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Abstract

The aim of this thesis is to provide a geometric control of certain oscillatory integral

operators. In particular, if T is an oscillatory Fourier multiplier, a pseudodifferential

operator associated to a symbol a P Smρ,δ or a Carleson-like operator, we obtain a weighted

L2 inequality of the type
ż

|Tf |2w ď C

ż

|f |2MTw.

Here C is a constant independent of the weight function w, and the operatorMT , which

depends on the corresponding T , has an explicit geometric character. In the case of

oscillatory Fourier multipliers and of Carleson-like operators we also determine auxiliary

geometric operators g1 and g2 and establish a pointwise estimate of the type

g1pTfqpxq ď Cg2pfqpxq.

Finally, we include a careful study of a method developed by Bourgain and Guth in Fourier

restriction theory, that allows making progress on the Fourier restriction conjecture from

their conjectured multilinear counterparts. Our conjectured progress via multilinear esti-

mates has been recently obtained by Guth.
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Notation

We typically use the letter C to denote a constant, that may change from line to line, and

whose dependence on the relevant parameters will be specified when necessary. We shall

write A À B if there exists a constant C such that A ď CB. The relations A Á B and

A „ B are defined similarly.

Given a cube Q Ă Rd and k P N, we denote by kQ the concentric cube whose sidelength

is k times that of Q. In the case k “ 2, we write Q̄ instead of 2Q.

Let pX,µq be a measure space. Given a set E Ă X, we denote by µpEq the measure of

E, which in the case of the Lebesgue measure we denote by |E|. We say that a property

holds almost everywhere in a set X, and we use the notation a.e. x P X, if it holds except

for subsets of X of measure zero.

For 1 ď p ă 8, we define LppX,µq as the space of measurable functions f : X Ñ C

such that

}f}p :“
´

ż

X

|f |pdµ
¯1{p

ă 8.

The space L8pX,µq corresponds to those functions satisfying

}f}8 :“ suptC ě 0 : µptx P X : |fpxq| ą Cuq ą 0u ă 8.

Given a fixed p, its conjugate exponent p1 is defined by the relation 1
p
` 1

p1
“ 1.

We define the weak-Lp spaces Lp,8pX,µq as the space of measurable functions f :



X Ñ C such that

}f}p,8 :“ sup
λą0

µptx P X : |fpxq| ą λuqλp ă 8.

Observe that LppX,µq Ă Lp,8pX,µq. In this thesis, X will typically be Rd, and when

dµ “ dx is the Lebesgue measure, we use the notation LppRdq or simply Lp. For a weight

function w, that is, a nonnegative locally integrable function, and dµ “ wdx, we use the

notation Lppwq.

We denote by M the Hardy–Littlewood maximal function, defined by

Mfpxq “ sup
BQx

1

|B|

ż

B

|fpyq|dy,

where B is a ball in Rd containing the point x.

Given a multi-index γ “ pγ1, . . . , γdq P Nd and a function f : Rd Ñ C, we write

xγ “ xγ1

1 ¨ ¨ ¨ x
γd
d and

Dγfpxq “ Bxfpxq “
B|γ|f

Bxγ1

1 ¨ ¨ ¨ Bx
γd
d

,

where |γ| “ γ1 ` ¨ ¨ ¨ ` γd. Given x P R, we denote by txu its integer part.

We say function f belongs to the Schwartz class SpRdq if f P C8pRdq and

sup
xPRd

|xαDβfpxq| ă 8

for all α, β P Nd.

The Fourier transform of a function f P SpRdq is defined as

pfpξq :“

ż

Rd
e´ix¨ξfpxqdx.



Introduction

This thesis has its origins in a long-standing conjecture of Stein for the disc multiplier.

In 1978, at the Williamstown conference in Harmonic Analysis, Stein [125] suggested the

possibility that a two-weight inequality of the type

ż

Rd
|Tf |2w ď C

ż

Rd
|f |2Mw (:)

might hold for any weight function w with constant C independent of w, where T denotes

the disc multiplier, that is xTf “ χBp0,1q pf , and M is a variant of the universal maximal

function

Nwpxq :“ sup
RQx

1

|R|

ż

R

w;

here the supremum is taken over all arbitrary rectangles in Rd containing the point x. This

conjecture had as supporting evidence the connection made by Fefferman [50] between the

disc multiplier and Besicovitch sets, which allowed him to prove that the disc multiplier

is unbounded on LppRdq for p ‰ 2 when d ě 2; we note that for d “ 1 the study of the

disc multiplier reduces to that of the Hilbert transform. This question (:), which was

also raised by Córdoba [34] in the more general context of Bochner–Riesz multipliers,

is still very much open. Positive results were obtained in the case of radial weights by

Carbery, Romera and Soria [21], and numerous authors have contributed with partial

progress [19, 29, 23, 8, 82]. If true, such a conjecture would be striking, as it involves
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control via a weighted inequality of a highly oscillatory and cancellative operator by a

positive maximal function.

Motivated by the above conjecture of Stein, Bennett, Carbery, Soria and Vargas [8]

established a version of this conjecture on the circle. That work was followed by that of

Bennett and Harrison [10], who studied weighted L2 inequalities for certain oscillatory

kernels on the real line. Later, Bennett [7] took a Fourier multiplier perspective on such

questions on the real line. In all cases, the authors managed to control those oscillatory

operators by positive, geometrically-defined maximal functions.

One of the main results of this thesis is a higher dimensional version of the result in

[7], for broader classes of oscillatory Fourier multipliers. This is the content of Chapter

2, which is based on the joint work with Bennett in [5]. The classes of multipliers under

study are modelled by mα,β :“ ei|ξ|
α

p1`|ξ|2qβ{2
for any α, β P R. As in the one-dimensional case,

the controlling maximal functions are positive operators and involve fractional averages

over certain approach regions. Also, the maximal functions are closely related to certain

Kakeya-type maximal operators, very much in the spirit of Stein’s conjecture.

Our weighted L2 inequalities follow from a stronger pointwise result. In particular, we

are able to identify two auxiliary operators, g1 and g2, such that the estimate

g1pTmfqpxq ď Cg2pfqpxq (‹)

holds, where Tm denotes the operator associated to the multiplier m. A weighted estimate

of the type (:) for Tm may be then obtained from those for the auxiliary operators g1 and

g2. In our case, g1 and g2 are novel square functions of Littlewood–Paley type that reflect

on the geometric properties of the multipliers under study. We remark that our results on

the multipliers mα,β have obvious interpretations in the setting of oscillatory convolution

kernels and dispersive partial differential equations.
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A classical non-translation-invariant generalisation of the Fourier multipliers is given

by the pseudodifferential operators. Given a smooth function a P C8pRd ˆ Rdq, referred

to as the symbol, define the associated pseudo-differential operator Ta by

Tafpxq :“

ż

Rd
eix¨ξapx, ξq pfpξqdξ,

where f P S. We focus ourselves in the symbol classes Smρ,δ, introduced by Hörmander in

[69]. We say that a P Smρ,δ if it satisfies the differential inequalities

|B
ν
xB

σ
ξ apx, ξq| À p1` |ξ|q

m´ρ|σ|`δ|ν|

for all multi-indices ν, σ P Nd, where m P R and 0 ď δ, ρ ď 1. Observe that the model

oscillatory multipliers mα,β P S´β1´α,0 for 0 ď α ď 1. Thus, the symbol classes Smρ,0

constitute a generalisation of the classes of multipliers studied in Chapter 2 for 0 ď ρ ď 1.

In Chapter 3 we study how to extend the techniques presented for the multiplier case

to this pseudodifferential operator context. With additional appropriate applications of

the symbolic calculus and the Cotlar–Stein almost orthogonality principle, we are able to

control the operators Ta, where a P Smρ,δ, by maximal operators via weighted L2 inequalities

of the type (:). This constitutes the second main result of this thesis, which may be

found in [3]. In contrast to the multiplier case, our proof does not follow from a pointwise

estimate of the type (‹). The question of obtaining pointwise control remains open, except

for the case m ď dpρ ´ 1q{2, where techniques closer to Calderón–Zygmund theory may

be applied.

We remark that the weighted estimates of the type (:) obtained for the oscillatory

Fourier multipliers and the Hörmander symbol classes allow one to recover the optimal

Lebesgue space bounds for such objects via the appropriate bounds on the controlling

maximal function M in each case.
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In Chapter 4, we address the question of obtaining pointwise and weighted control for

the Carleson operator, a crucial operator in harmonic analysis related to the almost ev-

erywhere convergence of Fourier series. This is motivated by a future line of investigation,

which consists in obtaining control for maximal multiplier operators. Given a multiplier

m and writing mtpξq :“ mptξq for any t ą 0, we define its maximal multiplier operator as

T ˚mfpxq :“ sup
tą0
|pmt

pfqqpxq|.

Obtaining control for the operator T ˚m in the context of the multipliers mα,β would pro-

vide control for a central operator in partial differential equations such as the maxi-

mal Schrödinger operator. A first attempt towards answering this general question is

to study what happens when considering easier families of multipliers. If, for instance,

one considers a multiplier m of global bounded variation on R, it is easy to observe that

T ˚mfpxq À |fpxq| ` |Cfpxq|, where C denotes the Carleson operator. Obtaining control for

C provides control for T ˚m in this case.

The weighted theory for the Carleson operator is much closer in spirit to that of

Calderón–Zygmund operators, as it implicitly uses the fact that the Carleson operator is

bounded in LppRq for 1 ă p ă 8. Certain pointwise control for the Carleson operator

along the lines of (‹) was obtained by Rubio de Francia, Ruiz and Torrea [118], who

established that

M#
pCfqpxq ď CpMpf sqpxqq1{s

for any s ą 1; here M# denotes the Fefferman–Stein sharp maximal function.

In the context of Calderón–Zygmund operators, more sophisticated variants of the

above pointwise estimate have been highly effective very recently. For instance, they play

a central role in Lerner’s alternative proof of the A2-conjecture [85], previously resolved by

Hytönen [75]. Further developments in that direction have led to pure pointwise estimates
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for Calderón–Zygmund operators, in which the auxiliary operator g1 on the left hand side

of (‹) is entirely absent; see [87, 32, 79, 86].

Following the ideas of Lerner [86], and inspired by the work of Di Plinio and Lerner

[42], we have obtained a pure pointwise estimate for the Carleson operator. Namely, we

show that

|Cfpxq| ď CAr,Sfpxq :“
ÿ

QPS

ˆ

1

|Q|

ż

Q

|f |r
˙1{r

χQpxq

for any 1 ă r ă 8, where S is a family of cubes Q satisfying certain almost-disjointness

properties. Such a pointwise estimate allows one to deduce weighted estimates for the

Carleson operator from those for the operator Ar,S . In particular we obtain weighted Lp

inequalities of the type (:) with controlling maximal functionM “M tpu`1, which denotes

the ptpu ` 1q´fold composition of M . This improves on the previously known maximal

operator Mw “ pMpwsqq1{s, where 1 ă s ă 8. Our weighted estimate is along the lines

of that of Pérez [108] for Calderón–Zygmund operators. This constitutes the third main

result of this thesis, and most of the content in Chapter 4 may be found in [4].

Finally, in Chapter 5 we include a minor contribution in the context of the Fourier

restriction conjecture, a problem of central importance in harmonic analysis due to its

strong interdisciplinary flavour and numerous applications. The aim of this conjecture

is to study whether the Fourier transform of a function may be meaningfully restricted

to a m-dimensional manifold S in Rd. In the late 1960’s, Stein made the remarkable

observation that under certain appropriate curvature hypotheses on S, there exists a

p0pSq ą 1 for which this restriction is possible for any f P Lp, 1 ď p ď p0pSq. These

results may be deduced from estimates of the type

}ygdσ}LqpRdq À }g}Lppdσq,

where dσ denotes the induced Lebesgue measure on S and g is a function defined on S.
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The latest progress towards establishing the sharp range of exponents of p, q for which

the above estimate holds has been achieved by considering multilinear analogues of the

problem. If S is a hypersurface of nonvanishing Gaussian curvature, the progress in the

multilinear problem achieved by Bennett, Carbery and Tao [9], combined with a recent

method developed by Bourgain and Guth [17], provided some of the best recent results on

the restriction conjecture. We study the method of Bourgain and Guth, and we establish

a conjectural theorem that quantifies what impact the optimal conjectured multilinear

estimates would have on the linear problem. This anticipated progress has been recently

achieved by Guth [61] via the algebraic technique of polynomial partitioning.
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Structure of the thesis

This thesis is organised as follows, with the main results being contained in Chapters 2,

3 and 4. Some appendices are included at the end for completeness.

Chapter 1

We give a quick overview of classical and modern weighted harmonic analysis related to

Calderón–Zygmund theory. This encompasses classical tools such as the sharp maximal

function and the more novel sparse operator approach. We also revisit some standard

Littlewood–Paley theory and how it may be used to deal with the classical Hörmander–

Mikhlin multiplier operators.

Chapter 2

We provide pointwise and weighted L2 control for oscillatory Fourier multipliers. Given

α, β in R, the multipliers under study satisfy the differential inequalities

|Dγmpξq| À |ξ|´β`|γ|pα´1q

in tξ P Rd : |ξ|α ě 1u for every multi-index γ P Nd with |γ| ď td
2
u` 1. They are controlled

by positive, geometrically-defined maximal functions, which involve fractional averages

over certain approach regions. This is joint work with J. Bennett and it is mostly based

on the published work [5].

Chapter 3

We study pseudodifferential operators associated to the Hörmander symbol classes Smρ,δ.

These symbol classes are non-translation invariant generalisations of the above classes

of multipliers for 0 ď α ď 1. We control them by the same maximal functions that in

the multiplier case via weighted L2 inequalities. This chapter is mostly based on the

7



submitted work [3].

Chapter 4

We provide sharp pointwise and weighted Lp estimates for a family of maximally modu-

lated Calderón–Zygmund operators. This class of operators encompasses a wide variety

of operators, such as Calderón–Zygmund operators or the Carleson operator. We use the

machinery of dyadic sparse operators, which has proved to be highly effective in recent

years. Most of the content of this chapter may be found on the accepted work [4].

Chapter 5

Following a method of Bourgain and Guth [17], we establish a conjectural theorem for the

Fourier restriction conjecture. This theorem establishes progress on the Fourier restriction

conjecture provided optimal estimates are obtained for their multilinear counterparts. The

anticipated progress of this theorem has recently been confirmed by Guth in [61].
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Chapter 1

Background

In this chapter we collect several classical and modern results to which we shall appeal

throughout this thesis. We claim no originality here, and it must be seen as a preliminary

chapter encompassing an overview of different results.

1.1 Classical weighted theory

The theory of weighted inequalities has been classically attached to that of the Hardy–

Littlewood maximal function and Calderón–Zygmund operators. The development of

this research area originates in the 1970s, with fundamental work of Muckenhoupt and

others. There is a vast literature in weighted inequalities; here we only intend to give a

brief overview. We refer to the standard references [45, 57, 55, 38] for a more detailed

introduction to this topic.

One of the first questions studied in weighted theory was to characterise the nonneg-

ative, locally integrable functions w so that the Hardy–Littlewood maximal function M

extends to a bounded operator on Lppwq for 1 ă p ă 8, that is whether

ż

Rd
pMfqpw ď Cp,dpwq

ż

Rd
|f |pw

holds for some finite constant Cp,dpwq. The answer to this question was given by Mucken-
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houpt [102], who showed that M : Lppwq Ñ Lppwq is a bounded operator for 1 ă p ă 8

if and only if w is an Ap weight.

Definition 1.1.1. For 1 ă p ă 8, we say that w P Ap if

rwsAp :“ sup
QĂRd

ˆ

1

|Q|

ż

Q

w

˙ˆ

1

|Q|

ż

Q

w´1{pp´1q

˙p´1

ă 8,

where the supremum is taken over all cubes in Rd. The quantity rwsAp is known as the

Ap constant (or characteristic) of w.

Similarly, Muckenhoupt [102] characterised those weights w for which M : L1pwq Ñ

L1,8pwq is a bounded operator. In this case, the answer is given by the weights satisfying

the A1 condition.

Definition 1.1.2. We say that w P A1 if there exists a constant C ą 0 such that

Mwpxq ď Cwpxq a.e. x P Rd.

The infimum of such constants C is denoted by rwsA1 , and it is known as the A1 constant

(or characteristic) of w.

The Ap condition for 1 ă p ă 8 first appeared in the work of Rosenblum [117],

whilst the A1 condition has a precedent in the work of Fefferman and Stein [47]. Classical

examples of Ap weights are the power weights wpxq “ |x|a for ´d ă a ă dpp ´ 1q if

1 ă p ă 8 and for ´d ă a ď 0 if p “ 1. The Ap classes of weights are increasing in p,

that is Ap Ă Aq for 1 ď p ă q.

Similar questions were asked for other classical operators in harmonic analysis, such

as Calderón–Zygmund operators.

Definition 1.1.3. A Calderón-Zygmund operator T on Rd is a L2 bounded operator that

10



may be represented as

Tfpxq “

ż

Rd
Kpx, yqfpyqdy, x R supp f,

where the kernel K satisfies

(i) |Kpx, yq| ď C
|x´y|d

for all x ‰ y;

(ii) |Kpx, yq ´ Kpx1, yq| ` |Kpy, xq ´ Kpy, x1q| ď C |x´x1|δ

|x´y|d`δ
for some 0 ă δ ď 1 when

|x´ x1| ă |x´ y|{2.

Of course prototypical examples of Calderón–Zygmund operators are the Hilbert and

the Riesz transforms. Hunt, Muckenhoupt and Wheeden [71] showed that the Ap condition

also characterises the weights for which the Hilbert transform H is a bounded operator

on Lppwq for 1 ă p ă 8 from L1pwq to L1,8pwq. This reconciles with a result of Helson–

Szegö [67] in the case p “ 2. The Ap condition also suffices to ensure boundedness of

Calderón–Zygmund operators on Lppwq for 1 ă p ă 8 and from L1pwq to L1,8pwq and

it is necessary in certain cases, such as for the Riesz transforms; see the classical work of

Coifman and Fefferman [30] or the standard references [45, 129].

The rapid development of the one-weight theory quickly led to the study of two-weight

inequalities. The question in this case is to characterise the pair of weights pu, vq for which

the two-weight inequality
ż

Rd
pMfqpu À

ż

Rd
|f |pv

holds. The natural analogue to the Ap condition for a pair of weights pu, vq, given by

ru, vsAp “ sup
QĂRn

ˆ

1

|Q|

ż

Q

u

˙ˆ

1

|Q|

ż

Q

v´1{pp´1q

˙p´1

ă 8, (1.1.1)

is necessary but not sufficient to guarantee that M is bounded from Lppvq to Lppuq for

1 ă p ă 8. However, it is a necessary and sufficient condition in the case of weak-type

11



estimates. That is, there exists a constant C such that

uptx P Rd : Mfpxq ą λuq ď
C

λp

ż

Rd
|f |pv

holds if and only if pu, vq P Ap for 1 ď p ă 8, where we naturally say that pu, vq P A1

if there exists a constant C such that Mupxq ď Cvpxq a.e. x P Rd. These weak-type

results may be found in the work of Fefferman and Stein [47], and Muckenhoupt [102].

The question of finding a necessary and sufficient condition on a pair of weights pu, vq in

the case of strong-type inequalities is a lot harder. We shall discuss more on this at the

end of Chapter 4.

In what follows, we focus on looking for sufficient conditions on a pair of weights pu, vq

for two-weight inequalities to hold. In particular, we look for an operator w Ñ Mw

such that the pair of weights pw,Mwq is admissible for any weight w. That is, given an

operator U , one would like to identify an operator M such that a two-weight inequality

of the type
ż

Rd
|Uf |pw ď Cp,d

ż

Rd
|f |pMw (1.1.2)

holds for any weight w, where the constant Cp,d is independent of w. The first instance

of such an inequality goes back to the work of Fefferman and Stein [47], which ensures

that in the case of the Hardy–Littlewood maximal function U “ M , it suffices to take

M “M in (1.1.2).

Of course this question may be addressed for any operator. In the context of Calderón–

Zygmund operators, Córdoba and Fefferman [33] showed that for every s ą 1 and 1 ă

p ă 8, there is a constant C ă 8 such that

ż

Rd
|Tf |pw ď CT

ż

Rd
|f |pMsw (1.1.3)

12



holds for any weight w, where Msw :“ pMwsq1{s. 1 Observe that given a general two-

weight inequality of the type (1.1.2), one may use a duality argument and Hölder’s in-

equality to deduce

}Uf}q̃ “ sup
}w}pq̃{pq1“1

ˆ
ż

Rd
|Uf |pw

˙1{p

À sup
}w}pq̃{pq1“1

ˆ
ż

Rd
|f |pMw

˙1{p

ď sup
}w}pq̃{pq1“1

ˆ
ż

Rd
|f |q

˙1{q ˆż

Rd
pMwqpq{pq

1

˙
1

pq{pq1
1
p

ď sup
}w}pq̃{pq1“1

}M}1{p
pq̃{pq1Ñpq{pq1}f}q

ˆ
ż

Rd
|w|pq̃{pq

1

˙
1

pq̃{pq1
1
p

ď }M}1{p
pq̃{pq1Ñpq{pq1}f}q, (1.1.4)

for q, rq ě p. This mechanism serves in many cases to obtain Lebesgue space bounds for

the operator U from those for the controlling maximal function M, provided we have an

inequality of the type (1.1.2). This will be the case in Chapters 2 and 3 in order to deduce

Lebesgue space bounds for Fourier multipliers and pseudodifferential operators.

In the case of Calderón–Zygmund operators, one may not obtain Lebesgue space

bounds for T via the inequality (1.1.3), as the implicit constant CT depends already on

the unweighted Lebesgue space bounds for T . However, the above mechanism provides

a concept of optimality on the maximal function M. Observe that the estimate (1.1.3)

leads, via (1.1.4), to

}T }qÑq ď C}Ms}
1{p
pq{pq1Ñpq{pq1 (1.1.5)

for q ě p. As Ms fails to be bounded on Lq for 1 ă q ď s, one would not recover the

full range of Lebesgue space bounds for T . This suggests that there is scope to improve

1This may also be seen as a consequence of the Ap theory, since Msw P A1 Ă Ap for p ą 1, with
constant independent of w, and w ďMsw.
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the inequality (1.1.3). Such an improvement was achieved by Wilson [142] in the range

1 ă p ď 2 and by Pérez [107] in the whole range 1 ă p ă 8, who showed that for

1 ă p ă 8, there is a constant CT ă 8, depending on the unweighted bounds of T , such

that
ż

Rd
|Tf |pw ď CT

ż

Rd
|f |pM tpu`1w (1.1.6)

holds for any weight w. The operator M tpu`1 is bounded on Lq, 1 ă q ă 8, for any p.

Thus, this is optimal in the sense of Lq bounds in views of (1.1.4), as one would recover the

Lq boundedness of T for the whole range p ď q ă 8 if the constant CT were independent

of the unweighted bounds. Furthermore, their result is best possible in the sense that

the inequality (1.1.6) fails if M tpu`1 is replaced by M tpu. It should be noted that for each

s ą 1 and k ě 1, the pointwise estimate Mkwpxq ď CMswpxq holds for some constant C

independent of w.

Such sharp weighted inequalities have also been obtained for operators close to the

Calderón-Zygmund theory, like fractional integrals [109], commutators [110] and vector-

valued singular integrals [111].

We remark that for the case p “ 1 these types of two-weight inequalities may be

asked in the context of weak-type estimates. As outlined above, the sufficiency of the A1

condition in this context, together with the trivial observation that pw,Mwq P A1, yields

wptx P Rd : Mfpxq ą λuq ď
C

λp

ż

Rd
|f |pMw.

Muckenhoupt and Wheeden raised the question of whether this inequality also holds for

the Hilbert transform and more general Calderón–Zygmund operators. This question was

open for a long time, and it was eventually disproved by Reguera and Thiele [115]; see

also the previous work of Reguera [114].
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1.2 Orlicz maximal functions

In this section we present some concepts related to the theory of Orlicz spaces. This

played a fundamental role in the proof of Pérez of the weighted inequality (1.1.6), and also

in developing the theory of more general two-weight inequalities for Calderón–Zygmund

operators. We will make use of this in Chapter 4. For the standard definitions below we

refer the reader to [38] and the references therein.

Let A be a Young function, that is, A : r0,8q Ñ r0,8q is a continuous, convex,

increasing function with Ap0q “ 0 and such that Aptq Ñ 8 as t Ñ 8. We say that a

Young function A is doubling if there exists a positive constant C such that Ap2tq ď CAptq

for t ą 0. For each cube Q Ă Rd, we define the Luxemburg norm of f over Q by

}f}A,Q “ inf

"

λ ą 0 :
1

|Q|

ż

Q

A

ˆ

|fpyq|

λ

˙

dy ď 1

*

.

The Orlicz maximal function associated to the Young function A is defined by

MAfpxq “ sup
QQx

}f}A,Q (1.2.1)

for all locally integrable functions f , where the supremum is taken over all cubes Q in Rd

containing x.

We define the complementary Young function Ā to be the Legendre transform of A,

that is

Āptq “ sup
są0
tst´ Apsqu, t ą 0.

We have that Ā is also a Young function, and it satisfies

t ď A´1
ptqĀ´1

ptq ď 2t
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for t ą 0. There is a version of Hölder’s inequality in terms of these function space norms,

1

|Q|

ż

Q

fpxqgpxqdx ď }f}A}f}Ā.

Pérez [108] characterised the Young functions A such that MA is bounded on Lp for

1 ă p ă 8 and established that the Lp boundedness is equivalent to certain weighted

inequalities for MA and related maximal operators. Such a characterisation is given by

the Bp condition.

Definition 1.2.1. Let 1 ă p ă 8. We say that a doubling Young function A satisfies

the Bp condition, and we denote it by A P Bp, if there is a constant c ą 0 such that

ż 8

c

Aptq

tp
dt

t
«

ż 8

c

ˆ

tp
1

Āptq

˙p´1
dt

t
ă 8. (1.2.2)

Observe that for p ă q we have Bp Ă Bq. The characterisation is given by the following

theorem.

Theorem 1.2.2 ([108]). Let 1 ă p ă 8. Let A and B be doubling Young functions

satisfying B̄ptq “ Aptp
1

q. Then the following are equivalent:

(i) B P Bp.

(ii) There is a constant c ą 0 such that

ż 8

c

ˆ

t

Aptq

˙p´1
dt

t
ă 8.

(iii) There is a constant C ă 8 such that

ż

Rd
pMBfq

p
ď C

ż

Rd
fp

16



for all non-negative functions f .

(iv) There is a constant C ă 8 such that

ż

Rd
pMBfq

pu ď C

ż

Rd
fpMu

for all non-negative functions f and any weight u.

(v) There is a constant C ă 8 such that

ż

Rd
pMfqp

u

pMAwqp´1
ď C

ż

Rd
fp

Mu

wp´1
(1.2.3)

for all non-negative functions f and any weights u, w.

A classical result from Coifman and Rochberg [31] asserts that for any locally integrable

function w such that Mwpxq ă 8 a.e. and 0 ă δ ă 1, the function pMwqδpxq is an A1

weight with A1-constant independent of w. As Pérez [107] remarks, this result still holds

when one replaces the Hardy-Littlewood maximal function by the maximal operator MA.

Proposition 1.2.3. Let A be a Young function. If 0 ă δ ă 1, then pMAwq
δ P A1 with

A1 constant independent of w. In particular,

M
`

pMAwq
δ
˘

pxq ď Cd
1

1´ δ
pMAwq

δ
pxq

for almost all x P Rd.

One may find a proof of this result in [38] (Proposition 5.32). We give an alternative

proof following the classical approach from [31] in the Appendix C for completeness.
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1.3 Sparse operators

One possible (and classical) approach to proving that a Calderón–Zygmund operator is

a bounded operator on Lppwq for all w P Ap and 1 ă p ă 8 is via the sharp maximal

function, introduced by Fefferman and Stein [48].

Definition 1.3.1. Given f P L1
locpRdq, the sharp maximal function of f is defined by

M#
pfqpxq :“ sup

QQx
inf
cPR

1

|Q|

ż

Q

|fpzq ´ c|dz,

where the supremum is taken over cubes Q in Rd containing the point x. This definition

is equivalent to the more classical one, in which c “ 1
|Q|

ş

Q
fpyqdy.

The idea behind this approach is to establish a pointwise estimate of the type

M#
pTfqpxq ď CT ĂMfpxq (1.3.1)

for a suitable operator ĂM, which is typically a variant of the Hardy–Littlewood maximal

function. Weighted estimates for T follow then from those for M# and ĂM; we develop

this further in Section 1.5. This was the approach used by Córdoba and Fefferman in

[33] to deduce (1.1.3), and it was successfully employed later by many authors in different

contexts, allowing to deduce, for instance, that }Tf}Lppwq À }f}Lppwq for w P Ap and

1 ă p ă 8.2

One of the big open problems in weighted harmonic analysis was to determine the

sharp dependence of the operator norm }T }Lppwq in terms of the Ap characteristic of the

weight. This question, commonly referred to as the A2-conjecture was recently solved by

2Again, and similarly to the case of the weighted inequality (1.1.3), the constant CT depends on the
unweighted bounds for T . Thus, it is not possible to use (1.3.1) to obtain boundedness of T in Lebesgue
spaces.
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Hytönen [75] in the general case of Calderón–Zygmund operators; the specific cases of the

Hilbert and Riesz transforms were previously obtained by Petermichl [112, 113].

Theorem 1.3.2 ([75]). Let T be a Calderón–Zygmund operator in Rd. Then

}Tf}L2pwq ď CpT, dqrwsA2}f}L2pwq, (1.3.2)

and the dependence on rwsA2 is sharp.

The proof of this theorem has been simplified over the last few years thanks to the

fundamental work of Lerner [84, 85, 87, 86] and others, leading to a better understanding

of Calderón–Zygmund operators and related objects. Lerner’s approach consists in con-

trolling Calderón–Zygmund operators by simple, geometric objects, for which an estimate

of the type (1.3.2) follows by elementary means. To define such simple objects we need

to recall some standard definitions.

Let D be a general dyadic grid, that is a collection of cubes such that

(i) any Q P D has sidelength 2k, k P Z;

(ii) for any Q,R P D, we have QXR P tQ,R,Hu;

(iii) the cubes of a fixed sidelength 2k form a partition of Rd.

We say that S is a sparse family of cubes if for any cube Q P S there is a measurable

subset EpQq Ă Q such that |Q| ď 2|EpQq| and the sets tEpQquQPS are pairwise disjoint.

Given a sparse family S and 1 ď r ă 8, we define a sparse operator by

Ar,Sfpxq :“
ÿ

QPS

ˆ

1

|Q̄|

ż

Q̄

|f |r
˙1{r

χQpxq. (1.3.3)

Lerner proved in [84] that Banach space norms for T follow from those for the sparse

operators A1,S .
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Theorem 1.3.3 ([84]). Let X be a Banach function space over Rd equipped with Lebesgue

measure. Let T be a Calderón–Zygmund operator. Then

}Tf}X ď CpT, dq sup
D,S

}A1,Sf}X ,

where the supremum is taken over all dyadic grids D and all sparse families S Ă D. The

constant CpT, dq depends on }T }L1ÑL1,8.

This leads to an alternative proof for Theorem 1.3.2. Bounds for the operators A1,S ,

and more generally Ar,S , may be obtained with rather elementary techniques, see for

instance [84, 42]. In particular, they are bounded on Lppwq for w P Ap and 1 ă p ă 8,

and it is possible to obtain good quantitative control of the operator norm in terms of the

Ap characteristic of the weight; for instance, linear dependence on the rwsA2 constant in

the case of A1,S .

Theorem 1.3.3 was subsequently refined, and it was simultaneously observed by Lerner

and Nazarov [87] and Conde–Alonso and Rey [32] that for every f P C8c pRdq there exists

a sparse family of cubes S such that

|Tfpxq| ď CpT, dqA1,Sfpxq. (1.3.4)

This belongs to the framework (1.3.1), where the sharp maximal function is now entirely

absent. The proof for such a pointwise control has been further simplified by Lacey [79]

and Lerner [86]. The most recent proof of Lerner [86] is phrased in a more general context

than that of Calderón–Zygmund operators. Given a sublinear operator T , he introduced

the grand maximal function NT , defined by

NTfpxq :“ sup
QQx

ess sup
zPQ

|T pfχRdz3Qqpzq|; (1.3.5)
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here the supremum is taken over all cubes Q Ă Rd containing x.3

Theorem 1.3.4 ([86]). Assume that T is a sublinear operator of weak type pq, qq and

NT is of weak type pr, rq, where 1 ď q ď r ă 8. Then, for every compactly supported

f P LrpRdq, there exists a sparse family S such that for a.e. x P Rd,

|Tfpxq| ď CAr,Sfpxq,

where C “ Cpd, q, rqp}T }LqÑLq,8 ` }NT }LrÑLr,8q.

In the case of Calderón–Zygmund operators, the grand maximal function NT is shown

to be of weak-type p1, 1q through the maximal truncated operator. In particular it is

relatively easy to show [86] that for all x P Rd,

NTfpxq ď CpT, dqMfpxq ` T ˚fpxq,

where M denotes the Hardy–Littlewood maximal function and

T ˚fpxq “ sup
εą0

ˇ

ˇ

ˇ

ż

|y´x|ąε

Kpx, yqfpyqdy
ˇ

ˇ

ˇ
.

The L1 ´ L1,8 boundedness for NT follows then from that of M and T ˚, leading to the

pointwise estimate (1.3.4).

Finally, we remark that the proof of the norm estimate in Theorem 1.3.3 relied on

an improved version of the pointwise estimate (1.3.1). This requires the notion of local

mean oscillation, which is a refinement of the concept of the sharp maximal function; see

[131, 26, 56, 54] for other historical refinements. In particular, this allows one to exploit

3The use of Q̄ in the definition of Ar,S and of 3Q in the definition of NT is quite conventional;
the important underlying feature is that away from a fixed dilate of Q, one may apply the smoothing
properties of the Calderón–Zygmund kernels. The choice of Q̄ or 3Q in each case is taken to be consistent
with the referenced literature.
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that Calderón–Zygmund operators are of weak-type p1, 1q.

Given a measurable function f and a cube Q, the local mean oscillation of f on Q is

defined by

ωλpf ;Qq “ inf
cPR
ppf ´ cqχQq

˚
pλ|Q|q

for 0 ă λ ă 1, where f˚ denotes the non-increasing rearrangement of f .

The median value of f over a cube Q, denoted by mf pQq, is a nonunique real number

such that

|tx P Q : fpxq ą mf pQqu| ď |Q|{2 and |tx P Q : fpxq ă mf pQqu| ď |Q|{2.

Lerner proved the following local mean oscillation decomposition in [83]; see [76] for

the following refined version.

Theorem 1.3.5 ([76]). Let f be a measurable function on Rd and Q0 be a fixed cube.

Then there exists a sparse family of cubes S Ă DpQ0q such that

|fpxq ´mf pQ0q| ď 2
ÿ

QPS
ω 1

2d`2
pf ;QqχQpxq

for a.e. x P Q0.

The local mean oscillation of a Calderón–Zygmund operator satisfies the estimate

ωλpTf ;Qq À

ˆ

1

|Q̄|

ż

Q̄

|f |

˙

`

8
ÿ

m“0

1

2mδ

ˆ

1

|2mQ|

ż

2mQ

|f |

˙

.

This constitutes a refined version of the inequality (1.3.1).
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1.4 Littlewood–Paley theory

Square functions have played a pivotal role in the study of many operators in harmonic

analysis. One of their common roles is to capture manifestations of orthogonality in Lp

spaces for p ‰ 2. The study of those functions has its roots in the work of Littlewood and

Paley [92] and the later development of such a theory is named after them. We refer to

work of Stein [127], [128], [126] for a standard real-variable treatment of Littlewood–Paley

theory.

An application of Plancherel’s theorem quickly reveals that if a family of functions tfjuj

defined on Rd have Fourier transforms pfj supported in disjoint sets, then the functions

are orthogonal, that is

}
ÿ

j

fj}
2
2 “

ÿ

j

}fj}
2
2.

This orthogonality does not hold when 2 is replaced by another exponent p ‰ 2. The

role of classical Littlewood–Paley theory is to provide a substitute for this principle when

p ‰ 2. To this end, we consider certain discrete and continuous square functions.

Let P : Rd Ñ R be a smooth function such that suppp pP q Ď tξ P Rd : |ξ| „ 1u. For

any k P Z, let Pk be defined by pPkpξq “ pP p2´kξq and let ∆k be the operator given by

y∆kfpξq “ pPkpξq pfpξq. Here we assume that the functions t pPkukPZ define a partition of

unity, that is
ÿ

kPZ

pP p2´kξq “ 1 (1.4.1)

for ξ ‰ 0. Consider the square function

Spfqpxq :“ p
ÿ

kPZ

|∆kfpxq|
2
q
1{2.

