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Abstract 

A novel Dynamic Colon Model (DCM) that represents the anatomy and physiology of the 

human proximal colon was developed. Analysis of the hydrodynamics was performed using 

Positron Emission Particle Tracking (PEPT) system and Positron Emission Tomography 

(PET). The pressures generated by the wall motion of the DCM tube compared with the 

available published in vivo data. The hydrodynamics in USP 2 dissolution apparatus were also 

assessed using Particle Image Velocimetry (PIV) and Planar Induced Fluorescence (PLIF). 

Areal distribution and individual striation methods showed high mixedness level close to tip. 

PEPT experiments were performed using particles of different buoyancy. Use of different 

particles gave different results in terms of velocities and residence times within the DCM tube. 

 PET images showed that antegrade propagating waves of amplitude lower than the 

minimum threshold used in vivo studies were associated with flow episodes. In addition, flow 

episodes can occur which are not related to the wall motion. 

Dissolution profiles of theophylline, a high water soluble drug, released from a hydrophilic 

matrix obtained at viscous shear thinning media, mimicking the dewatering process in the 

human colon. 

The novel DCM provides a realistic colonic environment, enabling biorelevant in vitro 

assessment of the in vivo performance of dosage forms. 
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1 Introduction 

1.1 Overview 

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis 

(UC), are long-term (i.e. chronic) conditions resulting in inflammation of the gastrointestinal 

tract with unknown aetiology (Burisch et al., 2013). The terminal ileum and the colon are the 

main regions of the gastrointestinal tract (GI) affected by CD and UC. Typical symptoms are 

abdominal pain, diarrhoea, tiredness, feeling generally unwell or feverish, mouth ulcers, loss 

of appetite, weight loss and anaemia. In Europe it has been estimated that approximately 2.5–

3 million people are affected by IBD, with the treatment costs for the healthcare systems 4.6–

5.6 billion Euros/year (Burisch et al., 2013). The corresponding estimated number of affected 

people in the United Kingdom is approximately 620000 (Molodecky et al., 2012). Due to the 

increasing number of people suffering from IBD (Kaplan, 2015), a lot of effort has been exerted 

to effectively deliver drugs for the local treatment of the inflamed colon (Amidon et al., 2015a) 

as well as for systemic treatment.  

Most of the drugs are administrated orally and hence, the drug should pass through the upper 

GI tract before reaching the colon. To improve the local and systemic drug delivery via the 

complex GI tract environment, several modified-release (MR) colon specific drug delivery 

systems have been developed. Upon ingestion, the formulation enters a highly dynamic 

environment in which disintegration, dissolution and absorption/local action occurs. This 

complex in vivo process is usually evaluated in vitro using pharmacopoeia disintegration and 

dissolution tests. Predictive dissolution methods can contribute to a reduction in the number 

of costly in vivo studies required during the design, development and evaluation of these 

formulations. 

It has been realised that both physicochemical characteristics of the gastrointestinal fluids 

as well as the hydrodynamics need to be reproduced in order to make a powerful in vitro model 

to predict in vivo performance (Garbacz et al., 2008, Garbacz and Klein, 2012, Fotaki et al., 
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2009a). Existing compendial dissolution methods oversimplify the complex and dynamic 

environment of the human colon  (Spratt et al., 2005) with the convention being the use of the 

USP dissolution Testing Apparatus 2 (USP 2) by the pharmaceutical industry (Zuleger et al., 

2002, Mitchell et al., 1993). This apparatus presents some drawbacks (Kostewicz et al., 2014) 

and numerous published works have indicated that there is high variability in dissolution 

profiles using USP 2 (Costa and Lobo, 2001, Kukura et al., 2003b, Bai et al., 2011, Qureshi 

and Shabnam, 2001a). 

Recently, the small volume USP 2 apparatus has gained popularity due to the reduced mass 

of material required, analytical methodology and discriminatory power of conventional 

apparatus (Klein and Shah, 2008a). However, there is still a need to analyze the 

hydrodynamics since the miniaturised systems do not exactly reflect the conditions of the 

standard USP2 paddle system (Klein and Shah, 2008a), nor the conditions in the GI tract. In 

addition, the effect of changing and increasing viscosity of the fluids, due to the dewatering 

process which takes place in human colon, may increase the uncertainty and the variability of 

the results from the dissolution test. 

Understanding the hydrodynamics inside the USP 2 apparatus does not in itself explain how 

a dosage form will perform within the environment of the GI tract. Thus, in addition to the 

application of the biorelevant media in dissolution methods (Schellekens et al., 2007, Jantratid 

et al., 2009), attempts have been made to improve the bio-relevance of the hydrodynamic and 

mechanical conditions (Klancar et al., 2013, Thuenemann et al., 2015). The most advanced 

models currently available such as the TNO TIM-1 (Minekus, 2015), TIM-2 (Venema, 2015) 

and IFR Dynamic Gastric model (DGM) (Thuenemann et al., 2015), aim to simulate the GI 

environment under well controlled conditions and have progressed dissolution science, yet 

they are not considered to be the final solution to the problem (McAllister, 2010). Some of the 

major drawbacks of TIM-2 are the cost, complexity of the technique and lengthy equipment 

setup time resulting in a limited amount of data which can be obtained in a reasonable time 
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period. Furthermore, the TIM-2 is not physiologically representative, with a different length, 

volume and mixing process when compared with the human colon (Blanquet et al., 2001a).  

Thus, the development of more realistic biorelevant in vitro models is an ongoing research 

topic with significant potential for the improvement of colon- targeted dosage forms. 

Many modified release (MR) dosage forms have been designed to release the active 

compound within the human proximal colon. This particular section of the human colon has 

been targeted due to higher water availability for drug and nutrients absorption. Thus, there is 

a need to analyse the hydrodynamics of this region of the human colon and understand their 

effects on the performance of solid drug products. 

Physiologically realistic in vitro models should reproduce the widely accepted “law of the 

intestine” which states that the propulsion of the bolus occurrs due to the combined ascending 

excitatory (muscle contraction) coupled with the forward descending inhibition (muscle 

relaxation). In addition, presence of taenia coli (i.e. the thickest layer of the longitudinal 

muscle) and semilunar folds, which form the characteristic pockets in the colon called haustra, 

play a major role in regulation of transit through the colon (Langer and Takács, 2004). There 

is limited data in the literature which investigates the relationships between wall motion and 

movements of the contents in human proximal colon (Cook et al., 2000, Dinning et al., 2008). 

Monitoring techniques used to obtain human colon motility such as manometry and 

scintigraphy have some technical limitations. As a further consequency, contradictory results 

have been obtained among in vivo studies with regards to the association between wall motion 

and flow episodes. These limitations are due to the sensitivity of the manometry which is 

affected by the diameter of the proximal colon (>0.056 m) (Von Der Ohe et al., 1994), and the 

viscosity of the contents (Proano et al., 1990).  In vitro studies assessing the performance of 

manometry have been conducted in fully filled tubes (Arkwright et al., 2013), despite previous 

in vivo studies showing that the volume in the colon varies from 10 – 125 mL which does not 

reflect a fully filled tube (Sutton, 2009, Schiller et al., 2005). Thus, the interpretation of the 
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manometry measurements should be performed in a representative system that reflects the 

volume of the fluids in the (partly-filled) human proximal colon and the diameter of the tube.  

Furthermore, there is no information about how the degree and rate of occlusion of the 

human proximal colon wall will affect the interpretation of manometry in combination with the 

volume and the viscosity of the fluids.  Thus, the current reliance on manometry to characterize 

wall motion and correlate it with flow episodes could limit and/or mislead the interpretation of 

the results.  

Scintigraphy has been utilized to visualize in vivo flow episodes in human colon, however, 

without linkage to changes in human colon diameter. Hence, a more systematic analysis of 

the motility in human proximal colon has still to be reported to investigate how viscosity and 

volume of fluids will affect the interpretation of manometry as well as the propulsion and mixing 

of the colonic contents.  However, this is difficult to perform in vivo in a controllable way, due 

to the high variability between subjects. Thus, the development of a biorelevant in vitro model 

offers advantages to investigate the interplay of those parameters (i.e viscosity, volume, wall 

motion etc.) on fluid mixing and transit. To ensure that the in vitro model provides a realistic 

environment, the anatomy of the proximal colon should be reproduced as much accurately as 

possible. This model enables assessment of  the performance of dosage forms within a 

realistic colonic environment. 

Positron Emission Tomography (PET) is used in this project, as an alternative to scintigraphy 

flow visualization technique, to understand how motility pattern, viscosity and volume of the 

fluids affect the mixing process and the propulsion of the contents in the in vitro model. 

The pressure forces generated from the wall motion are recorded and compared with in vivo 

data obtained from literature using manometry which is a common clinical method to 

investigate abnormalities in the human colon motor.  

Positron Emission Particle Tracking (PEPT) system is used as an alternative method to 

magnetic pill tracking systems which has been used to monitor colonic movements in healthy 

subjects and determine velocities and displacements of the contents upon wall motion.  
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Particle Image Velocimetry (PIV) as well as Planar Laser Induced Fluorescence (PLIF) have 

extensively been used to assess fluid flow and mixing performance of stirred tanks as well as 

USP 2 dissolution apparatus. 

1.2 Thesis Aims & Objectives 

The aim of this thesis is to understand the impact of the hydrodynamics in the human 

proximal colon, in particular relating the motility of the colon wall and the viscosity of the fluids 

to the performance of MR dosage forms, mixing processes and underlying fluid 

hydrodynamics. The development of a biorelevant engineering model which can reproduce 

the complex environment of the human colon to a greater level compared to existing models 

is the driving force for the current project. As further consequence, the model will be used to 

assess the dissolution profile of high water soluble drug released from hydrophilic matrices. 

Thus, the main objectives of the current project in order to achieve these goals are as follows: 

• To develop a biorelevant in vitro model of human proximal colon which reproduces the 

main features of the organ in terms of anatomy and motility patterns. 

• Understand motility, flow and mixing in the human proximal colon using the in vitro 

model under predetermined conditions in terms of motility pattern, volume and 

viscosity of fluids. 

• To investigate how viscosity of the fluids and wall motion will affect the dissolution 

profile and the distribution of high water soluble drug released from a hydrophilic 

matric.  

Comparison of the dissolution of a drug in the in vitro model with the compendial mini volume 

USP 2 dissolution apparatus was also performed. 

 

1.3 Thesis Breakdown 

This thesis is structured in the following manner: Chapter II presents a literature review which 

discusses the viability of the human colon as a site for drug delivery describing its environment 
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in terms of anatomy, physiology, motility and physicochemical properties of the contents. 

Subsequently, available colonic-targeted drug delivery systems are presented alongside the 

key parameters affecting their performance. Then, the chapter focuses on the current status 

in the dissolution science, describing the existing compendial dissolution apparatus used to 

assess the performance of the dosage forms and moving towards the advanced dynamic 

apparatus. Finally, a brief description of the associated experimental techniques and analysis 

methods used in the work presented in this thesis is included.  

Based on the conclusions drawn from this review, characterisation of the mini vessel USP 2 

dissolution apparatus used to assess the performance of the MR dosage forms is described. 

Chapter III discusses the impact of media viscosity on dissolution of a highly water soluble 

drug within a USP 2 mini vessel dissolution apparatus using an optical Planar Induced 

Fluorescence (PLIF) method and is published in part in Stamatopoulos et al. 2015. Chapter 

IV builds on this work, focussing on the mixing performance of small volume USP 2 apparatus 

in shear thinning media and is published in part in Stamatopoulos et al. 2016a. 

 

The next three results chapters focus on the development of an artificial Dynamic Colon 

Model (DCM) as an alternative to compendial dissolution apparatus, providing a more 

representative colonic environment to assess the performance of the MR dosage form used 

previously in the mini volume USP 2 dissolution experiments. The analysis of the data from 

the DCM is divided into three parts: Chapter V discusses the development, design and 

fabrication of DCM to simulate colon motility. The effect of wall motion, viscosity and volume 

of the fluids on the performance of the manometry was investigated whereas Positron 

Emission Tomography (PET) was used to visualize the fluid flow.  

Langer et al., (2004) examined the anatomical significance of the presence of taenia, haustra 

and semilunar folds on the effective propulsion of contents in human colon. Their project 

describes the design of a 2D and 3D model of the haustrum and semilunar folds using isolated 

specimens of human colon,  along with anonymized MRI images of human GI tract provided 

by Heartlands Hospital in Birmingham. Sadahiro et al., (1992) reported the average values of 
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length and diameter of the human proximal colon which were used to inform the design of the 

in vitro model. A modified version of the apparatus used by Arkwright et al. (2013) was 

developed to assess the effect of viscosity and volume of the fluid as well as the degree and 

occlusion rate of the wall on the performance of the manometry. Dinning et al. (2014) provided 

a detailed analysis on the pressure amplitudes and frequency of the motility events in the 

human proximal colon using advanced high-resolution fiber-optic manometry. This work was 

utilized along with Dinning et al. (2008) to reproduce the main motility pattern occurred in the 

proximal colon and the pressure amplitudes obtained in vitro, compared with the available 

data in literature. Flow episodes upon predetermined wall motion of the in vitro model, 

monitored with using Positron Emission Tomography (PET), were compared mainly with Cook 

et al. (2000) and Dinning (2008) as both studies deal with the relationships of pressure events 

and movements of contents. 

Finally, dissolution test was conducted with using the in vitro model and the results were 

compared with the USP 2 mini volume dissolution apparatus. The current compedial 

apparatus was chosen since the volume of 100 mL were within the range of the volume of the 

colonic fluids in the caecum – ascending region.  

Chapter VI discusses how the interpretation of the mixing and fluid flow were affected by the 

interplay between predetermined conditions (i.e. wall motion, viscosity, volume of fluids) and 

the properties of the radioactive particle used to track the movements of the contents in the 

partially filled DCM using Positron Emission Particle Tracking (PEPT). Chapter VII discusses 

the dissolution profile of theophylline modified release tablets, within the DCM and is published 

in part in Stamatopoulos et al. (2016b). In this Chapter a comparison of dissolution within DCM 

and mini volume UPS 2 apparatus is also presented. 

 

Finally, Chapter VIII presents an overall conclusion of the research within this thesis, 

highlighting the importance of the work conducted and the limitations of the results. This 

chapter also suggests potential topics for future research to improve in vitro models of human 

GI tract.   
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The results chapters’ structure reflects the required format of the journals where the chapters 

submitted. 

 

1.4 Publications arising from this thesis 

- Stamatopoulos et al., (2015). Understanding the impact of media viscosity on 

dissolution of a highly water soluble drug within a USP 2 mini vessel dissolution 

apparatus using an optical planar induced fluorescence (PLIF) method. 

International Journal of Pharmaceutics (495) 362-73. 

 

- Stamatopoulos et al., (2016). Use of PLIF to assess the mixing performance of 

small volume USP 2 apparatus in shear thinning media. Chemical Engineering 

Science (145) 1-9.  

 

- Stamatopoulos et al., (2016). Dissolution profile of theophylline modified release 

tablets, using a biorelevant Dynamic Colon Model (DCM). European Journal of 

Pharmaceutics and Biopharmaceutics (108) 9-17. 

 

- Alexiadis et al., (2017). Using discrete multi-physics for detailed exploration of 

hydrodynamics in an in vitro colon system. Computers in Biology and Medicine. ( 

81) 188–198. 

 

- Stamatopoulos et al., (2016, for submission). Development of an artificial Dynamic 

Colon Model (DCM): a tool for analysing motility and mixing in the human 

proximal colon.  

 

- Stamatopoulos et al., (2016, for submission). Understanding flow and mixing 

process in proximal human colon, using a novel Dynamic Colon Model.  
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1.5 Conference presentations arising from this thesis 
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designing colon-specific drug delivery systems” in 3rd Galenus Workshop, 
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- Stamatopoulos et al., (2014) “A dynamic engineering model of human colon: a tool for 
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2 Literature Review 

2.1 Drug delivery to the colon 

Millions of people suffer from bowel diseases such as ulcerative colitis, cirrhosis disease, 

amoebiasis, and cancer with thousands of new cases diagnosed annually (Yang et al., 2002). 

Hence, effective local delivery of drug substances for the treatment of these disorders is of 

high value (Khan et al., 1999). The colon has been considered an attractive region for systemic 

delivery of proteins and peptides due to less diversity, and intensity of digestive enzymes 

(Prasanth et al., 2012), as well as low proteolytic enzyme activities compare to the upper GI 

tract (Yang et al., 2002). Furthermore, the higher responsiveness to absorption enhancers 

(e.g. chitosan) (Sinha et al., 2007) and the much longer transit times compared to the upper 

Gastrointestinal (GI) tract (Sinha and Kumria, 2003), is advantageous on the improvement of 

the bioavailability of certain drug substances. Localised delivery allows topical treatment for 

inflammatory bowel disease. 

The oral route, for drug administration, is the most convenient method to deliver drugs for 

local and systemic treatment (Prasad, 2011). Due to the distal location of colon, a delivery 

system should prevent the drug release during its passage through the upper GI tract 

(Johnson and Gee, 1981). Thus, different approaches have been used to develop delivery 

systems triggered by the local environment of human colon. These systems could be 

categorized as follow: pH dependent, time controlled release, microbial triggered, pressure 

and osmotic controlled (Prasanth et al., 2012). 

Because of the high variability in the conditions prevailing in the GI tract, typically, a single-

unit system fails to effectively deliver drugs into the colon (Das et al., 2010). Thus, 

multiparticulate delivery systems (i.e. the drug is hosted in independent subunits) have gained 

increased importance since they depend less on gastric emptying and hence on inter- and 

intra-subject GI transit time variability (Dey et al., 2008). 
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The transit time of a modified dosage form through the GI tract differs significantly with the 

highest variability being observed in the human colon; although the residence times in the 

small intestine are fairly constant (between 3 - 4 h) (Asghar and Chandran, 2006), in the 

human colon have been reported to be as high as 33 h in men and 47 h in women (Hinton et 

al., 1969). However, there are large inconsistencies in the literature concerning transit times 

since many factors such as bowel diseases (e.g. diarrhoea, constipation and ulcerative colitis), 

diet, fasted or fed state, and age alter the transit times resulting in a wide range of 25 h - 160 

h (Cummings et al., 1992). Rapid transit, as in case of diarrhoea (Manfred R. von der Ohe, 

1993) reduces the residence time for the dosage form before its elimination via defecation, 

whilst prolonged colonic residence, as in constipation, may result in overexposure of drug  

(Washington et al., 2000).  

As moving towards the distal colon, the dewatering and hence the solidification of faecal 

matter results in an increase in the viscosity of the colonic fluids (Washington et al., 2002). As 

a further consequence, the diffusivity of the drug is decreased in the colonic fluid.  

Thus the ascending colon is considered a more favourable site for drug delivery (Erik, 2010). 

In this region the colonic luminal material is sufficiently fluid for the dissolution of the drug, the 

surface area is somewhat larger and the bacterial activity is higher (Cummings et al., 1992, 

Yang, 2008). After the mid-transverse colon, the absorption of even the most water-soluble 

drugs is reduced, due to the very low water content of luminal fluids (Washington et al., 2002).  

Unlike the upper GI tract (i.e. stomach and small intestine), the colonic environment 

possesses diverse and abundant microflora (Cox et al., 1982) with some bacterial species to 

have found exclusively in colon (Cox et al., 1983; Schiller et al., 2005; Washington et al., 

2002). The energy supply for the vast microflora in the colon comes from the fermentation of 

the undigested residues of small intestinal fluids (Cox et al., 1982). The indigestible portion of 

food, which reaches the colon, includes di-, tri-polysaccharides, mucopolysaccharides, etc. 

(Rubinstein, 1990). These substances interact with bacteria to produce a variety of reductive 

and hydrolytic enzymes. The presence of this diverse class of digestive enzymes has led to 
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the development of various systems for drug delivery to this part of the GI tract. Prodrugs (V. 

R. Sinha & Kumria, 2001a) and systems based upon biodegradable polymers are two typical 

classes of colonic microbial triggered delivery systems (Kukura, Arratia, Szalai, & Muzzio, 

2003; V. R. Sinha & Kumria, 2001b). 

Another challenge in effectively delivering drugs to the colon is the impact of bowel disorders 

on the physicochemical characteristics of the lumen (Vertzoni et al., 2010) as well as on the 

delivery system (Kong & Singh, 2008). The physiological pH of the colon in healthy humans 

varies between 5.5–7.8 (Washington et al., 2002). However, in patients with ulcerative colitis, 

the colonic pH can be from 5.0–7.0, whereas, in other subjects may be very low: 2.3, 2.9 and 

3.4 (Fallingborg, Christensen, Jacobsen, & Rasmussen, 1993). Furthermore, the lumen pH 

changes according to the status of the subject (i.e. fasted or fed state) (Diakidou et al., 2009).  

