operators. This constitutes the third main
result of this thesis, and most of the content in Chapter 4 may be found in [4].

Finally, in Chapter 5 we include a minor contribution in the context of the Fourier
restriction conjecture, a problem of central importance in harmonic analysis due to its
strong interdisciplinary flavour and numerous applications. The aim of this conjecture
is to study whether the Fourier transform of a function may be meaningfully restricted
to a m-dimensional manifold S in R? In the late 1960’s, Stein made the remarkable
observation that under certain appropriate curvature hypotheses on S, there exists a
po(S) > 1 for which this restriction is possible for any f € LP, 1 < p < po(S). These

results may be deduced from estimates of the type

lgdo] Laa) < 9] zr(ao),

where do denotes the induced Lebesgue measure on S and ¢ is a function defined on S.



The latest progress towards establishing the sharp range of exponents of p,q for which
the above estimate holds has been achieved by considering multilinear analogues of the
problem. If S is a hypersurface of nonvanishing Gaussian curvature, the progress in the
multilinear problem achieved by Bennett, Carbery and Tao [9], combined with a recent
method developed by Bourgain and Guth [17], provided some of the best recent results on
the restriction conjecture. We study the method of Bourgain and Guth, and we establish
a conjectural theorem that quantifies what impact the optimal conjectured multilinear
estimates would have on the linear problem. This anticipated progress has been recently

achieved by Guth [61] via the algebraic technique of polynomial partitioning.



Structure of the thesis

This thesis is organised as follows, with the main results being contained in Chapters 2,

3 and 4. Some appendices are included at the end for completeness.

Chapter 1

We give a quick overview of classical and modern weighted harmonic analysis related to
Calderon—-Zygmund theory. This encompasses classical tools such as the sharp maximal
function and the more novel sparse operator approach. We also revisit some standard
Littlewood—Paley theory and how it may be used to deal with the classical Hormander—

Mikhlin multiplier operators.

Chapter 2

We provide pointwise and weighted L? control for oscillatory Fourier multipliers. Given

a, B in R, the multipliers under study satisfy the differential inequalities

ID"m()] < |¢| PPl

in {£ e R : |¢]* > 1} for every multi-index v € N¢ with |y| < [4| + 1. They are controlled
by positive, geometrically-defined maximal functions, which involve fractional averages
over certain approach regions. This is joint work with J. Bennett and it is mostly based

on the published work [5].

Chapter 3

We study pseudodifferential operators associated to the Hormander symbol classes S7s.
These symbol classes are non-translation invariant generalisations of the above classes
of multipliers for 0 < o < 1. We control them by the same maximal functions that in

the multiplier case via weighted L? inequalities. This chapter is mostly based on the



submitted work [3].

Chapter 4

We provide sharp pointwise and weighted L? estimates for a family of maximally modu-
lated Calderén—Zygmund operators. This class of operators encompasses a wide variety
of operators, such as Calderéon—Zygmund operators or the Carleson operator. We use the
machinery of dyadic sparse operators, which has proved to be highly effective in recent

years. Most of the content of this chapter may be found on the accepted work [4].

Chapter 5

Following a method of Bourgain and Guth [17], we establish a conjectural theorem for the
Fourier restriction conjecture. This theorem establishes progress on the Fourier restriction
conjecture provided optimal estimates are obtained for their multilinear counterparts. The

anticipated progress of this theorem has recently been confirmed by Guth in [61].



CHAPTER 1

BACKGROUND

In this chapter we collect several classical and modern results to which we shall appeal
throughout this thesis. We claim no originality here, and it must be seen as a preliminary

chapter encompassing an overview of different results.

1.1 Classical weighted theory

The theory of weighted inequalities has been classically attached to that of the Hardy—
Littlewood maximal function and Calderén—Zygmund operators. The development of
this research area originates in the 1970s, with fundamental work of Muckenhoupt and
others. There is a vast literature in weighted inequalities; here we only intend to give a
brief overview. We refer to the standard references [45, 57, 55, 38| for a more detailed
introduction to this topic.

One of the first questions studied in weighted theory was to characterise the nonneg-
ative, locally integrable functions w so that the Hardy—Littlewood maximal function M

extends to a bounded operator on LP(w) for 1 < p < oo, that is whether

|ty < uatw) [ 1570

holds for some finite constant C, 4(w). The answer to this question was given by Mucken-

9



houpt [102], who showed that M : LP(w) — LP(w) is a bounded operator for 1 < p < o

if and only if w is an A, weight.

Definition 1.1.1. For 1 < p < o, we say that w € A, if

. 1 1 —1/(:3—1))1)_1
[wla, = sup <|@| L “’) (r@| L“’ =%

where the supremum is taken over all cubes in R?. The quantity [w]a, is known as the

A, constant (or characteristic) of w.

Similarly, Muckenhoupt [102] characterised those weights w for which M : L'(w) —
LY*(w) is a bounded operator. In this case, the answer is given by the weights satisfying

the A; condition.

Definition 1.1.2. We say that w € A; if there exists a constant C' > 0 such that
Muw(z) < Cw(z) ae zeR%

The infimum of such constants C' is denoted by [w]4,, and it is known as the A; constant

(or characteristic) of w.

The A, condition for 1 < p < oo first appeared in the work of Rosenblum [117],
whilst the A; condition has a precedent in the work of Fefferman and Stein [47]. Classical
examples of A, weights are the power weights w(x) = |z|* for —d < a < d(p — 1) if
1 <p<oandfor —d <a <0if p=1. The A, classes of weights are increasing in p,
that is A, c A, for 1 <p <gq.

Similar questions were asked for other classical operators in harmonic analysis, such

as Calderén—Zygmund operators.
Definition 1.1.3. A Calderén-Zygmund operator 7 on R? is a L? bounded operator that

10



may be represented as

Tf(r)=| K(x,y)f(y)dy, x¢suppf,

Rd
where the kernel K satisfies
(i) [K(z,y)| < ﬁ for all = # y;

(i) |K(z,y) — K(z',y)| + |[K(y,z) — K(y,2')| < 22" for some 0 < § < 1 when

lz—y[d+3
|z — 2| < |z —y|/2.

Of course prototypical examples of Calderén—Zygmund operators are the Hilbert and
the Riesz transforms. Hunt, Muckenhoupt and Wheeden [71] showed that the A, condition
also characterises the weights for which the Hilbert transform H is a bounded operator
on LP(w) for 1 < p < oo from L'(w) to LY*(w). This reconciles with a result of Helson—
Szegd [67] in the case p = 2. The A, condition also suffices to ensure boundedness of
Calderén—Zygmund operators on LP(w) for 1 < p < o0 and from L'(w) to LY*(w) and
it is necessary in certain cases, such as for the Riesz transforms; see the classical work of
Coifman and Fefferman [30] or the standard references [45, 129].

The rapid development of the one-weight theory quickly led to the study of two-weight
inequalities. The question in this case is to characterise the pair of weights (u, v) for which

the two-weight inequality

[Larrras | i

holds. The natural analogue to the A, condition for a pair of weights (u,v), given by

p—1
[u,v]a, = nglgn (1712| JQ u> (ﬁ fQ Ul/(p1)> < o, (1.1.1)

is necessary but not sufficient to guarantee that M is bounded from L”(v) to LP(u) for

1 < p < 0. However, it is a necessary and sufficient condition in the case of weak-type

11



estimates. That is, there exists a constant C' such that

ulfr e R M) > M) < f e

holds if and only if (u,v) € A, for 1 < p < o0, where we naturally say that (u,v) € A,
if there exists a constant C' such that Mu(z) < Cv(z) a.e. x € RL These weak-type
results may be found in the work of Fefferman and Stein [47], and Muckenhoupt [102].
The question of finding a necessary and sufficient condition on a pair of weights (u,v) in
the case of strong-type inequalities is a lot harder. We shall discuss more on this at the
end of Chapter 4.

In what follows, we focus on looking for sufficient conditions on a pair of weights (u, v)
for two-weight inequalities to hold. In particular, we look for an operator w — Muw
such that the pair of weights (w, Mw) is admissible for any weight w. That is, given an
operator U, one would like to identify an operator M such that a two-weight inequality

of the type
Jd|Uf\pw<Cp,de]f]pr (1.1.2)
R R

holds for any weight w, where the constant C), 4 is independent of w. The first instance
of such an inequality goes back to the work of Fefferman and Stein [47], which ensures
that in the case of the Hardy-Littlewood maximal function U = M, it suffices to take
M =M in (1.1.2).

Of course this question may be addressed for any operator. In the context of Calderén—
Zygmund operators, Cérdoba and Fefferman [33] showed that for every s > 1 and 1 <

p < o0, there is a constant C' < oo such that

Jd T flPw < CTJd | fIP Msw (1.1.3)
R R

12



1/s

holds for any weight w, where M,w := (Mw®)/*. ' Observe that given a general two-

weight inequality of the type (1.1.2), one may use a duality argument and Holder’s in-

equality to deduce

1/p
Ul = (] 1ore)
Hw“(q/p)’ 1

1/p
(] 17210
Hw“(q/p)’ 1

1/(] , (a/p)’
sup <J mq) (J (Muw)@/p) ) o
ol gpy=1 \Jrd Rd

1 1
1 N\ @ e
< o Ml ([ 1)

lwll (g/pyr=

N

1
< Mo L (1.1.4)

for ¢, = p. This mechanism serves in many cases to obtain Lebesgue space bounds for
the operator U from those for the controlling maximal function M, provided we have an
inequality of the type (1.1.2). This will be the case in Chapters 2 and 3 in order to deduce
Lebesgue space bounds for Fourier multipliers and pseudodifferential operators.

In the case of Calderéon—Zygmund operators, one may not obtain Lebesgue space
bounds for 7' via the inequality (1.1.3), as the implicit constant C7 depends already on
the unweighted Lebesgue space bounds for T. However, the above mechanism provides
a concept of optimality on the maximal function M. Observe that the estimate (1.1.3)
leads, via (1.1.4), to

1
I T gmsg < CIME iy (1.1.5)

for ¢ = p. As M, fails to be bounded on L? for 1 < g < s, one would not recover the

full range of Lebesgue space bounds for T'. This suggests that there is scope to improve

!This may also be seen as a consequence of the A, theory, since Myw € A; < A, for p > 1, with
constant independent of w, and w < Mw.

13



the inequality (1.1.3). Such an improvement was achieved by Wilson [142] in the range
1 < p < 2 and by Pérez [107] in the whole range 1 < p < o0, who showed that for
1 < p < o0, there is a constant Cp < o0, depending on the unweighted bounds of T', such

that

Ld TFPw < Cy fRd FP AP Ly (1.1.6)

holds for any weight w. The operator MPI+1

is bounded on L4, 1 < g < oo, for any p.
Thus, this is optimal in the sense of L7 bounds in views of (1.1.4), as one would recover the
L7 boundedness of T for the whole range p < g < o0 if the constant C'r were independent
of the unweighted bounds. Furthermore, their result is best possible in the sense that
the inequality (1.1.6) fails if MPI*1 is replaced by MP!. It should be noted that for each
s> 1and k > 1, the pointwise estimate M*w(x) < CM,w(z) holds for some constant C
independent of w.

Such sharp weighted inequalities have also been obtained for operators close to the
Calderén-Zygmund theory, like fractional integrals [109], commutators [110] and vector-
valued singular integrals [111].

We remark that for the case p = 1 these types of two-weight inequalities may be

asked in the context of weak-type estimates. As outlined above, the sufficiency of the A;

condition in this context, together with the trivial observation that (w, Mw) € Ay, yields

C
w{zeRY: Mf(z) > \}) < VJ}M | fIP Mw.

Muckenhoupt and Wheeden raised the question of whether this inequality also holds for
the Hilbert transform and more general Calderén—Zygmund operators. This question was
open for a long time, and it was eventually disproved by Reguera and Thiele [115]; see

also the previous work of Reguera [114].

14



1.2 Orlicz maximal functions

In this section we present some concepts related to the theory of Orlicz spaces. This
played a fundamental role in the proof of Pérez of the weighted inequality (1.1.6), and also
in developing the theory of more general two-weight inequalities for Calderén—Zygmund
operators. We will make use of this in Chapter 4. For the standard definitions below we
refer the reader to [38] and the references therein.

Let A be a Young function, that is, A : [0,00) — [0,00) is a continuous, convex,
increasing function with A(0) = 0 and such that A(t) — oo as t — o0. We say that a
Young function A is doubling if there exists a positive constant C' such that A(2t) < C'A(t)

for t > 0. For each cube @ = R¢, we define the Luxemburg norm of f over @ by

- 1 )
1flac —mf{b 0'@LA(T> iy < 1}_

The Orlicz maximal function associated to the Young function A is defined by

Maf(x) = Sup (FapYe (1.2.1)

for all locally integrable functions f, where the supremum is taken over all cubes @ in R?
containing x.

We define the complementary Young function A to be the Legendre transform of A,
that is

A(t) = sup{st — A(s)}, t>0.

s>0

We have that A is also a Young function, and it satisfies

t<ATH AT () < 2t



for t > 0. There is a version of Holder’s inequality in terms of these function space norms,

|712| L F@)g(@)dz < | falf] 4

Pérez [108] characterised the Young functions A such that My is bounded on L? for
1 < p < o and established that the LP boundedness is equivalent to certain weighted
inequalities for M, and related maximal operators. Such a characterisation is given by

the B, condition.

Definition 1.2.1. Let 1 < p < co. We say that a doubling Young function A satisfies

the B, condition, and we denote it by A € B, if there is a constant ¢ > 0 such that

[y o

Observe that for p < ¢ we have B, — B,. The characterisation is given by the following

theorem.

Theorem 1.2.2 ([108]). Let 1 < p < oo. Let A and B be doubling Young functions

satisfying B(t) = A(t""). Then the following are equivalent:
(i) B € B,.

(ii) There is a constant ¢ > 0 such that

[ Gin) e

(iii) There is a constant C' < o0 such that
| tapp<c| r
Rd R4
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for all non-negative functions f.

(iv) There is a constant C' < oo such that

f Mpfyu<c [
R4 R4

for all non-negative functions f and any weight u.

(v) There is a constant C' < oo such that

» U » Mu
Jo 0 g <€ J P

for all non-negative functions f and any weights u, w.

(1.2.3)

A classical result from Coifman and Rochberg [31] asserts that for any locally integrable

function w such that Mw(x) < o0 a.e. and 0 < § < 1, the function (Mw)°(z) is an A,

weight with A;j-constant independent of w. As Pérez [107] remarks, this result still holds

when one replaces the Hardy-Littlewood maximal function by the maximal operator M 4.

Proposition 1.2.3. Let A be a Young function. If 0 < 6 < 1, then (Maw)® € A, with

Ay constant independent of w. In particular,

M ((MAU})é) (CL’) < Od

for almost all x € R,

One may find a proof of this result in [38] (Proposition 5.32). We give an alternative

proof following the classical approach from [31] in the Appendix C for completeness.
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1.3 Sparse operators

One possible (and classical) approach to proving that a Calderén—Zygmund operator is
a bounded operator on LP(w) for all w € A, and 1 < p < o is via the sharp maximal

function, introduced by Fefferman and Stein [48].

Definition 1.3.1. Given f € L} (R?), the sharp maximal function of f is defined by

MH () = suping ol fQ 1£(2) - ez,

where the supremum is taken over cubes @ in R¢ containing the point z. This definition

is equivalent to the more classical one, in which ¢ = |712| SQ f(y)dy.

The idea behind this approach is to establish a pointwise estimate of the type
M#(Tf)(z) < CrMf(z) (1.3.1)

for a suitable operator M , which is typically a variant of the Hardy-Littlewood maximal
function. Weighted estimates for 7' follow then from those for M# and M ; we develop
this further in Section 1.5. This was the approach used by Cérdoba and Fefferman in
[33] to deduce (1.1.3), and it was successfully employed later by many authors in different
contexts, allowing to deduce, for instance, that |Tf|rrw) < |f]ze(w) for w € A, and
l1<p<ow?

One of the big open problems in weighted harmonic analysis was to determine the
sharp dependence of the operator norm |7'||z»(w) in terms of the A, characteristic of the

weight. This question, commonly referred to as the As-conjecture was recently solved by

2Again, and similarly to the case of the weighted inequality (1.1.3), the constant C7 depends on the
unweighted bounds for T. Thus, it is not possible to use (1.3.1) to obtain boundedness of T in Lebesgue
spaces.
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Hytonen [75] in the general case of Calder6n—Zygmund operators; the specific cases of the

Hilbert and Riesz transforms were previously obtained by Petermichl [112, 113].

Theorem 1.3.2 ([75]). Let T be a Calderén—Zygmund operator in R:. Then

T fll 22wy < O(T, d)[w]a, | f] 22 (w) (1.3.2)

and the dependence on [w)]a, is sharp.

The proof of this theorem has been simplified over the last few years thanks to the
fundamental work of Lerner [84, 85, 87, 86] and others, leading to a better understanding
of Calderén-Zygmund operators and related objects. Lerner’s approach consists in con-
trolling Calderén—Zygmund operators by simple, geometric objects, for which an estimate
of the type (1.3.2) follows by elementary means. To define such simple objects we need
to recall some standard definitions.

Let D be a general dyadic grid, that is a collection of cubes such that
(i) any Q € D has sidelength 2%, k € Z;
(ii) for any @, R € D, we have Q n R € {Q, R, &};
(iii) the cubes of a fixed sidelength 2% form a partition of R<.

We say that § is a sparse family of cubes if for any cube @) € § there is a measurable
subset E(Q) < @ such that |Q| < 2|E(Q)| and the sets {E(Q)}ges are pairwise disjoint.

Given a sparse family & and 1 < r < o0, we define a sparse operator by

RCEDY (,7;, J, 1) " el®). (133

Lerner proved in [84] that Banach space norms for 7" follow from those for the sparse

operators A; s.
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Theorem 1.3.3 ([84]). Let X be a Banach function space over R? equipped with Lebesgue

measure. Let T be a Calderon—Zygmund operator. Then

ITflx < C(T,d) sup | Avs flx,

where the supremum is taken over all dyadic grids D and all sparse families S < D. The

constant C(T', d) depends on |T'|p1_p10.

This leads to an alternative proof for Theorem 1.3.2. Bounds for the operators A; s,
and more generally A, s, may be obtained with rather elementary techniques, see for
instance [84, 42]. In particular, they are bounded on LP(w) for w € A, and 1 < p < o0,
and it is possible to obtain good quantitative control of the operator norm in terms of the
A, characteristic of the weight; for instance, linear dependence on the [w], constant in
the case of A; s.

Theorem 1.3.3 was subsequently refined, and it was simultaneously observed by Lerner
and Nazarov [87] and Conde-Alonso and Rey [32] that for every f € C®(R?) there exists

a sparse family of cubes § such that
Tf(z)] < C(T,d)Avs f (). (1.3.4)

This belongs to the framework (1.3.1), where the sharp maximal function is now entirely
absent. The proof for such a pointwise control has been further simplified by Lacey [79]
and Lerner [86]. The most recent proof of Lerner [86] is phrased in a more general context
than that of Calderon—Zygmund operators. Given a sublinear operator 7', he introduced

the grand maximal function N, defined by

Nrf(z) = Sp ess sup IT(fxrazg)(2)l; (1.3.5)
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here the supremum is taken over all cubes QQ — R? containing .3

Theorem 1.3.4 ([86]). Assume that T is a sublinear operator of weak type (q,q) and
N7 is of weak type (r,r), where 1 < q < r < w. Then, for every compactly supported

f e L"(RY), there exists a sparse family S such that for a.e. x € R?,

Tf(z)] < CAsf(x),

where C' = C(d, ¢, r)(|T|[pa—pae + [N7|Lropree).

In the case of Calderén—Zygmund operators, the grand maximal function Np is shown
to be of weak-type (1,1) through the maximal truncated operator. In particular it is

relatively easy to show [86] that for all z € R,

Nrf(x) < C(T,d)M f(x) + T f(z),

where M denotes the Hardy-Littlewood maximal function and

i@ sl | Ko@)

e>0

The L' — LY* boundedness for N follows then from that of M and T*, leading to the
pointwise estimate (1.3.4).

Finally, we remark that the proof of the norm estimate in Theorem 1.3.3 relied on
an improved version of the pointwise estimate (1.3.1). This requires the notion of local
mean oscillation, which is a refinement of the concept of the sharp maximal function; see

[131, 26, 56, 54| for other historical refinements. In particular, this allows one to exploit

3The use of @ in the definition of A, s and of 3Q in the definition of A7 is quite conventional;
the important underlying feature is that away from a fixed dilate of @), one may apply the smoothing
properties of the Calderén-Zygmund kernels. The choice of Q or 3Q) in each case is taken to be consistent
with the referenced literature.
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that Calderén—Zygmund operators are of weak-type (1,1).
Given a measurable function f and a cube @), the local mean oscillation of f on @ is

defined by
wA(f3Q) = inf((f = c)x@)*(AIQI)

for 0 < A < 1, where f* denotes the non-increasing rearrangement of f.
The median value of f over a cube @, denoted by m;(Q), is a nonunique real number

such that

{zeQ: flx) >mi(@Q)} <|Q/2 and [{zeQ: f(z) <m (@)} <|Ql/2.
Lerner proved the following local mean oscillation decomposition in [83]; see [76] for

the following refined version.

Theorem 1.3.5 ([76]). Let f be a measurable function on R and Qqy be a fized cube.

Then there ezists a sparse family of cubes S < D(Qy) such that

[f(2) =mp(Qo)l <2 3, w1 (f;Q)xol)

QeS

for a.e. x € Q.

The local mean oscillation of a Calderén-Zygmund operator satisfies the estimate

@)= (i [ 1) + £ 75 (g [ 1)

This constitutes a refined version of the inequality (1.3.1).
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1.4 Littlewood—Paley theory

Square functions have played a pivotal role in the study of many operators in harmonic
analysis. One of their common roles is to capture manifestations of orthogonality in L?
spaces for p # 2. The study of those functions has its roots in the work of Littlewood and
Paley [92] and the later development of such a theory is named after them. We refer to
work of Stein [127], [128], [126] for a standard real-variable treatment of Littlewood—Paley
theory.

An application of Plancherel’s theorem quickly reveals that if a family of functions { f;},
defined on R? have Fourier transforms j/’; supported in disjoint sets, then the functions

are orthogonal, that is
| D25l = D 1515
J J

This orthogonality does not hold when 2 is replaced by another exponent p # 2. The
role of classical Littlewood—Paley theory is to provide a substitute for this principle when
p # 2. To this end, we consider certain discrete and continuous square functions.

Let P : RY — R be a smooth function such that supp(P) < {€ € R? : || ~ 1}. For
any k € 7Z, let P, be defined by Pk(ﬁ) = P(Q_kf) and let A, be the operator given by
Kk\f &) = ﬁk(f) 1 (£). Here we assume that the functions {ﬁk}kez define a partition of

unity, that is
M P2 =1 (1.4.1)

keZ

for £ # 0. Consider the square function

Z|Akf 1/2

keZ

The main result of Littlewood-Paley theory is that the square function S characterises
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LP spaces 4 for 1 < p < oo, that is

1S Flp ~ 1F1lp- (1.4.2)

Observe that the case p = 2 amounts to an application of Plancherel’s theorem. The
estimates for S are very closely related to Calderén—Zygmund theory; see the standard
references cited above.

The square function S satisfies the following two-weight L? estimates, from which the
characterisation (1.4.2) follows. The forward estimate is a consequence of a more general
result of Wilson [143]; we refer to the PhD thesis of Harrison [66] for a careful explanation
of how to deduce the above estimate from the work of Wilson. We remark that for this

result, the condition (1.4.1) imposed on P is not required.

Proposition 1.4.1 ([143, 66]).

| spres | Ik

The reverse estimate is slightly less standard and corresponds to a d-dimensional

version of a result in [10].

Proposition 1.4.2 ([10]).

| Pz [ (spratu

We also need to consider the continuous square function

a0 = ([ 17 antol) ™

4Littlewood-Paley theory also may be used to characterise other function spaces such as Besov spaces
or Triebel-Lizorkin spaces; see for instance [57].
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where ¢ is a smooth function such that supp(%) c {€eRe: €] ~ 1}. In order to obtain

a reverse estimate for s,, one also needs to impose
© o~ dt
gb(tﬁ)? =1; £#0. (1.4.3)
0

The square function s, satisfies the same estimates as S.

Proposition 1.4.3.

J s¢(f)(a:)2w(m)dm < f |f(z)]*Mw(z)dx (1.4.4)
R4 Rd
and
f () Pu(z)ds < J so(f) ()2 MPw(x)de. (1.4.5)
Rd Rd
There is an equivalence between the continuous and the discrete square functions given
by
dt ok+1
f |f oy ‘2 ZJ |f* oy f Z |f * dgor (y)|*db. (1.4.6)
keZ L kez

The discrete square function

*(y) = Z |f * Poar (y)

keZ

satisfies the same estimates as S uniformly in € € [1, 2] via an elementary scaling argument.
The above equivalence between discrete and continuous square functions allows us to
deduce weighted L? inequalities for s, from those for S; see also [5] for a more direct

proof of the estimate (1.4.5).

Proof. By (1.4.6), Fubini’s theorem and Proposition 1.4.1 we have

| setrr@u < f | satrp@pteydnas < | 1f@Parut)ds
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Similarly, by Proposition 1.4.2, averaging over 6 € [1,2] and (1.4.6),

|f (@) w(@)de < 2 So(f)?(2)dOM w(z)dw < i f + o) P AP () d.
J . JoJ, 1o

1.5 Hormander—Mikhlin multipliers

Littlewood—Paley theory has shown to be highly effective in the context of Fourier mul-

tiplier theorems. A classical example is that of Hormander—Mikhlin multipliers.

Theorem 1.5.1. Let m : RA\{0} — C and denote by T,, the associated multiplier opera-

tor. Assume that either,

o Mikhlin formulation:

|DYm(€)] < ¢
for all v € N with |y| < 2] + 1.

e Hormander formulation (classical derivatives):

1 1/2
sup 71! (—d J |D7m(£)|2d§> <
refé|<2r

r>0 r
for all v € N with || < 2] + 1.

e Hirmander formulation (Sobolev spaces):

sup ||m(r)¥| g <
>0

(1.5.1)

for some o > d/2, where V is a suitable smooth function with compact support away
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from the origin and H? denotes the inhomogeneous Sobolev space. Equivalently

sup '~V m () o < o0 (1.5:2)
r>0

for all 0 < 0 < o and some o > d/2, where H denotes the homogeneous Sobolev

space.
Then m is an LP(R?) multiplier for 1 < p < oo, that is | T fly < [ fl,-

This may be proved with the classical discrete square functions from the previous
section and using that m satisfies good decay estimates adapted to dyadic annuli. Perhaps
more enlightening for us is Stein’s approach [129] to prove the above theorem. This
approach appeared in Section 1.3 in the context of Calderon—Zygmund operators with
the pointwise estimate (1.3.1). On a more abstract level, given an operator U, it consists

in identifying auxiliary operators g; and g for which we have the pointwise estimate

n(U)(x) s g2(f)(x). (1.5.3)

Given such an estimate one may then deduce bounds on U from bounds on the operators

g1 and go. More specifically, if one has

[flx < lg:(Hlly and g2(f)lly < 1Sz, (1.5.4)

for suitable normed spaces X,Y,Z, then the pointwise estimate (1.5.3) quickly reveals

that
1Uflx < lgr(UHly < lg2(Dlly < £z (1.5.5)

that is, U is bounded from Z to X.?

50Of course this requires that the norm |- |y is increasing in the sense that f1 < fo = |fily < | f2]v-
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In the setting of Héormander—Mikhlin multipliers, Stein established inequality (1.5.3)
with ¢g; and gy being square functions of Littlewood—Paley type. The relevant square

functions here are

“0u 2 12
L W) tdt)

where u : R? x R, — R denotes the Poisson integral of the function f on R¢, and

a1 (F)(@) = g(f)(a) = (

—axdydt\
> td-1 ‘

92(f)(x) = g3 (f) (=) := (J}Rdﬂ |Vu(y,t)|2<1 N |z — |

t

As these square functions satisfy the same bounds as s, that is,

lg(A e ~ 1Fllp ~ Tgx ()l

for 2 < p < oo and A > 1, the Hormander—Mikhlin multiplier theorem follows from the
pointwise estimate (1.5.3) for U = T,,. This is possible because the implicit constant in
such an estimate does not depend on any a priori bounds for 7),; this is in contrast to
(1.3.1), where the implicit constant depends on the unweighted bounds for T

We should remark that with suitable weighted estimates for square functions closely

related to g and g5, one may show that

JRd T fIPw < fRd |fI>MPw (1.5.6)

for any weight w. We note that this weighted estimate is stronger than the Hormander—
Mikhlin multiplier theorem, as we may deduce LP bounds for T, from those for M?® via

the general mechanism (1.1.4).
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CHAPTER 2

OSCILLATORY FOURIER MULTIPLIERS

In this chapter we obtain pointwise and weighted control for broad classes of highly
oscillatory Fourier multipliers on R¢, which satisfy regularity hypotheses adapted to fine
(subdyadic) scales. We introduce novel variants of the classical Littlewood—Paley—Stein
g-functions adapted to those fine scales, that allow us to obtain pointwise estimates of the
type (1.5.3). This approach is very much in the spirit to that of Stein’s for Hormander—
Mikhlin multipliers presented in Section 1.5.