The main result of Littlewood–Paley theory is that the square function S characterises
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Lp spaces 4 for 1 ă p ă 8, that is

}Sf}p „ }f}p. (1.4.2)

Observe that the case p “ 2 amounts to an application of Plancherel’s theorem. The

estimates for S are very closely related to Calderón–Zygmund theory; see the standard

references cited above.

The square function S satisfies the following two-weight L2 estimates, from which the

characterisation (1.4.2) follows. The forward estimate is a consequence of a more general

result of Wilson [143]; we refer to the PhD thesis of Harrison [66] for a careful explanation

of how to deduce the above estimate from the work of Wilson. We remark that for this

result, the condition (1.4.1) imposed on P is not required.

Proposition 1.4.1 ([143, 66]).

ż

Rd
pSfq2w À

ż

Rd
|f |2Mw.

The reverse estimate is slightly less standard and corresponds to a d-dimensional

version of a result in [10].

Proposition 1.4.2 ([10]).

ż

Rd
|f |2w À

ż

Rd
pSfq2M3w.

We also need to consider the continuous square function

sφpfqpxq “
´

ż 8

0

|f ˚ φtpxq|
2dt

t

¯1{2

,

4Littlewood–Paley theory also may be used to characterise other function spaces such as Besov spaces
or Triebel–Lizorkin spaces; see for instance [57].
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where φ is a smooth function such that suppppφq Ď tξ P Rd : |ξ| „ 1u. In order to obtain

a reverse estimate for sφ, one also needs to impose

ż 8

0

pφptξq
dt

t
“ 1; ξ ‰ 0. (1.4.3)

The square function sφ satisfies the same estimates as S.

Proposition 1.4.3.

ż

Rd
sφpfqpxq

2wpxqdx À

ż

Rd
|fpxq|2Mwpxqdx (1.4.4)

and
ż

Rd
|fpxq|2wpxqdx À

ż

Rd
sφpfqpxq

2M3wpxqdx. (1.4.5)

There is an equivalence between the continuous and the discrete square functions given

by
ż 8

0

|f ˚ φtpyq|
2dt

t
“

ÿ

kPZ

ż 2k`1

2k
|f ˚ φtpyq|

2dt

t
„

ż 2

1

ÿ

kPZ

|f ˚ φθ2kpyq|
2dθ. (1.4.6)

The discrete square function

Sθpfq
2
pyq “

ÿ

kPZ

|f ˚ φθ2kpyq|
2

satisfies the same estimates as S uniformly in θ P r1, 2s via an elementary scaling argument.

The above equivalence between discrete and continuous square functions allows us to

deduce weighted L2 inequalities for sφ from those for S; see also [5] for a more direct

proof of the estimate (1.4.5).

Proof. By (1.4.6), Fubini’s theorem and Proposition 1.4.1 we have

ż

R
sφpfq

2
pxqwpxqdx À

ż 2

1

ż

R
Sθpfq

2
pxqwpxqdxdθ À

ż

R
|fpxq|2Mwpxqdx.
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Similarly, by Proposition 1.4.2, averaging over θ P r1, 2s and (1.4.6),

ż

R
|fpxq|2wpxqdx À

ż

R

ż 2

1

Sθpfq
2
pxqdθM3wpxqdx À

ż

R

ż 8

0

|f ˚ φtpxq|
2dt

t
M3wpxqdx.

1.5 Hörmander–Mikhlin multipliers

Littlewood–Paley theory has shown to be highly effective in the context of Fourier mul-

tiplier theorems. A classical example is that of Hörmander–Mikhlin multipliers.

Theorem 1.5.1. Let m : Rdzt0u Ñ C and denote by Tm the associated multiplier opera-

tor. Assume that either,

• Mikhlin formulation:

|Dγmpξq| À |ξ|´|γ|

for all γ P Nd with |γ| ď td
2
u` 1.

• Hörmander formulation (classical derivatives):

sup
rą0

r|γ|
´ 1

rd

ż

rď|ξ|ď2r

|Dγmpξq|2dξ
¯1{2

ă 8 (1.5.1)

for all γ P Nd with |γ| ď td
2
u` 1.

• Hörmander formulation (Sobolev spaces):

sup
rą0

}mpr¨qΨ}Hσ ă 8

for some σ ą d{2, where Ψ is a suitable smooth function with compact support away
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from the origin and Hσ denotes the inhomogeneous Sobolev space. Equivalently

sup
rą0

rθr´d{2}mΨpr´1
¨q} 9Hθ ă 8 (1.5.2)

for all 0 ď θ ď σ and some σ ą d{2, where 9Hθ denotes the homogeneous Sobolev

space.

Then m is an LppRdq multiplier for 1 ă p ă 8, that is }Tmf}p À }f}p.

This may be proved with the classical discrete square functions from the previous

section and using that m satisfies good decay estimates adapted to dyadic annuli. Perhaps

more enlightening for us is Stein’s approach [129] to prove the above theorem. This

approach appeared in Section 1.3 in the context of Calderón–Zygmund operators with

the pointwise estimate (1.3.1). On a more abstract level, given an operator U , it consists

in identifying auxiliary operators g1 and g2 for which we have the pointwise estimate

g1pUfqpxq À g2pfqpxq. (1.5.3)

Given such an estimate one may then deduce bounds on U from bounds on the operators

g1 and g2. More specifically, if one has

}f}X À }g1pfq}Y and }g2pfq}Y À }f}Z , (1.5.4)

for suitable normed spaces X, Y, Z, then the pointwise estimate (1.5.3) quickly reveals

that

}Uf}X À }g1pUfq}Y À }g2pfq}Y À }f}Z ; (1.5.5)

that is, U is bounded from Z to X.5

5Of course this requires that the norm }¨}Y is increasing in the sense that f1 À f2 ùñ }f1}Y À }f2}Y .

27



In the setting of Hörmander–Mikhlin multipliers, Stein established inequality (1.5.3)

with g1 and g2 being square functions of Littlewood–Paley type. The relevant square

functions here are

g1pfqpxq ” gpfqpxq :“

ˆ
ż 8

0

ˇ

ˇ

ˇ

Bu

Bt
px, tq

ˇ

ˇ

ˇ

2

tdt

˙1{2

where u : Rd ˆ R` Ñ R denotes the Poisson integral of the function f on Rd, and

g2pfqpxq ” g˚λpfqpxq :“

ˆ
ż

Rd`1

|∇upy, tq|2
´

1`
|x´ y|

t

¯´dλdydt

td´1

˙1{2

.

As these square functions satisfy the same bounds as sφ, that is,

}gpfq}p „ }f}p „ }g
˚
λpfq}p

for 2 ď p ă 8 and λ ą 1, the Hörmander–Mikhlin multiplier theorem follows from the

pointwise estimate (1.5.3) for U “ Tm. This is possible because the implicit constant in

such an estimate does not depend on any a priori bounds for Tm; this is in contrast to

(1.3.1), where the implicit constant depends on the unweighted bounds for T .

We should remark that with suitable weighted estimates for square functions closely

related to g and g˚λ, one may show that

ż

Rd
|Tmf |

2w À

ż

Rd
|f |2M5w (1.5.6)

for any weight w. We note that this weighted estimate is stronger than the Hörmander–

Mikhlin multiplier theorem, as we may deduce Lp bounds for Tm from those for M5 via

the general mechanism (1.1.4).
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Chapter 2

Oscillatory Fourier Multipliers

In this chapter we obtain pointwise and weighted control for broad classes of highly

oscillatory Fourier multipliers on Rd, which satisfy regularity hypotheses adapted to fine

(subdyadic) scales. We introduce novel variants of the classical Littlewood–Paley–Stein

g-functions adapted to those fine scales, that allow us to obtain pointwise estimates of the

type (1.5.3). This approach is very much in the spirit to that of Stein’s for Hörmander–

Mikhlin multipliers presented in Section 1.5.

As a consequence, we obtain weighted L2 inequalities that allow us to control such

multipliers by positive geometrically-defined maximal functions, which involve fractional

averages over certain approach regions. Our framework applies to solution operators for

dispersive PDE, such as the time-dependent free Schrödinger equation, and other highly

oscillatory convolution operators that fall well beyond the scope of the Calderón–Zygmund

theory.

The content of this chapter is joint work with J. Bennett, and may be found in [5]. It

builds on previous results of Bennett, Carbery, Soria and Vargas [8], Bennett and Harrison

[10] and Bennett [7].
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2.1 Classes of multipliers

We begin by describing the weaker Mikhlin-type formulation of our classes of multipliers.

Given α, β P R, consider the class of multipliers m on Rd, with support in the set tξ P

Rd : |ξ|α ě 1u, satisfying the Miyachi condition

|Dγmpξq| À |ξ|´β`|γ|pα´1q (2.1.1)

for every multi-index γ P Nd with |γ| ď td
2
u` 1. This class is modelled by the examples

rmα,βpξq :“
ei|ξ|

α

|ξ|β
,

first studied by Hirschman [68], and later by Wainger [141], Fefferman [49], Fefferman and

Stein [48], Miyachi [98, 99] and others. We note that these multipliers often correspond to

highly-oscillatory convolution kernels; see for example [121] or the forthcoming Corollary

2.6.1.

The support condition on m is desirable here, as to impose the same power-like be-

haviour (2.1.1) as |ξ| Ñ 0 and |ξ| Ñ 8 would be artificial, at least for α ‰ 0; for example

the specific multiplier rmα,β naturally satisfies (2.1.1) for |ξ|α ě 1, but |Dγmpξq| À |ξ|´β´|γ|

for |ξ|α ď 1. We postpone the discussion on multipliers defined on the whole of Rdzt0u

satisfying such “two-sided” conditions to Section 2.6.2. The presence of a distinguished

(unit) scale here is indeed quite conventional, as may be seen in the formulation of the

symbol classes Smρ,δ in Chapter 3. The advantage of imposing a support condition rather

than a global estimate of the form |Dγmpξq| À p1`|ξ|q´β`|γ|pα´1q is that it also has content

for α ă 0.

Our results will naturally apply to broader classes of multipliers than that given by the

pointwise condition (2.1.1). We may formulate a Hörmander-type version along the lines
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of (1.5.1). In order to describe this, we must first introduce the notion of an α-subdyadic

ball.

Definition 2.1.1. Let α P R. A euclidean ball B in Rd is α-subdyadic if distpB, 0qα ě 1

and

rpBq „ distpB, 0q1´α, (2.1.2)

where rpBq denotes the radius of B.

Observe that for α ‰ 0, typically rpBq ! distpB, 0q, making it natural to refer to such

balls as subdyadic (or α-subdyadic). In the case α “ 0 this corresponds effectively to a

decomposition into balls of radius r laying in dyadic annuli of width r; this is morally

equivalent to the classical decomposition in dyadic annuli.

The Hörmander-type formulation for our classes of multipliers is the following. We

consider multipliers m with support in tξ P Rd : |ξ|α ě 1u satisfying the weaker condition

sup
B

distpB, 0qβ`p1´αq|γ|
´ 1

|B|

ż

B

|Dγmpξq|2dξ
¯1{2

ă 8 (2.1.3)

for all γ P Nd with |γ| ď td
2
u` 1. Here the supremum is taken over all α-subdyadic balls.

As may be expected, the condition (2.1.3) may be weakened still further to

sup
B

distpB, 0qβ`p1´αqθ|B|´1{2
}mΨB} 9Hθ ă 8, (2.1.4)

for all 0 ď θ ď σ and some σ ą d{2, uniformly over normalised bump functions ΨB

adapted to an α-subdyadic ball B. By a normalised bump function we mean a smooth

function Ψ in Rd, supported in the unit ball, such that }DγΨ}8 ď 1 for all multi-indices

γ with |γ| ď N . Here N is a fixed large number, which for our purposes should be taken

to exceed d. Given a euclidean ball B in Rd, a normalised bump function adapted to B is

a function of the form ΨB :“ Ψ ˝A´1
B , where Ψ is a normalised bump function and AB is
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the affine transformation mapping the unit ball onto rB, where rB denotes the concentric

double of B.

The above condition is easily seen to reduce to the classical Hörmander condition

(1.5.2) when α “ β “ 0. Observe that (2.1.1) implies (2.1.3), which in turn implies the

more general condition (2.1.4) by the Leibniz formula.

The reason to introduce α-subdyadic balls - and therefore the Hörmander-type for-

mulation - is that the multipliers m satisfying the differential inequalities (2.1.1) are

effectively constant on such balls. A manifestation of that principle is that it is possible

to prove, with rather elementary techniques, the following weighted estimate for functions

whose Fourier transform is supported in an α-subdyadic ball B.

Proposition 2.1.2. Let α, β P R. Let m be a multiplier on Rd, supported in t|ξ|α ě 1u

and satisfying the condition (2.1.1). Let fB be a function such that pfB is supported in a

α-subdyadic ball B. Then

ż

Rd
|TmfB|

2w À distpB, 0q´2β

ż

Rd
|fB|

2Mw,

where the implicit constant is independent on the ball B.

Proof. Let ψB be a smooth function such that pψB equals 1 on B and vanishes outside

rB. Assume, as we may, that |Dj
pψBpξq| À rpBq´|j| for any multi-index j P Nd uniformly

in B. As pfB is supported in B, then fB “ fB ˚ ψB and TmfB “ fB ˚ TmψB. By the

Cauchy–Schwarz inequality and Fubini’s theorem,

ż

Rd
|TmfBpxq|

2wpxqdx “

ż

Rd

ˇ

ˇ

ˇ

ż

Rd
fBpyqTmψBpx´ yqdy

ˇ

ˇ

ˇ

2

wpxqdx

ď

ż

Rd

´

ż

Rd
|fBpyq|

2
|TmψBpx´ yq|dy

¯

}TmψB}1wpxqdx

“ }TmψB}1

ż

Rd
|fBpyq|

2
|TmψB| ˚ wpyqdy.
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Integrating by parts,

|TmψBpzq| “
ˇ

ˇ

ˇ

ż

rB

eiz¨ξmpξq pψBpξqdξ
ˇ

ˇ

ˇ

“
1

|z|2N

ˇ

ˇ

ˇ

ż

rB

p∆ξq
N
peiz¨ξqmpξq pψBpξqdξ

ˇ

ˇ

ˇ

“
1

|z|2N

ˇ

ˇ

ˇ

ż

rB

eiz¨ξp∆ξq
N
pm pψBqpξqdξ

ˇ

ˇ

ˇ

ď
1

|z|2N

ż

rB

|p∆ξq
N
pm pψBqpξq|dξ,

for all z ‰ 0. By Leibniz’s rule, the regularity condition (2.1.1) on the multiplier m, the

regularity of pψB, and that rpBq „ distpB, 0q1´α „ |ξ|1´α, a straightforward computation

shows that

|p∆ξq
N
pm pψBqpξq| À |ξ|

´β`2Npα´1q.

Thus,

|TmψBpzq| À
1

|z|2N

ż

rB

|ξ|´β`2Npα´1q
À

distpB, 0q´β`2Npα´1qrpBqd

|z|2N
“

distpB, 0q´βrpBqd

|rpBqz|2N

for all z ‰ 0. As TmψB is trivially bounded by

|TmψBpzq| ď

ż

rB

|mpξq pψBpξq|dξ À distpB, 0q´βrpBqd,

we have the bound

|TmψBpzq| À
distpB, 0q´βrpBqd

p1` |rpBqz|2qN

for all z P Rd. Choosing N ą d{2 so that the function on the right hand side is integrable,

we have that }TmψB}1 À distpB, 0q´β, and |TmψB| ˚w À distpB, 0q´βMw, from which we
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may conclude that

ż

Rd
|TmfBpxq|

2wpxqdx À distpB, 0q´2β

ż

Rd
|fBpyq|

2Mwpyqdy.

2.2 Pointwise and weighted control

In this section we present the two main results of this chapter, that is, the pointwise and

weighted estimates for the classes of multipliers described in the previous section.

To this end, we introduce the square function

gα,βpfqpxq :“
´

ż

Γαpxq

|f ˚ φtpyq|
2 dy

tp1´αqd`2β

dt

t

¯1{2

, (2.2.1)

where φtpxq :“ t´dφpx{tq for t ą 0, and

Γαpxq :“ tpy, tq P Rd
ˆ R` : tα ď 1, |y ´ x| ď t1´αu.

The function φ in the definition of gα,β is a smooth function satisfying the uniformity

condition (1.4.3) and such that pφ is supported in t1 ď |ξ| ď 2u for α ě 0, and in

t1{2 ď |ξ| ď 1u for α ă 0. The main purpose of this is to ensure that gα,βpfq ” 0

whenever pf is supported in tξ P Rd : |ξ|α ď 1u. This feature, which also relies on the

restriction tα ď 1 in the definition of Γαpxq, makes gα,β well-adapted to the support

hypothesis imposed on the multipliers that we consider. In particular, we have that

gα,βpTmfq ” gα,βpTm1fq whenever m and m1 agree on tξ P Rd : |ξ|α ě 1u.

The nature of the region Γαpxq varies depending on the value of α. For α ‰ 0 the

region Γαpxq is very different from the classical cone Γ0pxq. In particular, when α ą 1

it becomes an “inverted cone”, allowing tangential approach to infinite order, and when
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α ă 0, it is perhaps best interpreted as an “escape” region since t ě 1. These regions

appeared in [8, 10, 7] in the context of maximal operators and dimension d “ 1.

By close analogy with the classical g˚λ we also introduce the more robust square function

g˚α,β,λpfqpxq “
´

ż

tαď1

ż

Rd
|f ˚ φtpyq|

2
´

1`
|x´ y|

t1´α

¯´dλ dy

tp1´αqd`2β

dt

t

¯1{2

,

which is manifestly a pointwise majorant of gα,β. It should be observed that g0,0 and g˚0,0,λ

are minor variants of the classical g and g˚λ defined in Section 1.5, and very close to the

square function sφ. The square functions gα,β and g˚α,β,λ are efficient auxiliary operators

in order to obtain a pointwise estimate for the multipliers under study.

Theorem 2.2.1. Let α, β P R and m be a multiplier satisfying (2.1.4). Then

gα,βpTmfqpxq À g˚α,0,λpfqpxq, (2.2.2)

with λ “ 2σ{d ą 1.

We note that it is not necessary to impose a support condition on the multiplier m in

Theorem 2.2.1 thanks to the Fourier support property of the function φ in the definition

of gα,β.

Theorem 2.2.1, along with the general mechanism (1.5.5), allows one to find bounds

for the multipliers (2.1.4) provided suitable forward and reverse bounds for g˚α,0,λ and

gα,β (respectively) may be found. In particular, we may deduce the following weighted

estimate.

Corollary 2.2.2. Let α, β P R and m be a multiplier supported in tξ P Rd : |ξ|α ě 1u

satisfying (2.1.4). Then

ż

Rd
|Tmf |

2w À

ż

Rd
|f |2M2Mα,βM

4w (2.2.3)
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for any weight w, where

Mα,βwpxq “ sup
py,rqPΓαpxq

1

|Bpy, rq|1´2β{d

ż

Bpy,rq

w.

A one-dimensional version of the above weighted estimates in the context of multipliers

of bounded variation over certain subdyadic intervals was previously obtained by Bennett

in [7].

The maximal operator Mα,β may be interpreted as a fractional Hardy–Littlewood

maximal operator associated with the region Γα. Naturally, the case α “ 0 corresponds to

the classical (uncentered) fractional Hardy–Littlewood maximal function. For 0 ă α ă 1

the maximal functions Mα,β are closely-related to those considered by Nagel and Stein

[103] in a different context. In this case, the maximal functions still have a local behaviour.

For α ą 1, the maximal functions become highly non local, as the nature of the approach

region Γα allows the supremum to be attained in very small balls which are very far away

from the point x. This is consistent with its interpretations in the setting of dispersive

PDE that we shall discuss in Section 2.6.2.

In dimensions larger than one, the maximal operators Mα,β are relatives of the

Nikodym (or Kakeya) maximal operators. In particular, elementary considerations re-

veal the pointwise bound

Mα,βf Á Nα,βf, (2.2.4)

where

Nα,βfpxq :“ sup
0ărαď1

sup
TPTαprq
TQx

r2β

|T |

ż

T

|f |

and Tαprq denotes the collection of cylindrical tubes T of length r1´α and cross-sectional

radius r in Rd. The inequality (2.2.4) follows merely by covering each T P Tαprq by Opr´αq

balls of radius r, and noting their positions. We note that the weighted estimate (2.2.3)
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is very much in the spirit of Stein’s conjecture for the disc multiplier.

Corollary 2.2.2 provides us with an opportunity to comment on the optimality of The-

orem 2.2.1 and the maximal functions Mα,β. Combining it with the general mechanism

(1.1.4), one has that

}Tm}pÑq À }Mα,β}
1{2
pq{2q1Ñpp{2q1

for any 2 ď p ď q ă 8. This allows to deduce bounds for the multipliers Tm from those

for Mα,β. The optimal bounds on Mα,β (see Section 2.5) may be reconciled with the

optimal bounds on the specific multipliers mα,β (see Miyachi [98]) in this way.

2.3 Proof of the pointwise estimate

As it is described in Section 1.4, the classical square functions g0,0 and g˚0,0,λ are able to

detect “orthogonality across dyadic frequency scales”, but effectively no finer; for this

reason they are commonly referred to as dyadic. This is manifested in the “decouplings”

g0,0

´

ÿ

∆kf
¯2

pxq À
ÿ

g˚0,0,λp∆kfq
2
pxq À g˚0,0,λ

´

ÿ

∆kf
¯2

pxq, (2.3.1)

where ∆k is a frequency projection onto the dyadic annulus Ak “ tξ P Rd : |ξ| „ 2ku.

The square functions gα,β and g˚α,β,λ, which we refer to as subdyadic when α ‰ 0,

detect orthogonality across subdyadic scales, leading to a decoupling of the form (2.3.1)

associated with suitable families B of subdyadic balls. This will play a crucial role in our

proof of Theorem 2.2.1.

Let B be a family of α-subdyadic balls B, with bounded overlap, and supporting a

regular partition of unity t pψBuBPB on t|ξ|α ě 1u. By regular we mean that suppp pψBq Ď rB

and

|Dγ
pψBpξq| À rpBq´|γ| (2.3.2)

for all multi-indices γ with |γ| ď N , uniformly in B; for technical reasons that will become
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apparent later, we shall actually assume that suppp pψBq is contained in a concentric dilate

of B with some fixed dilation factor strictly less than 2. This partition of unity gives rise

to the reproducing formula

f “
ÿ

BPB
f ˚ ψB, (2.3.3)

whenever suppp pfq Ď tξ P Rd : |ξ|α ě 1u. For general α and B, elementary geometric

considerations reveal that each dyadic annulus Ak will be covered by Op2αdkq elements of

B of radius Op2p1´αqkq.

The following explicit “lattice-based” example of a cover B and partition t pψBu will be

of use to us later on.

Example 2.3.1. Let η P SpRdq have Fourier support in the annulus t|ξ| „ 1u and be

such that
ÿ

kPZ

pηkpξq “ 1

for all ξ ‰ 0, where pηkpξq :“ pηp2´kξq. Thus tpηku forms a partition of unity on Rdzt0u

with suppppηkq Ď t|ξ| „ 2ku for each k P Z. Next let ν P SpRdq have Fourier support in

t|ξ| À 1u be such that
ÿ

`PZd
pνpξ ´ `q “ 1

for all ξ P Rd. For each k P Z and ` P Zd let pνkpξq :“ pνp2´p1´αqkξq and pνk,`pξq :“

pνkpξ ´ 2p1´αqk`q. Thus for pζk,`pξq :“ pηkpξqpνk,`pξq we have

ÿ

`PZd

ÿ

kPZ

pζk,`pξq “ 1

on t|ξ|α ě 1u. Finally we choose, as we may, a family of balls B and functions tψBu so that

for each B P B there is pk, `q P ZˆZd for which ψB “ ζk,` and diampsuppppζk,`qq „ rpBq. By

construction t pψBu forms a partition of unity on t|ξ|α ě 1u of the type required, provided
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the implicit constants are chosen suitably. 1

The square functions gα,β and g˚α,β,λ decouple such subdyadic frequency decomposi-

tions.

Proposition 2.3.2. Let α, β P R. If λ ą 1, then

gα,β

´

ÿ

BPB
f ˚ ψB

¯

pxq2 À
ÿ

BPB
g˚α,β,λpf ˚ ψBqpxq

2. (2.3.4)

Also, if we assume that tψBuBPB is as in Example 2.3.1,

ÿ

BPB
g˚α,β,λpf ˚ ψBqpxq

2
À g˚α,β,λ

´

ÿ

BPB
f ˚ ψB

¯

pxq2. (2.3.5)

These decoupling and re-coupling inequalities, together with the reproducing formula

(2.3.3), immediately reduce the proof of Theorem 2.2.1 to functions localised at a sub-

dyadic frequency scale, that is to prove that

g˚α,β,λpTmpf ˚ ψBqqpxq À g˚α,0,λpf ˚ ψBqpxq (2.3.6)

holds uniformly in B P B for λ “ 2σ{d ą 1. Note that putting this altogether we may

quickly deduce Theorem 2.2.1.

Proof of Theorem 2.2.1. Let B and tψBuBPB be as in Example 2.3.1. As m is supported

in tξ P Rd : |ξ|α ě 1u, we may write Tmf “
ř

BPB Tmf ˚ ψB. By the decoupling estimate

(2.3.4),

gα,βpTmfqpxq
2
“ gα,β

´

ÿ

BPB
Tmf ˚ ψB

¯

pxq2 À
ÿ

BPB
g˚α,β,λpTmf ˚ ψBqpxq

2.

1This two-stage decomposition example is implicitly used in the theory of pseudodifferential operators,
as it may be extracted from Stein [129]. This will play an important role in Chapter 3.
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As Tmf ˚ ψB “ Tmpf ˚ ψBq, by the localised pointwise estimate (2.3.6),

gα,βpTmfqpxq
2
À

ÿ

BPB
g˚α,0,λpf ˚ ψBqpxq

2.

An application of the re-coupling inequality (2.3.5) allows to conclude

gα,βpTmfqpxq
2
À g˚α,0,λ

´

ÿ

BPB
f ˚ ψB

¯

pxq2 “ g˚α,0,λpfqpxq
2,

as required.

We devote the rest of this section to proving the inequalities (2.3.4), (2.3.5) and (2.3.6).

2.3.1 Decoupling subdyadic frequency decompositions

Before proceeding with the proof of the decoupling estimate (2.3.4), we need to introduce

the auxiliary square function

gα,β,Φpfqpxq “
´

ż

tαď1

ż

Rd
|f ˚ φtpyq|

2Φ
´x´ y

t1´α

¯ dy

tp1´αqd`2β

dt

t

¯1{2

,

where Φ is a Schwartz function such that Φpxq ě c for |x| ď 1 and suppppΦq Ď tξ P Rd :

|ξ| ď 1u.2 Note that, up to constant factors, gα,β,Φ is a pointwise majorant of gα,β, and is

pointwise majorised by g˚α,β,λ for any λ ą 0.

By (2.3.3) we have

gα,β,Φpfqpxq
2
“

ż

tαď1

ż

Rd

ˇ

ˇ

ˇ

ÿ

BPB
ψB ˚ φt ˚ fpyq

ˇ

ˇ

ˇ

2

Φ
´x´ y

t1´α

¯ dy

tp1´αqd`2β

dt

t
.

On multiplying out the square and using the Fourier transform, the inner (spatial) integral

2Observe that such a function Φ can be constructed by Φ “ |Θ|2 ě 0, with Θ P SpRdq satisfying

Θp0q ‰ 0 and suppppΘq compact.
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in this expression becomes

ż

Rd

ÿ

B,B1PB
pψB ˚ φt ˚ fqpyqpψB1 ˚ φt ˚ fqpyqΦ

´x´ y

t1´α

¯ dy

tp1´αqd`2β

“

ż

Rd

ÿ

B,B1PB

ż

Rd

ż

Rd
pψBpξq pψB1pηqpφptξqpφptηq pfpξq pfpηqe

iy¨pξ´ηqΦ
´x´ y

t1´α

¯

dξdη
dy

tp1´αqd`2β

“
ÿ

B,B1PB

ż

Rd

ż

Rd
pψBpξq pψB1pηqqpφptξqpφptηq pfpξq pfpηqe

ix¨pξ´ηq
pΦpt1´αpξ ´ ηqqdξdη

1

t2β
.

The support conditions on pφ, pψB and pΦ ensure that the summand above vanishes un-

less rpBq „ rpB1q „ tα´1 and distpB,B1q À tα´1. In particular, since B consists of

balls of bounded overlap, for each such B there are boundedly many B1 satisfying these

constraints. Consequently,

gα,β,Φpfqpxq
2

“

ż

tαď1

ż

Rd

ÿ

B,B1PB
rpBq„rpB1q„tα´1

distpB,B1qÀtα´1

pψB ˚ φt ˚ fqpyqpψB1 ˚ φt ˚ fqpyqΦ
´x´ y

t1´α

¯ dy

tp1´αqd`2β

dt

t
,

which by the Cauchy–Schwarz inequality yields

gα,β,Φpfqpxq
2
À

ż

tαď1

ż

Rd

ÿ

BPB
|ψB ˚ φt ˚ fpyq|

2Φ
´x´ y

t1´α

¯ dy

tp1´αqd`2β

dt

t

“
ÿ

BPB
gα,β,Φpf ˚ ψBqpxq

2,

and thus the decoupling estimate (2.3.4) is proved.

2.3.2 Re-coupling subdyadic frequency decompositions

Here we prove the re-coupling estimate (2.3.5) for the specific family of balls B and

partition t pψBu described in Example 2.3.1. While it may hold more generally, this lattice-

based choice allows us to appeal to the following elementary lemma, which may be viewed
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as a certain local version of Bessel’s inequality.

Lemma 2.3.3. Suppose that the functions νk,` P SpRdq, with k P Z and ` P Zd, are as in

Example 2.3.1. Then
ÿ

`PZd
|f ˚ νk,`pxq|

2
À |f |2 ˚ |νk|pxq (2.3.7)

uniformly in k.

Proof. By scaling it suffices to establish (2.3.7) with k “ 0. Noting that ν0 “ ν, observe

that f ˚ ν0,`pxq “ e2πi`¨x
phxp`q where hxpyq “ fpyqνpx ´ yq. Hence by Parseval’s identity,

the Poisson summation formula and the Cauchy–Schwarz inequality,

ÿ

`PZd
|f ˚ ν0,`pxq|

2
“

ż

r0,1sd

ˇ

ˇ

ˇ

ÿ

`PZd

phxp`qe
2πi`¨y

ˇ

ˇ

ˇ

2

dy “

ż

r0,1sd

ˇ

ˇ

ˇ

ÿ

mPZd
hxpy `mq

ˇ

ˇ

ˇ

2

dy

ď

ż

r0,1sd

ÿ

mPZd
|fpy `mq|2|νpx´ y ´mq|

ÿ

m1PZd
|νpx´ y ´m1

q|dy.

Since
ÿ

m1PZd
|νpx´m1

q| À 1

uniformly in x, we have

ÿ

`PZd
|f ˚ ν`pxq|

2
À

ÿ

mPZd

ż

r0,1sd
|fpy `mq|2|νpx´ y ´mq|dy “ |f |2 ˚ |ν|pxq,

as required.

We may now establish the re-coupling estimate (2.3.5) for the partition defined in

Example 2.3.1. For ease of notation we let Rλ
t pxq :“ tpα´1qdp1` tα´1|x|q´dλ. Observe first

that since ψB “ ζk,` “ ηk ˚ νk,`,

ÿ

BPB
g˚α,β,λpf ˚ ψBqpxq

2
“

ÿ

kPZ

ÿ

`PZd

ż

tαď1

ż

Rd
|f ˚ φt ˚ ηk ˚ νk,`pyq|

2Rλ
t px´ yq

dy

t2β
dt

t
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“

ż

tαď1

ż

Rd

ÿ

2k„t´1

ÿ

`PZd
|f ˚ φt ˚ ηk ˚ νk,`pyq|

2Rλ
t px´ yq

dy

t2β
dt

t
,

where we have also used the Fourier support properties of pφt to note that φt ˚ ηk ˚ νk,` ‰ 0

only if 2k „ t´1. Applying Lemma 2.3.3, followed by the Cauchy–Schwarz inequality, we

have

ÿ

`PZd
|f ˚ φt ˚ ηk ˚ νk,`pyq|

2
À |f ˚ φt ˚ ηk|

2
˚ |νk|pyq À |f ˚ φt|

2
˚ |ηk| ˚ |νk|pyq

uniformly in k, t and y, and hence by Fubini’s theorem,

ÿ

BPB
g˚α,β,λpf ˚ ψBqpxq

2
À

ż

tαď1

ż

Rd
|f ˚ φtpyq|

2
ÿ

2k„t´1

|ηk| ˚ |νk| ˚R
λ
t px´ yq

dy

t2β
dt

t
.

Lemma A.1 in Appendix A yields the elementary inequality

ÿ

2k„t´1

|ηk| ˚ |νk| ˚R
λ
t pxq À Rλ

t pxq,

which holds uniformly in x and t satisfying tα ď 1, completing the proof of (2.3.5).

2.3.3 The pointwise estimate at a subdyadic frequency scale

Now that Proposition 2.3.2 has been established, to conclude the proof of Theorem 2.2.1

is enough to show that

g˚α,β,2σ{dpTmpf ˚ ψBqqpxq À g˚α,0,2σ{dpf ˚ ψBqpxq

uniformly in B P B. The argument we present is similar to that given in [127] in the

classical setting. We begin by introducing an auxiliary function ϕB, chosen so that its

Fourier transform is supported in rB and is equal to 1 on supp pψB. For uniformity purposes
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we also assume, as we may, that

|Dj
pϕBpξq| À rpBq´|j| (2.3.8)

for all multi-indices j, uniformly inB P B. Observe that, up to a constant factor depending

only on the uniform implicit constants in (2.3.8), pϕB is a normalised bump function

adapted to B. We begin by writing

g˚α,β,2σ{dpTmpf ˚ ψBqqpxq
2

“

ż

tαď1

ż

Rd
|Tmpf ˚ ϕB ˚ ψBq ˚ φtpyq|

2R
2σ{d
t px´ yq

dy

t2β
dt

t

“

ż

tαď1

ż

Rd
|pTmϕBq ˚ f ˚ ψB ˚ φtpyq|

2R
2σ{d
t px´ yq

dy

t2β
dt

t

ď

ż

tαď1

ż

Rd

´

ż

Rd
|TmϕBpzq||f ˚ ψB ˚ φtpy ´ zq|dz

¯2

R
2σ{d
t px´ yq

dy

t2β
dt

t
.

For each t, we split the range of integration of the innermost integral in two parts, |z| ď

t1´α and |z| ě t1´α. For the term corresponding to |z| ď t1´α, we use the Cauchy–Schwarz

inequality, Plancherel’s theorem, and the hypothesis (2.1.4) with σ “ 0 to obtain

´

ż

|z|ďt1´α
|TmϕBpzq||f ˚ ψB ˚ φtpy ´ zq|dz

¯2

À t2βtpα´1qd

ż

|z|ďt1´α
|f ˚ ψB ˚ φtpy ´ zq|

2dz

À t2β
ż

Rd
R

2σ{d
t pzq|f ˚ ψB ˚ φtpy ´ zq|

2dz;

observe that the support hypothesis on pφ and pψB ensure rpBq „ tα´1. Similarly, in

|z| ě t1´α,

´

ż

|z|ět1´α
|TmϕBpzq||f ˚ ψB ˚ φtpy ´ zq|dz

¯2

ď

´

ż

Rd
|TmϕBpzq|

2
|z|2σdz

¯´

ż

|z|ět1´α

1

|z|2σ
|f ˚ ψB ˚ φtpy ´ zq|

2dz
¯
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À t2βtpα´1qdt2p1´αqσ
ż

|z|ět1´α

1

pt1´α ` |z|q2σ
|f ˚ ψB ˚ φtpy ´ zq|

2dz

À t2βtpα´1qd

ż

Rd
p1` tα´1

|z|q´2σ
|f ˚ ψB ˚ φtpy ´ zq|

2dz.

Putting together the above estimates we obtain

g˚α,β,2σ{dpTmpf ˚ ψBqqpxq
2

À

ż

tαď1

ż

Rd

´

ż

Rd
R

2σ{d
t pzq|f ˚ ψB ˚ φtpy ´ zq|

2dz
¯

R
2σ{d
t px´ yqdy

dt

t

“

ż

tαď1

ż

Rd
|f ˚ ψB ˚ φtpyq|

2R
2σ{d
t ˚R

2σ{d
t px´ yqdy

dt

t

À g˚α,0,2σ{dpf ˚ ψBqpxq
2,

where the last inequality follows since σ ą d{2 and Rλ
t ˚ R

λ
t pxq À Rλ

t pxq for λ ą 1; see

Appendix A. This concludes the proof of Theorem 2.2.1.

2.4 Proof of the weighted estimate

The proof of the weighted estimate (2.2.3) follows from the pointwise estimate via the

mechanism described in (1.5.5), provided we establish weighted estimates for the square

functions gα,β and g˚α,0,λ.