The colonic absorption of drugs may differ significantly from the upper GI tract due to several 

physiological, physicochemical, and biopharmaceutical factors (Thombre, 2005). However, 

solubility and permeability are in general the most important parameters affecting drug 

absorption regardless of the region of the GI tract (Baxter et al., 2005). The solubility and rate 

of dissolution of a drug can be evaluated in vitro with a dissolution test. As explained later in 

more detail (see section 2.5), the concept behind the use of dissolution test for predicting the 

in vivo performance is to assess the rate of solubilisation of a drug as it must first be dissolved 

in the aqueous phase of the GI contents before it can be absorbed (Jantratid et al., 2009). In 

modified release dosage forms the dissolution test may give a measure of the extent and the 

rate of the drug released. However, the drug release profile is affected by several factors such 

as properties of the active ingredient, formulation design and manufacturing process as well 

as the chemical and mechanical environment of the test method. Great care must be taken in 

the evaluation of these factors concerning their contribution and impact on the drug release to 

develop meaningful dissolution test methods. Nevertheless, studies have shown that the in 

vitro solubility (i.e. dissolution) profile of a drug is not always proportional to its in vivo 
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performance (Ahmed & Ayres, 2011) but depends on the dissolution method and the 

physicochemical properties of the drug. 

As mentioned before, bowel disorders alter the colonic environment in terms of transit times, 

pH, and water content. Higher absorption rates are anticipated for drugs during long transit 

times because of an increased contact of lumen contents with the colonic wall. However, 

Hebden et al., 1999, showed that accelerated transit and increased stool water content, 

enhances drug absorption whilst slow transit and decreased stool water content, tends to 

diminish drug absorption (Wang, 2009). Consequently, there is a need to clarify the impact 

not only of these two variables (Klein & Shah, 2008) but also all those parameters (i.e. motility, 

pH etc.) which determine the colonic environment.  

 

2.1.1 Drug absorption by the human colon 

Several barriers limit drug absorption from the colon. Figure 2.2 shows a schematic 

representation of the factors that affect drug bioavailability. In the lumen itself, the drug can 

interact with the dietary components resulting in specific and non-specific binding with dietary 

components. For example, lectins may interact with sugar residues on the protein of a 

glycoprotein drug molecule whereas non-selective interaction may occur between indigestive 

foodstuffs like alginates and waxes and the drug compound (Prasad, 2011). Pro-drugs 

released by the microflora in the colonic lumen could also lead to specific and non-specific 

binding events. The present of reactive groups, such as free sulfhydryls, in the drug molecule 

might promote drug-binding interactions with the colonic bacteria (Mrsny, 1992). Moreover, 

the drug molecules remaining in the lumen, face the increase in bacterial content during their 

passage from the proximal to the distal colon (Rangachari, 1990) which could further 

compromise drug bioavailability. 

The rate of the drug absorption for weak acid or basic drugs will be controlled by the pH of 

absorptive site as well as the partition coefficient. That means that, the pH of the microclimate 
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at the mucosal surface, and not the pH of the lumen, will determine the dissociation of the 

drug and hence its absorption rate (Washington et al., 2002).  

The dewatering of the faeces within the colon leads to inadequate mixing in the bulk phase 

and hence less access to the mucosal surface. In addition, the reduction in the water content 

has also impact on drug dissolution and hence on drug bioavailability. Furthermore, the 

contact of the drug with the mucosa can be inhibited by the presence of gas in the colon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Drug absorption pathway with uptake barriers found within lumen, mucus and 

epithelial layer. 

 
Specific and non-specific 

binding 
 

 

  Microbial 

degradatio

n 

Colonic fluids volume fluctuations 

(impact on the degree of drug 

solubility) 

Mucus blanket 

(0-300 μm) 
Increasing 

viscosity 
Charge repulsion 

forces 

Specific and 

non-specific 

binding 

Pure diffusion (little 

fluid movement within 

the mucus layer) 

Lumen 

Mucus 

Epithelial 

layer 

Enzymatic 

degradation 

Blood 

capillary 

      Lipid monolayer 

 

     Drug molecules 

      Loose mucus layer 

    Frim mucus layer 

Junction zone 

Exocytosis 

Basement membrane 

Paracellular transport 

Trancellular transport 



Konstantinos Stamatopoulos                                                                                Dynamic Colon Model 

 

36 

It has been suggested that some gel-forming polysaccharide gums increase the thickness of 

the unstirred water layer (Johnson & Gee, 1981). Moreover, dietary fibres such as pectin and 

chitosan have cation-exchange properties which may bind drug molecules. These physical 

factors will all act to slow drug absorption in the colon, with increasing effect as water is 

removed and the transport properties of the faecal mass are reduced. 

2.2 Physiology of human colon 

The gastrointestinal (GI) tract is composed by the oesophagus, stomach, small intestine and 

the colon as the final organ. The other physiological terms used for the colon such as large 

intestine and bowel will be used interchangeably in the present text.  

The human colon (Figure 2.2) is the last site of absorption for digestive residues. It is 

comprised of the caecum as well as ascending, transverse, descending, sigmoid colon and 

rectum. The ascending and transverse regions form the main parts of the proximal, or right 

colon, whereas the distal, or left, is composed of the descending and sigmoid regions. At the 

end of the ascending colon there is a sharp bend known as hepatic, or right, flexure before 

the continuation of the colon towards the transverse region. Thereafter, there is another bend 

known as splenic, or left, flexure located at the end of the transverse segment and the 

beginning of the descending colon, as indicated in Figure 2.2.  
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Figure 2.2.Human colon anatomy (Mosby's Medical Dictionary, 8th Edition) 

 

The large intestine is a continuous non-perfectly cylindrical tube approximately 1.29 ±0.16 m 

in length, although, there are various gender and age differences (Sadahiro et al., 1992). 

Regarding the diameter, it starts with a value of around 8.5 cm at the caecum and ends up to 

2.5 cm at the sigmoid colon (Washington et al., 2000). 

The undigested food from small intestine flows to the caecum which is regulated by the 

ileocecal valve. The caecum and ascending colon seems to have as a main functions the 

reception of the ileum contents as well as the storage, mixing and absorption of the colonic 

contents (Cook et al., 2000, Hiroz et al., 2009). The ascending colon is on average 0.16 m in 

length (Sadahiro et al., 1992), appearing between the ileocaecal valve and the hepatic flexure. 

Thereafter is the transverse colon, which is approximately 0.42 m in length (Sadahiro et al., 

1992). This is the largest region of the colon with the most motility (Davidson et al., 2011). 

After the transverse colon is the splenic flexure which ends up to descending colon. The 

descending colon is longer (0.20 m) than the ascending because of the higher position of the 

splenic flexure in the body, (Sadahiro et al., 1992; Washington et al., 2000). The current region 

(i.e. descending) serves as a conduit between the storage (i.e. transverse colon) and excretory 



Konstantinos Stamatopoulos                                                                                Dynamic Colon Model 

 

38 

areas (i.e. sigmoid colon) (Hiroz et al., 2009). The sigmoid colon, so called `S-shaped' colon, 

is approximately 0.40 m in length and 0.033 m in diameter (Sadahiro et al., 1992), and it begins 

at the pelvic brim as a continuation of the descending colon. 

The main digestive functions of the colon include: absorption of water, electrolytes and 

nutrients from partially digested food (Szmulowicz and Hull, 2011); fermentation (proximal 

colon) of non-digestible carbohydrates (e.g. dietary fibre) from small intestinal enzymes; 

conversion of vitamin K1 to K2 by colonic microflora (Conly et al., 1994), and distal propulsion 

of contents as well as storage of faecal matter until defecation.  As will be discussed in more 

detail later, there are differences between the colonic regions in terms of motility, absorption 

etc. For example the blood supply of the proximal and distal colon is different (Picon et al., 

1992), whereas, the right colon (i.e. caecum, ascending, hepatic flexure and mid-transverse) 

absorbs more water and electrolytes than the left (Sandle, 1998).   

The colon wall consists of two layers of smooth muscle. The circular oriented muscle is in 

the interior of the colon wall whereas the outer layer is oriented perpendicular to the circular 

muscle and runs longitudinally along the colon tube. On the longitudinal muscular layer there 

are three strips so called taeniae coli (Langer and Takács, 2004).  

Haustra (i.e. small pouches) are formed throughout the colon because taeniae are shorter 

than the true length of the organ (Kelvin and Gardiner, 1987) causing sacculation of the colon, 

resulting in its segmented appearance (see Figure 2.3). The folds between the haustra are 

known as semilunar folds and contain all layers of the colonic wall. The semilunar folds are 

formed due to “anchoring” of circular muscles on taeniae (Langer and Takács, 2004). The 

haustra within the proximal colon are fixed anatomical structures because of the fusion 

between the taeniae and the underlying circular muscle, whereas, in the distal colon they are 

formed by a combination of contraction, relaxation or passive extension of circular and 

longitudinal muscles (Langer & Takács, 2004). 
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Moving towards the interior of the colon wall there is a connective tissue called submucosa 

which is located between the circular muscle layer and mucosa (Figure 2.2). The mucus 

membrane is a moist tissue which covers the most of the organs surfaces and cavities of the 

human body such as the intestines, lungs and nose (Edsman and Hagerstrom, 2005).  

 

 

 

 

 

Figure 2.3.Anatomy of human colon wall (www.umm.edu) 

The colonic mucosa contains enterocytes, as well as goblet and enteroendocrine cells 

(Varum et al., 2008); enterocytes are responsible for absorption, goblet cells secrete mucus 

and enteroendocrine cells produce hormones. 

The function of mucus in the GI tract is to lubricate the surface of the organs for minimizing 

the frictional forces during the peristaltic transport of the contents (Lai et al., 2009) while 

allowing rapid entry and exit of nutrients and waste (Florey, 1955). In the colon, mucus protects 

the epithelial cells from the hosting bacteria.  

2.3 Human colon motility 

The human colon performs several different functions, including storing, mixing and 

propulsion of the colonic fluids (Scott, 2003), essential for the optimal absorption of water, 

electrolytes and bacterial metabolites (Cook et al., 2000). The diverse functions of the colon 

require a complex motor activity to slowly propel the contents for maximal absorption whilst 

avoiding over-solidification of the faeces (Sarna and Shi, 2006).  

Animal studies using isolated sections of intestine (Crema et al., 1970, D'Antona et al., 2001, 

Dinning et al., 2011, Dinning et al., 2012, Costa et al., 2013a, Costa et al., 2015) and advances 
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in monitoring techniques, like high resolution video imaging (Costa et al., 2013c) as well as 

high resolution manometry (Dinning et al., 2013, Corsetti et al., 2016), have provided improved 

understanding of colonic motility. These studies are highly valuable since most of the motility 

patterns that occur in animal intestine are found also in the human colon (Spencer et al., 2016).  

 

2.3.1 Mechanisms controlling colon motility 

Motility refers to the temporal and spatial coordinated contractions and relaxations of the 

longitudinal and circular muscle cells (Spencer et al., 2016). The movements of the colonic 

muscle are controlled by the interplay of two main fundamental mechanisms. The first one, so 

called ‘myogenic’ activity is generated by networks of pacemaker interstitial cells of Cajal 

(ICCs) (Sanders et al., 2014) which are responsible for spreading this activity to smooth 

colonic muscle cells (Liu et al., 2012). This type of contractile activity causes slow rhythmic 

contractile patterns (Mañé et al., 2015). However, the myogenic activity is not enough to 

effectively propel the contents and therefore an additional activity is required (Spencer et al., 

2016). The second mechanism, so called neurogenic activity, involves polarized reflexes, 

activated by distension of the colonic fluids (Spencer et al., 2012), and cyclical colonic 

migrating motor complex. These two neural pathways are involved in the propulsion of the 

contents (Dinning et al., 2012).  

Distended contents trigger enteric ascending excitatory (i.e. contraction of circular muscle) 

and descending inhibitory (i.e. relaxation of the circular muscle) neural pathways (Dinning et 

al., 2014b); this is referred in literature as ‘law of the intestine’ (Sinnott et al., 2012). It has 

been proposed that this simultaneous contraction/relaxation is controlled by a so called 

‘neuromechanical loop’ (Costa et al., 2013b). This is a feedback mechanism which adapts the 

colon motility accordingly to the redistribution of the contents after the contraction and 

relaxation of the circular muscle (Figure 2.4; reproduced from Costa et al., 2015). The 

redistribution of the contents depends on their consistency (e.g. viscosity), ranging from liquid 

to solid pellets formed during the dewatering process. Moreover, there is a relationship 
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between the surface area occupied by the semi-solid material and the speed of the propulsion, 

reflecting the number of the mechano-sensitive neurons activated by the bolus (Costa et al., 

2015).   

 

 

 

 

Figure 2.4. Propulsion patterns with respect to the consistency of the luminal contents in 

guinea-pig colon; DCMMC: distal colonic migrating motor complexes (Figure reproduced from 

Costa et al., 2015 with permission). 

2.3.2 Motility patterns in human colon  

 The best described motility patterns in human colon are the so called ‘mass movements’ of 

the contents. These movements are associated with strong contractions of the circular muscle 

which extensively propagate along the colon (Figure 2.5). This motility pattern is frequently 

referred as high amplitude (>100 mmHg) propagating contractions (Dinning et al., 2010) 

(HAPCs) or sequences (Dinning et al., 2014a), occurring 3 – 24 times per day. They often 

predominate after morning waking (Bampton et al., 2001), however, can also appear shortly 

after a high calorie meal (Bassotti et al., 1993, Bassotti et al., 1995). Previous in vivo studies 

have shown that HAPCs are absent in an empty ‘prepared’ colon, suggesting that, as with the 

neurogenic peristaltic contractions observed in animals, luminal distention is required to evoke 

HAPCs (Spencer et al., 2016). For instance, undigested starch in the colon can increase the 

incidence of HAPCs (Jouët et al., 2011). However, HAPCs can also be triggered by chemical 

stimuli such as bisacodyl, chenodeoxycholic acid, and short-chain fatty acids (Kamm et al., 

1992, Cook et al., 2000, Bampton et al., 2001) which acts by triggering the mucosal afferent 

neurons (Dinning et al., 2014a). In addition, the fact that HAPCs appear after a meal (Bassotti 
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and Gaburri, 1988, Bampton et al., 2001, Dinning et al., 2010), suggests that enteric neurons 

are modulated by extrinsic neural inputs. 

 

 

 

 

 

Figure 2.5. Manometric tracing of a high amplitude propagating contraction (HAPC) using low-

resolution manometry (recording points are 12 cm apart) placed from the distal transverse (T) 

to the proximal sigmoid colon (S); distending colon (D). Figure reproduced from Bassotti et al. 

2005. 

For several decades, it was widely accepted that between HAPCs, the main motility pattern 

in healthy human colon was the so called, segmental, non-propagating, contractile activity 

(Narducci et al., 1987, Bampton et al., 2001, Rao et al., 2001, Gabrio Bassotti, 2005). Thus, 

based on the previous in vivo studies, using low-resolution manometry (i.e. sensors spaced 

≥7 cm), the human colon motility was categorized between the propagating activity, including 

low amplitude propagating contractions (LAPCs) and HAPCs, and non-propagating (i.e. 

segmental) (Bassotti et al., 1995). The segmental activity could be appeared either as irregular 

‘bursts’ with some to be ‘rhythmic’ or ‘arrhythmic’, or as isolated, sporadic event (Scott, 2003). 

The rhythmic frequency of the segmental contractile activity is mostly comprised in the range 

2 – 8 min-1 (Rao et al., 2001), and it is mainly observed in the distal (descending and sigmoid 

colon) (Bassotti et al., 1990). However, other studies showed that these motility patterns 

sporadically appeared in other regions of the colon (Bampton et al., 2001) and they can travel 

orally or aborally (Rao and Welcher, 1996).  
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In recent years, high resolution manometry (sensor spacing 1 cm) revealed that half of all 

propagating motor patterns are either missed or incorrectly classified as sporadic and/or ‘burst’ 

events (Dinning et al., 2013, Dinning et al., 2014a). These small amplitude intermediate 

rhythmic frequency cyclic contractions (2 – 8 min-1), labelled in earlier studies as ‘burst’, non 

– propagating events, were shown to be propagating motility patterns (Dinning et al., 2013). 

This contractile activity predominates between HAPCs and occurs in all regions of the colon 

but prevails in distal colon, sigmoid and rectum, suggesting that they occur to maintain 

continence and control defecation (Dinning et al., 2014a). Figure 2.6 (reproduced from Dinning 

et al. 2013) shows the difference between manometric tracing graph obtained with using low- 

and high-resolution manometry, demonstrating how large (i.e. 10 cm) and small (i.e. 1 cm) 

spacing of the sensors affect the interpretation of manometric measurements. For example, 

the short extend retrograde propagating contractions appeared in high resolution manometry 

(Figure 2.6a, inside the blue boxes), they would be labelled as segmental, non-propagating, 

isolated contractile activity (Figure 2.6b) if low resolution manometry had used. On the other 

hand, the same retrograde propagating contractions (or sequences) (Figure 2.6c) would be 

labelled as low amplitude aborally propagating contractions in low resolution manometric 

graph (Figure 2.6d). Furthermore, the manometric graphs show that there are also regional 

differences with regards to the motility patterns that predominate. For instance, high resolution 

manometry showed that extended or short propagating contractions originated from the 

ascending colon, whereas most of the short – extended retrograde propagating contractions 

appeared in the sigmoid colon. 
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Figure 2.6. Representative section of colonic manometry displayed with 10 cm and 1 cm 

spacing. Several antegrade (red arrows) and retrograde (blue arrows) propagating sequences 

could be detected using 1 cm spacing (Figure reproduced from Dinning et al. 2013 with 

permission).  

 

High resolution manometry has also highlighted three other propagating sequences (Figure 

2.7) in human colon (Dinning et al., 2014a): (i) cyclic propagating motility (or motor) pattern (ii) 

short single motility patterns which are isolated patterns that propagate antegradely or 

retrogradely and occur in the proximal and distal colon, (iii) long single motility patterns 

propagate along the colon at longer distances compared to myogenic cyclic contractions, with 

velocity 0.018 ±0.012 m s-1; this motility pattern originates form the proximal colon to the mid 

– descending colon, and (iv) retrograde slow propagating motility patterns travel at low velocity 

(0.005 m s-1) over long distances (>0.4 m). 

Retrograde cyclic propagating motility pattern predominates in sigmoid colon (Figure 2.7B) 

and it has been suggested that the prominence of this motor pattern is to help to retard flow 

(Dinning et al., 2014a). However, retrograde flow can also occur within the proximal colon 

a b 
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where a magnetic pill, used to track colon motility, was observed to slowly move in a retrograde 

direction from transverse to ascending colon over several hours (Hiroz et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. High resolution manometry recordings from healthy human colon (Figure 

reproduced from Dinning et al. 2014 with permission). 

 

Very recently, another motility pattern, termed pan-colonic pressurizations, has been 

detected and is associated with the relaxation of the internal anal sphincter (Corsetti et al., 

2016). Pressures recorded simultaneously along the entire length of the human colon (Figure 

2.8) with amplitude of 15 ±3 mm Hg and 24 ±4 s duration. Pan-colonic pressurizations are 

increased significantly during a meal, however, decreased afterward. These simultaneous 

pressures are correlated with farting (Corsetti et al., 2016). 
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Figure 2.8. Repeated pan-colonic pressurizations associated with anal sphincter relaxation 

(Figure reproduced from Corsetti et al. 2016 with permission) 

 

2.3.3 Relationships between propagating sequences and propulsion of the contents 

Several in vitro studies have shown that propagating sequences (PS) or pressure waves are 

important determinants to the propulsion and the defecation of the colon contents (Moreno-

Osset et al., 1989, Bazzocchi et al., 1991, Reddy et al., 1991, Herbst et al., 1997, Cook et al., 

2000). Alterations to PS, are linked to abnormalities of the colon motility (Bassotti and Gaburri, 

1988, Bassotti et al., 1992, Rao et al., 2004, Dinning et al., 2004); Table 2.1 shows the 

relationship between different colonic disorders and alterations in the contractile activity of the 

human colon. However, there is a lack of understanding between the different motility patterns 

of the human colon and their association with the propulsion of the contents (Cook et al., 

2000). This is because on the one hand, manometry failed to adequately describe the colon 

wall motion (Dinning et al., 2008) and on the other hand scintigraphy, used to visualise flow 

episodes in human colon, can be limited from the low frame rate (Reddy et al., 1991, 

Bazzocchi et al., 1991) and the pure visual analysis of isotope flow (Cook et al., 2000).  
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Improvements made on these two techniques (i.e. use of manometry with closely spaced 

sensors combined with higher frame rate scintigraphy), revealed the propulsion nature of most 

of propagating sequences (Dinning et al., 2008); the authors found that 93% of the antegrade 

PS recorded in proximal colon were associated with flow episodes. However, the authors also 

showed that over the half of flow episodes occurred in the absence of PS and their association 

with fluid motion was significantly reduced in the ascending colon. A possible explanation, 

given by the authors, was that apart from the tone of colon wall (Moreno-Osset et al., 1989) 

and the viscosity of the contents (Proano et al., 1990), contributing to the propulsion of the 

fluids, it is likely that a proportion of the motility patterns will be missed due to reduced 

sensitivity of the manometry within gut regions of diameter exceeding 0.056 m (Von Der Ohe 

et al., 1994), as in case of the caecum – ascending region.  