As a consequence, we obtain weighted L? inequalities that allow us to control such
multipliers by positive geometrically-defined maximal functions, which involve fractional
averages over certain approach regions. Our framework applies to solution operators for
dispersive PDE, such as the time-dependent free Schrodinger equation, and other highly
oscillatory convolution operators that fall well beyond the scope of the Calderén—Zygmund
theory.

The content of this chapter is joint work with J. Bennett, and may be found in [5]. It
builds on previous results of Bennett, Carbery, Soria and Vargas [8], Bennett and Harrison

[10] and Bennett [7].
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2.1 Classes of multipliers

We begin by describing the weaker Mikhlin-type formulation of our classes of multipliers.
Given «, 3 € R, consider the class of multipliers m on R¢, with support in the set {¢ €

R? : [£]* = 1}, satisfying the Miyachi condition
|DYm(€)] < [¢7PPIeD (2.1.1)

for every multi-index v € N with |y| < |£] + 1. This class is modelled by the examples

pilel

A

maﬂ(&) :

first studied by Hirschman [68], and later by Wainger [141], Fefferman [49], Fefferman and
Stein [48], Miyachi [98, 99] and others. We note that these multipliers often correspond to
highly-oscillatory convolution kernels; see for example [121] or the forthcoming Corollary
2.6.1.

The support condition on m is desirable here, as to impose the same power-like be-
haviour (2.1.1) as |{] — 0 and || — o0 would be artificial, at least for « # 0; for example
the specific multiplier 7, 3 naturally satisfies (2.1.1) for [£]* = 1, but |[DYm(&)| < [£]7#~
for [£]* < 1. We postpone the discussion on multipliers defined on the whole of R\ {0}
satisfying such “two-sided” conditions to Section 2.6.2. The presence of a distinguished
(unit) scale here is indeed quite conventional, as may be seen in the formulation of the
symbol classes 5% in Chapter 3. The advantage of imposing a support condition rather
than a global estimate of the form | D m/(¢)| < (14|¢])~#*P1(@=1 is that it also has content
for a < 0.

Our results will naturally apply to broader classes of multipliers than that given by the

pointwise condition (2.1.1). We may formulate a Hérmander-type version along the lines
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of (1.5.1). In order to describe this, we must first introduce the notion of an a-subdyadic

ball.

Definition 2.1.1. Let a € R. A euclidean ball B in R? is a-subdyadic if dist(B,0)* > 1
and

r(B) ~ dist(B,0)'?, (2.1.2)
where r(B) denotes the radius of B.

Observe that for a # 0, typically 7(B) « dist(B, 0), making it natural to refer to such
balls as subdyadic (or a-subdyadic). In the case o = 0 this corresponds effectively to a
decomposition into balls of radius r laying in dyadic annuli of width r; this is morally
equivalent to the classical decomposition in dyadic annuli.

The Hormander-type formulation for our classes of multipliers is the following. We

consider multipliers m with support in {€ € R? : [£|* > 1} satisfying the weaker condition
: sra-onl (L prmcerae)
sup dist(B,0) ] |D"m(&)|°dE < (2.1.3)
B B

for all v € N with || < [%lj + 1. Here the supremum is taken over all a-subdyadic balls.

As may be expected, the condition (2.1.3) may be weakened still further to
sup dist(B, 0)P+ =2 B2 |mU | ;0 < o0, (2.1.4)
B

for all 0 < # < o and some o > d/2, uniformly over normalised bump functions ¥p
adapted to an a-subdyadic ball B. By a normalised bump function we mean a smooth
function ¥ in RY, supported in the unit ball, such that |D7¥|,, < 1 for all multi-indices
~ with |y| < N. Here N is a fixed large number, which for our purposes should be taken
to exceed d. Given a euclidean ball B in R?, a normalised bump function adapted to B is

a function of the form Vg := Wo Agl, where W is a normalised bump function and Ag is
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the affine transformation mapping the unit ball onto E, where B denotes the concentric
double of B.

The above condition is easily seen to reduce to the classical Hormander condition
(1.5.2) when o« = 3 = 0. Observe that (2.1.1) implies (2.1.3), which in turn implies the
more general condition (2.1.4) by the Leibniz formula.

The reason to introduce a-subdyadic balls - and therefore the Hormander-type for-
mulation - is that the multipliers m satisfying the differential inequalities (2.1.1) are
effectively constant on such balls. A manifestation of that principle is that it is possible
to prove, with rather elementary techniques, the following weighted estimate for functions

whose Fourier transform is supported in an a-subdyadic ball B.

Proposition 2.1.2. Let o, 8 € R. Let m be a multiplier on R?, supported in {||* = 1}
and satisfying the condition (2.1.1). Let fp be a function such that fB 15 supported in a
a-subdyadic ball B. Then

f Ty fslPw < dist(B,0)~2 f fal Mo,
Rd Rd

where the implicit constant is independent on the ball B.

Proof. Let 1 be a smooth function such that 123 equals 1 on B and vanishes outside
B. Assume, as we may, that |[Digg(€)| < r(B)~H for any multi-index j € N¢ uniformly
in B. As fp is supported in B, then fz = fp * g and Tpfs = fp * Tmtbg. By the

Cauchy—Schwarz inequality and Fubini’s theorem,

fw (T f () P () dr = f

R4

i (W) Tntp(x — Z/)dyrw(x)dx
< JRd (fRd | ()P Tnts(z — y)|dy) | Tt (@) de
— Tosls f o)\ Toin] = w(y)dy.

Rd
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Integrating by parts,

()] = | | e=emie)bule)i
- ] | (A0 e mieta]

= el J, (@0 mdmiered

1 N ~
< T fémg) (mid) (€)|de

for all z # 0. By Leibniz’s rule, the regularity condition (2.1.1) on the multiplier m, the

regularity of ¢, and that r(B) ~ dist(B,0)™ ~ [£]17, a straightforward computation

shows that
|(A5)N(m¢3)(§)| < |£‘*6+2N(a71).
Thus,
Tntbp(2)] < 1 f €|V < dist(B, 0) A +2N(@=1p(B)d ) dist(B.0)-r(B)’
IR 2N - ER (B)aP

for all z # 0. As T, is trivially bounded by

Totb(z)] < fé m(€)ds(€)|de < dist(B,0)Pr(B)",

we have the bound

dist(B,0)~#r(B)4
<
e = e

for all z € R%. Choosing N > d/2 so that the function on the right hand side is integrable,

we have that || T,z < dist(B,0)7", and |T,,¢5| * w < dist(B,0)~? Mw, from which we
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may conclude that

| Do) Puteyds < dist(8,0) [ |fa(o) PMw(y)dy

2.2 Pointwise and weighted control

In this section we present the two main results of this chapter, that is, the pointwise and
weighted estimates for the classes of multipliers described in the previous section.

To this end, we introduce the square function

dy  di\V?
ap(f)(x) = (L " !f*d)t(y)\zm?) , (2.2.1)

where ¢;(z) := t~4¢(z/t) for t > 0, and
Do) :={(y,t) eRT x Ry 1 t* < 1, |y — x| < 17},

The function ¢ in the definition of g, s is a smooth function satisfying the uniformity
condition (1.4.3) and such that (;AS is supported in {1 < [¢| < 2} for @« > 0, and in
{1/2 < |§] < 1} for @ < 0. The main purpose of this is to ensure that g,s(f) = 0
whenever [ is supported in {€ e RY : |€]* < 1}. This feature, which also relies on the
restriction t* < 1 in the definition of I',(x), makes g,z well-adapted to the support
hypothesis imposed on the multipliers that we consider. In particular, we have that
9o s(Tonf) = Gas(Tp f) whenever m and m’ agree on {€ € R?: |£|* > 1}.

The nature of the region I',(z) varies depending on the value of a. For a # 0 the
region I',(x) is very different from the classical cone I'g(x). In particular, when a > 1

it becomes an “inverted cone”, allowing tangential approach to infinite order, and when
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a < 0, it is perhaps best interpreted as an “escape” region since ¢ > 1. These regions
appeared in [8, 10, 7] in the context of maximal operators and dimension d = 1.

By close analogy with the classical g} we also introduce the more robust square function

x 2 [z —yl\—  dy  dit\1?
ga,ﬁ,A(f)(x) = (Jtaq JRd ’f*¢t(y)| <1 + P— > t(1—a)d+2B 7) !

which is manifestly a pointwise majorant of g, s. It should be observed that go o and g5
are minor variants of the classical g and g} defined in Section 1.5, and very close to the
square function sy. The square functions g, s and g, 5, are efficient auxiliary operators

in order to obtain a pointwise estimate for the multipliers under study.

Theorem 2.2.1. Let o, 5 € R and m be a multiplier satisfying (2.1.4). Then

9o s (T )(@) < g2.02()(2), (2.2.2)

with A = 20/d > 1.

We note that it is not necessary to impose a support condition on the multiplier m in
Theorem 2.2.1 thanks to the Fourier support property of the function ¢ in the definition
of ga s

Theorem 2.2.1, along with the general mechanism (1.5.5), allows one to find bounds
for the multipliers (2.1.4) provided suitable forward and reverse bounds for g7, and
Ja,p (respectively) may be found. In particular, we may deduce the following weighted

estimate.

Corollary 2.2.2. Let a, 3 € R and m be a multiplier supported in {€ € R® : |£]* = 1}

satisfying (2.1.4). Then

Ld T flPw < fRd | FIPMP M s M w (2.2.3)
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for any weight w, where

1
Magwie) = = sup ijmw

(y,r)ela(x)

A one-dimensional version of the above weighted estimates in the context of multipliers
of bounded variation over certain subdyadic intervals was previously obtained by Bennett
in [7].

The maximal operator M, g may be interpreted as a fractional HardyLittlewood
maximal operator associated with the region I',,. Naturally, the case a = 0 corresponds to
the classical (uncentered) fractional Hardy—Littlewood maximal function. For 0 < o < 1
the maximal functions M, g are closely-related to those considered by Nagel and Stein
[103] in a different context. In this case, the maximal functions still have a local behaviour.
For o > 1, the maximal functions become highly non local, as the nature of the approach
region I, allows the supremum to be attained in very small balls which are very far away
from the point x. This is consistent with its interpretations in the setting of dispersive
PDE that we shall discuss in Section 2.6.2.

In dimensions larger than one, the maximal operators M, s are relatives of the
Nikodym (or Kakeya) maximal operators. In particular, elementary considerations re-
veal the pointwise bound

Mosf 2 Nagl, (2.2.4)

where

TQ’B
Nopf(@)i= s sup | |1
o<ra<i rera(r) |T] Jr
Tax

and T, (r) denotes the collection of cylindrical tubes T' of length r'=® and cross-sectional
radius 7 in R%. The inequality (2.2.4) follows merely by covering each T' € T, (r) by O(r~2)

balls of radius 7, and noting their positions. We note that the weighted estimate (2.2.3)
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is very much in the spirit of Stein’s conjecture for the disc multiplier.
Corollary 2.2.2 provides us with an opportunity to comment on the optimality of The-
orem 2.2.1 and the maximal functions M, g. Combining it with the general mechanism

(1.1.4), one has that

1/2

| Tonllp—q < IMasll g2y oy

for any 2 < p < ¢ < 0. This allows to deduce bounds for the multipliers 7, from those
for M, 3. The optimal bounds on M, s (see Section 2.5) may be reconciled with the

optimal bounds on the specific multipliers m,, g (see Miyachi [98]) in this way.

2.3 Proof of the pointwise estimate

As it is described in Section 1.4, the classical square functions g and gg 5 are able to
detect “orthogonality across dyadic frequency scales”, but effectively no finer; for this

reason they are commonly referred to as dyadic. This is manifested in the “decouplings”

d00 (D 00F) (1) € D onl e () % gion (D A0F) (), (231)

where Ay, is a frequency projection onto the dyadic annulus Ay, = {€ € R?: |£] ~ 2F}.

The square functions g, s and g 5, which we refer to as subdyadic when o # 0,
detect orthogonality across subdyadic scales, leading to a decoupling of the form (2.3.1)
associated with suitable families B of subdyadic balls. This will play a crucial role in our
proof of Theorem 2.2.1.

Let B be a family of a-subdyadic balls B, with bounded overlap, and supporting a
regular partition of unity {QZJ\B}BEB on {|{|* = 1}. By regular we mean that Supp(@ZB) c B
and

D (€)] < r(B)™ (2.32)
for all multi-indices v with |y| < N, uniformly in B; for technical reasons that will become
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apparent later, we shall actually assume that supp(zZB) is contained in a concentric dilate
of B with some fixed dilation factor strictly less than 2. This partition of unity gives rise

to the reproducing formula

= f+ts, (2.3.3)

BeB
whenever supp( ]?) c {¢€ e RY:|€|* = 1}. For general a and B, elementary geometric
considerations reveal that each dyadic annulus Ay will be covered by O(2%¢) elements of
B of radius O(2(~%)k),

The following explicit “lattice-based” example of a cover B and partition {&B} will be

of use to us later on.

Example 2.3.1. Let € S(RY) have Fourier support in the annulus {|¢| ~ 1} and be

such that

D) =1

keZ
for all £ # 0, where 7,(€) := N(27%¢). Thus {7} forms a partition of unity on R {0}
with supp(7x) € {|¢| ~ 2%} for each k € Z. Next let v € S(R?) have Fourier support in
{|¢] < 1} be such that

Yo —0)=1

Lez
for all ¢ € R%. For each k € Z and (¢ € Z let D,(€) := D(27U=kE) and () :=
Dr(€ — 2079%¢) . Thus for Ek,g(f‘) = k() Uk e(€) we have

P> G =1

LeZd keZ

on {|{|* = 1}. Finally we choose, as we may, a family of balls B and functions {¢5} so that
for each B € B there is (k, {) € Z x Z* for which ¢5 = (;. ¢ and diam(supp(fkyg)) ~r(B). By

construction {zZB} forms a partition of unity on {|£|* = 1} of the type required, provided
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the implicit constants are chosen suitably. !

The square functions g, and g 45, decouple such subdyadic frequency decomposi-

tions.

Proposition 2.3.2. Let a, 5 e R. If A\ > 1, then

gap( D s) @7 € Y ghpnlf =) @) (2.3.4)

BeB BeB

Also, if we assume that {15} pes is as in Example 2.5.1,

3 GrpalF = m)(@) < ghaa( D f#n) (@), (2.35)

BeB BeB

These decoupling and re-coupling inequalities, together with the reproducing formula
(2.3.3), immediately reduce the proof of Theorem 2.2.1 to functions localised at a sub-

dyadic frequency scale, that is to prove that

o s AT (f * ¥B))(2) S gaon(f * ¥B)(2) (2.3.6)

holds uniformly in B € B for A\ = 20/d > 1. Note that putting this altogether we may

quickly deduce Theorem 2.2.1.

Proof of Theorem 2.2.1. Let B and {1p}pes be as in Example 2.3.1. As m is supported
in {£ e R [¢|* = 1}, we may write 10, f = >, 5.5 TS = V5. By the decoupling estimate
(2.3.4),

9T f)(@) = gos (2 Tof 08) (@) € 5 gl a (T * ¥)(2)°.

BeB BeB

! This two-stage decomposition example is implicitly used in the theory of pseudodifferential operators,
as it may be extracted from Stein [129]. This will play an important role in Chapter 3.
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As Tp, f =g = T, (f =1p), by the localised pointwise estimate (2.3.6),

Gos (T f) (@) S Y Ghon(f * ) ().

BeB

An application of the re-coupling inequality (2.3.5) allows to conclude

9es(Tn )@ < g2a( D F o 0m) (@) = ghon(H@)

BeB

as required. O
We devote the rest of this section to proving the inequalities (2.3.4), (2.3.5) and (2.3.6).

2.3.1 Decoupling subdyadic frequency decompositions

Before proceeding with the proof of the decoupling estimate (2.3.4), we need to introduce

the auxiliary square function

B 9+ (T —Y dy ﬂ) 1/2

maolN@ = ([ [ 17 otre(d) s g)
where ® is a Schwartz function such that ®(z) > ¢ for |z| < 1 and supp(®) = {¢ € R? :
€] < 1}.2 Note that, up to constant factors, g, e is a pointwise majorant of g, g, and is

pointwise majorised by g} 5, for any A > 0.

By (2.3.3) we have

w2 =] | DTS 1) 2 (5

On multiplying out the square and using the Fourier transform, the inner (spatial) integral

2Observe that such a function ® can be constructed by ® = |0]? > 0, with © € S(RY) satisfying

~

0(0) # 0 and supp(©) compact.
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in this expression becomes

[ 3 weeoce D0 o w0 (3Y) e

B,B’eB

n n b 5 PN T iy-(§—n T — dy
_ fRd B;GBJW y V()b () d(tE)p(tn) f(€) f(n)e &~ >c1>( . )dgd e

~ ~

= 3 || al©)dm B Sl FO Fne B € — m))dedny;.
B,BleB VR JRY

The support conditions on gg, @ZB and ® ensure that the summand above vanishes un-
less 7(B) ~ r(B') ~ t*7! and dist(B, B’) < t*'. In particular, since B consists of
balls of bounded overlap, for each such B there are boundedly many B’ satisfying these

constraints. Consequently;,

Japo(f)(x)?
— d d
) L“l fRd Z Wa = o W)W+ 60 1))@ (ihf) t(lfa)ydwﬁ Tt>

B,B’eB
r(B)~r(B')~t*"1
dist(B,B’)st> ™1

which by the Cauchy—-Schwarz inequality yields

gaﬁ@(f) (x)2 < ftasl fRd Z W)B P+ )| ( t- ay> t(l—g{i—mﬂ%

BeB

= Y Gupalf *vs) (@),

BeB

and thus the decoupling estimate (2.3.4) is proved.

2.3.2 Re-coupling subdyadic frequency decompositions

Here we prove the re-coupling estimate (2.3.5) for the specific family of balls B and
partition {123} described in Example 2.3.1. While it may hold more generally, this lattice-

based choice allows us to appeal to the following elementary lemma, which may be viewed
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as a certain local version of Bessel’s inequality.

Lemma 2.3.3. Suppose that the functions vy, € S(RY), with k € Z and £ € Z%, are as in
Ezxample 2.5.1. Then

DU vke(@)]* < |17« vl () (2.3.7)

lez4

uniformly in k.

Proof. By scaling it suffices to establish (2.3.7) with £ = 0. Noting that vy = v, observe
that f* vg(z) = €2, (¢) where hy(y) = f(y)v(z —y). Hence by Parseval’s identity,

the Poisson summation formula and the Cauchy—Schwarz inequality,

DI (@) = J[o,l]d > ﬁz(é)e%”'yrdy = f

2
7d

ez ez [0,1]%", ¢
<f S i+ mP—y—m) S wla—y —m)dy.
[07]‘]d meZd m/EZd
Since

Z lv(x —m')| <1

m/eZd

uniformly in x, we have

Sfeufs Y f[ MmOl =y —mldy = |1 ),

Lezd meZd
as required. N

We may now establish the re-coupling estimate (2.3.5) for the partition defined in

Example 2.3.1. For ease of notation we let R} (z) := t(*~1D9(1 + ¢t*~1|z])~®. Observe first

that since Vg = Crr = Nk * Vi,

dy dt
|17 b ) PR - )5
R4

> ghaall v un)@? = 1 Y |

BeB keZ pezd Yt <1
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dy d
S B PR R e

2k ~t—1 fe74

where we have also used the Fourier support properties of ggt to note that ¢« * v # 0
only if 2 ~ ¢~ Applying Lemma 2.3.3, followed by the Cauchy-Schwarz inequality, we

have

Do lF e beemer v @) < Fx deemel « (el (y) S 1 = &l = il = | (9)
LezZ4
uniformly in k, t and y, and hence by Fubini’s theorem,
dy dt
Sl )@ < [ [ 15 0P X il bals R -0 Y
BeB to<1 JR4 ok g1
Lemma A.1 in Appendix A yields the elementary inequality
2 0| = [l « BXNz) < R)Nx),

2k ~t—1

which holds uniformly in x and ¢ satisfying t* < 1, completing the proof of (2.3.5).

2.3.3 The pointwise estimate at a subdyadic frequency scale

Now that Proposition 2.3.2 has been established, to conclude the proof of Theorem 2.2.1

is enough to show that

9o p.20/a T (f = 0B)) (@) < 93020/a(f * ¥B)(T)

uniformly in B € B. The argument we present is similar to that given in [127] in the
classical setting. We begin by introducing an auxiliary function ¢p, chosen so that its

Fourier transform is supported in B and is equal to 1 on supp 1/1 p. For uniformity purposes
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we also assume, as we may, that

D7) < r(B)V (2.3.8)

for all multi-indices j, uniformly in B € B. Observe that, up to a constant factor depending
only on the uniform implicit constants in (2.3.8), @p is a normalised bump function

adapted to B. We begin by writing

g;,ﬁ,Qa/d(Tm(f * 1/13))(@2

o dy dt
- J T (f * 08 * Vp) = d:(y)|* Ry /d(x—y)tz_yﬁT
Jtagl JRA
o dy dt
[ [ 1 @en) e g ot RE - ) 2
Jtoegl JRE 13 t
2 o dy dt
<[ (] el = v onty - 2laz) R - ) 2T
Jtag1 JRA R4

For each ¢, we split the range of integration of the innermost integral in two parts, |z| <
t17* and |z| = ¢'7*. For the term corresponding to |z| < t!7*, we use the Cauchy—Schwarz

inequality, Plancherel’s theorem, and the hypothesis (2.1.4) with ¢ = 0 to obtain

(], EenlIF 0ty = 2)e) <5000 | (e ey = )

j2|<t-e

< | BN va aly - 2Pz
R

observe that the support hypothesis on QAS and zZB ensure 7(B) ~ t*"1. Similarly, in

|Z| 2 tl—Oé

)

<flz|>t1—a|Tm(’OB(Z)||f g dy(y — Z)|dz>2

([ o) [, it -on-oioo1e)

z|=tl-e |2[2
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1
S tQBt(Oéfl)dtQ(lfa)o' J R . ZdZ
|z|=t1—a (tl—a —+ |Z|)2g’f*w3*¢t<y )‘

< t25t(0¢—1)df (1 + to‘_1|z|)_2‘7|f # g * ¢t(y — Z)|2dZ
Rd

Putting together the above estimates we obtain

gz,ﬁ,2a/d(Tm(f * @bB))(x)z
dt

< L<1 fR (JR RZ) | f + g+ oy — z)|2dz> RY g — y)dy—

dt

N f f If =g = o (y) PR« R (2 — y)dy—
te<1 R‘i t

< gZ,O,QU/d(f # wB)(x)Q’

where the last inequality follows since o > d/2 and R} = R}Mz) < R}Mx) for A > 1; see

Appendix A. This concludes the proof of Theorem 2.2.1.

2.4 Proof of the weighted estimate

The proof of the weighted estimate (2.2.3) follows from the pointwise estimate via the
mechanism described in (1.5.5), provided we establish weighted estimates for the square
functions g, 5 and g7 g 5.

The reverse weighted bound for g, s is the most interesting one since it involves the

maximal function M, g.

Theorem 2.4.1. Let o, B € R, and [ be a function such that Supp(f) c{€eR:: ¢~ >

1}. Then
J | flPw < f ga,g(f)2./\/la75]\/[4w.
Rd R4

In order to prove Theorem 2.4.1, we make use of the following elementary lemma.
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Lemma 2.4.2.

 J@h()dr < R Ld L . sup  h(z) dz (2.4.1)

Iz—mlsﬁ
uniformly in R > 0 and nonnegative functions f,h on RY.

Proof. To simplify notation, we prove the one-dimensional case of (2.4.1); the d-dimensional
case follows by applying the one-dimensional in each variable. Observe that we may de-

compose the integral as

J]Rf(x)h(x)dx =) p_li;f<x+u4r %>h<x+u+ %)dw

ZA)
s
=Y
<
n
2
S
=
N
N~—

2k
kez Vly—u-FI<g sls—u-FI<g

for any |u| < . Averaging over u,

1R
f f(x)h(z) 2RJ J y)dy sup h(z) du
R 1/R Jly—u— ﬁk % z:|zfu7% S%

1/R+2k/R

= QRZJ J f(y)dy sup h(z)dz

kez Y —1/R+2k/R Jly—z|<f zle—al< g

= QRJ J sup h(z) dz,

ly—z|< % |z—x|<%
as required. O

Proof of Theorem 2.4.1. We begin by using classical Littlewood-Paley theory in the form

of (1.4.5) to write

[ rpewes [ [ 17 swParuma
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The support conditions on a and ]? reduce the range for the t-integration to those ¢
such that 0 < t* < 1. Choosing ¢ € S such that @ = 1 on the support of (;AS and

supp(@) = {€ e R?: 1 < [¢] < 4} allows us to write f = ¢y(y) = f * ¢ * p(y). Combining

this with applications of the Cauchy—Schwarz inequality and Fubini’s theorem gives

| r@Pu@ars [ [ 1 atPed < aromnT

* 2 A% 73 ﬁ
< | et

where Afw(z) := sup,-, A,w(x) and

1
Apw(@) = o '
1w(x) |B(x,t)| JB(w,t) v

Observe that Afw < AyA¥w < AyMw, so applying Lemma 2.4.2 at scale R = t*~! yields

[ @t
d
£a<1 fRdJ <t a|f ¢t( )’ m sup t2BAtM4 ( )dl’—t

zi|z—z|<tl—o

dt \
fRd Jta<1 Jy - |/ () m n M M w(z)dz,

where the last inequality follows by taking the supremum in ¢, since

sup  sup  tPAM w(z) = M, sM*w(z),

o<1 z:|z—x|<tl—

by the definition of M, g. O

The forward estimate for g  is more classical in nature than its reverse counterpart
above, and it is a simple consequence of Section 1.4. We also refer to [127] for an analogous

result for g3.
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Theorem 2.4.3. Let « € R and A\ > 1. Then

| stantryw < | 150w
Rd Rd

Proof. By Fubini’s theorem,

d
| gostN@ru@s = | [ 1ot PR o

Since
sup R} +w < Mw
t

for A > 1, we have

JRd g;,o,,\(f)(x)Zw(x)dx < J}Rd JOOO |f = ¢t(y)\2%Mw(y)dy,

which by an application of classical Littlewood—Paley theory in the form of (1.4.4) results

n

| stoxtharu@ar < [ 17@PMPu,

R4
as required. N

As may be expected, it is possible to obtain similar weighted L? estimates for 95 x
for other values of 5 by minor modifications of the above argument.

Corollary 2.2.2 trivially follows now from applying Theorems 2.2.1, 2.4.1 and 2.4.3.

Proof of Corollary 2.2.2. Applying Theorem 2.4.1 to T,,f, which trivially satisfies that

fm\f is supported in {€ € R? : [£]* > 1}, the pointwise estimate (2.2.2) and Theorem 2.4.3
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we have that

j mwaﬁf o (Ton f)* Moy s M0
]Rd Rd
< | staals P Madtt
R

S f [FPMP Mo M,
R4
as required. 0

2.5 LP(RY) — LY(R?) boundedness results

In this section we establish the relevant Lebesgue space bounds satisfied by the operators
M., s and how to use the weighted inequalities (2.2.3) and Theorem 2.4.1 to obtain bounds

for T, and g, p respectively. We have the following bounds for the maximal operator

Mg

Theorem 2.5.1. Letl <p<qg< o and a,feR. Ifa >0 and

ad ds1 1
paod d(L_1)
2¢ 2\p ¢
ora =0 and
dsl 1
5-5G-2)
p q

or a < 0 and
ad ds1 1
<_ _ - — —
b 2q+2< )’

then M5 is bounded from LP(R?) to LI(R?).