The reverse weighted bound for gα,β is the most interesting one since it involves the

maximal function Mα,β.

Theorem 2.4.1. Let α, β P R, and f be a function such that suppp pfq Ď tξ P Rd : |ξ|α ě

1u. Then
ż

Rd
|f |2w À

ż

Rd
gα,βpfq

2Mα,βM
4w.

In order to prove Theorem 2.4.1, we make use of the following elementary lemma.
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Lemma 2.4.2.

ż

Rd
fpxqhpxqdx À Rd

ż

Rd

ż

|y´x|ď 1
R

fpyqdy sup
z:|z´x|ď 1

R

hpzq dx (2.4.1)

uniformly in R ą 0 and nonnegative functions f, h on Rd.

Proof. To simplify notation, we prove the one-dimensional case of (2.4.1); the d-dimensional

case follows by applying the one-dimensional in each variable. Observe that we may de-

compose the integral as

ż

R
fpxqhpxqdx “

ÿ

kPZ

ż 1{R

´1{R

f
´

x` u`
2k

R

¯

h
´

x` u`
2k

R

¯

dx

“
ÿ

kPZ

ż

|y´u´ 2k
R
|ď 1

R

fpyqhpyqdy

ď
ÿ

kPZ

ż

|y´u´ 2k
R
|ď 1

R

fpyqdy sup
z:|z´u´ 2k

R
|ď 1

R

hpzq

for any |u| ď 1
R

. Averaging over u,

ż

R
fpxqhpxqdx ď

ÿ

kPZ

2R

ż 1{R

´1{R

ż

|y´u´ 2k
R
|ď 1

R

fpyqdy sup
z:|z´u´ 2k

R
|ď 1

R

hpzq du

“ 2R
ÿ

kPZ

ż 1{R`2k{R

´1{R`2k{R

ż

|y´x|ď 1
R

fpyqdy sup
z:|z´x|ď 1

R

hpzq dx

“ 2R

ż

R

ż

|y´x|ď 1
R

fpyqdy sup
z:|z´x|ď 1

R

hpzq dx,

as required.

Proof of Theorem 2.4.1. We begin by using classical Littlewood–Paley theory in the form

of (1.4.5) to write

ż

Rd
|fpxq|2wpxqdx À

ż 8

0

ż

Rd
|f ˚ φtpyq|

2M3wpyqdy
dt

t
.
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The support conditions on pφ and pf reduce the range for the t-integration to those t

such that 0 ă tα ď 1. Choosing ϕ P S such that pϕ “ 1 on the support of pφ and

suppppϕq Ď tξ P Rd : 1
4
ď |ξ| ď 4u allows us to write f ˚ φtpyq “ f ˚ φt ˚ ϕtpyq. Combining

this with applications of the Cauchy–Schwarz inequality and Fubini’s theorem gives

ż

Rd
|fpxq|2wpxqdx À

ż

tαď1

ż

Rd
|f ˚ φtpyq|

2
p|ϕt| ˚M

3wqpyqdy
dt

t

À

ż

tαď1

ż

Rd
|f ˚ φtpyq|

2A˚tM
3wpyqdy

dt

t
,

where A˚twpxq :“ suprětArwpxq and

Atwpxq :“
1

|Bpx, tq|

ż

Bpx,tq

w.

Observe that A˚tw À AtA
˚
tw ď AtMw, so applying Lemma 2.4.2 at scale R “ tα´1 yields

ż

Rd
|fpxq|2wpxqdx

À

ż

tαď1

ż

Rd

ż

|y´x|ďt1´α
|f ˚ φtpyq|

2 dy

tp1´αqd`2β
sup

z:|z´x|ďt1´α
t2βAtM

4wpzq dx
dt

t

ď

ż

Rd

ż

tαď1

ż

|y´x|ďt1´α
|f ˚ φtpyq|

2 dy

tp1´αqd`2β

dt

t
Mα,βM

4wpxqdx,

where the last inequality follows by taking the supremum in t, since

sup
tαď1

sup
z:|z´x|ďt1´α

t2βAtM
4wpzq “Mα,βM

4wpxq,

by the definition of Mα,β.

The forward estimate for g˚α,0,λ is more classical in nature than its reverse counterpart

above, and it is a simple consequence of Section 1.4. We also refer to [127] for an analogous

result for g˚λ.
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Theorem 2.4.3. Let α P R and λ ą 1. Then

ż

Rd
g˚α,0,λpfq

2w À

ż

Rd
|f |2M2w.

Proof. By Fubini’s theorem,

ż

Rd
g˚α,0,λpfqpxq

2wpxqdx “

ż

Rd

ż

tαď1

|f ˚ φtpyq|
2Rλ

t ˚ wpyqdy
dt

t
.

Since

sup
t
Rλ
t ˚ w ÀMw

for λ ą 1, we have

ż

Rd
g˚α,0,λpfqpxq

2wpxqdx À

ż

Rd

ż 8

0

|f ˚ φtpyq|
2dt

t
Mwpyqdy,

which by an application of classical Littlewood–Paley theory in the form of (1.4.4) results

in

ż

Rd
g˚α,0,λpfqpxq

2wpxqdx À

ż

Rd
|fpyq|2M2wpyqdy,

as required.

As may be expected, it is possible to obtain similar weighted L2 estimates for g˚α,β,λ

for other values of β by minor modifications of the above argument.

Corollary 2.2.2 trivially follows now from applying Theorems 2.2.1, 2.4.1 and 2.4.3.

Proof of Corollary 2.2.2. Applying Theorem 2.4.1 to Tmf , which trivially satisfies that

yTmf is supported in tξ P Rd : |ξ|α ě 1u, the pointwise estimate (2.2.2) and Theorem 2.4.3
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we have that

ż

Rd
|Tmf |

2w À

ż

Rd
gα,βpTmfq

2Mα,βM
4w

À

ż

Rd
g˚α,0,λpfq

2Mα,βM
4w

À

ż

Rd
|f |2M2Mα,βM

4w,

as required.

2.5 LppRdq ´ LqpRdq boundedness results

In this section we establish the relevant Lebesgue space bounds satisfied by the operators

Mα,β and how to use the weighted inequalities (2.2.3) and Theorem 2.4.1 to obtain bounds

for Tm and gα,β respectively. We have the following bounds for the maximal operator

Mα,β.

Theorem 2.5.1. Let 1 ă p ď q ď 8 and α, β P R. If α ą 0 and

β ě
αd

2q
`
d

2

´1

p
´

1

q

¯

,

or α “ 0 and

β “
d

2

´1

p
´

1

q

¯

,

or α ă 0 and

β ď
αd

2q
`
d

2

´1

p
´

1

q

¯

,

then Mα,β is bounded from LppRdq to LqpRdq.

This theorem is a straightforward adaptation of the one-dimensional case in [7]; the

proof is included at the end of this section.
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As described at the end of Section 2.2, the mechanism (1.1.4) allows us to deduce

bounds for Tm from those for Mα,β via the weighted estimates (2.2.3), as

}Tm}pÑq À }Mα,β}
1{2
pq{2q1Ñpp{2q1 .

Similarly, one may obtain reverse bounds for g˚α,β,λ via Theorem 2.4.1.

Corollary 2.5.2. Let α, β P R and 2 ď p ď q ă 8. If α ą 0 and

β

d
ě α

´1

2
´

1

p

¯

`
1

p
´

1

q
,

or α “ 0 and

β

d
“

1

p
´

1

q
,

or α ă 0 and

β

d
ď α

´1

2
´

1

p

¯

`
1

p
´

1

q
,

and m is a Fourier multiplier satisfying (2.1.4), then

}Tmf}q À }f}p.

Also, if f P LqpRdq is such that suppp pfq Ď tξ P Rd : |ξ|α ě 1u,

}f}q À }gα,βpfq}p.

Duality allows one to obtain bounds on the multipliers for 1 ă p ď q ď 2. Such

bounds recover a number of well-known multiplier theorems since our class (2.1.4) natu-

rally contains those considered by Miyachi [99] – in addition to the classical Hörmander–

Mikhlin multipliers and fractional integrals. In particular, as the model multipliers
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|ξ|´βei|ξ|
α
χt|ξ|αě1u are bounded on LppRdq if and only if |1{2 ´ 1{p| ď β{pαdq, the maxi-

mal operators Mα,β in (2.2.3) are optimal, in the sense that they cannot be replaced by

variants satisfying additional Lebesgue space bounds.

We devote the end of this section to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. We only concern ourselves with the case α ‰ 0; the case α “ 0

corresponds to the classical fractional Hardy–Littlewood maximal function. Observe that

for α ą 0, the possible radii r in the approach region Γαpxq satisfy 0 ă r ď 1 and therefore

Mα,β1w ďMα,βw

for 0 ă β ă β1. A similar analysis for the case α ă 0 reveals that it is enough to show

that Mα,β is bounded from LppRdq to LqpRdq, where 1 ă p ď q ď 8, on the line

β “
αd

2q
`
d

2

´1

p
´

1

q

¯

. (2.5.1)

We regularise the average in the definition of Mα,β and we prove the estimates for the

pointwise larger maximal operator (in the case of weights)

ĂMα,βwpxq “ sup
py,rqPΓαpxq

r2β
|Pr ˚ wpyq|,

where P is a nonnegative compactly supported bump function which is positive on Bp0, 1q

and Prpxq :“ r´dP px{rq. Trivially,

|ĂMα,0wpxq| “ sup
py,rqPΓαpxq

|Pr ˚ wpyq| ď }P }1}w}8

and

|ĂMα, d
2
wpxq| “ sup

py,rqPΓαpxq

rd|Pr ˚ wpyq| ď }P }8}w}1,
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for every x P Rd. Analytic interpolation between these two estimates gives ĂMα, d
2p

:

LppRdq Ñ L8pRdq for 1 ď p ď 8. A further application of analytic interpolation shows

that boundedness for ĂMα,β from LppRdq to LqpRdq holds for α, β as in (2.5.1) provided

ĂMα,αd
2

: H1pRdq Ñ L1pRdq. To this end, it suffices to see

}ĂMα,αd
2
a}1 À 1

uniformly in H1pRdq-atoms a; recall that an atom a is a function defined on Rd supported

in a cube Q such that
ş

Q
a “ 0 and }a}8 ď

1
|Q|

. By translation-invariance, we may assume

that the cube Q is centered at the origin. We have the following standard bounds

|Pr ˚ apyq| À

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1{|Q| if r ă |Q|1{d, |y| À |Q|1{d

|Q|1{d{rd`1 if r ą |Q|1{d, |y| À r

0 otherwise.

This estimate is a consequence of the following elementary considerations. Of course

|Pr ˚ apyq| “
ˇ

ˇ

ˇ

ż

Q

Prpy ´ zqapzqdz
ˇ

ˇ

ˇ
.

Observe that Prpy ´ ¨q is supported in a ball of center y and radius r. If r is small,

say r ă |Q|1{d, and |y| Á |Q|1{d, we have that Bpy, rq X Q “ H and then Pr ˚ apyq “ 0.

Analogously, if r ą |Q|1{d and |y| Á r, we have that Bpy, rqXQ “ H and then Pr˚apyq “ 0.

For the remaining cases, one may trivially apply L1´L8 duality to obtain the bound

ˇ

ˇ

ˇ

ż

Q

Prpy ´ zqapzqdz
ˇ

ˇ

ˇ
ď

ż

Q

|apzq||Prpy ´ zq|dz ď
1

|Q|
}P }1 À

1

|Q|
.

This is a good estimate for small r. However, one may do better for large r, as Pr is

52



essentially constant for large r, which would imply that Pr ˚ a tends to
ş

a “ 0 as r Ñ 8.

To exploit this, we use the mean value zero of a to obtain the improved bound

|Pr ˚ apyq| “
ˇ

ˇ

ˇ

ż

Q

pPrpy ´ zq ´ Prpyqqapzqdz
ˇ

ˇ

ˇ
ď

ż

Q

|∇Prpξzq||z||apzq|dz À
|Q|1{d

rd`1
.

This concludes the discussion on the bounds for |Pr ˚ a|.

In order to obtain the required bound }ĂMα,αd
2
a}1 À 1, we need to argue differently

depending on the value of α, as the nature of the region Γα changes dramatically for

α ă 0, 0 ă α ď 1 and α ą 1.

Case α ą 1: we have 0 ă r ă 1, so we divide our analysis in |Q|1{d ą 1 and |Q|1{d ă 1.

Assume |Q|1{d ą 1. As r ă 1, we are in the situation |Q|1{d ą r, so

|Pr ˚ apyq| À

$

’

’

&

’

’

%

1{|Q| if |y| À |Q|1{d

0 otherwise

If |x| À |Q|1{d, for any py, rq P Γαpxq, we have |Pr ˚ apyq| À 1{|Q|, so

ĂMα,αd
2
apxq “ sup

py,rqPΓαpxq

rαd|Pr ˚ apyq| ď
1

|Q|
.

If |x| Á |Q|1{d, we would like to make rαd as big as possible with |y| À |Q|1{d, so the

supremum is attained at r „ |x|
1

1´α and then

ĂMα,αd
2
wpxq À

|x|
αd

1´α

|Q|
.

This leads to

}ĂMα,αd
2
a}1 ď

ż

|x|À|Q|1{d

1

|Q|
dx`

ż

|x|Á|Q|1{d

|x|
αd

1´α

|Q|
dx À 1` |Q|

α
1´α À 1.
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Now assume |Q|1{d ď 1. For any x there is always a small radius r such that r ă |Q|1{d

and py, rq P Γα with |y| ă |Q|1{d; recall that the case α ą 1 allows tangential approach to

infinite order. Hence

ĂMα,αd
2
apxq ď |Q|α

1

|Q|
“ |Q|´p1´αq.

The contribution to }ĂMα,αd
2
a}1 of those x such that |x| À |Q|p1´αq{d is 1. When |x| Á

|Q|p1´αqd one may obtain a better estimate, as to impose |y| À |Q|1{d one needs to take

r „ |x|
1

1´α . Then

ĂMα,αd
2
apxq À |x|

αd
1´α

1

|Q|
,

which integrates 1 over the region |x| Á |Q|p1´αq{d. This concludes the case α ą 1.

Case α ă 0: we have r ą 1. We split again our analysis in |Q|1{d ą 1 and |Q|1{d ă 1.

Assume |Q|1{d ă 1. As r ą 1, we are in the situation |Q|1{d ă r, so

|Pr ˚ apyq| À

$

’

’

&

’

’

%

|Q|1{d{rd`1 if |y| À r,

0 otherwise.

If |x| À 1, p0, 1q P Γαpxq, so

ĂMα,αd
2
apxq À |Q|1{d À 1,

which integrates 1 in |x| À 1. If |x| Á 1, a similar reasoning to the one in the previous

case tells us that the smallest r such that |y| À r and py, rq P Γα is given by r „ |x|
1

1´α .

Thus,

ĂMα,αd
2
apxq À |x|´d|x|

´1
1´α |Q|1{d,

which integrates 1 in |x| Á 1. Then }ĂMα,αd
2
a}1 À 1.

Now assume |Q|1{d ą 1. Taking r „ |x|
1

1´α , there is a y such that py, rq P Γαpxq with
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|y| À r. If |x| ď |Q|p1´αq{d, then r ă |Q|1{d and

ĂMα,αd
2
apxq À |x|

αd
1´α

1

|Q|
,

which integrates 1 in |x| ď |Q|1{d. For the case |x| ě |Q|p1´αq{d, we have r ą |Q|1{d, so

ĂMα,αd
2
apxq À |x|

αd
1´α |Q|1{d|x|

´d
1´α |x|

´1
1´α “ |Q|1{d|x|´d|x|

´1
1´α ,

which integrates 1 in the region |x| ą |Q|1{d. Again, }ĂMα,αd
2
a}1 À 1 and this completes

the case α ă 0.

Case α “ 1: the approach region is

Γ1pxq “ tpy, rq : 0 ă r ă 1, |y ´ x| ă 1u.

We make again the distinction between |Q|1{d ą 1 and |Q|1{d ă 1. If |Q|1{d ą 1,

|Pr ˚ apyq| À

$

’

’

&

’

’

%

1{|Q| if |y| À |Q|1{d,

0 otherwise.

Then, for |x| ě |Q|1{d, ĂMα,αd
2
apxq “ 0. For |x| ď |Q|1{d, the supremum will be attained

for r “ 1, so

ĂMα,αd
2
apxq À

1

|Q|
,

which integrates 1 in the region |x| ď |Q|1{d.

Assume |Q|1{d ď 1. If |x| Á 1, there is no y such that py, rq P Γ1pxq with |y| ă r

or |y| ă |Q|1{d. Then ĂMα,αd
2
apxq “ 0. For |x| À 1, either there is py, rq P Γ1pxq with

r ă |Q|1{d or with r ą |Q|1{d or both. In any case the supremum is always controlled by
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1,

ĂMα,αd
2
apxq À 1,

which integrates 1 in |x| À 1. Thus, }ĂMα,αd
2
a}1 À 1 for the case α “ 1.

Case 0 ă α ă 1: we have 0 ă r ă 1. If |Q|1{d ě 1,

|Pr ˚ apyq| À

$

’

’

&

’

’

%

1{|Q| if |y| À |Q|1{d,

0 otherwise.

Reasoning as before, if |x| Á |Q|1{d, we have ĂMα,αd
2
apxq “ 0. For |x| À |Q|1{d we have

|y| À |Q|1{d with py, rq P Γαpxq, and taking r ă 1,

ĂMα,αd
2
apxq À

1

|Q|
,

which integrates 1 over that region on x.

Finally, if |Q|1{d À 1, we have again ĂMα,αd
2
apxq “ 0 for |x| Á 1. If |x| À 1, we take

py, rq P Γαpxq with r „ |x|1{p1´αq in order to satisfy |y| À r. If r „ |x|1{p1´αq Á |Q|1{d,

ĂMα,αd
2
apxq À |x|

αd
1´α |Q|1{d|x|

´d´1
1´α “ |x|´d|x|

´1
1´α |Q|1{d,

which integrates 1 in the region |Q|p1´αq{d À |x| À 1. In the case r „ |x|1{p1´αq À |Q|1{d,

ĂMα,αd
2
apxq À

|x|
αd
p1´αq

|Q|
,

which integrates 1 in the range |x| À |Q|p1´αq{d. Then }ĂMα,αd
2
a}1 À 1, and this finishes

the case 0 ă α ă 1 and the proof of the theorem.
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2.6 Applications to oscillatory kernels and dispersive

PDE

We now discuss some applications of Theorem 2.2.1 and Corollary 2.2.2 in the setting of

oscillatory kernels and dispersive partial differential equations.

2.6.1 Oscillatory kernels

An observation of Sjölin [121] using the method of stationary phase allows one to obtain

similar pointwise and general-weighted estimates for classes of highly oscillatory convolu-

tion kernels. For example we have the following:

Corollary 2.6.1. For a ą 0, a ‰ 1 and b ě dp1´ a
2
q, let Ka,b : Rd Ñ C be given by

Ka,bpxq “
ei|x|

a

|x|b
p1´ ηpxqq,

where η P C8c pRdq is such that ηpxq “ 1 for all x belonging to a neighbourhood of the

origin. Then for any λ ą 0,

gα,βpKa,b ˚ fqpxq À g˚α,0,λpfqpxq (2.6.1)

and
ż

Rd
|Ka,b ˚ f |

2w À

ż

Rd
|f |2M2Mα,βM

4w, (2.6.2)

where α “ a
a´1

and β “ da{2´d`b
a´1

.

It is interesting to compare the oscillatory kernels in Corollary 2.6.1 with the kernel

associated to the disc multiplier

Kpxq :“ F´1mpxq “ c
e2πi|x| ` e´2πi|x| ` op1q

|x|
d`1

2

. (2.6.3)
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Perhaps remarkably, this kernel takes the form of the missing endpoint case a “ 1 in Corol-

lary 2.6.1, although it should be noted that the behaviour of these kernels is notoriously

discontinuous there.

Proof. In [121] Sjölin establishes that the multiplier pKa,b satisfies the Miyachi condition

(2.1.1), leading to the conclusion

gα,βpKa,b ˚ fqpxq À g˚α,0,λpfqpxq

for any λ ą 0, by a direct application of Theorem 2.2.1.

In order to prove (2.6.2), we must force the support condition on the multiplier pKa,b.

We thus choose a function ϕ P C8pRdq such that ϕpξq “ 0 when |ξ|α ď 1 and ϕpξq “ 1

when |ξ|α ě 2 and write pKa,b “ p1 ´ ϕq pKa,b ` ϕ pKa,b “ m0 `m8. The multiplier m8 is

supported in tξ P Rd : |ξ|α ě 1u and satisfies the Miyachi condition (2.1.1), so Corollary

2.2.2 immediately yields (2.6.2) for Tm8 . The inequality for the portion Tm0 follows from

a straightforward adaptation of the techniques used in the proof of Theorem 2.4.1. Since

K0 “ pm0 is a rapidly decreasing function, the Cauchy–Schwarz inequality and Fubini’s

theorem allow us to write

ż

Rd
|Tm0f |

2w À }K0}1

ż

Rd
|f |2|K0| ˚ w À

ż

Rd
|f |2A˚1w À

ż

Rd
|f |2M2Mα,βM

4w,

where the last inequality follows from the pointwise bound

A˚1w À A1A
˚
1w ÀMα,βA

˚
1w ÀM2Mα,βM

4w.
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2.6.2 Dispersive and wave-like equations

The specific multipliers mα,βpξq :“ p1 ` |ξ|2q´β{2ei|ξ|
α

yield weighted estimates for the

solution upx, sq “ eisp´∆qα{2fpxq of the dispersive or wave-like equation

$

’

’

&

’

’

%

iBsu` p´∆qα{2u “ 0

up¨, 0q “ f.

(2.6.4)

For example, we have the following immediate application.

Corollary 2.6.2. Let α P N. Then

ż

Rd
|eisp´∆qα{2f |2w À

ż

Rd
|pI ´ s2{α∆qβ{2f |2M2Ms

α,βM
4w, (2.6.5)

where

Ms
α,βwpxq :“ sup

py,rqPΓsαpxq

r2β

|Bpy, s1{αrq|

ż

Bpy,s1{αrq

w

and

Γsαpxq “ tpy, rq P Rd
ˆ R` : 0 ă r ď 1, |x´ y| ď s1{αr1´α

u.

Of course the case α “ 2 corresponds to the setting of the free Schrödinger equation.

It is interesting to interpret the above weighted estimates in this framework. As it is

mentioned at the beginning of this chapter, the maximal operatorsMs
α,β are highly non-

local for α ą 1, capturing the dispersive nature of the Schrödinger equation.

Corollary 2.6.2 follows from Theorem 2.2.2 via an elementary rescaling argument after

noting the scaling identity

eisp´∆qα{2fpxq “ Tmα,βppI ´∆qβ{2fsqpx{s
1{α
q,

where fspxq “ fps1{αxq. We remark that in order to apply Theorem 2.2.2 to the multiplier
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mα,β it is necessary to consider its behaviour near the origin separately, as in the proof of

Corollary 2.6.1.

One could also obtain weighted estimates for the solution upx, sq from the correspond-

ing estimates for the Fourier multipliers rmα,β “ |ξ|
´βei|ξ|

α
, which shall yield estimates in

the context of homogeneous Sobolev spaces. Observe that, for α P N, these multipliers

satisfy the estimates (2.1.1) in t|ξ|α ě 1u, but |Dγmpξq| À |ξ|´β´|γ| in t|ξ|α ď 1u. We

stablish a more general result for multipliers satisfying those differential conditions, that

is,

|Dγmpξq| À

$

’

’

&

’

’

%

|ξ|´β`|γ|pα´1q, if |ξ|α ě 1

|ξ|´β´|γ|, if |ξ|α ď 1,

(2.6.6)

for all γ P Nd such that |γ| ď td
2
u` 1.

Corollary 2.6.3. If m : Rdzt0u Ñ C satisfies (2.6.6) for all γ P Nd such that |γ| ď td
2
u`1,

then
ż

Rd
|Tmf |

2w À

ż

Rd
|f |2M2Mα,βM

4w, (2.6.7)

where

Mα,βwpxq “ sup
py,rqPΛαpxq

1

|Bpy, rq|1´2β{d

ż

Bpy,rq

w,

and

Λαpxq :“ tpy, rq P Rd
ˆ R` : |x´ y| ď r1´α

u.

Observe that when β ă d{2, Mα,β satisfies the trivial Ld{p2βq Ñ L8 bound by a simple

application of Hölder’s inequality. This observation and Corollary 2.6.3 quickly lead, via

the duality argument (1.1.4), to the sharp Lp Ñ Lq bounds for the class of multipliers

satisfying (2.6.6); see Miyachi [98]. Hence for α ‰ 0, Mα,β necessarily fails to satisfy

any other Lp Ñ Lq inequalities. This is in contrast with the maximal functions Mα,β

associated with the regions Γαpxq studied in the previous sections, where Lp Ñ Lq bounds
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exist with q ă 8 in views of Theorem 2.5.1.

Proof of Corollary 2.6.3. Let η P C8pRdq be such that ηpξq “ 0 when |ξ|α ď 1 and

ηpξq “ 1 when |ξ|α ě 2, and write m “ m1 `m2, with m1 “ mη and m2 “ mp1´ ηq. As

m1 is supported in t|ξ|α ě 1u and satisfies the Miyachi condition (2.1.1), Theorem 2.2.2

gives
ż

Rd
|Tm1f |

2w À

ż

Rd
|f |2M2Mα,βM

4w.

Similarly, the multiplier m2 satisfies the condition (2.1.1) for α “ 0, so another application

of Theorem 2.2.2 gives

ż

Rd
|Tm2f |

2w À

ż

Rd
|f |2M2M0,βM

4w.

As the maximal operatorM0,β is pointwise comparable to the classical fractional Hardy–

Littlewood maximal function of order 2β,

M2βwpxq “ sup
rą0

1

rd´2β

ż

Bpx,rq

w,

one trivially has M0,β À Mα,β for any α P R. This, together with the obvious Mα,β ď

Mα,β, gives (2.6.7) for m1 and m2, from which the result follows.

Of course a straightforward scaling argument leads to the following corollary.

Corollary 2.6.4. Let α P N. Then

ż

Rd
|eisp´∆qα{2f |2w À

ż

Rd
|p´∆qβ{2f |2M2Ms

α,βM
4w, (2.6.8)

where

Ms
α,βwpxq :“ sup

py,rqPΛsαpxq

1

|Bpy, rq|1´2β{d

ż

Bpy,rq

w,
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and

Λs
αpxq :“ tpy, rq P Rd

ˆ R` : |x´ y| ď sr1´α
u.

As with the classical fractional maximal operators, Mα,β behaves well on the power

weights wγpxq :“ |x|´γ, with 0 ď γ ă d. Indeed one may verify that Mα,γ{2wγpxq À 1

uniformly in x P Rd and α P R, and so Corollary 2.6.4 at s “ 1 gives

ż

Rd
|eip´∆qα{2fpxq|2|x|´γdx À

ż

Rd
|p´∆qγ{4fpxq|2dx. (2.6.9)

This special case is somewhat degenerate as the presence of the parameter α is not de-

tected in the estimate. Observe that, alternatively, (2.6.9) may be proved directly by an

application of the classical Hardy inequality

ż

Rd
|hpxq|2|x|´γdx À

ż

Rd
|p´∆qγ{4hpxq|2dx,

followed by the energy conservation identity }eip´∆qα{2f}2 “ }f}2.

It should be observed that Corollary 2.6.4, combined with the trivial uniform Ld{p2βq Ñ

L8 bound on Ms
α,β allow to recover the elementary sharp homogeneous Strichartz inequal-

ity

}eisp´∆qα{2f}L8s Lqx À }f} 9Hβ ; β “ d

ˆ

1

2
´

1

q

˙

, 2 ď q ă 8.

A classical prove for the above estimate follows by Sobolev embedding and energy con-

servation.

Finally, let us interpret Inequality (2.6.8) as a “local energy estimate” that also cap-

tures dispersive effects of the propagator eisp´∆qα{2 via the s-evolution of the region Λs
αpxq.

Indeed the sets Λs
αpxq are increasing in s, so that, in particular

sup
0ăsď1

ż

Rd
|eisp´∆qα{2f |2w À

ż

Rd
|p´∆qβ{2f |2M2Mα,βM

4w, (2.6.10)
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where Mα,β :“ M1
α,β. It is interesting to compare this inequality with the weighted

maximal estimates in [1] (or [94]) at the interface with geometric measure theory.

It is a very interesting question to determine if, for β beyond some critical threshold,

(2.6.10) may be strengthened to

ż

Rd
sup

0ăsď1
|eisp´∆qα{2f |2w À

ż

Rd
|p´∆qβ{2f |2Mα,βw, (2.6.11)

modulo suitable factors of M or any other suitable maximal operatorM; see for example

Rogers and Seeger [116] for related estimates in an unweighted setting. This question

seems to be a lot harder due to the nature of the maximal Schrödinger operator, defined

by

u˚pxq :“ sup
0ăsď1

|eis∆fpxq|.

Bounds for this operator are often obtained via Fourier restriction theory; note that

upx, sq “ p pfdµqppx, sq, where dµ denotes the parametrised Lebesgue measure on the

paraboloid. This question served as a motivation to study certain easier maximal-multiplier

operators, which led to the work on the Carleson operator in Chapter 4. Also, we make

some remarks on Fourier restriction theory in Chapter 5, in views of attacking the question

posed in (2.6.11) in the near future.
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Chapter 3

Pseudodifferential operators

associated to Hörmander symbol

classes

In this chapter we establish general weighted L2 inequalities for pseudodifferential oper-

ators associated to the Hörmander symbol classes Smρ,δ. Via such inequalities, we are able

to control pseudodifferential operators by maximal functions of the typeMα,β, previously

introduced in Chapter 2. The control by these maximal functions is optimal, as we may

recover the sharp Lp ´ Lq bounds for the symbols classes Smρ,δ. Our results apply to the

full range of admissible parameters for Smρ,δ, that is, m P R, 0 ď δ ď ρ ď 1, δ ă 1.

In contrast with the Fourier multiplier case, the weighted inequalities here do not

follow from a pointwise estimate. The non-translation-invariant nature of the pseudodif-

ferential operators fails to make the g-function approach effective in this case. However,

the techniques used still capture the ideas developed in Chapter 2.

The content of this chapter is mostly based on the submitted work [3].
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3.1 Weighted control for Hörmander symbol classes

The study of pseudodifferential operators was initiated by Kohn and Nirenberg [77] and

Hörmander [69], and it has played a central role in the theory of partial differential

equations. Given a smooth function a P C8pRd ˆRdq, we define the associated pseudod-

ifferential operator Ta by

Tafpxq “

ż

Rd
eix¨ξapx, ξq pfpξqdξ,

where f P SpRdq. The smooth function a is typically referred to as the symbol. Throughout

this chapter, we shall assume that a belongs to the symbol classes Smρ,δ, introduced by

Hörmander in [69]. Given m P R and 0 ď δ, ρ ď 1, we say that a P Smρ,δ if it satisfies the

differential inequalities

|B
ν
xB

σ
ξ apx, ξq| À p1` |ξ|q

m´ρ|σ|`δ|ν| (3.1.1)

for all multi-indices ν, σ P Nd.

Of course if a symbol apx, ξq is x-independent, Ta is a multiplier operator. Some of

the multipliers studied in Chapter 2 may be naturally viewed as symbols. In particular,

for 0 ď α ď 1, if a multiplier m satisfies the differential inequalities (2.1.1) for any multi-

index γ P Nd, then m P S´β1´α,0. Obvious model examples are the classical multipliers

mα,βpξq “ ei|ξ|
α
p1` |ξ|2q´β{2p1´χpξqq, where χ denotes a smooth cut-off that equals 1 in

a neighbourhood of the origin.

In view of the results in Chapter 2 it is natural to ask whether it is possible to obtain

analogues for Theorem 2.2.1 and Corollary 2.2.2 in the context of the Hörmander symbol

classes Smρ,δ. Our main result is a positive answer in the case of the weighted inequalities.
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Theorem 3.1.1. Let a P Smρ,δ, where m P R, 0 ď δ ď ρ ď 1, δ ă 1. Then

ż

Rd
|Taf |

2w À

ż

Rd
|f |2M2Mρ,mM

5w (3.1.2)

for any weight w, where Mρ,mw :“M1´ρ,´mw.

We introduce the maximal functions Mρ,m for the ease of notation. Observe that this

theorem covers the full range of admissible values for m, ρ, δ except for an endpoint case

corresponding to the symbol classes Sm1,1. This is to be expected, as it is well known that

there are symbols in the class S0
1,1 that fail to be bounded on L2 (see [129]), and thus

(3.1.2) would fail on taking w ” 1.

As discussed at the beginning of this chapter, our approach to proving Theorem 3.1.1

differs from the one adopted for the multiplier case, although some of the main ideas

are still present. As is to be expected, the case of pseudodifferential operators adds

complexity, and more delicate arguments seem to be required. In particular, appropriate

applications of the symbolic calculus and the Cotlar–Stein almost orthogonality principle

play important roles. We refer to the end of Section 3.2 for a discussion of the approach

taken on the problem, together with an outline of our proof.

The maximal operators M “ M2Mρ,mM
5 are optimal in (3.1.2). The general mech-

anism (1.1.4) reveals that if a P Smρ,δ, where m P R, 0 ď δ ď ρ ď 1, δ ă 1, the inequality

(3.1.2) implies

}Ta}pÑq À }Mρ,m}
1{2
pq{2q1Ñpp{2q1 .

As in the Fourier multiplier case, this allows to transfer Lp´Lq bounds for Mρ,m to bounds

for Ta; in particular the bounds for the maximal operator Mρ,m obtained in Theorem 2.5.1

allow one to recover the optimal bounds for the symbol classes Smρ,δ.
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Corollary 3.1.2. Let m P R and 2 ď p ď q ă 8. Assume 0 ď δ ď ρ ă 1 and

´m

d
ě p1´ ρq

´1

2
´

1

p

¯

`
1

p
´

1

q
,

or ρ “ 1, δ ă 1, and

´m

d
“

1

p
´

1

q
.

If a P Smρ,δ, then

}Taf}q À }f}p.

As the class of pseudodifferential operators associated to symbols in a specific class

Smρ,δ is closed under adjoints, one also obtains by duality the corresponding Lebesgue space

bounds for Ta on the range 1 ă q ď p ď 2.

This corollary is sharp in view of the estimates satisfied by the classical symbol

aρ,mpξq “ ei|ξ|
1´ρ
p1` |ξ|2qm{2p1´ χpξqq, which fails to be bounded on LppRdq if |1

p
´ 1

2
| ą

m
dpρ´1q

. This recovers well known results on the Lp-boundedness of pseudodifferential op-

erators. Bounds for these operators have been extensively studied, see for instance the

work of Calderón and Vaillancourt [18] for the L2-boundedness of the classes S0
ρ,ρ, with

0 ď ρ ă 1, or Hörmander [69], Fefferman [52] or Stein [129] for Lp bounds for the symbol

classes Smρ,δ. Weighted Lp-boundedness in the context of the Ap Muckenhoupt classes has

also been studied, see for example the work of Miller [97], Chanillo and Torchinsky [28],

or the most recent work of Michalowski, Rule and Staubach [95, 96]. We note that our

Theorem 3.1.1 does not fall beyond the scope of the Ap theory.

We end this discussion with the interesting remark that the maximal operators Mρ,m

are significant improvements of some variants of the Hardy–Littlewood maximal function.

In particular, for any s ě 1, a crude application of Hölder’s inequality reveals that when
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2sm “ pρ´ 1qd,

M
ρ, pρ´1qd

2s
wpxq “ sup

py,rqPΓ1´ρpxq

1

rdr
pρ´1qd
s

ż

|y´z|ďr

w

ď sup
py,rqPΓ1´ρpxq

1

rdr
pρ´1qd
s

´

ż

|y´z|ďr

ws
¯1{s

rdp1´
1
s
q

“ sup
py,rqPΓ1´ρpxq

´ 1

rdρ

ż

|y´z|ďr

ws
¯1{s

ď sup
py,rqPΓ1´ρpxq

´ 1

rdρ

ż

|y´z|ďrρ
ws

¯1{s

ď pMwspxqq1{s.

At the level of Lebesgue space bounds, the maximal operators Mρ,m are bounded on Ls,

for s ą 1, when 2sm “ pρ´ 1qd, a property that the maximal functions pMwsq1{s do not

enjoy. This allows us to reconcile Theorem 3.1.1 with more classical results in the context

of Ap weights. For s “ 1, we obtain the following.

Corollary 3.1.3. Let a P S
´dp1´ρq{2
ρ,δ , where 0 ď δ ď ρ ď 1, δ ă 1. Then

ż

Rd
|Taf |

2w À

ż

Rd
|f |2M8w. (3.1.3)

In particular, we may recover the L2-case of a result of Chanillo and Torchinksy [28],

and Michalowski, Rule and Staubach [95], in which it is established that the symbol

classes S
´dp1´ρq{2
ρ,δ , with 0 ă ρ ă 1, are bounded on Lppwq for w P Ap{2 and 2 ď p ă 8.