Arkwright et al. (2013) evaluated the performance of the manometry in an in vitro apparatus 

used to simulate non – occluding (i.e. no physical contact of the manometric catheter with the 

colon wall) oscillation of a flexible wall. The authors found that the manometry detected non – 

occluding events and that the interpretation of the results was affected by the viscosity of the 

luminal contents and the occlusion rate. However, the authors did not reproduce the complete 

environment of the caecum – ascending colon since the tube was fully filled with medium. 

However, the caecum – ascending region is partially and not uniformly field with fluids, with 

fluid present in pockets (Schiller et al., 2005). Furthermore, the authors did not examine 

whether the manometry could differentiate changes in the degree of luminal occlusion for non 

– occluding events, since the greater the occlusion degree the more volume of fluids will be 

expelled from the contracting point. 

Thus, it remains to be answered how the volume of the fluids will affect the performance of 

manometry and how this will reflect the association of the pressure waves with the propulsion 

of the contents within the colon. In addition, manometry failed to differentiate intraluminal 

pressures from pressure forces generated by the wall motion (Sinnott et al., 2015). Thus, care 

should be taken when in vivo pressure values used in in vitro dissolution testing machines for 
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the evaluation of the performance of the dosage forms. This is because the pressure forces 

might not reflect how extensively and intensively the fluid are propelled and mixed. 

 

Table 2.1. Effect of colon diseases, fasted and fed state on transit times, pH as well as colon 

motility 

 Type of propagate sequence 

Disorders Transit times HAPCs 

Segmentation/other 

ante- retrograde short 

extended propagating 

motor patterns  

Diarrhoea 

6 times faster 

(Manfred R. von der 

Ohe, 1993) 

Increased 

(Bharucha, 2012) 

Reduced (Bharucha, 

2012) 

Constipation 
Increased (Rao et 

al., 2009) 

Decreased (Asghar 

and Chandran, 

2006, Dinning et al., 

2010) 

Increased (Asghar and 

Chandran, 2006, Dinning 

et al., 2010) 

Ulcerative colitis 
Varied (Fallingborg 

et al., 1993) 

Increased 

(Fallingborg et al., 

1993, Bassotti et al., 

2004) 

Decreased (Bassotti et al., 

2014) even after meal 

(Reddy et al., 1991) 

 

 

2.3.4 Other non – invasive methods to monitor human colon motility and transit times 

Scintigraphy and radio – opaque markers (RPMs) are common methods used to estimate 

transit times in human colon (Kim and Rhee, 2012). In particular, RPMs are plastic beads 

ingested in a capsule containing 20 – 50 markers. There are two methods followed to assess 

the transit times in human colon. In the single capsule technique, one capsule is ingested 

followed by several abdominal X-rays images captured every 24 h until the complete 

defecation of the markers (Southwell et al., 2009). However, this incurs high exposure to 

radiation for the patients and is time consuming. In the multiple-marker technique, a capsule 
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is ingested on 3 consecutive days and X-rays images are captured at 4th and 7th day, or only 

at 7th day (Kim and Rhee, 2012).  

Scintigraphy, besides the technical limitations of the technique, gives information about the 

movements of the physiological meal (Maqbool et al., 2009), whereas radio – opaque markers 

(RPMs) doesn’t (Kim and Rhee, 2012) but mainly the overall transit.  

Wireless capsule (Saad and Hasler, 2011) and magnetic pill tracking system (Hiroz et al., 

2009) have been introduced as alternative non – invasive monitor techniques of the human 

colon motility and transit. Wireless capsule has shown good correlation with scintigraphy 

isotope distribution within the human colon at a given time (Deiteren et al., 2010) (Maqbool et 

al., 2009) and radio – opaque markers (Rao et al., 2009). Pressure amplitudes measured with 

wireless pill are in a good agreement with manometry (Brun et al., 2012), however, a wireless 

pill with only one pressure sensor is not able to show the propagation of the different motility 

patterns (Tran et al., 2012). In addition, wireless pill behaves as a free-floating body (Farmer 

et al., 2013) making its motion (i.e. speed, location, orientation) unpredictable (Koulaouzidis 

et al., 2015). Several studies have been conducted using the so called SmartPill®, to monitor 

transit times, pH and pressure amplitudes at fed and fasted state (Schneider et al., 2016) as 

well as at different disease states (Saad, 2016); revealing the high variability in pressures 

during gastric emptying process e.g. before and after administration of high-caloric, high-fat 

(964 kcal) FDA standard breakfast (Koziolek et al., 2015). 

Magnetic pill tracking system was used by Stathopoulos et al. (2005) and Hiroz et al. (2009) 

to monitor human digestive motility.  In both studies rhythmic ‘to and fro’ motion of the magnetic 

pill within the caecum – ascending region was observed, resulting in slow and small net 

forward propulsion (0.026 m h-1).  In addition, the authors observed retrograde displacements 

of the pill, suggesting that this motion contributes to intraluminal mixing. Hiroz et al. (2009) 

reported that the pill followed the flow motion, however, the much lighter radiopaque markers 

were found to overtake the much heavier magnetic pill.  The current magnetic tracking system 

needs further validation with simultaneous use of manometry (Stathopoulos et al., 2005) and 
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also comparison of the results with scintigraphy. Nevertheless, the current technique is the 

only non – invasive method giving some information about in vivo velocities and residence 

times of the colonic fluids characterized by a dense tablet. However, the properties of the 

tablet (e.g. relaxation time and buoyancy) need also to be taken into consideration for proper 

fluid flow characterization. 

 

2.4 Colon specific drug delivery systems 

In this section, a brief description of the available colon specific drug delivery systems is 

presented. 

As described above, human colon is a dynamically changing environment in terms of 

contractility, transit times, microflora, volume and viscosity of the fluids. These conditions can 

change under normal or disease state but also due to diet. For instance, patients with 

ulcerative colitis have shorter average transit times (~24 h) compared to healthy subjects (~52 

h) (Amidon et al., 2015a). The pH in caecum - right colon was found to vary in the range of 

5.7 – 6.8 in healthy subjects, 2.3 – 7.2 in patients with ulcerative colitis and 5.3 – 7.2 in patients 

with Crohn’s disease (Nugent et al., 2001); the range in pH values is based on the data 

reported from different studies and summarised by Nugent et al. (2001). The pH can be 

influenced by a diet rich in carbohydrates where upon fermentation short fatty acids are formed 

(Macfarlane et al., 1992), resulting in increased caecal acidity (Nugent et al., 2001).    

Oral route is the most convenient way to administer drugs in humans. As mentioned above, 

colon is a favourable site for local and systemic treatment. Thus, a dosage form needs to 

survive its passage via the stomach and small intestine to reach the human colon. Then, within 

the colon, the dosage form should release the active pharmaceutical ingredient (API) in a 

controlled way.  

Factors that influence the delivery and the bioavailability of the drug includes the 

physicochemical properties of the API, the dose and the excipients used in formulations 
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(Amidon et al., 2015a). However, due to low amount (1 – 14 mL (Schiller et al., 2005)) of 

colonic fluids, the dose (Amidon et al., 2015a) and the solubility (Wang and Flanagan, 2009) 

are critical factors affecting the dissolution and hence bioavailability of the API.  Additionally, 

the presence of numerous enzymes produced by the hosted colonic microflora may 

metabolize drugs, forming pharmacologically active, inactive, or sometimes even toxic 

metabolites (Kang et al., 2012). 

Different strategies have been developed to deliver APIs to the human colon: pH dependent, 

time dependent, prodrugs, bioadhesive systems, microbiologically triggered systems including 

also polysaccharide-based delivery system, pulsatile delivery, pressure and osmotic 

controlled systems. 

pH dependent: The main principle of this formulation is the delayed release of the API by 

protecting it from the low gastric pH with using a polymer which is soluble in more basic pH 

(Chourasia and Jain, 2003). However, the solubility of these polymers rises as the pH 

increases. Hence, drug release might be prevented in the proximal small intestine but it may 

be dissolved in lower small intestine. In addition, lag time in the ileocecal junction zone and 

rapid transit via ascending colon can also cause poor site-selectivity. Poly-methacrylate based 

polymers such as Eudragit® L and Eudragit® S have unique pH at which they dissolve. Blends 

of these two polymers have been used in combination to effectively deliver drugs to the human 

colon (Khan et al., 2000). Additionally, relative thick coatings of these polymers have been 

used in pulsatile systems to prolong their dissolution, resulting in extending the drug release 

(Maroni et al., 2013). 

Time dependent: This type of formulation has been designed to release the drug in the colon 

after a specified amount of time. It is assumed that transit times (3 – 4 h) in the small intestine 

is relatively constant (Alvarez-Fuentes et al., 2004) and can be used as a specific time window 

before reaching the colon. However, gastric emptying is not constant between individuals and 

can fluctuate based on food intake (Fukui et al., 2000). In addition, as mentioned above, transit 

times are influenced from several disorders associated with colon. Different layers of enteric-
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coated polymer and hydrophilic polymers have been combined for sustainable delivery to the 

colon (Gazzaniga et al., 1994). Specific technologies have been developed and scaled to 

commercial dosage forms. In particular, TIMERx® technology, which is based on slowly 

eroding matrix, consists of two polysaccharides, namely, xanthan gum and locust bean gum. 

These two polysaccharides work synergistically forming a tight gel structure upon hydration, 

which retards water penetration into the dosage form, hence, controls the release of the active 

ingredient. Slofedipine XL (nifedipine) and Cystrin CR (oxybutynin) are based on this 

technology and are marketed in Europe. 

Prodrugs: Inactive derivatives of APIs where the active drug is released after enzymatic 

hydrolysis. Azo conjugates are the most researched groups utilized to form an inactive 

derivative of APIs either by linking the drug to e.g. sulfate group (Kim et al., 2012) or to a 

carrier such as pectin, cyclodextrin, glucuronide, dextran, and amino acids (Amidon et al., 

2015a). All these bonds are broken down by colonic microflora (Chourasia and Jain, 2003). 

Olsalazine is a characteristic commercially prodrug, under the brand DIPENTUM, of 

mesalazine a compound with anti-inflammatory activity in ulcerative colitis.  

Bioadhesive systems: There are two terms used separately to identify whether the drug 

carrier adhesives to a biological tissue or to the mucus layer on the surface of a tissue. Thus, 

bioadhesion referred to the first case and mucoadhesion to the second one (Shaikh et al., 

2011). This type of formulation was developed to increase the residence time of the active 

drug and improve bioavailability (Peppas et al., 2009). Some polymers with bio--

mucoadhesion properties used in this type of formulation are chitosan, polyethylene glycol, 

hydroxyethyl cellulose, polyacrylic acid and polyvinyl alcohol (Shaikh et al., 2011). Rice starch 

has been also utilized to deliver metronidazole to the colon (Ahmad et al., 2012). The 

bioadhesive properties can be influenced by the hydrophilicity of the polymer, the pH, the 

concentration of the carrier, molecular weight, and cross-linking (Jiménez-castellanos et al., 

1993). Furthermore, enhancement of the bioadhesive properties of the carrier might be 
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achieved with using polymers, e.g. carbomers, capable to reach the firmly adherent mucus 

layer due to the polymer chain diffusion (Varum et al., 2011). 

Microbial triggered systems: The colon contains numerous species of anaerobic bacteria 

(clostridia, enterococci, eubacteria etc.) which produce several enzymes like azoreductase, 

nitroreductase, glucuronidase and xylosidase to ferment polymers which have not been 

digested from the upper GI tract (Rubinstein, 1990). Thus, colon specific systems can be 

developed by using polymers which degrade by these enzymes found only in colon. Acetyl 

derivative of guar gum (Roos et al., 2008), inulin azo hydrogels and many other modified 

polymers have been developed and summarized by Sinha and Kumria (2003). Furthermore, 

polysaccharides naturally presented in plants (e.g. pectin), algal (e.g., alginates), or microbial 

(e.g., dextran) origin have been used for colon targeting (Kosaraju , 2005). Other types of 

polysaccharides are cyclodextrins which are cyclic oligosaccharides break into small 

saccharides by Bacteroides (Sinha  and Kumria, 2001).  

Pressure controlled systems: Intraluminal pressures are higher in colon due to the present of 

a more viscous chyme formed during dewatering process. Thus, capsules can be developed 

to deliver drugs based on luminal pressure (Takaya et al., 1998, Wilde et al., 2014a, Wilde et 

al., 2014b). 

Osmotic controlled systems: This type of system is regulated by the osmotic pressure of the 

chyme. The capsule consists from hard gelatin which dissolved in the pH of the small intestine. 

Inside the capsule there are 5 – 6 units coated with enteric polymer. A commercially available 

technology, so called DUROS®, consists of a cylindrical within there is a semipermeable 

membrane which comprises an osmotic push compartment and a drug compartment. As the 

water enters the push compartment swells pushing out the drug through an orifice. The flow 

rate of the drug depends on the rate that water enters the unit. A lag time between enteric 

coating dissolution and the drug’s release prevents from premature release of the drug in small 

intestine (Philip and Pathak, 2006). Polysaccharides such as pectin, chitosan, chondroitin 

sulfate, galactomannan, and amylose are some of which have been used to deliver drug to 
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the colon because they can be degraded from the colonic microflora and their derivatives are 

harmless to the organisms (Philip and Philip, 2010). 

Pulsatile delivery: this type of formulation utilizes the timed – released systems with pH – 

dependent properties to achieve colon – targeted delivery. The pulsincap system is a 

characteristic example of a formulation combines both these techniques (Krögel and 

Bodmeier, 1998). The current system consists of a water insoluble capsule containing the 

drug, a hydrogel which seals the open part of the capsule and then a water-soluble cap covers 

the hydrogel. Then the whole capsule is coated with an acid insoluble film coating to prevent 

premature release of the drug in stomach. When the coating film starts to dissolve in the small 

intestine, the water enters the capsule causing swelling of the hydrogel. The progressively 

swelling of the hydrogel allows for a lag time before the drug is released. The lag time depends 

on the concentration of the hydrogel used (Sindhu Abraham, 2007). However, as mentioned 

above, transit times as well as pH values varied between individuals and under different 

disease states. In addition, pulsatile delivery systems have some limitations such as low drug 

loading capacity and incomplete release of drug as well as multiple manufacturing steps (Jain 

et al., 2011). Furthermore, releasing the active compound in the colonic lumen, may lead to 

degradation of the drug from the microflora (e.g. proteins and peptides for colon cancer) and 

hence to ineffective local treatment. Considering these factors, pulsatile systems might need 

further improvements to reliably and consistently delivery drugs to the colon.  

 

2.5 Dissolution testing of the oral solid dosage forms 

The concept behind dissolution testing is that the API should be first dissolved into the bulk 

solution before it can be absorbed by the human body. The dissolution of an API consists of 

two steps. The first one is the formation of solvated molecules of the drug upon contact with 

the solvent and the second is the mass transport of the drug molecules from the solid – liquid 

interface to the bulk solution (Wang and Flanagan, 2009).  
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Overall the release of the drug from the dosage form is affected by the properties of the 

API (e.g. pKa, solubility), manufacturing process, formulation design, the chemical and the 

mechanical (e.g. agitation speed) conditions of the test method selected to monitor drug 

release.    

 A dissolution method can be used during the development process of a formulation as well 

as for quality control to monitor batch-to-batch consistency. However, the complexity of the 

dissolution method, in terms of media composition and reproduction of the hydrodynamics 

take place in GI tract, is often increased when an in vivo – in vitro correlation needs to be 

developed. This is especially important for the new developed APIs which tend to be less 

water soluble and more sensitive to the lumenal environment (Reppas et al., 2014).  

2.5.1 Compendial dissolution methods 

USP I (basket) and II (paddle) (Figure 2.9) are the main apparatuses used for dissolution 

testing of oral dosage forms (Long and Chen, 2009). However, there are also so called 

dynamic dissolution apparatus which introduce hydrodynamic or mechanical aspects of the 

human GI tract; these types of dissolution apparatus will be further discuss in the following 

sections. 

 

 

 

 

 

 

Figure 2.9. Schematic representation of the USP I (basket) and II (paddle) dissolution 

apparatuses 

The choice of dissolution apparatus, between USP 1 and 2, to be used depends on which 

type of formulation need to be tested (Kostewicz et al., 2014). For instance, capsules float and 

hence a sinker is normally used to keep it at the bottom of the USP 2 apparatus, alternatively 
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a USP 1 might be more suitable. On the other hand, both apparatus can be used for tablets.  

However, when the release characteristics need to be tested for enteric coated products, USP 

1 is more suitable when a full change of the medium, i.e. from gastric to intestinal fluid, is 

required as the basket can be transferred easily (Kostewicz et al., 2014).  

The limitations of using USP 1/2 have been presented extensively in literature (Gray et al., 

2009, McAllister, 2010, Kostewicz et al., 2014) with respect to their relevance to the human 

GI tract environment in terms of volume and hydrodynamics. For instance, hydrodynamics in 

USP 2 are problematic not only because they are far from the in vivo conditions but also 

because they are highly inhomogeneous (D'Arcy et al., 2005, Baxter et al., 2005a, Bai et al., 

2007), causing variation in the dissolution data. In addition, based on the density, shape, size 

and location of the dosage within the USP 2 vessel, different dissolution results may be 

obtained (Kostewicz et al., 2014). Another issue with USP 2 is the coning effect appeared 

below the shaft and close to the bottom of the vessel forming a stagnant zone. Increase of the 

agitation speed as well as replacing the round bottom vessel with so-called peak vessel have 

been examined (Mirza et al., 2005) as alternative strategies to avoid coning.  

The media volumes which are normally used in USP 1/2 range from 500 to 1000 mL. These 

volumes are used to ensure sink conditions during the quality control of the formulation in 

order to examine if the drug will be completely released from the dosage form. Volumes of 1L 

or even higher are likely to be reached in stomach at fed state. However, in case where the 

product should be administered in fasted state with a glass of water, gastric volumes might 

not exceed 250 mL (Schiller et al., 2005) and thus the volumes used in the dissolution methods 

do not reflect the in vivo conditions. Nevertheless, sink conditions for BCS (Biopharmaceutics 

Classification System) class 1 (high solubility, high permeability) and 3 (high solubility, low 

permeability) drugs prevail even at low volumes, whereas the use of high volumes can lead to 

overestimation of the dissolution of poorly water soluble drugs in the stomach.  

With regards to the intestinal environment, sink conditions may be created with the removal 

of the drug from the lumen by uptake across the gut wall (Kostewicz et al., 2014). Thus, in this 
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case the permeability of the drug might determine whether it is appropriate to generate sink 

conditions.  

When small volume is more appropriate for the formulation under test, mini volume USP 2 

dissolution apparatus is useful to simulate conditions in stomach and intestine in the fasted 

state. However, the hydrodynamics in small version of the USP 2 do not reflect those in the 1 

L vessel (Klein and Shah, 2008b). In addition, there is no harmonization on the design and 

dimensions among the manufacturers. Thus, it is important to assess the mixing conditions 

within the mini volume USP 2 used.   

Apart from USP 1 and 2, other compendial dissolution apparatuses have been used such as 

USP 3 (reciprocating cylinder) and 4 (Flow-through cell). In USP 3 there is hydrodynamic dead 

zone as in the case of USP 1 and 2; provided that the dosage form remains in the reciprocating 

basket as well as there is no undissolved material at the bottom of the vessel Kostewicz et al. 

(2014). Previous study showed that, although the in vitro hydrodynamics affected the release 

rate of the drug from hydrophilic matrix, USP 1, 2, 3 and 4 showed to be equal to predict the 

in vivo profile in average basis Fotaki et al. (2009b). However, USP 3 and 4 is more suitable 

when the dosage form should be exposed to different media. 

However, other dynamic models of the upper GI tract have been developed such as the 

dynamic gastric model (Thuenemann et al., 2015), the artificial stomach duodenal model 

(Castela-Papin et al., 1999, Carino et al., 2006) and TNO TIM-1 (Minekus, 2015) to overcome 

the limitations of the compendial dissolution apparatus. 

2.5.2 In vitro models of human colon 

In this section a brief description of the existing in vitro models of the human colon is 

presented.  