This theorem is a straightforward adaptation of the one-dimensional case in [7]; the

proof is included at the end of this section.
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As described at the end of Section 2.2, the mechanism (1.1.4) allows us to deduce

bounds for 7}, from those for M, 3 via the weighted estimates (2.2.3), as

1/2
| Tl < I Mgl Ly s 2y

Similarly, one may obtain reverse bounds for g7, 5\ via Theorem 2.4.1.

Corollary 2.5.2. Leta,feR and2<p<g<ow. Ifa>0 and

I} 1 1 1 1
bsafi-)ed-
d 2 p/ p g
ora =0 and
ﬁ_l 1
d p ¢
ora <0 and
1 1 1 1
beal-ed-t
d 2 p/ p ¢

and m is a Fourier multiplier satisfying (2.1.4), then

[T fllg = 1F 1

Also, if f e LUR?) is such that supp(f) < {£ e RY: |¢]* = 1},

1fllg < 1gas (-

Duality allows one to obtain bounds on the multipliers for 1 < p < ¢ < 2. Such
bounds recover a number of well-known multiplier theorems since our class (2.1.4) natu-
rally contains those considered by Miyachi [99] — in addition to the classical Hormander—

Mikhlin multipliers and fractional integrals. In particular, as the model multipliers
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€17 X (jgja=1y are bounded on LP(R?) if and only if |1/2 — 1/p| < 8/(ad), the maxi-
mal operators M, g in (2.2.3) are optimal, in the sense that they cannot be replaced by
variants satisfying additional Lebesgue space bounds.

We devote the end of this section to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. We only concern ourselves with the case a # 0; the case a = 0
corresponds to the classical fractional Hardy-Littlewood maximal function. Observe that

for & > 0, the possible radii r in the approach region I', (x) satisfy 0 < r < 1 and therefore
Ma’ﬁ’w < Ma,ﬂw

for 0 < 8 < f'. A similar analysis for the case a < 0 reveals that it is enough to show
that M, g is bounded from LP(R?) to L?(R?), where 1 < p < ¢ < 0, on the line

5_3_;5+g<1_1>_ (2.5.1)

We regularise the average in the definition of M, g and we prove the estimates for the

pointwise larger maximal operator (in the case of weights)

~

Magw(a) = sup  rP|P = w(y)],
(4)eTa (@)

where P is a nonnegative compactly supported bump function which is positive on B(0, 1)

and P,(z) := r~¢P(z/r). Trivially,

~

(Moow(z)| = sup [P+ w(y)| < [Pli]wlleo
(y,r)ela(z)

and

(M gw(z)| = sup  r|Pxw(y)] < |Plofwls,
(1) a(2)
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~

for every z € R% Analytic interpolation between these two estimates gives M, «
35

LP(RY) — LP(RY) for 1 < p < 0. A further application of analytic interpolation shows
that boundedness for M, s from LP(R%) to L¢(R?) holds for a, 8 as in (2.5.1) provided

~

M, aa : HY(R?) — LY(R?). To this end, it suffices to see

7
M zaals 51

uniformly in H!(R¢)-atoms a; recall that an atom a is a function defined on R¢ supported

in a cube @ such that SQ a=0and |a|, < By translation-invariance, we may assume

IQ\
that the cube @) is centered at the origin. We have the following standard bounds

f

1/|Q] if < |QIY, [y| < |QV*
[P+ a(y)] < 4 |1QY4 /vt if r > QY4 |yl < v

0 otherwise.

\

This estimate is a consequence of the following elementary considerations. Of course

P« aly) |—H a(2)dz].

Observe that P.(y — -) is supported in a ball of center y and radius r. If r is small,
say r < |Q|Y?, and |y| = |Q|Y9, we have that B(y,r) n Q = & and then P, = a(y) = 0.
Analogously, if r > |Q[*? and |y| = r, we have that B(y,r)nQ = ¢ and then P,*a(y) = 0.

For the remaining cases, one may trivially apply L! — L* duality to obtain the bound

\f I f|a NP = 2= < 57 ||P1~ﬁ.

This is a good estimate for small r. However, one may do better for large r, as P, is
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essentially constant for large r, which would imply that P, = a tends to §a = 0 as r — 0.

To exploit this, we use the mean value zero of a to obtain the improved bound

1/d
ot = | [ (B~ Piootant] < [ [9Relaftees < 97

This concludes the discussion on the bounds for | P, = al.

In order to obtain the required bound HJWQ o al; < 1, we need to argue differently
depending on the value of «, as the nature of the region I', changes dramatically for
a<0,0<a<landa>1.

Case o > 1: we have 0 < r < 1, so we divide our analysis in |Q|"¢ > 1 and |Q|"? < 1.

1/d

Assume |Q[Y? > 1. As r < 1, we are in the situation |Q|"¢ > r, so

QI if [yl < QY
‘Pr*a(y)‘ <

0 otherwise

If [2] < |QY, for any (y,7) € Ta(x), we have |P; = a(y)| < 1/|Q), so

M, caa(z) = sup 1P xa(y)| <
? (y:r)ela(z)

[~

If |z| = |Q|Y¢, we would like to make r®? as big as possible with |y| < |Q|¢, so the

: : o
supremum is attained at r ~ |z|7= and then

This leads to

ad
It 1 11—« -
H/\/la @a||1 < f —dx —i—J \x’ de <1+ |Q|fa < 1.
= el || wlzlone Q@
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1/d 1/d

Now assume |Q]"/* < 1. For any x there is always a small radius 7 such that r < |Q)|
and (y,r) € Ty with |y| < |Q["?; recall that the case a > 1 allows tangential approach to

infinite order. Hence
1
Q)

The contribution to |\./f\>l/a7%da\|1 of those x such that |z| < |Q|*~%/4 is 1. When |z| =

M, saa(z) < QI = = Q1.

1/d one needs to take

|Q|*=*) one may obtain a better estimate, as to impose |y| < |Q|
ro~ |x|ﬁ Then

Ma,%da<x) < |x‘m@,

which integrates 1 over the region |z| = |Q|(!=®/. This concludes the case a > 1.
Case o < 0: we have r > 1. We split again our analysis in |Q|"? > 1 and |Q|"/? < 1.

1/d

Assume |Q|Y4 < 1. Asr > 1, we are in the situation |Q|"? < r, so

oy < 1@ S
-+ a(y)| S

0 otherwise.

If || <1, (0,1) € Ty(x), so

«,

M, saa(z) < 1QI" < 1,

which integrates 1 in |z| < 1. If |x| = 1, a similar reasoning to the one in the previous
case tells us that the smallest r such that |y| < r and (y,r) € ', is given by r ~ ]:C|ﬁ
Thus,

~ =
M, saale) < Ja| 2 =5 |Q|

a,

which integrates 1 in || = 1. Then ||Ma7%da\|1 <L

Now assume |Q|"? > 1. Taking r ~ |xlﬁ, there is a y such that (y,r) € I'y(x) with
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lyl < v If 2| < |QIA=/4 then r < |Q|Y4 and

which integrates 1 in |z| < |Q["?. For the case |z| = |Q|~*/4, we have r > |Q|"4, so

~ _ad —d =1 g =L
M, saa(z) < |o]7==|Q Y a| e 2| =a = Q)| |x| =,

which integrates 1 in the region |z| > |Q|Y¢. Again, ||./Wa aaal; < 1 and this completes
)2
the case oo < 0.

Case a = 1: the approach region is
Fi(z) ={(y,r): 0<r <1 |y—z <1}
We make again the distinction between |Q|V4 > 1 and |Q|Y? < 1. If |Q"? > 1,

1/1QI if Iyl < 1@V,
[Py a(y)] <

0 otherwise.

Then, for |z| > |Q|"?, .Am/l/a,%da(x) = 0. For |z| < |Q["?, the supremum will be attained
for r =1, so

M waa(r) < 1

a5 | |’

which integrates 1 in the region |z| < |Q|Y<.

Assume |Q|Y4 < 1. If |z| = 1, there is no y such that (y,7) € I'j(x) with |y| < r
or |y| < |Q|Y¢. Then .Afza’%da(x) = 0. For |z| < 1, either there is (y,r) € I';(x) with

r < |Q|"? or with r > |Q|"? or both. In any case the supremum is always controlled by
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which integrates 1 in |z| < 1. Thus, |\A7a7%da\|1 < 1 for the case a = 1.

Case 0 < a < 1: we have 0 <7 < 1. If |Q|V4 > 1,

1/1Q| if ly| < QM7
[P+ a(y)] <

0 otherwise.

Reasoning as before, if |z| = |Q|Y¢, we have May%da(x) = 0. For |z| < |Q|Y¢ we have

Iyl < |Q|Y* with (y,7) € Ty (z), and taking r < 1,

~ 1
Ma’%da(.ﬁﬂ) < m,
which integrates 1 over that region on x.

Finally, if |Q["/? < 1, we have again /r\za’%da(x) =0 for |z] 2 1. If |z| < 1, we take

(y,7) € To(x) with r ~ |2|Y1=%) in order to satisfy |y| < r. If r ~ [2[Y/(1=2) > |Q|V9,

ad —d—1 g =L
asa(z) S |a|Fa Q2| T = |a| x| =] QY

M

(67

which integrates 1 in the region |Q|!=%/? < |z| < 1. In the case r ~ |z[Y(1~®) < |Q|Y9,

ad
~ |;L‘|(17a)
Mm%da(x) < o

which integrates 1 in the range |z| < |Q[*=®/?. Then H./\m/l/m%daHl < 1, and this finishes

the case 0 < a < 1 and the proof of the theorem.
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2.6 Applications to oscillatory kernels and dispersive

PDE

We now discuss some applications of Theorem 2.2.1 and Corollary 2.2.2 in the setting of

oscillatory kernels and dispersive partial differential equations.

2.6.1 Oscillatory kernels

An observation of Sj6lin [121] using the method of stationary phase allows one to obtain
similar pointwise and general-weighted estimates for classes of highly oscillatory convolu-

tion kernels. For example we have the following:
Corollary 2.6.1. Fora>0,a# 1 andb=>=d(1—$%), let K, : R* — C be given by

; a
cilel

Kap(z) = W(l —n(z)),

where n € CP(RY) is such that n(x) = 1 for all x belonging to a neighbourhood of the

origin. Then for any A > 0,

Jas(Kap * [)(x) < g5 o2 (f)(2) (2.6.1)
and
f [ Kap = fIPw < f [ FI2M?* Mo s M w, (2.6.2)
R4 Rd
a da/2—d+b
where a = =% and § = %220

It is interesting to compare the oscillatory kernels in Corollary 2.6.1 with the kernel

associated to the disc multiplier

27|z —27i| |
K(z) = F'm(z) = cs re Fr) i 0<1). (2.6.3)

]2
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Perhaps remarkably, this kernel takes the form of the missing endpoint case a = 1 in Corol-
lary 2.6.1, although it should be noted that the behaviour of these kernels is notoriously

discontinuous there.

Proof. In [121] Sjolin establishes that the multiplier IA(a,b satisfies the Miyachi condition

(2.1.1), leading to the conclusion

Jap(Kap = f)(2) < 950a(f)(2)

for any A > 0, by a direct application of Theorem 2.2.1.

In order to prove (2.6.2), we must force the support condition on the multiplier IA(GJ,.
We thus choose a function ¢ € C*(R?) such that ¢(&) = 0 when [£]* < 1 and ¢(§) = 1
when [£]* > 2 and write IA(QJ, =(1- gp)f(w + gpf/(\'a,b = mg + my. The multiplier me, is
supported in {£€ € R? : [£]* > 1} and satisfies the Miyachi condition (2.1.1), so Corollary
2.2.2 immediately yields (2.6.2) for T,,,,. The inequality for the portion T, follows from
a straightforward adaptation of the techniques used in the proof of Theorem 2.4.1. Since
Ky = my is a rapidly decreasing function, the Cauchy—Schwarz inequality and Fubini’s

theorem allow us to write

| Ttw < Vol | 1Pl w5 | IfPATw S [ IPA MM,
Rd R4 Rd Rd
where the last inequality follows from the pointwise bound

Afw £ AjAfw € Mo pAfw < MP M, sM*w.
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2.6.2 Dispersive and wave-like equations

The specific multipliers mq g(&) := (1 + [£]2)772e!€” yield weighted estimates for the

solution u(z, s) = e*-2)** f(z) of the dispersive or wave-like equation

i0su + (—A)¥%u =0

(2.6.4)
u('? 0) = f

For example, we have the following immediate application.
Corollary 2.6.2. Let a € N. Then

L@d |eis(_A)a/2f|2w < JRd (I — SQ/O‘A)B/2f|2M2MZﬁM4w, (2.6.5)
where

(@ -
M yw(z):= sup ————— f w
A (y,r)els,(x) |B(y7 Sl/ar>| B(y,s/er)

and

T8 (z) = {(y,r) eRT xR, : 0 <r < 1|z —y| <sor—),

Of course the case o = 2 corresponds to the setting of the free Schrodinger equation.
It is interesting to interpret the above weighted estimates in this framework. As it is
mentioned at the beginning of this chapter, the maximal operators M, ; are highly non-
local for o > 1, capturing the dispersive nature of the Schrodinger equation.

Corollary 2.6.2 follows from Theorem 2.2.2 via an elementary rescaling argument after

noting the scaling identity

A () = T, (1= A)2F) (a/s7)

where f,(z) = f(s"*z). We remark that in order to apply Theorem 2.2.2 to the multiplier
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Mq, g it is necessary to consider its behaviour near the origin separately, as in the proof of
Corollary 2.6.1.

One could also obtain weighted estimates for the solution u(z, s) from the correspond-
ing estimates for the Fourier multipliers m, g = |€ \_'Beima, which shall yield estimates in
the context of homogeneous Sobolev spaces. Observe that, for a € N, these multipliers
satisfy the estimates (2.1.1) in {|¢|* = 1}, but |[D"m(¢)| < [¢]7%M in {|¢]* < 1}. We
stablish a more general result for multipliers satisfying those differential conditions, that
is,

’§=*’—B+|vl(a—1)7 if [¢]e =1
[D"m(§)] < (2.6.6)
I it [¢]* <1,
for all v € N? such that |y| < 2] + 1.

Corollary 2.6.3. Ifm : R)\{0} — C satisfies (2.6.6) for ally € N such that |v| < |£]+1,

then
[ mstws [ irearomarte (267
where
M, () . j
a7ﬁw xTr) = Sup T N11_953/9 w7
(y,r)eha(z) | B(y, )|t~/ B(y,r)
and

Aa(:[;) = {(y,r) € Rd X RJr : ’x _ y‘ < 7,1—04}'

Observe that when 3 < d/2, M, s satisfies the trivial L¥2% — L* bound by a simple
application of Holder’s inequality. This observation and Corollary 2.6.3 quickly lead, via
the duality argument (1.1.4), to the sharp L” — L7 bounds for the class of multipliers
satisfying (2.6.6); see Miyachi [98]. Hence for a@ # 0, 9, s necessarily fails to satisfy
any other LP — L7 inequalities. This is in contrast with the maximal functions M, g

associated with the regions I',(z) studied in the previous sections, where L? — L4 bounds
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exist with ¢ < o0 in views of Theorem 2.5.1.

Proof of Corollary 2.6.3. Let n € C*(RY) be such that n(¢) = 0 when |¢|* < 1 and
n(¢) = 1 when [¢|* = 2, and write m = my + mg, with m; = mn and my = m(1 — 7). As
my is supported in {|{|* > 1} and satisfies the Miyachi condition (2.1.1), Theorem 2.2.2
gives

[ RIS T

Similarly, the multiplier ms satisfies the condition (2.1.1) for o = 0, so another application

of Theorem 2.2.2 gives

| [Tt < | 1FEAEMa 0
R R

As the maximal operator M g is pointwise comparable to the classical fractional Hardy—

Littlewood maximal function of order 24,

1
Mssw(x) = su —J w,
2 (> r>E) rd=26 B(z,r)

one trivially has Mg < M, s for any o € R. This, together with the obvious M, s <
M, 5, gives (2.6.7) for my and ms, from which the result follows. O
Of course a straightforward scaling argument leads to the following corollary.

Corollary 2.6.4. Let a € N. Then

f ‘eis(ﬂ)a/?ﬂ% < J |(_A)5/2f|2M2£mg ﬂM‘lw, (2.6.8)
R4 R4 ’
where
1
M sw(z):= sup —J w,
7 wneas @ B )24 e,
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and

As(x) = {(y,r) e REx R : | —y| < 7@},

As with the classical fractional maximal operators, 9, g behaves well on the power
weights w,(x) := |z|77, with 0 < v < d. Indeed one may verify that M, w,(z) < 1

uniformly in z € R? and o € R, and so Corollary 2.6.4 at s = 1 gives

jR e () Pl < f (~ A () P (2.6.9)

R4

This special case is somewhat degenerate as the presence of the parameter « is not de-
tected in the estimate. Observe that, alternatively, (2.6.9) may be proved directly by an

application of the classical Hardy inequality

|, @) Pla e < [ j=ay/hpas,

Rd

followed by the energy conservation identity [¢X2)" o = | f]..
It should be observed that Corollary 2.6.4, combined with the trivial uniform L%?%) —

L* bound on M, 5 allow to recover the elementary sharp homogeneous Strichartz inequal-

ity
1

—), 2 < q< oo

is(=8)"2 ¢ 1
e
| -2

rers S | fllgs; B = d(

A classical prove for the above estimate follows by Sobolev embedding and energy con-
servation.
Finally, let us interpret Inequality (2.6.8) as a “local energy estimate” that also cap-

(~a)°/

tures dispersive effects of the propagator e’ * via the s-evolution of the region A (x).

Indeed the sets A?(z) are increasing in s, so that, in particular

sup J ]eis(_A)a/2f|2w < J [(=A)P2 FI2MPIM, 5 M w, (2.6.10)
R4

O<s<1 R4
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where M, 53 = ?Jﬁ}m. It is interesting to compare this inequality with the weighted
maximal estimates in [1] (or [94]) at the interface with geometric measure theory.
It is a very interesting question to determine if, for 5 beyond some critical threshold,

(2.6.10) may be strengthened to

J sup |ei5(’A)a/2f\2w §J [(=A)P2 1>, sw, (2.6.11)
R Rd

d 0<s<1

modulo suitable factors of M or any other suitable maximal operator M; see for example
Rogers and Seeger [116] for related estimates in an unweighted setting. This question
seems to be a lot harder due to the nature of the maximal Schrodinger operator, defined
by

w*(z) := sup |2 f(x)].

0<s<l
Bounds for this operator are often obtained via Fourier restriction theory; note that
u(z,s) = (fdu)A(x, s), where du denotes the parametrised Lebesgue measure on the
paraboloid. This question served as a motivation to study certain easier maximal-multiplier
operators, which led to the work on the Carleson operator in Chapter 4. Also, we make
some remarks on Fourier restriction theory in Chapter 5, in views of attacking the question

posed in (2.6.11) in the near future.
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CHAPTER 3
PSEUDODIFFERENTIAL OPERATORS
ASSOCIATED TO HORMANDER SYMBOL

CLASSES

In this chapter we establish general weighted L? inequalities for pseudodifferential oper-
ators associated to the Hormander symbol classes 5. Via such inequalities, we are able
to control pseudodifferential operators by maximal functions of the type M, g, previously
introduced in Chapter 2. The control by these maximal functions is optimal, as we may
recover the sharp L” — L7 bounds for the symbols classes S75. Our results apply to the

full range of admissible parameters for S”"

s thatis, me R, 0<d<p<1,i<l

In contrast with the Fourier multiplier case, the weighted inequalities here do not
follow from a pointwise estimate. The non-translation-invariant nature of the pseudodif-
ferential operators fails to make the g-function approach effective in this case. However,
the techniques used still capture the ideas developed in Chapter 2.

The content of this chapter is mostly based on the submitted work [3].
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3.1 Weighted control for Hormander symbol classes

The study of pseudodifferential operators was initiated by Kohn and Nirenberg [77] and
Hormander [69], and it has played a central role in the theory of partial differential
equations. Given a smooth function a € C*(R? x R?), we define the associated pseudod-

ifferential operator T, by

~

T.f(z) = f ¢ a(z, &) F(€)de,

Rd

where f € S(R). The smooth function a is typically referred to as the symbol. Throughout
this chapter, we shall assume that a belongs to the symbol classes S7%, introduced by
Hérmander in [69]. Given m € R and 0 < 6, p < 1, we say that a € ST if it satisfies the
differential inequalities

|070galz,&)] < (1 +[¢l)mrlotor (3.1.1)

for all multi-indices v, o € N,

Of course if a symbol a(x,§) is x-independent, T, is a multiplier operator. Some of
the multipliers studied in Chapter 2 may be naturally viewed as symbols. In particular,
for 0 < o < 1, if a multiplier m satisfies the differential inequalities (2.1.1) for any multi-
index v € N? then m € S| Ly 0. Obvious model examples are the classical multipliers
Map(€) = (1 + €12)7P2(1 — x(€)), where x denotes a smooth cut-off that equals 1 in
a neighbourhood of the origin.

In view of the results in Chapter 2 it is natural to ask whether it is possible to obtain
analogues for Theorem 2.2.1 and Corollary 2.2.2 in the context of the Hormander symbol

classes S7%. Our main result is a positive answer in the case of the weighted inequalities.
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Theorem 3.1.1. Leta€ ST, whereme R, 0<do<p<1,0<1. Then

Ld T flPw < JRd | FI2 MM, 0 MPw (3.1.2)

for any weight w, where M, p,w 1= Mi_, _pw.

We introduce the maximal functions M, ,,, for the ease of notation. Observe that this
theorem covers the full range of admissible values for m, p,d except for an endpoint case
corresponding to the symbol classes ST, This is to be expected, as it is well known that
there are symbols in the class S7, that fail to be bounded on L* (see [129]), and thus
(3.1.2) would fail on taking w = 1.

As discussed at the beginning of this chapter, our approach to proving Theorem 3.1.1
differs from the one adopted for the multiplier case, although some of the main ideas
are still present. As is to be expected, the case of pseudodifferential operators adds
complexity, and more delicate arguments seem to be required. In particular, appropriate
applications of the symbolic calculus and the Cotlar—Stein almost orthogonality principle
play important roles. We refer to the end of Section 3.2 for a discussion of the approach
taken on the problem, together with an outline of our proof.

The maximal operators M = M?*M,,,M® are optimal in (3.1.2). The general mech-
anism (1.1.4) reveals that if a € S}, where m e R, 0 < 6 < p < 1, § < 1, the inequality
(3.1.2) implies

1/2
HTa HP—’Q S HMﬂvm H (q/2)’—>(p/2)/ :

As in the Fourier multiplier case, this allows to transfer L — L% bounds for M, ,,, to bounds
for T,; in particular the bounds for the maximal operator M, ,,, obtained in Theorem 2.5.1

allow one to recover the optimal bounds for the symbol classes S7s.
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Corollary 3.1.2. LetmeR and2 < p<qg< . Assume 0 <0 <p <1 and

-m 1 1 1 1
— > 1—p<———>+———,
d ( )2 p/ P q
orp=1,0<1, and
-m 1 1
d p q
If a € ST, then
|Tafllq < 1L p-

As the class of pseudodifferential operators associated to symbols in a specific class
S, 1s closed under adjoints, one also obtains by duality the corresponding Lebesgue space
bounds for T, on the range 1 < ¢ < p < 2.

This corollary is sharp in view of the estimates satisfied by the classical symbol

pm (€) = €77 (1 + [€2)™2(1 — x(€)), which fails to be bounded on LP(R?) if 15— 3l >

m

oD This recovers well known results on the LP-boundedness of pseudodifferential op-

erators. Bounds for these operators have been extensively studied, see for instance the
work of Calderén and Vaillancourt [18] for the L*-boundedness of the classes S) ,, with
0 < p < 1, or Hérmander [69], Fefferman [52] or Stein [129] for L? bounds for the symbol
classes S7;. Weighted LP-boundedness in the context of the A, Muckenhoupt classes has
also been studied, see for example the work of Miller [97], Chanillo and Torchinsky [28],
or the most recent work of Michalowski, Rule and Staubach [95, 96]. We note that our
Theorem 3.1.1 does not fall beyond the scope of the A, theory.

We end this discussion with the interesting remark that the maximal operators M, ,,

are significant improvements of some variants of the Hardy—Littlewood maximal function.

In particular, for any s > 1, a crude application of Holder’s inequality reveals that when
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2sm = (p — 1)d,

1
Mp -naw(x) = sup ——( w
7 2s (yﬂ“)erlfp(l’) rdr S |y—Z|<’I‘
1 1/s 1
d(1—1
< sup m( w5> T ( S)
(yr)el1—p(z) 77~ s ly—z|<r

< 1 J S) 1/s
= sup —_— w
rdp ly—z|<r

(y,r)el1—p(x)

- < 1 J S) 1/s
X sup — w
rdv ly—z|<re

(yr)el1—p(2)

< (M ()"

At the level of Lebesgue space bounds, the maximal operators M, ,, are bounded on L?,
for s > 1, when 2sm = (p — 1)d, a property that the maximal functions (Mw*)"* do not
enjoy. This allows us to reconcile Theorem 3.1.1 with more classical results in the context

of A, weights. For s = 1, we obtain the following.

2

Corollary 3.1.3. Leta e S;gl(l*p)/ ,where 0 <6< p<1,6<1. Then

fRd T, flPw < Ld |fI>MPw. (3.1.3)

In particular, we may recover the L?-case of a result of Chanillo and Torchinksy [28],
and Michalowski, Rule and Staubach [95], in which it is established that the symbol

p)/2

classes S;gl(l_ , with 0 < p < 1, are bounded on LP(w) for w € A,y and 2 < p < 0.

The inequalities (3.1.3) improve on the existing two-weight inequalities with controlling

s which are implicit in the works [28, 95] from the elementary

maximal function (Mw?)
observation that (Mw*)'/* € A, for any s > 1. We remark that in the case of the standard
symbol class S := S}, and the classes S5, with 0 < 1, the inequality (3.1.3) holds

with maximal operator M?3; this is a consequence of the inequality (1.1.6) for Calderén—

Zygmund operators. We note that the number of compositions of M in (3.1.2) and (3.1.3)
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does not need to be sharp here; we shall not concern ourselves with such finer points.

3.2 Failure of g-function approach

First of all we observe that the similarity between the differential inequalities (3.1.1)
satisfied by the symbols a and those satisfied by the multipliers m (2.1.1) suggests a
decomposition of the £-space, where £ corresponds to the frequency variable of f, into (1—
p)-subdyadic balls. However, as T, is a non-translation-invariant operator, the frequency
variables of T, f and f are not the same. This is manifested, for instance, by the fact that

if 1) is a bump function adapted to a (1 — p)-subdyadic ball B,

To(f = ¥B) # Tof = ¥, (3.2.1)

in contrast to T,,,(f = ¥p) = Ty f = . The failure of this property makes the subdyadic
square functions g, g not as effective in the setting of pseudodifferential operators, as the
decoupling inequality (2.3.4) does not interact well with a subdyadic decomposition at
the level of f . It is not obvious for us how to adapt the argument in order to make Stein’s
g-function approach work in this context. Therefore, the weighted estimates (3.1.2) are
obtained in a more direct way, and do not follow from a pointwise estimate of the type
(1.5.3).

Despite the apparent failure of the g-function approach, it is important to observe
the following property from the proof of the decoupling estimate (2.3.4). Let B, B’ be
subdyadic balls with r(B) ~ r(B’) and let fg, fg be functions whose Fourier support
lies in B and B’ respectively. Let @ be a weight function with Fourier support lying in a
ball centered at the origin of radius r(B) ~ r(B’). Then, Parseval’s theorem reveals the

orthogonality property

fefp = fefe=w=0
Rd Rd
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if dist(B,B’) 2 r(B). By translation-invariance, this orthogonality remains valid for
T,.fp and T,, fp:, but not for T, fp and T, fp/, in view of (3.2.1). In the case of Fourier

multipliers only “diagonal” terms contribute to the whole sum, that is,

| Y TfsPa- | 1 foTufa ~ | T, fs®,
J X > 2

r(B)~ ~r(B)~K r(B)~K

and one may thus invoke the elementary Proposition 2.1.2 for the diagonal terms; here
K is a suitable fixed scale. The key idea for pseudodifferential operators is that despite
T,fs and T, fp not being orthogonal with respect to the weight w, it is possible to show

that

J T,fT,fpw ~ small
Rd

if dist(B, B’) 2 r(B), and therefore such “off-diagonal” terms do not significantly con-

tribute to the term

2~
[1% nape

¢ r(B)~K
This may be seen as a certain almost orthogonality property between T, fg and T, f5/, and
for this reason it will be appropriate to make use of the Cotlar—Stein almost orthogonality
principle, provided we have a good estimate for the “diagonal terms”.