The inequalities (3.1.3) improve on the existing two-weight inequalities with controlling

maximal function pMwsq1{s, which are implicit in the works [28, 95] from the elementary

observation that pMwsq1{s P A1 for any s ą 1. We remark that in the case of the standard

symbol class S0 :“ S0
1,0 and the classes S0

1,δ, with δ ă 1, the inequality (3.1.3) holds

with maximal operator M3; this is a consequence of the inequality (1.1.6) for Calderón–

Zygmund operators. We note that the number of compositions of M in (3.1.2) and (3.1.3)
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does not need to be sharp here; we shall not concern ourselves with such finer points.

3.2 Failure of g-function approach

First of all we observe that the similarity between the differential inequalities (3.1.1)

satisfied by the symbols a and those satisfied by the multipliers m (2.1.1) suggests a

decomposition of the ξ-space, where ξ corresponds to the frequency variable of f , into p1´

ρq-subdyadic balls. However, as Ta is a non-translation-invariant operator, the frequency

variables of Taf and f are not the same. This is manifested, for instance, by the fact that

if ψB is a bump function adapted to a p1´ ρq-subdyadic ball B,

Tapf ˚ ψBq ‰ Taf ˚ ψB, (3.2.1)

in contrast to Tmpf ˚ ψBq “ Tmf ˚ ψB. The failure of this property makes the subdyadic

square functions gα,β not as effective in the setting of pseudodifferential operators, as the

decoupling inequality (2.3.4) does not interact well with a subdyadic decomposition at

the level of pf . It is not obvious for us how to adapt the argument in order to make Stein’s

g-function approach work in this context. Therefore, the weighted estimates (3.1.2) are

obtained in a more direct way, and do not follow from a pointwise estimate of the type

(1.5.3).

Despite the apparent failure of the g-function approach, it is important to observe

the following property from the proof of the decoupling estimate (2.3.4). Let B, B1 be

subdyadic balls with rpBq „ rpB1q and let fB, fB1 be functions whose Fourier support

lies in B and B1 respectively. Let rw be a weight function with Fourier support lying in a

ball centered at the origin of radius rpBq „ rpB1q. Then, Parseval’s theorem reveals the

orthogonality property
ż

Rd
fBfB1 rw “

ż

Rd
xfB

xfB1 ˚ prw “ 0
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if distpB,B1q Á rpBq. By translation-invariance, this orthogonality remains valid for

TmfB and TmfB1 , but not for TafB and TafB1 , in view of (3.2.1). In the case of Fourier

multipliers only “diagonal” terms contribute to the whole sum, that is,

ż

Rd
|

ÿ

rpBq„K

TmfB|
2
rw “

ż

Rd

ÿ

rpBq„rpB1q„K

TmfBTmfB1 rw „

ż

Rd

ÿ

rpBq„K

|TmfB|
2
rw,

and one may thus invoke the elementary Proposition 2.1.2 for the diagonal terms; here

K is a suitable fixed scale. The key idea for pseudodifferential operators is that despite

TafB and TafB1 not being orthogonal with respect to the weight rw, it is possible to show

that
ż

Rd
TafBTafB1 rw „ small

if distpB,B1q Á rpBq, and therefore such “off-diagonal” terms do not significantly con-

tribute to the term
ż

Rd
|

ÿ

rpBq„K

TafB|
2
rw.

This may be seen as a certain almost orthogonality property between TafB and TafB1 , and

for this reason it will be appropriate to make use of the Cotlar–Stein almost orthogonality

principle, provided we have a good estimate for the “diagonal terms”.

The previous ideas rely on the following observations on the weight rw:

• Given a fixed subdyadic ball B, the Fourier support of rw is contained in a ball

centered at the origin of radius rpBq „ K. Then, rw is only effective to detect

(almost) orthogonality among subdyadic balls B1 such that rpB1q „ rpBq „ K.

• Given an arbitrary weight w, we need to find a suitable weight rw satisfying the

above properties and controlling the original w.

As the almost orthogonality property depends on the scale K, a first Littlewood–Paley

type reduction for the problem seems suitable; observe that if B and B1 are subdyadic
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balls lying on the same dyadic annulus t|ξ| „ 2ku, then rpBq „ rpB1q „ 2kρ. In contrast to

the multiplier case, the weighted Littlewood–Paley theory from Section 1.4 will not suffice

for our purposes, and a quantitative version of the symbolic calculus will be needed. On

each dyadic annulus, we will be able to control w by a suitably band-limited weight rw

satisfying the desired properties. Taking a supremum over all dyadic scales will give rise

to the maximal operators Mρ,m.

Finally, observe that as 0 ď ρ ď 1, an p1´ρq-subdyadic decomposition is only suitable

in tξ P Rd : |ξ| ě 1u. This does not represent any obstacle, as the differential inequalities

(3.1.1) on t|ξ| ď 1u become

|B
ν
xB

σ
ξ apx, ξq| À 1

for all multi-indices ν, σ P Nd. For the portion of a supported in t|ξ| ď 1u, these differ-

ential inequalities will suffice to deduce an appropriate two-weighted inequality for Ta by

elementary means.

Outline of the proof

At a very general level, the above ideas may be summarised in the following scheme.

1. Write apx, ξq “ a0px, ξq ` a1px, ξq, where a0 is ξ-supported on t|ξ| À 1u and a1 is

ξ-supported on t|ξ| Á 1u, and establish the elementary estimate

ż

Rd
|Ta0f |

2w À

ż

Rd
|f |2M2Mρ,mM

5w.

2. Apply weighted Littlewood–Paley theory to Ta1f ,

ż

Rd
|Ta1f |

2w À

ż

Rd

ÿ

kě0

|∆kpTa1fq|
2M3w,

where ∆k is a frequency projection to a dyadic annulus of width 2k.
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3. For every k ě 0, majorise the weight M3w by a weight rwk whose Fourier transform

is supported in a ball centered at the origin of radius 2kρ,

ż

Rd
|∆kpTa1fq|

2M3w À

ż

Rd
|∆kpTa1fq|

2
rwk.

4. For every k ě 0, use symbolic calculus to “interchange” ∆k and Ta1 provided we

introduce some terms of “lower order” and an error term. That is,

∆kpTa1fq “ Ta1p∆kfq `
ÿ

1ď|γ|ăN

T γp∆kfq ` Tekf,

where T γ are pseudodifferential operators whose symbols have lower order and Tek

is a pseudodifferential operator associated to a symbol of negative enough order.

The decay on ek allows to easily establish

ż

Rd
|Tekf |

2
rwk À 2´k

ż

Rd
|f |2M rwk.

Observe that now Ta1 and T γ are acting on functions f whose Fourier support lies

in a dyadic annulus.

5. For every k ě 0, establish

ż

Rd
|T p∆kfq|

2
rwk À

ż

Rd
|∆kf |

222kmM rwk,

for T “ Ta1 and T “ T γ. To establish such estimates, we decompose ∆kf “

ř

B fB, where B are p1´ ρq-subdyadic balls such that rpBq „ 2kρ, and we establish

suitable almost orthogonality estimates for an application of Cotlar–Stein’s almost

orthogonality principle.

6. Finally, take supremum on rwk over k ě 0 and use weighted Littlewood–Paley theory
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to put together the dyadic pieces,

ÿ

k

ż

Rd
|∆kf |

2
rwk À

ż

Rd
|f |2Mpsup

kě0
22kmM rwkq.

We sum in k the error terms coming from the operators Tek , which leads to an

acceptable term.

Of course the passage of w to supkě0 22kmM rwk leads to the maximal operatorsMρ,mw,

where the approach regions Γ1´ρ naturally arise from the subdyadic nature of the operator

Ta1 . This is reminiscent of the proof of Theorem 2.4.1 in Chapter 2.

We devote the rest of this chapter to make these ideas formal and to provide a proof for

Theorem 3.1.1. We start with an auxiliary section that contains several useful lemmas to

which we will appeal to through the proof. We note that for the convenience of exposition,

the domination of the weight exposed in step 3 has been done in two stages, with the

second one incorporated in the inequality in step 5, after a suitable scaling argument.

3.3 Auxiliary results

3.3.1 Symbolic calculus

The composition structure of pseudodifferential operators has been extensively studied;

we refer to the work of Hörmander [69] in the case of the symbol classes Smρ,δ. We require

the following quantitative version when the outermost symbol is a cut-off function on the

frequency space adapted to a dyadic annulus.

Theorem 3.3.1. Let ϕ P SpRdq be such that suppppϕq Ď t|ξ| „ 1u and given R ą 1, let

ϕR be defined by pϕRpξq :“ pϕpR´1ξq. Let a P Smρ,δ, where 0 ď δ ď ρ and δ ă 1. Then, there

exists a symbol c P Smρ,δ such that

Tc “ T
pϕR ˝ Ta.
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Moreover, for ε ě 0 and κ ą 0, the symbol

eN :“ c´
ÿ

|γ|ăN

i´|γ|

γ!
B
γ
ξ pϕRB

γ
xa P S

m´Np1´δq`dδ`κδ`ε
ρ,δ

for all N ą dδ`κδ`ε
1´δ

, and satisfies

|B
ν
xB

σ
ξ e

N
px, ξq| À R´εp1` |ξ|qm´Np1´δq`dδ`κδ`ε´|σ|ρ`|ν|δ (3.3.1)

for any multi-indices ν, σ P Nd.

This very specific version of the more general symbolic calculus in [69] allows us to

obtain quantitative control for the differential inequalities satisfied by the error term eN

in terms of R, which corresponds to the scale of the frequency projection ϕR. The implicit

constants in (3.3.1) depend on finitely many Ck norms of pϕ and on the implicit constants

in the differential inequalities (3.1.1) satisfied by a, and they will be acceptable for our

purposes for being independent of the parameter R.

We remark that the order of the error symbol eN in Theorem 3.3.1 is not necessarily

sharp here, but one may choose N sufficiently large so that eN has sufficiently large

negative order. Modulo such an error term, we may understand the composition of ϕR

with a pseudodifferential operator as the action of the pseudodifferential operator itself,

and some other pseudodifferential operators of lower order, on functions with frequency

support on the dyadic annulus t|ξ| „ Ru. We provide the proof of Theorem 3.3.1 in

Appendix B for completeness, which consists of a careful modification of the symbolic

calculus developed in [129] for the standard symbol classes Sm.

3.3.2 The kernel of a pseudodifferential operator

A pseudodifferential operator with symbol of sufficiently negative order is to all intents and

purposes a convolution operator with an integrable kernel. This is an easy consequence of
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the following observation in Hörmander [69]. Let a P Smρ,δ, m P R, 0 ď δ, ρ ď 1, δ ă 1 and

let Kpx, yq denote the distribution kernel of Ta. Then if γ P Nd satisfies m ´ |γ|ρ ă ´d,

the distribution px´ yqγKpx, yq coincides with a function,

px´ yqγKpx, yq “

ż

Rd
eipx´yq¨ξp´iDξq

γapx, ξqdξ. (3.3.2)

In view of the differential inequalities (3.1.1), this quickly allows us to deduce that if a

symbol a P Smρ,δ has sufficiently negative order, that is, m ă ´d, then

|Kpx, yq| À
1

p1` |x´ y|2qL{2

for any L ě 0. In particular, taking L ą d, one may control the pseudodifferential

operator Ta by a convolution operator with an integrable kernel.

This elementary observation will be very useful to handle the pseudodifferential oper-

ator associated with the error symbol eN obtained after an application of Theorem 3.3.1.

Considering the differential inequalities (3.3.1) satisfied by eN , the identity (3.3.2) reveals

that if N is chosen such that m ´ Np1 ´ δq ` dδ ` κδ ` ε ă ´d then the kernel KeN

associated to the symbol eN satisfies

|KeN px, yq| À
R´ε

p1` |x´ y|2qL{2
(3.3.3)

for any L ě 0. As in (3.3.1), the implicit constant here is independent of R, and only

depends on finitely many Ck norms of pϕ and on the implicit constants in the differential

inequalities (3.1.1) satisfied by a. Taking L ą d, this allows us to bound TeN by an

integrable convolution kernel with a quantitative control of the constant in terms of the

scale of the frequency projection ϕR. As we shall see in Section 3.4, such a quantitative

control is required for summability purposes in the proof of Theorem 3.1.1.
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3.3.3 Almost orthogonality

To obtain a good estimate on each dyadic annulus, we will make use of the Cotlar–Stein

almost orthogonality principle.

Lemma 3.3.2 (Cotlar–Stein, [129] p. 280). Let tTjujPZd be a family of operators and

T “
ř

jPZd Tj. Let tcpjqujPZd be a family of positive constants such that

A “
ÿ

jPZd
cpjq ă 8

and assume that

}T ˚i Tj}2Ñ2 ď cpi´ jq2 and }TiT
˚
j }2Ñ2 ď cpi´ jq2.

Then

}T }2Ñ2 ď A.

3.3.4 L2-boundedness of integral operators

We also require the following standard version of the Schur test, which is a simple conse-

quence of the Cauchy–Schwarz inequality; see for example Theorem 5.2 in [65].

Lemma 3.3.3 (Schur’s test, [65]). Suppose T is given by

Tfpxq “

ż

Rd
Kpx, zqfpzqdz

and assume there exist measurable functions h1, h2 ą 0 and positive constants C1 and C2

such that

ż

Rd
|Kpx, zq|h1pzqdz ď C1h2pxq and

ż

Rd
|Kpx, zq|h2pxqdx ď C2h1pzq.
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Then

}T }2Ñ2 ď pC1C2q
1{2.

3.4 Proof of Theorem 3.1.1

Let a P Smρ,δ with m P R, 0 ď δ ď ρ ď 1, δ ă 1. By the embeddings of the symbol classes

is enough to prove Theorem 3.1.1 for a P Smρ,ρ with 0 ď ρ ă 1, and a P Sm1,δ with δ ă 1;

recall that

Sm1
ρ1,δ1

Ď Sm2
ρ2,δ2

if m1 ď m2, ρ1 ě ρ2, δ1 ď δ2.

Observe that the upcoming Theorem 3.4.2 is also valid for the symbol classes Sm1,δ with

δ ă 1, as they are embedded in Sm1,1.

As discussed in Section 3.2, a symbol a satisfying the differential inequalities (3.1.1)

behaves differently in the regions t|ξ| ď 1u and t|ξ| ě 1u. Let η P C8pRdq be a smooth

function supported in |ξ| ď 2 and let a0px, ξq “ apx, ξqηpξq and a1 be such that a “ a0`a1.

Theorem 3.1.1 will follow from establishing the required weighted inequalities for both Ta0

and Ta1 .

In view of (3.1.1), the symbol a0 satisfies the differential inequalities

|B
ν
xB

σ
ξ a0px, ξq| À 1

for all multi-indices ν, σ P Nd. Together with the support condition on the variable ξ

that we just imposed on a0px, ξq, this leads to the following rather elementary weighted

inequality.

Proposition 3.4.1.
ż

Rd
|Ta0f |

2w À

ż

Rd
|f |2A˚1w,

where A˚1w “ suptě1At and Atwpxq “
1

|Bpx,tq|

ş

Bpx,tq
w.
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We provide a proof of this proposition in Section 3.5. The inequality (3.1.2) for Ta0

follows from noting that, as in Chapter 2

A˚1w À A1A
˚
1w ÀMρ,mA

˚
1w ÀMρ,mMw ÀM2Mρ,mM

5w.

The difficulty relies thus on understanding the operator Ta1 . We reduce the proof of

Theorem 3.1.1 to the following theorem, which corresponds to an analogous statement

but over the class of functions whose Fourier support lies in a dyadic annulus and whose

proof is postponed to Section 3.6.

Theorem 3.4.2. Let a P Smρ,ρ, where 0 ď ρ ď 1. Let f be a function such that suppp pfq Ď

tξ P Rd : |ξ| „ Ru, where R ě 1. Then

ż

Rd
|Taf |

2w À

ż

Rd
|f |2Aρ,m,Rw

uniformly in R ě 1, where

Aρ,m,Rwpxq :“ R2m

ż

Rd

´

sup
|y´z|ďR´ρ

wpzq
¯ Rρd

p1`R2ρ|x´ y|2qN0{2
dy

and N0 is any natural number satisfying N0 ą d.

The reduction to Theorem 3.4.2 is done as follows. A first application of Proposition

1.4.2 to the function Ta1f gives

ż

Rd
|Ta1f |

2w À
ÿ

kě0

ż

Rd
|∆kpTa1fq|

2M3w.

Let Φ be a smooth function such that pΦ “ 1 in tη P Rd : |η| À 1u and define Φk by

pΦkpηq “ pΦp2´kηq for any k ě 0. As y∆kgpηq “ pP p2´kηqpgpηq and suppp pP q Ď tη P Rd :

|η| „ 1u, we have ∆kpTa1fq “ ∆kpTa1fq ˚ Φk, provided the implicit constants are chosen
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appropriately. An application of the Cauchy–Schwarz inequality and Fubini’s theorem

gives

ż

Rd
|∆kpTa1fq|

2M3w “

ż

Rd
|∆kpTa1fq ˚ Φk|

2M3w À

ż

Rd
|∆kpTa1fq|

2
|Φk| ˚M

3w (3.4.1)

uniformly in k ě 0, as the functions Φk are normalised on L1pRdq.

At this stage, one would like to interchange ∆k and Ta1 in order to apply Theorem

3.4.2. As discussed in Section 3.3.1, this may be done provided we introduce terms of

lower order. As δ ă 1, fixing ε ą 0 and κ ą 0, an application of Theorem 3.3.1 for any

k ě 0 gives

∆kpTa1fq “ Ta1p∆kfq `
ÿ

1ď|γ|ăN

i´|γ|

γ!
T γk f ` Tekf,

where

T γk fpxq :“

ż

Rd
eix¨ξBγξ

pPkpξqB
γ
xa1px, ξq pfpξq,

and ek is a symbol satisfying

|B
ν
xB

σ
ξ ekpx, ξq| À 2´kεp1` |ξ|qm´Np1´δq`dδ`κδ`ε´|σ|ρ`|ν|δ

for any multi-indices ν, σ P Nd. Here γ P Nd, and we choose N to be a positive integer

satisfying

m´Np1´ δq ` dδ ` κδ ` ε ă ´d;

for ease of notation we remove the dependence of N in the error term ek, as N is a chosen

fixed number independent of k. Such a choice of N allows one to argue as in Section 3.3.2,

and the inequality (3.3.3) reads here as

|Kekpx, yq| À
2´kε

p1` |x´ y|2qL{2
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for any L ě 0. Taking L ą d, and setting ΨpLqpxq :“ p1` |x|2q´L{2, an application of the

Cauchy–Schwarz inequality and Fubini’s theorem gives

ż

Rd
|Tekf |

2
|Φk| ˚M

3w À 2´2kε

ż

Rd
|f |2ΨpLq

˚ |Φk| ˚M
3w À 2´2kε

ż

Rd
|f |2M2Mρ,mM

5w,

with implicit constant independent of k ě 0; the last inequality follows from the observa-

tion that

ΨpLq
˚ |Φk| ˚M

3w À A˚1M
4w À A1A

˚
1M

4w ÀMρ,mA
˚
1M

4w ÀM2Mρ,mM
5w.

This is an acceptable bound for each Tek , as summing over all k ě 0 we obtain

ÿ

kě0

ż

Rd
|Tekf |

2
|Φk| ˚M

3w À
ÿ

kě0

2´2kε

ż

Rd
|f |2M2Mρ,mM

5w À

ż

Rd
|f |2M2Mρ,mM

5w

for any ε ą 0.

For the term corresponding to Ta1p∆kfq, we invoke Theorem 3.4.2,

ż

Rd
|Ta1p∆kfq|

2
|Φk| ˚M

3w À

ż

Rd
|∆kf |

2Aρ,m,2kp|Φk| ˚M
3wq À

ż

Rd
|∆kf |

2MMρ,mM
4w,

where the last inequality follows by taking the supremum over all k ě 0 on the weight

function. Now, one may recouple the dyadic frequency pieces using the standard weighted

Littlewood–Paley theory from Proposition 1.4.1,

ÿ

kě0

ż

Rd
|∆kf |

2MMρ,mM
4w À

ż

Rd
|f |2M2Mρ,mM

5w.

Finally, we need to study the terms T γk for 1 ď |γ| ă N . Observe that Bγξ
pPk is

supported in tξ P Rd : |ξ| „ 2ku for any γ P Nd, so we are still able to use Theorem 3.4.2

here. To this end, let θ be a smooth function such that pθpξq “ 1 in tξ P Rd : |ξ| „ 1u and
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that vanishes outside a slightly enlargement of that set. Let Θk be the operator defined by

yΘkgpξq “ pθkpξqpgpξq, where pθkpξq “ pθp2´kξq. Then T γk f “ T γk pΘkfq, provided the implicit

constants are chosen appropriately. Observing that the symbol Bγξ
pPkpξqB

γ
xa1px, ξq P S

m
ρ,δ

uniformly in k ě 0 (by embedding of symbol classes), Theorem 3.4.2 leads to

ż

Rd
|T γk f |

2
|Φk| ˚M

3w “

ż

Rd
|T γk pΘkfq|

2
|Φk| ˚M

3w À

ż

Rd
|Θkf |

2Aρ,m,2kp|Φk| ˚M
3wq

uniformly in k ě 0, for every γ such that 1 ď |γ| ă N . The sum in γ is not a problem as

there is a finite number of terms in that sum, so

ÿ

kě0

ÿ

1ď|γ|ăN

1

γ!

ż

Rd
|T γk f |

2
|Φk| ˚M

3w À
ÿ

kě0

ż

Rd
|Θkf |

2Aρ,m,2kp|Φk| ˚M
3wq.

For the sum in k we use again standard weighted Littlewood–Paley theory (Proposition

1.4.1) to conclude that

ÿ

kě0

ż

Rd
|Θkf |

2Aρ,m,2kp|Φk| ˚M
3wq ď

ÿ

kě0

ż

Rd
|Θkf |

2MMρ,mM
5w À

ż

Rd
|f |2M2Mρ,mM

5w,

where the first inequality follows from taking the supremum in k ě 0 in the weight

function. Putting the pieces together, we have shown that

ż

Rd
|Ta1f |

2w À

ż

Rd
|f |2M2Mρ,mM

5w,

and therefore the proof of Theorem 3.1.1 is completed provided we verify the statements

of Proposition 3.4.1 and Theorem 3.4.2.
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3.5 The part t|ξ| ď 1u: proof of Proposition 3.4.1

It is crucial to realise that as a0px, ξq has compact support in the ξ variable, we may write

Ta0fpxq “

ż

Rd

ż

Rd
eipx´yq¨ξa0px, ξqfpyqdydξ,

as the double integral is absolutely convergent. Denoting by K0 the kernel of Ta0 ,

K0px, zq “

ż

Rd
eiz¨ξa0px, ξqdξ,

we may write

Ta0fpxq “

ż

Rd
K0px, x´ yqfpyqdy,

We may interpret Ta0 as the convolution of the function Kpx, ¨q with f evaluated at the

point x and

ż

Rd
|Ta0fpxq|

2wpxqdx ď

ż

Rd

´

ż

Rd
|K0px, zq||fpx´ zq|dz

¯2

wpxqdx.

We split the range of integration for the inner integral in two parts, |z| ď 1 and |z| ě 1.

For the first term, the Cauchy-Schwarz inequality, Plancherel’s theorem and the estimates

on a0 give

´

ż

|z|ď1

|K0px, zq||fpx´ zq|dz
¯2

ď

´

ż

Rd
|K0px, zq|

2dz
¯´

ż

|z|ď1

|fpx´ zq|2dz
¯

À

´

ż

|ξ|ď2

|a0px, ξq|
2dξ

¯´

ż

|z|ď1

|fpx´ zq|2dz
¯

À

ż

Rd
|fpx´ zq|2

1

p1` |z|2qL
dz.
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Similarly, for the second term,

´

ż

|z|ě1

|K0px, zq||fpx´ zq|dz
¯2

ď

´

ż

Rd
|K0px, zq|

2
|z|2σdz

¯´

ż

|z|ě1

1

|z|2L
|fpx´ zq|2dz

¯

ď

´

ż

Rd

ÿ

|σ|“L

|zσK0px, zq|
2dz

¯´

ż

|z|ě1

|fpx´ zq|2

|z|2L
dz
¯

À

´

ż

|ξ|ď2

ÿ

|σ|“L

|Dσ
ξ a0px, ξq|

2dξ
¯´

ż

|z|ě1

|fpx´ zq|2

p1` |z|2qL
dz
¯

À

ż

Rd
|fpx´ zq|2

1

p1` |z|2qL
dz,

where σ P Nd is a multi-index of order L. Putting things together and setting Ψp2Lqpyq “

p1` |y|2q´L, Fubini’s theorem gives

ż

Rd
|Ta0fpxq|

2wpxqdx À

ż

Rd

ż

Rd
|fpx´ zq|2

1

p1` |z|2qL
dzwpxqdx “

ż

Rd
|fpzq|2Ψp2Lq

˚ wpzq.

Proposition 3.4.1 follows from noting that Ψp2Lq ˚ w À A˚1w for L ą d{2.

3.6 The dyadic pieces in t|ξ| ě 1u

By analogy with the proof provided in [129] for the L2-boundedness of the symbol classes

S0
ρ,ρ, with 0 ď ρ ă 1, we reduce Theorem 3.4.2 to a similar statement for the symbol

classes S0
0,0. As we shall see, this is achieved using Bessel potentials and an elementary

scaling argument. For the proof of the weighted inequality for the class S0
0,0 we perform

an equally spaced decomposition and make an application of the Cotlar–Stein almost

orthogonality principle.

3.6.1 Reduction to the symbol classes S0
ρ,ρ

It is enough to prove the following version of Theorem 3.4.2 for the symbol classes S0
ρ,ρ.

Proposition 3.6.1. Let a P S0
ρ,ρ, where 0 ď ρ ď 1. Let f be a function such that
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suppp pfq Ď tξ P Rd : |ξ| „ Ru with R ě 1. Then

ż

Rd
|Taf |

2w À

ż

Rd
|f |2Aρ,0,Rw

uniformly in R ě 1.

Theorem 3.4.2 follows from the above proposition via the following observation. Let

Jm denote the Bessel potential of order m, that is yJmfpξq “ p1` |ξ|
2qm{2 pfpξq. Then

Tafpxq “

ż

Rd
eix¨ξapx, ξqp1` |ξ|2qm{2p1` |ξ|2q´m{2 pfpξqdξ “ T

rapJmfqpxq,

where rapx, ξq “ apx, ξqp1` |ξ|2q´m{2 P S0
ρ,ρ. By Proposition 3.6.1

ż

Rd
|Taf |

2w À

ż

Rd
|T

rapJmfq|
2w À

ż

Rd
|Jmf |

2Aρ,0,Rw À
ż

Rd
|f |2R2mΨ

pLq
R ˚Aρ,0,Rw

À

ż

Rd
|f |2Aρ,m,Rw,

where Ψ
pLq
R pxq :“ Rd

p1`R2|x|2qL{2
with L ą d. Here we use that ΨR ˚ΨRρ À ΨRρ ; see Lemma

A.1 in Appendix A. The penultimate inequality here follows from the following elementary

inequality.

Lemma 3.6.2. Let f be such that suppp pfq Ď tξ P Rd : |ξ| „ Ru with R ě 1. Then

ż

Rd
|Jmf |

2w À

ż

Rd
|f |2R2mΨ

pLq
R ˚ w

for any L ą d and any weight w.

The proof of this lemma is very similar to that of Proposition 2.1.2.

Proof. Let ϕ be a smooth function such that pϕpξq “ 1 in tξ P Rd : |ξ| „ 1u and that

vanishes outside a slightly enlargement of it, and define ϕR by xϕRpξq “ pϕpR´1ξq. Then,
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provided the implicit constants are chosen appropriately, f “ f ˚ ϕR. By the Cauchy–

Schwarz inequality and Fubini’s theorem,

ż

Rd
|Jmf |

2w À

ż

Rd
|f |2}JmϕR}1|JmϕR| ˚ w. (3.6.1)

Observe that

pI ´∆ξq
N

p1`R2|x|2qN
eiRx¨ξ “ eiRx¨ξ,

for any N ě 0. Using this and integrating by parts,

|JmϕRpxq| “
ˇ

ˇ

ˇ

ż

Rd
eix¨ξxϕRpξqp1` |ξ|

2
q
m{2dξ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ż

Rd
eiRx¨ξ pϕpξqp1`R2

|ξ|2qm{2Rddξ
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż

Rd

eiRx¨ξ

p1`R2|x|2qN
pI ´∆ξq

N
rpϕpξqp1`R2

|ξ|2qm{2sRddξ
ˇ

ˇ

ˇ

Now,

pI ´∆ξq
N
rpϕpξqp1`R2

|ξ|2qm{2s “
N
ÿ

k“0

cN,kp´∆ξq
k
rpϕpξqp1`R2

|ξ|2qm{2s (3.6.2)

“

N
ÿ

k“0

ÿ

k1`¨¨¨`kd“k

cN,kB
2k1
ξ1
¨ ¨ ¨ B

2kd
ξd
rpϕpξqp1`R2

|ξ|2qm{2s

Given a multiindex γ P Nd,

Dγ
rpϕpξqp1`R2

|ξ|2qm{2s “
ÿ

|l|ď|γ|

cγ,lD
γ´l

pϕpξqDl
rp1`R2

|ξ|2qm{2s

“
ÿ

|l|ď|γ|

cγ,lD
γ´l

pϕpξqp1`R2
|ξ|2qm{2´|l|R2|l|
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As |ξ| „ 1 and |Dγ
pϕ| is uniformly bounded for any multiindex γ P Nd,

|Dγ
rpϕpξqp1`R2

|ξ|2qm{2s| À Rm.

Using this in (3.6.2),

|pI ´∆ξq
N
rpϕpξqp1`R2

|ξ|2qm{2s| À Rm,

and so

|JmϕRpxq| À Rm Rd

p1`R2|x|2qN
“ RmΨ

pLq
R pxq,

setting L “ 2N . Also,

}JmϕR}1 “

ż

Rd
|Jmϕpxq|dx À Rm

ż

Rd

Rd

p1`R2|x|2qL{2
dx À Rm

provided L ą d. Using these estimates in (3.6.1) concludes the proof.

3.6.2 Reduction to the symbol classes S0
0,0

The goal now is to prove Proposition 3.6.1, that is, the special case of Theorem 3.4.2 for

the symbol classes S0
ρ,ρ. We shall see that, thanks to an elementary scaling argument, this

reduces itself to the following specific case for the symbol class S0
0,0.

Proposition 3.6.3. Let a P S0
0,0. Then

ż

Rd
|Taf |

2w À

ż

Rd
|f |2Aw,

where Aw :“ ΨpN0q ˚ rw, rwpxq :“ sup|y´x|ď1wpyq and ΨpN0qpxq “ 1
p1`|x|2qN0{2

with N0 ą d.

To deduce Proposition 3.6.1 from this, let ϕ be a smooth function such that pϕ equals

1 in tξ P Rd : |ξ| „ 1u and has compact Fourier support in a slightly enlargement of it,
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and let ϕR be defined by pϕRpξq :“ pϕpR´1ξq. The Fourier support properties of f allows

us to write the reproducing formula pf “ pf pϕR. We may then replace the symbol apx, ξq

by apx, ξqpϕRpξq, which belongs to the class S0
ρ,ρ uniformly in R:

|Dσ
ξ rapx, ξqxϕRpξqs| “ |

ÿ

|l|ď|σ|

Dσ´lapx, ξqDl
pϕpR´1ξq| À

ÿ

|l|ď|σ|

p1` |ξ|q´ρp|σ|´|l|qR´|l|

À R´ρp|σ|´|l|qR´|l| “ R´ρ|σ|R´p1´ρq|l| À R´ρ|σ|

„ p1` |ξ|q´ρ|σ|,

as |ξ| „ R Á 1. For ease of notation, we shall denote the product symbol apx, ξqpϕRpξq by

apx, ξq, but assuming that apx, ξq is supported in t|ξ| „ Ru. Let

rapx, ξq :“ apR´ρx,Rρξq.

It is easy to verify from the differential inequalities (3.1.1) and the support property of

apx, ξq that the new symbol ra belongs to the class S0
0,0 uniformly in R:

|Dν
xD

σ
ξrapx, ξq| “ |D

ν
xD

σ
ξ apR

´ρx,Rρξq|

“ R´ρ|ν|Rρ|σ|
|pDν

xD
σ
ξ aqpR

´ρx,Rρξq|

À R´ρ|ν|Rρ|σ|
p1`Rρ

|ξ|q´ρ|σ|`ρ|ν|

„ R´ρ|ν|Rρ|σ|R´ρ|σ|`ρ|ν| „ 1,

as Rρ|ξ| „ R; note that ra is ξ-supported in an annulus of width OpR1´ρq. The change of

variables x ÞÑ R´ρx, ξ ÞÑ Rρξ and Proposition 3.6.3 lead to

ż

Rd
|Taf |

2w “

ż

Rd
|T

rafR|
2wR À

ż

Rd
|fR|

2AwR
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for functions f such that suppp pfq Ď t|ξ| „ Ru, where

wRpxq :“ wpR´ρxqR´ρd

and

pfRpξq :“ pfpRρξqRρd.

Proposition 3.6.1 now follows from noting that

AwRpRρxqRρd
“ Aρ,0,Rwpxq.

This is a consequence of the definitions of A and Aρ,0,R, along with the following elemen-

tary scaling argument. Observe that

ĂwRpxq “ sup
|y´x|ď1

wRpyq “ sup
|Rρy´x|ď1

wpyqR´ρd

“ sup
|y´R´ρx|ďR´ρ

wpyqR´ρd “ ĂwRpR´ρxqR´ρd

“ pĂwRqRpxq,

where rR denotes a local supremum at scale R´ρ, that is, ĂwRpxq “ sup|y´x|ďR´ρ wpyq. Also,

ΨpNq
˚ wRpxq “

ż

Rd
ΨpNq

pyqwRpx´ yqdy “

ż

Rd
ΨpNq

pyqwpR´ρdpx´ yqqR´ρddy

“

ż

Rd
ΨpNq

pRρyqRρdwpR´ρdx´ yqR´ρddy

“ Ψ
pNq
Rρ ˚ wpR

´ρdxqR´ρd,

where Ψ
pNq
Rρ pxq “

Rρd

p1`Rρ2|x|2qN{2
. Then

AwRpxq “ ΨpNq
˚ ĂwRpxq “ ΨpNq

˚ pĂwRqRpxq “ Ψ
pNq
Rρ ˚

ĂwRpR´ρxqR´ρd,
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and

AwRpRρxqRρd
“ Ψ

pNq
Rρ ˚

ĂwRpxq “ Aρ,0,Rwpxq,

by definition of Aρ,m,R.

3.6.3 The symbol class S0
0,0: proof of Proposition 3.6.3

In this section we assume that a P S0
0,0. We first observe that the weight w is pointwise

controlled by Aw. This is contained in the following lemma, which we borrow from [7];

see [8] for the origins of this. Its short proof is included for completeness.

Lemma 3.6.4 ([7, 8]). w À Aw.

Proof. It is trivial to observe that w ď rw, so we only need to show rw À Aw. By translation

invariance, it is enough to see that

rwp0q À Awp0q.

As rw ě 0 and ΨpN0qpyq Á 1 for |y| ď 1,

Awp0q “
ż

Rd

1

p1` |y|2qN0{2
rwpyqdy Á

ż

|y|ď1

rwpyqdy.

Let B1, . . . , B2d be the intersections of the unit ball with the 2d coordinate hyperoctants

of Rd. It is enough to show that there exists `˚ P t1, . . . , 2du such that rwpyq ě rwp0q for

all y P B`˚ , as then

A rwp0q Á

ż

|y|ď1

rwpyqdy “

ż

B`˚

rwpyqdy `
ÿ

`‰`˚

ż

B`

rwpyqdy ě |B`˚ | rwp0q Á rwp0q,

which would conclude the proof. We prove our claim by contradiction. Suppose that for
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each 1 ď ` ď 2d there exist y` P B` such that rwpy`q ă rwp0q. By the definition of rw,

sup
|z´y`|ď1

wpzq ă rwp0q for 1 ď ` ď 2d.

As

t|z| ď 1u Ď
2d
ď

`“1

t|z ´ y`| ď 1u,

we have

rwp0q “ sup
|z|ď1

wpzq ď sup
Ť2d

`“1t|z´y`|ď1u

wpzq “ max
1ď`ď2d

sup
|z´y`|ď1

wpzq ă max
1ď`ď2d

rwp0q “ rwp0q,

which is of course a contradiction.

The above lemma reduces the proof of Proposition 3.6.3 to the weighted inequality

ż

Rd
|Taf |

2Aw À
ż

Rd
|f |2Aw. (3.6.3)

Defining the operator Sf :“ TappAwq´1{2fqpAwq1{2, it is enough to show

ż

Rd
|Sf |2 À

ż

Rd
|f |2 (3.6.4)

with bounds independent of w; (3.6.3) just follows by taking f “ pAwq1{2f in (3.6.4).