2.5.2.1 Three-Stage Compound Continuous Culture System  

Macfarlane et al. 1998 developed a fermentation system (Figure 2.11) to mainly study the 

differences in physiology and ecology of human colon microflora between proximal (i.e. cecum 
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– ascending – hepatic flexure - mid transverse) and distal (mid transverse – splenic flexure – 

descending) colon. The first vessel was used to simulate the physicochemical environment of 

the proximal using medium of pH 5.5 that was fed with fresh culture medium rich in 

carbohydrates. The other two vessels were operated at higher pH, 6.2 and 6.8 respectively, 

with the contents of the first vessel feeding the second and subsequently from the second to 

the third. The results showed that the current system can maintain stable and diverse 

populations of faecal microflora for an extended period. However, some of the main drawbacks 

of this fermentation system are that it does not reproduce intestinal secretion, absorption of 

the fermentation products and that oversimplifies the hydrodynamics of the human colon by 

using a simple magnetic stirrer. 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Three-stage compound continuous culture system developed by Macfarlane et al. 

1998 (Figure reproduced from Macfarlane et al. 1998 with permission). 
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2.5.2.2 Three-stage tubular engineering model of human colon 

The three-stage tubular model (Figure 2.12), developed by Spratt et al. 2005, was an 

improved version of the three-chemostat gut model system described above. In this model the 

water and the fermentation products (principally short chain fatty acids) were removed using 

a tubular semipermeable 1000 Dalton molecular weight cut-off cellulose membrane 

surrounded by a shell. The media was pumped inside the membrane using a peristaltic pump 

whereas outside the membrane an aqueous solution of PEG3350 (polyethylene glycol), 

including also salts acids and bases, was flowing. Thus, the osmotic pressure was the primary 

driving force for the flux of water and the fermentation metabolites across the membrane. 

The issue with this system, as also with the previous one, is that both were designed to 

assess the fermentation process in the human colon and not the hydrodynamics. The flow 

inside the three-stage tubular model is induced by a peristaltic pump and not from the 

oscillations of the membrane wall as in the human colon. Thus, the current system does not 

facilitate understanding the relationships between wall motion and movements of the colon 

contents. In addition, the fluid flow inside an oscillating collapsible tube is more complicated 

compared to dispersed plug flow model used to describe flow motion and mixing in the tubular 

system. For instance, during the peristaltic motion of the human colon wall, pressure gradients 

occur between the relaxing point and the contracting point of the colon wall whereas vortex 

rings appeared within the relaxing point (Sinnott et al., 2012). These vortex rings are important 

for mixing and transport and they have previously been observed in peristaltic flow models 

using prescribed wall motion (Connington et al., 2009).  



Konstantinos Stamatopoulos                                                                                Dynamic Colon Model 

 

60 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11.Schematic representation of the three – stage engineering model of human colon 

(figure reproduced from Spratt et al. 2005 with permission) 

 

2.5.2.3 TNO TIM-2 colon simulator 

The most advanced commercialized in vitro model of the human colon is the TIM-2 (Figure 

2.14) developed by Nederlandse Organisatie voor Toegepast (TNO) Nutrition and Food 

Research Institute (Zeist, The Netherlands). It is a multicompartmental, dynamic, computer 

controlled simulator of the human colon (Venema, 2015). Unlike the previous models, the 

mixing of the contents is performed by changes of the water pressure, causing contraction 

and relaxation of a membrane installed inside a glassy shell. The removal of the fermentation 

products is performed using hollow semipermeable fibres whereas pH is controlled with 

secretion of NaOH and the temperature is kept constant with the circulation of water inside 

the glassy shell.  

Despite the fact that the TIM-2 model reproduces the colonic environment in a more 

advanced and reproducible way compared to the previous models, it is still not considered to 

be fully representative of the human colon (McAllister, 2010). In addition, TIM-2 system is not 

representative of the environment of human colon in terms of design, dimensions and volume 

(Blanquet et al., 2001b). 
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Based on our knowledge there is lack of information with regards to the following issues: 

• Analysis of the hydrodynamics inside the TIM-2 system and how the viscosity 

changes, upon water removal from the dialysis system, will affect the mixing 

performance of the system. 

• Measurements of the pressure forces generated from the oscillations of the flexible 

membrane in TIM-2. Although, in TIM-1 system pressures have been measured with 

using wireless smart pill (Minekus, 2015), it is questionable if the TNO system 

reproduces the physical mixing of the contents, since the wireless pill does not show 

the propagation of the different motility patterns (Tran et al., 2012). 

• Most of the studies using TNO TIM-1 and TIM-2 system do not give any information 

about the frequency of the contractions of the membrane but mainly the residence 

times in each compartment (Larsson et al., 1997, Krul et al., 2000, Souliman et al., 

2006, Souliman et al., 2007, Dickinson et al., 2012, Verwei et al., 2016). The only 

exception found to be in the works of Brouwers et al. 2011  and Hens et al. 2014 in 

which the frequency of the peristaltic contractions in TIM-1 was 3 min-1 and 6 min-1, 

respectively. However, no corresponding information was found for TIM-2. 

• The surface area of the dialysis hollow fibres in which the contents are exposed. The 

absorptive surface area of the human colon is 0.2 m2 (Sandle, 1998) and as 

mentioned above, the colonic fluids are not uniformly distributed and hence exposed 

along the surface area of the colon wall. However, the dialysis system used the TIM-

2 seems to be completely immersed in the fluids (Figure 2.12b).  

Furthermore, based on the design of the TIM-2, the distribution of the fluids is not 

representative of the human colon in which the fluid contents appear as pockets (Schiller et 

al., 2005). Beside the improvements that TIM-2 brought into the dissolution science, the 

question how the physiology, the motility and the volume of the contents in the human proximal 

colon will affect the hydrodynamics and hence the fluid flow, mixing and subsequently the 

performance of the dosage forms, remains to be answered. 
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Figure 2.12. a) Schematic representation of TIM-2 colon simulator. a) peristaltic compartments 

with hollow dialysis membrane installed inside the tube, b) pH sensor, c) NaOH secretion, d) 

dialysate system, e) level sensor, f) gaseous N2 inlet, g) sampling port, h) gas outlet, i) feeding 

syringe of the TIM-1 contents, j) temperature sensor. Figure reproduced from Aguirre et al. 2014; 

b) TIM-2 in operation. 

 

 

2.6 Techniques to assess mixing and visualize fluid flow 

2.6.1 Particle Image Velocimetry (PIV) 

PIV is a non-invasive laser optical technique, allowing for 2-D velocity vector mapping of a 

flow field (Figure 2.13). The current technique is based on tracking seeded particles in 

transparent fluid by sequential illumination using a pulsing thin plane of laser light. The position 

of the illuminated particles (either by scattered laser light or emitted fluorescent light) are 

captured by a digital camera so called Charged Coupled Device (CCD); a very small time 

difference between the images facilitated by a frame-straddling camera enables the shift in 

position of the particles between frames to be correlated. CCD is an electronic sensor 

converting photons (light) to electric charges with a typical size of 10 x10 μm2. 

Cross-correlation of pairs of images enables the velocity vector field for the measured area 

to be obtained (Figure 2.14). Each frame is sub-divided into a grid with each square being 

termed the interrogation area (IA). The size of this area can range from 8 × 8 to 128 × 128 

a b 
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pixels, with 64 × 64 pixels being a common choice based upon optimal displacement of the 

particles (¼ of the interrogation area) and the camera resolution. The vector displacement for 

the two images is determined by cross – correlation of each interrogation area. Then, the 

degree of the correlation between the two interrogation areas of the two frames is determined 

statistically with the highest value in the correlation plane being used to obtain the particle 

displacement.  The procedure is repeated until to build the completely 2D velocity vector map.   

 

 

 

 

 

 

 

Figure 2.13.Schematic representation of the Particle Image Velocimetry experimental set up. 

 

 

 

 

 

 

 

 

 

 

Figure 2.14.Image interrogation process 
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The resolution of the PIV depends on the camera implemented, the magnification and the 

seeding particle size used. The current technique has been used to assess the hydrodynamics 

in standard (Kukura et al., 2003b, Kukura et al., 2004, Baxter et al., 2005a) and mini volume 

(Stamatopoulos et al., 2015, Wang and Armenante, 2016) USP 2 dissolution apparatus. 

 

2.6.2 Planar Laser Induced Fluorescence (PLIF) 

Planar laser induced fluorescence is a powerful optical technique widely used to visualize 

flow patterns in transparent fluids and may be considered as a variant of PIV, using similar 

equipment. In principle, PLIF is based on the utilization of a chemical substance which become 

fluorescent when excited by a light source of specific wavelength. Thus, a map of the 

concentration gradients can be obtained as a function of time at the illuminated plane of the 

fluid flow. This can be done by converting fluorescence intensities to dye concentration by 

using images of the illuminated plane of the flow field captured by CCD camera at 

predetermined time intervals. Rhodamine-B (Miller et al., 2007), -MT (Kukura et al., 2004) and 

-6G (Stamatopoulos et al., 2016a) are some fluorescent dyes used in PLIF applications. This 

technique has previously been used to assess the mixing performance of standard (1 L) USP 

2 dissolution apparatus (Baxter et al., 2005a). Examples of images of standard USP 2 

apparatus captured using the PLIF technique are presented in Figure 2.15. 

 

 

 

 

Figure 2.15. PLIF images of standard USP 2 captured at predetermined time intervals (Figure 

reproduced from Dave et al. 2007 with permission). The images illustrate the mixing pattern of 

rhodamine-B solution after rapid addition to the main fluid (i.e. water) 

0 sec 1 sec 3 sec 
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2.6.3 Positron Emission Particle tracking (PEPT) system 

Positron emission particle tracking enables to detect the motion of a labelled tracer particle 

with using a positron camera and a location algorithm for computing the time-space location 

of the tracer (Guida et al., 2009). The particle is labelled with a positron-emitting nuclide 

normally 18F with half-time 110 min, however, other radio isotopes like 61Cu (half-time 3.3 h) 

have also been used (Parker et al., 1997). The positron emitted by the labelled tracer particle 

annihilates with an electron, emitting a pair of almost exactly back-to-back (i.e. collinear) 511 

keV γ-rays (Figure 2.16). The two γ-rays are detected simultaneously from the two positron 

camera heads working in coincidence (Parker and Fan, 2008). Each head of the two positron 

cameras contains a rectangular sodium iodide crystal optically connected to a group of 

photomultiplier tubes. When the γ-rays pair emitted after positron annihilation, produce two 

coincident scintillations in the crystals and the corresponding photomultipliers provide 

positional signals and the 2D centroids are determined by the associated software.  

Different strategies have been used to develop particle tracers form various materials 

(Parker and Fan, 2008). Initially 18F radioisotope is produced in the cyclotron of the University 

of Birmingham with bombarding pure water of solid material with 33MeV 3He beam based on 

the following reaction 

16O(3He,p)18F and 16O(3He,p)18Ne→18F 

The 18F can be added to a particle via surface absorption or ion-exchange. In this study, 

strong-base anion exchange resin was used which are quaternary ammonium derivative 

provided in chloride form. However, the affinity of 18F to the functional group of the resin R–

CH2N(CH3)3
+ or R–CH2N(CH3)2(CH2CH2OH)+, where R is the organic backbone, is lower 

compared to Cl-. Thus, the resin should first be converted to fluoride form or hydroxide form 

before use. To convert the chloride form of the resin to fluoride one, the resin slurry is eluted 

with 1 M KF solution. After the procedure, the F- ions can exchange with 18F. For water 

application, the resin should be coated with lacquer, otherwise, the radioactivity will leak into 
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the fluid. Furthermore, painting can be applied to make neutrally buoyant particles. The affinity 

of the 18F is stronger with using strong-base resin as this type of resin is less affected by 

hydroxide ions formed upon interaction with water. 

PEPT can be utilized to analyse the flow field in non-transparent fluids and in apparatuses 

with complex geometries, since no light scattering phenomena exist in this technique as 

occurred in PIV and PLIF when a thin laser plane hits a curved and/or opaque surface. The 

intrinsic spatial resolution of the positron camera used in the PEPT experiments is 6 mm. The 

accuracy of the tracer location is given by Equation 2.1.  

𝑊

√𝑓𝑁
                                                                                                                                    (2.1) 

where W is the spatial resolution of the camera and N is the number of the events detected 

during the location intervals and 𝑓 the fraction of these events used for the determination of 

the location. Thus, using PEPT, the location of the particle tracer can be detected with high 

spatial resolution several tens to hundreds times per second based on the velocity of the 

tracer. For example a tracer travelling with high velocity 1 m s-1 can be located within 500 μm 

250 times per second and with slow moving within 100 μm 50 times per second (Parker et al., 

2002).  

In previous years, PEPT have found numerous applications in solid–liquid suspension 

(Guida et al., 2009), multiphase systems (Pianko-Oprych et al., 2009), static mixers (Mihailova 

et al., 2015) and many others summarized by Parker and Fan (2008). In this study PEPT will 

be implemented as an alternative technique to the magnetic pill tracking system used in vivo 

studies. 
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Figure 2.16. Schematic representation of the positron annihilation and gamma ray detection by 

positron camera 

 

2.7 Conclusions 

The human proximal colon is considered a favourable site to deliver drugs for systemic and 

local treatments. As the oral route is the most common way to administer drugs a dosage form 

will face a dynamic-complex environment during its passage through the GI tract. It has been 

realized that hydrodynamics and physicochemical composition of the human chyme should 

be reproduced to adequately assess the in vivo performance of the dosage forms.  

Mixing, propulsion, storage, dewatering, secretion, microflora hosting take place in the 

human colon. Complex muscle contractions are required to facilitate these functions of the 

human colon. Manometry and scintigraphy are used to monitor the colon motility patterns and 

movements of the contents in vivo. However, these methods have some technical limitations 

making the association between wall motion and flow episodes a difficult task. In addition, the 

human colon environment is dynamically changing as a function of time, making it very 

complex to examine the interplay between the different parameters (i.e. viscosity) involved in 

the hydrodynamics which take place in the human colon. Thus, an in vitro model, which 
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reproduces the main features of the colon anatomy and motility, may give insights of the 

colonic environment in which the dosage forms will be exposed. 

Compendial dissolution methods such as USP 2 dissolution apparatus, are widely used to 

assess the in vivo performance of the dosage form as well as batch-to-batch consistency. 

However, the current dissolution apparatuses oversimplify the environment of the human GI 

tract whereas the most advanced GI simulators like the TNO TIM-2 are not biorelevant in 

terms of human physiology and motility. 

This literature review has justified the aim of this study to develop an in vitro model of human 

proximal colon to examine how the physiology, motility and the viscosity of the fluid will affect 

the hydrodynamics in the human colon. In addition, characterization of the dissolution profile 

of a dosage form will also be performed. As described in the later chapters a modified release 

hydrophilic matrix containing theophylline, a high water soluble drug, was chosen as a case 

study to evaluate the effect of the wall motion and the viscosity of the fluids on the dissolution 

profile of the tested drug. Theophylline was chosen to avoid the solubility to be the limiting 

factor that would make the evaluation more complicated. However, comparison of the 

proposed model with the compendial dissolution apparatuses should be performed. Mini 

volume (100 mL) UPS 2 was chosen, since its volume is closer to the volumes appeared in 

the human proximal colon and our model. In addition, since dewatering process takes place 

in the human colon, the effect of the viscosity on the dissolution profile of theophylline as well 

as on the mixing performance of the mini volume USP 2 should be also examined.  

The remainder of this thesis consists of the results Chapters, starting with the 

characterization of the mini volume USP 2 apparatus in Chapters III and IV and then the 

development and characterization of the proposed in vitro model of the human colon in 

Chapters V, VI and VII. 
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Nomenclature 

Sk  Metzner-Otto constant 

C  concentration matrix 

A  matrix of constant vales 

G  matrix of averaged Grayscale values 

B  
matrix of intercept values for the linear 

regression 

 𝑡𝑖̅ central point of the observed time interval 

 𝛥𝑀𝑖 differential amount of drug dissolved 

D impeller diameter (m) 

f2 Similarity factor 

k 

proportionality constant related to the 

structural and geometrical properties of 

the matrix 

m Diffusional exponent 

Mt⁄M∞ fraction of drug released at time t 

n power law exponent 

N rotational speed (rps) 

np number of time points  

Re Reynolds number 

Rt 
Dissolution (%) for drug formulation at 

time t 

Tt 
Dissolution (%) for dye formulation at 

time t 
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Greek symbols 

𝛾̇ Shear rate (s-1) 

µA Apparent viscosity (mPa s) 

p  Density (kg m-3) 

τ  Shear stress (Pa) 

τγ  Yield stress (Pa) 

 

 

Abbreviations 

ANOVA Analysis of Variance 

C.V  Coefficient of Variance 

CCD Charged Coupled Device 

CFD Computational Fluid Dynamics 

GI  Gastrointestinal 

HCl Hydrochloric acid 

MDT Mean Dissolution Time 

NaCMC Sodium carboxymethylcellulose 

PIV Particle Image Velocimetry 

PLIF  Planar Laser Induced Fluorescence 

PLIF Planar Induced Fluorecence 

RH-6G Rhodamine-6G 

SP Sampling Point  

THE Theophylline 

USP  United States Pharmacopeia 
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3 Understanding the impact of media viscosity on dissolution of a highly 

water soluble drug within a USP 2 mini vessel dissolution apparatus using 

an optical Planar Induced Fluorescence (PLIF) method1 

 

Abstract 

 

In this study, planar induced fluorescence (PLIF) was used for the first time to evaluate 

variability in drug dissolution data using Rhodamine-6G doped tablets within small volume 

USP 2 apparatus. The results were compared with tablets containing theophylline (THE) drug 

via conventional dissolution analysis. The impact of hydrodynamics, sampling point, 

dissolution media viscosity and pH were investigated to note effects on release of these two 

actives from the hydrophilic matrix tablets. As expected mixing performance was poor with 

complex and reduced velocities at the bottom of the vessel close to the tablet surface; this 

mixing became even worse as the viscosity of the fluid increased. The sampling point for 

dissolution affected the results due to in-homogenous mixing within the vessel; this effect was 

exacerbated with higher viscosity dissolution fluids. The dissolution profiles of RH-6G 

measured via PLIF and THE measured using UV analysis were not statistically different 

demonstrating that RH-6G is an appropriate probe to mimic the release profile of a highly 

soluble drug. A linear correlation was accomplished between the release data of the drug and 

the dye (R2>0.9).  

The dissolution profile of the dye, obtained with the analysis of the PLIF images, can be used 

to evaluate how the viscosity and the mixing performance of USP 2 mini vessel affect the 

interpretation of the dissolution data of a drug.  

 

                                                           
1 This chapter has been published in part in Stamatopoulos, K., Batchelor, H. K., Alberini, F., Ramsay, 

J. & Simmons, M. J. H. (2015). International Journal of Pharmaceutics, 495, 362-373. doi: 
10.1016/j.ijpharm.2015.09.002 
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3.1 Introduction 

A drug delivery system that provides a constant rate of release over the required time interval 

offers many benefits in treatment. Zero-order release provides a constant release rate and no 

time lag or burst effect over a prolonged time period (Amidon et al., 2015b). Hence, much 

research effort has been invested in development of zero-order oral drug delivery systems i.e. 

time independent release kinetics (Klein and Shah, 2008a). The use of hydrophilic matrices 

has become very popular in solid oral dosage forms (Qureshi and Shabnam, 2001b); a 

sustained release matrix tablet consists of the active ingredient(s) with either single or multiple 

gel forming agents which retard the release of the drug (Baxter et al., 2005a). In the case of 

highly water-soluble drugs (Maderuelo, Zarzuelo, & Lanao, 2011), swelling-controlled oral 

drug delivery systems have so far shown the most promise.   

The mechanisms by which drugs are released from a hydrophilic matrix upon hydration 

involve: a) the entry of the solvent into the matrix, b) a progressive change in the matrix from 

a glassy to a rubbery state resulting in swelling, c) dissolution of the drug molecules, d) 

diffusion of the drug through the gel layer and e) release of the drug in the solution (Kukura et 

al., 2003a). In the final stage, there are two phenomena which both contribute to the overall 

release rate of the incorporated drug: release from low viscosity gels occurs by erosion of the 

gel layer; whilst for high viscosity gels, the release is by diffusion of the active agent through 

a stable gel with limited polymer dissolution. The transition between the two mechanisms 

results in diffusion kinetics lying between the square root time dependence of Fickian diffusion 

(Jantratid et al., 2009) and zero-order or ‘case II’ diffusion (Moroni and Ghebre-Sellassie, 

1995). Often, both phenomena occur simultaneously due to diffusion and the relaxation of the 

polymer (Zuleger and Lippold, 2001). 

Orally administered dosage forms, usually tablets, are the most convenient way for delivering 

drugs to patients. Upon ingestion, the tablets enter a highly dynamic environment in which 

disintegration, dissolution and absorption occur. This complex in vivo process is usually 

evaluated in vitro using disintegration and dissolution tests. In the case of hydrophilic matrices, 
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the timescale for gel formation and the resistance of the gel layer to physiological shear stress, 

experienced during their passage through the gastrointestinal (GI) tract, are essential 

parameters that control the drug dissolution characteristics (Garbacz et al., 2009).  