The previous ideas rely on the following observations on the weight w:

e Given a fixed subdyadic ball B, the Fourier support of w is contained in a ball
centered at the origin of radius r(B) ~ K. Then, @ is only effective to detect

(almost) orthogonality among subdyadic balls B” such that r(B’) ~ r(B) ~ K.
e Given an arbitrary weight w, we need to find a suitable weight w satisfying the
above properties and controlling the original w.

As the almost orthogonality property depends on the scale K, a first Littlewood—Paley

type reduction for the problem seems suitable; observe that if B and B’ are subdyadic
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balls lying on the same dyadic annulus {|¢| ~ 2*}, then r(B) ~ r(B’) ~ 2*°. In contrast to
the multiplier case, the weighted Littlewood—Paley theory from Section 1.4 will not suffice
for our purposes, and a quantitative version of the symbolic calculus will be needed. On
each dyadic annulus, we will be able to control w by a suitably band-limited weight w
satisfying the desired properties. Taking a supremum over all dyadic scales will give rise
to the maximal operators M, .

Finally, observe that as 0 < p < 1, an (1 — p)-subdyadic decomposition is only suitable
in {£ e R?: [£] = 1}. This does not represent any obstacle, as the differential inequalities
(3.1.1) on {|£] < 1} become

eta(e,€) <1

for all multi-indices v, € N¢. For the portion of a supported in {|¢| < 1}, these differ-
ential inequalities will suffice to deduce an appropriate two-weighted inequality for T, by

elementary means.

Outline of the proof

At a very general level, the above ideas may be summarised in the following scheme.

1. Write a(x,§) = ao(z,&) + ai(z,§), where ag is &-supported on {|¢| < 1} and a; is

-supported on > 1} and establish the elementary estimate
§-supp {I¢] = 1}, y
| mtPus [ Paeat,ar
Rd Rd
2. Apply weighted Littlewood-Paley theory to Ty, f,

2 2273
| st s | SR,

R k>0

where A, is a frequency projection to a dyadic annulus of width 2*.

71



3. For every k > 0, majorise the weight M3w by a weight @), whose Fourier transform

is supported in a ball centered at the origin of radius 2%,
[ RIRTE I EC AT
R4 R4

4. For every k > 0, use symbolic calculus to “interchange” Ay and 7;, provided we

introduce some terms of “lower order” and an error term. That is,

Ak(Tal f) = Ta1 (Akf) + Z TW(Akf) + Tekf7

1<|y|<N

where 17 are pseudodifferential operators whose symbols have lower order and T,
is a pseudodifferential operator associated to a symbol of negative enough order.

The decay on ¢ allows to easily establish

J T, /1%, < 27 f FP M.
R4 R4

Observe that now 7, and 7" are acting on functions f whose Fourier support lies

in a dyadic annulus.

5. For every k > 0, establish

f T(Awf) i < f Ay f P2 AL,
Rd Rd

for T" =T, and T = T7. To establish such estimates, we decompose Af =
> fB, where B are (1 — p)-subdyadic balls such that r(B) ~ 2", and we establish
suitable almost orthogonality estimates for an application of Cotlar—Stein’s almost

orthogonality principle.

6. Finally, take supremum on wy, over k > 0 and use weighted Littlewood—Paley theory
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to put together the dyadic pieces,

Zj ALfPE < j PP M (sup 267 M),
% JR4 Rd k=0

We sum in k the error terms coming from the operators 7¢,, which leads to an

acceptable term.

Of course the passage of w to sup,., 22" MWy, leads to the maximal operators M, ,,w,
where the approach regions I';_, naturally arise from the subdyadic nature of the operator
T,,. This is reminiscent of the proof of Theorem 2.4.1 in Chapter 2.

We devote the rest of this chapter to make these ideas formal and to provide a proof for
Theorem 3.1.1. We start with an auxiliary section that contains several useful lemmas to
which we will appeal to through the proof. We note that for the convenience of exposition,
the domination of the weight exposed in step 3 has been done in two stages, with the

second one incorporated in the inequality in step 5, after a suitable scaling argument.

3.3 Auxiliary results

3.3.1 Symbolic calculus

The composition structure of pseudodifferential operators has been extensively studied;
we refer to the work of Hormander [69] in the case of the symbol classes S7%. We require
the following quantitative version when the outermost symbol is a cut-off function on the

frequency space adapted to a dyadic annulus.

Theorem 3.3.1. Let p € S(R?) be such that supp(®) < {|¢| ~ 1} and given R > 1, let
o be defined by Qr(&) := P(R7E). Letace s, where 0 < 0 < p and 6 < 1. Then, there

exists a symbol ¢ € S such that

T.=Ts, o T,.
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Moreover, for e = 0 and k > 0, the symbol

;—hl N
YA Ay m—N(1-6)+dé+rKd+e

Mmoo 3

[v|<N

for all N > d‘s%‘;“, and satisfies

|a;ag€N(x’€)‘ < R—e<1 + ‘5’)m—N(l—ﬁ)+d5+m§+e—|o|p+\y|5 (331>

for any multi-indices v, o € N¢.

This very specific version of the more general symbolic calculus in [69] allows us to
obtain quantitative control for the differential inequalities satisfied by the error term eV
in terms of R, which corresponds to the scale of the frequency projection ¢g. The implicit
constants in (3.3.1) depend on finitely many C* norms of @ and on the implicit constants
in the differential inequalities (3.1.1) satisfied by a, and they will be acceptable for our
purposes for being independent of the parameter R.

We remark that the order of the error symbol eV in Theorem 3.3.1 is not necessarily
sharp here, but one may choose N sufficiently large so that e has sufficiently large
negative order. Modulo such an error term, we may understand the composition of g
with a pseudodifferential operator as the action of the pseudodifferential operator itself,
and some other pseudodifferential operators of lower order, on functions with frequency
support on the dyadic annulus {|¢| ~ R}. We provide the proof of Theorem 3.3.1 in

Appendix B for completeness, which consists of a careful modification of the symbolic

calculus developed in [129] for the standard symbol classes S™.

3.3.2 The kernel of a pseudodifferential operator

A pseudodifferential operator with symbol of sufficiently negative order is to all intents and

purposes a convolution operator with an integrable kernel. This is an easy consequence of
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the following observation in Hormander [69]. Let a € S7%, me R,0 < 6,p < 1,0 <1 and
let K(z,y) denote the distribution kernel of T,. Then if v € N¢ satisfies m — |y|p < —d,

the distribution (x — y)YK(z,y) coincides with a function,

() K (2,y) = f (i Do a(e, €)de. (3.3.2)

R4

In view of the differential inequalities (3.1.1), this quickly allows us to deduce that if a

symbol a € ST has sufficiently negative order, that is, m < —d, then

1
T+ ]z - yP)P

K (z,y)| <

for any L > 0. In particular, taking L > d, one may control the pseudodifferential
operator T, by a convolution operator with an integrable kernel.

This elementary observation will be very useful to handle the pseudodifferential oper-
ator associated with the error symbol e obtained after an application of Theorem 3.3.1.
Considering the differential inequalities (3.3.1) satisfied by eV, the identity (3.3.2) reveals
that if N is chosen such that m — N(1 —0) + dd + k0 + ¢ < —d then the kernel K~
associated to the symbol e? satisfies

R

K.~ (x, <
| Ken (2, y)] (1+ |z — y2)Er2

(3.3.3)

for any L > 0. As in (3.3.1), the implicit constant here is independent of R, and only
depends on finitely many C* norms of ¢ and on the implicit constants in the differential
inequalities (3.1.1) satisfied by a. Taking L > d, this allows us to bound 7,v by an
integrable convolution kernel with a quantitative control of the constant in terms of the
scale of the frequency projection pr. As we shall see in Section 3.4, such a quantitative

control is required for summability purposes in the proof of Theorem 3.1.1.
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3.3.3 Almost orthogonality

To obtain a good estimate on each dyadic annulus, we will make use of the Cotlar—Stein

almost orthogonality principle.

Lemma 3.3.2 (Cotlar-Stein, [129] p. 280). Let {T}};cza be a family of operators and

T =2 ez T Let {c(j)}jeza be a family of positive constants such that

A=Zc(j)<oo

jezd

and assume that
| T} Tyllase < (i —§)*  and | TT}|lame < c(i — j)*.

Then
[T]2-2 < A.

3.3.4 L’-boundedness of integral operators

We also require the following standard version of the Schur test, which is a simple conse-

quence of the Cauchy—Schwarz inequality; see for example Theorem 5.2 in [65].

Lemma 3.3.3 (Schur’s test, [65]). Suppose T' is given by

Tf(x) =] Kz 2)f(z)dz

Rd

and assume there exist measurable functions hi, he > 0 and positive constants Cy and Cs

such that

J;W |K (z,2)|h1(2)dz < Ciho(z)  and fRd |K (z, 2)|ha(x)dx < Cohy(z).

76



Then
[T 22 < (C1Co)Y2.

3.4 Proof of Theorem 3.1.1

Let a e ST withm e R, 0 <0 < p <1, <1. By the embeddings of the symbol classes
is enough to prove Theorem 3.1.1 for a € S7', with 0 < p < 1, and a € ST with 0 < 1;
recall that

m m .
Sp1,1(51 < sz?(sg if mp < mg, p1 = P2, 51 < 52-

Observe that the upcoming Theorem 3.4.2 is also valid for the symbol classes S7’; with
0 <1, as they are embedded in ST".

As discussed in Section 3.2, a symbol a satisfying the differential inequalities (3.1.1)
behaves differently in the regions {|¢] < 1} and {|¢] = 1}. Let n € C*(R?) be a smooth
function supported in || < 2 and let ag(z,§) = a(z,{)n(§) and a; be such that a = ag+a;.
Theorem 3.1.1 will follow from establishing the required weighted inequalities for both T,
and Ty, .

In view of (3.1.1), the symbol q satisfies the differential inequalities
|00 ao(z,€) < 1

for all multi-indices v,0 € N?. Together with the support condition on the variable &
that we just imposed on ag(z, ), this leads to the following rather elementary weighted

inequality.
Proposition 3.4.1.
| irtPus [ irpaze
R4 R

where Ajw = SUP¢>1 Az and Atw(x) = m SB(ac,t) w-
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We provide a proof of this proposition in Section 3.5. The inequality (3.1.2) for T,

follows from noting that, as in Chapter 2
Atw < A Afw < M, Afw < M, Mw < MPM,,, MPw.

The difficulty relies thus on understanding the operator 7T,,. We reduce the proof of
Theorem 3.1.1 to the following theorem, which corresponds to an analogous statement
but over the class of functions whose Fourier support lies in a dyadic annulus and whose

proof is postponed to Section 3.6.

~

Theorem 3.4.2. Let a € ST, where 0 < p < 1. Let f be a function such that supp(f) <

psp?

{€eRe: €] ~ R}, where R = 1. Then

f TofPw < f A
Rd Rd

uniformly in R > 1, where

pd
Ay rw(T) = R2mf sup  w 1t

d
(s w0

and Ny is any natural number satisfying No > d.

The reduction to Theorem 3.4.2 is done as follows. A first application of Proposition

1.4.2 to the function 7Ty, f gives

2 A 2a73 ]
| marbus Y [ 1M Pt

k=0

Let ® be a smooth function such that ® = 1 in {n € R% : || < 1} and define ®;, by
i) = ©(27%) for any k > 0. As Axg(n) = P(27*9)g(n) and supp(P) < {n € R? :

In| ~ 1}, we have Ag(Ty, f) = Ar(Tyo, f) = $k, provided the implicit constants are chosen
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appropriately. An application of the Cauchy—Schwarz inequality and Fubini’s theorem

gives
|8 I = [ AT M < [ AT NPI®] M (341
R R R

uniformly in k > 0, as the functions ®;, are normalised on L!(R?).

At this stage, one would like to interchange Ay and T,, in order to apply Theorem
3.4.2. As discussed in Section 3.3.1, this may be done provided we introduce terms of
lower order. As § < 1, fixing € > 0 and k > 0, an application of Theorem 3.3.1 for any
k = 0 gives

il
Ap(To, f) = To, (D f) + Y, — T+ T.,f,

I<]y|<N

where

~

T f(z) = f ¢4 3 Bu()tan (. ) F(€),

R4

and e is a symbol satisfying
|a;a§aek(x,£>| < Q—ke(l + |€|)m—N(1—6)+d5+n6+e—|a|p+\u\é

for any multi-indices v,o € N%. Here v € N%, and we choose N to be a positive integer
satisfying
m—N(1—9)+dd+rd+e< —d;

for ease of notation we remove the dependence of N in the error term ey, as N is a chosen
fixed number independent of k. Such a choice of N allows one to argue as in Section 3.3.2,

and the inequality (3.3.3) reads here as

2—ke

Ko (7,y)] <
| k(x y)| (1+|I—y|2)[’/2
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for any L > 0. Taking L > d, and setting ") (z) := (1 + |2|?)~%/2, an application of the

Cauchy—Schwarz inequality and Fubini’s theorem gives
JRd T, fI?|®p| » MPw < 272k Ld |FI2PUE) s ||« MBPw < 272k fRd | fIPM>M, ., MPw,

with implicit constant independent of k£ > 0; the last inequality follows from the observa-

tion that
T s ||« MPw < AT M w < AJ AT M w < M, A MAw < M*M,,,, MPw.
This is an acceptable bound for each T, , as summing over all £ > 0 we obtain

> J [T, 12| ®] + MPw < > 272 f IPMEMG MW J | [P MM, MPw
R

k=0 k=0 R R

for any ¢ > 0.

For the term corresponding to Ty, (A f), we invoke Theorem 3.4.2,
| TP Mo [ AAPA (]« 30) % [ AU,
R¢ Rd Rd

where the last inequality follows by taking the supremum over all £ = 0 on the weight
function. Now, one may recouple the dyadic frequency pieces using the standard weighted

Littlewood—Paley theory from Proposition 1.4.1,

> J |Apf2 MM, M*w < J |FIPMPM, ., MPw.
R4 Rd

k=0

Finally, we need to study the terms 7, for 1 < |y| < N. Observe that ﬁgﬁk is
supported in {€ € RY : |¢| ~ 28} for any v € N, so we are still able to use Theorem 3.4.2

here. To this end, let § be a smooth function such that 5(5) =1lin{£eR?: (] ~ 1} and
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that vanishes outside a slightly enlargement of that set. Let ©, be the operator defined by
ék\g(f) = 0,(9)5(€), where 0;(¢) = 6(27%¢). Then T.)f = T)(Of), provided the implicit

m

constants are chosen appropriately. Observing that the symbol 8g]3k(§)§;a1 (z,€) € ST

uniformly in & > 0 (by embedding of symbol classes), Theorem 3.4.2 leads to
| mzspin s 3w = [ IR@nPled Mo [ €Ay (0] M)
R R R

uniformly in k& > 0, for every 7 such that 1 < |y| < N. The sum in 7 is not a problem as

there is a finite number of terms in that sum, so

1
SN L[R2 Y [ O A sl < M)
R R

!
k=0 1<|y|<N k=0

For the sum in k& we use again standard weighted Littlewood—Paley theory (Proposition

1.4.1) to conclude that

> fR d 1Ok f P Ay (|Ok] + MPw) < > fR d OkfPMM,, ., MPw < fRd |FEMPM, 0 MPw,

k=0 k=0

where the first inequality follows from taking the supremum in k£ > 0 in the weight

function. Putting the pieces together, we have shown that

| s s | 1AM,

and therefore the proof of Theorem 3.1.1 is completed provided we verify the statements

of Proposition 3.4.1 and Theorem 3.4.2.
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3.5 The part {|¢| < 1}: proof of Proposition 3.4.1

It is crucial to realise that as ag(z,£) has compact support in the £ variable, we may write

Tf@) = | | e« ante. s

as the double integral is absolutely convergent. Denoting by K, the kernel of Ty,

Koz, z) = j ¢ ao(z, €)dE,

R4

we may write

Ta0f<.1') = Ko(ma T — y)f(?J)dya

Rd
We may interpret T,, as the convolution of the function K (z,-) with f evaluated at the

point x and

[ musrue < [ ([ 1Kot 26— 2)1dz) i

We split the range of integration for the inner integral in two parts, |z| < 1 and |z| > 1.
For the first term, the Cauchy-Schwarz inequality, Plancherel’s theorem and the estimates

on ag give

(], 1wt s —21ez)" < (1t apaz) (] 16 —2ree)
s <L|<2 \ao(x,ﬁ)\Qdf) (Jzkl |f(z — 2)!2d2>

1
< J;Rd |f($ - Z)|2(1 + |Z|2>Ld2’
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Similarly, for the second term,

r

(], 1ot s = 2iaz)" < (| 1ot Praz) (| st = 2)P)

< <J
R4 |0‘|:L ‘Z|21

([ S prmtnra) ([ Mot

l€1<2 |5=L

1
2
< | lrte =P e

where o € N? is a multi-index of order L. Putting things together and setting W) (y) =

(1+ |y[*)~L, Fubini’s theorem gives

| mos@Pu@ir < [ | 1= 2P gmrdenteds = [ 17GPYED o)

Proposition 3.4.1 follows from noting that W5 « w < A%w for L > d/2.

3.6 The dyadic pieces in {|{| > 1}

By analogy with the proof provided in [129] for the L?*-boundedness of the symbol classes
Sg »» With 0 < p < 1, we reduce Theorem 3.4.2 to a similar statement for the symbol
classes 5’870. As we shall see, this is achieved using Bessel potentials and an elementary
scaling argument. For the proof of the weighted inequality for the class 5870 we perform

an equally spaced decomposition and make an application of the Cotlar—Stein almost

orthogonality principle.

3.6.1 Reduction to the symbol classes S(p)’p

It is enough to prove the following version of Theorem 3.4.2 for the symbol classes S/‘l o

Proposition 3.6.1. Let a € Sgp, where 0 < p < 1. Let f be a function such that
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supp(]?) c{€eR?:[£] ~ R} with R> 1. Then

j TofPw < f A, o
Rd Rd

uniformly in R > 1.

Theorem 3.4.2 follows from the above proposition via the following observation. Let

Jm denote the Bessel potential of order m, that is J,, f(€) = (1 + |¢2)™2f(€). Then

T.f(x) = j ¢S, €)(1+ |21 + |22 F(€)dE = Ta(Tnf)(a),

R4

where @(z,€) = a(z,&)(1+ [£[*)"™? € S . By Proposition 3.6.1

f TofPw < j o (T f) P < f T f 2 Apo s < f PR+ Ay g
Rd Rd Rd Rd

g J ’f‘QAp,m,Rwu
Rd

where \I/g%L) (x) : 1z with L > d. Here we use that W * Wg, < Wge: see Lemma

_ R4
T (1+R2|z|?

A.1in Appendix A. The penultimate inequality here follows from the following elementary

inequality.

Lemma 3.6.2. Let f be such that supp(]?) c{¢eR: €| ~ R} with R=1. Then

J]Rd ’Jmf’2w S J;Rd ‘f|2R2mlI]§Df) -

for any L > d and any weight w.

The proof of this lemma is very similar to that of Proposition 2.1.2.

Proof. Let ¢ be a smooth function such that $(¢) = 1 in {€ € R? : |¢| ~ 1} and that

vanishes outside a slightly enlargement of it, and define pr by Pr(&) = G(R™1E). Then,
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provided the implicit constants are chosen appropriately, f = f = pr. By the Cauchy-

Schwarz inequality and Fubini’s theorem,

|, 1ntBw s [ 15P Vgl Tngal < (36.)
R

Observe that

(I _ A&)N eiRz-E _ eiRm~§
(1+ R2[z[)N ’

for any N > 0. Using this and integrating by parts,

[
(o)l =] | e EREOO + 167 dg

= || em=sqen + R R

< [ einf I —A Ni~ 1 R2 2\m/2 Rdd
< JRdm( — Ag) M [P(E)(1 + REE[T)™ | RdE
Now,
N
(1= A)N[BE) A + REP)™2] = D enn(—Ae)F[B(E)(1 + R7E[)™?] (3.6.2)
k=0
=D, DL ewmadet RO (1 + R

Given a multiindex v € N,

DB+ RPEP)™] = Y] euD ' R(ED'[(1 + RJfP)™?)

1<yl

= > DB (1 + Ry R

<
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As €] ~ 1 and |D7@| is uniformly bounded for any multiindex v € N%,
D)1 + R?|ef*)™?]| < R™.
Using this in (3.6.2),
(1= AM[B(O (1 + R2|ef)™?]| < R™,

and so

R m
- = B (@),

I <R"————~
‘ @R(x)‘ (1 +R2|QZ‘2)

setting L = 2N. Also,

Rd
i = - dx < R™ dx < R™
| Tmsprl fRdU o(z)|ldr < R fRd (1 + R2[z[?)L? S

provided L > d. Using these estimates in (3.6.1) concludes the proof. O

3.6.2 Reduction to the symbol classes 58’0

The goal now is to prove Proposition 3.6.1, that is, the special case of Theorem 3.4.2 for
the symbol classes 527 ,- We shall see that, thanks to an elementary scaling argument, this

reduces itself to the following specific case for the symbol class S7,.

Proposition 3.6.3. Let a € S),. Then

f|nmwsj|ﬁAm
R4 Rd

where Aw := W)« @, @(x) := sup), <, w(y) and W) (z) = W with Ny > d.

To deduce Proposition 3.6.1 from this, let ¢ be a smooth function such that @ equals

1in {£ e R?: |¢] ~ 1} and has compact Fourier support in a slightly enlargement of it,
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and let ¢p be defined by Pr(£) := §(R7'). The Fourier support properties of f allows
us to write the reproducing formula f = f Pr- We may then replace the symbol a(z, &)

by a(z, §)@r(§), which belongs to the class S) , uniformly in R:

1DZ[a(z, PRl = | . D" a(z,)D'GRTE[ < ). (1+ [¢) IR

ll<lo] ll<lo]

< gellol=ih g=lil — prlel g-(=plll < R=rlo|

~ (L+[eh),

as |{| ~ R 2 1. For ease of notation, we shall denote the product symbol a(z,{)Pr(§) by

a(x,§), but assuming that a(z,€) is supported in {|¢| ~ R}. Let
a(z,§) == a(R Pz, RPE).

It is easy to verify from the differential inequalities (3.1.1) and the support property of

a(x, &) that the new symbol @ belongs to the class 5870 uniformly in R:

|DyDga(z, €)| = [DyDga(R™"x, RPE))
= R R (DY DZa)(R™"x, R€)|
< R—pIVIRpIUI(l + Rp’§|)—p|0|+p\l/|

—plv| pplo| p—plo|+plv
~ RPVIRelel p=rloltelvl 1)

as RP|¢| ~ R; note that @ is &-supported in an annulus of width O(R'="). The change of

variables x — R™Px, £ — RP¢ and Proposition 3.6.3 lead to

f Taf|2w=j T fwr < f Fal? Awn
R4 R4 Rd
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for functions f such that supp(]?) < {|¢| ~ R}, where
wg(z) == w(R P x)R~"

and

~

Fr(€) := F(RPE)RA.

Proposition 3.6.1 now follows from noting that
Awg(RPz)RM™ = A, 0.pw(7).

This is a consequence of the definitions of A and A, r, along with the following elemen-
tary scaling argument. Observe that

Wr(z) = sup wgr(y) = sup w(y)R ™
ly—z|<1 |RPy—z|<1

= sup  w(y)R = {U\E(R_px)R_pd
ly—R—rPal <R~

= (wh)p(2),

where % denotes a local supremum at scale R, that is, t;é(x) = SUpP|,_y1<p—» W(Y). Also,

UM s wp(z) = J

R4

VN (g wr(z — y)dy = fRd YN (y)yw(R™P(x — y)) R~ dy

= f TN (RPy)RPw(R™Pa — y) R~ dy
R4

= U4« w(R2) R,

N d
where \Ijgzp) (ZE’) = W. Then

~

Awg(z) = VN & Gp(z) = TN « (0B)(2) = U « wR(RP2) R,
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and

Awp(RP2)R = U« wh(z) = Ao puw(),
by definition of A, ,, g.

3.6.3 The symbol class S),: proof of Proposition 3.6.3

In this section we assume that a € 5870. We first observe that the weight w is pointwise
controlled by Aw. This is contained in the following lemma, which we borrow from [7];

see [8] for the origins of this. Its short proof is included for completeness.
Lemma 3.6.4 ([7, 8]). w < Aw.

Proof. 1t is trivial to observe that w < w, so we only need to show w < Aw. By translation

invariance, it is enough to see that
w(0) < Aw(0).
As @ = 0 and U0 (y) > 1 for |y| < 1,

1
Aw0=f S ) dzf W(y)dy.
(0) I e PR (y)dy e (y)dy

Let By, ..., Bya be the intersections of the unit ball with the 27 coordinate hyperoctants
of R%. Tt is enough to show that there exists £* € {1,...,2¢} such that @(y) > @(0) for

all y € Byx, as then

Aw(0) 2 f @(y)dy = Lz* )y + 2, J

w(y)dy = |Bex|w(0) 2 @(0),
ly|<1 £ 0% By

which would conclude the proof. We prove our claim by contradiction. Suppose that for

89



each 1 < ¢ < 2¢ there exist y, € B, such that @(y,) < @w(0). By the definition of 0,

sup w(z) <w(0) for 1<¢<2%
[z—yel<1

As
2d
{lzl <1} < U{|Z — | < 1},
=1
we have
w(0) = sup w(z) < sup w(z) = max sup w(z) < max w(0) = w(0),
eIt U2y (lz—wel<1) 1027 |y, |<1 1st<2t
which is of course a contradiction. O

The above lemma reduces the proof of Proposition 3.6.3 to the weighted inequality

J \TafPAwsf P Aw, (3.6.3)
Rd R4

Defining the operator Sf := T,((Aw)~Y2f)(Aw)'?, it is enough to show

[Lisses ] i (3.6.4)

with bounds independent of w; (3.6.3) just follows by taking f = (Aw)Y2f in (3.6.4).
Observe first that (Aw)’ is a well-defined function for any ¢ € R, as Aw > 0. Also, the
operator S is well-defined for f € S(R?); this is due to the fact that any power of Aw
has polynomial growth, as well as all its derivatives, see the forthcoming Lemma 3.6.5.
Leibniz’s formula ensures then that (Aw)‘f € S(RY) for any ¢ € R, and that S maps

S(R?) to S(RY).
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Lemma 3.6.5. For any { € R and any v € N,
D7 (Aw) (2)] < (Aw)(z) < (1 + |2*)™1V2(Aw) (0).

Proof. From the trivial fact that |[DYWN0)(z)| < W) (z) for any v € N?, by definition of
A we have

|DYAw(z)| < [DTONO] s @i(z) < TN« @i(z) = Aw(z),

as w = 0. The chain rule quickly reveals
D7 (Aw) ()] < (Aw)*(z).
For the second inequality, by Lemma A.2 in Appendix A, one has

: < Aw(z) < (1 + |2 ) /2 Aw(0).

A T ey *

Then, if £ > 0, (Aw)‘(z) < (1 + |2|*)M2(Aw)*(0), and if ¢ < 0, (Aw)‘(z) < (1 +
|2|2)Nolf/2( Aw)*(0), which concludes the proof. O

We shall prove the L2-boundedness of the operator S from an application of the Cotlar—
Stein principle to a suitable family of operators. To construct such a family we introduce
the following partition of unity. Let ¢/ be a smooth, nonnegative function supported in

the unit cube Qo = {x € R?: |z;] < 1} and such that

Dl —i) =1, (3.6.5)
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and let a;(x, &) = a(z, &) (z — i)Y (€ — '), where i = (4,4') € Z*. Then

This gives a decomposition of the space associated to the £ variable into balls of radius

O(1). Note that in the passage of rescaling the symbol class Sf, into S} , this amounts to

Pp?

a decomposition of the dyadic annulus {|¢| ~ R} into O(R1~P)9) balls of radius O(R”); this
would correspond to the prototypical Example 2.3.1 of a (1 — p)-subdyadic decomposition.
We remark that the decomposition given by v was used in the proof of the L2-boundedness
of the class S{, that one may find in [129].