Observe first that pAwq` is a well-defined function for any ` P R, as Aw ą 0. Also, the

operator S is well-defined for f P SpRdq; this is due to the fact that any power of Aw

has polynomial growth, as well as all its derivatives, see the forthcoming Lemma 3.6.5.

Leibniz’s formula ensures then that pAwq`f P SpRdq for any ` P R, and that S maps

SpRdq to SpRdq.
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Lemma 3.6.5. For any ` P R and any γ P Nd,

|Dγ
pAwq`pxq| À pAwq`pxq À p1` |x|2qN0|`|{2pAwq`p0q.

Proof. From the trivial fact that |DγΨpN0qpxq| À ΨpN0qpxq for any γ P Nd, by definition of

A we have

|DγAwpxq| ď |DγΨpN0q| ˚ rwpxq À ΨpN0q ˚ rwpxq “ Awpxq,

as rw ě 0. The chain rule quickly reveals

|Dγ
pAwq`pxq| À pAwq`pxq.

For the second inequality, by Lemma A.2 in Appendix A, one has

Awp0q 1

p1` |x|2qN0{2
À Awpxq À p1` |x|2qN0{2Awp0q.

Then, if ` ą 0, pAwq`pxq À p1 ` |x|2qN0`{2pAwq`p0q, and if ` ă 0, pAwq`pxq À p1 `

|x|2qN0|`|{2pAwq`p0q, which concludes the proof.

We shall prove the L2-boundedness of the operator S from an application of the Cotlar–

Stein principle to a suitable family of operators. To construct such a family we introduce

the following partition of unity. Let ψ be a smooth, nonnegative function supported in

the unit cube Q0 “ tx P Rd : |xj| ď 1u and such that

ÿ

iPZd
ψpx´ iq “ 1, (3.6.5)
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and let aipx, ξq “ apx, ξqψpx´ iqψpξ ´ i1q, where i “ pi, i1q P Z2d. Then

a “
ÿ

iPZ2d

ai.

This gives a decomposition of the space associated to the ξ variable into balls of radius

Op1q. Note that in the passage of rescaling the symbol class S0
0,0 into S0

ρ,ρ, this amounts to

a decomposition of the dyadic annulus t|ξ| „ Ru into OpRp1´ρqdq balls of radius OpRρq; this

would correspond to the prototypical Example 2.3.1 of a p1´ρq-subdyadic decomposition.

We remark that the decomposition given by ψ was used in the proof of the L2-boundedness

of the class S0
0,0 that one may find in [129].

This decomposition allows us to write the operator S as

Sf “
ÿ

iPZ2d

Sif,

where Sif “ TaippAwq´1{2fqpAwq1{2. We aim to apply Lemma 3.3.2 to the family of

operators tSiuiPZ2d . To this end we need to establish

}S˚i Sj}2Ñ2 À cpi´ jq2

and

}SiS
˚
j }2Ñ2 À cpi´ jq2

for a family of constants tcpiquiPZ2d such that

ÿ

iPZ2d

cpiq ă 8.
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Observe that S˚i f “ pAwq´1{2T ˚aippAwq
1{2fq, where

T ˚aigpyq “

ż

Rd

ż

Rd
eiξ¨py´zqaipz, ξqgpzqdξdz

is a well-defined operator that maps SpRdq to SpRdq. The decomposition of the x variable

via (3.6.5) ensures the kernel of the operator S˚i Sj to be well defined; also the symmetric

role of the x and ξ variables in apx, ξq P S0
0,0 suggests such a decomposition in the x

variable.

The L2-boundedness of S˚i Sj

The operator S˚i Sj may be realised as

S˚i pSjfqpxq “ pAwq´1{2
pxqT ˚aipAw TajppAwq´1{2fqqpxq

“ pAwq´1{2
pxq

ż

Rd
Ki,jpx, zqfpzqpAwq´1{2

pzqdz,

where

Ki,jpx, zq :“

ż

Rd

ż

Rd

ż

Rd
eiξ¨px´yqeiη¨py´zqaipy, ξqajpy, ηqAwpyqdydηdξ.

The kernelKi,j is well-defined by the support properties of ai and aj. Note that if i´j R Q0,

then Ki,j “ 0.

Integrating by parts in Ki,j, after making use of the identities

pI ´∆yq
N1eiy¨pη´ξq “ p1` |ξ ´ η|2qN1eiy¨pη´ξq,

pI ´∆ηq
N2eiη¨py´zq “ p1` |y ´ z|2qN2eiη¨py´zq

and

pI ´∆ξq
N3eiξ¨px´yq “ p1` |x´ y|2qN3eiη¨px´yq,
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leads to

Ki,jpx, zq “

ż

Rd

ż

Rd

ż

Rd
eiξ¨px´yqeiη¨py´zq

pI ´∆ξq
N3

p1` |x´ y|2qN3

pI ´∆ηq
N2

p1` |y ´ z|2qN2

”

pI ´∆yq
N1

p1` |ξ ´ η|2qN1
paipy, ξqajpy, ηqAwpyqq

ı

dydηdξ,

for any N1, N2, N3 ě 0. Observe that |Dγψpy ´ kq| ď }ψ}C|γ|χpy ´ kq for any multi-index

γ P Nd, where χ is the characteristic function of Q0. This, Lemma 3.6.5, which ensures

that |DγpAwq| À Aw, and the differential inequalities |Dν
xD

σ
ξ apx, ξq| À 1 for a “ ai, aj,

allows us to deduce, after an application of Leibniz’s formula,

|Ki,jpx, zq| À

ż

Rd

ż

Rd

χpξ ´ i1qχpη ´ j1q

p1` |ξ ´ η|2qN1
dξdη

ż

Rd

Awpyqχpy ´ iqχpy ´ jq
p1` |y ´ z|2qN2p1` |y ´ x|2qN3

dy

À
1

p1` |i1 ´ j1|2qN1

ż

Rd

Awpyqχpy ´ iqχpy ´ jq
p1` |y ´ z|2qN2p1` |y ´ x|2qN3

dy; (3.6.6)

the implicit constant here depends on finitely many Ck norms of ψ. Now we apply Schur’s

test to the kernel

ĄKi,jpx, zq “ Ki,jpx, zqpAwq´1{2
pxqpAwq´1{2

pzq

with the auxiliary functions h1 “ h2 “ pAwq1{2. We check first that the integral condition

with respect to z is satisfied. Observe that from Lemma A.1 in Appendix A, pAwq˚ΨpN0q À

Aw. Using this, and taking 2N2 “ 2N3 “ N0 ą d in (3.6.6), we have

ż

Rd
|ĄKi,jpx, zq|h1pzqdz À

pAwq´1{2pxq

p1` |i1 ´ j1|2qN1

ż

Rd

ż

Rd

Awpyqχpy ´ iqχpy ´ jq
p1` |y ´ z|2qN2p1` |y ´ x|2qN3

dzdy

À
pAwq´1{2pxq

p1` |i1 ´ j1|2qN1

ż

Rd

Awpyq
p1` |y ´ x|2qN3

dy

À
pAwq1{2pxq

p1` |i1 ´ j1|2qN1
, if i´ j P Q0,
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for any N1 ě 0. On the other hand, ĄKi,j “ 0 if i´ j R Q0, so combining both cases,

ż

Rd
|ĄKi,jpx, zq|h1pzqdz À

pAwq1{2pxq
p1` |i´ j|2qN1

,

for any N1 ě 0. As the integral condition with respect to the x variable is symmetric,

Lemma 3.3.3 yields

}S˚i Sj}2Ñ2 À
1

p1` |i´ j|2qN1
(3.6.7)

for any N1 ě 0. The constant cpiq “ p1` |i|2q´N1{2 will be sufficient for an application of

the Cotlar–Stein lemma.

The L2-boundedness of SiS
˚
j

Our goal now is to see that }SiS
˚
j }2Ñ2 also satisfies the bound (3.6.7). The operator SiS

˚
j

may be realised as

SipS
˚
j fqpxq “ pAwq´1

pyqT ˚ajppAwq
1{2fqpyq

“ pAwq1{2pxq
ż

Rd

ż

Rd
eiξ¨px´yqaipx, ξqpAwq´1

pyqT ˚ajpfpAwq
1{2
qpyqψpy ´ kqdydξ

“ pAwq1{2pxq
ż

Rd
Li,jpx, zqfpzqpAwq1{2pzqdz,

where Li,j is taken to be the formal sum

Li,jpx, zq :“
ÿ

kPZd
Lki,jpx, zq (3.6.8)

and

Lki,jpx, zq :“

ż

Rd

ż

Rd

ż

Rd
eiξ¨px´yqeiη¨py´zqaipx, ξqajpz, ηqpAwq´1

pyqψpy ´ kqdydξdη.
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Observe that, a priori, the formal sum

Li,jpx, zq “
ÿ

kPZd
Lki,jpx, zq “

ż

Rd

ż

Rd

ż

Rd
eiξ¨px´yqeiη¨py´zqaipx, ξqajpz, ηqpAwq´1

pyqdydξdη,

may not be well-defined, as the triple integral in the right hand side does not necessarily

converge absolutely. For this reason, we introduce the partition of unity (3.6.5) in the y

variable; the integral that defines Lki,j is now absolutely convergent. Our analysis below

shows, in particular, that such sum is finite.

Again, integration by parts with respect to y, η, ξ gives

Li,jpx, zq “
ÿ

kPZd

ż

Rd

ż

Rd

ż

Rd
eiξ¨px´yqeiη¨py´zq

pI ´∆ξq
N3

p1` |x´ y|2qN3

pI ´∆ηq
N2

p1` |y ´ z|2qN2

”

aipx, ξqajpz, ηq

p1` |η ´ ξ|2qN1

ı

pI ´∆yq
N1
`

pAwq´1
pyqψpy ´ kq

˘

dydξdη,

for any N1, N2, N3 ě 0. The same observations as in the previous case allows us to deduce,

after an application of Leibniz’s formula,

|Li,jpx, zq|À
ÿ

kPZd

ż

Rd

ż

Rd

ż

Rd

χpx´ iqχpξ ´ i1q

p1` |x´ y|2qN3

χpz ´ jqχpη ´ j1q

p1` |y ´ z|2qN2

pAwq´1pyqχpy ´ kq

p1` |η ´ ξ|2qN1
dydξdη.

As the functions tχp¨ ´ kqukPZd have bounded overlap, we may sum in the k variable and

|Li,jpx, zq| À

ż

Rd

ż

Rd

χpξ ´ i1qχpη ´ j1q

p1` |η ´ ξ|2qN1
dξdη

ż

Rd

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ y|2qN3
dy

À
1

p1` |i1 ´ j1|2qN1

ż

Rd

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ y|2qN3
dy. (3.6.9)

The integration in the y variable is finite, so the sum taken in the definition of Li,j in
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(3.6.8) is well defined. In particular, for N2 “ N3 ą N0 ` d, it is possible to show that

ż

Rd

ż

Rd

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ y|2qN2
dzdy À

pAwq´1pxq

p1` |i´ j|2qN2{2
. (3.6.10)

As the role of the variables x and z is symmetric here, the same follows with pAwq´1pxq

replaced by pAwq´1pzq in the right hand side of (3.6.10).

Assuming the estimate (3.6.10) is true, one may successfully apply Schur’s test to the

kernel

rLi,jpx, zq “ Li,jpx, zqpAwq1{2pxqpAwq1{2pzq

with the auxiliary functions h1 “ h2 “ pAwq´1{2. Using (3.6.9) and (3.6.10), we have

ż

Rd
|rLi,jpx, zq|h1pzqdz À

pAwq1{2pxq
p1` |i1 ´ j1|2qN1

ż

Rd

ż

Rd

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ y|2qN2
dydz

À
pAwq1{2pxq

p1` |i1 ´ j1|2qN1

pAwq´1pxq

p1` |i´ j|qN2{2

À
pAwq´1{2pxq

p1` |i´ j|2qN2{2
,

for N2 ą N0 ` d; the last inequality follows from taking N1 “ N2{2. As the integral

condition with respect to the x variable is symmetric, an application of Lemma 3.3.3

yields

}SiS
˚
j }2Ñ2 À

1

p1` |i´ j|2qN2{2

for any N2 ą N0 ` d.

The L2-boundedness of S

We just saw that the family of operators tSiuiPZ2d satisfies the bounds

}S˚i Sj}2Ñ2 À
1

p1` |i´ j|2qN1
, (3.6.11)
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for any N1 ě 0, and

}SiS
˚
j }2Ñ2 À

1

p1` |i´ j|2qN2{2

for any N2 ą N0 ` d. Taking N1 “ N2{2 in (3.6.11) and noting that the series

ÿ

iPZ2d

1

p1` |i|2qN2{4
ă 8

for N2{2 ą 2d, an application of the Cotlar–Stein almost orthogonality principle (Lemma

3.3.2) to the family of operators tSiuiPZ2d ensures that

}S}2Ñ2 ď
ÿ

iPZ2d

1

p1` |i|2qN2{4
ă 8,

provided N2 ą maxtN0`d, 4du. As we may choose N2 as large as we please, the estimate

(3.6.4) follows. This finishes the proof of Theorem 3.1.1, provided the estimate (3.6.10)

is shown to be true.

The validity of the estimate (3.6.10)

At this stage we are only left with proving (3.6.10), that is

ż

Rd

ż

Rd

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ y|2qN2
dzdy À

pAwq´1pxq

p1` |i´ j|2qN2{2
.

To this end, we divide the range for the y-integration into two half-spaces, Hx and Hz,

that contain the points x and z respectively and that are the result of splitting Rd by a

hyperplane perpendicular to the line segment joining x and z at its midpoint. Note that

for y P Hx, |y ´ z| ě
1
2
|x´ z|, so

1

p1` |y ´ z|2qN2
ď

22N2

p1` |x´ z|2qN2
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and

ż

Rd

ż

Hx

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ y|2qN2
dydz

À

ż

Rd

χpz ´ jqχpx´ iq

p1` |x´ z|2qN2
dz

ż

Hx

pAwq´1pyq

p1` |x´ y|2qN2
dy

À
1

p1` |i´ j|2qN2{2

ż

Rd

pAwq´1pyq

p1` |x´ y|2qN2{2
dy.

Similarly, for y P Hz, |x´ y| ě
1
2
|x´ z|, so

1

p1` |x´ y|2qN2
ď

22N2

p1` |x´ z|2qN2

and

ż

Rd

ż

Hz

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ y|2qN2
dydz

À

ż

Rd

ż

Hz

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ z|2qN2
dydz.

By the elementary inequality

1

p1` |y ´ z|2qN2{2

1

p1` |x´ z|2qN2{2
À

1

p1` |x´ y|2qN2{2
,

which is a simple consequence of the triangle inequality, we have

ż

Rd

ż

Hz

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ z|2qN2
dydz

À

ż

Rd

χpz ´ jqχpx´ iq

p1` |x´ z|2qN2{2
dz

ż

Hz

pAwq´1pyq

p1` |x´ y|2qN2{2
dy

À
1

p1` |i´ j|2qN2{2

ż

Rd

pAwq´1pyq

p1` |x´ y|2qN2{2
dy.
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Putting both estimates together,

ż

Rd

ż

Rd

pAwq´1pyq

p1` |y ´ z|2qN2

χpz ´ jqχpx´ iq

p1` |x´ y|2qN2
dzdy À

pAwq´1 ˚ΨpN2qpxq

p1` |i´ j|2qN2{2
,

so the inequality (3.6.10) is satisfied if

pAwq´1
˚ΨpN2qpxq À pAwq´1

pxq.

As rw ě 0, by Lemma A.2,

ΨpN0q ˚ rwpxq ě
1

p1` |x´ y|2qN0{2
ΨpN0q ˚ rwpyq,

so by definition of Aw,

pAwq´1
pxq ď p1` |x´ y|2qN0{2pAwq´1

pyq;

in particular

pAwq´1
px´ yq ď p1` |y|2qN0{2pAwq´1

pxq.

Thus

pAwq´1
˚ΨpN2qpxq “

ÿ

lPZd

ż

l`r0,1sd
pAwq´1

px´ yqΨpN2qpyqdy

ď
ÿ

lPZd
pAwq´1

pxq

ż

l`r0,1sd
p1` |y|2qpN0´N2q{2dy

À pAwq´1
pxq

ÿ

lPZd
p1` |l|2qpN0´N2q{2

À pAwq´1
pxq,

provided N2 ą N0 ` d, and the inequality (3.6.10) follows.

100



3.7 Towards a pointwise estimate: a sparse approach

As is mentioned at the beginning of this chapter, the weighted inequalities obtained for

the pseudodifferential operators Ta, with a P Smρ,δ, do not follow from a pointwise estimate

of the type (1.5.3). In this final section, we explore if any such pointwise estimates

could be obtained. Indeed, for some specific classes Smρ,δ pointwise estimates have been

proved through the Fefferman–Stein sharp maximal function. For example, Chanillo and

Torchinksy [28] showed that if a P S
dpρ´1q{2
ρ,δ , 0 ă ρ ă 1, δ ă ρ, and f P C80 pRdq, then

M#
pTafqpxq ÀM2fpxq,

and more recently, Michalowski, Rule and Staubach [96] showed that if a P S
dpρ´1q
ρ,δ ,

0 ă ρ ď 1, 0 ď δ ă 1, and f P C80 pRdq, then, for any s ą 1,

M#
pTafqpxq ÀMsfpxq.

Of course, these pointwise estimates led to weighted results in the context of Ap weights

through the corresponding weighted estimates on M# and Ms.

As discussed in Section 1.3, in recent years there have been refinements of the above

type of pointwise estimates when the operator under study is a Calderón–Zygmund oper-

ator, with the auxiliary operator on the left entirely absent and the auxiliary operator on

the right being a dyadic sparse operator. Our goal here is to explore if any domination

by dyadic sparse operators is possible for the symbol classes satisfying the above esti-

mates, that is S
dpρ´1q{2
ρ,δ , or S

dpρ´1q
ρ,δ , with the respective restrictions on δ and ρ. We have

an affirmative result for the latter symbol classes.

Proposition 3.7.1. Let a P S
dpρ´1q
ρ,δ , 0 ă ρ ď 1, 0 ď δ ă 1. Then for every f P C80 pRdq
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and any r ą 1, there exists a sparse family S such that for a.e. x P Rd,

|Tafpxq| À Ar,Sfpxq.

This allows to recover the Lppwq boundedness of Ta for 1 ă p ă 8 and w P Ap

established in [96] through the corresponding boundedness of the operators Ar,S . In

particular, one may obtain quantitative control on the Ap characteristic of the weight,

rwsAp , applying a result of Di Plinio and Lerner [42] on the operators Ar,S . We also note

that the forthcoming two-weight inequality in Theorem 4.4.1 applies to this context.

Proposition 3.7.1 is a consequence of Lerner’s sparse domination Theorem 1.3.4. In

order to apply that theorem we will need some good decay bounds on the kernel associated

to Ta, which, as in Section 3.5, is defined by

Kpx, zq :“

ż

Rd
eiξ¨zapx, ξqdξ.

If ρ ą 0 or m ă ´d, it satisfies

|Kpx, zq| À |z|´N for any N ą 0 and |x´ z| ě 1. (3.7.1)

For points around the diagonal, K satisfies the following Hörmander-type estimate; see

Michalowski, Rule and Staubach [96] or a prior result of Chanillo and Torchinsky [28].1

Lemma 3.7.2 ([96]). Let a P Smρ,δ, 0 ď δ ď 1, 0 ă ρ ď 1. Then for |x ´ xB| ď r ď 1,

θ P r0, 1s, p P r1, 2s, m
ρ
` d

pρ
ă l ă m

ρ
` d

pρ
` 1

ρ
, 1

2
ă c1 ă 2c2 ă 8 and k ě 1, the following

1We note that the pointwise estimate using the sharp maximal function makes use of these estimates
on the kernel.
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estimate holds:

´

ż

c12krθă|y´xB |ăc22k`1rθ
|Kpx, x´ yq ´KpxB, xB ´ yq|

p1dy
¯1{p1

À 2´klrlpρ´θq´m´
d
p .

We proceed now with the proof of Proposition 3.7.1.

Proof of Proposition 3.7.1. As a P S
dpρ´1q
ρ,δ , we have that Ta is bounded on Lp for 1 ă p ă

8 and is of weak-type p1, 1q, see for example [129]. In order to apply Theorem 1.3.4, we

only need to verify that the grand maximal function NTa is of weak-type pr, rq for any

r ą 1; we indeed show that it is bounded on Lr for r ą 1. Many of the following ideas

are quite standard, and may be found, for instance, in [96].

Given a point x and a cube Q Q x, we distinguish two cases, |Q| ď 1 and |Q| ą 1.

The latter case is easy to deal with, as we may use the decay of the kernel away from the

diagonal, that is (3.7.1). Given z P Q,

|TapfχRdz3Qqpzq| “
ˇ

ˇ

ˇ

ż

Rdz3Q
Kpz, z ´ yqfpyqdy

ˇ

ˇ

ˇ

ď

8
ÿ

k“0

ż

2k`13Qz2kp3Qq

|Kpz, z ´ yq||fpyq|dy

À

8
ÿ

k“0

ż

2k`13Qz2kp3Qq

|z ´ y|´d´ε|fpyq|dy

À

8
ÿ

k“0

1

p2kdiampQqqε
1

p2kdiampQqqd

ż

2k`13Q

|fpyq|dy

À

8
ÿ

k“0

2´kεMfpxq

ÀMfpxq,

where we explicitly use that diampQq ą 1.
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If |Q| ď 1, one needs to be slightly more subtle. For any z, x1 P Q,

|TapfχRdz3Qqpzq| ď |TapfχRdz3Qqpzq ´ TapfχRdz3Qqpx
1
q| ` |Tapfqpx

1
q| ` |Tapfχ3Qqpx

1
q|

“ I` II` III.

For the terms II and III we shall use the Lr-boundedness of Ta for 1 ă r ă 8. To deal

with I, we use Lemma 3.7.2,

I “
ˇ

ˇ

ˇ

ż

Rdz3Q
pKpz, z ´ yq ´Kpx1, x1 ´ yqqfpyqdy

ˇ

ˇ

ˇ

ď

8
ÿ

k“0

ż

2k`1p3Qqz2kp3Qq

|Kpz, z ´ yq ´Kpx1, x1 ´ yq||fpyq|dy

ď

8
ÿ

k“0

´

ż

2k`1p3Qqz2kp3Qq

|fpyq|pdy
¯1{p´

ż

2k`1p3Qqz2kp3Qq

|Kpz, z ´ yq ´Kpx1, x1 ´ yq|p
1

dy
¯1{p1

À

8
ÿ

k“0

2´kl2kd{pdiampQqlpρ´1q´m
´ 1

2kddiampQqd

ż

2k`1p3Qq

|fpyq|pdy
¯1{p

À

8
ÿ

k“0

2´kl2kd{pdiampQqlpρ´1q´mMpfpxq

ÀMpfpxq,

provided l ´ d{p ą 0 and lpρ ´ 1q ´ m ě 0. As m “ dpρ ´ 1q, this means we require

d{p ă l ď d. In order to apply Lemma 3.7.2 we also require

d´
d

ρ
`

d

pρ
ă l ă d´

d

ρ
`

d

pρ
`

1

ρ
.

So we need to check the admissibility of the following condition

max
!d

p
, d´

d

ρ
`

d

pρ

)

ă l ă min
!

d, d´
d

ρ
`

d

pρ
`

1

ρ

)

.

Clearly d
p
ě d ´ d

ρ
` d

pρ
for 0 ă ρ ď 1, and as d

p
ă d for p ą 1, we only need to check
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whether the condition

d

p
ă d´

d

ρ
`

d

pρ
`

1

ρ

is admissible. This is equivalent to

0 ă dp1´
1

ρ
qp1´

1

p
q `

1

ρ
,

and given a fixed ρ, this is true for a p sufficiently close to 1.

So, in all,

|TapfχRdz3Qqpzq| ÀMfpxq `Mpfpxq ` |Tafpx
1
q| ` |Tapfχ3Qqpx

1
q|,

for any x1 P Q.

Raising the above estimate to a power 1 ă s ă r, integrating with respect to x1 P Q,

and raising it again to the power 1{s,

|TapfχRz3Qqpzq| ÀMfpxq `Mpfpxq `
´ 1

|Q|

ż

Q

|Tafpx
1
q|
sdx1

¯1{s

`

´ 1

|Q|

ż

Q

|Tapfχ3Qqpx
1
q|
sdx1

¯1{s

ÀMfpxq `Mpfpxq `MspTafqpxq ` }Ta}s

´ 1

|Q|

ż

3Q

|fpx1q|sdx1
¯1{s

ÀMfpxq `Mpfpxq `MspTafqpxq ` }Ta}sMsfpxq,

where we have taken supremum over all Q Q x and used the boundedness of Ta in Ls.

Thus,

NTafpxq ÀMfpxq `Mpfpxq `MspTafqpxq ` }Ta}sMsfpxq.
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Taking Lr-norms, with r ą maxpp, sq,

}NTaf}r À
`

}M}r ` }M}r{p ` }M}r{s}Ta}r ` }Ta}s}M}r{s
˘

}f}r.

As p and s may be chosen arbitrarily close to 1, NTa is bounded on Lr for any r ą 1.

Thus, an application of Theorem 1.3.4 yields

|Tafpxq| À Ar,Sfpxq.

In the case of the symbol classes Smρ,δ with m ă dpρ´ 1q, we may indeed improve the

sparse domination given by Proposition 3.7.1.

Proposition 3.7.3. Let a P Smρ,δ, with m ă dpρ ´ 1q, 0 ă ρ ď 1, 0 ď δ ă 1. Then for

every f P C80 pRdq, there exists a sparse family S such that for a.e. x P Rd,

|Tafpxq| À A1,Sfpxq.

As Ta is dominated by the sparse operators A1,S , one may of course also recover the

boundedness in Lppwq for w P Ap and 1 ă p ă 8 for such symbol classes, and obtain

quantitative bounds in terms of the Ap characteristic of the weight, see for instance [84].

It is possible to prove this pointwise control using the local mean oscillation decom-

position formula from Theorem 1.3.5. By embedding of the symbol classes, it is enough

to prove if for m “ dpρ´ 1q ´ ε, for 0 ă ε ! 1 arbitrarily small. We have that

ωλpTaf ;Qq À
1

|Q̄|

ż

Q̄

|f | `
8
ÿ

k“0

1

2kτ

´ 1

|2kQ|

ż

2kQ

|f |
¯

for some τ ą 0. To see this, write f “ f 0 ` f8, where f 0 “ fχQ̄. Denoting by cQ the
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center of the cube Q,

|Tafpxq ´ Taf
8
pcQq| ď |Taf

0
pxq| ` |Taf

8
pxq ´ Taf

8
pcQq|,

and choosing c “ Taf
8pcQq in the definition of ωλpTaf ;Qq,

ωλpTaf ;Qq ď ppTaf
0
qχQq

˚
pλ|Q|q ` sup

xPQ
|Taf

8
pxq ´ Taf

8
pcQq|.

For the second term one may proceed as in the proof of Proposition 3.7.1. In this case

we use Lemma 3.7.2 with p “ 1. As m “ dpρ ´ 1q ´ ε, choosing l “ d ` τ , with

0 ă τ ă mint1´ε
ρ
, ε

1´ρ
u, if 0 ă ρ ă 1, 0 ă τ ă ε if ρ “ 0, and 0 ă τ ă 1´ ε if ρ “ 1, which

is admissible, it is easy to see that

|Taf
8
pxq ´ Taf

8
pcQq| ď

8
ÿ

k“0

1

2kτ

´ 1

|2kQ|

ż

2kQ

|f |
¯

.

Then one only needs to check that

ppTaf
0
qχQq

˚
pλ|Q|q À

1

|Q̄|

ż

Q̄

|f |.

But this follows from the fact that Ta is of weak-type p1, 1q, since

ppTaf
0
qχQq

˚
pλ|Q|q “ inf

 

s ą 0 : dpTaf0qχQpsq ď λ|Q|
(

,

where dpTaf0qχQ is the distribution function of pTaf
0qχQ and

dpTaf0qχQpsq “ |tx P Q : |Taf
0
| ą su| ď

1

s

ż

Q̄

|f |.
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Hence for

s ě
1

λ

1

|Q|

ż

Q̄

|f |

we have dpTaf0qχQpsq ď λ|Q|, and taking s to be the infimum over the above quantities

ppTaf
0
qχQq

˚
pλ|Q|q “

1

λ

1

|Q|

ż

Q̄

|f | À
1

|Q̄|

ż

Q̄

|f |.

Now, fixing a cube Q0 by Theorem 1.3.5,

|Tafpxq´mTaf pQ0q| À
ÿ

QPS

´ 1

|Q̄|

ż

Q̄

|f |
¯

χQpxq`
ÿ

QPS

8
ÿ

k“0

1

2kτ

´ 1

|2kQ|

ż

2kQ

|f |
¯

χQpxq, (3.7.2)

for a.e. x P Q0, where S Ă DpQ0q is a sparse family. From (3.7.2) and observing that

|mTaf pQ0q| ď
}Taf}L1,8pQ0q

|Q0|
and Ta is of weak-type p1, 1q, one may proceed as Conde–Alonso

and Rey [32] to deduce Proposition 3.7.3 for a.e. x P Q0. A trick of Lerner in [86] allows

the passage from a.e. x P Q0 to a.e. x P Rd. We omit such details here.
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Chapter 4

The Carleson operator

Motivated by the study of maximal-multiplier operators, we obtain sharp pointwise and

weighted inequalities for the Carleson operator C. In particular, we prove that

|Cfpxq| ď CAr,Sfpxq

for any r ą 1, where Ar,S is the sparse operator defined in (1.3.3), and

ż

R
|Cf |pw ď C

ż

R
|f |pM tpu`1w,

for any weight w and 1 ă p ă 8. These results are obtained using the sparse operator

approach developed by Lerner and others, and presented in Section 1.3, together with

the theory of Orlicz maximal functions from Section 1.2. Indeed, we deduce the above

results for a broad class of maximally modulated Calderón–Zygmund operators which

encompasses the classical Calderón–Zygmund operators and the Carleson operator. The

above weighted inequalities are the counterparts to those of Pérez [107] for Calderón–

Zygmund operators; see (1.1.6). We also present more general two-weight inequalities in

Section 4.6.

Most of the content of this chapter may be found in the work [4], which has been
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accepted for publication.

4.1 Motivation

On a general level, given a Fourier multiplier m and writing mtpξq :“ mptξq for any t ą 0,

one may define its associated maximal multiplier operator as

T ˚mfpxq “ sup
tą0
|pmt

pfqqpxq|.

For a fixed multiplier m, one may hope to identify a maximal function Mm so that

ż

Rd
|T ˚mf |

pw À

ż

Rd
|f |pMmw (4.1.1)

for some 1 ă p ă 8. Answering this question in the setting of the multipliers mα,β would

give results for the maximal Schrödinger operator, a central operator in partial differential

equations. This question was raised at the end of Chapter 2; see (2.6.11).

In general, this might be quite a difficult problem, as it shall evidence our next ex-

ample. As discussed previously in this thesis, a precedent for Corollary 2.2.2 is the one-

dimensional variation-based result of Bennett [7]. Taking such perspective, multipliers of

global bounded variation on the real line may be seen to fall under the class α “ β “ 0

of multipliers considered in Section 2.1, and they constitute one of the easiest example in

that class. Motivated by establishing an inequality of the type (4.1.1) for the multipli-

ers mα,β, we consider the analogous question but associated to a multiplier m of global

bounded variation on the real line.

The essence of the classical Marcinkiewicz multiplier theorem is the observation that

such a multiplier often satisfies the same norm inequalities as the Hilbert transform. In

particular, if Tm denotes the associated operator to a multiplier m of global bounded
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variation, one may deduce

ż

R
|Tmf |

pw ď C

ż

R
|f |pM tpu`1w

for any weight w; this follows merely from the analogous result for the Hilbert transform

(1.1.6) after a suitable application of Minkowski’s inequality. Similarly, one may see that

results for T ˚m follow from those for the Carleson operator. Write

mptξq “

ż tξ

´8

dmpuq “

ż

R
χp´8,tξqpuqdmpuq “

ż

R
χpu,8qptξqdmpuq “

ż

R
χpu{t,8qpξqdmpuq,

where dm denotes the Lebesgue-Stieltjes measure associated to m. Defining Spu{t,8q as

the operator associated to the multiplier χpu{t,8q,

T tmfpxq “

ż

R
Spu{t,8qfpxqdmpuq,

and

T ˚mfpxq “ sup
tą0
|T tmfpxq| ď

ż

R
sup
tą0
|Spu{t,8qfpxq||dm|puq ď

ż

R
p|fpxq| ` Cfpxqq|dm|puq

À |fpxq| ` Cfpxq,

as the integral of |dm| is the total variation of m. Here C denotes the Carleson operator,

defined as

Cfpxq “ sup
αPR

ˇ

ˇ

ˇ

ˇ

p. v.

ż

R

e2πiαy

x´ y
fpyqdy

ˇ

ˇ

ˇ

ˇ

. (4.1.2)

This elementary example evidences the difficulty of studying maximal multiplier opera-

tors, as C is a much more complicated operator than the Hilbert transform, the underlying

operator behind Tm. Of course pointwise and weighted estimates for T ˚m follow from those

for C. In particular, we are able to obtain the following.
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Theorem 4.1.1. Let C be the Carleson operator. Then for any 1 ă p ă 8 there is a

constant C ă 8 such that for every weight w

ż

R
|Cf |pw ď C

ż

R
|f |pM tpu`1w. (4.1.3)

We remark that weighted inequalities for the Carleson operator have been previously

studied by many authors. Hunt and Young [73] established the Lppwq boundedness of C

for 1 ă p ă 8 and w P Ap, from which a two weight inequality with controlling maximal

operator Ms, with s ą 1, follows. Later, Grafakos, Martell and Soria [58] gave new

weighted inequalities for weights in A8, as well as vector-valued inequalities for C. More

recently, Do and Lacey [43] gave weighted estimates for a variation norm version of C

in the context of Ap theory that strengthened the results in [73]. Indeed, sparse control

and sharp weighted norm inequalities for variational Carleson have been obtained by Di

Plinio, Do and Uraltsev [41] only a few months ago. Finally, Di Plinio and Lerner [42]

obtained Lppwq bounds for C in terms of the rwsAq constants for 1 ď q ď p. Note that

inequality (4.1.3) does not fall within the scope of the classical Ap theory.

4.2 Maximally modulated Calderón-Zygmund oper-

ators

We shall prove a more general version of Theorem 4.1.1 that holds for a broad class

of maximally modulated Calderón-Zygmund operators studied previously by Grafakos,

Martell and Soria [58], and Di Plinio and Lerner [42]. Let Φ “ tφαuαPA be a family of

real-valued mesurable functions indexed by an arbitrary set A and let T be a Calderón–

Zygmund operator in Rd. The maximally modulated Calderón-Zygmund operator TΦ is

defined by

TΦfpxq “ sup
αPA

|T pMφαfqpxq|, (4.2.1)
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whereMφαfpxq “ e2πiφαpxqfpxq. We will consider operators TΦ such that for some r0 ą 1

satisfy the a priori weak-type inequalities

}TΦf}r,8 À ψprq}f}r (4.2.2)

for 1 ă r ď r0, where ψprq is a function that captures the dependence of the operator norm

on r. This definition is motivated by the Carleson operator, since it may be recovered

from (4.2.1) by setting T “ H and Φ to be the family of functions given by φαpxq “ αx

for α P R. We note that simply by taking φα ” 0 for all α, one recovers the classical

Calderón–Zygmund operators.

Implicit in the work of Di Plinio and Lerner [42] there is the following analogue of the

estimate (1.1.3) for maximally modulated Calderón-Zygmund operators.1

Theorem 4.2.1. Let TΦ be a maximally modulated Calderón-Zygmund operator satisfying

(4.2.2). Then for any s ą 1 and 1 ă p ă 8 there is a constant C ă 8 such that for any

weight w
ż

Rd
|TΦf |pw ď C

ż

Rd
|f |pMsw. (4.2.3)

Following our discussion in Section 1.1 and the remark that yields (1.1.5), for any fixed

1 ă p ă 8 and 1 ă s ă 2, the operator Ms is not a sharp controlling maximal operator.

One may address the question of obtaining optimal control for TΦ. Combining the ideas

developed by Pérez in [107, 108] with Di Plinio and Lerner’s argument [42], we obtain the

following, which constitutes the main result of this chapter.

Theorem 4.2.2. Let TΦ be a maximally modulated Calderón-Zygmund operator satisfying

(4.2.2). Then for any 1 ă p ă 8 there is a constant C ă 8 such that for any weight w

ż

Rd
|TΦf |pw ď C

ż

Rd
|f |pM tpu`1w. (4.2.4)

1This result may be seen as a consequence of the A8 theory in [58].
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This is best possible in the sense that tpu` 1 cannot be replaced by tpu.