Recently, the small volume USP 2 apparatus has gained popularity due to the reduced mass 

of material requried, analytical methodology and discriminatory power of conventional 

apparatus. Furthermore, small volume apparatus may be beneficial in the development of 

biorelevant methods, particularly for paediatric populations. 

Officially introduced almost 4 decades ago, the conventional (1L) USP dissolution Testing 

Apparatus 2 (USP 2) is the most commonly used equipment in the pharmaceutical industry 

(Zuleger et al., 2002, Mitchell et al., 1993). However, this apparatus presents some drawbacks 

(Kostewicz et al., 2014). Numerous published works have indicated that there is high variability 

in dissolution profiles using USP 2 (Costa and Lobo, 2001, Kukura et al., 2003b, Bai et al., 

2011, Qureshi and Shabnam, 2001a). 

Some studies (Zuleger et al., 2002, Bai et al., 2011, Cox et al., 1982) have shown that the 

fluid flow in USP 2 is highly heterogeneous. The shear distribution is non-uniform (Cox et al., 

1982), whereas, the velocity vectors are highly dependent on the location within the vessel, 

especially at the bottom of the vessel where the tablet is located during dissolution testing 

(Zuleger et al., 2002). These complex hydrodynamics can contribute to the poor 

reproducibility, as can the tablet position in the vessel. The small volume USP 2 apparatus is 

a miniaturised version of the conventional apparatus, however, there is still a need to analyze 

the hydrodynamics since the miniaturised systems do not exactly reflect the conditions of the 

standard paddle system (Klein and Shah, 2008b), nor the conditions in the GI tract. 

The effect of viscosity on the dissolution test may increase the uncertainty and the variability 

of the results, since, the hydrodynamics of the USP 2 apparatus will be more complicated.  In 

addition, other variables, like sampling cannula position, especially sampling depth, and 

inconsistencies in the technique of the analysts performing the test can affect dissolution rate 
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and reproducibility (Cox et al., 1983).  Previous works (Parojcic et al., 2008, Radwan et al., 

2012) testing different dosage forms in viscous media do not give any information about the 

sampling cannula position or possible changes in hydrodynamics (e.g. shear rates and/or 

velocities) or mixing patterns. 

Planar Induced Fluorecence (PLIF) has been widely used as a non-intrusive visualization 

technique for the evaluation of mixing systems (van Cruyningen et al., 1990, Law and Wang, 

2000, Bruchhausen et al., 2005). Furthermore, Particle Image Velocimetry (PIV) combined 

with Computational Fluid Dynamics (CFD) have been used to characterize the flow pattern in 

conventional (1 L) USP 2 apparatus dissolution vessel (Kukura et al., 2003b, Bai et al., 2011), 

revealing the non-uniform velocity field and thus an uneven distribution shear rates.  

These visualization techniques have mainly been used either by injecting a fluorescent dye 

in the USP 2 vessel, at different injection points, for characterising mixing patterns in simple 

buffer solution (Cox et al., 1982, Bai et al., 2011) or by using nondisintegrating salicylic acid 

tablets containing phenolphthalein as an indicator agent for investigating the effect of tablets 

movements at the bottom of the vessel on drug dissolution profiles (Bai et al., 2011, Baxter et 

al., 2005b). In addition, visualization studies were performed by blending salicylic acid with 

phenolphthalein as a first step in affirming the fluid flow patterns in USP 1 and 2 (Bampton 

and Dinning, 2013), demonstrated previously using laser Doppler anemometry (Bocanegra et 

al., 1990).  

Kukura et al. (2003, 2004) performed PLIF experiments in conventional (1 L) USP 2 

dissolution apparatus under laminar and turbulent conditions. Under laminar flow (𝑅𝑒=150) 

non-uniform mixing with segregation zones were observed due to the failure of dye to reach 

the upper regions of the dissolution vessel.  In case of turbulent flow (𝑅𝑒=5000) the authors 

could not find a significant difference in dissolution profiles of the targeted drug at the different 

sampling points, although, large fluctuations of the mixing patterns were observed with time. 

This contradiction might be due to the fact that the PLIF method is capable of capturing local 

time-dependent mixing conditions in the USP 2 apparatus which are not observable with the 
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conventional sampling technique. Furthemore, Kukura et al. (2003, 2004) did not repeat the 

experiment for low 𝑅𝑒 numbers and compare the PLIF results with those from dissolution 

experiments.   

It is important to understand whether variability in dissolution is due to the manufacturing 

process of the dosage form, leading to a burst effect from sustained release formulations, 

especially when highly water soluble drugs are presented in high amounts (Cox et al., 1983); 

or due to the dissolution testing method, e.g. physicochemical properties of the media (e.g. 

viscosity) with direct effect on hydrodynamics of the USP 2 dissolution apparatus. 

Whilst PLIF and other visualisation techniques such as PIV have been used to previously 

evaluate the drawbacks of the USP 2 dissolution apparatus (Kukura et al., 2003b, Bai et al., 

2011), they do not allow any direct or indirect correlation with the dissolution profile of the 

active compound, since the form of PLIF used involved injecting fluorescent dye at different 

points inside the USP 2 vessel, rather than dye release from a tablet.  Due to the complexity 

of the hydrodynamics and mixing intensity in the vessel, a PLIF method which incorporates a 

fluorescent dye into a hydrophilic matrix (which can mimic the dissolution profile of a highly 

water soluble drug) and then tracks the release through the vessel over time overcomes these 

limitations.  

Thus, in this chapter, PLIF has been utilized as a non-intrusive method for visualizing the 

mixing patterns and quantifying the local concentrations of RH-6G, released from a hydrophilic 

matrix that also contained the targeted drug. Thus, indirect evaluation of the impact of the 

hydrodynamics, viscosity and sampling point on the dissolution of the drug has been 

performed. A correlation of the dissolution experiments of the RH-6G using PLIF with those of 

the targeted drug using the conventional analytical technique is presented.  This work, coupled 

with the texture analysis of the hydrophilic matrix, gives an overview of the critical parameters 

affecting the interpretation of the dissolution results. Theophylline (THE) was selected as a 

well-known, highly soluble drug where extensive in vitro dissolution data from hydrophilic 

matrices is readily available. As mentioned above, the USP 2 small volume (100 mL) 
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dissolution apparatus was chosen as an alternative to the standard paddle set up, as this 

apparatus has not previously been investigated.  

 

3.2 Materials and methods 

3.2.1 Materials  

Sodium carboxymethylcellulose of 90000 (NaCMC90000) and 700000 (NaCMC700000) 

molecular weight was purchased from Sigma (St., Louis, USA). Theophylline anhydrous and 

potato starch were bought from Acros Organics (Loughborough, UK). Sodium hydroxide, 

Rhodamine-6G, hydrochloric acid (1M), silicone dioxide and potassium hydrogen (KH2PO4)- 

and dihydrogen phosphate (K2HPO4) were purchased from Sigma (St., Louis, USA). 

 

3.2.2 Fluids and fluid properties  

NaCMC700000 was selected as a chemically inert, water-soluble polymer which can mimic the 

shear thinning rheology of the chyme. NaCMC700000 buffered solutions of 0.25, 0.5 and 0.75% 

(w/w) were prepared using 0.05M phosphate buffer pH 7.4 (KH2PO4/K2HPO4). This pH value 

was selected as a representative pH for the large intestine. All the tested fluids were deaerated 

using an ultrasound bath before conducting dissolution and PLIF experiments.   

The rheology of the NaCMC solutions was measured using a Discovery Hybrid Rheometer 

(TA Instruments – a division of Waters Ltd.) coupled with a 40mm diameter, 4° cone and plate 

geometry. The temperature was controlled to 37 oC using an in-built Peltier plate (at the same 

temperature as the USP 2 experiments). The rheology was obtained by performing a shear 

ramp over a range of shear rate from 0.1-1000 s-1.  The data was found to fit the Herschel-

Bulkley model. 
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n

Y K                                                                                                             (3.1) 

Where  is the shear stress (Pa), Y is the yield stress (Pa)   is the shear rate (s-1), K is the 

consistency index and n is the power law exponent. The apparent viscosity, µA, can be thus 

determined by evaluating  /  at a given value of shear rate. The rheological properties of 

the experimental fluids are presented in Table 3.1. 

 

3.2.3 Tablet preparation 

A 500 mg tablet was prepared according to the following composition: 50% THE, 44.1% 

NaCMC90000, 4.9% potato starch and 1% silicone dioxide. From practical point of view, 

NaCMC90000 was chosen as the rate controlling polymer, since there is an extensive 

experience in Pharmacy department of the University of Birmingham of using the current 

polymer to prepare a compressed hydrophilic tablet. The powders were sieved and mixed for 

10 min then placed into a single die tableting machine (Kilian, Coln, D) fitted with flat-faced 

9.8 mm punches and instrumented with piezoelectric load washer (Kistler,Winterthur, CH) to 

enable compression force measurements. To investigate the effect of the compression load 

and compression time on dissolution profile of drug from the tablet, a load pressure range of 

980.6 – 1961.2 bars for 20 and 40 seconds was applied. The cylindrical tablets had a final 

weight of 500 ±25 mg. The same method was followed for the tablets used in PLIF experiments 

containing 0.02% RH-6G. Figure 3.1a shows pictures of the different tablets used in 

dissolution, PIV and PLIF experiments. For the PIV experiments, a piece of acrylic cut to match 

the dimensions of the tablet was used to enable monitoring of the flow above the surface of 

the tablet.  

 

3.2.4 Experimental Apparatus: USP 2 mini paddle  

A schematic of the USP 2 mini paddle dissolution apparatus (Dissolution Tester 6000, 

Antech, UK) is shown in Figure 3.1b.  The volume of media used in all experiments was 100 
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mL and the paddle rotational speed was fixed at 50 rpm. The same apparatus was used for 

(i) dissolution (ii) PLIF and (iii) PIV studies. All the experiments were performed at 37 oC.  The 

flow regime in the vessel was determined by calculation of the Reynolds number  

A

ND



 2

Re                                                                                       (3.2) 

Where ρ is the fluid density (kg m-3), N is the rotational speed (rps), D is the impeller diameter 

(m). The apparent viscosity, µA (mPa s) was estimated using the Metzner-Otto method 

(Metzner and Otto, 1957) which assumes the shear rate in the vessel is proportional to the 

impeller speed, thus  

  1


n

S

S

Y

A NkK
Nk


                                                                                        (3.3) 

The value of Metzner-Otto constant, Sk , in the above expression was 10 (Edwards et al., 

1992). Here, is the proportionality between the average shear rate in the mini vessel and the 

impeller rotational speed. The calculated values of Re  are given in Table 3.1. 

 

 

 

 

 

 

 

 

Figure 3.1. a) The three tablets used in: (1) PLIF (containing RH-6G), (2) dissolution tests and (3) 

PIV experiments (acrylic); b) Dimensions of the USP II mini vessel used in dissolution, PIV, PLIF 

(1) 

(2) 

(3) 

b a 
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experiments indicating the two sampling areas (SP1 and SP2) as well as the horizontal (- - - -) 

and vertical plane (·····) that laser cut the vessel in PIV experiments.  

 

3.2.5 Dissolution experiments 

Dissolution tests (six replicates) were performed in 0.1N HCl solution (gastric conditions) and 

in 0.05M phosphate buffer solution (pH 7.4 ±0.2) assuming fasted conditions in large intestine, 

although, pH drops to an average value of 6.0 in fed state (Diakidou et al., 2009). The 

dissolution tests for the viscous media were conducted only at pH 7.4; assuming that viscosity 

increases as the dewatering of the chyme takes place in large intestine. Two sampling 

positions were selected (Figure 3.1b), denoted SP1 and SP2, located at a distance of 66 mm 

and 20 mm from the paddle blade, respectively. Samples of 1 mL volume were withdrawn at 

predetermined time intervals (5, 10, 15, 30, 60, 120, 240, 480, 560 min and the last one after 

completing 21 h dissolution testing). The volume of the medium removed at each time point 

was replaced with fresh media. Each sample was filtered using a 0.4 μm PTFE filter (Palma 

et al., 1981) and appropriately diluted prior to quantitative analysis in order to be within the 

linear region of the calibration curve (Eq. 3.4). Quantitative analysis of theophylline was 

undertaken using a UV spectrophotometer (Jenway Genova Plus) at 270 nm. 

A calibration curve was obtained by plotting the absorbance of the theophylline at 270 nm 

versus the concentration (mg L-1). For this purpose standard solutions of theophylline were 

prepared at several concentration intervals (2, 5, 10, 20, 40 mg L-1); there was no impact of 

pH of the media on the dissolution curve of theophylline.  

 

𝑦 = 0.0575𝑥 − 0.0024     (𝑅2 = 0.9987)                                                                               (3.4) 

The dissolution data obtained as a function of time were fitted to the following equation (Eq. 

3.5) which is widely used to describe the drug release behaviour from hydrophilic polymeric 

matrices (Conti et al., 2007b, Korsmeyer et al., 1983).   
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mt kt
M

M




                                                                                                   (3.5) 

where 𝑀𝑡 𝑀∞⁄  is the fraction of drug released at time 𝑡, 𝑘 is the proportionality constant related 

to the structural and geometrical properties of the matrix, and m is the diffusional exponent 

indicative of the drug release mechanism. The exponent, m, is strongly dependent upon 

relaxation rate at the swelling front and the polymer swelling characters. As this equation is 

valid only for the early stages (< 70 %) of drug release, it was only fitted to values of 𝑀𝑡 𝑀∞⁄  

< 0.7. 

 

3.2.6 PIV and PLIF studies  

Both PIV and PLIF studies were carried out using a TSI PIV system comprised of a 532 nm 

Nd-YAG laser (Litron NanoPIV) pulsing at 7.4 Hz, and a single TSI Powerview 4MP (2048 × 

2048 pixels) 12 bit frame-straddling CCD camera, both controlled using a synchronizer (TSI 

610035) attached to a personal computer equipped with TSI Insight 4G software. The spatial 

resolution of the measurements was 10 μm pixel-1. The small volume USP 2 vessel was placed 

in a glass box filled with water which served the dual purpose of eliminating refractive index 

issues due to vessel curvature and also in enabling temperature to be kept constant at 37oC 

by circulating the fluid in the box through a water bath using a peristaltic pump.  The laser 

sheet was aligned vertically, passing across the diameter of the vessel, i.e. aligned with the 

impeller shaft along the vessel axis.   

PIV experiments were carried out by seeding the fluid with 10 μm silver coated particles 

(Dantec Inc, DU) which possess a sufficiently small relaxation time to be able to follow the 

fluid streamlines (Gabriele et al., 2009).  500 image pairs were recorded for each experiment 

and the average flow fields obtained using the TSI Insight and Tecplot Focus 2013 software 

(Tecplot Inc., USA). 
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For the PLIF experiments, a cut-off filter at 545 nm was fitted to the CCD camera to eliminate 

reflected laser light and to capture only the fluorescent light emitted by the RH-6G 

(λem = 560 nm). The system was calibrated for each solution used at fixed laser power by filling 

the USP 2 100 mL (small volume) vessel with well mixed solutions at concentrations ranging 

0 – 1.0 mg L-1; in steps of 0.1 mg L-1.  50 images were captured at each concentration to 

enable the variation of laser power upon the resultant grayscale values in the image to be 

obtained. The relative standard deviation in values was consistently less than 3.6% and 

therefore not significant. A mask was set as shown in Figure 3.2a to consider only half of the 

illuminated tank, up to the vessel axis (the remainder being in shadow due to impingement of 

the laser sheet on the impeller shaft). The calibration was developed by taking the average 

grayscale values over the 50 images, then on a pixel by pixel basis and performing a linear 

regression over two concentration ranges from 0 – 0.6 mg L-1 and 0.6 – 1.0 mg L-1, 

respectively. This was due to quenching phenomena which occurred for RH-6G 

concentrations > 0.6 mg L-1. The amount of RH-6G in the tablet was chosen such that the final 

concentration in the dissolution vessel was 1 mg L-1 ensuring all values were below the 

saturation signal of the CCD camera used in PLIF experiments. In addition, 1 mg L-1 was also 

the proper amount for the establishment of sink conditions. The analysis was carried out using 

MATLAB (Matlab 7.6.0 R2008a) to produce calibration matrix.  

BGAC                                                                                       (3.6) 

Where C  is the concentration matrix, A is the matrix of constant vales, G is the matrix of 

averaged Grayscale values and B is the matrix of intercept values for the linear regression.  

The regression was carried out using a standard least-squares method.   

 

The PLIF measurements were conducted by addition of the RH-6G tablet into the bottom of 

the vessel, and following the same dissolution protocol (section 3.2.5). 10 images were 

recorded at each predetermined time interval. Following post-processing using the calibration 
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matrix, two interrogation regions were selected matching the sampling points used in the 

dissolution experiments (SP1 and SP2). Assuming that during the sampling process in 

dissolution experiments, the cannula might draw material from a wider area (Figure 3.2b), 

three different sampling point areas were considered of 100 × 124, 182 × 218 and 211 × 304 

pixels respectively (Figure 3.2c).  Average values of concentration as a function of time and 

as a function of the two sampling areas (SP1 and SP2) were thus obtained to enable direct 

comparison with the theophylline dissolution tests described in section 3.2.5. 

 

3.2.7 Gel layer strength and thickness measurements 

Tablets with and without RH-6G were placed in two solutions with different values of pH (1.0 

and 7.4), and the impeller speed and the operation temperature were set as described in 

section 3.2.4. In order to avoid deformation during the analysis, one planar base of the tablets 

was stuck to a metal flat base. The swollen tablets were removed from the dissolution 

apparatus after 1.0, 2.0 and 5.5 h for texture analysis. The strength and thickness of the gel 

layer, during swelling process, was tested in triplicate using a Texture Analyzer (TA.XT2, 

Stable Micro System, Goldalming, UK), which provided force-time curves recorded during the 

penetration process. The penetration of a flat-tipped round steel probe (4 mm diameter and 

30 mm length) into swollen matrices was determined at a constant speed of 0.1 mm s-1, under 

increasing load. Data collection and analyses were performed by a computer equipped with 

Texture Expert® software. A predetermined maximum penetration of 3 mm was established 

in order to prevent the contact of the probe with the glassy core. 
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Figure 3.2. a) Schematic representation of the sampling point and size selected within the mask 

area of PLIF images corresponding to the cannula position in USP 2 mini vessel dissolution 

apparatus; b) Red streamlines illustrate the pumped material by the cannula around its filter 

diameter and c) the corresponding theoretical sampling area selected for processing PLIF 

images. 

    

3.2.8 Statistical analysis 

Comparison of the dissolution profiles of THE and RH-6G was conducted using model-

dependent and model-independent methods. Differences between the two sampling points for 

both dissolution tests (i.e. conventional USP 2 and PLIF) as well as the size of the sampling 

area in PLIF images, were tested for significance using Analysis of Variance (ANOVA) with a 

value of p<0.05. The release rate mechanism in the simple buffer at both pH used (i.e. 1.0 

and 7.4) was determined using Korsmeyer-Peppas fitting model as described in Eq. 3.5. The 

similarity between dissolution curves of THE and RH-6G, obtained in different viscous media, 
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was tested by the 𝑓2-statistic (Eq. (3.7)) where 𝑓2 value between 50 and 100 suggests that two 

dissolution profiles are similar (Radwan et al., 2012).  

𝑓2 = 50 ∗ 𝑙𝑜𝑔

[
 
 
 
 
 

100

1 + √
∑ (𝑅𝑡 − 𝑇𝑡)

2𝑡=𝑛
𝑡=1

𝑛𝑝 ]
 
 
 
 
 

                                                                                                         (3.7) 

   𝑅𝑡 = Dissolution (%) for drug formulation at time 𝑡     

   𝑇𝑡 = Dissolution (%) for dye formulation at time 𝑡     

   𝑛𝑝 = number of time points   

 

The concentration values of RH-6G were normalized (% release) before calculating the 

similarity factor. In addition, mean dissolution time (MDT) was calculated as model-

independent parameter describing kinetics of drug and dye dissolution under various viscous 

media (Eq. (3.8)).   

𝑀𝐷𝑇 =
∑ 𝑡̅𝑖  𝛥𝑀𝑖

∑ 𝛥𝑀𝑖𝑖
                                                                                                                                               (3.8) 

where: 𝑡𝑖̅ is the central point of the observed time interval and 𝛥𝑀𝑖 is the differential amount of 

drug dissolved. 

Finally, linear regression of the dissolution data of THE and the RH-6G obtained under the 

experimental conditions was performed. 
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3.3 Results 

3.3.1 Effect of compression load and time on dissolution profile of theophylline  

When manufacturing hydrophilic matrices by direct compression, it is very important to take 

into consideration the load of the compression process (Kukura et al., 2003a), since variations 

in the compression force can affect subsequent drug release when a low viscosity grade 

polymer is used (Garbacz et al., 2008). The dissolution data of THE obtained at compression 

pressures of 980.6 bar and 1961.2 bar respectively, showed no influence of compression time 

on the release of the THE. These results are consistent with works from other authors working 

on hydrophilic matrices who found either a very slight reduction in drug release (Fotaki et al., 

2009b) or no significant effect (McConnell et al., 2008, Dinning et al., 1999, Quigley et al., 

1984). Thus, for the following THE and RH-6G dissolution tests, compression pressures and 

time were fixed at 980.6 bar and 20 s respectively. 