This decomposition allows us to write the operator S as

Sf=Y Sf.

iez2d

where Sif = T, ((Aw)™2f)(Aw)Y2. We aim to apply Lemma 3.3.2 to the family of

operators {S;}iez2a. To this end we need to establish
1S5 Silla—2 < ci—j)?

and

8i55 22 < i —j)

for a family of constants {c(i)}jcz2« such that

Z c(i) < 0.

icz2d
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Observe that S f = (Aw) 2T ((Aw)"2f), where

=[] e ae g(e)ded
Rrd JRrd

is a well-defined operator that maps S(R?) to S(RY). The decomposition of the z variable
via (3.6.5) ensures the kernel of the operator S;*S; to be well defined; also the symmetric
role of the z and ¢ variables in a(x,§) € Sf, suggests such a decomposition in the x

variable.
The L?*-boundedness of S;'S;

The operator Si'Sj may be realised as

SE(Sif) (@) = (Aw) ™12 (@) T (Aw Ty ((Aw) "2 f)) ()

— () (@) [ Kl 2) () (Aw) 2 ),

where

Kij(z, 2) f f J S WA (y, €)ay(y, n)Aw(y)dydndé.
]Rd Rd ]Rd

The kernel Kj ; is well-defined by the support properties of a; and a;. Note that if i—7 ¢ Qy,
then Ki,j =0.

Integrating by parts in Kjj, after making use of the identities
(_[ _ Ay)Nleiy(n—E) _ (1 + |§ _ 77|2>N1eiy‘(n—£)7

(I A )NQ in-(y—z) _ (1 + |y_Z|2)N2ei7I'(?J_Z)

and

([ A )Ng i€ (z—y) __ (1 + |JZ _y|2)1\73€i77'($—y)7

93



leads to

N: N2
Kij(xvz) - J J J et (@=y) i (y—2) (I — Ag)™ (I — An) [
, Rd Jrd JRd 1+ |z —y2)™ (1 + |y — 2[2)™

uf@fﬁ&meo%wmAmwﬂ@M%,

for any Ny, Ny, N3 = 0. Observe that |DV)(y — k)| < [|¢|crix(y — k) for any multi-index
v € N, where y is the characteristic function of (. This, Lemma 3.6.5, which ensures
that [D7(Aw)| < Aw, and the differential inequalities |D} Dfa(z,§)| < 1 for a = a3, a5,

allows us to deduce, after an application of Leibniz’s formula,

s X —)x(n—J") Aw(y)x(y —i)x(y —Jj)

Kyl ”SLJW LT E—nP™ ) Ty )M+ |y o™
- 1 J Aw(y)x(y —i)x(y — Jj)
S TP Jea Tty — 22)%(1 + |y — o]

T, dy; (3.6.6)
the implicit constant here depends on finitely many C* norms of 1. Now we apply Schur’s
test to the kernel

—~—

Ragle,2) = Kyl 2)(Aw)2(2)(Aw)2(2)

with the auxiliary functions h; = hy = (Aw)2. We check first that the integral condition
with respect to z is satisfied. Observe that from Lemma A.1 in Appendix A, (Aw)+W0) <

Aw. Using this, and taking 2Ny = 2N3 = Ny > d in (3.6.6), we have

A (s w) "2 (z) Ix(y — i)x(y — J) s
_[Rd ’KLJ( ) )’h1< )d S (1 + |Z/—j/’2)N1 J]Rd JRd 1+ ‘Z/_Z’ )Nz( + ’y_x‘2)N3d dy
(Aw) () Aw(y)
N(P+W—TPWRLN1+w—xWM

(Aw>1/2
T+ =y

< |
8
~—
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for any N7 > 0. On the other hand, f(: =0if i — j ¢ @, so combining both cases,

(Aw)2(x)
T+ fi—j2)M

|, Rt e < -

for any N; > 0. As the integral condition with respect to the x variable is symmetric,

Lemma 3.3.3 yields
1
(L+[i—j)M

[ PREES (3.6.7)

for any N; = 0. The constant c(i) = (1 + |i|?)~"/2 will be sufficient for an application of

the Cotlar—Stein lemma.

The L*-boundedness of S;S;

Our goal now is to see that [ S;S} |22 also satisfies the bound (3.6.7). The operator S;S;

may be realised as

S8 )) = (Aw) ()T} (Aw) 1))
— (Au) (o) | [ (e, ) )T (Aw) ) 0 — ke

— (Aw)"2(x) f Lij e, 2) f () (Aw) V2(2)dz,

Rd

where L;; is taken to be the formal sum

Lij(z,2) == > Lij(x,2) (3.6.8)

keZd

and

Lwyi= [ ] eement e, e, n(Au) )ity - Rdydedn
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Observe that, a priori, the formal sum

- X e = [ ] e e e (Av) (v,

kezd

may not be well-defined, as the triple integral in the right hand side does not necessarily
converge absolutely. For this reason, we introduce the partition of unity (3.6.5) in the y
variable; the integral that defines ij is now absolutely convergent. Our analysis below
shows, in particular, that such sum is finite.

Again, integration by parts with respect to y,n, £ gives

L J f J z§ (z—v) m (y—=2) (I_ A§>N3 (I — Aﬂ)N2 [
Rd JRd JRd (L4 |z —y[)N (L + |y — 2[>)2

keZd

(Cf(f]?? 225)731 ] (I =AM ((Aw) "M (y)(y — k))dydedn,

for any Ny, Ny, N3 = 0. The same observations as in the previous case allows us to deduce,

after an application of Leibniz’s formula,

x(z —i)x(§ —7') x(z = j)x(n—7") (Aw) " (y)x(y — k)
L, JR d JR d JR dydedn.

it a 1+\=’r—y\ Mo (L4 ly —2P) (14 [n—E2)M

As the functions {x(- — k) }reze have bounded overlap, we may sum in the k variable and

7, (Aw) ' (y)  x(z—j)x(z - 0,

L; :L’ZINJ J d&dn
J Rd ]Rd +!77 §| )Nl re (1+ [y —22)N2 (1 + |z —y[?)Ns

(Aw) ' (y)  x(z —j)x(x —1)
3PN fRd (1+ |y —2[2)N2 (1 + |z — y|2)Ns dy. (3.6.9)

(1+|z

The integration in the y variable is finite, so the sum taken in the definition of L;; in
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(3.6.8) is well defined. In particular, for Ny = N3 > Ny + d, it is possible to show that

(y) x(z—gx—i), . _  (Aw)"'(z)
fRd JRd 1+ |y - z| W (14 |z —y|2)N2 dzdy (1+ [i — j[2)Nr2 (3.6.10)

As the role of the variables z and z is symmetric here, the same follows with (Aw) ™! (x)
replaced by (Aw)~'(z) in the right hand side of (3.6.10).
Assuming the estimate (3.6.10) is true, one may successfully apply Schur’s test to the

kernel

Lij(x, z) = Lyj(z, z)(Aw)l/Q(x)(Aw)l/Q(z)

with the auxiliary functions h; = hy = (Aw)~Y2. Using (3.6.9) and (3.6.10), we have

A (s (Aw)Y2(z) (y) xG-jx-19, .
fRd [ Laj(w, 2) M (2)dz = (1+ i — )M JRd JRd + !y 2[2)N2 (1 4 |z — y|2)Ne dd
(Aw)'?(z)  (Aw)"!(z)
T =P (1 + i —Jl)W2

(Aw)~Y2(x)

M B DR

for Ny > Ny + d; the last inequality follows from taking N; = Ny/2. As the integral
condition with respect to the x variable is symmetric, an application of Lemma 3.3.3

yields

SiS5 o <
H j ||2 2 (1 + |1 ‘ )N2/2

for any Ny > Ny + d.
The L?*-boundedness of S

We just saw that the family of operators {S;};cz24 satisfies the bounds

1
(T +[—jp)m

155 Sjlla—2 < (3.6.11)
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for any N; > 0, and
15155 22 <

T+ -

for any Ny > Ny + d. Taking N; = Ny/2 in (3.6.11) and noting that the series
3 .
2 TPy

for No/2 > 2d, an application of the Cotlar—Stein almost orthogonality principle (Lemma

3.3.2) to the family of operators {S;};cz24 ensures that

”S||2—>2 < Z 1 i | | N2/4 007

EZQd

provided Ny > max{Ny +d, 4d}. As we may choose Ny as large as we please, the estimate
(3.6.4) follows. This finishes the proof of Theorem 3.1.1, provided the estimate (3.6.10)

is shown to be true.
The validity of the estimate (3.6.10)

At this stage we are only left with proving (3.6.10), that is

(W) (= — j)xla i) (Aw) (z)
fRd f 1+ |y - z| W (Lt oy Y S Ty i gy

To this end, we divide the range for the y-integration into two half-spaces, H, and H.,

that contain the points z and z respectively and that are the result of splitting RY by a

hyperplane perpendicular to the line segment joining  and z at its midpoint. Note that

fory € Hy, |y — z| = 3|z — 2], so
1 22N

<
(L4 fy ==z (L + |z —2)
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and

[ ] 7R xeoixog

L[y — 2™ (1 + |z —y[)™

gf x@—JM@F%%hJ ((Awf¥w dy

@ (L |z —z[)h L+ [z —y[?)™

1 (Aw)~'(y)
fRd ( dy.

<
T =PIV Ja (1 |z —yf?) N2

Similarly, for y € H., |[v —y| > 3|z — 2|, so

1 92N
<
I+ z—yP)Y = (1 + [z —22)N

and

ij melﬂawx@—jﬂﬁf Li&

(I+1y 1+ |z —yP)™
(y)  x(z—Jj)x(z—1i)
fRdJ (1 + |y — 22V (1 + |z — 22V dydz.

By the elementary inequality

1 1 1
(T + Ty = 2PPoR (L4 o — P~ (T o — P

which is a simple consequence of the triangle inequality, we have

x(z — J)x(z —1)
ﬁwfz1+W—z|M<1+u e W

x(z = j)x(z — i) (Aw) " (y)
NJQ(Lﬂm—A%MﬂMJ;(LHI—m%M”

1 (Aw) ! (y)
J]Rd ( dy.

<
T A =PIV Ja (1 |z —yf?) N2
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Putting both estimates together,

_ g =1, pN2)
JJ Nx(z Jx(x Nl)dzdyg(flw). ‘1{2 N%)a
i Jra 1+!y—2|) 2 (1 + |z —y[>): (1+ i —j[2)N

so the inequality (3.6.10) is satisfied if
(Aw) ™t = U (2) < (Aw) ™ (2).

As w > 0, by Lemma A.2,

1
(No) .. 7 (No)
P s () = 0+ y|2)N0/2\Ij o w(y),

so by definition of Aw,
(Aw) ™ (z) < (1 + |z — y)N2(Aw) " (y);

in particular

(Aw)™ (@ =) < (1+ |yI*) 2 (Aw) ™ (2).

Thus

() W0 @) = D [ ) e )y

lezd

< Z (Aw)_l(x)J (1 + |y|2)(NO_N2)/2dy

lezd lJF[Oyl]d

< (Aw)(z) Z (1 + I]2)No=D2)2

lezd

< (Aw) (@),

provided Ny > Ny + d, and the inequality (3.6.10) follows.

100



3.7 Towards a pointwise estimate: a sparse approach

As is mentioned at the beginning of this chapter, the weighted inequalities obtained for
the pseudodifferential operators Ty, with a € ST, do not follow from a pointwise estimate
of the type (1.5.3). In this final section, we explore if any such pointwise estimates
could be obtained. Indeed, for some specific classes S7% pointwise estimates have been

proved through the Fefferman—Stein sharp maximal function. For example, Chanillo and

Torchinksy [28] showed that if a € Si(fflm, 0<p<1,6<p, and fe CP(RY), then
M#(T.f)(w) < Maf (),

and more recently, Michalowski, Rule and Staubach [96] showed that if a € Si(ép _1),

0<p<1,0<6<1,and fe CP(R?), then, for any s > 1,
M#(Taf>(x) S Msf(x)

Of course, these pointwise estimates led to weighted results in the context of A, weights
through the corresponding weighted estimates on M# and M;.

As discussed in Section 1.3, in recent years there have been refinements of the above
type of pointwise estimates when the operator under study is a Calderon—Zygmund oper-
ator, with the auxiliary operator on the left entirely absent and the auxiliary operator on
the right being a dyadic sparse operator. Our goal here is to explore if any domination
by dyadic sparse operators is possible for the symbol classes satisfying the above esti-

d(p-1)/2 . Sd(p—l)

mates, that is S 08 with the respective restrictions on ¢ and p. We have

p0 )

an affirmative result for the latter symbol classes.

Proposition 3.7.1. Let a € Si(f*l), 0<p<1,0<6<1. Then for every f € CF(R?)
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and any v > 1, there exists a sparse family S such that for a.e. x € RY,

Tof(z)] < Arsf(z).

This allows to recover the LP(w) boundedness of T, for 1 < p < w0 and w € A,
established in [96] through the corresponding boundedness of the operators A, s. In
particular, one may obtain quantitative control on the A, characteristic of the weight,
[w]4,, applying a result of Di Plinio and Lerner [42] on the operators A, s. We also note
that the forthcoming two-weight inequality in Theorem 4.4.1 applies to this context.

Proposition 3.7.1 is a consequence of Lerner’s sparse domination Theorem 1.3.4. In
order to apply that theorem we will need some good decay bounds on the kernel associated

to T,, which, as in Section 3.5, is defined by
K(x,z):= f e a(x, £)dE.
Rd
If p>0orm < —d, it satisfies
|K(z,2)| < |z|™ forany N >0 and |v—2z| > 1. (3.7.1)

For points around the diagonal, K satisfies the following Hormander-type estimate; see

Michalowski, Rule and Staubach [96] or a prior result of Chanillo and Torchinsky [28].!

Lemma 3.7.2 ([96]). Let a € S}, 0 <0 < 1,0 <p<1. Then for |z —xp| <r <1,

96[0,1],196[1,2],%—i—p%<l<%—|—pip+%,%<cl<202<ooandk>1, the following

'We note that the pointwise estimate using the sharp maximal function makes use of these estimates
on the kernel.
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estimate holds:

/

’ 1/p -~ N d
<J kit < | | 1 9|K(37al’—y)—K(a:B,q:B_yNde) <2 klrl(p 0)—m 4
012 T <y—xB <022 T

We proceed now with the proof of Proposition 3.7.1.

Proof of Proposition 3.7.1. As a € Si(ffl), we have that T, is bounded on L? for 1 < p <
o and is of weak-type (1, 1), see for example [129]. In order to apply Theorem 1.3.4, we
only need to verify that the grand maximal function N7, is of weak-type (r,r) for any
r > 1; we indeed show that it is bounded on L" for » > 1. Many of the following ideas
are quite standard, and may be found, for instance, in [96].

Given a point = and a cube @) 3 z, we distinguish two cases, |Q| < 1 and |Q| > 1.
The latter case is easy to deal with, as we may use the decay of the kernel away from the

diagonal, that is (3.7.1). Given z € @,

Tfensa) () = | [ Kz nrw

e}

<> K (22 — )| () dy
=0 Y2k 13Q\2k (3Q)
o0

<> ==y fw)ldy
k=0 Y 2FT13Q\2%(3Q)

<

= (2kdiam(Q))s (2kdiam(Q))¢ Lk+13Q |f(y)|dy
S i 275 M f(x)

where we explicitly use that diam(Q) > 1.
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If |@Q] < 1, one needs to be slightly more subtle. For any z,2' € Q,

I Ta(fxra\3Q) (2)] < 1 Ta(f Xra\3) (2) — Tu(f Xmer3Q) (2)] + [Ta(f)(2)] + |Ta(fxse) ()]

=1+ II + IIL.

For the terms II and III we shall use the L™-boundedness of T, for 1 < r < o0. To deal

with I, we use Lemma 3.7.2,

1= ] e - K6 )y

< K (2,2 —y) = K(z', 2" = y)||f(y)|dy

0
k=0 L’”1(362)\2’“(362)

& 1/ , 1/p'
<x(] fran) (| (22 )~ Koo~ y)Fdy)
k=0  Y2F1(3Q)\2¢(3Q) 2k+1(3Q)\2*(3Q)
= 1 1/p
< 2k12kd/pdiam(Q)l(p1)m<_—J |f(y)|pdy>
];) dedlam<Q)d 2k+1(3Q)

0
< > 27M2M P diam Q)1 M, f (x)

provided | —d/p > 0 and I(p — 1) —m = 0. As m = d(p — 1), this means we require

d/p <1< d. In order to apply Lemma 3.7.2 we also require

d d d 1
d— -+ —<l<d——+—+-.
p PP ppp P

So we need to check the admissibility of the following condition

Clearly % > d— % + pip for 0 < p < 1, and as ]%l < d for p > 1, we only need to check
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whether the condition

is admissible. This is equivalent to

1 1.1
0<d(l—=)(1-=)+-,
( p)( p) p

and given a fixed p, this is true for a p sufficiently close to 1.

So, in all,

Ta(fXre3Q) ()| € Mf(x) + My f () + |Tof (2")] + | Ta(fxse) ()],

for any 2’ € Q.
Raising the above estimate to a power 1 < s < r, integrating with respect to ' € Q,

and raising it again to the power 1/s,
]' \|s / 1/5
T frexso)(2)| < MF(@) + Myf (@) + (57 | 1Taf @)
1 J‘ 1/s
+ {57 | | Ta(fxse) (@) da’
(1@| 0 ¢ )
1 \|S / 1/8
S MF() + Myf(2) + MyTa)(@) + Tl (157 | 17)Iar)
3Q
< Mf(z)+ My f(z) + Mo(Tof)(2) + | Talls M f (),
where we have taken supremum over all () > z and used the boundedness of T, in L*.

Thus,
Nr, f(x) € Mf(x) + Mpf(x) + My(Tof)(2) + |Ta] s M f ().
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Taking L™-norms, with r > max(p, s),

Nz fle < (1M + 1M s + 1M s Tl + 1Tl sIM ys) [ f -

As p and s may be chosen arbitrarily close to 1, Ny, is bounded on L" for any r > 1.

Thus, an application of Theorem 1.3.4 yields

Taf ()] < Arsf(x).

]

In the case of the symbol classes S with m < d(p — 1), we may indeed improve the

sparse domination given by Proposition 3.7.1.

Proposition 3.7.3. Let a € S)s, withm < d(p—1), 0 <p<1,0<9 <1. Then for

every f € CF(RY), there exists a sparse family S such that for a.e. x € RY,

Taf ()] < Arsf(x).

As T, is dominated by the sparse operators A; s, one may of course also recover the
boundedness in LP(w) for w € A, and 1 < p < o for such symbol classes, and obtain
quantitative bounds in terms of the A, characteristic of the weight, see for instance [84].

It is possible to prove this pointwise control using the local mean oscillation decom-
position formula from Theorem 1.3.5. By embedding of the symbol classes, it is enough

to prove if for m = d(p — 1) — ¢, for 0 < € « 1 arbitrarily small. We have that

@) % 7 [ 11+ 3 5 (i [, 1)

for some 7 > 0. To see this, write f = f% + %, where f° = fxq- Denoting by cq the
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center of the cube @,

Taf (@) = Tuf*(c@)| < |Taf*(@)| + |Taf *(x) = Tuf *(cq)l,

and choosing ¢ = T, f*(cg) in the definition of wy (7, f; Q),

wA(Taf; Q) < (Tuf")xa)*(AQI) + sup Taf” (x) = Taf*(cQ)|-

For the second term one may proceed as in the proof of Proposition 3.7.1. In this case
we use Lemma 3.7.2 with p = 1. As m = d(p — 1) — ¢, choosing | = d + 7, with
0<T<min{1—;€,1%p},if0<p<1,O<T<5ifp=0,and()<7'<1—5ifp=1,which

is admissible, it is easy to see that

5*(0) = Tof o)l < 2, 5 (i [, 1)

k=0

Then one only needs to check that

(@I (NeD < 7 | 191

But this follows from the fact that T, is of weak-type (1, 1), since

(Taf*)x@)*(ANQI) = inf {s > 0+ dz, oy (5) < AQI}

where d(r, fo,,, is the distribution function of (7, f°)xq and

)XQ

1
U gona(s) = o € Qi 1.0 = s} <5 | 171
Q
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Hence for

A\Qrf'f'

we have d(r, o)y, (s) < A|Q|, and taking s to be the infimum over the above quantities

(xR = 3137 | 115 157 191

Now, fixing a cube ()9 by Theorem 1.3.5,

c 1
Tustoy-mn @l < 3 (7 |, 1Mvate+ X 35 5 (g | )netoh 372

for a.e. z € @y, where S < D(Qy) is a sparse family. From (3.7.2) and observing that
imr, 1 (Qo)] < % and T, is of weak-type (1, 1), one may proceed as Conde—Alonso
and Rey [32] to deduce Proposition 3.7.3 for a.e. z € Qp. A trick of Lerner in [86] allows

the passage from a.e. x € Q to a.e. x € R?. We omit such details here.
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CHAPTER 4

THE CARLESON OPERATOR

Motivated by the study of maximal-multiplier operators, we obtain sharp pointwise and

weighted inequalities for the Carleson operator C. In particular, we prove that
ICf(@)| < CA.s f()

for any r > 1, where A, s is the sparse operator defined in (1.3.3), and

f CfPw < Of PP,
R R

for any weight w and 1 < p < oo. These results are obtained using the sparse operator
approach developed by Lerner and others, and presented in Section 1.3, together with
the theory of Orlicz maximal functions from Section 1.2. Indeed, we deduce the above
results for a broad class of maximally modulated Calderén-Zygmund operators which
encompasses the classical Calderén—Zygmund operators and the Carleson operator. The
above weighted inequalities are the counterparts to those of Pérez [107] for Calderén—
Zygmund operators; see (1.1.6). We also present more general two-weight inequalities in
Section 4.6.

Most of the content of this chapter may be found in the work [4], which has been
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accepted for publication.

4.1 Motivation

On a general level, given a Fourier multiplier m and writing m,(§) := m(t§) for any ¢ > 0,

one may define its associated maximal multiplier operator as

~

T, f(x) = sup |(m¢ f)"(z)|.

t>0

For a fixed multiplier m, one may hope to identify a maximal function M,, so that

f T fPw < f PP Mo (4.11)
R4 R4

for some 1 < p < co. Answering this question in the setting of the multipliers m, g would
give results for the maximal Schrodinger operator, a central operator in partial differential
equations. This question was raised at the end of Chapter 2; see (2.6.11).

In general, this might be quite a difficult problem, as it shall evidence our next ex-
ample. As discussed previously in this thesis, a precedent for Corollary 2.2.2 is the one-
dimensional variation-based result of Bennett [7]. Taking such perspective, multipliers of
global bounded variation on the real line may be seen to fall under the class « = 8 =0
of multipliers considered in Section 2.1, and they constitute one of the easiest example in
that class. Motivated by establishing an inequality of the type (4.1.1) for the multipli-
ers mg 3, we consider the analogous question but associated to a multiplier m of global
bounded variation on the real line.

The essence of the classical Marcinkiewicz multiplier theorem is the observation that
such a multiplier often satisfies the same norm inequalities as the Hilbert transform. In

particular, if T}, denotes the associated operator to a multiplier m of global bounded
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variation, one may deduce

j T flPw < C J My
R R

for any weight w; this follows merely from the analogous result for the Hilbert transform
(1.1.6) after a suitable application of Minkowski’s inequality. Similarly, one may see that

results for T follow from those for the Carleson operator. Write

173
m(t€) = j dm(u) = fRM_w,t@(u)dmm) _ fow,@)(ts)dmm) - fRW,m)@)dm(u),

—00

where dm denotes the Lebesgue-Stieltjes measure associated to m. Defining S, /i,«) as

the operator associated to the multiplier X (u/t,),

T, f(x) = JR Stust0) f (@) dm(u),

and

T (@) = sup T (2)] < | sup 1St f(@)ldml(w) < [ (1) +CFa)ldm )

R t>0

< [f(2)] + Cf(x),

as the integral of |dm| is the total variation of m. Here C denotes the Carleson operator,

defined as

Cf(x) =sup

aeR

2miay
p.V. JR Z — yf(y)dy‘ . (4.1.2)

This elementary example evidences the difficulty of studying maximal multiplier opera-
tors, as C is a much more complicated operator than the Hilbert transform, the underlying
operator behind 7;,,. Of course pointwise and weighted estimates for T7% follow from those

for C. In particular, we are able to obtain the following.
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Theorem 4.1.1. Let C be the Carleson operator. Then for any 1 < p < oo there is a

constant C' < oo such that for every weight w

JR ICflPw < C’JR | P MLy, (4.1.3)

We remark that weighted inequalities for the Carleson operator have been previously
studied by many authors. Hunt and Young [73] established the LP(w) boundedness of C
for 1 < p <o and w € A, from which a two weight inequality with controlling maximal
operator M, with s > 1, follows. Later, Grafakos, Martell and Soria [58] gave new
weighted inequalities for weights in A, as well as vector-valued inequalities for C. More
recently, Do and Lacey [43] gave weighted estimates for a variation norm version of C
in the context of A, theory that strengthened the results in [73]. Indeed, sparse control
and sharp weighted norm inequalities for variational Carleson have been obtained by Di
Plinio, Do and Uraltsev [41] only a few months ago. Finally, Di Plinio and Lerner [42]
obtained LP(w) bounds for C in terms of the [w]4, constants for 1 < ¢ < p. Note that

inequality (4.1.3) does not fall within the scope of the classical A, theory.

4.2 Maximally modulated Calderén-Zygmund oper-

ators

We shall prove a more general version of Theorem 4.1.1 that holds for a broad class
of maximally modulated Calderén-Zygmund operators studied previously by Grafakos,
Martell and Soria [58], and Di Plinio and Lerner [42]. Let ® = {¢4}aca be a family of
real-valued mesurable functions indexed by an arbitrary set A and let T" be a Calderén—
Zygmund operator in R, The maximally modulated Calderén-Zygmund operator T'® is
defined by

T* f(x) = sup |[T(M® f) ()], (4.2.1)

acA
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where M® f(z) = ¢?™¢«(@) (). We will consider operators T'® such that for some ry > 1

satisfy the a priori weak-type inequalities

|7 f

[0 € ()| £ (4.2.2)

for 1 < r < ry, where ¢(r) is a function that captures the dependence of the operator norm
on r. This definition is motivated by the Carleson operator, since it may be recovered
from (4.2.1) by setting 7' = H and ® to be the family of functions given by ¢,(z) = ax
for « € R. We note that simply by taking ¢, = 0 for all a, one recovers the classical
Calderéon—Zygmund operators.

Implicit in the work of Di Plinio and Lerner [42] there is the following analogue of the

estimate (1.1.3) for maximally modulated Calderén-Zygmund operators.!

Theorem 4.2.1. Let T'® be a mazimally modulated Calderdn-Zygmund operator satisfying
(4.2.2). Then for any s > 1 and 1 < p < o there is a constant C' < o such that for any

weight w

f IT® fPw <CJ | fIP Mow. (4.2.3)
Rd Rd

Following our discussion in Section 1.1 and the remark that yields (1.1.5), for any fixed
l<p<owandl < s <2, the operator M, is not a sharp controlling maximal operator.
One may address the question of obtaining optimal control for 7®. Combining the ideas
developed by Pérez in [107, 108] with Di Plinio and Lerner’s argument [42], we obtain the

following, which constitutes the main result of this chapter.

Theorem 4.2.2. Let T'® be a mazimally modulated Calderdén-Zygmund operator satisfying

(4.2.2). Then for any 1 < p < o there is a constant C' < o such that for any weight w

fRd IT® flPw < CJRd | f[P MLy, (4.2.4)

!This result may be seen as a consequence of the A, theory in [58].
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This is best possible in the sense that |p| + 1 cannot be replaced by |p|.

As it is well known that the Carleson operator C satisfies the condition (4.2.2), Theorem
4.1.1 follows from this more general statement. Of course, Theorem 4.2.2 extends the
estimate (1.1.6) for Calderén—Zygmund operators. As observed for (1.1.6), given 1 < p <
o0, the control given by the maximal operator MP+1 is optimal here.

Indeed Theorem 4.2.2 may be viewed as a corollary of a more precise statement, that
allows one to replace MP)*1 by a sharper class of maximal operators. This strategy builds
up on the work of Pérez [107] for the case of unmodulated Calderén-Zygmund operators,

involving Young functions A and their associated Orlicz maximal functions M 4.