As it is well known that the Carleson operator C satisfies the condition (4.2.2), Theorem

4.1.1 follows from this more general statement. Of course, Theorem 4.2.2 extends the

estimate (1.1.6) for Calderón–Zygmund operators. As observed for (1.1.6), given 1 ă p ă

8, the control given by the maximal operator M tpu`1 is optimal here.

Indeed Theorem 4.2.2 may be viewed as a corollary of a more precise statement, that

allows one to replace M tpu`1 by a sharper class of maximal operators. This strategy builds

up on the work of Pérez [107] for the case of unmodulated Calderón-Zygmund operators,

involving Young functions A and their associated Orlicz maximal functions MA.

Theorem 4.2.3. Let TΦ be a maximally modulated Calderón-Zygmund operator satisfying

(4.2.2) and 1 ă p ă 8. Suppose that A is a doubling Young function satisfying

ż 8

c

ˆ

t

Aptq

˙p1´1
dt

t
ă 8 (4.2.5)

for some c ą 0. Then there is a constant C ă 8 such that for any weight w

ż

Rd
|TΦf |pw ď C

ż

Rd
|f |pMAw. (4.2.6)

In the unmodulated setting, Pérez [107] pointed out that condition (4.2.5) is necessary

for (4.2.6) to hold for the Riesz transforms. Hence it also becomes a necessary condition

for Theorem 4.2.3 to be stated in such a generality, characterizing the class of Young

functions for which (4.2.6) holds.

4.3 Control by sparse operators

It was observed in [42] that maximally modulated Calderón–Zygmund operators satisfying

the weak-type condition (4.2.2) are controlled, in Banach space norm, by the sparse

operators Ar,S . The equivalent to Theorem 1.3.3 in this case is the following.
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Proposition 4.3.1 ([42]). Let X be a Banach function space over Rd equipped with

Lebesgue measure. Let TΦ be a maximally modulated Calderón-Zygmund operator satis-

fying (4.2.2). Then

}TΦf}X À inf
1ărďr0

"

ψprq sup
D,S

}Ar,Sf}X
*

,

where the supremum is taken over all dyadic grids D and all sparse families S Ă D.

As in the case of Calderón–Zygmund operators, this was achieved using the local

mean oscillation decomposition formula in Theorem 1.3.5. Observe that Proposition 4.3.1

reduces the proof of Theorem 4.2.3 to its equivalent statement for Ar,S , as long as it is

uniform on the sparse families S and the dyadic grids D.

For those maximally modulated Calderón–Zygmund operators satisfying strong-type

estimates, that is,

}TΦf}r À }f}r (4.3.1)

for 1 ă r ď r0, where r0 ą 1, one may obtain pointwise control by the sparse operators

Ar,S ; this might also be possible for those only satisfying the weak-type estimates (4.2.2),

although we do not pursue this subtle point here. Of course this is the case of the Carleson

operator C, as it is well known that C is bounded in Lr for 1 ă r ă 8; this is the celebrated

Carleson–Hunt theorem, see for instance [25, 72, 53, 78].

Theorem 4.3.2. Let TΦ be a maximally modulated Calderón–Zygmund operator satisfy-

ing (4.3.1). Then, for any 1 ă r ď r0 and every compactly supported function f P Lr,

there exists a sparse family S such that

|TΦfpxq| ď CAr,Sfpxq. (4.3.2)

Proof. This is a corollary of Lerner’s general Theorem 1.3.4, and the proof is very similar

to that of Proposition 3.7.1. In view of that theorem, it suffices to show that the grand
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maximal function NTΦ is of weak type pr, rq; we indeed prove that is bounded on Lr.

Given x P Rd, let Q Q x, z P Q, and consider another arbitrary point x1 P Q. By the

triangle inequality,

|TΦ
pfχRdz3Qqpzq| ď |T

Φ
pfχRdz3Qqpzq ´ T

Φ
pfχRdz3Qqpx

1
q| ` |TΦ

pfχRdz3Qqpx
1
q| “ I` II.

An estimate for the term I is standard,

|TΦ
pfχRdz3Qqpzq ´ T

Φ
pfχRdz3Qqpx

1
q|

“
ˇ

ˇ sup
αPA

|T pMφαfχRdz3Qqpzq| ´ sup
αPA

|T pMφαfχRdz3Qqpx
1
q|
ˇ

ˇ

ď sup
αPA

|T pMφαfχRdz3Qqpzq ´ T pMφαfχRdz3Qqpx
1
q|

“ sup
αPA

ˇ

ˇ

ˇ

ż

Rdz3Q
fpyqe2πiφαpyqpKpz, yq ´Kpx1, yqqdy

ˇ

ˇ

ˇ

ď

8
ÿ

k“0

ż

2k`1p3Qqz2kp3Qq

|fpyq||Kpz, yq ´Kpx1, yq|dy

À

8
ÿ

k“0

ż

2k`1p3Qqz2kp3Qq

|fpyq|
|z ´ x1|δ

|x1 ´ y|d`δ
dy

À

8
ÿ

k“0

ż

2k`1p3Qqz2kp3Qq

|fpyq|
`pQqδ

p2k`pQqqd`δ
dy

ď

8
ÿ

k“0

1

2kδ
1

p2k`pQqqd

ż

2k`1p3Qq

|fpyq|dy

À

8
ÿ

k“0

2´kδMfpxq

ÀMfpxq.

For the second term, we crudely estimate

II ď |TΦfpx1q| ` |TΦ
pfχ3Qqpx

1
q|.
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Putting both estimates together,

|TΦ
pfχRdz3Qqpzq| ÀMfpxq ` |TΦfpx1q| ` |TΦ

pfχ3Qqpx
1
q|

for any x1 P Q. Raising the above estimate to a power 1 ă s ă r, integrating with respect

to x1 P Q, and raising it again to the power 1{s,

|TΦ
pfχRdz3Qqpzq| ÀMfpxq `

´ 1

|Q|

ż

Q

|TΦfpx1q|sdx1
¯1{s

`

´ 1

|Q|

ż

Q

|TΦ
pfχ3Qqpx

1
q|
sdx1

¯1{s

ÀMfpxq `MspT
Φfqpxq ` }TΦ

}s

´ 1

|Q|

ż

3Q

|fpx1q|sdx1
¯1{s

ÀMfpxq `MspT
Φfqpxq ` }TΦ

}sMsfpxq,

where we have taken supremum over all Q Q x and used the boundedness of TΦ in Ls.

Thus,

NTΦfpxq ÀMfpxq `MspT
Φfqpxq ` }TΦ

}sMsfpxq,

and taking Lr norms, as 1 ă s ă r,

}NTΦf}r À
`

}M}r ` }M}r{s}T
Φ
}r ` }T

Φ
}s}M}r{s

˘

}f}r.

Then NTΦ is bounded in Lr and (4.3.2) follows from an application of Theorem 1.3.4.

We remark that the proofs given in [87, 32, 79] for the pointwise control of Calderón–

Zygmund operators in Theorem 2.2.1 do not seem to extend to the case of the Carleson

operator; this is in contrast with the most recent proof provided by Lerner.

4.4 Proof of Theorem 4.2.3

In this section we give a proof of Theorem 4.2.3 and we use it, thanks to an observation

due to Pérez [107, 108], to deduce Theorem 4.2.2. Our proof follows a similar pattern of

117



a proof of Di Plinio and Lerner in [42].

As seen in Section 4.3, weighted inequalities for TΦ can be essentially reduced to the

uniform weighted inequalities for the sparse operators Ar,S . Observe that this does not

require the pointwise bound from Theorem 4.3.2; for this purposes the prior Theorem

4.3.1 suffices. In particular, we have the following estimate.

Theorem 4.4.1. Let 1 ă p ă 8, D be a dyadic grid and S Ă D a sparse family of cubes.

Suppose that A is a doubling Young function satisfying (4.2.5). Then there is a constant

Cd,p,A ă 8 independent of S, D and the weight w such that

}Ar,Sf}Lppwq ď Cd,p,A

ˆˆ

p` 1

2r

˙1˙1{r

}f}LppMAwq

holds for any 1 ă r ă p`1
2

.

Proof. We may assume that f ě 0. We first linearise the operator Ar,S ; recall that

Ar,Sfpxq “
ÿ

QPS

1

|Q̄|

ˆ
ż

Q̄

f r
˙1{r

χQpxq.

For any Q, by Lp duality, there exists gQ supported in Q̄ such that 1
|Q̄|

ş

Q̄
gr
1

Q “ 1 and

ˆ

1

|Q̄|

ż

Q̄

f r
˙1{r

“
1

|Q̄|

ż

Q̄

fgQ.

Of course the sequence of functions tgQuQ depends on the function f . Given such a

sequence, we can define a linear operator Lf by

Lfhpxq “
ÿ

QPS

ˆ

1

|Q̄|

ż

Q̄

hgQ

˙

χQpxq.

Note that evaluating in f one recovers Ar,Sf , that is Lf pfq “ Ar,Sf . Then, in order to

obtain an estimate for }Ar,S}Lppwq independent of S and D, it is enough to obtain the
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corresponding estimate for }Lfh}Lppwq uniformly in the functions gQ. For ease of notation

we remove the dependence of f in Lf . By duality, the estimate

}Lh}Lppwq ď Cd,p,A

ˆ

´p` 1

2r

¯1
˙1{r

}h}LppMAwq

is equivalent to

}L˚h}Lp1 ppMAwq1´p
1
q ď Cd,p,A

ˆ

´p` 1

2r

¯1
˙1{r

}h}Lp1 pw1´p1 q (4.4.1)

where L˚ denotes the L2pRdq-adjoint operator of L. Since A satisfies (4.2.5), one can

apply Theorem 1.2.2 with p replaced by p1. Using (1.2.3) with u ” 1, the estimate (4.4.1)

follows from

}L˚h}Lp1 ppMAwq1´p
1
q ď Cd

ˆ

´p` 1

2r

¯1
˙1{r

}Mh}Lp1 ppMAwq1´p
1
q. (4.4.2)

We focus then on obtaining (4.4.2). By duality, there exists η ě 0 such that }η}LppMAwq “ 1

and

}L˚h}Lp1 ppMAwq1´p
1
q “

ż

Rd
L˚phqη “

ż

Rd
hLη.

By Hölder’s inequality and the Lr
1

boundedness of gQ,

ż

Rn
hLη “

ÿ

QPS

ˆ

1

|Q̄|

ż

Q̄

ηgQ

˙
ż

Q

h ď
ÿ

QPS

ˆ

1

|Q̄|

ż

Q̄

ηr
˙1{r ż

Q

h

ď
ÿ

QPS

ˆ

1

|Q̄|

ż

Q̄

ηr
˙1{r ˆ

1

|Q̄|

ż

Q̄

h

˙

Cd|Q|

“ Cd
ÿ

QPS

˜

1

|Q̄|

ż

Q̄

ηr
ˆ

1

|Q̄|

ż

Q̄

h

˙
r
p`1

¸1{r
ˆ

1

|Q̄|

ż

Q̄

h

˙
p
p`1

|Q|. (4.4.3)
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Recall that by definition of the Hardy–Littlewood maximal operator

1

|Q̄|

ż

Q̄

hpxqdx ďMhpyq (4.4.4)

holds for every y P Q̄. Combining this and the sparseness of S

(4.4.3) ď Cd
ÿ

QPS

ˆ

1

|Q̄|

ż

Q̄

´

pMhq
1
p`1η

¯r
˙1{r ˆ

1

|Q̄|

ż

Q̄

h

˙
p
p`1

|EpQq|

ď Cd
ÿ

QPS

ż

EpQq

MrppMhq
1
p`1ηqpMhq

p
p`1

ď Cd

ż

Rd
MrppMhq

1
p`1ηqpMhq

p
p`1 , (4.4.5)

where we have used that pEpQqqQPS are pairwise disjoint and that (4.4.4) also holds for

y P EpQq Ď Q Ď Q̄. By Hölder’s inequality with exponents ρ “ p`1
2

and ρ1 “ p`1
p´1

,

(4.4.5) “ Cd

ż

Rd
MrppMhq

1
p`1ηqpMAwq

1
p`1 pMhq

p
p`1 pMAwq

´ 1
p`1

ď Cd}MrppMhq
1
p`1ηq}

L
p`1

2 ppMAwq1{2q
}Mh}

p
p`1

Lp1 ppMAwq1´p
1
q
. (4.4.6)

For r ă p`1
2

, we can apply the classical Fefferman–Stein inequality described in (1.1.2) to

the first term in (4.4.6)

}MrppMhq
1
p`1ηq}

L
p`1

2 ppMAwq1{2q

ď Cd

ˆ

´p` 1

2r

¯1
˙1{r

}pMhq
1
p`1η}

L
p`1

2 pMppMAwq1{2qq
,

and by Proposition 1.2.3

}pMhq
1
p`1η}

L
p`1

2 pMppMAwq1{2qq
ď Cd}pMhq

1
p`1η}

L
p`1

2 ppMAwq1{2q
.
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Finally, by an application of Hölder’s inequality with ρ “ 2p1 and ρ1 “ 2p
p`1

}pMhq
1
p`1η}

L
p`1

2 ppMAwq1{2q
“

ˆ
ż

Rd

´

pMhq
1
2 pMAwq

´ 1
2p

¯´

η
p`1

2 pMAwq
p`1
2p

¯

˙
2
p`1

ď }Mh}
1
p`1

Lp1 ppMAwq1´p
1
q
}η}LppMAwq

“ }Mh}
1
p`1

Lp1 ppMAwq1´p
1
q
,

where the last equality holds since }η}LppMAwq “ 1. Altogether,

}L˚h}Lp1 ppMAwq1´p
1
q ď Cd

ˆ

´p` 1

2r

¯1
˙1{r

}Mh}Lp1 ppMAwq1´p
1
q.

This concludes the proof.

We are now able to prove Theorem 4.2.3.

Proof of Theorem 4.2.3. By Proposition 4.3.1, it is enough to show that for any 1 ă p ă

8,

inf
1ărďr0

"

ψprq sup
D,S

}Ar,Sf}Lppwq
*

À }f}LppMAwq. (4.4.7)

By Theorem 4.4.1,

sup
D,S

}Ar,Sf}Lppwq ď Cd,p,A

ˆˆ

p` 1

2r

˙1˙1{r

}f}LppMAwq (4.4.8)

for any 1 ă r ă p`1
2

, since the bound was independent of D, S.

For every p ą 1, consider

rp “ min
!

r0, 1`
p´ 1

3

)

“ min
!

r0,
p` 2

3

)

.
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We have that 1 ă rp ď r0 and rp ă
p`1

2
. Then

}TΦf}Lppwq À ψprpq sup
D,S

}Arp,Sf}Lppwq ď Cd,p,A

ˆˆ

p` 1

2rp

˙1˙1{rp

}f}LppMAwq.

This concludes the proof.

Observe that this proof of Theorem 4.2.3 could be extended to other operators whose

bounds depend on a suitable way on those of Ar,S . This will be the case of the vector-

valued extension presented in Section 4.5.1.

Now one may deduce Theorem 4.2.2 from Theorem 4.2.3 via the following observation

due to Pérez [107, 108].

Proof of Theorem 4.2.2. Using Theorem 4.2.3, it is enough to prove that there exists a

Young function A satisfying (4.2.5) such that

MAwpxq ď CM tpu`1wpxq

with C independent of w. Let Aptq “ t logtpu
p1 ` tq. It is an elementary computation

to show that A satisfies (4.2.5) for any c ą 0. Then it suffices to prove that there is a

constant C ă 8 such that for every cube Q

}w}A,Q ď C
1

|Q|

ż

Q

M tpuwpxqdx “: λQ.

This is equivalent to showing that

›

›

›

›

w

λQ

›

›

›

›

A,Q

ď 1,
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which by definition of the Luxemburg norm will follow from

1

|Q|

ż

Q

A

ˆ

wpxq

λQ

˙

dx “
1

|Q|

ż

Q

wpxq

λQ
logtpu

ˆ

1`
wpxq

λQ

˙

dx ď 1.

Iterating tpu times the inequality

ż

Q

fpxq logkp1` fpxqqdx ď C̃

ż

Q

Mfpxq logk´1
p1`Mfpxqqdx

from [124], with f “ w{λQ, we obtain

1

|Q|

ż

Q

wpxq

λQ
logtpu

ˆ

1`
wpxq

λQ

˙

dx ď
C̃tpu

|Q|

ż

Q

M tpu

ˆ

w

λQ

˙

pxqdx.

By choosing C “ C̃tpu ă 8, we have

1

|Q|

ż

Q

A

ˆ

wpxq

λQ

˙

dx ď 1.

Thus MAwpxq ďM tpu`1wpxq, as required.

Finally, it is not possible to replace tpu` 1 by tpu in the statement of Theorem 4.2.2,

as the resulting inequality is shown to be false for the (unmodulated) Hilbert transform

[107].

4.5 Further remarks

4.5.1 Vector-valued extensions

Theorem 4.2.3 has natural vector-valued extensions. Given a sequence of functions f “

pfjqjPN, consider the vector-valued extension of TΦ, given by T̄Φf “ pTΦfjqjPN. For q ě 1,
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we define the function |f |q by

|fpxq|q “
´

8
ÿ

j“1

|fjpxq|
q
¯1{q

.

As in the case of TΦ, we will assume that the operator T̄Φ satisfies the a priori weak type

inequalities

}T̄Φf}Lr,8p`qq À ψprq}f}Lrp`qq (4.5.1)

for 1 ă r ď r0 and some r0 ą 1. Theorem 4.2.3 extends naturally for T̄Φ in Lpp`qq.

Theorem 4.5.1. For q ě 1, let T̄Φ be a vector-valued maximally modulated Calderón-

Zygmund operator satisfying (4.5.1) and 1 ă p ă 8. Suppose that A is a doubling Young

function satisfying
ż 8

c

ˆ

t

Aptq

˙p1´1
dt

t
ă 8

for some c ą 0. Then there is a constant C ă 8 such that for any weight w

ż

Rd
|T̄Φfpxq|pqwpxqdx ď C

ż

Rd
|fpxq|pqMAwpxqdx.

Theorem 4.5.1 follows from Theorem 4.2.3 by controlling the Banach space norm of

|T̄Φf |q by that of Ar,S |f |q. This may be done in the same way as for standard Calderón–

Zygmund operators; for instance applying Proposition 1.3.5 to |T̄Φf |q. We do not provide

any further detail here, and we just note that it relies on the following standard observa-

tion.

Proposition 4.5.2. Let q ě 1 and T̄Φ be a vector-valued maximally modulated Calderón-

Zygmund operator satisfying (4.5.1). Then, for any 1 ă r ď r0,

ωλp|T̄
Φf |q;Qq À ψprq

ˆ

1

|Q̄|

ż

Q̄

|f |rq

˙1{r

`

8
ÿ

m“0

1

2mδ

ˆ

1

|2mQ|

ż

2mQ

|f |q

˙

. (4.5.2)
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The proof of this proposition is quite standard and very close to the ones already used

in the proofs of Proposition 3.7.1, Proposition 3.7.2 or Theorem 4.3.2; see also [111] for a

similar argument in the case of vector-valued Calderón-Zygmund operators.

4.5.2 The Polynomial Carleson operator

Let D P N. The polynomial Carleson operator is defined as

CDfpxq :“ sup
degpP qďD

ˇ

ˇ

ˇ
p. v.

ż

R

eiP pyq

y
fpx´ yqdy

ˇ

ˇ

ˇ
, (4.5.3)

where the supremum is taken over all real-coefficient polynomials P of degree at most D.

Note that for D “ 1 one recovers the definition of the Carleson operator.

It was conjectured by Stein that the operator CD is bounded in Lp for 1 ă p ă 8.

In the case of periodic functions, this conjecture has been recently solved by Lie [90] via

time-frequency analysis techniques; see [91] for his previous work for C2.

One may write CDfpxq “ supdegpP qďD |H
TpMPfqpxq| for x P T, where MPfpxq “

eiP pxqfpxq and HT denotes the periodic Hilbert transform. Straightforward modifications

in the proof of Theorem 4.2.2 yield a similar result for the periodic case and thus, for any

1 ă p ă 8 there is a constant C ă 8 such that for any weight w

ż

T
|CDfpxq|pwpxqdx ď C

ż

T
|fpxq|pM tpu`1wpxqdx.

4.5.3 Lacunary Carleson operator

Let Λ “ tλjuj be a lacunary sequence of integers, that is, λj`1 ě θλj for all j and for

some θ ą 1 and consider the lacunary Carleson maximal operator

CΛfpxq “ sup
jPN

ˇ

ˇ

ˇ

ˇ

p. v.

ż

R

e2πiλjy

x´ y
fpyqdy

ˇ

ˇ

ˇ

ˇ

.
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Of course one has the pointwise estimate CΛfpxq ď Cfpxq, so the weighted inequality

(4.2.4) trivially holds for CΛ. This may be reconciled with a similar result for CΛ obtained

by more classical techniques. Consider the classical version of the lacunary Carleson

operator in terms of the lacunary partial Fourier integrals. Following the lines of [22],

S˚Λfpxq “ sup
k
|Sλkfpxq| ď cMfpxq `

´

ÿ

k

|Sλkpf ˚ ψkqpxq|
2
¯1{2

,

where zSλkfpξq :“ χr´λk,λkspξq
pfpξq, ψ is a suitable Schwartz function, and pψkpξq :“

pψpθ´kξq. Since Sλk satisfies the same Lebesgue space inequalities as the Hilbert transform,

from the estimate (1.1.6) and the weighted Littlewood–Paley theory in Section 1.4, one

may deduce the inequality (4.2.4) for CΛ with a higher number of compositions of M .

4.6 More general two-weight inequalities

We conclude this chapter with the study of two-weight inequalities for Carleson-like op-

erators from a different point of view. In this case, we look for sufficient conditions on a

pair of weights pu, vq for the inequality

ż

Rd
|TΦf |pu ď Cp,d,u,v

ż

Rd
|f |pv (4.6.1)

to hold. Observe that this more general formulation encodes the inequalities (4.1.3), as we

have shown that whenever v “ M tpu`1u, the above inequality holds with Cp,d,u,v “ Cp,d.

Before stating sufficient conditions on pu, vq, we briefly survey the two-weight problem for

Calderón–Zygmund operators.

4.6.1 Testing conditions and sufficient conditions

The problem of two-weight inequalities is of considerable more difficulty than the one-

weight problem. As mentioned in Section 1.1 and in contrast with the one-weight case,
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the condition pu, vq P Ap is necessary but not sufficient to guarantee M,H : Lppvq Ñ

Lppuq. In the case of the Hardy-Littlewood maximal operator, Sawyer [119] showed that

M : Lppvq Ñ Lppuq if and only if the pair of weights pu, vq satisfies, for every cube Q,

ż

Q

pMpv1´p1χQqq
pu ď C

ż

Q

v1´p1 .

Sawyer [120] also characterised those weights pu, vq that give two-weight estimates for

fractional integrals. In this case, Iα : Lppvq Ñ Lppuq if and only if

ż

Q

pIαpv
1´p1χQqq

pu ď C

ż

Q

v1´p1 (4.6.2)

and
ż

Q

pIαpuχQqq
p1v1´p1

ď C

ż

Q

u (4.6.3)

for every cube Q Ă Rd. These conditions are typically referred to as testing or Sawyer

conditions. Note that the linearity and self-adjointness of the operator Iα makes appear

the dual testing condition (4.6.3).

The above result for fractional integrals leads one to conjecture whether the testing

conditions (4.6.2) and (4.6.3) give also a characterisation for a pair of weights in the

case of two-weighted estimates for Calderón-Zygmund operators. Partial progress has

been done in that direction; we should mention the work of Nazarov, Treil and Volberg

[104, 105] and Lacey, Sawyer, Shen and Uriarte-Tuero [80]. In a recent paper, Hytönen

[74] characterised those weights that satisfy a two-weighted L2 inequality for the Hilbert

transform; such characterisation is given in terms of the testing conditions and a variant

of the two-weight A2 condition.

There is an alternative approach in the study of two-weight inequalities based on

just looking for sufficient conditions on the pair of weights pu, vq. Despite not being a
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characterisation of the weights, those sufficient conditions are given by general conditions

on the weights that do not involve the operator itself; note that the testing conditions

(4.6.2) and (4.6.3) involve the operator under study. The sufficient conditions are close

in spirit to the two-weight Ap condition. Note that (1.1.1) can be rewritten as

ru, vsAp “ sup
QĂRd

}u1{p
}p,Q}v

´1{p
}p1,Q ă 8.

The idea consists in making the Lp and Lp
1

norms larger, losing the necessity given by

the Ap condition but obtaining sufficient conditions instead.

In this direction, Neugebauer [106] showed that if for some r ą 1

sup
QĂRd

}u1{p
}rp,Q}v

´1{p
}rp1,Q ă 8,

then M,T : Lppvq Ñ Lppuq. Pérez [108] refined Neugebauer’s result in the case of the

Hardy-Littlewood maximal operator, showing that M : Lppvq Ñ Lppuq if

sup
QĂRd

}u1{p
}p,Q}v

´1{p
}B,Q ă 8

for every cube Q Ă Rd, where B is a doubling Young function such that B̄ P Bp.

In the case of Calderón-Zygmund operators, Cruz-Uribe and Pérez [37] conjectured

that a sufficient condition for T : Lppvq Ñ Lppuq is

sup
QĂRd

}u1{p
}A,Q}v

´1{p
}B,Q ă 8

where A,B are doubling Young functions such that Ā P Bp1 and B̄ P Bp. After some

partial results by Cruz-Uribe, Martell and Pérez [36], and Lerner [83], Lerner [84] finally

proved that this conjecture is true, reducing its proof to sparse operators. Following
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this idea, we give a sufficient condition on a pair of weights for a maximally modulated

Calderón-Zygmund operator to satisfy a two-weight inequality.

4.6.2 Maximally modulated Calderón-Zygmund operators

One may adapt the proof of Theorem 4.2.3 to obtain a two weighted inequality for max-

imally modulated Calderón-Zygmund operators provided the weights satisfy a so-called

bump condition.

Theorem 4.6.1. Let TΦ be a maximally modulated Calderón-Zygmund operator satisfying

(4.2.2) and 1 ă p ă 8. Let A and B be doubling Young functions such that Ā P Bp1 and

B̄ P B p`1
2r

. Assume that pu, vq is a pair of weights satisfying

sup
QĂRd

}u1{p
}A,Q}v

´r{p
}

1{r
B,Q ă 8

for some r ă mintr0, pu. Then there exists a constant C “ Cd,p,A,B,u,v ă 8 such that

ż

Rd
|TΦf |pu ď C

ż

Rd
|f |pv. (4.6.4)

There is an alternative way of proving Theorem 4.6.1 that does not involve any lin-

earisation and adjoint operator argument. This approach follows the ideas of a similar

two-weighted inequality for Calderón-Zygmund operators proved by Lerner in [84].

Alternative proof. By Proposition 4.3.1 it is enough to see that

}Ar,Sf}Lppuq ď C}f}Lppvq

uniformly on the dyadic sparse family S. By duality there exists g P Lp
1

, }g}p1 “ 1 such

that
ˆ
ż

Rd
Ar,Sfpxqpupxqdx

˙1{p

“

ˇ

ˇ

ˇ

ż

Rd
Ar,Sfpxqupxq1{pgpxqdx

ˇ

ˇ

ˇ
.
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Then,

ˇ

ˇ

ˇ

ż

Rd
pAr,Sfqu1{pg

ˇ

ˇ

ˇ
ď

ÿ

QPS

ˆ

1

|Q̄|

ż

Q̄

|f |r
˙1{r ż

Q

u1{p
|g|

ď
ÿ

QPS

ˆ

1

|Q̄|

ż

Q̄

|f |rvr{pv´r{p
˙1{r ˆ

1

|Q̄|

ż

Q̄

u1{p
|g|

˙

|Q̄|

À
ÿ

QPS
}f rvr{p}

1{r

B̄,Q̄
}v´r{p}

1{r

B,Q̄
}u1{p

}A,Q̄}g}Ā,Q̄|EpQq|

ď
ÿ

QPS

ż

EpQq

pMB̄pf
rvr{pqq1{rMĀg

ď

ż

Rd
pMB̄pf

rvr{pqq1{rMĀg

ď }MB̄pf
rvr{pq}

1{r
p{r}MĀg}p1

À }f rvr{p}
1{r
p{r}g}p1

“ }f}Lppvq,

where we have used Hölder’s inequality for Young functions, the sparseness of the family

S and the boundedness of the operators MĀ and MB̄ in Lp
1

and Lp{r respectively.

We should remark that in the above proof it is enough that B̄ P Bp{r instead of the

stronger condition B̄ P B p`1
2r

that one would obtain following the proof of Theorem 4.2.3.

Remark 4.6.2. The obvious vector-valued extensions considered in Section 4.5.1 also

hold for this more general two-weighted case.

Remark 4.6.3. One may recover the Fefferman-Stein weighted inequalities (4.2.6) from

Theorem 4.6.1 by considering the pair of weights pw,MΓwq, where Γptq “ Apt1{pq and the

Young function Bptq “ tpp{rq
1`ε, that satisfies B̄ P Bp{r. In this case, the constant C in

(4.6.4) does not depend on w, since

rw,MΓwsA,B “ sup
QĂRd

}w1{p
}A,Q}pMΓwq

´r{p
}

1{r
B,Q
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“ sup
QĂRd

}w}
1{p
Γ,Q

ˆ

1

|Q|

ż

Q

pMΓwq
´pr{pqppp{rq1`εq

˙
1

pp{rq1`ε
1
r

ď sup
QĂRd

ˆ

1

|Q|

ż

Q

pMΓwq
´pr{pqppp{rq1`εq

pMΓwq
p1{pqppp{rq1`εqr

˙
1

pp{rq1`ε
1
r

“ sup
QĂRd

ˆ

1

|Q|

ż

Q

1

˙
1

pp{rq1`ε
1
r

“ 1,

where the second equality follows from the definition of Luxemburg norm.

4.6.3 Multilinear weighted inequalities

The alternative proof given for Theorem 4.6.1 in the previous section has the advantage

that it does not involve any linear duality, and it can thus be adapted to a multilinear

setting. In particular, we are going to see how it applies to multilinear Calderón-Zygmund

operators.

The theory of multilinear Calderón-Zygmund operators was formally introduced by

Grafakos and Torres in [59]. Given 2 ď k ď d, we say that a multilinear operator T is a

multilinear (or k-linear) Calderón-Zygmund operator if it is bounded from Lq1ˆ¨ ¨ ¨ˆLqk Ñ

Lq for some 1 ď q1, . . . , qk ă 8 satisfying 1
q
“ 1

q1
` ¨ ¨ ¨ 1

qk
and if it can be represented as

T pf1, . . . , fkqpxq “

ż

pRdqk
Kpx, y1, . . . , ykqf1py1q ¨ ¨ ¨ fkpykqdy1 ¨ ¨ ¨ dyk

for all x R Xkj“1 supp fj, where the kernel K : pRdqk`1z∆ Ñ R, with ∆ “ tpx, y1, ¨ ¨ ¨ , ykq :

x “ y1 “ ¨ ¨ ¨ “ yku, satisfies the following size condition

|Kpy0, y1, . . . , ykq| ď
A

p
řk
l,m“0 |yl ´ ym|q

kd
,
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and the regularity condition

|Kpy0, . . . , yj, . . . , ykq ´Kpy0, . . . , y
1
j, . . . , ykq| ď

A|yj ´ y
1
j|
δ

p
řk
l,m“0 |yl ´ ym|q

kd`δ

for some δ ą 0 and all 0 ď j ď k, whenever |yj ´ y
1
j| ď

1
2

max0ďlďk |yj ´ yl|.

These operators satisfy analogous Lebesgue space bounds to their linear counterparts,

that is

}T pf1, . . . , fkq}Lp ď C
k
ź

j“1

}fj}Lpj ,

if 1 ă pj ă 8 and 1
p
“ 1

p1
` . . . 1

pk
, and

}T pf1, . . . , fkq}Lp,8 ď C
k
ź

j“1

}fj}Lpj

in case there is pj “ 1. Recently, a weighted theory for these operators has been developed

in terms of a multilinear version of the classical Ap theory, see for example [88, 40, 89].

As in Section 4.6.2, it is possible to obtain a sufficient condition on a tuple of weights

pu, v1, . . . , vkq to have T : Lp1pv1q ˆ ¨ ¨ ¨ ˆ Lpkpvkq Ñ Lppuq, with a very similar proof to

the one given for Theorem 4.6.1.

Theorem 4.6.4. Let 1 ă p1, . . . , pk ă 8 and p ě 1 such that 1
p
“ 1

p1
` ¨ ¨ ¨ ` 1

pk
. Let A,

B1, . . . , Bk be doubling Young functions such that Ā P Bp1 and B̄j P Bpj for j “ 1, . . . , k.

If pu, v1, . . . , vkq are weights such that

sup
QĂRd

}u1{p
}A,Q

k
ź

j“1

}v
´1{pj
j }Bj ,Q ă 8,

then

}T pf1, . . . , fkq}Lppuq ď C
k
ź

j“1

}fj}Lpj pvjq.

132



Proof. A multilinear version of Proposition 4.3.1 in [40] allows one to reduce the proof to

the multilinear dyadic sparse operators

A1,Spf1, . . . , fkqpxq :“
ÿ

QPS

k
ź

j“1

ˆ

1

|Q̄|

ż

Q̄

|fj|

˙

χQpxq.

By duality there exists g P Lp
1

, }g}p1 “ 1 such that

ˆ
ż

Rd
pASpf1, . . . , fkqq

pu

˙1{p

“

ˇ

ˇ

ˇ

ż

Rd
ASpf1, . . . , fkqu

1{pg
ˇ

ˇ

ˇ
.

Then,

ˇ

ˇ

ˇ

ż

Rd
ASpf1, . . . , fkqu

1{pg
ˇ

ˇ

ˇ
ď

ÿ

QPS

k
ź

j“1

ˆ

1

|Q̄|

ż

Q̄

|fj|

˙
ż

Q

u1{p
|g|

“
ÿ

QPS

k
ź

j“1

ˆ

1

|Q̄|

ż

Q̄

|fj|v
1{pj
j v

´1{pj
j

˙ˆ

1

|Q̄|

ż

Q̄

u1{p
|g|

˙

|Q̄|

À
ÿ

QPS

k
ź

j“1

}fjv
1{p
j }B̄,Q̄}v

´1{pj
j }B,Q̄}u

1{p
}A,Q̄}g}Ā,Q̄|EpQq|

À
ÿ

QPS

ż

EpQq

MĀg
k
ź

j“1

MB̄pfjv
1{pj
j q

ď

ż

Rd
MĀg

k
ź

j“1

MB̄pfjv
1{pj
j q

ď }MĀg}p1
k
ź

j“1

}MB̄pfv
1{pjq}pj

ď }g}p1
k
ź

j“1

}fv1{pj}pj

“

k
ź

j“1

}f}Lpj pvjq,

using sparseness and multilinear Hölder’s inequality.

As a consequence of Theorem 4.6.4 one can get the following weighted Fefferman-Stein
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inequality for multilinear Calderon-Zygmund operators; recall Remark 4.6.3 in the linear

case for the same kind of result.

Corollary 4.6.5. Let T be a multilinear Calderón-Zygmund operator. Let p ě 1 and

1 ă p1, . . . , pk ă 8 satisfying 1
p
“ 1

p1
` ¨ ¨ ¨ ` 1

pk
. Let A and Γ be doubling Young functions

satisfying Γptpq “ Āptq P Bp1. Then there exists a constant C ă 8 such that for every

weight w,
ż

Rd
|T pf1, . . . , fkq|

pw ď C
k
ź

j“1

ˆ
ż

Rd
|fj|

pjMΓw

˙p{pj

. (4.6.5)

Proof. It is enough to apply Theorem 4.6.4 with the tuple pw,MΓw, . . . ,MΓwq and the

Young functions Bjptq “ tp
1
j`ε for j “ 1, . . . , k.

Corollary 4.6.5 allows one to recover the result obtained by Hu [70] via different meth-

ods; Hu obtained the above result by induction on the level of linearity k and using the

linear result (Theorem 1.1.6) as the base case.

Remark 4.6.6. As in Theorem 4.2.2, taking Γptq “ t logtpu
p1` tq one obtains (4.6.5) with

M tpu`1 in the place of MΓ.
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Chapter 5

The Fourier restriction

conjecture: a multilinear

reduction

The Fourier restriction phenomenon is of central importance in Euclidean harmonic anal-

ysis, and it has been a main object of study over the last decades. This phenomenon

consists in studying whether the Fourier transform of a function may be meaningfully re-

stricted to a k-dimensional manifold S in Rd; in our discussion we only concern ourselves

with the case of S being a hypersurface in Rd.