 

3.3.2 Particle Image Velocimetry (PIV) 

The rheological properties of the fluids used in this study are presented in Table 3.1. 

Table 3.1.  Rheological characteristics of the dissolution media employed 

 
   

(kg m-3) 

𝝉𝜸  

(Pa) 

𝝁𝜜  
(mPa s) 

K  
(mPa sn) n 𝒌 𝒎 Re  Regime 

“Simple” 

buffer 
1000.10  1  1  1 1503.0 

Transitional 
0.25% 

NaCMC (w/w) 
1017.60 0.03 13.34 0.04 0.87 0.044 0.58 114.6 

0.50% 

NaCMC (w/w) 
1020.40 0.18 98.11 0.2 0.74 0.229 0.72 17.6 

0.75% 

NaCMC (w/w) 
1024.50 0.76 575.60 0.83 0.6 0.830 0.85 2.6 Laminar 

: density (kg m-3),  𝜏𝛾: yield stress (Pa), 𝜇𝛢: apparent viscosity (mPa s), K: consistency index (mPa 

sn), n: power law exponent, 𝑘: proportionality constant related to the structural and geometrical 

properties of the matrix, Re : Reynolds number and 𝒎 is the diffusional exponent indicative of the drug 

release mechanism 
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 Figure 3.3 shows the time average velocity fields (m s-1) measured by PIV experiments in 

water and three different viscous NaCMC media. In all experimental fluids the maximum time 

average velocity was 10% (0.008 m s-1) of the paddle speed (0.08 m s-1). Each subfigure 

shows the spatial distribution of the time average velocity in the vertical plane of the impeller 

(top) and in the transverse cross section of the mini vessel at the top surface of the tablet 

(bottom). Based on the calculated Reynolds numbers (Table 3.1) the results span both 

transitional (‘simple’ buffer, 0.25% and 0.50% NaCMC w/w) and laminar (0.75% NaCMC w/w) 

regimes. In case of the viscous media, the most intense motion takes place mainly around the 

impeller, whereas away from the impeller blades the flow slows and becomes almost stagnant. 

In the vertical, two circulation zones were observed with clockwise (below the blade) counter- 

clockwise (above the blade) flowing pattern. As the viscosity is increased the circulation loop 

becomes smaller with reduced velocities in the most viscous medium (i.e. 0.75% NaCMC w/w) 

shown in Figure 3.3d. However, relatively high velocities were observed close to blade and 

the shaft corner and below the blade compared to the flow away from this area. In the ‘simple’ 

buffer (water), another loop was detected at the top of the vessel where the sampler was 

located (sampling point 1; SP1) forming a second mixing area. This was not observed in the 

viscous media. The velocity vectors indicate, except for the 0.25% NaCMC (w/w), that there 

was a downward flow starting from the top region of the vessel to the blade. In contrast, for 

the 0.25% NaCMC (w/w) (Figure 3.3b), an upward flow pattern was observed close to the wall 

which extended from the tip to the top region of the vessel. In addition, the velocities vectors 

showed that the flow, outside the circulation zone and parallel to the blade, had a direction 

from the shaft to the wall encountering the upward flow pattern coming from the tip. This flow 

pattern differs from 0.5% and 0.75% NaCMC (w/w), possible due to fluid motion generated by 

the shaft rotation. The effect of the shaft rotation seems to be inefficient in order to generate 

fluid motion in the more viscous media; i.e. 0.5% and 0.75% NaCMC (w/w). 

The flow fields in the transverse sections in Figure 3.3 (bottom) illustrate the presence of a 

circular low velocity region located at the vessel axis above the tablet surface. The maximum 

velocity was 3.75% (0.003 m s-1) of the paddle speed, although, in 0.75% NaCMC was below 
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0.0024 m s-1 (<3%). This region is extended from the tablet surface to the lowest point of the 

shaft and is critical to the performance of the dissolution test (Kostewicz et al., 2014), since it 

defines the shear forces applied on the surface of the hydrophilic matrix and hence the erosion 

of the gel layer. Therefore, the drug release will be strongly influenced by the hydrodynamics 

in this region. This region increases in size, becoming larger than the tablet diameter, as the 

viscosity increases. These observations are in accordance with the previous studies 

illustrating the poor mixing performance of USP 2 dissolution apparatus and the complex and 

reduced velocities within the bottom area in which where the tablet is placed  (Zuleger et al., 

2002, Bai et al., 2011, Baxter et al., 2005b, Cox et al., 1982).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Time average velocity fields measurements in vertical USP II mini vessel (top) and 

horizontal section (bottom) above the tablet surface for: a) “simple buffer”  (𝑹𝒆 = 𝟏𝟓𝟎𝟑. 𝟎), b) 

0.25% NaCMC (w/w) (𝑹𝒆 = 𝟏𝟏𝟒. 𝟔𝟒), c) 0.5% NaCMC (w/w) (𝑹𝒆 = 𝟏𝟕. 𝟔𝟑) and d) 0.75% NaCMC 

(w/w) (𝑹𝒆 = 𝟐. 𝟔𝟕) NaCMC (w/w). The units of velocity magnitude are m s-1. Impeller speed: 0.785 

m s-1 and operation temperature 37 oC. 
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It has been shown that due to this inadequate agitation at the bottom of the vessel causes 

accumulation of particles, a phenomenon so called coning (Higuchi et al., 2014). Parameters 

such as the particle size, the particle density, the fluid viscosity, the fluid density, the apparatus 

configurations and the agitation strength are involved on the occurrence of coning 

phenomena. 

3.3.3 Drug and RH-6G dissolution and release kinetics 

Figure 3.4 shows the effect of the sampling point and the size of the sampling area on the 

dissolution profile of RH-6G obtained from the PLIF and comparison with the profile of 

theophylline (released %). The results showed for SP2 that the average concentration values 

of the RH-6G (mgL-1), were not statistically different (p>0.05) between each of the three 

different sample sizes (100×124, 182×218, 211×304; pixel2) for all the experimental fluids. 

However, in case of 0.25%, 0.5% NaCMC (w/w), the average value of dye concentration was 

found to decrease as the size of the sampling area was increased for the SP1. This was due 

to the fact that in the large sampling size more low concentration values were included from 

the dead zones resulting in a decrease of the average value. Nevertheless, the standard 

deviations bars are overlapped implying no statistically significant difference.  

In addition, as the sampling size and the viscosity of the fluid were increased, the coefficient 

of variation (C.V) ((σ/μ) *100; standard deviation σ, mean μ) also increased. The C.V for the 

simple buffer lay between 5 – 10% for SP2 as the sampling area increases from 100x124 to 

211x304 pixel2. Higher values of C.V were observed (22 – 29%) for the corresponding results 

at SP1. The viscosity of the fluid had a significant impact on the concentration variability of 

RH-6G within the selected sampling area and especially in SP1. In case of 0.25% NaCMC 

(w/w), C.V values ranged 32.6 – 52.6% and 7.2 – 26.5% for SP1 and SP2, respectively. Even 

higher C.V values were observed in 0.5% NaCMC (w/w). In particular, C.V values for SP1 and 

SP2 were 44.6 – 46.6% and 39.2 – 41% respectively, whereas in 0.75% NaCMC (w/w), were 

37.2 – 45.8% (SP1) and 38.4 – 42% (SP2).  
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Furthermore, a faster release profile was obtained for both compounds based on SP2 data, 

compare to the corresponding SP1 one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Effect of size of the sampling area on the interpretation of the dissolution data of RH-

6G obtained from PLIF images and comparison with theophylline (THE) release profile obtained 

at sampling point 1 (SP1) and sampling point 2 (SP2) in different viscous media. The legend 

entries refer to sample size (● 100x124, ○ 182x218 and ▼ 211x304) for the RH-6G profile and the 

release profile (■) of theophylline (THE). Standard deviation bars for RH-6G (n=10) and THE 

(n=6).  
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Table 3.2 presents the local colour scaled concentration values of RH-6G throughout the 

mini vessel as a function of dissolution time, under different experimental fluids. The main 

observations are that: a) the concentration of the dye was always higher around the blade, in 

contrast to the upper region, explaining the faster release rate observed based on SP2 

compare to SP1 (Figure 3.4), b) as the viscosity is increased dead zones and high fluctuations 

in the distribution of the dye was occurred, revealing the high C.V values obtained in viscous 

media, c) in the most viscous media (i.e. 0.50% and 0.75%) the dye accumulates at the bottom 

of the vessel before it reaches the upper region of the vessel. These results can explain the 

high standard deviation observed in theophylline release data and the dissimilarities in the 

dissolution profiles between SP1 and SP2.  

Comparison of RH-6G and THE dissolution profile was not possible with using the similarity 

factor (𝑓2) (Table 3.3) for those cases where C.V was >10%. Nevertheless, the standard 

deviation bars of THE data points and those of RH-6G (Figure 3.4) overlapped; implying that 

from statistical point of view there was no a significant difference. Failure of obtaining 𝑓2 > 50, 

in case of pH 1.0 for SP2, might be also due to burst release upon hydration of the tablet in 

0.1N HCl solution. Similar effects were noted by (Conti et al., 2007a). In this case, the gel 

hydration rate is slower and the dye molecules present at the surface of the tablet can dissolve 

and pass into the fluid; the solubility of RH-6G is 20 mg mL-1 @ 23 oC compared to THE which 

is 8.3 mg mL-1. However, sink conditions, defined as having a volume of medium at least three 

times the volume required to form a saturated solution of drug substance, are present in both 

cases which ensures that the dissolution test reflects the properties of the dosage form and 

not the drug substance (Convention, 2009). However, the rate of RH-6G dissolution may be 

faster than that for THE due to this difference in solubility values. This can lead to a fast 

saturation of the area around the blade (SP2 position) resulting in an intense fluorescence 

causing high grayscale values reflecting high release rates. As the dye reaches the upper 

region the concentration is decreased resulting in more normal values and better fitting with 

theophylline. Furthermore, particle size differences and the distribution of the particles of the 
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RH-6G and THE within the tablet may also affect the release rate of the dye, leading to 

dissimilarities between the dissolution profile of the drug and the dye. 

Table 3.2. Distribution of the RH-6G (average concentration (mg L-1)) throughout the USP 2 mini 

vessel in different viscous media. 

 

 
%NaCMC (w/w) 

Time (h) 

0 2 4 6 8 21 

0% 
(‘simple’ buffer) 

    

  

0.25% 

      

0.50% 

      

0.75% 
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An additional outcome is that in ‘simple’ buffer the dissolution profiles of THE obtained from 

the two sampling points were similar (𝑓2>50), but that was not the case in viscous media 

demonstrating the effect of viscosity on dissolution. 

Furthermore, the values of m exponent (Table 3.3) showed that: a) the sampling point can 

alter the m values, b) the mechanism characterizing the release was the same for both 

compounds, since it was within the range of 0.5 – 0.89 (pH 1.0) and above one for pH 7.4. 

This implies that at pH 1.0, diffusion of the compound and polymer chain relaxation 

(anomalous non-Fickian) mainly affect the release of the compounds whereas at pH 7.4, high 

m values (>1) are typical for hydrophilic matrices, in which high release rate occurs due to 

high solubility of the polymer (i.e. NaCMC) at this pH, leading to gel erosion. This is further 

evidence that PLIF data can also describe the release mechanism of a highly water soluble 

drug from a hydrophilic matrix.  

The effect of media viscosity on the mean dissolution time (MDT) is presented in Table 3.3. 

The results showed that as the viscosity increases the MDT also increases. The value of MDT 

between the two techniques (i.e. USP and PLIF) was not statistically significant (p>0.05) at 

each experimental condition. 

Table 3.3.Comparison of the release kinetic mechanism of theophylline and Rhodamine-6G from 

hydrophilic matrix under different experimental fluids, using model-dependent and –

independent parameters. 

 

 a 0.05M phosphate buffer (pH 7.4); b𝑓2 values obtained by comparing SP1 and SP2 dissolution 

data of theophylline and RH-6G separately; c Mean dissolution time (MDT);  d the lowest values 

were obtained from fitting the dissolution data of sampling point 1 (SP1) whereas the highest 

values are for the sampling point 2 (SP2) 

 ‘Simple buffer’ %NaCMC (w/w)a 

 pH 1.0 pH 7.4 0.25 0.50 0.75 

 USP PLIF USP PLIF USP PLIF USP PLIF USP PLIF 

𝒇𝟐 
-  

SP2=35.9 
-  

SP2=55.2 
- 

SP2=51.9 
- 
- 

- 
- 

51.0b 32.7b 52.6b 30.9b 46.8b 30.8b - - - - 

MDTc  3.82 3.90 3.12 2.97 4.13 4.20 4.41 4.30 4.94 4.77 
𝒎d 0.75 – 0.82 0.57 – 0.61 1.46 – 1.52 1.24 – 1.33 

 
𝑹𝟐 0.985 0.993 0.992 0.941 
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A linear correlation between THE and RH-6G release data was achieved for SP2 (Figure 

3.5). It was found that the average concentration of the drug obtained from conventional 

technique was in good correlation with the mean concentration of the dye for the same time 

intervals. The correlation plots were characterized by the coefficient of correlation values 

0.908, 0.919, 0.988 and 0.991 for the ‘simple buffer’ (pH 7.4), 0.25%, 0.5% and 0.75% NaCMC 

(w/w), respectively.  

 

 

Figure 3.5. Correlation between theophylline (THE) and rhodamine-6G (RH-6G) release data for 

SP2; (a) water, (b) 0.25%, (c) 0.50% and (d) 0.75% NaCMC (w/w); Standard deviation bars (±SD, 

n=6). 
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3.3.4 Gel layer strength measurements 

Previously researchers have carried out compression analysis experiments on hydrophilic 

matrices (Conti et al., 2007b, Ochoa et al., 2005, Qureshi and Shabnam, 2001b, Yang et al., 

1998) in order to make a correlation between the thickness and the strength of the tablet gel 

layer with the dissolution profiles of matrix tablet. Compression experiments performed in this 

work gave information about: 1) the gel layer strength (Figure 3.6a), which is the measurement 

of the slope of the texture analysis curves (force vs probe penetration distance), 2) gel layer 

thickness (Figure 3.6b) of NaCMC matrix at the two pH values under which the dissolution 

experiments were conducted and 3) the corresponding dissolution profile of THE (Figure 3.6c). 

The gel strength of the hydrophilic matrix was stronger at pH 1.0 compared to the strength 

obtained at pH 7.4. In contrast the gel layer thickness was bigger at pH 7.4 compared to pH 

1.0. This explains why the release rate of THE at pH 7.4 was higher (Figure 3.6c) compared 

to pH 1.0. The hydration of the hydrophilic matrix was faster at pH 7.4 which is indicated by a 

significant increase of gel layer thickness of about 4 times within 5.5 hours compared to 2.5 

times in case of pH 1.0. As a further consequence of fast hydration, the concentration of the 

polymer (i.e. NaCMC) within the gel layer is decreased leading to lower gel strength (Zuleger 

et al., 2002). It has been reported that the drug release is increased as the gel thickness 

increases and the slope of force-penetration curve decreases (Ochoa et al., 2005). At pH 1.0 

NaCMC is not soluble which may affect the hydration and subsequently the dissolution of the 

drug in the gel layer. In addition, the insufficient hydration at pH 1.0 results in the formation of 

a stronger gel layer (50 – 10 g s-1) at pH 1.0 compared to pH 7.4 (19 – 4 g s-1). This implies 

that the drug release mechanism is mainly due to the diffusion through the thick gel layer and 

no due to the erosion; since the erosion of the gel layer requires sufficient hydration of the 

polymer chains in order to reach the disentanglement concentration where the 

macromolecules begin to detach from the swollen matrix (Zuleger et al., 2002). The same 

conclusion has been made with regard to the release mechanism of THE at pH 1.0 by the 

release kinetics analysis based on m exponent values obtained after fitting the dissolution data 

using Korsmeyer-Peppas model. However, it has to be pointed out that other factors such as 
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high loadings (e.g. 50%) of water soluble drugs as well as hydrophilic additives (i.e. potato 

starch which is used in this study) may also have an impact on swelling behaviour and gel 

layer texture properties (Mitchell et al., 1993, Zuleger et al., 2002) and hence on drug release. 

Nevertheless, the high drug loading in the current dosage form might also alter the release 

rate due to the increased porosity which leads to a fast release rate (Maderuelo et al., 2011) 

and which is not linked to the lower hydration at pH 1.0 compared to pH 7.4. Furthermore, 

burst release can occur at pH 1.0 since the gel hydration rate is slower and the drug molecules 

present at the surface of the dosage form can easily dissolve and pass into the medium (Conti 

et al., 2007a). Hence, these additional factors might explain why there was no a difference 

between the release profile of THE at two pH values (Figure 3.6c) especially at the first two 

hours whilst the differences in gel thickness and strength were remarkable. Finally, there was 

no effect on the gel layer thickness and gel strength with the addition of RH-6 G in dosage 

form. 
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Figure 3.6. Effect of pH on the gel layer strength (a) and thickness (b) as well as on the 

dissolution profile of THE (c). Standard deviation bars for gel strength and thickness (n=6) and 

for dissolution profile of THE (n=6). 
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3.4 Conclusions 

In this chapter, the dissolution profile of a fluorescent dye Rhodamine 6G (RH-6G) released 

from a hydrophilic matrix tablet has been determined in a USP 2 mini vessel using PLIF. The 

profiles determined have been compared with results obtained using theophylline (THE), a 

highly soluble drug.  

The dissolution profiles of both RH-6G and THE were found to be statistically similar: a highly 

linear correlation was determined between the release data of the drug and the dye (R2>0.9). 

Thus, RH-6G is an appropriate probe to mimic the release profile of a highly soluble drug.  

Using viscous media, segregated zones were identified in the vessel, where high amounts 

of dye accumulated on the bottom of the vessel. This is due to highly inhomogeneous mixing 

intensities across the vessel resulting in non-uniform distribution of the dye. Analysis of PLIF 

images using MATLAB showed that for a given time, the concentration of RH-6G around the 

impeller was always higher in all experimental fluids compared to the upper region of the USP 

2 mini vessel. This time delay for the released dye-drug to reach the upper zone of the 

dissolution apparatus leads to different release rates when different sampling points are used 

for generating the dissolution profile of the targeted drug.   

 

The proof of concept that the dissolution profile of the fluorescent dye matches that of a 

common drug allows prediction of the performance of the dissolution test and thus guidelines 

in terms of sampling point and possible variance of the drug dissolution data obtained. The 

PLIF images showed better uniformity of the dye distribution above the blade and close to the 

wall. Thus, based on this analysis, positioning the cannula within this zone could minimize the 

variance of the dissolution data.  Nevertheless, due to the design of the USP 2 there will be 

always limitations on the mixing performance and hence on the reproducibility of the 

dissolution data. These are critical and important results for practitioners using the device. 

In this chapter the decision based on where the sample probe should be positioned relies on 

observing the PLIF image instead of a systemic quantitative analysis. Furthermore, the 

dissolution profile of the drug as well as the fluorescence dye was assessed mainly around 
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the most common locations that the sampling probe is normally positioned. However, since 

the dye matches the release profile of the drug, this allows further assessment of the 

distribution of the active compound throughout the mini vessel. Thus, in the following chapter 

the analysis of the distribution of the drug is performed with the combination of the coefficient 

of variation, allowing assessing the range of drug concentrations, and the areal distribution 

method as well as individual striation methods, providing information for the local distribution 

of the drug concentration. Areal distribution method and individual striation method have been 

used in the past to assess the mixing performance in stirred tanks. These methods will allow 

evaluating the mixedness level and its percentage distribution throughout the vessel. Thus, 

indicating the location in which the highest mixing level occurred, to determine the best 

position to place the sampling probe, providing the lowest variability of the dissolution 

experiments. 
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Nomenclature 

 

Sk  Metzner-Otto constant 

C  concentration matrix 

a  matrix of constant vales 

G  matrix of averaged Grayscale values 

b  
matrix of intercept values for the linear 

regression 

µA apparent viscosity 

Ci fully mixed concentration 

D impeller diameter (m) 

Gi Level of mixedness 

Ḡi 

mean value of grayscale in the 

experimental image 

K Consistency index 

n power law exponent 

N rotational speed (rps) 

Np 

total number of the pixels in the region of 

interest 

Re Reynolds number 
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Greek symbols 

 

𝛾̇ Shear rate (s-1) 

µA Apparent viscosity (mPa s) 

p  Density (kg m-3) 

τ  Shear stress (Pa) 

τγ  Yield stress (Pa) 

 

 

Abbreviations 

 

ANOVA Analysis of Variance 

API Active Pharmaceutical Ingredient 

C.V  Coefficient of Variance 

CCD Charged Coupled Device 

CD  Crohn's Disease 

CFD Computational Fluid Dynamics 

DCM  Dynamic Colon Model 

HCl Hydrochloric acid 

NaCMC Sodium carboxymethylcellulose 

PLIF Planar Induced Fluorecence 

RH-6G Rhodamine-6G 

RSD Relative Standard Deviation 

THE Theophylline 

USP  United States Pharmacopeia 
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4 Use of PLIF to assess the mixing performance of small volume USP 2 

apparatus in shear thinning media2 

 

Abstract 

Planar Laser Induced Fluorescence (PLIF) was used to assess mixing in small volume USP 

2 dissolution apparatus for a range of viscous fluids which mimic gastrointestinal media, 

especially in the fed state. The release into the media from a specially prepared tablet 

containing Rhodamine 6G dye was tracked in time and the areal distribution method 

developed by Alberini et al. (2014a) was implemented to characterise the mixing performance. 