Theorem 4.2.3. Let T'® be a mazimally modulated Calderdn-Zygmund operator satisfying

(4.2.2) and 1 < p < 0. Suppose that A is a doubling Young function satisfying

fo (ﬁ)p,_l% <X (4.2.5)

for some ¢ > 0. Then there is a constant C' < oo such that for any weight w

f IT? flPw < Cf | fIPM qw. (4.2.6)
R4 R4

In the unmodulated setting, Pérez [107] pointed out that condition (4.2.5) is necessary
for (4.2.6) to hold for the Riesz transforms. Hence it also becomes a necessary condition
for Theorem 4.2.3 to be stated in such a generality, characterizing the class of Young

functions for which (4.2.6) holds.

4.3 Control by sparse operators

It was observed in [42] that maximally modulated Calderén—Zygmund operators satisfying
the weak-type condition (4.2.2) are controlled, in Banach space norm, by the sparse

operators A, s. The equivalent to Theorem 1.3.3 in this case is the following.
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Proposition 4.3.1 ([42]). Let X be a Banach function space over RY equipped with
Lebesgue measure. Let T® be a mazimally modulated Calderén-Zygmund operator satis-

fying (4.2.2). Then
IT* fllx < . inf {¢(T) sup Ar,Sf’X} ;
<r<rg D,S

where the supremum is taken over all dyadic grids D and all sparse families S < D.

As in the case of Calderon—Zygmund operators, this was achieved using the local
mean oscillation decomposition formula in Theorem 1.3.5. Observe that Proposition 4.3.1
reduces the proof of Theorem 4.2.3 to its equivalent statement for A, s, as long as it is
uniform on the sparse families S and the dyadic grids D.

For those maximally modulated Calderén—Zygmund operators satisfying strong-type

estimates, that is,

17 fllr < (1 £1- (4.3.1)

for 1 < r < rg, where rg > 1, one may obtain pointwise control by the sparse operators
A, s; this might also be possible for those only satisfying the weak-type estimates (4.2.2),
although we do not pursue this subtle point here. Of course this is the case of the Carleson
operator C, as it is well known that C is bounded in L" for 1 < r < oo; this is the celebrated

Carleson-Hunt theorem, see for instance [25, 72, 53, 78].

Theorem 4.3.2. Let T® be a mazimally modulated Calderén—Zygmund operator satisfy-
ing (4.3.1). Then, for any 1 < r < ry and every compactly supported function f € L',

there exists a sparse family S such that
T?f(z)| < CA.sf(). (4.3.2)

Proof. This is a corollary of Lerner’s general Theorem 1.3.4, and the proof is very similar

to that of Proposition 3.7.1. In view of that theorem, it suffices to show that the grand
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maximal function Nps is of weak type (r,7); we indeed prove that is bounded on L".
Given x € R?, let Q > x, 2z € @, and consider another arbitrary point 2’ € (). By the

triangle inequality,

|T(b(fXRd\3Q)(Z)| < |T(D(fXRd\3Q)(Z) - Té(fXRd\sQ)(I/N + |T<D(fXRd\3Q)<I/)‘ =I+1IL

An estimate for the term I is standard,

|Tq>(fXRd\3Q)(Z) - T(I)(fXRd\SQ)(x,”

= | sup [T (M fxpasg)(2)] — sup [ T(M? fxpazo) ()]

< sup [ T(M? fxpasq)(2) = T(M® fxrazo)(2)]

acA

= sup ’ f y)e?™ W (K (z,y) — K (2, y))dy‘
RO\3Q

—w(@)) LWQ) F@)ldy

= Z L’““(?,Q)\Qk(?,@ WK (2,y) — K(2',y)|dy
> IT)

» [ O " 4y
-

) Z:: L“ (3Q)\2(3Q) (y)!%@
X

< > 27MM f(x)

For the second term, we crudely estimate

1< |T?f ()] + |T%(fxsq) ().
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Putting both estimates together,

T (fxzaa)(2)| € Mf(z) + [T ()] + T (fxs0) ()]

for any 2’ € ). Raising the above estimate to a power 1 < s < r, integrating with respect

to 2’ € ), and raising it again to the power 1/s,

1 Nis g 1/s 1 Nis g 1/s
T%(fxamsa) (2)] < M) + (5 L T Pd) (o L IT*(fxsq) (@) da )
< M)+ M) + 1T (g [ I ear)
: Ql Jsg
< Mf(2) + My(T* f)(@) + ||, M, (),
where we have taken supremum over all @ 3 = and used the boundedness of T® in L*.

Thus,
Nre f(x) € Mf(a) + M(T® f)(2) + | T [ M, f (),

and taking L" norms, as 1 < s < r,
[Nre £l < (1M1 + 1MLyl T e+ 1T 1) M eys) 11

Then Nzs is bounded in L™ and (4.3.2) follows from an application of Theorem 1.3.4. [J

We remark that the proofs given in [87, 32, 79| for the pointwise control of Calderén—
Zygmund operators in Theorem 2.2.1 do not seem to extend to the case of the Carleson

operator; this is in contrast with the most recent proof provided by Lerner.

4.4 Proof of Theorem 4.2.3

In this section we give a proof of Theorem 4.2.3 and we use it, thanks to an observation

due to Pérez [107, 108], to deduce Theorem 4.2.2. Our proof follows a similar pattern of
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a proof of Di Plinio and Lerner in [42].

As seen in Section 4.3, weighted inequalities for 7% can be essentially reduced to the
uniform weighted inequalities for the sparse operators A, s. Observe that this does not
require the pointwise bound from Theorem 4.3.2; for this purposes the prior Theorem

4.3.1 suffices. In particular, we have the following estimate.

Theorem 4.4.1. Let 1 < p < o0, D be a dyadic grid and S < D a sparse family of cubes.
Suppose that A is a doubling Young function satisfying (4.2.5). Then there is a constant

Cap.a < 0 independent of S, D and the weight w such that

1/r
p+1Y
Mol < Cana (252 ) 1laran

holds for any 1 <r < ’%1.

Proof. We may assume that f > 0. We first linearise the operator A, s; recall that

Asf(@) =Y %ﬂ ( f@ f’")w Yolo).

QeS

For any @, by L? duality, there exists gg supported in @ such that ﬁ SQ gg =1 and

(ﬁ JQ fr> " |?12| JQ faa

Of course the sequence of functions {gg}o depends on the function f. Given such a

sequence, we can define a linear operator L; by

Lih(z) =) (ﬁ L th) Xq ().

QeS

Note that evaluating in f one recovers A, sf, that is L;(f) = A,sf. Then, in order to

obtain an estimate for | A, s|rr(w) independent of S and D, it is enough to obtain the
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corresponding estimate for |L k|| () uniformly in the functions gg. For ease of notation

we remove the dependence of f in L;. By duality, the estimate

1/r
pH1y
ILA| zp(w) < Cap.a ((2—r> ) [l e (v 4w)

is equivalent to

1/r
p+1y’
HL*hHLP (Maw)i—?) S < Cap,a ((7) > HhHLp/(w1_p/) (4.4.1)

where L* denotes the L?(R?)-adjoint operator of L. Since A satisfies (4.2.5), one can
apply Theorem 1.2.2 with p replaced by p’. Using (1.2.3) with u = 1, the estimate (4.4.1)

follows from

1/r
" p+ 1\’
I L5 o a2y < Ca <(7) ) [ MPB] 1ot (0t o)1=+ (4.4.2)

We focus then on obtaining (4.4.2). By duality, there exists 7 > 0 such that |9 s (ar,w) = 1

and

IL5 ] o (a gy :J L*(h)”:f hin.
R4 Rd

By Holder’s inequality and the L™ boundedness of 90,

=2 G lywe) | < 2 Gl )
\Qgg(\@!f )UT(@J )CdIQ\

_r N\ UYr
1 1 P
—C — =1 n
%(!@1 L” (\Q!L ) )

<ﬁ L h) " Q). (4.4.3)
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Recall that by definition of the Hardy—-Littlewood maximal operator

ﬁ JQ h(z)dz < Mh(y) (4.4.4)

holds for every y € Q. Combining this and the sparseness of S

(4.4.3) Cdc§s<|¢?|f( h)p%ny)l/" (ré'ﬁ?h)zﬁlw(@)\

<CaY, | MA((Mh)FTg)(Mh)#T
QeSVE(Q)
<Cy | M.((Mh)7n)(Mh)7, (4.4.5)

Rd

where we have used that (E(Q))ges are pairwise disjoint and that (4.4.4) also holds for

+1

ye E(Q) < Q < Q. By Holder’s inequality with exponents p = p“ and p/ = pfl,

(44.5) = Cy | M(MB)7n)(Maw) 757 (M) 75T (Mgw)~ 77

R4

< Ca| Mo (MR)71 )| o M7 (4.4.6)

((Maw)1/2) ' ((Mgw)i—p )

For r < E2= +1 , we can apply the classical Fefferman—Stein inequality described in (1.1.2) to

the first term in (4.4.6)

M (MB)F)] s

LPE (0112
1/r
p+ 1y’
<0d<< 2 )) IOTRZ 0l it iy

and by Proposition 1.2.3

1
[(MR) ] oy < Gl (MB)7in] oy

(M((Maw)'/2)) (Maw)¥/2)’
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Finally, by an application of Holder’s inequality with p = 2p’ and p' = 5 +1

2

1 1 p+1 p+1 p+1
0l 50 4y = ([, (000 080)7%) (575 (1) F) )

< || 7 I7ze(ar4)

LV (Maw)i=?")

— M) 7,

L (Maw)1=#')’
where the last equality holds since |n] a0y = 1. Altogether,

1/r
p+ 1y
IL*hl o (ar gy < Cla <(7) ) IMA] L (a1 gy

This concludes the proof.

We are now able to prove Theorem 4.2.3.

Proof of Theorem 4.2.3. By Proposition 4.3.1, it is enough to show that for any 1 < p <

o0

)

1<r<rg

in {wm onp Ar7sf|LP(w)} < 1 lratan-

By Theorem 4.4.1,

p+ 1\’ Ur
sup 1, ) < Capa ( (P57 ) ) Wlasiosan
D,S r

forany 1 <r < ’%1, since the bound was independent of D, S.

For every p > 1, consider

-1 2
Tp = min {7"0,1 + pT} = min {ro,p—g }
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We have that 1 < r, < rg and r, < 1%1. Then

1/rp
p+ 1Y
I flisr = 00390 1A, T luri < Cap () ) W lasona

p
This concludes the proof. O

Observe that this proof of Theorem 4.2.3 could be extended to other operators whose
bounds depend on a suitable way on those of A, s. This will be the case of the vector-
valued extension presented in Section 4.5.1.

Now one may deduce Theorem 4.2.2 from Theorem 4.2.3 via the following observation

due to Pérez [107, 108].

Proof of Theorem 4.2.2. Using Theorem 4.2.3, it is enough to prove that there exists a

Young function A satisfying (4.2.5) such that
Maw(z) < CMWPH 1y (z)

with C' independent of w. Let A(t) = tlogl”!(1 +¢). It is an elementary computation
to show that A satisfies (4.2.5) for any ¢ > 0. Then it suffices to prove that there is a

constant C' < oo such that for every cube @)

1
wlao < O [ MPua)de = Xo
Q1 Jo
This is equivalent to showing that
e <
AQ AQ
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which by definition of the Luxemburg norm will follow from

ﬁfﬁ(%) -G AQ o (14 A(?)d’”

Iterating |p| times the inequality

A
—_

jf Jlogh(1 + f(x))d CJMf ) log"~L(1 + M f(x))dz

from [124], with f = w/\g, we obtain

] f AQ (1 " A(g)) dz < % L M <%> (2)dz.

By choosing C' = C?! < o0, we have

1
—f A <@) dr < 1.
QI Jg AQ
Thus Mw(x) < MPI+y(x), as required.
Finally, it is not possible to replace |p| + 1 by |p| in the statement of Theorem 4.2.2

as the resulting inequality is shown to be false for the (unmodulated) Hilbert transform

[107). 0

4.5 Further remarks

4.5.1 Vector-valued extensions

Theorem 4.2.3 has natural vector-valued extensions. Given a sequence of functions f =

(f4)jen, consider the vector-valued extension of T®, given by T® f = (T'® f;)jen. For ¢ > 1,
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we define the function |f|, by
> 1/q
@y = (X 1h@))
j=1

As in the case of T®, we will assume that the operator T'® satisfies the a priori weak type
inequalities

|72 fll oo eny < ()| fllzren) (4.5.1)
for 1 < r < 7y and some ry > 1. Theorem 4.2.3 extends naturally for 7¢ in LP(£9).

Theorem 4.5.1. For ¢ > 1, let T® be a vector-valued mazimally modulated Calderdn-

Zygmund operator satisfying (4.5.1) and 1 < p < 0. Suppose that A is a doubling Young

[Ga) =

for some ¢ > 0. Then there is a constant C' < oo such that for any weight w

function satisfying

JRd ’T¢f($)‘§w(m)d$ < CJ ‘f(iU)!ZMAw(x)dx.

R4

Theorem 4.5.1 follows from Theorem 4.2.3 by controlling the Banach space norm of
|T® f|, by that of A, s|f|,- This may be done in the same way as for standard Calderén—
Zygmund operators; for instance applying Proposition 1.3.5 to |T® f|,. We do not provide
any further detail here, and we just note that it relies on the following standard observa-

tion.

Proposition 4.5.2. Let ¢ = 1 and T® be a vector-valued mazimally modulated Calderén-

Zygmund operator satisfying (4.5.1). Then, for any 1 <r < r,

- 1 1/r [e's] 1 1
wr(|T? flg; Q) < ¥(r) (@ J |f|3;> + ) T (m o |f|q> . (4.5.2)

Q m=0
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The proof of this proposition is quite standard and very close to the ones already used
in the proofs of Proposition 3.7.1, Proposition 3.7.2 or Theorem 4.3.2; see also [111] for a

similar argument in the case of vector-valued Calderén-Zygmund operators.

4.5.2 The Polynomial Carleson operator

Let D € N. The polynomial Carleson operator is defined as

etPy)

Cpf(z) := sup ‘p V. JR flx —y)dy|, (4.5.3)

deg(P)<D

where the supremum is taken over all real-coefficient polynomials P of degree at most D.
Note that for D = 1 one recovers the definition of the Carleson operator.

It was conjectured by Stein that the operator Cp is bounded in L? for 1 < p < 0.
In the case of periodic functions, this conjecture has been recently solved by Lie [90] via
time-frequency analysis techniques; see [91] for his previous work for Cs.

One may write Cpf(z) = SuPgeg(py<p |H (MP f)(2)| for z € T, where MP f(z) =
e’P@) f(z) and HT denotes the periodic Hilbert transform. Straightforward modifications
in the proof of Theorem 4.2.2 yield a similar result for the periodic case and thus, for any

1 < p < w0 there is a constant C' < oo such that for any weight w
| enr@irutds < ¢ | 1f@pa s

4.5.3 Lacunary Carleson operator

Let A = {);}; be a lacunary sequence of integers, that is, Aj;;1 = 6); for all j and for

some f > 1 and consider the lacunary Carleson maximal operator

Caf(x) = sup

jeN

627Ti>\jy
b. v.f f(y)dy‘ .
RZIT—Y
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Of course one has the pointwise estimate Cyf(z) < Cf(z), so the weighted inequality
(4.2.4) trivially holds for Cy. This may be reconciled with a similar result for Cy obtained
by more classical techniques. Consider the classical version of the lacunary Carleson

operator in terms of the lacunary partial Fourier integrals. Following the lines of [22],
. L\ 1/2
Skf(x) = sup ]Sy, f(@)] < M (@) + (XIS (F @)
k

where S/Ak\f(ﬁ) = X[_,\k,,\k](g)f(g), Y is a suitable Schwartz function, and sz(g) =
12(9"“5 ). Since S, satisfies the same Lebesgue space inequalities as the Hilbert transform,
from the estimate (1.1.6) and the weighted Littlewood—Paley theory in Section 1.4, one

may deduce the inequality (4.2.4) for Cy with a higher number of compositions of M.

4.6 More general two-weight inequalities

We conclude this chapter with the study of two-weight inequalities for Carleson-like op-
erators from a different point of view. In this case, we look for sufficient conditions on a

pair of weights (u, v) for the inequality

L@ T f1Pu < Cp fRd | fIPv (4.6.1)

to hold. Observe that this more general formulation encodes the inequalities (4.1.3), as we
have shown that whenever v = MPI*1y, the above inequality holds with C) 440 = Cpa-
Before stating sufficient conditions on (u, v), we briefly survey the two-weight problem for

Calderén—Zygmund operators.

4.6.1 Testing conditions and sufficient conditions

The problem of two-weight inequalities is of considerable more difficulty than the one-

weight problem. As mentioned in Section 1.1 and in contrast with the one-weight case,
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the condition (u,v) € A, is necessary but not sufficient to guarantee M, H : LP(v) —
LP(u). In the case of the Hardy-Littlewood maximal operator, Sawyer [119] showed that

M : LP(v) — LP(u) if and only if the pair of weights (u,v) satisfies, for every cube @,

/

LmﬂwﬁmwmgoLwﬂ.

Sawyer [120] also characterised those weights (u,v) that give two-weight estimates for

fractional integrals. In this case, I, : LP(v) — LP(u) if and only if

L@@memchwﬂ (4.6.2)

and

L(fawm))p’vl—p' <c Lu (463)

for every cube Q < R? These conditions are typically referred to as testing or Sawyer
conditions. Note that the linearity and self-adjointness of the operator I, makes appear
the dual testing condition (4.6.3).

The above result for fractional integrals leads one to conjecture whether the testing
conditions (4.6.2) and (4.6.3) give also a characterisation for a pair of weights in the
case of two-weighted estimates for Calderén-Zygmund operators. Partial progress has
been done in that direction; we should mention the work of Nazarov, Treil and Volberg
[104, 105] and Lacey, Sawyer, Shen and Uriarte-Tuero [80]. In a recent paper, Hytonen
[74] characterised those weights that satisfy a two-weighted L? inequality for the Hilbert
transform; such characterisation is given in terms of the testing conditions and a variant
of the two-weight A5 condition.

There is an alternative approach in the study of two-weight inequalities based on

just looking for sufficient conditions on the pair of weights (u,v). Despite not being a
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characterisation of the weights, those sufficient conditions are given by general conditions
on the weights that do not involve the operator itself; note that the testing conditions
(4.6.2) and (4.6.3) involve the operator under study. The sufficient conditions are close

in spirit to the two-weight A, condition. Note that (1.1.1) can be rewritten as

‘p,Q |’U71/p|’p/762 < 0.

[u,v]4, = sup Hul/p
QcR4

The idea consists in making the L? and L norms larger, losing the necessity given by
the A, condition but obtaining sufficient conditions instead.

In this direction, Neugebauer [106] showed that if for some r > 1

VT g < o0,

sup ”ul/p”rpQ
QcR4

then M, T : LP(v) — LP(u). Pérez [108] refined Neugebauer’s result in the case of the

Hardy-Littlewood maximal operator, showing that M : LP(v) — LP(u) if

Upetd

sup [u'’?|
QcRd

p.Q BQ <X

for every cube @ = R, where B is a doubling Young function such that B € B,,.
In the case of Calderén-Zygmund operators, Cruz-Uribe and Pérez [37] conjectured

that a sufficient condition for 7" : LP(v) — LP(u) is

sup [u'/?[aqf 0"
QcR4

B7Q<OO

where A, B are doubling Young functions such that A € B, and B € B,. After some
partial results by Cruz-Uribe, Martell and Pérez [36], and Lerner [83], Lerner [84] finally

proved that this conjecture is true, reducing its proof to sparse operators. Following
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this idea, we give a sufficient condition on a pair of weights for a maximally modulated

Calderén-Zygmund operator to satisfy a two-weight inequality.

4.6.2 Maximally modulated Calderén-Zygmund operators

One may adapt the proof of Theorem 4.2.3 to obtain a two weighted inequality for max-
imally modulated Calderén-Zygmund operators provided the weights satisfy a so-called

bump condition.

Theorem 4.6.1. Let T® be a mazimally modulated Calderon-Zygmund operator satisfying
(4.2.2) and 1 < p < 0. Let A and B be doubling Young functions such that A € B, and

Be B%l. Assume that (u,v) is a pair of weights satisfying

aglv™ Py < o

sup [u'?|
QcRd

for some r < min{rg, p}. Then there exists a constant C = Cqp 4 Bu < © such that

Jyﬁﬂ%gcf|ﬂ%. (4.6.4)
R4 R4

There is an alternative way of proving Theorem 4.6.1 that does not involve any lin-
earisation and adjoint operator argument. This approach follows the ideas of a similar

two-weighted inequality for Calderén-Zygmund operators proved by Lerner in [84].

Alternative proof. By Proposition 4.3.1 it is enough to see that

| Ars fler@) < Ol f]rrw)

uniformly on the dyadic sparse family S. By duality there exists g € L”, ||g|, = 1 such

that

Ar,gf(x)u(x)l/pg(x)dx )

‘ Rd

( ) AT,sf<x>pu<x>dx) "
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Then,

[ syt

1/r
f ) 1/p
QZG;S(@\J‘ I Lu g
1/r 1
TPy TP 1/p
Qes(mwf e ) (g [ o) @

ror 1/r —r 1/r
< 2l P 4 glgl 4l E(Q))
QeS

ZJ rv'r’/p))l/rM g
QeS

< de<Mg<pr>>”'“MAg

r or 1/r
< |Ma(fr ") | X Mag],

p/r
r or 1/r
< o gl

= | fllzr)

where we have used Holder’s inequality for Young functions, the sparseness of the family

S and the boundedness of the operators Mz and Mgz in L and LP/" respectively. m

We should remark that in the above proof it is enough that B e B, instead of the

stronger condition B € Bp.1 that one would obtain following the proof of Theorem 4.2.3.
2r

Remark 4.6.2. The obvious vector-valued extensions considered in Section 4.5.1 also

hold for this more general two-weighted case.

Remark 4.6.3. One may recover the Fefferman-Stein weighted inequalities (4.2.6) from
Theorem 4.6.1 by considering the pair of weights (w, Mrw), where I'(t) = A(t'/?) and the
Young function B(t) = t®/7)'+ that satisfies B € By,. In this case, the constant C' in

(4.6.4) does not depend on w, since

[w, Mrw]ap = sup [w?| 40l (Mrw) ™75,
QcRd
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1 1
w/r)+er

1 r r) +e
= sup |w|} /p (’Q’ f (M)~ (/P (@/r)'+ ))

QcR4

11

< sup ( J(M w)” (T/p)((p/”'m(Mrw)<1/p>(<p/r)'+a)r) CREE
Qcre \| Q)

_1_ 1
1 (p/r)/+er
= sup (—J 1)
qcrd \ Q] Jg

=1,

where the second equality follows from the definition of Luxemburg norm.

4.6.3 Multilinear weighted inequalities

The alternative proof given for Theorem 4.6.1 in the previous section has the advantage
that it does not involve any linear duality, and it can thus be adapted to a multilinear
setting. In particular, we are going to see how it applies to multilinear Calderén-Zygmund
operators.

The theory of multilinear Calderén-Zygmund operators was formally introduced by
Grafakos and Torres in [59]. Given 2 < k < d, we say that a multilinear operator 7 is a
multilinear (or k-linear) Calderén-Zygmund operator if it is bounded from L% x- - -x L% —

L7 for some 1 < qq, ..., q < o0 satisfying é = qil + - i and if it can be represented as

T(f1,.- - fu)(x) = K(z,y1, - ye) fi(y) - fa(ye)dyy - - - dys,

(RA)k

for all x ¢ mj?:l supp f;, where the kernel K : (R)FNA — R, with A = {(@,y1, -, ) :

T =1y = - =y}, satisfies the following size condition

A
(Xhimeo 92— Y

‘K(y(byla s ayk)‘ <
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and the regularity condition

Aly; =i

(Xm0 192 = Yl )Fi+0

|K(y07"'7yj7"'7yk)_K<y07"'7y;‘7"'7yk)| <

for some § > 0 and all 0 < j < k, whenever |y; — yj| < T maxo<<k [y — Uil

These operators satisfy analogous Lebesgue space bounds to their linear counterparts,

that is
IT(fr, - fu)llee < CH 1f5 ] 2es

: 1_ 1 1
1f1<pj<ooand1—)—p1+.. p,and

ITCfrs - fe)lree < CH |5l w5

in case there is p; = 1. Recently, a weighted theory for these operators has been developed

in terms of a multilinear version of the classical A, theory, see for example [88, 40, 89].
As in Section 4.6.2, it is possible to obtain a sufficient condition on a tuple of weights

(u,v1,...,0;) to have T : LP'(vy) x -+ x LP*(vg) — LP(u), with a very similar proof to

the one given for Theorem 4.6.1.

Theorem 4.6.4. Let 1 < pq,...,pr < 0 and p = 1 such that % = pil + -+ pik. Let A,
By, ..., By be doubling Young functions such that A € B, and Bj € By, forj=1,... k.

If (u,v1,...,v;) are weights such that

-1
sup [u'’?q H lo; "% 5,0 < o0,
QC ] 1

then
IT(fr - Ji)ll zecw) CH £l 275 (o)
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Proof. A multilinear version of Proposition 4.3.1 in [40] allows one to reduce the proof to

the multilinear dyadic sparse operators

Avs(fire o o) ZH(,QJ |fg) o@).

QeS j=1

By duality there exists g € ¥, ||g|,» = 1 such that

1/p
([ Asthiceeecirra) = | [ Astfivoo it
R4 R4

Then,
k
As(fiv- ooy fi)u'?g f f e
[ Astr QZ]‘[QQ‘ 5 1
/pJ 1/pj 1 1/
5 ) (s [l ) 1
-2l <|Q|f i Ql
k Y
1 —_ .
3 1_[ |£0" .ol ™ I s.al P laglal 1l EQ)]
Q j=1
k
< ZJ H f] 1/17]
QeS j=1
<| Mg ] [ Ml
R ol
< |Maglp H | M (fo'?)],,
j=1
k
< gl [ Tl1£0" 1,
j=1
k
= H HfHL?(vj)a
j=1
using sparseness and multilinear Holder’s inequality. O

As a consequence of Theorem 4.6.4 one can get the following weighted Fefferman-Stein
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inequality for multilinear Calderon-Zygmund operators; recall Remark 4.6.3 in the linear

case for the same kind of result.

Corollary 4.6.5. Let T be a multilinear Calderon-Zygmund operator. Let p = 1 and
1 <py,...,pr < o0 satisfying % = pil +-- 1+ pik. Let A and T be doubling Young functions
satisfying T(t?) = A(t) € By. Then there exists a constant C < oo such that for every

weight w,
k p/p;
f T(frye s f)Pw < O (f |fj|ijrw) . (4.6.5)
Rd j:1 Rd

Proof. Tt is enough to apply Theorem 4.6.4 with the tuple (w, Mrw, ..., Mrw) and the

Young functions B;(t) = t%*¢ for j = 1,..., k. O

Corollary 4.6.5 allows one to recover the result obtained by Hu [70] via different meth-
ods; Hu obtained the above result by induction on the level of linearity k and using the

linear result (Theorem 1.1.6) as the base case.

Remark 4.6.6. As in Theorem 4.2.2, taking I'(t) = tlog!” (1 +1) one obtains (4.6.5) with
M1+ in the place of My.
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CHAPTER 5
THE FOURIER RESTRICTION
CONJECTURE: A MULTILINEAR

REDUCTION

The Fourier restriction phenomenon is of central importance in Euclidean harmonic anal-
ysis, and it has been a main object of study over the last decades. This phenomenon
consists in studying whether the Fourier transform of a function may be meaningfully re-
stricted to a k-dimensional manifold S in R?: in our discussion we only concern ourselves
with the case of S being a hypersurface in R¢.

If a function f € L'(R%), the Riemann-Lebesgue lemma ensures that J?is a continuous
function and thus it may be restricted to any subset of R?. However, if a function f e
LP(RY) for 1 < p < 2, the Hausdorff-Young inequality only ensures that f € L” (R%) and,
in general, it may not be well restricted to sets of measure zero. In the late 1960’s, Stein
made the remarkable observation that under certain appropriate curvature hypothesis on
S, there exists 1 < po(S) < 2 such that every f e LP(R?Y), with 1 < p < po(S), has
a Fourier transform that restricts to S; this is due to LP(R?) — L%(do) bounds on the

restriction operator Rgf = f\ s, where do is the induced Lebesgue measure on S.
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Establishing the sharp Lebesgue exponents 1 < p,q < oo for which the restriction
of the Fourier transform to a manifold S defines a bounded map from LP(RY) — Li(do)
constitutes the so-called Fourier restriction conjecture. This conjecture is of crucial im-
portance due to its numerous connections with many other problems and disciplines, such
as the Kakeya [51, 11, 145] or Bochner—Riesz conjectures [20, 135], local smoothing [123],
Strichartz estimates [130] and almost everywhere convergence questions for dispersive
PDE [12], Falconer’s distance set problem [93, 46], or problems in incidence geometry [15]
and number theory [60, 15, 16]; we do not intend to discuss all these connections here.