If a function f P L1pRdq, the Riemann-Lebesgue lemma ensures that pf is a continuous

function and thus it may be restricted to any subset of Rd. However, if a function f P

LppRdq for 1 ă p ď 2, the Hausdorff–Young inequality only ensures that pf P Lp
1

pRdq and,

in general, it may not be well restricted to sets of measure zero. In the late 1960’s, Stein

made the remarkable observation that under certain appropriate curvature hypothesis on

S, there exists 1 ă p0pSq ă 2 such that every f P LppRdq, with 1 ď p ď p0pSq, has

a Fourier transform that restricts to S; this is due to LppRdq ´ Lqpdσq bounds on the

restriction operator RSf “ pf |S, where dσ is the induced Lebesgue measure on S.
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Establishing the sharp Lebesgue exponents 1 ď p, q ď 8 for which the restriction

of the Fourier transform to a manifold S defines a bounded map from LppRdq ´ Lqpdσq

constitutes the so-called Fourier restriction conjecture. This conjecture is of crucial im-

portance due to its numerous connections with many other problems and disciplines, such

as the Kakeya [51, 11, 145] or Bochner–Riesz conjectures [20, 135], local smoothing [123],

Strichartz estimates [130] and almost everywhere convergence questions for dispersive

PDE [12], Falconer’s distance set problem [93, 46], or problems in incidence geometry [15]

and number theory [60, 15, 16]; we do not intend to discuss all these connections here.

The conjecture is still open for d ě 3, and the best known partial results have been

achieved taking a multilinear perspective on the problem. The goal of this chapter is to

obtain a better understanding of the role of multilinear estimates in the original Fourier

restriction; in particular, we carefully study the method developed by Bourgain and Guth

[17] to obtain linear estimates from their multilinear counterparts.

5.1 The linear and multilinear restriction conjectures

Let d ě 2 and S be a smooth compact hypersurface in Rd. For a function f P LppRdq we

define the restriction operator associated to S as RSf “ pf |S. The restriction problem is

typically studied in its adjoint form, seeking for Lppdσq´LqpRdq bounds for the extension

operator R˚gpξq “ ygdσpξq, that is

}ygdσ}LqpRdq À }g}Lppdσq,

where g : S Ñ C and dσ denotes the induced Lebesgue measure on S. We should note

that as S is compact, this is equivalent to the estimate

}ygdµ}LqpRdq À }g}Lppdµq,
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where dµ denotes the parametrised measure on S; given an open set U Ă Rd´1 and a

parametrisation Σ : U Ñ S, the measure µ is defined by

ż

S

gpxqdµpxq “

ż

U

gpΣpyqqdy.

Due to this equivalence we use dσ and dµ interchangeably in what follows, as we only

concern ourselves about norm estimates.

There is a trivial L1pdσq ´ L8pRdq estimate for the extension operator,

}ygdσ}L8pRdq ď }g}L1pdσq. (5.1.1)

As mentioned above, Stein observed that under appropriate curvature hypothesis on S,

other Lppdσq´LqpRdq estimates may hold besides the trivial one. This is in contrast with

the case of absence of curvature hypothesis. For example, let S be a portion of the dth

coordinate hyperplane given by the parametrisation Σ : U Ñ S, where Σpx1q “ px1, 0q

and U is an open set in Rd´1. Then the function

ygdµpξq “

ż

S

gpxqeix¨ξdµpxq “

ż

U

gpΣpx1qqeiΣpx
1q¨ξdx1 “

ż

U

gpΣpx1qqeix
1¨ξ1dx1 “ zg ˝ Σpξ1q

is independent of the ξd coordinate. Thus ygdµ R LqpRdq for q ă 8 unless g ” 0.

Stein’s observation led to set the restriction conjecture for the Fourier transform, which

in the case of hypersurfaces S with positive Gaussian curvature reads the following.1

Conjecture 5.1.1 (Linear restriction conjecture). If S has everywhere positive Gaussian

curvature, 1
q
ă d´1

2d
and 1

q
ď d´1

d`1
1
p1

then

}ygdσ}LqpRdq À }g}Lppdσq. (5.1.2)

1From now on we focus our discussion on the specific case of hypersurfaces with positive Gaussian
curvature, for which the prototypical example is a compact piece of the paraboloid.
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We denote the estimate (5.1.2) by R˚pp Ñ qq. The first condition on the exponents

corresponds to the integrability of the measure, since |xdσpξq| À p1 ` |ξ|q´pd´1q{2 if S has

nonvanishing Gaussian curvature; this may be seen via a stationary phase argument,

see for example [129]. The second condition follows from testing the estimate in the

characteristic function of small caps in S. We refer to the surveys [6] and [136] for more

details about the formulation of this conjecture and the forthcoming multilinear analogues.

We should remark that the main difficulty in the restriction conjecture is to make the value

of q lower; interpolation with the trivial estimate (5.1.1) gives the estimates for bigger

values of q and Hölder’s inequality and factorisation theory [11] allow to increase and

decrease respectively the value of p.

The Fourier restriction conjecture is fully solved for d “ 2 by Fefferman [49], but it

is still open in higher dimensions. Stein and Tomas [139] established R˚p2 Ñ 2pd`1q
d´1

q,

giving a result on the sharp line 1
q
“ d´1

d`1
1
p1

. The striking work of Bourgain [11] led to

a new perspective to the problem, linking the Fourier restricion phenomenon with the

Kakeya conjecture, and developing the now standard technique wave-packet decomposi-

tion. Consecutive improvements on the state-of-the-art for the restriction conjecture have

been obtained by Wolff [144], Moyua, Vargas and Vega [100, 101], Tao, Vargas and Vega

[137], Tao and Vargas [133], Tao [132], Bourgain and Guth [17], Temur [138] and Guth

[64, 61].

A fundamental ingredient in the most recent developments in restriction theory is the

multilinear approach. This originated with a bilinear formulation of the problem. If S1

and S2 are compact hypersurfaces with positive Gaussian curvature, it is obvious that the

restriction conjecture induces a bilinear analogue conjecture via Hölder’s inequality, that

is

}zg1dσ1
zg2dσ2}q{2 ď }

zg1dσ1}q}
zg2dσ2}q À }g1}Lppdσ1q}g2}Lppdσ2q (5.1.3)

with p, q as in Conjecture 5.1.1. However, the range of exponents such that (5.1.3) may
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hold is wider than the ones given by Conjecture 5.1.1 if we assume that the hypersurfaces

S1 and S2 are transversal. By transversal we mean that if v1 and v2 are unit normal

vectors to S1 and S2 respectively, then |v1 ^ v2| ą c for some constant c ą 0. This led to

the following bilinear conjecture.

Conjecture 5.1.2 (Bilinear restriction conjecture). Let S1 and S2 be smooth compact

transversal hypersurfaces with positive Gaussian curvature. If 1
q
ă d´1

2d
, 1
q
ď d

d`2
1
p1

and

1
q
ď d´2

d`2
1
p1
` 1

d`2
then

}zg1dσ1
zg2dσ2}Lq{2pRdq À }g1}Lppdσ1q}g2}Lppdσ2q. (5.1.4)

We denote estimate (5.1.4) by R˚ppˆpÑ q{2q. Observe that for functions in L2pdσq,

the bilinear conjecture has admissible values for q smaller than the Stein–Tomas expo-

nent. This is of considerable interest, as it permits to exploit, for such values of q, the

aforementioned wave-packet decomposition of Bourgain, which fails to work if gj R L
2pdσq.

Bilinear estimates became of central importance in the problem, due to a remarkable

observation of Tao, Vargas and Vega [137], who showed that the linear and the bilinear

restriction conjectures are essentially equivalent. That equivalence is obtained via a Whit-

ney decomposition of the product manifold SˆS around the diagonal ∆ :“ tpξ, ξq : ξ P Su;

this allows one to decompose pS ˆ Sqz∆ as a union of sets of the type S1 ˆ S2, where

S1 and S2 are transversal subsets of S, and thus the role of bilinear estimates becomes

apparent.

Theorem 5.1.3 ([137]). Let 1 ă p, q ă 8 be such that 1
q
ď d´1

2d
and 1

q
ď d´1

d`1
1
p1

. Then

R˚ppˆ pÑ q{2q ô R˚ppÑ qq.

The extra transversality assumption on the bilinear estimate makes such estimates

more tractable than the linear ones. Thus, the above equivalence together with good

bilinear estimates constitutes a way to make progress on the linear restriction conjecture.
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The best progress by this method was achieved by Tao [132], who established the bilinear

conjecture for functions on L2pdσq, except for the endpoint case.

Theorem 5.1.4 ([132]). Let S1, S2 be any disjoint compact subsets of the paraboloid 2.

Then R˚p2 ˆ 2 Ñ q{2q holds for any q ą 2pd ` 2q{d. In particular, R˚pp Ñ qq holds for

1
q
ď d´1

d`1
1
p1

and q ą 2pd` 2q{d.

One may extend the bilinear setting into a k-linear one, leading naturally to the

following conjecture.

Conjecture 5.1.5 (k-linear restriction conjecture). Suppose that 2 ď k ď d and that

S1, . . . , Sk are transversal 3 hypersurfaces with positive Gaussian curvature. If 1
q
ă d´1

2d
,

1
q
ď d`k´2

d`k
1
p1

and 1
q
ď d´k

d`k
1
p1
` k´1

k`d
then

›

›

›

k
ź

j“1

zgjdσj

›

›

›

Lq{kpRdq
À

k
ź

j“1

}gj}Lppdσjq. (5.1.5)

We denote the estimate (5.1.5) by R˚ppˆ¨ ¨ ¨ˆ pÑ q{kq. The case k “ d turns out to

be rather special, as the curvature hypothesis does not seem to play any role. In that case

one obtains the same range of exponents even without the curvature hypothesis; indeed

standard examples allow one to conjecture the validity of the estimate at the missing

endpoint q “ 2d{pd ´ 1q in Conjecture 5.1.5. By multilinear interpolation, the d-linear

conjecture is equivalent to such endpoint case for p “ 2. The d-linear conjecture is nearly

solved; Bennett, Carbery and Tao proved in [9] the following local version, which morally

corresponds to the conjecture away from the endpoint.

2Observe that the curvature of the paraboloid induces transversallity on any two disjoint compact
subsets.

3We naturally extend the transversal concept into a multilinear setting; for any v1, . . . , vk unit normal
vectors to S1, . . . , Sk respectively, the hypersurfaces are ν-transversal if |v1 ^ ¨ ¨ ¨ ^ vk| ą ν ą 0, where
ν ą 0.
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Theorem 5.1.6 ([9]). Let S1, . . . , Sd be transversal hypersurfaces. Then for any ε ą 0

there exists Cε ă 8 such that

›

›

›

d
ź

j“1

zgjdσj

›

›

›

L2{pd´1qpBp0,Rqq
ď CεR

ε
d
ź

j“1

}gj}L2pdσjq.

Away from the endpoint, it was proved in [9] that the d-linear conjecture is equivalent

to a d-linear maximal Kakeya conjecture, strengthening the connections between the

original Fourier restriction and the Kakeya conjecture, and highlighting, even more, the

strong combinatorial flavour of the Fourier restriction conjecture. We do not intend to

discuss the Kakeya maximal conjecture here; its d-linear version was proved, away from

the endpoint, by Bennett, Carbery and Tao [9], and the endpoint was first obtained by

Guth [62], involving algebraic and topological techniques, and later simplified by Carbery

and Valdimarsson [24]. We shall remark that Guth has recently given a short proof for

a weaker version of the multilinear Kakeya conjecture away from the endpoint [63], and

that Bejenaru [2] has also given an alternative proof for Theorem 5.1.6.

As remarked in [9], the techniques in Theorem 5.1.6 also apply to make partial progress

on the k-linear conjecture.

Theorem 5.1.7 ([9]). Let k ď d. If S1, . . . , Sk are transversal hypersurfaces, then for

any ε ą 0 and 1
q
ď k´1

2k
, there exists Cε ă 8 such that

›

›

›

k
ź

j“1

zgjdσj

›

›

›

Lq{kpBp0,Rqq
ď CεR

ε
k
ź

j“1

}gj}L2pdσjq. (5.1.6)

In the spirit of Proposition 5.1.3, Bourgain and Guth [17] developed a new technique

that allows to use these multilinear estimates to make improvement on the linear re-

striction conjecture. We shall revisit their strategy in Section 5.2, which combined with

Theorem 5.1.7 allows to deduce the following.
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Theorem 5.1.8 ([17]). Let d ě 3 and S be a compact smooth hypersurface with positive

Gaussian curvature. Then R˚p8 Ñ qq holds for

• d ” 0 pmod 3q, q ą 24d`3
4d´3

,

• d ” 1 pmod 3q, q ą 2d`1
d´1

,

• d ” 2 pmod 3q, q ą 4pd`1q
2d´1

.

In the case d “ 3, Bourgain and Guth refined their argument combining it with a

maximal Kakeya estimate of Wolff [144], leading to a small improvement in the value of

the exponent q. Similarly, Temur [138] observed that such improvement could be further

exploited for any d ” 0 pmod 3q.

A careful inspection of the method developed by Bourgain and Guth [17], allows one

to make the following conjectural theorem. It consists on determining the impact on the

linear conjecture of the conjectured k-linear estimates (5.1.5) for gj P L
2pdσq.4

Theorem 5.1.9. Assume that Conjecture 5.1.5 holds for k “ td`2
2

u, p “ 2 and 1
q
ă d`k´2

2pd`kq
.

Then R˚p8 Ñ qq holds for

• q ą 23d`1
3d´3

for d odd,

• q ą 23d`2
3d´2

for d even.

This observation, which is a simple consequence of a careful reading of [17], constitutes

the main remark of this chapter. Our purpose is to put k-linear estimates in a central scene

towards the future developments in restriction theory and related topics. It is interesting

to observe that the conjectured optimal multilinear estimates with level of linearity higher

than „ d
2

would not lead to any extra benefit on the linear problem using the ideas in

[17]; similarly, the known non-optimal multilinear estimates (5.1.6) with level of linearity

4We only run the argument assuming that Conjecture 5.1.5 is true for gj P L
2pdσq, as in that case one

may use the wave-packet decomposition.
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higher than „ 2d
3

do not lead to a further improvement on the linear problem. This,

which is established in Section 5.3, shows the limitations of the Bourgain–Guth method,

as it does not exploit the multilinear estimates for which the level of linearity is close to

the dimension. Note that the optimal exponent in the d-linear case corresponds to the

conjectured exponent in the Conjecture 5.1.1.

After this analysis was carried out, Guth [61] obtained a “restriction estimate” which

amounts to a weaker version of Conjecture 5.1.5 for p “ 2. This weaker version, however,

leads to the improvement on the Conjecture 5.1.1 anticipated by Theorem 5.1.9, using a

small variant of the method in [17], and so, the exponents in Theorem 5.1.9 correspond

to the best current state-of-the-art in the Fourier restriction conjecture for d ě 4. In

the 3-dimensional case, the best known result is also due to Guth [64], where q ą 3.25.

The main ingredient in both papers is the use of polynomial partitioning in a Fourier

restriction setting. We do not discuss this any further in this thesis.

5.2 The Bourgain-Guth method

In this section we recall the Bourgain–Guth method in [17]. As is mentioned above, it

permits to deduce linear estimates from their multilinear counterparts. Our aim is to

obtain a better understanding of the role of the multilinear estimates in that method.

In particular, this allows us to state the following k-linear reduction for the restriction

conjecture.

Theorem 5.2.1. Let 2 ď k ď d. If 1
p
ď 1

q
ă d´1

2d
and

q ą q̃pkq :“ 2 min

ˆ

m

m´ 1
,
2d´m` 1

2d´m´ 1

˙

, 2 ď m ď k ´ 1, (5.2.1)

then R˚ppÑ qq ðñ R˚ppˆ ¨ ¨ ¨ ˆ pÑ q{kq.
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Proof. The only relevant content of the theorem is R˚ppˆ ¨ ¨ ¨ ˆ pÑ q{kq ñ R˚ppÑ qq;

the reverse inequality follows from multilinear Hölder’s inequality.

We prove indeed a localised version of the restriction estimate R˚ppÑ qq. For R " 1

we will see that

}ygdσ}LqpBp0,Rqq ď RεC}g}L8pdσq (5.2.2)

for q ą q̃pkq as in the statement of the theorem. The use of standard “epsilon-removal”

lemmas -like the ones in [136] and [133]- allows one to deduce the global estimate R˚ppÑ

qq for q ą q̃pkq. To lower down p “ 8 to p ě q one may use factorization theory; see [11].

Let CpRq denote the best constant C in the inequality (5.2.2). Our goal is to see that

CpRq À 1. Given a constant K, we denote by P pKq any (positive) power of K. We shall

use this notation when the powers of K are irrelevant.

Let 1 ! Kk ! Rε and tSkαuα be a partition of S in caps of diameter 1{Kk with finite

overlapping. For g P Lppdσq, write gkαpxq “ gpxqχSkαpxq. Then

ygdσpξq “
ÿ

α

zgkαdσpξq.

Tile Bp0, Rq into cubes Qk of sidelength Kk. By uncertainty principle considerations,5 we

may think of |zgkαdσ| as being essentially constant in the cubes Qk. Fixing Qk, either

(I) there exist α1, . . . , αk with Skα1
, . . . , Skαk being pKkq

´k–transversal such that

|{gkα1
dσpξq|, . . . , |{gkαkdσpξq| ě K

´pd´1q
k max

α
|zgkαdσpξq|

for every ξ P Qk, or

5Technically, we should replace |zgkαdσ| by a pointwise majorant satisfying such property, but we
refrain from doing that for simplicity of the argument, as it does not contribute to the main ideas in the
Bourgain–Guth argument. We develop this further in Appendix D.
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(II) there exists a pk ´ 1q-dimensional subspace Vk´1 of Rd such that for those Skα with

distpSkα, Ek´1q Á 1{Kk, where Ek´1 denotes the image of Vk´1 X Sd´1 under the

Gauss map, then

|zgkαdσpξq| ă K
´pd´1q
k max

α
|zgkαdσpξq|

for every ξ P Qk.

Note that α1, . . . , αk in (I) may be chosen to be the same for all ξ P Qk, as |zgkαdσpξq| are

essentially constant in Qk. Similarly, the subspace Vk´1 may be chosen to be the same for

all ξ P Qk. We should also remark that K
´pd´1q
k in (I) and (II) may be replaced by any

power K´γ
k provided γ ě d´ 1.

If (I) we run a multilinear argument,

|ygdσpξq| ď
ÿ

α

|zgkαdσpξq|

ď Kd´1
k max

α
|zgkαdσpξq|

ď K
2pd´1q
k

k
ź

j“1

|{gkαjdσpξq|
1{k

ď K
2pd´1q
k

´

ÿ

α1,...,αk
trans

k
ź

j“1

|{gkαjdσpξq|
q{k

¯1{q

for any ξ P Qk, where the sum is taken over all α1, . . . , αk for which Skα1
, . . . , Skαk are

transversal. We note that such sum has been taken so that the choice of αj in the right

hand side above is independent of the cube Qk. This allows to sum in Qk in what follows.

Taking the power q, integrating in those Qk for which (I) holds and using the hypothesis

R˚ppˆ ¨ ¨ ¨ ˆ pÑ q{kq, we conclude that

ÿ

Qk

(I) holds

}ygdσ}q
LqpQkq

ď K
2pd´1qq
k

ÿ

α1,...,αk
trans

ÿ

Qk

(I) holds

›

›

›

k
ź

j“1

{gαjdσ
›

›

›

q{k

Lq{kpQkq
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ď K
2pd´1qq
k

ÿ

α1,...,αk
trans

›

›

›

k
ź

j“1

{gαjdσ
›

›

›

q{k

Lq{kpBp0,Rqq

À RεK
2pd´1qq
k

ÿ

α1,...,αk
trans

k
ź

j“1

}gkαj}
q{k
Lppdσq

À RεK
2pd´1qq
k

ÿ

α1,...,αk
trans

k
ÿ

j“1

}gkαj}
q
Lppdσq

À RεP pKkq
ÿ

α

}gkα}
q
Lppdσq

À RεP pKkq

´

ÿ

α

}gkα}
p
Lppdσq

¯q{p

ď RεP pKkq}g}
q
Lppdσq,

where in the one to last inequality we have used Hölder’s inequality and that p ě q.

We note that the powers of Kk here are irrelevant, as Kk will be a chosen fixed number

independent of R and therefore À Rε.

If (II) we write

|ygdσpξq| ď
ˇ

ˇ

ˇ

ż

tx:distpx,Ek´1qÀ1{Kku

eiξ¨xgpxqdσpxq
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ÿ

distpSkα,Ek´1qÁ1{Kk

zgkαdσpξq
ˇ

ˇ

ˇ
(5.2.3)

for any ξ P Qk. For the second term in (5.2.3),

ˇ

ˇ

ˇ

ÿ

distpSkα,Ek´1qÁ1{Kk

zgkαdσpξq
ˇ

ˇ

ˇ
ă

ÿ

distpSkα,Ek´1qÁ1{Kk

K
´pd´1q
k max

α
|zgkαdσpξq|

À max
α
|zgkαdσpξq|

ď

´

ÿ

α

|zgkαdσpξq|
q
¯1{q

,

for any ξ P Qk, where the sum is taken over all caps Skα. As before, such sum has been

taken so that the choice of α in the right hand side of the above estimate does not depend
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on Qk. Taking the power q, and integrating in those Qk for which (II) holds,

ÿ

Qk

(II) holds

›

›

›

ÿ

distpSkα,Ek´1qÁ1{Kk

zgkαdσ
›

›

›

q

LqpQkq
À
ÿ

α

ÿ

Qk

(II) holds

}zgkαdσ}
q
LqpQkq

ď
ÿ

α

}zgkαdσ}
q
LqpBp0,Rqq

À CpRqK
d`1´ pd´1qq

p1

k

ÿ

α

}gkα}
q
Lppdσq

À CpRqK
d`1´ pd´1qq

p1

k K
pd´1q

pp{qq1

k

´

ÿ

α

}gkα}
p
Lppdσq

¯q{p

À CpRqK2d´pd´1qq
k }g}qLppdσq, (5.2.4)

where we have used the rescaling condition in Appendix E and Hölder’s inequality in the

sum in α. Here the powers of Kk are relevant, as we are inducting on the size of the caps

in our inequality (5.2.2).

This is an acceptable term if K
2d´pd´1qq
k ! 1. As by assumption, q ą 2d{pd´ 1q - this

is one of the conditions on the exponent in the restriction conjecture -, it is enough to

pick Kk sufficiently large and independent of R.

For the first term in (5.2.3), we introduce a new parameter 1 ! Kk´1 ! Kk and we

consider tSk´1
β uβ to be a partition of S in caps of diameter 1{Kk´1. For ξ P Qk, we write

ˇ

ˇ

ˇ

ż

tx:distpx,Ek´1qÀ1{Kku

eiξ¨xgpxqdσpxq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ÿ

β

ż

tx:distpx,Ek´1qÀ1{KkuXS
k´1
β

eiξ¨xgpxqdσpxq
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

β

{gk´1
β dσpξq

ˇ

ˇ

ˇ
.

Again, by the uncertainty principle the quantities |{gk´1
β dσ| are essentially constant in

cubes Qk´1 of sidelength Kk´1. We run a multilinear analysis as before, and for every

Qk´1 Ă Qk, either
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(i) there exist β1, . . . , βk´1 with Sk´1
β1

, . . . , Sk´1
βk´1

being pKk´1q
´pk´1q–transversal such

that

|
{gk´1
β1

dσpξq|, . . . , | {gk´1
βk´1

dσpξq| ě K
´pk´2q
k´1 max

β
|
{gk´1
β dσpξq|

for every ξ P Qk´1, or

(ii) there exists a pk ´ 2q-dimensional subspace Vk´2 Ă Vk´1 such that for those Sk´1
β

with distpSk´1
β , Ek´2q Á 1{Kk´1, where Ek´2 is the image of Vk´2 X Sd´1 under the

Gauss map, then

|
{gk´1
β dσpξq| ă K

´pk´2q
k´1 max

β
|
{gk´1
β dσpξq|

for every ξ P Qk´1.

As in the previous case, the caps indexed by β1, . . . , βk´1 and the subspace Vk´2 may

be chosen to be the same for all ξ P Qk´1, and the power K
´pk´2q
k´1 in (i) and (ii) may be

replaced by K´γ
k´1 provided γ ě k ´ 2. Observe that we may write

{gk´1
β dσpξq “

ÿ

α:SkαĎS
k´1
β

distpSα,Ek´1qÀ1{Kk

zgkαdσpξq.

We have two possibilities for the case (i). The first one consists in the use of the multi-

linear estimates from Theorem 5.1.7, and for this reason powers of Kk and Kk´1 will be

irrelevant. In case q ě 2pk´1q
k´2

, for every ξ P Qk´1,

ˇ

ˇ

ˇ

ÿ

β

{gk´1
β dσpξq

ˇ

ˇ

ˇ
ď K

2pk´2q
k´1

k´1
ź

j“1

|
{gk´1
βj

dσpξq|1{pk´1q

ď K
2pk´2q
k´1

k´1
ź

j“1

´

ÿ

αj :S
k
αj
ĎSk´1

βj

distpSαj ,Ek´1qÀ1{Kk

|{gkαjdσpξq|
¯1{pk´1q

ď K
2pk´2q
k´1

´ Kk

Kk´1

¯k´2 k´1
ź

j“1

max
αj :SkαjĎS

k´1
βj

|{gkαjdσpξq|
1{pk´1q
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ď P pKkqP pKk´1q

k´1
ź

j“1

´

ÿ

αj :SkαjĎS
k´1
βj

|{gkαjdσpξq|
q{pk´1q

¯1{q

À P pKkqP pKk´1q

´

ÿ

α1,...,αk´1

αj :S
k
αj
ĎSk´1

βj

k´1
ź

j“1

|{gkαjdσpξq|
q{pk´1q

¯1{q

ď P pKkqP pKk´1q

´

ÿ

β1,...,βk´1
trans

ÿ

α1,...,αk´1

αj :S
k
αj
ĎSk´1

βj

k´1
ź

j“1

|{gkαjdσpξq|
q{pk´1q

¯1{q

ď P pKkqP pKk´1q

´

ÿ

α1,...,αk´1
trans

k´1
ź

j“1

|{gkαjdσpξq|
q{pk´1q

¯1{q

,

where the last sum is taken over all α1, . . . , αk such that Skα1
, . . . , Skαk´1

are transversal.

Observe that the transversal caps appearing in the right hand side of the above estimate

are independent of Qk´1 and Qk, which will allows us to sum both in Qk´1 Ă Qk and Qk.

Taking the q-th power and integrating for every Qk´1 Ă Qk for which (i) holds,

ÿ

Qk

(II) holds

ÿ

Qk´1ĂQk

(i) holds

›

›

ÿ

β

{gk´1
β dσ

›

›

q

LqpQk´1q

À P pKkqP pKk´1q
ÿ

α1,...,αk´1
trans

ÿ

Qk

(II) holds

ÿ

Qk´1ĂQk

(i) holds

›

›

›

k´1
ź

j“1

{gkαjdσ
›

›

›

q{pk´1q

Lq{pk´1qpQk´1q

ď P pKkqP pKk´1q
ÿ

α1,...,αk´1
trans

›

›

›

k´1
ź

j“1

{gkαjdσ
›

›

›

q{pk´1q

Lq{pk´1qpBp0,Rqq

À RεP pKkqP pKk´1q
ÿ

α1,...,αk´1
trans

k´1
ź

j“1

}gkαj}
q{pk´1q
Lppdσq

À RεP pKkqP pKk´1q
ÿ

α

}gkα}
q
Lppdσq

À RεP pKkqP pKk´1q}g}
q
Lppdσq,

which is an acceptable term for q ě 2pk´ 1q{pk´ 2q by the multilinear estimate (5.1.6) in
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Theorem 5.1.7. We note that in the one-to-last inequality we have argued as in the end

of the case (I).

The second possibility for (i) consists in a slightly different use of the multilinear

estimates (5.1.6), that exploits that we are not under the k-transversal case (I). The

multilinear estimates are used to obtain a multilinear version of Córdoba’s square function

estimate [35], see Remark F.2 in Appendix F. We adopt this approach when q ă 2pk´1q
k´2

.

First, proceeding in the same way as in (I),

ˇ

ˇ

ˇ

ÿ

β

{gk´1
β dσpξq

ˇ

ˇ

ˇ
ď K

2pk´2q
k´1

k´1
ź

j“1

|
{gk´1
βj

dσpξq|1{pk´1q

ď K
2pk´2q
k´1

´

ÿ

β1,...,βk´1
trans

k´1
ź

j“1

|
{gk´1
βj

dσpξq|q{pk´1q
¯1{q

,

for any ξ P Qk´1, where the sum is taken over all β1, . . . , βk´1 such that Sk´1
β1

, . . . , Sk´1
βk´1

are

transversal. As in previous cases, such sum is taken so that the transversal caps in right

hand side are independent of Qk´1; this will allows us to sum in Qk´1. The contribution

of those Qk´1 Ă Qk for which (i) holds is given by

ÿ

Qk

(II) holds

ÿ

Qk´1ĂQk

(i) holds

›

›

›

ÿ

β

{gk´1
β dσ

›

›

›

q

LqpQk´1q

ď P pKk´1q
ÿ

Qk

(II) holds

ÿ

β1,...,βk´1
trans

ÿ

Qk´1ĂQk

(i) holds

›

›

›

k´1
ź

j“1

{gk´1
βj

dσ
›

›

›

q{pk´1q

Lq{pk´1qpQk´1q

ď P pKk´1q
ÿ

Qk

(II) holds

ÿ

β1,...,βk´1
trans

›

›

›

k´1
ź

j“1

´

ÿ

αj :S
k
αj
ĎSk´1

βj

distpSkαj ,Ek´1qÀ1{Kk

{gkαjdσ
¯
›

›

›

q{pk´1q

Lq{pk´1qpQkq

À P pKk´1qK
ε
k

ÿ

Qk

(II) holds

ÿ

β1,...,βk´1
trans

›

›

›

k´1
ź

j“1

´

ÿ

αj :S
k
αj
ĎSk´1

βj

distpSkαj ,Ek´1qÀ1{Kk

|{gkαjdσ|
2
¯1{2›

›

›

q{pk´1q

Lq{pk´1qpQkq
,
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where the last inequality follows from Remark F.2 for any 2 ď q ď 2k
k´1

; this may be

seen as a multilinear square function estimate. By Hölder’s inequality, and using the

information that the caps Skαj concentrate among Ek´1,

À P pKk´1qK
ε
k

´ Kk

Kk´1

¯pk´2qp q
2
´1q ÿ

Qk

(II) holds

ÿ

β1,...,βk´1
trans

›

›

›

k´1
ź

j“1

´

ÿ

αj :S
k
αj
ĎSk´1

βj

distpSkαj ,Ek´1qÀ1{Kk

|{gkαjdσ|
q
¯1{q›

›

›

q{pk´1q

Lq{pk´1qpQkq

À P pKk´1qK
ε`pk´2qp q

2
´1q

k

ÿ

Qk

(II) holds

ÿ

β

›

›

›

´

ÿ

α:SkαĎS
k´1
β

distpSkα,Ek´1qÀ1{Kk

|zgkαdσ|
q
¯1{q›

›

›

q

LqpQkq

À P pKk´1qK
ε`pk´2qp q

2
´1q

k

ÿ

Qk

(II) holds

ÿ

β

ÿ

α:SkαĎS
k´1
β

distpSkα,Ek´1qÀ1{Kk

}zgkαdσ}
q
LqpQkq

ď P pKk´1qK
ε`pk´2qp q

2
´1q

k

ÿ

β

ÿ

α:SkαĎS
k´1
β

ÿ

Qk

}zgkαdσ}
q
LqpQkq

ď P pKk´1qK
ε`pk´2qp q

2
´1q

k

ÿ

α

}zgkαdσ}
q
LqpBp0,Rqq

ď P pKk´1qK
ε`pk´2qp q

2
´1q

k K
d`1´ pd´1qq

p1

k

ÿ

α

}gkα}
q
Lppdσq

ď P pKk´1qK
ε`pk´2qp q

2
´1q`d`1´ pd´1qq

p1

k K
d´1
pp{qq1

k

´

ÿ

α

}gkα}
p
Lppdσq

¯q{p

ď P pKk´1qK
ε`pk´2qp q

2
´1q`2d´pd´1qq

k CpRq}g}qLppdσq,

where we have used the parabolic rescaling condition in Appendix E. This use of induction

hypothesis makes powers of Kk to be relevant again in our argument. In order for the

above estimate to be an acceptable term we ask P pKk´1qK
ε`pk´2qp q

2
´1q`2d´pd´1qq

k ! Rε,

which will be true if

pk ´ 2q
´q

2
´ 1

¯

` 2d´ pd´ 1qq ă 0

and we pick Kk sufficiently large and independent of R; note that the choice of Kk will

depend on the Kk´1 chosen for an equivalent condition to (5.2.4) to hold for Kk´1 in the
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next step. The above condition may be written as

q ą
2p2d´ pk ´ 2qq

2d´ k
.

So we choose the second possibility for (i) whenever

2p2d´ pk ´ 2qq

2d´ k
ă

2pk ´ 1q

k ´ 2
.

Hence for the case (i) we choose the option that gives us a wider range of values for q,

that is

q ą 2 min

ˆ

k ´ 1

k ´ 2
,
2d´ k ` 2

2d´ k

˙

.

For (ii) we do a similar analysis to case (II), replacing k ´ 1 by k ´ 2. One ultimately

obtains that if

q ą 2 min

ˆ

m

m´ 1
,
2d´m` 1

2d´m´ 1

˙

, 2 ď m ď k ´ 1,

q ě 2d
d´1

and R˚ppˆ¨ ¨ ¨ˆ pÑ q{kq holds, then the restriction estimate R˚ppÑ qq follows

for p ě q.

5.3 Analysis of the exponents

The Bourgain-Guth method described in Section 5.2 suggests than better linear restric-

tions estimates should be obtained in case one uses better multilinear restriction estimates

than the ones given by Theorem 5.1.7. The aim of this section is to discuss this issue,

together with yielding a proof for the conditional Theorem 5.1.9.

It is reasonable to expect that the k-linear restriction conjectured estimates that might

be proven in the future are the ones corresponding to functions on L2pdσq, due to the

wave packet decomposition and orthogonality considerations. Thus, under the hypothesis
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of Conjecture 5.1.5, one hopes the local estimates

›

›

›

k
ź

j“1

zgjdσj

›

›

›

L
2pd`kq
kpd`k´2q pBp0,Rqq

À Rε
k
ź

j“1

}gj}L2pdσjq (5.3.1)

to hold for any ε ą 0. Observe that (5.3.1) corresponds to a k-linear version of Tao’s

bilinear estimate in [132]. Note that in contrast with the known k-linear L2-estimates

from Theorem 5.1.7, the estimates (5.3.1) involve the curvature hypothesis.

A natural question is to understand how the Bourgain-Guth method would improve

the current state-of-the-art on the linear restriction conjecture in case we knew the above

conjectured estimates (5.3.1) to be true.

Before proceeding with our analysis, we should introduce the following notation. For

any given 2 ď k ď d, we denote

• qcspkq :“ 2pd`kq
d`k´2

the exponent corresponding to the conjectured multilinear estimate

(5.3.1), where the subscript in qcs refers to curvature sensitive.

• qcipkq :“ 2k
k´1

the exponent corresponding to the known multilinear estimates (5.1.6),

where the subscript in qci refers to curvature insensitive.

• qsf pkq :“ 2p2d´k`1q
2d´k´1

the exponent obtained throughout the proof of Theorem 5.2.1

after the use of the multilinear theory via a multilinear square function estimate,

where the subscript in qsf refers to square function.

5.3.1 The trilinear case

We study first if we would obtain any improvement for the linear restriction conjecture

via Theorem 5.2.1, that is the Bourgain-Guth method, in case we knew the conjectured

estimate (5.3.1) for k “ 3, that is R˚pp ˆ p ˆ p Ñ q{3q for q ą qcsp3q “
2pd`3q
d`1

. Observe

that the conditions imposed on q by Theorem 5.2.1 for k “ 3 are 1
p
ď 1

q
ă d´1

2d
and
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q ą p4d ´ 2q{p2d ´ 3q. The conjectured exponent q ą qcsp3q “ 2pd ` 3q{pd ` 1q is an

admissible exponent for d ě 4, since

2pd` 3q

d` 1
ě

4d´ 2

2d´ 3
ô

1

d` 1
ě

1

2d´ 3
ô d ě 4.

However the use of the conjectured trilinear estimate with q ą qcsp3q would only make

improvement on the Bourgain–Guth state-of-the-art for the linear restriction conjecture

in the case d “ 4. This may be easily checked comparing qcsp3q with the exponents in

Theorem 5.1.8.

• For d ” 0 pmod 3q,

2pd` 3q

d` 1
ă 2

4d` 3

4d´ 3
ô

2

d` 1
ă

6

4d´ 3
ô 4d´ 3 ă 3d` 3 ô d ă 6,

so no improvement would be obtained in this case.

• For d ” 1 pmod 3q,

2pd` 3q

d` 1
ă

2d` 1

d´ 1
ô

4

d` 1
ă

3

d´ 1
ô 4d´ 4 ă 3d` 3 ô d ă 7,

so in the case d “ 4, the conjectured trilinear estimate would improve on the

Bourgain–Guth results for the linear restriction conjecture.