The distributions of the individual striations for selected mixing levels were also presented. 

These findings illustrate the poor mixing performance of the apparatus resulting in high 

variance of the dissolution data when working with viscous media. Analysis of data using 

coefficient of variance (C.V) gives misleading results for the mixing performance of the small 

volume USP 2 dissolution apparatus. The results showed that the best mixing was mainly 

located above the blade and close to the wall, i.e. in the region where intensive motion takes 

place. This work presents important guidelines and precautions for choosing the proper 

sampling point for a wide range of liquid viscosities to minimize the variability of the dissolution 

data.   

 

 

 

 

 

                                                           
2 Stamatopoulos, K., Alberini, F., Batchelor, H. & Simmons, M. J. H. 2016. Chemical Engineering 

Science, 145, 1-9. 
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4.1 Introduction 

The USP 2 dissolution apparatus, which is an agitated mixing device, is the most commonly 

used piece of equipment for in vitro evaluation of solid oral dosage forms. However, several 

reports have suggested considerable variability, unpredictability and randomness in 

dissolution profiles obtained from it (Cox et al., 1982, Cox et al., 1983, Qureshi and Shabnam, 

2001b), even when calibrator tablets are used (Kukura et al., 2003a, Baxter et al., 2005a). 

In the pharmaceutical industry, accurate prediction of the in vivo biopharmaceutical 

performance of oral drug formulations is critical to product and process development. As a 

part of a general drive to develop predictive in vitro models, biorelevant media have been 

proposed and have evolved over the last decade as a tool for in vitro biorelevant dissolution 

tests (Jantratid et al., 2009). The usefulness of the biorelevant dissolution test is that both 

media composition and hydrodynamics are taken into consideration. This is essential to 

provide a baseline for drug and dosage-form performance as well as determining possible 

food effects on the dissolution and bioavailability of orally dosage forms (Qingxi Wang, 2009).  

Studies have shown that food viscosity is one of the physiological parameters that can affect 

oral drug absorption (Levy and Jusko, 1965, Radwan et al., 2012). To examine this, several 

authors have conducted drug dissolution and disintegration experiments, which under viscous 

conditions showed reduced dissolution and disintegration rates (Parojcic et al., 2008, Radwan 

et al., 2012). 

Nevertheless, introducing viscosity into the dissolution test may increase the uncertainty and 

the variability of the results, since the hydrodynamics of the USP 2 apparatus will change as 

the flow enters the laminar and transitional regimes, where mixing performance is known to 

worsen with increasing viscosity. 

The characterization of the mixing performance of conventional stirred tanks (as used in the 

chemical industries) using visualization techniques such as Planar Laser Induced 

Fluorescence (PLIF), has been extensively investigated under different conditions and using 
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viscous fluids (Hu et al., 2010, Cheng et al., 2015, Zhang et al., 2013, Busciglio et al., 2014). 

Using this non-intrusive method, qualitative and quantitative evaluation of the mixing 

performance is possible by tracking the motion of a fluorescent tracer injected into the fluid. 

Thus, the uniformity of the distribution of the fluorescent dye depends upon the mixing 

performance of the system. 

As mentioned in the previous chapter, several studies have used PLIF (Baxter et al., 2005a; 

Kukura et al., 2004) and PIV combined with Computational Fluid Dynamics (CFD) (Baxter et 

al., 2005a; Kukura et al., 2003) to characterize the mixing performance and the velocity field 

in conventional (1 L) USP 2 apparatus dissolution vessel. Whilst these studies are valuable 

for highlighting the drawbacks of the USP 2 dissolution apparatus, they do not allow any direct 

or indirect correlation with the dissolution profile of an active compound. The concern is that 

they use a method, i.e. PLIF capable of capturing local time-dependent mixing conditions in 

the USP 2 and yet use a conventional sampling technique for generating dissolution profiles 

of the targeted drug. Indeed, Kukura et al. (2003, 2004) could not find a significant difference 

in dissolution profiles of the targeted drug at the different sampling points, although, large 

fluctuations of the mixing patterns were observed with time (Kukura et al., 2003a, Kukura et 

al., 2004). Previous works (Parojcic et al., 2008; Radwan et al., 2012) testing different dosage 

forms in viscous media did not give any information as to the position of the sample tube to 

generate the dissolution profile of the tested drug or possible changes in hydrodynamics (e.g. 

shear rates and/or velocities) or mixing patterns. Thus, there is a need for a study that uses 

PLIF data generated by capturing images of a fluorescent dye released from compressed 

tablets, which mimics the release mechanism of the targeted drug.  A study which includes 

sampling location is essential to provide data relevant to the conventional drug dissolution 

experiments. 

It has been recognised that the choice of method or algorithm used to evaluate the mixing 

performance is of critical importance and that a simple numerical measure based on 

concentration variance or scale of segregation (Danckwerts, 1952) (obtained after image 
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analysis of the fluid flow) cannot describe the complexity of a flow pattern within a mixer 

(Alberini et al., 2014a).  

Regarding the mixing performance in the USP 2 apparatus, the release of drug and/or dye 

from a tablet into a viscous medium could reflect a case where a second element is introduced 

into the fluid and, therefore, segregation area and concentration variance should both be 

considered. This multi-dimensional analysis of mixing is the basis of the so called areal 

distribution method (Alberini et al., 2014b). This method was developed to analyse the 

blending of two fluid components with different apparent viscosities under laminar mixing in a 

static mixer in which viscous filaments are formed.  

Similarly, Stamatopoulos et al. (2015) using the small volume USP 2 apparatus showed that 

filaments of highly concentrated RH-6G were formed when dye is released in a controlled 

manner from a tablet.  They showed also dramatic differences in flow regime as a function of 

viscosity from PIV measurements (Figure 4.1). 

 

 

 

 

 

 

 

Figure 4.1. Schematic representation of the experimental fluid flow patterns within USP2 mini 

vessel based upon PIV analysis conducted by Stamatopoulos et al. (2015); a) “simple” buffer, 

b) 0.25% NaCMC, c) 0.50% NaCMC and d) 0.75% NaCMC. 

 

a b c d



Konstantinos Stamatopoulos                                                                                Dynamic Colon Model 

 

105 

Assessing the distribution of the released drug molecules in a viscous media is very 

important for the performance of the dissolution method. For example, drawing a sample from 

a “dead zone” may lead to inconsistent dissolution data. This is due to the fact that drug 

molecules from highly concentrated areas could enter low concentration regions due to flow 

generated locally by the pumping tube. Thus, whilst C.V enables the range of concentrations 

to be assessed, it does not consider the local distribution of the dye concentration; the areal 

distribution method and individual striation methods use both which is a clear advantage. 

In this paper, dissolution experiments using a RH-6G blended tablet were carried out using 

the small volume USP 2 apparatus. The distribution of the released RH-6G dye within the 

small vessel was determined by capturing PLIF images at several time intervals; reflecting the 

typical sampling process to generate the dissolution profile of the targeted drug. The mixing 

performance was evaluated in different viscous fluids using C.V, the areal distribution and 

individual striation methods. This paper examines the effect of the viscosity on the mixing 

performance of the small volume USP 2 apparatus giving valuable guidelines and precautions 

for choosing the proper sampling point for a wide range of viscosities to minimize as much as 

possible the variability of the dissolution data.   

 

4.2 Materials and Methods 

 

4.2.1 Materials  

Sodium carboxymethylcellulose of 90000 (NaCMC90000) and 700000 (NaCMC700000) 

molecular weight were purchased from Sigma (St., Louis, USA). Theophylline anhydrous 

(THE) and potato starch were bought from Acros Organics (Loughborough, UK). Sodium 

hydroxide, Rhodamine-6G, hydrochloric acid (1M), silicon dioxide and potassium hydrogen 

(KH2PO4)- and dihydrogen phosphate (K2HPO4) were purchased from Sigma (St. Louis, USA). 
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4.2.2  Fluids and fluid properties  

 

NaCMC700000 was selected as a water-soluble polymer with shear thinning rheology to mimic 

the shear thinning nature of the chyme (Kong and Singh, 2008). NaCMC700000 buffered 

solutions of 0.25, 0.5 and 0.75% (w/w) were prepared using 0.05M phosphate buffer pH 7.4 

(KH2PO4/K2HPO4). A pH of 7.4 was selected as a representative pH value for the large 

intestine. All the tested fluids were deaerated using an ultrasound bath before conducting PLIF 

experiments.   

The rheology of the NaCMC solutions was measured using a Discovery Hybrid Rheometer 

(TA Instruments – a division of Waters Ltd.) coupled with a 40 mm diameter, 4° cone and plate 

geometry. The temperature was set to 37 oC using an in-built Peltier plate (set at the same 

temperature as the USP 2 experiments). The rheology was obtained by performing a shear 

ramp over a range of shear rates from 0.1-1000 s-1 and the data were found to fit the Herschel-

Bulkley model. 

n

Y K                                                                                                 (4.1) 

Where   is the shear stress (Pa), Y  is the yield stress (Pa)   is the shear rate (s-1), K is 

the consistency index and n is the power law exponent. The apparent viscosity, µA, can be 

thus determined by evaluating  /  at a given value of shear rate. The rheological properties 

of the experimental fluids are presented in Table 3.1 in section 3.3.2, Chapter 3. 

 

4.2.3  Tablet preparation 

A 500 mg tablet was prepared according to the following composition: 50% THE, 44.1% 

NaCMC90000, 4.9% potato starch, 1% silicone dioxide and 0.02% RH-6G. The powders were 

sieved, mixed for 10 min and compressed at fixed pressure of 980.6 bar using a single die 

tableting machine (Kilian, Coln, D) fitted with flat-faced 9.8 mm punches (Kistler,Winterthur, 

CH). The cylindrical tablets had a final weight of 500±25 mg. 
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4.2.4  Experimental Apparatus: USP 2 mini paddle 

A schematic of the small volume USP 2 dissolution apparatus (Dissolution Tester 6000, 

Antech, UK) used in PLIF experiments is shown in Figure 4.2. USP 2 consists of an unbaffled 

cylindrical and hemispherical bottomed vessel, with an internal diameter of 42 mm. The 

agitation system consists of a 2-paddle impeller mounted on a shaft with a diameter of 6.3 

mm, the length of the top edge of the blade is 30 mm whereas the length of the bottom edge 

of the blade is 17 mm. The distance from the bottom of the impeller to the bottom of the vessel 

was 20 mm. The volume of media was 100 mL and the paddle rotational speed was fixed at 

50 rpm. All the experiments were performed at 37oC. The flow regime in the vessel was 

determined by calculation of the Reynolds number  

A

ND



 2

Re                                                                                                 (4.2) 

Where ρ is the fluid density (kg m-3), N is the rotational speed (rps), D is the impeller diameter 

(m).  The apparent viscosity, µA, was estimated using the Metzner-Otto method (Metzner and 

Otto, 1957) which assumes the shear rate in the vessel is proportional to the impeller speed, 

thus for a Herschel-Bulkley fluid: 

  1


n

S

S

Y
A NkK

Nk


                                                                                                  (4.3) 

The value of Metzner-Otto constant, Sk , in the above expression was 10 (Edwards et al., 

1992). Here, Sk  is the proportionality between the average shear rate in the mini vessel and 

the impeller rotational speed. The calculated values of Re  are given in Table 4.1. 
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Figure 4.2. a) Overall schematic diagram of the PLIF experimental setup; b) dimensions of the 

small vessel USP 2; c) photo of an USP apparatus 2-bladed impeller used in dissolution 

experiments. 

 

4.2.5 Analysis of PLIF images  

The 2-D PLIF measurements were performed using a TSI PIV system comprised of a 532 nm 

Nd-YAG laser (Litron NanoPIV) pulsing at 7.4 Hz, and a single TSI Powerview 4MP (2048 × 

2048 pixels) 12 bit frame-straddling CCD camera, both controlled using a synchronizer (TSI 

610035) attached to a personal computer equipped with TSI Insight 4G software. The spatial 
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resolution of the measurements was 10 μm pixel-1. The small volume USP 2 vessel was placed 

in an acrylic box filled with distilled water in order to eliminate refractive index issues due to 

vessel curvature as well as keeping a constant temperature of 37oC by circulating the fluid in 

the box through a water bath using a peristaltic pump. The laser sheet was aligned vertically, 

passing across the diameter of the vessel, i.e. aligned with the impeller shaft along the vessel 

axis. 

A cut-off filter at 545 nm was fitted to the CCD camera to eliminate reflected laser light and 

to capture only the fluorescent light emitted by the RH-6G (λ = 560 nm). The system was 

calibrated for each solution used at fixed laser power by filling the USP 2 mini vessel with well 

mixed solutions at concentrations ranging 0 – 1.0 mg L-1; in steps of 0.1 mg L-1. Potential 

variation in the laser power was assessed by capturing 50 images for each standard RH-6G 

solution; values of the relative standard deviation (RSD%) were consistently less than 3.6% 

and therefore not significant. The region of interest of the illuminated tank is the area where 

the sampling tube (cannula) is normally inserted as shown in Figure 4.3a; the remainder being 

in shadow due to impingement of the laser sheet on the impeller shaft. Pixel by pixel calibration 

was developed by taking the average grayscale values over the 50 images. Subsequently, a 

linear regression over concentration range was performed. The amount of RH-6G 

incorporated in the tablet was carefully chosen in order the final concentration of the 

fluorescent dye in the mini vessel to be a maximum of 1 mg L-1. Thus all the grayscale values 

were within the range of the calibration and below the saturation signal of the CCD camera. 

The analysis was carried out using MATLAB (Matlab 7.6.0 R2008a) to produce a calibration 

matrix.  

baC  G                                                                                       (4) 

Where C  is the concentration matrix, a  is the matrix of constant values, G is the matrix of 

averaged Grayscale values and b  is the matrix of intercept values for the linear regression.  

The regression was carried out using a standard least-squares method.  
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The PLIF measurements were conducted by addition of the RH-6G tablet into the bottom of 

the mini vessel. Dissolution tests (six replicates) were performed in 0.1N HCl solution (gastric 

conditions) and in 0.05M phosphate buffer solution (pH 7.4) mimicking the fasted state 

conditions in large intestine. The dissolution tests for the viscous media were conducted only 

at pH 7.4; assuming dewatering of the chyme in large intestine resulting in an increase in 

viscosity. 10 images were recorded at each predetermined time interval: 0.17 h, 1.0 h, 2.0 h, 

6.5 h and finally 20 h.  

 

4.2.6 Areal distribution method 

A typical raw image obtained from PLIF performed using viscous media is shown in Fi 

gure 4.3a. An asymmetric distribution of the fluorescent dye within the USP 2 mini vessel is 

observable, forming striations with different concentrations of the RH-6G fluorescent dye. The 

mean value of grayscale in the experimental image (Ḡ) was determined for each time interval 

at which the PLIF image has been captured. This is based on the fact that only a fraction of 

the RH-6G dye has been released from the tablet at any given time during the imaging 

process. Thus, in the current work, Ḡi is the mean value of grayscale in the experimental image 

corresponds to the fully mixed concentration (Ci) at time i. Here, the fully mixed concentration 

Ci replaces C∞ used in Alberini et al. (Alberini et al., 2014b), in the areal distribution method 

(assuming no further release of RH-6G occurs from time i until the time necessary for full 

homogenisation to occur).  

The experimentally determined Ḡi were used to calculate grayscale values corresponding to 

a given level of mixedness. Then Gi is defined as a percentage of this fully mixed value Ḡi. 

Giving an example, Gi% mixing will correspond to grayscale values of either Gi- = [1-(1-Gi)] Ḡi 

or Gi+ = [1-(1+Gi)] Ḡi. Thus for 80% mixing, Gi- = 0.80Ḡi and Gi+ = 1.2Ḡi.  
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Using MATLAB (2008a) and the freeware image analysis tool Image J, the pixels in the 

image are identified which correspond to Gi- < Ḡi < Gi+, thus corresponding to a mixing intensity 

of > Gi%.  

4.2.7 Individual striation method 

The work individual striation method was implemented to illustrate indirectly how the mixing 

performance of USP 2 mini vessel, and therefore the distribution of the dye in the viscous 

media, affects the reproducibility and hence the variability of the dissolution data of the 

targeted drug (Alberini et al. 2015b). Thus, identification of individual striations within different 

ranges of Gi was performed. The individual striations were determined using a MATLAB script 

which utilizes both the MATLAB image processing toolbox and the DIPimage toolbox 

developed by the Quantitative Imaging Group at TU Delft (http://www.diplib.org). The image 

analysis scripts used in this work are available by contacting the corresponding author.  

Firstly the image is imported in MATLAB and a rectangular mask is created to identify the 

region of interest; as shown in Figure 4.3a. The area within the mask was chosen since this 

region is where the cannula is normally placed. Using the value of Ḡi, the levels of mixing 

intensity, Gi, per pixel, are determined as previously (section 4.2.5). Then the ranges of Gi are 

defined and for each range, two images are created by MATLAB where only the striations in 

the range of interest are shown: the first shows all the striations in the range of Gi- and the 

second shows all the striations for Gi+. An example of this procedure is shown in Figure 4.3b. 

 

The fraction of RH-6G released at time i was determined by normalizing Ḡi values with the 

G∞ obtained after the complete release of RH-6G from the tablet; i.e. based on the final PLIF 

image captured after 22 h dissolution testing and the complete disintegration of the tablet. 
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Figure 4.3. Development of areal analysis method: a) raw images with region of interest (yellow 

line); b) example of image processing for the 0.5% NaCMC (w/w) with the upper (G i-) and lower 

(Gi+) limits of the individual striations: Gi>90% (red labeled pixels), 30%< Gi <40% (blue labeled 

pixels) and Gi<10% (green labeled pixels). 

 

 

4.2.8 Coefficient of variation 

The C.V was determined using Equation (4.5). 𝑁𝑝 is the total number of the pixels in the 

region of interest, 𝐶𝑖 the concentration in each pixel which is proportional to the grayscale 

value and  𝐶̅ corresponds to the (Ci) and hence to the Ḡi.  

  

𝐶. 𝑉 =
𝜎

𝐶̅
=

1

𝑁𝑝
∑

√(𝐶𝑖−𝐶̅)2

𝐶̅

𝑁𝑝

𝑖
                                                                                                    (4.5) 

 

 

a b Gi- Gi+ 
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Ḡi > 90% 

30% < Ḡi < 40% 

Ḡi < 10% 
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4.3 Results and Discussion 

4.3.1 Images obtained from PLIF technique 

Figure 4.4 shows raw PLIF images captured at predetermined time intervals for each viscous 

medium. When the viscosity of the medium is increased, different patterns of striations are 

formed. The dye is concentrated in thin striations, for example in the 0.5% NaCMC (w/w) fluid 

throughout the dissolution experiment, or in a single thick striation forming a large arc as in 

the case of the 0.25% NaCMC (w/w) fluid; this striation disappears 2.0 h into the dissolution 

test.  

PIV analysis in the USP 2 mini vessel carried out previously by Stamatopoulos et al., (2015), 

showed that high velocities occurred mainly around the impeller and along the shaft. The non-

uniform mixing results in large gradients of the shear rates in USP 2 vessel (Baxter et al., 

2005a). As the NaCMC concentration increases, the shear thinning nature of the fluid 

increases. This implies that in regions where high velocities and thus high velocity gradients 

occur, the fluid moves significantly whereas in dead zones the fluid will be stagnant. The shear 

thinning nature of the fluid within the regions of high shear rates will increase leading to 

inequalities of the viscosity profile throughout the vessel. As a further consequence, striations 

will form of different size and shape affecting the mixing performance in viscous media.  
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Figure 4.4. PLIF images captured at predetermined time interval for water at pH 7.4 (a) and 1.2 

(b), whereas (c) 0.25%, (d) 0.5% and (e) 0.75% NaCMC (w/w) buffered (pH 7.4) solution. 