The conjecture is still open for d > 3, and the best known partial results have been
achieved taking a multilinear perspective on the problem. The goal of this chapter is to
obtain a better understanding of the role of multilinear estimates in the original Fourier
restriction; in particular, we carefully study the method developed by Bourgain and Guth

[17] to obtain linear estimates from their multilinear counterparts.

5.1 The linear and multilinear restriction conjectures

Let d = 2 and S be a smooth compact hypersurface in R?. For a function f € LP(R?) we
define the restriction operator associated to S as Rgf = f| 5. The restriction problem is
typically studied in its adjoint form, seeking for LP(do) — L9(R?) bounds for the extension

operator R*g(§) = gﬁi\a(é“), that is

lgdo | Laway < 9] Lr(do),

where g : S — C and do denotes the induced Lebesgue measure on S. We should note

that as S is compact, this is equivalent to the estimate

lgdploway < 9] Lo
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where dy denotes the parametrised measure on S; given an open set U < R and a

parametrisation ¥ : U — S, the measure p is defined by

Lg(x)du(ﬂf) - | stswpay

U

Due to this equivalence we use do and dpu interchangeably in what follows, as we only
concern ourselves about norm estimates.

There is a trivial L!(do) — L*(R?) estimate for the extension operator,

lgdo| romay < |g] L1 (do)- (5.1.1)

As mentioned above, Stein observed that under appropriate curvature hypothesis on S,
other LP(do) — L(R?) estimates may hold besides the trivial one. This is in contrast with
the case of absence of curvature hypothesis. For example, let S be a portion of the dth
coordinate hyperplane given by the parametrisation ¥ : U — S, where X(2') = (2/,0)

and U is an open set in R9~!. Then the function

adn(e) - |

S

(@) Sdu(z) = |

g(S(a'))e™ ) da! = f g(2(a"))e' ™ ¢ da’ = go (&)
U

U
is independent of the &; coordinate. Thus g/c.lﬁ ¢ LI(RY) for ¢ < oo unless g = 0.
Stein’s observation led to set the restriction conjecture for the Fourier transform, which

in the case of hypersurfaces S with positive Gaussian curvature reads the following.!

Conjecture 5.1.1 (Linear restriction conjecture). If S has everywhere positive Gaussian

curvature, % < d2;dl and % < Z—HZ% then

lgdo| paray < 9] Lr(do)- (5.1.2)

'From now on we focus our discussion on the specific case of hypersurfaces with positive Gaussian
curvature, for which the prototypical example is a compact piece of the paraboloid.

137



We denote the estimate (5.1.2) by R*(p — ¢). The first condition on the exponents
corresponds to the integrability of the measure, since |c§5(f)| < (14 1¢))~@=Y/2 if S has
nonvanishing Gaussian curvature; this may be seen via a stationary phase argument,
see for example [129]. The second condition follows from testing the estimate in the
characteristic function of small caps in S. We refer to the surveys [6] and [136] for more
details about the formulation of this conjecture and the forthcoming multilinear analogues.
We should remark that the main difficulty in the restriction conjecture is to make the value
of ¢ lower; interpolation with the trivial estimate (5.1.1) gives the estimates for bigger
values of ¢ and Hoélder’s inequality and factorisation theory [11] allow to increase and
decrease respectively the value of p.

The Fourier restriction conjecture is fully solved for d = 2 by Fefferman [49], but it

2(d+1))

is still open in higher dimensions. Stein and Tomas [139] established R*(2 — =75

1

giving a result on the sharp line v L

%p The striking work of Bourgain [11] led to
a new perspective to the problem, linking the Fourier restricion phenomenon with the
Kakeya conjecture, and developing the now standard technique wave-packet decomposi-
tion. Consecutive improvements on the state-of-the-art for the restriction conjecture have
been obtained by Wolff [144], Moyua, Vargas and Vega [100, 101], Tao, Vargas and Vega
[137], Tao and Vargas [133], Tao [132], Bourgain and Guth [17], Temur [138] and Guth
(64, 61].

A fundamental ingredient in the most recent developments in restriction theory is the
multilinear approach. This originated with a bilinear formulation of the problem. If Sy
and S are compact hypersurfaces with positive Gaussian curvature, it is obvious that the
restriction conjecture induces a bilinear analogue conjecture via Holder’s inequality, that
is

|grdorgadosllye < |g1doy|qlg2dos]y < g1l ron g2 o (dos) (5.1.3)

with p, ¢ as in Conjecture 5.1.1. However, the range of exponents such that (5.1.3) may
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hold is wider than the ones given by Conjecture 5.1.1 if we assume that the hypersurfaces
S1 and Sy are transversal. By transversal we mean that if v; and v, are unit normal
vectors to S7 and Sy respectively, then |v; A v > ¢ for some constant ¢ > 0. This led to

the following bilinear conjecture.

Conjecture 5.1.2 (Bilinear restriction conjecture). Let Sy and Sy be smooth compact

transversal hypersurfaces with positive Gaussian curvature. [fé < %, é < d;ih% and
1 _d-21 1
¢S Ty T o then

|lg1do192dos Lo may < 1191 Lo (ao1) | 92] 22 (dora) - (5.1.4)

We denote estimate (5.1.4) by R*(p x p — ¢q/2). Observe that for functions in L?(do),
the bilinear conjecture has admissible values for ¢ smaller than the Stein—Tomas expo-
nent. This is of considerable interest, as it permits to exploit, for such values of ¢, the
aforementioned wave-packet decomposition of Bourgain, which fails to work if g; ¢ L*(do).

Bilinear estimates became of central importance in the problem, due to a remarkable
observation of Tao, Vargas and Vega [137], who showed that the linear and the bilinear
restriction conjectures are essentially equivalent. That equivalence is obtained via a Whit-
ney decomposition of the product manifold S x.S around the diagonal A := {(¢,&) : £ € S};
this allows one to decompose (S x S)\A as a union of sets of the type S; x Sy, where
S1 and S, are transversal subsets of S, and thus the role of bilinear estimates becomes

apparent.

Theorem 5.1.3 ([137]). Let 1 < p,q < o be such that % < L oand
R*(pxp—q/2) = R*(p— q).
The extra transversality assumption on the bilinear estimate makes such estimates

more tractable than the linear ones. Thus, the above equivalence together with good

bilinear estimates constitutes a way to make progress on the linear restriction conjecture.
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The best progress by this method was achieved by Tao [132], who established the bilinear

conjecture for functions on L?(do), except for the endpoint case.

Theorem 5.1.4 ([132]). Let Sy, Sy be any disjoint compact subsets of the paraboloid *.
Then R*(2 x 2 — q/2) holds for any q > 2(d + 2)/d. In particular, R*(p — q) holds for

% < %i and q > 2(d + 2)/d.
One may extend the bilinear setting into a k-linear one, leading naturally to the

following conjecture.

Conjecture 5.1.5 (k-linear restriction conjecture). Suppose that 2 < k < d and that

3 - s : 1 _ d-1
S1,..., Sk are transversal ® hypersurfaces with positive Gaussian curvature. If . < %1
1 dtk—21 1 d-k1
d S ToE o and Sy + 5 k+d then
k
5.1.5
HI Ig] . |,7| 191127y (5.1.5)

We denote the estimate (5.1.5) by R*(p x - -+ x p — ¢q/k). The case k = d turns out to
be rather special, as the curvature hypothesis does not seem to play any role. In that case
one obtains the same range of exponents even without the curvature hypothesis; indeed
standard examples allow one to conjecture the validity of the estimate at the missing
endpoint ¢ = 2d/(d — 1) in Conjecture 5.1.5. By multilinear interpolation, the d-linear
conjecture is equivalent to such endpoint case for p = 2. The d-linear conjecture is nearly
solved; Bennett, Carbery and Tao proved in [9] the following local version, which morally

corresponds to the conjecture away from the endpoint.

20bserve that the curvature of the paraboloid induces transversallity on any two disjoint compact
subsets.

3We naturally extend the transversal concept into a multilinear setting; for any vy, ..., v, unit normal
vectors to Si,. .., Sk respectively, the hypersurfaces are v-transversal if |vy A -+ A vg| > v > 0, where
v > 0.
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Theorem 5.1.6 ([9]). Let Si,...,Sq be transversal hypersurfaces. Then for any € > 0

there exists C. < oo such that

d
ez
j=1

d
< © ; .
L2/(d=1)(B(0,R)) CeR E ”g]HL?(da])

Away from the endpoint, it was proved in [9] that the d-linear conjecture is equivalent
to a d-linear maximal Kakeya conjecture, strengthening the connections between the
original Fourier restriction and the Kakeya conjecture, and highlighting, even more, the
strong combinatorial flavour of the Fourier restriction conjecture. We do not intend to
discuss the Kakeya maximal conjecture here; its d-linear version was proved, away from
the endpoint, by Bennett, Carbery and Tao [9], and the endpoint was first obtained by
Guth [62], involving algebraic and topological techniques, and later simplified by Carbery
and Valdimarsson [24]. We shall remark that Guth has recently given a short proof for
a weaker version of the multilinear Kakeya conjecture away from the endpoint [63], and
that Bejenaru [2] has also given an alternative proof for Theorem 5.1.6.

As remarked in [9], the techniques in Theorem 5.1.6 also apply to make partial progress

on the k-linear conjecture.

Theorem 5.1.7 ([9]). Let k < d. If Si,..., Sk are transversal hypersurfaces, then for

any € > 0 and % < kQ—_kl, there exists C. < o0 such that

k k
do < C. e ) o 1
Hgg]daj La/*(B(0,R)) CeR E 195122 oy (5.1.6)

In the spirit of Proposition 5.1.3, Bourgain and Guth [17] developed a new technique
that allows to use these multilinear estimates to make improvement on the linear re-
striction conjecture. We shall revisit their strategy in Section 5.2, which combined with

Theorem 5.1.7 allows to deduce the following.
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Theorem 5.1.8 ([17]). Let d = 3 and S be a compact smooth hypersurface with positive

Gaussian curvature. Then R*(o0 — q) holds for

e d=0 (mod 3), ¢ > 27943

e d=1 (mod 3), ¢ > 2L,

odEQ(modS),q>%.

In the case d = 3, Bourgain and Guth refined their argument combining it with a
maximal Kakeya estimate of Wolff [144], leading to a small improvement in the value of
the exponent ¢. Similarly, Temur [138] observed that such improvement could be further
exploited for any d =0 (mod 3).

A careful inspection of the method developed by Bourgain and Guth [17], allows one
to make the following conjectural theorem. It consists on determining the impact on the

linear conjecture of the conjectured k-linear estimates (5.1.5) for g; € L*(do).*

Theorem 5.1.9. Assume that Conjecture 5.1.5 holds for k = [d%QJ, p=2 and% < ga’i_lj

Then R*(c0 — q) holds for
o ¢ > 23 for d odd,

3d+2

® q>255

for d even.

This observation, which is a simple consequence of a careful reading of [17], constitutes
the main remark of this chapter. Our purpose is to put k-linear estimates in a central scene
towards the future developments in restriction theory and related topics. It is interesting

to observe that the conjectured optimal multilinear estimates with level of linearity higher

than ~ g would not lead to any extra benefit on the linear problem using the ideas in

[17]; similarly, the known non-optimal multilinear estimates (5.1.6) with level of linearity

4We only run the argument assuming that Conjecture 5.1.5 is true for g; € L?(do), as in that case one
may use the wave-packet decomposition.
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higher than ~ %d do not lead to a further improvement on the linear problem. This,
which is established in Section 5.3, shows the limitations of the Bourgain—Guth method,
as it does not exploit the multilinear estimates for which the level of linearity is close to
the dimension. Note that the optimal exponent in the d-linear case corresponds to the
conjectured exponent in the Conjecture 5.1.1.

After this analysis was carried out, Guth [61] obtained a “restriction estimate” which
amounts to a weaker version of Conjecture 5.1.5 for p = 2. This weaker version, however,
leads to the improvement on the Conjecture 5.1.1 anticipated by Theorem 5.1.9, using a
small variant of the method in [17], and so, the exponents in Theorem 5.1.9 correspond
to the best current state-of-the-art in the Fourier restriction conjecture for d > 4. In
the 3-dimensional case, the best known result is also due to Guth [64], where ¢ > 3.25.
The main ingredient in both papers is the use of polynomial partitioning in a Fourier

restriction setting. We do not discuss this any further in this thesis.

5.2 The Bourgain-Guth method

In this section we recall the Bourgain—-Guth method in [17]. As is mentioned above, it
permits to deduce linear estimates from their multilinear counterparts. Our aim is to
obtain a better understanding of the role of the multilinear estimates in that method.
In particular, this allows us to state the following k-linear reduction for the restriction

conjecture.

Theorem 5.2.1. Let 2 < k < d. ]f% < % < dQ;dl and

m 2d—m+1
m—12d—m—1

q>q(k) :=2min( ), 2<m<k-—1, (5.2.1)

then R*(p — q) <= R*(p x - x p — q/k).

143



Proof. The only relevant content of the theorem is R*(p x --- x p — ¢/k) = R*(p — q);
the reverse inequality follows from multilinear Holder’s inequality.

We prove indeed a localised version of the restriction estimate R*(p — ¢). For R » 1
we will see that

lgdo | Laso,ry) < R°C|gllze(do) (5.2.2)

for ¢ > ¢(k) as in the statement of the theorem. The use of standard “epsilon-removal”
lemmas -like the ones in [136] and [133]- allows one to deduce the global estimate R*(p —
q) for ¢ > G(k). To lower down p = 0 to p = g one may use factorization theory; see [11].
Let C(R) denote the best constant C' in the inequality (5.2.2). Our goal is to see that
C(R) < 1. Given a constant K, we denote by P(K) any (positive) power of K. We shall
use this notation when the powers of K are irrelevant.
Let 1 « K} « R and {S*}, be a partition of S in caps of diameter 1/K} with finite

overlapping. For g € LP(do), write gf(z) = g(«)xsx (). Then
gdo(€) = ), ghdo (€).

Tile B(0, R) into cubes QF of sidelength K}. By uncertainty principle considerations,® we

may think of | gg/d\a| as being essentially constant in the cubes Q*. Fixing Q*, either

(I) there exist ay,...,qp with S% ..., St being (Kj) " transversal such that
— — _ d_ —_—
195, do ()], |95, do(€)] = K™Y max|ghdo (€)]

for every &€ € QF, or

®Technically, we should replace |gkdo| by a pointwise majorant satisfying such property, but we
refrain from doing that for simplicity of the argument, as it does not contribute to the main ideas in the
Bourgain—Guth argument. We develop this further in Appendix D.
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(IT) there exists a (k — 1)-dimensional subspace V;_; of R? such that for those S with
dist(S*, By, 1) = 1/K}, where E;_; denotes the image of Vj_; n ST! under the

Gauss map, then

P

ghdo(€)] < K, ) max |gkdo (€)
for every € € QF.

Note that a,...,a; in (I) may be chosen to be the same for all £ € Q*, as |gkda(§)\ are
essentially constant in Q. Similarly, the subspace V;,_; may be chosen to be the same for
all £ € Q%. We should also remark that Kk_(d_l) in (I) and (II) may be replaced by any
power K, " provided v > d — 1.

If (I) we run a multilinear argument,

lgdo(€)] < Z |ghdo(€)
< Kg_l max ]gﬁda(fﬂ

d 1 H|gk dO' 1/k

//\
M
G
Qx>
Q.
q
—i
ol
~—
=

for any € € QF, where the sum is taken over all oy, ..., a; for which Sfjl, .. .,S&“k are
transversal. We note that such sum has been taken so that the choice of «; in the right
hand side above is independent of the cube QF. This allows to sum in Q* in what follows.
Taking the power ¢, integrating in those Q* for which (I) holds and using the hypothesis

R*(p x -+ x p— q/k), we conclude that

q/k

La/k Qk

2 lodolfgn < KXV X 2 Hﬂga]

S o B
(I) holds




q/k

Lq/k(B (0,R))

N
N

a17 5O

trans N

2 d—1)q k
< K, ( Z H Hgaj |%/p(d0-)

QL0 j=1
trans

<RE Y Z\Ig%llmg

Qal,...,0f ]_1
trans

“P(KY) Y 1981 o)

a/p
P 19t )

< BP(Ke) 90 L0 40

where in the one to last inequality we have used Holder’s inequality and that p > g¢.
We note that the powers of K} here are irrelevant, as K} will be a chosen fixed number
independent of R and therefore < R°.

If (II) we write

o (e)| < || o)+ Y dde©)]  (5:23)
{x:dist(z,Er—1)<1/Ki}

dist(Sk,Ey_1)21/K}

for any £ € Q*. For the second term in (5.2.3),

Y ade@< Y K max|gido(€)]

dist(SE,Ex—1)R1/ Ky, dist(S%,Ex—1)R1/Kg

< max |gkdo (€)

< (D igkdo(er) "

for any ¢ € QF, where the sum is taken over all caps S. As before, such sum has been

taken so that the choice of « in the right hand side of the above estimate does not depend
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on QF. Taking the power ¢, and integrating in those Q* for which (II) holds,

VN IS S

q
k
RED) 2 lg&do %, gn,
Qk diSt(Sg,Ek_l)Zl/Kk

(IT) holds (I ) holds

< Z 195401800,y

< C(R) Z Hga”LP(dU

d41—(d=Dag ")

7 p/q)’ or
SCR)K, 7 K (ZHgaHLP da>>

S CR)K g4, 4 (5.2.4)

)’

where we have used the rescaling condition in Appendix E and Holder’s inequality in the
sum in . Here the powers of K}, are relevant, as we are inducting on the size of the caps
in our inequality (5.2.2).

This is an acceptable term if K 2d—(d—1)q

« 1. As by assumption, ¢ > 2d/(d — 1) - this
is one of the conditions on the exponent in the restriction conjecture -, it is enough to
pick K sufficiently large and independent of R.

For the first term in (5.2.3), we introduce a new parameter 1 « K;_; « Kj and we

consider {Slg_l}ﬂ to be a partition of S in caps of diameter 1/K;_;. For £ € Q¥ we write

eiﬁ'”g(x)da(:z:)‘ = Z e“7g(z)do(x)

’ ﬁx:dist(x,Ek1)$l/Kk}mS§1

- | S|

‘ [{x:dist(;v,Ekl)ﬁl/Kk}

Again, by the uncertainty principle the quantities | g§’1d0| are essentially constant in

cubes Q"' of sidelength K;_;. We run a multilinear analysis as before, and for every

QF 1 = QF, either
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(i) there exist f,...,Bk_1 with S’gl 1,...,5'5}:_11 being (K_1)~*~Y-transversal such

that

95, do(©)] 195, do ()] = K4 max|ghdo(€)
for every £ € Q*1, or

(ii) there exists a (k — 2)-dimensional subspace Vj_o < Vj_; such that for those Slg_l
with dist(Slg_l7 E)_3) 2 1/K_1, where Ey_, is the image of Vi_o n S*! under the

Gauss map, then

957 do(©)] < K\ max| g~ do (€)
for every & e QF1.

As in the previous case, the caps indexed by 1, ..., 8r_1 and the subspace V,_s may

be chosen to be the same for all & € Q¥!, and the power K, % % in (i) and (ii) may be

replaced by K, provided v = k — 2. Observe that we may write

o)=Y ghdo(e).

a:SﬁgSlg*l
dist(Sa,Fr—1)<1/Ky

We have two possibilities for the case (i). The first one consists in the use of the multi-

linear estimates from Theorem 5.1.7, and for this reason powers of K and Kj_; will be

2(k—1)