• For d ” 2 pmod 3q,

2pd` 3q

d` 1
ă

4pd` 1q

2d´ 1
ô

2

d` 1
ă

3

2d´ 1
ô 4d´ 2 ă 3d` 3 ô d ă 5,

so no improvement would be obtained in this case.

The above observation suggests that for higher dimensions, a “good” trilinear estimate
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is “less efficient” than a “worse” but higher level of linearity estimate, where that “higher”

level of linearity is “close” to the dimension. We make that informal comment more precise

in the coming subsections.

5.3.2 The k-linear case

Here we study how to use the conjectured estimate (5.3.1) for a fixed k to obtain im-

provement for the linear restriction conjecture in Rd; in particular we deduce for which

dimensions d “ dpkq the conjectured k-linear estimate would provide improvement. Ob-

serve that qsf pmq ă qcipmq if and only if

2d´m` 1

2d´m´ 1
ă

m

m´ 1
ô

2

2d´m´ 1
ă

1

m´ 1
ô 3m ă 2d` 1 ô m ă

2d` 1

3
.

The condition (5.2.1) in Theorem 5.2.1 implies, in particular that

q ą qsf pk ´ 1q if k ă
2d` 4

3
,

q ą qcipk ´ 1q if k ě
2d` 4

3
.

As qcipk ´ 1q ą qcipkq ą qcspkq, the conjectured exponent qcspkq is not an admissible

exponent for Theorem 5.2.1 when k ě 2d`4
3

; in other words, the conjectured exponent

qcspkq would not lead to any improvement (via the Bourgain–Guth argument) on the

linear restriction conjecture in Rd if k ě 2d`4
3

.

Thus we only consider those d such that k ă 2d`4
3

. Since qsf pmq is increasing as a

function of m, the condition (5.2.1) on the exponent q becomes q ą qsf pk ´ 1q. In view

of Theorem 5.2.1, an admissible value for q is given by

q ą maxpqcspkq, qsf pk ´ 1qq.
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Observe that qcspkq ě qsf pk ´ 1q if and only if

d` k

d` k ´ 2
ě

2d´ k ` 2

2d´ k
ô

1

d` k ´ 2
ě

1

2d´ k
ô d ě 2k ´ 2 ô k ď

d` 2

2
.

Then

q ą maxpqcspkq, qsf pk ´ 1qq “

$

’

&

’

%

qcspkq if k ď pd` 2q{2,

qsf pk ´ 1q if pd` 2q{2 ď k ă p2d` 4q{3.

We compare this value of q with the Bourgain–Guth state-of-the-art for the linear restric-

tion conjecture (Theorem 5.1.8), to detect when the conjectured inequality (5.3.1) would

lead to an improvement.

We distinguish two cases. For k ď pd` 2q{2, the condition on the exponent q is given

by q ą qcspkq. We compare this with the exponents in Theorem 5.1.8.

• For the case d ” 0 pmod 3q,

2pd` kq

d` k ´ 2
ă

2p4d` 3q

4d´ 3
ô

1

d` k ´ 2
ă

3

4d´ 3
ô k ą

d` 3

3
,

so we would get improvement when k ą pd` 3q{3.

• For the case d ” 1 pmod 3q,

2pd` kq

d` k ´ 2
ă

2d` 1

d´ 1
ô

4

d` k ´ 2
ă

3

d´ 1
ô k ą

d` 2

3
,

so we would get improvement when k ą pd` 2q{3.

• For the case d ” 2 pmod 3q,

2pd` kq

d` k ´ 2
ă

4pd` 1q

2d´ 1
ô

2

d` k ´ 2
ă

3

2d´ 1
ô k ą

d` 4

3
,
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so we would get improvement when k ą pd` 4q{3.

On the other hand, for pd`2q
2
ď k ă 2d`4

3
, the condition on q is given by q ą qsf pk´ 1q.

A similar case analysis as before tells us that,

• For the case d ” 0 pmod 3q,

2d´ k ` 2

2d´ k
ă

4d` 3

4d´ 3
ô

1

2d´ k
ă

3

4d´ 3
ô k ă

2d` 3

3
,

so we would get improvement when k ă p2d` 3q{3.

• For the case d ” 1 pmod 3q,

2p2d´ k ` 2q

2d´ k
ă

2d` 1

d´ 1
ô

4

2d´ k
ă

3

d´ 1
ô k ă

2d` 4

3
,

so we would get improvement when k ă p2d` 4q{3.

• For the case d ” 2 pmod 3q,

2p2d´ k ` 2q

2d´ k
ă

4pd` 1q

2d´ 1
ô

2

2d´ k
ă

3

2d´ 1
ô k ă

2d` 2

3
,

so we would get improvement when k ă p2d` 2q{3.

Hence, given k we obtain progress on the linear restriction conjecture for those d such

that d
3
À k À 2d

3
, that is for those d such that 3k

2
À d À 3k.

5.3.3 Optimal level of linearity for a given dimension d

Here we study, for a fixed dimension d, which is the level of linearity k “ kpdq that gives

the best improvement on the linear restriction conjecture in Rd via the Bourgain–Guth

method. We refer to such level as the optimal level of linearity, in the sense that by using
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the estimates (5.3.1) in higher levels of linearity we no longer obtain any improvement on

the linear restriction conjecture.

From Section 5.3.2 we know that improvement on the linear problem requires k ă 2d`4
3

.

Recall that an admissible q for Theorem 5.2.1 needs to satisfy

q ą maxpqcspkq, qsf pk ´ 1qq “

$

’

&

’

%

qcspkq if k ď pd` 2q{2,

qsf pk ´ 1q if pd` 2q{2 ď k ă p2d` 4q{3.

One should observe the following:

• as qsf pk ´ 1q is increasing as a function of k, we would like k to be the smallest

integer in the range rd`2
2
, 2d`4

3
q, i.e., k ď td`3

2
u.

• as qcspkq is decreasing as a function of k, we would like k to be the biggest integer

in r2, d`2
2
s, i.e., k ě td`1

2
u.

This tells us that the optimal level of linearity satisfies td`1
2

u ď k ď td`3
2

u. Observe that

• if pd ` 2q{2 P N, that is d even, the value k “ d`2
2

is the best level of linearity; in

this case qcspkq “ qsf pk ´ 1q.

• if pd ` 2q{2 R N, that is d odd, we need to compare qcspkq for k “ pd ` 1q{2 and

qsf pk ´ 1q for k “ pd` 3q{2 and choose the smallest q. But it turns out that

qcs

´d` 1

2

¯

“ 2
3d` 1

3d´ 3
“ 2

3d´ 1

3d´ 3
“ qsf

´d` 3

2
´ 1

¯

,

so we may choose k “ pd` 1q{2 as the optimal level.

Thus the level of linearity that leads to the biggest improvement given a fixed dimen-

sion d is k “ td`2
2

u. In particular the above analysis tells us that the conjectured estimate

(5.3.1) with k “ td`2
2

u would establish the restriction conjecture for
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• q ą 23d`1
3d´3

for d odd,

• q ą 23d`2
3d´2

for d even,

which is the statement of Theorem 5.1.9.

Connections with the Schrödinger propagator

As it is mentioned at the end of Chapter 2, the solution to the free linear Schrödinger

equation,

iBsu´∆u “ 0, up0, xq “ fpxq,

where ps, xq P R1`d, satisfies

Fdups, ξq “ eis|ξ|
2Fdfpξq,

where Fd denotes the spatial Fourier transform (in Rd). Then one may write the solution

as

ups, xq “ e´is∆fpxq “

ż

Rd
Fdfpξqeips|ξ|

2`x¨ξqdξ.

Observe that this corresponds to the extension operator associated to the paraboloid on

Rd`1. Let S denote the paraboloid, and let Σ : Rd Ñ Rd`1 be the parametrisation given

by Σpxq “ px, |x|2q. Then for a function g defined on S, we have that

ygdµpξq “

ż

S

gpyqeiy¨ξdµpyq “

ż

Rd
gpΣpxqqeiΣpxq¨ξdx “

ż

Rd
gpx, |x|2qeipx¨ξ

1`|x|2¨ξd`1qdx,

where ξ1 “ pξ1, . . . , ξdq; here p denotes the Rd`1 Fourier transform. Setting g ˝ Σ “ Fdf ,

it is obvious that the expressions for u and ygdµ coincide.

This trivial observation emphasises the importance of the Fourier restriction phe-

nomenon in dispersive PDE. In particular, the theory of Strichartz estimates has been
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intimately related to that of the Fourier restriction. By a Strichartz estimate we mean

control of the full norm of the solution u, integrating in both time and space, in terms of

the size of the initial data f . For example, it is known that

}e´is∆f}LqsLrxpR1`dq À }f}L2pRdq

for

2

q
`
d

r
“
d

2
, pq, r, dq ‰ p2,8, 2q, q, r ě 2.

This is in contrast with the weighted estimates for the operator e´is∆ obtained in Section

2.6.2, where only integration in the space-variable is taken.

The case q “ 8 corresponds to estimates for the maximal Schrödinger operator u˚,

whose boundedness implies almost everywhere convergence of the solution up¨, sq to the

initial data f P L2 as s approaches 0. More generally one may formulate Strichartz

estimates for initial data f in the homogeneous and inhomogeneous Sobolev spaces 9Hσ

and Hσ respectively. In the context of the maximal Schrödinger operator, determining

the optimal Sobolev space Hσ of initial data for which there is a.e. convergence is known

as the Carleson problem [27]. Many authors have contributed over the last decades to this

question [39, 122, 140, 12, 100, 133, 134, 81, 13, 14], which is still open for d ě 3. Most

of the progress has been obtained via a Fourier restriction approach; in particular, only a

few months ago, Du, Guth and Li [44] have established the 2-dimensional case except for

the endpoint case, using Fourier restriction theory and polynomial partitioning. These

connections with Fourier restriction theory suggest that an inequality of the type (2.6.11)

could perhaps be obtained via weighted Fourier restriction estimates rather than via the

techniques used in Chapter 2.
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Appendix A

Smooth averages

Here we briefly recall some elementary properties of the smoothing functions

Ψ
pNq
R pxq :“

Rd

p1`R2|x|2qN{2
.

Lemma A.1. Let N ą d. Let R ě K denote two different scales. Then

Ψ
pNq
R ˚Ψ

pNq
K À Ψ

pNq
K .

Proof. We need to show

ż

Rd

Rd

p1`R2|y ´ x|2qN{2
Kd

p1`K2|y|2qN{2
dy À

Kd

p1`K2|x|2qN{2

for any x P Rd. Observe first that if K|x| ď 1, the estimate is trivial, as

Kd

p1`K2|y|2qN{2
ď Kd

ď
2N{2Kd

p1`K2|x|2qN{2

and the integral
ż

Rd

Rd

p1`R2|y ´ x|2qN{2
dy ă 8
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provided N ą d.

If K|x| ě 1, we divide Rd into two half-spaces Hx and H0, that contain the points x

and 0 respectively and that are the result of splitting Rd by a hyperplane perpendicular

to the line segment joining x and the origin 0 at its midpoint. If y P Hx, then |y| ě |x|{2

and

Kd

p1`K2|y|2qN{2
ď

2NKd

p1`K2|x|2qN{2
.

Thus

ż

Hx

Rd

p1`R2|y ´ x|2qN{2
Kd

p1`K2|y|2qN{2
dy ď

2NKd

p1`K2|x|2qN{2

ż

Hx

Rd

p1`R2|y ´ x|2qN{2
dy

À
Kd

p1`K2|x|2qN{2
.

If y P H0, we have |y ´ x| ě |x|{2. Similarly,

Rd

p1`R2|y ´ x|2qN{2
ď

2NRd

p1`R2|x|2qN{2
ď

2NRd

RN |x|N
“

2NRd´N

|x|N
.

As R ą K, N ą d and K|x| ě 1,

2NRd´N

|x|N
ď

2NKd´N

|x|N
“

2N2N{2Kd

p2K2|x|2qN{2
À

Kd

p1`K2|x|2qN{2
,

and arguing as in the previous case, this concludes the proof.

For the case R “ 1, we simply denote ΨpNqpxq :“ 1
p1`|x|2qN{2

. We have the following

Harnack-type property.

Lemma A.2. For w ě 0,

w ˚ΨpNq
pxq Á

1

p1` |x´ y|2qN{2
w ˚ΨpNq

pyq.
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Proof. The triangle inequality quickly reveals that p1` |x|2q´N{2 Á p1` |x´ y|2q´N{2p1`

|y|2q´N{2 for any N ě 0. Then, as w ě 0,

wpzq

p1` |x´ z|2qN{2
Á

1

p1` |x´ y|2qN{2
wpzq

p1` |y ´ z|2qN{2
,

just by replacing x ÞÑ x´ z, y ÞÑ y ´ z. The result follows from integrating with respect

to the z variable.
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Appendix B

Symbolic Calculus

This appendix is devoted to providing a proof of Theorem 3.3.1, which is a very specific

quantitative version of the symbolic calculus in Hörmander [69]. Recall the statement.

Theorem B.1. Let ϕ P S be such that suppppϕq Ď t|ξ| „ 1u and given R ą 1, let ϕR be

defined by pϕRpξq :“ pϕpR´1ξq. Let a P Smρ,δ, where 0 ď δ ď ρ and δ ă 1. Then, there exists

a symbol c P Smρ,δ such that

Tc “ T
pϕR ˝ Ta.

Moreover, for ε ě 0 and κ ą 0, the symbol

eN :“ c´
ÿ

|γ|ăN

i´|γ|

γ!
B
γ
ξ pϕRB

γ
xa P S

m´Np1´δq`dδ`κδ`ε
ρ,δ

for all N ą dδ`κδ`ε
1´δ

, and satisfies

|B
ν
xB

σ
ξ e

N
px, ξq| À R´εp1` |ξ|qm´Np1´δq`dδ`κδ`ε´|σ|ρ`|ν|δ (B.1)

for any multi-indices ν, σ P Nd.

As it is mentioned in Section 3.3.1, the order of the error symbol eN P S
m´Np1´δq`dδ`κδ`ε
ρ,δ

is not necessarily sharp here, but it naturally arises from our proof. Nevertheless, such
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an order is admissible for our purposes, as one may choose N large enough so that eN is

of sufficiently large negative order. Our proof follows the same structure as that given in

Stein [129] for the standard symbol classes Sm.

To justify our computations, we technically should replace a by aε, where aεpx, ξq “

apx, ξqψpεx, εξq and ψ P C80 pRd ˆ Rdq with ψp0, 0q “ 1. The symbol aε, which has

compact support, satisfies the same differential inequalities as a uniformly in 0 ă ε ď 1.

As our estimates will be independent of ε, the passage to the limit when εÑ 0 gives the

desired result; we refer to [129] for these standard details. Such considerations allow us

to suppress the dependence on ε in what follows.

Proof. Observe that we may write

T
pϕRpTafqpxq “

ż

Rd

ż

Rd
cpx, ξqeipx´zq¨ξfpzqdzdξ,

where

cpx, ξq “

ż

Rd

ż

Rd
pϕRpηqapy, ξqe

ipx´yq¨pη´ξqdydη “

ż

Rd
pϕRpξ ` ηqpapη, ξqe

ix¨ηdη,

and pa denotes Fourier transform with respect to the x variable. We first obtain an

estimate depending on the size of the support of a; that dependence will be later removed

in the second part of the proof.

B.1 Assuming apx, ξq has compact support in the x-variable

Integrating by parts,

papη, ξq “

ż

Rd

eix¨η

p1` |η|2qM
pI ´∆xq

Mapx, ξqdx,
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so

|papη, ξq| À p1` |η|q´2M
p1` |ξ|qm`2Mδ, (B.2)

for any M ě 0; the implicit constant above depends on the size of the support of a in the

x variable. For pϕRpξ ` ηq we use Taylor’s formula around the point ξ,

pϕRpξ ` ηq “
ÿ

|γ|ăN

1

γ!
B
γ
ξ pϕRpξqη

γ
`RNpξ, ηq,

where RN is the remainder in Taylor’s theorem and is bounded by

|RNpξ, ηq| À max
|γ|“N

max
ζ
|B
γ
ξ pϕRpζq||η|

N ,

where the maximum in ζ is taken on the line segment joining ξ to ξ ` η. Thus

cpx, ξq “
ÿ

|γ|ăN

1

γ!

ż

Rd
B
γ
ξ pϕRpξqη

γ
papη, ξqeix¨ηdη `

ż

Rd
RNpξ, ηqpapη, ξqe

ix¨ηdη

“
ÿ

|γ|ăN

i´|γ|

γ!
B
γ
ξ pϕRpξqB

γ
xapx, ξq `

ż

Rd
RNpξ, ηqpapη, ξqe

ix¨ηdη

and

eNpx, ξq “

ż

Rd
RNpξ, ηqpapη, ξqe

ix¨ηdη.

We need to show that the eN P S
m´Np1´δq`dδ`κδ`ε
ρ,δ and satisfies the differential inequalities

(B.1).

Observe that, for γ such that |γ| “ N ,

B
γ
ξ pϕRpζq “ R´NpBγξ pϕqpR

´1ζq À R´εp1` |ζ|q´N`ε,

as the support condition on pϕ ensures |ζ| „ R „ |ζ| ` 1, since R ą 1. This leads to the
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following estimates for the remainder,

|RNpξ, ηq| À R´ε|η|Np1` |ξ|q´N`ε for |ξ| ě 2|η|,

and

|RNpξ, ηq| À R´ε|η|N for |ξ| ď 2|η|,

as N ě ε. Using the estimate (B.2) in the form

|papη, ξq| À p1` |η|q´2M1p1` |ξ|qm`2M1δ for |ξ| ě 2|η|,

and

|papη, ξq| À p1` |η|q´2M2p1` |ξ|qm`2M2δ for |ξ| ď 2|η|,

where M1,M2 ě 0, we have

|eNpx, ξq| À R´εp1` |ξ|qm`2M1δ´N`ε

ż

|ξ|ě2|η|

p1` |η|q´2M1 |η|Ndη

`R´εp1` |ξ|qm`2M2δ

ż

|ξ|ď2|η|

p1` |η|q´2M2 |η|Ndη

À R´εp1` |ξ|qm`2M1δ´N`ε `R´εp1` |ξ|qm`2M2δ´2M2`N`d

provided ´2M1 `N ` d ă 0 and ´2M2 `N ` d ă 0. Choosing

M1 “ pN ` d` κq{2

and

M2 “
2N ` dp1´ δq ´ κδ ´ ε´Nδ

2p1´ δq
,
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which clearly satisfies the condition ´2M2 `N ` d ă 0, as N ą ε` κδ, one has

|eNpx, ξq| À R´εp1` |ξ|qm´Np1´δq`dδ`κδ`ε.

In view of the definitions of the symbols c and eN , the use of the Leibniz formula and the

condition ρ ď 1 allows one, by the same arguments as above, to deduce the differential

inequalities (B.1) for all multi-indices ν, σ P Nd.

B.2 The case of general apx, ξq

It suffices to prove the differential inequalities (B.1) for x near an arbitrary but fixed point

x0; in particular we prove them for x such that |x´x0| ď 1{2, with bounds independent of

x0. To this end, let θ be a smooth function which equals 1 on |y´ x0| ď 1 and supported

in |y ´ x0| ď 2, and write a “ θa ` p1 ´ θqa “ a1 ` a2. For a1, one may argue as before

and write

c1px, ξq “
ÿ

|γ|ăN

i´|γ|

γ!
pB
γ
ξ pϕRpξqqpB

γ
xa1px, ξqq `

ż

Rd
RNpξ, ηqpa1pη, ξqe

ix¨ηdη.

As a1 “ a for |x´x0| ď 1{2 and the size of the support of a1 in the x variable is constant

and independent of x0, the previous argument reveals that the symbol

eN1 px, ξq :“ c1px, ξq ´
ÿ

|γ|ăN

i´|γ|

γ!
pB
γ
ξ pϕRpξqqpB

γ
xapx, ξqq

satisfies the differential inequalities (B.1) for |x´ x0| ď 1{2, with bounds independent of

x0. As

|eNpx, ξq| ď |eN1 px, ξq| ` |c2px, ξq|,
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where c2 is the symbol of T
pϕR ˝Ta2 , it is enough to show that c2 satisfies the same estimates

as eN1 . Indeed, we will show that for |x´ x0| ď 1{2,

|c2px, ξq| À R´εp1` |ξ|qm´N̄

for any N̄ ě 0; the proof then follows by taking

N̄ “ Np1´ δq ´ dδ ´ κδ ´ ε,

which is nonnegative for N ą dδ`κδ`ε
1´δ

. Recall that

c2px, ξq “

ż

Rd

ż

Rd
pϕRpηqa2py, ξqe

ipx´yq¨pη´ξqdydη.

Integrating by parts with respect to the η variable,

c2px, ξq “

ż

Rd

ż

Rd

∆N1
η pϕRpηq

|x´ y|2N1
a2py, ξqe

ipx´yq¨pη´ξqdydη,

which is a convergent integral, as for |x´x0| ď 1{2 and |y´x0| ě 1, we have |x´y| ě 1{2.

Integrating by parts with respect to the y variable,

c2px, ξq “

ż

Rd

ż

Rd

∆N1
η pϕRpηq

p1` |η ´ ξ|2qN2
pI ´∆yq

N2

´ a2py, ξq

|x´ y|2N1

¯

eipx´yq¨pη´ξqdydη.

In view of the differential inequalities satisfied by pϕR and a2,

|c2px, ξq| À R´ε
ż

Rd

ż

Rd

p1` |η|q´2N1`εp1` |ξ|qm`2N2δ

p1` |η ´ ξ|q2N2p1` |x´ y|q2N1
dydη.
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The integration in y is finite if we choose N1 ą d{2. The triangle inequality trivially

reveals

1

p1` |η ´ ξ|q2N2
ď
p1` |η|q2N2

p1` |ξ|q2N2
,

for any N2 ě 0, so

|c2px, ξq| À R´εp1` |ξ|qm´2N2p1´δq

ż

Rd
p1` |η|q´2N1`2N2`εdη À R´εp1` |ξ|qm´N̄ ,

provided we take 2N2p1´ δq “ N̄ and N1 satisfying 2N1 ´ 2N2 ´ ε ą d, that is

N1 ą
d` ε` N̄{p1´ δq

2
.

Observe that any such N1 also satisfies the required condition N1 ą d{2, as N̄ ě 0.

In view of the definition of c2, the use of the Leibniz formula and of similar arguments

to the ones exposed above leads one to deduce that

|B
ν
xB

σ
ξ c2px, ξq| À R´εp1` |ξ|qm´ρ|σ|`δ|ν|´N̄

for any N̄ ě 0 and all multi-indices ν, σ P Nd, so we may conclude that eN satisfies the

required differential inequalities (B.1).
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Appendix C

Coifman–Rochberg

In this appendix we provide a proof of Proposition 1.2.3. Recall the statement.

Proposition C.1. Let A be a Young function. If 0 ă δ ă 1, then pMAwq
δ P A1 with A1

constant independent of w. In particular,

M
`

pMAwq
δ
˘

pxq ď Cd
1

1´ δ
pMAwq

δ
pxq

for almost all x P Rd.

Our proof is an alternative to the one given in Proposition 5.32 in [38]. We follow the

same method that Coifman and Rochberg [31] used to prove the classical result pMwqδ P

A1 for any 0 ď δ ă 1. In contrast to the Hardy-Littlewood maximal operator M , the

maximal operator MA is not in general of weak-type p1, 1q. However, it will be enough to

use the following weaker estimate.

Proposition C.2 ([38]). Let A be a Young function. For all function f satisfying

}f}A,Q Ñ 0 as |Q| Ñ 8, and all t ą 0,

|tx P Rd : MAfpxq ą tu| ď 3d
ż

txPRd:|fpxq|ąt{2u

A

ˆ

2 ¨ 4d|fpxq|

t

˙

dx.
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Proof of Proposition 1.2.3. Following the ideas in [31], we need to show that

1

|Q|

ż

Q

pMAwq
δ
ď CpMAwq

δ
pxq

holds for every x P Q and C independent of Q and w. Let 2Q denote the cube whose

center is the same as Q and whose sidelength is twice that of Q. Write w “ w1`w2, where

w1 “ wχ2Q. By definition of MA, MAwpxq ďMAw1pxq `MAw2pxq, so for 0 ď δ ă 1,

pMAwq
δ
pxq ď pMAw1q

δ
pxq ` pMAw2q

δ
pxq.

Hence, it suffices to show

1

|Q|

ż

Q

pMAwiq
δ
ď CpMAwq

δ
pxq i “ 1, 2, (C.1)

for every x P Q and C independent of Q and w. As w1 has compact support, we have

that }w1}A,R Ñ 0 as |R| Ñ 8. Using Proposition C.2,

1

|Q|

ż

Q

pMAw1q
δ
pyqdy “

δ

|Q|

ż 8

0

tδ´1
|tx P Q : MAw1pyq ą tu|dt

ď
δ

|Q|

ż 8

0

tδ´1 min

ˆ

|Q|, 3d
ż

tyP2Q:w1pyqąt{2u

A

ˆ

2 ¨ 4dw1pyq

t

˙

dy

˙

dt.

(C.2)

As A is a convex and increasing function, by definition of the Luxemburg norm, we have

that for t ą 2 ¨ 4d ¨ 3d ¨ 2d}w}A,2Q,

3d
ż

tyP2Q:w1pyqąt{2u

A

ˆ

2 ¨ 4dw1pyq

t

˙

dy ď
1

2d

ż

tyP2Q:w1pyqąt{2u

A

ˆ

2 ¨ 4d ¨ 3d ¨ 2dw1pyq

t

˙

dy

ď
1

2d

ż

2Q

A

ˆ

wpyq

}w}A,2Q

˙

dy ď |Q|,
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so we can bound (C.2) by

(C.2) ď
δ

|Q|

ż 2¨4d¨3d¨2d}w}A,2Q

0

tδ´1
|Q|dt

`
3dδ

|Q|

ż 8

2¨4d¨3d¨2d}w}A,2Q

tδ´1

ż

tyP2Q:w1pyqąt{2u

A

ˆ

2 ¨ 4dw1pyq

t

˙

dydt.

The first term in the right hand side is equal to p2 ¨ 4d ¨ 3d ¨ 2dqδ}w}δA,2Q. For the second

term, by convexity of A, we have

3dδ

|Q|

ż 8

2¨4d¨3d¨2d}w}A,2Q

tδ´1

ż

tyP2Q:w1pyqąt{2u

A

ˆ

2 ¨ 4dw1pyq

t

˙

dydt

ď
δ

2d|Q|

ż 8

2¨4d¨3d¨2d}w}A,2Q

tδ´1

ż

tyP2Q:w1pyqąt{2u

A

ˆ

2 ¨ 4d ¨ 3d ¨ 2dw1pyq

t

˙

dydt

ď
δ

2d|Q|

ż 8

2¨4d¨3d¨2d}w}A,2Q

tδ´1

ż

tyP2Q:w1pyqąt{2u

2 ¨ 4d ¨ 3d ¨ 2d}w}A,2Q
t

A

ˆ

w1pyq

}w}A,2Q

˙

dydt

“
δ

2d|Q|

ż 8

2¨4d¨3d¨2d}w}A,2Q

tδ´22 ¨ 4d ¨ 3d ¨ 2d}w}A,2Q

ż

tyP2Q:w1pyqąt{2u

A

ˆ

wpyq

}w}A,2Q

˙

dydt

ď δ

ż 8

2¨4d¨3d¨2d}w}A,2Q

tδ´22 ¨ 4d ¨ 3d ¨ 2d}w}A,2Qdt

“
δ

1´ δ
p2 ¨ 4d ¨ 3d ¨ 2dqδ}w}δA,2Q.

Then

1

|Q|

ż

Q

pMAw1q
δ
ď p2 ¨ 24dqδ

1

1´ δ
}w}δA,2Q ď p2 ¨ 24dqδpMAwq

δ
pxq

for all x P Q, and (C.1) is proved for w1.

To prove (C.1) for i “ 2, we can assume MAw2pxq ą 0. Let y P Q and R be another

cube such that y P R and }w2}A,R ą 0. Then R Ę 2Q and `pRq ą 1
2
`pQq, where `p¨q

denotes the sidelenght of a cube. This ensures Q Ă 3R. We claim that

}w2}A,R ď 3d}w}A,3R ď 3dMAwpxq (C.3)
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for every R Q y. Then for every y P Q, we have

MAw2pyq ď 3dMAwpxq,

so pMAw2q
δpyq ď 3dδpMAwq

δpxq for every y P Q. Thus

1

|Q|

ż

Q

pMAw2q
δ
pyqdy ď 3dδpMAwq

δ
pxq,

as required.

To conclude the proof we still need to show (C.3). But this follows by convexity and

monotonicity of A, since

1

|R|

ż

R

A

ˆ

w2pzq

3d}w}A,3R

˙

dz ď
1

3d
1

|R|

ż

3R

A

ˆ

wpzq

}w}A,3R

˙

dz ď 1,

and this implies, by definition of Luxemburg norm, }w2}A,R ď 3d}w}A,3R. This completes

the proof.
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Appendix D

Uncertainty principle

In the proof of Theorem 5.2.1, we have ensured that the quantities |zgαdσpξq| are essentially

constant at scale K, where gα denotes a cap in S of radius 1{K. Technically speaking,

this is incorrect; however, the quantities |zgαdσpξq| are pointwise controlled by a quantity

satisfying such a property, and it is to that other quantity to the one that we should apply

the dichotomies in the Bourgain–Guth argument. In what follows we make more formal

those uncertainty principle considerations.

Let η P SpRdq such that pη “ 1 in Bp0, 1q and pη “ 0 outside Bp0, 2q, and for any K ą 0,

define ηKpξq :“ K´dηpK´1ξq. Now, fix ξ P BR and write

ygdσpξq “
ÿ

α

zgαdσpξq “
ÿ

α

e´ixα¨ξ
ż

Sα

e´ipx´xαq¨ξgpxqdσpxq “:
ÿ

α

e´ixα¨ξTαgpξq,

where xα denotes the center of the cap Sα. It is a straightforward computation to check

that yTαgpyq is supported in Bp0, 1
K
q. Then

Tαgpξq “ Tαg ˚ ηKpξq.
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As |ηpξq| À p1` |ξ|q´N for any N ą 0,

|Tαgpξq| ď

ż

Rd
|Tαgpθq||ηKpξ ´ θq|dθ À

ż

Rd
|Tαgpθq|K

´d
´

1`
|ξ ´ θ|

K

¯´N

dθ :“ cαpξq,

and from the inherent properties of the function ΨpNqpξq :“ p1 ` |ξ|q´N discussed in

Appendix A, it is clear that cαpξ1q „ cαpξ2q if |ξ1 ´ ξ2| À K.

One should then apply the dichotomies in the proof of Theorem 5.2.1 to the quantities

cαpξq, which are pointwise majorants of |zgαdσpξq|. This still gives the result for the

extension operator, as long as we choose N ą d to guarantee the integrability of ΨpNq,

and as we make applications of Fubini’s theorem and Hölder’s inequality when necessary

along the argument. We avoid such computations here.
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Appendix E

Parabolic Rescaling

We provide the parabolic scaling for the restriction conjecture used in the proof of Theorem

5.2.1. Let CpRq denote the smallest constant in the estimate

}ygdσ}LqpBp0,Rqq ď CpRq}g}Lppdσq

over all dσ associated to any quadratic surface. Obviously CpRq ă 8 since we have

localised the estimate into a ball of radius R.

Proposition E.1. Let gα “ gχSα, where Sα is a cap in S of diameter 1{K. Then

}zgαdσ}LqpBp0,Rqq À CpRqK
d`1
q
´ d´1

p1 }gα}Lppdσq.

Proof. In this case it is more convenient to work with the measure dµ and the parametri-

sation Σ : Uα Ñ Sα, where Uα is an open set in Rd´1, given by Σpx1q “ px1, ψpx1qq; here

ψ : Rd´1 Ñ R is a quadratic function.

Observe that one may write

zgαdµpξq “

ż

Rd
eiξ¨xgαpxqdµpxq

“

ż

Uα

eiξ¨Σpx
1qgαpΣpx

1
qqdx1
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“

ż

Uα

eipξ
1¨x1`ξdψpx

1qqgpΣpx1qqdx1

“ K´pd´1q

ż

ĂUα

eipξ
1¨y{K`ξdψpy{Kqqg̃pyqdy,

where ĂUα “ KUα and g̃pyq “ gpΣpy{Kqq. Then, integrating over ξ P Bp0, Rq and doing a

parabolic rescaling

}zgαdµ}
q
LqpBp0,Rqq “ K´pd´1qq

ż

Bp0,Rq

ˇ

ˇ

ˇ

ˇ

ż

ĂUα

eipξ
1¨y{K`ξdψpy{Kqqg̃pyqdy

ˇ

ˇ

ˇ

ˇ

q

dξ

“ K´pd´1qqKd`1

ż

|ξ̃1|ăR{K

|ξ̃d|ăR{K
2

ˇ

ˇ

ˇ

ˇ

ż

ĂUα

eipξ̃
1¨y`ξ̃dψ̃pyqqg̃pyqdy

ˇ

ˇ

ˇ

ˇ

q

dξ̃

ď K´pd´1qq`pd`1qCpR{K,R{K2
q
q
}g̃χ

ĂUα
}
q
Lppdµq

“ K´pd´1qq`pd`1qKpd´1q q
pCpR{K,R{K2

q
q
}gα}

q
Lppdµq

“ K
´
pd´1qq

p1
`pd`1qCpR{K,R{K2

q
q
}gα}

q
Lppdµq

ď K
´
pd´1qq

p1
`pd`1qCpRqq}gα}qLppdµq,

where ψ̃ denotes another quadratic function.
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Appendix F

Multilinear square function

estimate

The multilinear theory from [9] yields certain multilinear square function estimates. This

was first observed in [17], to which we refer for proofs.

Lemma F.1 ([17]). Let 2 ď m ď d and V be a subspace of Rd of dimension m. Let

P1, . . . , Pm P S be points that satisfy npPiq P V for all 1 ď i ď m and |npP1q ^ ¨ ¨ ¨ ^

npPmq| ą c, where npP q denotes the unit normal to S at the point P . Let U1, . . . , Um Ă S

be small neighbourhoods of P1, . . . , Pm. Let M be large and Di Ă Ui be subsets of 1{M

separated points ξ that obey the condition distpnpξq, V q ă c{M . Then for fi P L
8pUiq, we

have

1

|BM |

ż

BM

m
ź

i“1

ˇ

ˇ

ˇ

ÿ

ξPDi

ż

|η´ξ|ă c
M

fipηqe
´ix¨ηdσpηq

ˇ

ˇ

ˇ

2
m´1

dx

ÀM ε
´ 1

|BM |

ż

BM

m
ź

i“1

´

ÿ

ξPDi

ˇ

ˇ

ż

|η´ξ|ă c
M

fipηqe
´ix¨ηdσpηq

ˇ

ˇ

2
¯

1
2m
dx

¯
2m
m´1

.

Remark F.2. Two application of Hölder’s inequality, together with Lemma F.1, lead to
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a multilinear version of the Córdoba square function estimate [35] for q ď 2m
m´1

1

|BM |

ż

BM

m
ź

i“1

ˇ

ˇ

ˇ

ÿ

ξPDi

ż

|η´ξ|ă c
M

fipηqe
´ix¨ηdσpηq

ˇ

ˇ

ˇ

q
m
dx

ď

´ 1

|BM |

ż

BM

m
ź

i“1

ˇ

ˇ

ˇ

ÿ

ξPDi

ż

|η´ξ|ă c
M

fipηqe
´ix¨ηdσpηq

ˇ

ˇ

ˇ

2
m´1

dx
¯

qpm´1q
2m

ÀM ε
´ 1

|BM |

ż

BM

m
ź

i“1

´

ÿ

ξPDi

ˇ

ˇ

ż

|η´ξ|ă c
M

fipηqe
´ix¨ηdσpηq

ˇ

ˇ

2
¯

1
2m
dx

¯q

ďM ε 1

|BM |

ż

BM

m
ź

i“1

´

ÿ

ξPDi

ˇ

ˇ

ż

|η´ξ|ă c
M

fipηqe
´ix¨ηdσpηq

ˇ

ˇ

2
¯

1
2
q
m
dx,

so
›

›

›

m
ź

j“1

´

ÿ

ξPDi

z

f ξi dσ
¯
›

›

›

Lq{mpBM q
ÀM ε

›

›

›

m
ź

j“1

´

ÿ

ξPDi

|
z

f ξi dσ|
2
¯1{2›

›

›

Lq{mpBM q
,

where f ξi “ fχSMξ and SMξ denotes a cap in S of radius 1{M centered at ξ.
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maximal functions. Proc. Amer. Math. Soc., 106(2):371–377, 1989.
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[121] Per Sjölin. Convolution with oscillating kernels. Indiana Univ. Math. J., 30(1):47–
55, 1981.
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