5, for every £ € Q1

irrelevant. In case ¢ >

‘Zgg—1da<€)‘ 2(k 2) H| *-1 “Ldo(€ 1/(k—1)
B

7j=1
kol — 1/(k—1)
2(k—2
<KSPTI Y ke
=1 R

dlSt(Sa ,Ek 1)<1/Kk

k—1

oy Ko\ k-2
< Kzggl 2)< u ) H max \gk do (€)=

. Qk k—1
K1 1 agisk eSET
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2

a~:S§_§Sk_ 1

‘gk da( )’q/(k71)>

1/q

< P(Ky)P(Ky 1)< Z H|gk do(& |q/k 1))/

~~~~~

k—1
a;:Sk. gSBJ

> i)

Al —1  g5=1

< P(K})P(Kpy_ 1)( 3 H|gkda )|o/ k= 1))1/q7

QL seeey Ap—1 j=1
trans

where the last sum is taken over all a, ...,

Observe that the transversal caps appearing in the right hand side of the above estimate

are independent of Q*~! and QF, which will allows us to sum both in Q*~! = Q* and QF.

oy such that SE ... Sk

Taking the ¢g-th power and integrating for every Q¥ < Q* for which (i) holds,

Z 2 HZQ’E oy geery

Qk lc
(II) holds (i) holds

24 X

< P(Kk)P(Kk_l)

..... Q1 k j_
irans (II) holds ()holds
q/(k—1)
<
PUDP() 3 1) Hgaj .
’tréns
< REP(K) P(Ky1) Z HH s
----- Qp—1 j=1
trans
< R°P(Ky)P(Kg-1) ZHgaHm do)

< R P(K) P(Ki1) 9]0 (a0,

which is an acceptable term for ¢ = 2(k —
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q/(k—1)

La/(k=1)(Qk—1)

B(0,R))

1)/(k —2) by the multilinear estimate (5.1.6) in

| are transversal.



Theorem 5.1.7. We note that in the one-to-last inequality we have argued as in the end
of the case (I).

The second possibility for (i) consists in a slightly different use of the multilinear
estimates (5.1.6), that exploits that we are not under the k-transversal case (I). The

multilinear estimates are used to obtain a multilinear version of Cérdoba’s square function

estimate [35], see Remark F.2 in Appendix F. We adopt this approach when ¢ < 2(: L
First, proceeding in the same way as in (I),
1 k 2
)Zgg 1da(§)‘ )H|gk Lo (¢ 1/k 1)
B
-2) T ot ey e-1)) 4
0y [Tid5 (o) )
Biye-sBr—1 J=1
trans

for any £ € Q*~', where the sum is taken over all 31, ..., Sx_1 such that Sgl ! Sﬁk )

transversal. As in previous cases, such sum is taken so that the transversal caps in right
hand side are independent of Q*~!; this will allows us to sum in Q*~'. The contribution

of those Q*~! = Q* for which (i) holds is given by

YDV DR
Qk Qk*lCQk B

Lo(@+1)
(IT) holds (i) holds

) Y% |

B Br—1 QF—1c@k =1
(H) holds  trans (i) holds

q/k 1)

TN Lo D(Qk-1)

—\ |9/ (k—1)
k
P(Ky-1) Z Z H H( Z go‘jd0> La/(k=1) (QF)
QF  Biyfr—1 J=1 sg cgk-1
(II) holds  trans B

dlst(s Ek 1)S1/Ky

K“Kkz 3 Hn( S ko)

7j=1 k—1
o Br—1 a;:Sk. 1S5,

dlst(Sk JEL_1)S1/K,

q/(k—1)
La/(k=1) (Qk)’
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where the last inequality follows from Remark F.2 for any 2 < ¢ < kz—_kl; this may be
seen as a multilinear square function estimate. By Holder’s inequality, and using the

information that the caps Sﬁj concentrate among Ej_1,

. Kk —1) — 1-iq 1/q)q/(k—=1)
< P(kal)Kk(K B ) Z Z H H ( Z 95, d0] ) La/(k—1) (Qk
k-1 (QF)
QF  BiBr-1 J= aj:Sk gkt
(I1) holds  trans NG

dlSt(S Ek 1)S1/Ky

< P(K,_ 1)K5+k 2)( Z ZH( Z |g/§$ﬂq>1/q

04:5'225'271
dist(S%,Er_1)S1/Kg

< P(kal)KgJr i Z Z Z ”ggdUHLQ (@)

a:SkesE™!
dist (%, By — 1)<1/Kk

< P(K K, P00 S S ghdal o

B aSkCSk LQk

q

L1(Q¥)

(1 ) holds

(II) holds

5+ (k—2)(2-1)
< P(Ki 1)K, Z T -
e+(k—2)(2-1)
< P(K, 1)K K Z 195195 4o

e+ (k—2)(4-1)+d+1- e 4ol a/p
< P(Ki1)K, TR (Zuganm )

e+(k=2)(3-1)+2d—(d—1)q

< P(K1) Ky, C(R) 9170 4o

where we have used the parabolic rescaling condition in Appendix E. This use of induction

hypothesis makes powers of K} to be relevant again in our argument. In order for the
q

above estimate to be an acceptable term we ask P(Kk_l)KZ+(k RAEI A L R,

which will be true if

(k—2)<§—1>+2d—(d—1)q<0

and we pick K, sufficiently large and independent of R; note that the choice of K will

depend on the Kj_; chosen for an equivalent condition to (5.2.4) to hold for Kj_; in the
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next step. The above condition may be written as

2(2d — (k — 2))

1= 70—k

So we choose the second possibility for (i) whenever

22d — (k—2)) 20k —1)
2d—k k-2

Hence for the case (i) we choose the option that gives us a wider range of values for g,

that is

E—1 2d—k+2
k—2" 2d—k

q>2min<

For (ii) we do a similar analysis to case (II), replacing k — 1 by k& — 2. One ultimately

obtains that if

m 2d—m+1
m—1"2d—m—1

q>2min( >, 2<m<k-—1,

q= % and R*(p x -+ x p — q/k) holds, then the restriction estimate R*(p — ¢) follows

for p > q. O]

5.3 Analysis of the exponents

The Bourgain-Guth method described in Section 5.2 suggests than better linear restric-
tions estimates should be obtained in case one uses better multilinear restriction estimates
than the ones given by Theorem 5.1.7. The aim of this section is to discuss this issue,
together with yielding a proof for the conditional Theorem 5.1.9.

It is reasonable to expect that the k-linear restriction conjectured estimates that might
be proven in the future are the ones corresponding to functions on L?*(do), due to the

wave packet decomposition and orthogonality considerations. Thus, under the hypothesis
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of Conjecture 5.1.5, one hopes the local estimates

[T,

k
2(d-+k) < k* H ngHL2(da'j) (531)
j=1

Lk(d+k 2) (B(O R))

to hold for any ¢ > 0. Observe that (5.3.1) corresponds to a k-linear version of Tao’s
bilinear estimate in [132]. Note that in contrast with the known k-linear L2-estimates
from Theorem 5.1.7, the estimates (5.3.1) involve the curvature hypothesis.

A natural question is to understand how the Bourgain-Guth method would improve
the current state-of-the-art on the linear restriction conjecture in case we knew the above
conjectured estimates (5.3.1) to be true.

Before proceeding with our analysis, we should introduce the following notation. For

any given 2 < k < d, we denote

o (k)= Z(f; M the exponent corresponding to the conjectured multilinear estimate

(5.3.1), where the subscript in q.s refers to curvature sensitive.

o q.(k):= ,f—_kl the exponent corresponding to the known multilinear estimates (5.1.6),

where the subscript in ¢.; refers to curvature insensitive.

o q(k) = % the exponent obtained throughout the proof of Theorem 5.2.1
after the use of the multilinear theory via a multilinear square function estimate,

where the subscript in gs; refers to square function.

5.3.1 The trilinear case

We study first if we would obtain any improvement for the linear restriction conjecture

via Theorem 5.2.1, that is the Bourgain-Guth method, in case we knew the conjectured

estimate (5.3.1) for k = 3, that is R*(p x p x p — ¢/3) for ¢ > q.s(3) = QSIJF Observe
that the conditions imposed on ¢ by Theorem 5.2.1 for k = 3 are + < 1 < dQ—_dl and
p q
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q > (4d — 2)/(2d — 3). The conjectured exponent ¢ > ¢.s(3) = 2(d + 3)/(d + 1) is an
admissible exponent for d > 4, since

2(d+3) _ 4d -2 L1

= = > = d =>4
d+1 2d — 3 d+1 2d — 3

However the use of the conjectured trilinear estimate with ¢ > ¢.s(3) would only make
improvement on the Bourgain-Guth state-of-the-art for the linear restriction conjecture
in the case d = 4. This may be easily checked comparing ¢.s(3) with the exponents in

Theorem 5.1.8.
e For d=0 (mod 3),

2(d+3)<24d+3© 2 _ 6
d+1 4d — 3 d+1 4d—-3

<4d—-3<3d+3 < d<6,

so no improvement would be obtained in this case.
e For d=1 (mod 3),

2(d+3) 2d+1 4 3
< <= <
d+1 d—1 d+1 d-1

4d—-—4<3d+3<=d<T,

so in the case d = 4, the conjectured trilinear estimate would improve on the

Bourgain—Guth results for the linear restriction conjecture.
e For d =2 (mod 3),

2(d+3) 4(d+1) 2 3

4d — 2
51 < 5] 1 ©d+1<2d—1© d <3d+3<d<b,

so no improvement would be obtained in this case.

The above observation suggests that for higher dimensions, a “good” trilinear estimate
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is “less efficient” than a “worse” but higher level of linearity estimate, where that “higher”
level of linearity is “close” to the dimension. We make that informal comment more precise

in the coming subsections.

5.3.2 The k-linear case

Here we study how to use the conjectured estimate (5.3.1) for a fixed k to obtain im-
provement for the linear restriction conjecture in R? in particular we deduce for which
dimensions d = d(k) the conjectured k-linear estimate would provide improvement. Ob-

serve that gs¢(m) < ¢;(m) if and only if

2d —m +1 m 2 1 2d + 1
< = < edm<2d+lem< .
2d —m —1 m—1 2d —m —1 m—1

The condition (5.2.1) in Theorem 5.2.1 implies, in particular that

2 + 4
0> aqyk—1) if k< d; ,
2 + 4
q>qu(k—1) if k> ; )

As q.i(k — 1) > qei(k) > qes(k), the conjectured exponent q. (k) is not an admissible

2d+4 .

= in other words, the conjectured exponent

exponent for Theorem 5.2.1 when k >

¢es(k) would not lead to any improvement (via the Bourgain—Guth argument) on the
linear restriction conjecture in R? if k& > 24+,

2d+4

Thus we only consider those d such that k£ < =3

. Since ¢sr(m) is increasing as a
function of m, the condition (5.2.1) on the exponent ¢ becomes ¢ > ¢sr(k — 1). In view

of Theorem 5.2.1, an admissible value for ¢ is given by

q > max(qes(k), gsp(k —1)).
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Observe that g.s(k) = gsp(k — 1) if and only if

d+k 2d — k + 2 1 1 d—+2
> <= > esd=22k—-2< k<< ——.
d+k—2 2d — k d+k—2" 2d—k 2

Then

Qes (k) if k< (d+2)/2,
q > max(qes(k), g5 (k — 1)) =
gsp(k—1) if (d+2)/2<k < (2d+4)/3.
We compare this value of ¢ with the Bourgain—Guth state-of-the-art for the linear restric-
tion conjecture (Theorem 5.1.8), to detect when the conjectured inequality (5.3.1) would
lead to an improvement.

We distinguish two cases. For k < (d + 2)/2, the condition on the exponent g is given

by ¢ > q.s(k). We compare this with the exponents in Theorem 5.1.8.
e For the case d =0 (mod 3),

2(d+k)<2(4d+3)© 1 _ 3 <:>k:>d+3
d+Fk—2 4d — 3 d+k—-2 4d-3 3

so we would get improvement when k > (d + 3)/3.

e For the case d =1 (mod 3),

2(d+k:)<2d+1© 4 _ 3 @k>d+2
d+k—-2 d-1 d+k-2 d-1 3

so we would get improvement when k > (d + 2)/3.

e For the case d =2 (mod 3),

Ad+k) _Ad+y) 2 3 d+d
d+k—2  2d—1 d+k—2 2d—1 3
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so we would get improvement when k > (d +4)/3.

d+2 d+4 . . .
On the other hand, for % <k< QTJr, the condition on ¢ is given by ¢ > ¢s¢(k—1).

A similar case analysis as before tells us that,

e For the case d =0 (mod 3),

2d—k:+2<4d+3© 1 _ 3 ©k<2d+3
2d — k 4d — 3 2d—k 4d—3 3

so we would get improvement when k < (2d + 3)/3.

e For the case d =1 (mod 3),

22d—k+2) _2d+1 4 3 2d + 4
2d — k d—1  2d—k d—1

so we would get improvement when k < (2d + 4)/3.

e For the case d =2 (mod 3),

22d—k+2) _4d+1) 2 3 . 2+?2
2d — k 2d—1  2d—k 2d—1 3

so we would get improvement when k < (2d + 2)/3.

Hence, given k we obtain progress on the linear restriction conjecture for those d such

that %l < k < % that is for those d such that % <d < 3k.

~ 3

5.3.3 Optimal level of linearity for a given dimension d

Here we study, for a fixed dimension d, which is the level of linearity k = k(d) that gives
the best improvement on the linear restriction conjecture in R? via the Bourgain-Guth

method. We refer to such level as the optimal level of linearity, in the sense that by using
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the estimates (5.3.1) in higher levels of linearity we no longer obtain any improvement on
the linear restriction conjecture.
2d+4

From Section 5.3.2 we know that improvement on the linear problem requires k <

Recall that an admissible ¢ for Theorem 5.2.1 needs to satisfy

Ges () if k< (d+2)/2,
gsp(k—1) if (d+2)/2<k < (2d+4)/3.

q > maX(QcS(k)7 qsf(k - 1)) =

One should observe the following:

e as ¢ss(k — 1) is increasing as a function of k, we would like k to be the smallest

integer in the range [42,24H) e k< |42].

e as q.s(k) is decreasing as a function of k, we would like k to be the biggest integer

in [2,42], ie., k>[4

This tells us that the optimal level of linearity satisfies |41 | < k < [4£2]. Observe that

e if (d+2)/2 € N, that is d even, the value k = %2 is the best level of linearity; in

this case g.s(k) = gsp(k —1).

e if (d+2)/2 ¢ N, that is d odd, we need to compare q.s(k) for k = (d + 1)/2 and

¢sf(k — 1) for k = (d + 3)/2 and choose the smallest ¢. But it turns out that

qcs<ﬂ>_23d+1 23d—1_qsf<al+3 )

=g (—2 -1
2 3d—3 “3d-3 2

so we may choose k = (d + 1)/2 as the optimal level.

Thus the level of linearity that leads to the biggest improvement given a fixed dimen-

d+2

+=|. In particular the above analysis tells us that the conjectured estimate

sion disk = |

(5.3.1) with k = | 2] would establish the restriction conjecture for
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e ¢ > 23 for d odd,

3d+2

° q>23d_2

for d even,

which is the statement of Theorem 5.1.9.

Connections with the Schrodinger propagator

As it is mentioned at the end of Chapter 2, the solution to the free linear Schrodinger
equation,

i0su — Au = 0, u(0,z) = f(x),

where (s,z) € R4 satisfies

Fau(s, €) = e*¥CF £ (€),

where F,; denotes the spatial Fourier transform (in R?). Then one may write the solution
as

u(s,x) = 2 (@) = | Fap()etie =g

R4
Observe that this corresponds to the extension operator associated to the paraboloid on
R*L. Let S denote the paraboloid, and let ¥ : R4 — R4*! be the parametrisation given

by X(z) = (z,|x]?). Then for a function g defined on S, we have that

gdn(e) = |

S

g(y)e™ du(y) = f

g(E(x))eiE(z)fdxzf g(x, |2[2)e @ Hel € g
R4

R4

where £ = (&1,...,&;); here ™ denotes the R4™! Fourier transform. Setting go ¥ = Fuf,
it is obvious that the expressions for v and @ coincide.
This trivial observation emphasises the importance of the Fourier restriction phe-

nomenon in dispersive PDE. In particular, the theory of Strichartz estimates has been
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intimately related to that of the Fourier restriction. By a Strichartz estimate we mean
control of the full norm of the solution u, integrating in both time and space, in terms of

the size of the initial data f. For example, it is known that

Jemio2 g

pirr@iay S | fllrzra

for

_l’_

RERSH

d
= 57 (qara d) 7 (270072)7 q,r = 2.

LS )

—158 ohtained in Section

This is in contrast with the weighted estimates for the operator e
2.6.2, where only integration in the space-variable is taken.

The case ¢ = o0 corresponds to estimates for the maximal Schrodinger operator u*,
whose boundedness implies almost everywhere convergence of the solution u(-, s) to the
initial data f € L? as s approaches 0. More generally one may formulate Strichartz
estimates for initial data f in the homogeneous and inhomogeneous Sobolev spaces He
and H? respectively. In the context of the maximal Schrodinger operator, determining
the optimal Sobolev space H? of initial data for which there is a.e. convergence is known
as the Carleson problem [27]. Many authors have contributed over the last decades to this
question [39, 122, 140, 12, 100, 133, 134, 81, 13, 14], which is still open for d = 3. Most
of the progress has been obtained via a Fourier restriction approach; in particular, only a
few months ago, Du, Guth and Li [44] have established the 2-dimensional case except for
the endpoint case, using Fourier restriction theory and polynomial partitioning. These
connections with Fourier restriction theory suggest that an inequality of the type (2.6.11)

could perhaps be obtained via weighted Fourier restriction estimates rather than via the

techniques used in Chapter 2.
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APPENDIX A

SMOOTH AVERAGES

Here we briefly recall some elementary properties of the smoothing functions

(N R
V' (z) = (1 + R[N/

Lemma A.1. Let N > d. Let R > K denote two different scales. Then

oV g < gl

Proof. We need to show

R K K
dy <
fw 1+ B2y — o)V (1 + K2pP)2 Y ™ U+ K2V

for any z € RY. Observe first that if K|z| <1, the estimate is trivial, as

Kd 2N/2Kd
< K%<
T+ Koy T+ KRP)™

and the integral

Rd
dy <
fRd (1+ Ry — a2 =
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provided N > d.

If K|z| > 1, we divide R? into two half-spaces H, and Hy, that contain the points =
and 0 respectively and that are the result of splitting R? by a hyperplane perpendicular
to the line segment joining x and the origin 0 at its midpoint. If y € H,, then |y| > |z|/2

and
K4 N [d
< )
(L4 K2[y[H)N2 (1 + K2|z]?)N/2

Thus

f R K du < 2N K4 f R d
w, (L 2y — a2 (L K2V S (T R Jy, (U ey — 2P
Kd
< )
(1 + K2[a]2)NP2

If y € Hy, we have |y — x| > |z[/2. Similarly,

Rd 2NRd _ 2NRd QNRd_N

< X —
(T Rly—aP)V? = (T RaP)? = BVl ~ ¥

As R> K, N >d and K|z| > 1,

QNRdi N fgd—N 2N2N/2Kd Ka
< = S 9
|z ¥ || ¥ ([N (14 K2 [z ?) N2
and arguing as in the previous case, this concludes the proof. O

1

For the case R = 1, we simply denote ¥V (z) := We have the following

Harnack-type property.
Lemma A.2. For w = 0,
() 1 ()
we T (@) 2 w (y)

162



Proof. The triangle inequality quickly reveals that (14 |z|?)™/2 = (1 + |z —y|?)"V?(1 +

|ly[?)~N/2 for any N > 0. Then, as w > 0,

w(z) - 1 w(z)
A+ fe— P12 < T o=y 0+ Jy = P

just by replacing x — x — z, y — y — z. The result follows from integrating with respect

to the 2z variable. O
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APPENDIX B

SYMBOLIC CALCULUS

This appendix is devoted to providing a proof of Theorem 3.3.1, which is a very specific

quantitative version of the symbolic calculus in Hérmander [69]. Recall the statement.

Theorem B.1. Let ¢ € S be such that supp(p) < {[¢| ~ 1} and given R > 1, let g be
defined by Pr(€&) := P(R7E). Letae s, where 0 < 0 < p and 6 < 1. Then, there exists
a symbol c € S} such that

T, =Ty, 0T,

Moreover, for € = 0 and k > 0, the symbol

=1l
Z ~
2, B
[v|<N

for all N > 94588 - qnd satisfies

|(3;(326N(SC,€>‘ < R*E(l + ‘5’)mfN(lf(s)+d5+n6+67|a|p+\u|6 (Bl)

for any multi-indices v, o € N?.

As it is mentioned in Section 3.3.1, the order of the error symbol e € S NO=8)+doni+e

is not necessarily sharp here, but it naturally arises from our proof. Nevertheless, such
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an order is admissible for our purposes, as one may choose N large enough so that e is
of sufficiently large negative order. Our proof follows the same structure as that given in
Stein [129] for the standard symbol classes S™.

To justify our computations, we technically should replace a by a., where a.(z,§) =
a(z,E)(ex,e€) and ¢ € CP(R? x RY) with ¢(0,0) = 1. The symbol a., which has
compact support, satisfies the same differential inequalities as a uniformly in 0 < ¢ < 1.
As our estimates will be independent of €, the passage to the limit when ¢ — 0 gives the
desired result; we refer to [129] for these standard details. Such considerations allow us

to suppress the dependence on ¢ in what follows.

Proof. Observe that we may write

T L)) = [ [ cla et (s,

where

c(x,€) = JRd Ld Grmaly, £)ev = dydy = JRd Br(€ + n)a(n, )™ dn,

and @ denotes Fourier transform with respect to the z variable. We first obtain an
estimate depending on the size of the support of a; that dependence will be later removed

in the second part of the proof.
B.1 Assuming a(z, ) has compact support in the z-variable

Integrating by parts,

el

am,§) = Ld W([ — Ap)Ma(x, €)dz,
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SO

[@(n, &)1 < (1+ )7 (1 + [g)™=4, (B.2)

for any M > 0; the implicit constant above depends on the size of the support of a in the

x variable. For pr(€ + 1) we use Taylor’s formula around the point &,

re+m)= Y %az@R@)numN(f,n),

Iv[<N

where PRy is the remainder in Taylor’s theorem and is bounded by

(€ m)| < max max LGl ]

where the maximum in ( is taken on the line segment joining & to & + 1. Thus

c(x,§) = wJ ¢ Pr(&)n"a(n, §) “””dﬂJff R (&, m)aly, e "dn
[vI<N
f
- 3 rapelOale o) + | Bule it Oedr
lyl<n T

and
N(xa g) = f mN (57 77>a(777 f)ewndn
R4

c Smé—N(l—é)-‘rd(?-‘rn&-‘re

We need to show that the eV and satisfies the differential inequalities

(B.1).
Observe that, for v such that |y| =

0FPr(C) = RTM(FE)NRTIQ) < R(1+[¢))~,

as the support condition on @ ensures |(| ~ R ~ [(| 4+ 1, since R > 1. This leads to the
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following estimates for the remainder,
Rn (€ ) < Rl (1 + [g))=F for [¢] = 2[n],
and

Ry (&)l < R nl™ for [¢] < 20l

as N > e. Using the estimate (B.2) in the form
[@(n, O < (1+ )7 (1 + [g))™**0° for [¢] = 2],

and

[@(n, &)1 < (1+ )M (1 + [¢))™ 4 for [¢] < 2[n],

where My, My > 0, we have

N (2, 6)] < RE(1 4 €]y H2Mo-N e J| L )
£1=20n

£ RE(L 4 [y f (14 )2 ¥ dn
|€]<2|n|

< R—e(l + |§|>m+2M1§—N+e+R—e(1 + |§|)m+2M26—2M2+N+d
provided —2M; + N +d < 0 and —2M5 + N + d < 0. Choosing
My =(N+d+k)/2

and
2N +d(1—0)—rd—e— N6

My 2(1—9) ’
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which clearly satisfies the condition —2My + N +d < 0, as N > ¢ + xd, one has
eV (z,6)] S R7E(1 + |¢[)m—N-0)Fdotnite

In view of the definitions of the symbols ¢ and eV, the use of the Leibniz formula and the
condition p < 1 allows one, by the same arguments as above, to deduce the differential

inequalities (B.1) for all multi-indices v, o € N
B.2 The case of general a(z,¢§)

It suffices to prove the differential inequalities (B.1) for z near an arbitrary but fixed point
xo; in particular we prove them for x such that |z —xg| < 1/2, with bounds independent of
xo. To this end, let 6 be a smooth function which equals 1 on |y — x¢| < 1 and supported
in |y — 29| < 2, and write a = fa + (1 — 0)a = a; + as. For a;, one may argue as before

and write

Al ,
a8 = Y T @Pr(O)@ar(e.O) + [ Sl n)in(n, e ar

|
NP

As a; = a for |z — x¢| < 1/2 and the size of the support of a; in the x variable is constant

and independent of g, the previous argument reveals that the symbol

il
eV (,8) == 1, &) = Y —— (0L Pr(£)(Ya(x,©))

|
PSS

satisfies the differential inequalities (B.1) for | — 2| < 1/2, with bounds independent of

To. As

e (2, )] < e (,€)] + lea(z, E)],
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where ¢, is the symbol of 155, 07,,, it is enough to show that c, satisfies the same estimates

as el. Indeed, we will show that for |z — zq| < 1/2,
jea(, &) < R(1+ [¢)m N
for any NV > 0; the proof then follows by taking
N =N(1—-6)—dé—rd —e,
which is nonnegative for N > M Recall that
w8 = || entnaat et Oy
Integrating by parts with respect to the n variable,
(x,€) = fRd fRd B2 ZFI{?M ax(y, &)e" U dydp,

which is a convergent integral, as for |z —xo| < 1/2 and |y —xo| = 1, we have |z —y| > 1/2.

Integrating by parts with respect to the y variable,

Ay Pr(1) N (2, §)
I - A 2( £AF2 7 lx y)-(n— {)d d
(@,8) = J}Rdfm L+ [n— &N 3 v) (‘;p_y|2Nl> ydn).

In view of the differential inequalities satisfied by ¢z and as,

1 —2N1+e€ 1 m+2N2d
i< ne [ [ G
re Jra (14 |n =€) (1 + |z —y[)2M
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The integration in y is finite if we choose N; > d/2. The triangle inequality trivially

reveals
L
(L+[n =€) (1 + [g])2’

for any Ny = 0, so
a1 & RO I 200 [ (1 )y < R J)

provided we take 2N5(1 — 0) = N and N; satisfying 2N; — 2N, — € > d, that is

>d+e+N/(1—5)'

N, 5

Observe that any such N; also satisfies the required condition Ny > d/2, as N > 0.
In view of the definition of s, the use of the Leibniz formula and of similar arguments

to the ones exposed above leads one to deduce that
0408 co(w, )| < R(1 + |g])mrlol+olvi=N

for any N > 0 and all multi-indices v, o € N¢, so we may conclude that eV satisfies the

required differential inequalities (B.1).
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APPENDIX C

COIFMAN—ROCHBERG

In this appendix we provide a proof of Proposition 1.2.3. Recall the statement.

Proposition C.1. Let A be a Young function. If 0 < § < 1, then (M w)® € Ay with A,

constant independent of w. In particular,

M ((MAUJ)(S) (ZU) < Cd

for almost all x € R,

Our proof is an alternative to the one given in Proposition 5.32 in [38]. We follow the
same method that Coifman and Rochberg [31] used to prove the classical result (Mw)’ €
A for any 0 < § < 1. In contrast to the Hardy-Littlewood maximal operator M, the
maximal operator M4 is not in general of weak-type (1,1). However, it will be enough to

use the following weaker estimate.

Proposition C.2 ([38]). Let A be a Young function. For all function f satisfying

|flag— 0 as |Q| — o, and all t > 0,

2. 47
{z e RY: Myf(z) >t} <3dJ A(M) da.
{weR%:|f(2)[>t/2} ¢
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Proof of Proposition 1.2.3. Following the ideas in [31], we need to show that

| QJ (Maw) < C(Maw) ()

holds for every xz € () and C independent of () and w. Let 2¢) denote the cube whose
center is the same as () and whose sidelength is twice that of (). Write w = w; +ws, where

wy = wx2q. By definition of My, Maw(z) < Maw(x) + Maws(x), so for 0 <6 < 1,
(Maw)’(z) < (Maw:)’ () + (Maws)’(2).

Hence, it suffices to show
ﬁfQ(MAwi)‘s < C(Myw)’(z)  i=1,2, (C.1)

for every z € Q and C independent of @@ and w. As w; has compact support, we have

that |wy|ar — 0 as |R| — oo. Using Proposition C.2,

1 w ) :i P " . w
1 ) Oy = | e @ M) >

5 (* 2 - 44
< —J =1 min <|Q|,3df A <—w1(y)) dy> dt.
|Q| 0 {ye2Q:w1 (y)>t/2} t

(C.2)

As A is a convex and increasing function, by definition of the Luxemburg norm, we have

that for £ > 249 . 37 . 24w 4 50,

3df A<2 4901 (y ) 1 (2-4d'3d-2dw1(y))d
= Y
(4e2Quw1 (y)>1/2) t (V€2Q:wn (v)>1/2} t

2d
1

\_ d g 9
dJ (|w|A2Q) y <l
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so we can bound (C.2) by

5 (2443t wla e
(C.2) <—J Q| dt
Q[ Jo

345 [* 2. 44
420 191 J A <—w1(y>> dydt.
Q| Jasa.30.20)0) 450 (ye2Q:w1 (y)>1/2) t

The first term in the right hand side is equal to (2-4%- 3% - 29)°|w]’ 5. For the second

term, by convexity of A, we have

346 [~ 2. 44
c - t5—1j A (M) dydt
|Qf Ja.at.30.20 ) 4 g (ye2Quw1 (1)>1/2) t
D 9. 4d.3d. 9d
< 2 té—lf A ( wl(y)) dydt
29Q Jz.40.30.24 ) 5 20 (YE2Quwn (1) >1/2) t
© 2.4d.3d.9d
< d5 [ t&—lJ 3 ”wA,ZQA( Wi (y) )dydt
2 |Q| J2:44.34.24|w] 4 20 {ye2Q:w1 (y)>t/2} t ||wHA,2Q
5 o0
- [ $9=20. 44 . 3. 2d|w|A,2Qf A ( w(y) ) dydt
2 |Q‘ J2:44.34.2¢|w| 4 20 {ye2Q:w1 (y)>t/2} HwHA,QQ
o0
<9 0722 4% 3. 2w g 9t
2-4d-3d-2deHA72Q
)
= m@ 430 20 w5
Then

ﬁ JQ(MAw1>6 <(2- 24d)61—i5||wi,2c,2 < (2-24%)°(Maw)’(2)

for all x € @, and (C.1) is proved for w;.
To prove (C.1) for i = 2, we can assume M wy(x) > 0. Let y € @ and R be another
cube such that y € R and ||ws|ar > 0. Then R ¢ 2Q and {(R) > 14(Q), where {(-)

denotes the sidelenght of a cube. This ensures () = 3R. We claim that

lwallar < 3%w]asr < 3'Maw(z) (C.3)
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for every R 5 y. Then for every y € ), we have
M aws(y) < 3*Maw(z),
0 (Mws)°(y) < 3% (M 4w)°(x) for every y € Q. Thus
01 J (s @)y < 3500 ),

as required.
To conclude the proof we still need to show (C.3). But this follows by convexity and

monotonicity of A, since

11
J <d )dzg—d— A(w(z))dzgl,
|R| 3w]asr 3UR| Jsp \llwlasr

and this implies, by definition of Luxemburg norm, |ws| 4 r < 3%|w|3r. This completes

the proof. n
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APPENDIX D

UNCERTAINTY PRINCIPLE

In the proof of Theorem 5.2.1, we have ensured that the quantities | g/aEf(f )| are essentially
constant at scale K, where g, denotes a cap in S of radius 1/K. Technically speaking,
this is incorrect; however, the quantities | chB(&ﬂ are pointwise controlled by a quantity
satisfying such a property, and it is to that other quantity to the one that we should apply
the dichotomies in the Bourgain—-Guth argument. In what follows we make more formal
those uncertainty principle considerations.

Let n € S(RY) such that ) = 1 in B(0, 1) and ) = 0 outside B(0, 2), and for any K > 0,
define ng (€) := K—9n(K~1¢). Now, fix £ € By and write

7i(zfxa)'§g(x)do'<x) =: Z Giixa{Tag(é)a

(&
Sa «

9d7(€) = N gado(€) = Y=t |

where x, denotes the center of the cap S,. It is a straightforward computation to check

that Y/L\g(y) is supported in B(0, ). Then

Tog(€) = Tag =k (§).
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As [n()] < (1 +[¢))7 for any N >0,

g1 < [ [Tg®@lnte 0l < [ [Tg)x=(1+ ) V0= o)

and from the inherent properties of the function W) (¢) := (1 + €)™V discussed in
Appendix A, it is clear that ¢, (&) ~ co(&2) if |§ — &| < K.

One should then apply the dichotomies in the proof of Theorem 5.2.1 to the quantities
¢o(€), which are pointwise majorants of ]@7(&” This still gives the result for the
extension operator, as long as we choose N > d to guarantee the integrability of U(®V),
and as we make applications of Fubini’s theorem and Hélder’s inequality when necessary

along the argument. We avoid such computations here.
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APPENDIX E

PARABOLIC RESCALING

We provide the parabolic scaling for the restriction conjecture used in the proof of Theorem

5.2.1. Let C(R) denote the smallest constant in the estimate

lgdo|La(so.r)) < C(R)|g]Lr(a0)

over all do associated to any quadratic surface. Obviously C(R) < oo since we have

localised the estimate into a ball of radius R.

Proposition E.1. Let g, = gxs,,, where Sy is a cap in S of diameter 1/K. Then

d+1 _d—1

|gado|Laso.r) S CIR)K © 7 | gal Lr(do)-

Proof. In this case it is more convenient to work with the measure du and the parametri-
sation ¥ : U, — S,, where U, is an open set in R4, given by X(2’) = (2,1 (z')); here
¥ : R — R is a quadratic function.

Observe that one may write

Godi(€) = j €0, (2)dp(z)

Rd

- | e g
Ua

177



“Ng(2(a"))da’

%
‘”l
a\
+
o
a
@

_ () f 9 K€/ 5 0y,

where U, = KU, and §(y) = g(S(y/K)). Then, integrating over £ € B(0, R) and doing a

parabolic rescaling

J i/ K+ € (u/K)) ()dy

1500y = K j d¢

)

_ z(f' y+§d¢(y d d
JE’<R/K J“,; ooty g
l€al<R/K?
< K@D C(RIK, RIKY) | gx g |4
= K0 @) K EDEC(RIK, RIK) gal 40
+(d+1
C(R/K, RIK®)galds 40
—{d=Da 4 (g41)
<K v ar ( ) Hga”LP (dp)’
where 15 denotes another quadratic function. -
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APPENDIX F
MULTILINEAR SQUARE FUNCTION

ESTIMATE

The multilinear theory from [9] yields certain multilinear square function estimates. This

was first observed in [17], to which we refer for proofs.

Lemma F.1 ([17]). Let 2 < m < d and V be a subspace of R? of dimension m. Let
Py, ..., P, € S be points that satisfy n(P;)) € V for all 1 < i < m and [n(P)) A -+ A
n(Py)| > ¢, where n(P) denotes the unit normal to S at the point P. Let Uy, ..., U, < S
be small neighbourhoods of Py, ..., P,. Let M be large and D; < U; be subsets of 1/M
separated points & that obey the condition dist(n(&),V) < ¢/M. Then for f; € L*(U;), we

have

2

1 . =
n)e”da(n)

dx
|BM‘ BM, 1 ¢eD; fﬁ €<z

2m

1
—ix- 2\ 2m m-l
. S| s o)) as)
‘ M| B]V[Z 1 &ED In—§|<ﬁ

Remark F.2. Two application of Holder’s inequality, together with Lemma F.1, lead to

179



a multilinear version of the Cérdoba square function estimate [35] for ¢ < =™

m—1
[ T ‘ 2 f filn)e™ " da () "
|BM‘ Bum j=1 ¢eD; YIn—€l<3z
1 ﬁ Z . T Al
< (- j fime =)™ dr) "
|BM| By =1 §eD~ In—&l<47
1
—ix- 2 2m 1
s oo )
M| BMZ 1 geD In—€l<37

€ 1 fi:p- 2 %%
e st

¢eD, JIn—€l<3z

SO

ITT( 3 o)

j=1 " ¢eD;

(Z o)

=1 ¢&eD;

Y

La/™(Byy) La/™(Byy)

where j’"5 f Xt and SM denotes a cap in S of radius 1/M centered at .
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