 

 

Examining the PLIF images it seems that the distribution of the dye in USP 2 mini vessel 

becomes quite uniform in water and in 0.25% NaCMC, especially after 2 h. Although, the 

difference between grayscale values throughout the USP 2 decreases drastically with time, 
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without image analysis it is impossible to evaluate the mixing performance by eye in the 

ostensibly uniformly distributed dye in these two media. This is also necessary for the 0.75% 

NaCMC fluid in which the homogeneity of the dye appears on first glance to be greater than 

for the 0.5% NaCMC (w/w) fluid. 

 

4.3.2 Areal distribution method 

Figure 4.5 shows the distribution of area fraction as a function of level of mixedness, Gi, from 

the areal distribution method for different viscous media at each predetermined time interval. 

The level of mixedness was determined for the corresponding normalized fraction (Ḡi/G∞) of 

RH-6G released at time i.  

The poor mixing performance of USP 2 mini vessel is revealed from multiple levels of 

mixedness for each dissolved fraction. In particular, comparing the PLIF images of “simple” 

buffer with the corresponding results from the areal distribution analysis (Figure 4.5a), an 

ostensibly homogeneous distribution of dye would be expected to giving few different levels 

of mixedness and the area fraction with G > 90% to be predominant. This is of importance 

when the dissolution profiles of a drug released from different dosage forms are compared. 

This is possible only if the standard deviation of the dissolution data of each formulation is 

≤10%. Relatively similar patterns of areal fractions as a function of levels of mixedness were 

also observed in 0.25% NaCMC (w/w) (Figure 4.5b). This spread of the different levels of 

mixedness becomes even worse in viscous media and in particular for the 0.5% NaCMC 

medium (Figure 4.5c). The areal distribution method reveals here why it was so challenging 

to compare the dissolution data of the drug and the fluorescence dye as mentioned in 

Stamatopoulos et al. (2015). Moreover, it is also problematic that in 0.75% NaCMC (w/w) 

medium (Figure 4.5d) the areal fraction is mainly < 30%; within the region where normally the 

sampling probe is located. This means that the dissolution profile generated under these 

experimental conditions underestimates the actual release rate of the dye due to the poor 

mixing performance; this will increase also the variance of the dissolution data. 
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Figure 4.5. Bar graph showing discrete areal intensity distributions in viscous media: (a) “simple 

buffer”; (b) 0.25% NaCMC (w/w); (c) 0.50% NaCMC (w/w); (d) 0.75% NaCMC (w/w). 

 

As expected, the rate of release of RH-6G from the tablet decreases as the viscosity is 

increased. This is showed in Figure 4.6a by plotting the normalized dissolved fraction of RH-

6G (Ḡi/G∞) vs. time. Moreover, the fraction of Gi> 70% increases and reaches a plateau in 

“simple” buffer after 2 h whereas the corresponding time for 0.25% NaCMC (w/w), 0.5% 

NaCMC (w/w) and 0.75% NaCMC (w/w) were 6.0, 7.4 and 8.0 h, respectively (Figure 4.6b).  
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Figure 4.6. Evaluation of mixing performance of USP 2 small volume dissolution apparatus. (a) 

rate of the normalized dissolved fraction of RH-6G (Ḡi/G∞) released from the tablet and (b) mixing 

intensity Gi> 70% as a function of time in different viscous media 

Furthermore, the RG-6G is released faster, as the Fig. 4.6 showed, compared to theophylline 

(refer to Fig. 3.4). Beside the dissimilarities on the release rates between RH-6G and 

theophylline, a high linear correlation was obtained (refer Fig. 3.5). 

4.3.3 Individual striation method 

The different striations detected by the MATLAB script are identified with different colours. 

Due to the high number of area fractions used in areal distribution method (as shown in Figure 

4.5), overlapping of the colored striations occurred making difficult to distinguish the individual 

striations. Thus, to show the location and the size of the striations for the corresponding area 

fractions throughout the USP 2 mini vessel, fixed ranges of area fraction were chosen.  Images 

of the striations detected by the individual striation method are shown for G<10%, 

30%<G<40%, 70%<G<80% and G>90% in Figure 4.7. The sub-figures for Gi- and Gi+ show 
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the different striations for the lower and upper limits of the selected ranges of level of 

mixedness, Gi, as described in §4.5.2. 

The shape and the size of the striations change as a function of time and hence as function 

of the released fraction of RH-6G dye, as well as the viscosity of the fluid. Large striations for 

the upper limit of the selected ranges were observed close to the wall and above the blade, 

where the mixing is more intense. In “simple” buffer and for the upper limit of the selected 

ranges, homogeneous zones above the blade were observed, starting from the highest level 

of mixedness Gi>90% (above the blade), and continuing with 70%<Gi<80%, 30%<Gi<40% 

and Gi<10% moving upwards. In addition, the striations in “simple” buffer are more 

concentrated, occupying small area compared to the striations of the same ranges in the 

viscous media which are wider and extended from the blade to the top of the mini vessel. With 

regards to the lower limit of the selected ranges (Gi-), striations were detected at the middle of 

the distance between the blade and the top of the mini vessel for the first 0.17 h of the 

dissolution experiment in “simple” buffer. At 1 h and 2 h a small striation was detected in the 

top region of the vessel but not at 6.5 h. 

In 0.5% NaCMC (w/w), at 0.17 h, the identified regions of Gi+ are shown to be extended from 

the blade to the top of the mini vessel along the wall whereas the regions of Gi- are located on 

the opposite side along the shaft; forming almost a mirror image. This pattern is changed at 

2.0 and 6.5 h, where a loop around the region of interest is formed. The lower limits of 

70%<Gi<80% and 30%<Gi<40% are located inside the core of the loop whereas the 

corresponding upper limit of 30%<Gi<40% is outside and around the striation of Gi<10%. 

Regarding the upper limits of Gi>90% and 70%<Gi<80%, these striations are located around 

the circulation zone close to the tip. 

In 0.75% NaCMC (w/w) and for 0.17 – 1.0 h, striations for the 30%<Gi<40% and 

70%<Gi<80% are extended throughout the region of interest whereas a thin line of the Gi>90% 

fraction extends from the blade to the top of the mini vessel and along the shaft. However, at 

2.0 h, the striation of Gi>90% is limited: a region of Gi+ > 90% is located at the connection point 
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of the shaft and the blade whereas Gi- is located at the top. The same flow behavior is also 

observed for the corresponding upper limit of the other two fractions 30%<Gi<40% and 

70%<Gi<80%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Illustration of striations detected using the individual striation method for selected 

ranges of level of mixedness, Gi, for (a) “simple buffer”; (b) 0.25% NaCMC (w/w); (c) 0.50% 

NaCMC (w/w); (d) 0.75% NaCMC (w/w). 
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The results presented in Chapter 3 and 4 are in a good agreement with the recently published 

work by Wang and Armenante (2016) using computational fluid dynamics (CFD) to 

characterize the flow field in mini USP 2 apparatus; Chapter 3 has been cited by Wang and 

Armenante (2016). The authors observed similar results in terms of vertical upper and lower 

recirculation loops above and below the impeller. In addition, a low recirculation zone was 

observed in the lower part of the vessel. Furthermore, the radial and axial velocities below the 

impeller are very small especially in the zone below the paddle, where tablet dissolution 

occurs. Furthermore, high velocities were observed close to the tip, as it has also been 

observed in our experiments, explaining why high level of mixedness was observed within this 

region.  

4.3.4 Coefficient of variation 

The mixing performance of small volume USP 2 was also evaluated by calculation of C.V as 

a function of dissolution time in different viscous media (Figure 4.8). As expected, the mixing 

performance reduces as the viscosity increases. Unlike the areal distribution method, the C.V 

parameter describes a statistical level of mixing across the whole measurement region. Thus 

the detail is lost. Characteristic examples are shown for the “simple” buffer, 0.50% NaCMC 

(w/w) and 0.75% NaCMC (w/w). In the first case a sharp decrease of C.V from 1.0 to 0.4 was 

observed between 0.2 and 0.5 h dissolution time; implying a 60% mixedness level. However, 

the areal distribution method showed that the 60-70% fraction consists only the 7% measured 

area at 0.5 h whereas the fraction <10% is 38% of the area (Figure 4.5a) – thus a large 

unmixed area. In the second case, the C.V analysis shows better mixing performance in 0.75% 

NaCMC (w/w) throughout the dissolution experiment compared with the 0.50% NaCMC (w/w) 

medium. Nevertheless, areal distribution method showed clearly that the mixing efficiency is 

inadequate in the most viscous media, where even after 2.25 h the mixedness fraction of 

<10% is predominant. Thus, use of C.V alone may be misleading. 

These findings show that individual striation method coupled with areal distribution method 

is very promising not only to evaluate the mixing performance of small volume USP 2 
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apparatus and therefore its impact on the reproducibility of the dissolution data, but also to 

determine the location of the different mixedness levels in the dissolution vessel, via the local 

distribution of the concentration. This is not possible by consideration of the C.V of the 

dissolution data alone. 

 

 

 

 

 

 

 

 

 

Figure 4.8. Time evolution of the coefficient of variation (C.V) as a function of viscosity; ( ) 

“simple” buffer, ( ) 0.25% NaCMC (w/w), ( ) 0.50% NaCMC (w/w) and ( ) 0.75% NaCMC (w/w). 
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mixing level; something very important in terms of choice of sampling point. Thus, might be 

possible to minimize the variance of the dissolution data as well as to know in advance the 

degree of the variability of the data obtained from the selected region. Analysis of data using 

C.V alone can give misleading results.  

Overall, for all measured fluid media, the highest mixedness level is mainly located above 

the blade and close to the wall, i.e. the region where intensive mixing takes place; therefore, 

the recommendation is that the sample tube (cannula) should be placed in this region. 

 

With Chapter 3 and the Chapter 4, an extensive characterization of the mixing performance of 

the mini volume USP 2 dissolution apparatus was performed. The dissolution profile of a highly 

water soluble drug released from a hydrophilic matrix was obtained under increasing viscosity 

of the media used. The mini volume USP 2 dissolution apparatus has chosen because the 

volume of the media (i.e. 100 mL) is more relevant to the contents in the human proximal 

colon; i.e. 10 – 125 mL (Schiller et al., 2005). Thus, the work conducted in these forms the 

basis for the comparison of the USP 2 with the biorelevant Dynamic Colon Model (DCM) basis 

presented in the following chapters.   
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Greek symbols 

𝛾̇ Shear rate (s-1) 

µA Apparent viscosity (mPa s) 

 

 

 

Abbreviations 

DCM  Dynamic Colon Model 

NaCMC Sodium carboxymethylcellulose 

PEPT  Positron Emission Particle Tracking 

PET  Positron Emission Tomography 

PSs Propagating Sequences 

fps frames per second 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Konstantinos Stamatopoulos                                                                                Dynamic Colon Model 

 

124 

5 Development of an artificial Dynamic Colon Model (DCM): understanding 

relationships between wall motion, manometric measurements and fluid motility  

 

Abstract 

Understanding motility and flow episodes in the colon is complex and correlations between 

manometry and scintigraphy are not simple. A biorelevant Dynamic Colon Model (DCM) was 

designed and used to better understand the relationship between manometric measurements 

and flow episodes under typical colonic conditions.  

The sensitivity of the manometric data generated was assessed as a function of degree of 

luminal occlusion, occlusion rate, fluid apparent viscosity and level of fill. Positron Emission 

Tomography (PET) was used to visualize the fluid flow under fixed conditions.  

The position of the catheter, the occlusion rate of the flexible wall, the viscosity and the fluid 

volume affected the manometric measurements. The manometry failed to differentiate 

changes for degree of luminal occlusion < 80% and for low apparent viscosities. Pressure >2 

mmHg, characterized in in vivo studies as propagating sequences (PSs), measured in fully 

filled apparatus in viscous media. However, in half-full, the same wall motion gave measured 

amplitudes < 2 mmHg; despite PET images revealing these waves are highly associated with 

fluid motion.  

The criteria, on which pressure waves should be counted as PSs and associated with flow 

episodes in vivo, should be reconsidered. The interpretation of the manometry results can 

potential contributes on management strategies, both diagnostic and therapeutic, in the 

human proximal colon. Furthermore, the results showed that the in vivo manometric data do 

not reflect entirely the environment of GI tract and it should carefully be used in so called 

dynamic in vitro models. 
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5.1 Introduction 

Propulsion of the colonic contents involves synchronized contractions and relaxations of the 

smooth circular muscle layer along the colon (Sinnott et al., 2015). The strength of these 

contractions is normally measured with using manometry via insertion of a catheter (Sinnott 

et al., 2015) and any variations of the amplitude and frequency are associated with 

abnormalities in colon motility (Dinning and Di Lorenzo, 2011). On the other hand, scintigraphy 

has been used to visualize the movements of the contents inside the colon (Hammer et al., 

1997).  

In previous in vivo studies, manometry and scintigraphy have been combined and 

relationships between wall motion and fluid flow have been evaluated (Bassotti et al., 1993, 

Cook et al., 2000, Dinning et al., 2008). However, these in vivo studies have presented 

contradictory information regarding the association or correlation between flow episodes and 

contractile activity. This was found to be due to technical limitations of the manometry since 

its sensitivity is decreased when the gut diameter is ≥0.05 m as in the proximal colon (Dinning 

et al., 2014a). Early scintigraphy work was limited by relatively slow frame capture rates 

(Hammer et al., 1997, Dinning et al., 2008). Technical advances have improved the 

performance of these techniques, helping to reveal that both, low amplitude propagating 

sequences (2 – 5 mmHg) and high amplitude motility events can be associated with flow 

episodes (Dinning et al., 2014a).  

However, other factors such as fluid apparent viscosity and the 50% reflux (i.e. backflow) of 

the bolus will also affect the movements of the contents (Proano et al., 1990), making the in 

vivo investigation of these relationships a difficult task. To overcome these difficulties, previous 

measurements have been made on an isolated rabbit distal colon (Costa et al., 2013b), 

combining simultaneous manometry and visualization of spatiotemporal variations in wall 

diameter. These ex vivo studies have given valuable information about the neurogenic and 

myogenic actives of the smooth muscle and how they are related with the intraluminal 

pressures and movements of the bolus. However, the diameter of the rabbit distal colon is 
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smaller (≈0.01 m) compared to human proximal colon (≥0.05 m) (Sadahiro et al., 1992).  In 

addition, the manometry was performed when the isolated rabbit colon was full of fluid, which 

is not representative of the in vivo conditions in the human proximal colon. In particular, the 

volume of the colonic fluids in an adult varies between 10 – 125 mL (Sutton, 2009)  and the 

fluid is not uniformly distributed (Schiller et al., 2005, Mudie et al., 2014). In addition, the 

volumes of the colonic fluids have been found to be 22.3 ±7.7 mL and 29.9 ±10.8 mL in the 

fasted and in the fed state, respectively (Diakidou et al., 2009). 

Arkwright et al. (2013) performed manometry in an artificial latex based tube and in an 

isolated rabbit colon segment. Although, the authors revealed the dependency of the 

amplitude of the pressure on the viscosity, again the tube was fully-filled with viscous media. 

Thus, the performance of manometry in a diameter based on the human proximal colon as 

well as in a partially filled tube remains to be investigated.  It is necessary to determine how 

these parameters will affect the performance of the manometry, since this technique fails to 

differentiate intraluminal pressures from the forces applied on the catheter, from the colonic 

wall motion (Sinnott et al., 2015).  

To be able to correctly interpret manometry it would be advantageous to have a suitable 

biomechanical model mimicking the contraction/relaxation mechanism for the propulsion of a 

bolus within the colon. Thus, in this study an in vitro model of the human proximal colon, the 

dynamic colon model (DCM), focused mainly on the caecum – ascending region was designed 

and constructed. The model reproduces the main features of the proximal colon anatomy in 

terms of the formation of the characteristic pockets, the haustra.  Manometry was performed 

under predetermined conditions in terms of viscosity, motility pattern, volume of fluids, and 

occlusion degree and rate of the flexible wall. In addition, Positron Emission Tomography 

(PET) was used as alternative to scintigraphy to visualize the fluid flow under the same 

conditions. Thus, relationships between wall motion and movements of the contents were 

evaluated in a representative model of the human colon.   
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5.2 Materials and methods 

5.2.1 Materials 

Sodium carboxymethylcellulose (NaCMC) of 700000 molecular weight was purchased from 

Sigma (St., Louis, USA).  Polycraft T – 15 RTV translucent silicone rubber was purchased 

from MB Fibreglass (Newtownabbey, UK).  The radioactive solution of radionuclide 18F used 

in PET experiments was provided from the School of Physics and Astronomy at the University 

of Birmingham, UK. 

 

5.3 Development of the Dynamic Colon Model (DCM) 

A biomechanical engineering model of the adult human proximal colon was modelled based 

on physiology observed in anonymised abdominal MRI images provided by the Radiology 

Department of Birmingham Heartlands Hospital, UK. The images show the transverse views 

of the caecum – ascending colon (Fig. 5.1a). In addition, coronal planes give information about 

the width and the number of the haustra, along the length of the caecum – ascending (C-A) 

region as well as the width of the thickest part of the longitudinal muscular layer (taenia coli).   

 

5.3.1 Mimicking the human proximal colon anatomy 

The MRI images (Figure 5.1a) were utilised to gain information about the architecture of the 

proximal colon as well as some basic dimensions of the haustra. Examining the MRI images, 

demonstrated that the number of the haustra along C-A region was not constant and their 

width was not uniform. However, to simplify the design of the model, the number and the width 

of the haustra were fixed based on average values. Figure 5.1b shows the reconstructed 2D 

model of the haustra design based on the MRI images with physiological ranges of anatomical 

parameters obtained from the literature. The width of the haustra was 0.02 m whereas the 
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thickness of the semilunar folds and taenia coli was 0.2 mm and 5 mm, respectively (Langer 

and Takács, 2004). Figure 5.1c shows the proposed 3D model of the haustra based upon 

which an acrylic mould was manufactured to fabricate the DCM tube. 

 

Figure 5.1. a) Transverse and coronal MRI images of the human caecum – ascending colon; b) 

Haustra geometry model; c) 3D model of the haustra. 

 

5.3.2 Prototyping 

Figure 5.2 shows the process followed to develop a prototype prior to the fabrication of the 

DCM tube. As shown in the 3D model of the haustra (Figure 5.1c) there are three pockets in 

a triangular configuration whereas the thickest layer of the longitudinal muscle located at the 

“contact” point of the pockets. Based on this design a prototype consisting of three acrylic 

pieces was developed in order to reproduce the configuration of the haustra. The two edges 

of each acrylic piece represent the semilunar folds whereas the cavity between the two edges 

represent the haustrum (Figure 5.2a). A sheet of rubber silicone attached on each acrylic piece 

to mimic the contractions of the smooth muscle (Figure 5.2b). The assembled acrylic pieces 

formed a single segment (Figure 5.2c) and connected to a syringe using a quick fit connector 

(Figure 5.2d). Deflation and inflation of the three membranes performed with pushing and 

pulling the syringe using water as incompressible hydraulic liquid. Different strategies were 
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followed in order to sufficiently attach the membrane to the acrylic segment (Figure 5.2e – h) 

to avoid leakage of the water and increase the robustness of the system. The most efficient 

method was chosen and used to fabricate the DCM tube described in the following section.  

 

 

Figure 5.2. Prototype development process. a) acrylic piece representing a haustrum; b) a 

silicone rubber membrane attached to the acrylic piece using blu-tack; c) assembly of the three 

acrylic pieces in triangular configuration with the silicone rubber membrane attached; e) use of 

two side acrylic bars to screw and hold the membrane tightly to the acrylic piece; f) machining 

a groove around the cavity and use an O-ring rubber to hold the membrane; g) silicone rubber 

attached to the acrylic piece using the O-ring rubber and h) acrylic piece covered with liquid 

silicone solidified after curing process. The membrane formed with filling the cavity of the 

acrylic piece with wax which removed after curing the silicone. 

 

a 

b 

c d 

e f 

g 

h 



Konstantinos Stamatopoulos                                                                                Dynamic Colon Model 

 

130 

5.3.3 Fabrication process of the DCM tube 

Figure 5.3 shows the fabrication process of the in vitro model. An acrylic segment which 

reproduces the shape of a haustrum was manufactured (Figure 5.3a). Then, three replicas of 

this segment were manufactured and filled with wax (Figure 5.3b). The segments were placed 

in a mould with a triangular shaped acrylic piece being positioned at the centre (Figure 5.3c). 

Thus, a gap of 0.4 mm was formed between the segments and the central acrylic piece, 

serving to form a thin silicone layer for the flexible membrane. The gap between the edges of 

the segments was 0.005 m to form a thick silicone layer which represents the taenia coli. Then, 

the mould was filled with deaerated liquid silicone rubber (Figure 5.3d) and cured for 6 h, at 

ambient temperature; the time to cure the silicone was based on manufacturer guidelines.  

Subsequently, the wax was removed by placing the cured silicone unit in a hot water bath 

(90 oC). Wax residues were removed using mineral oil, next the silicone washed thoroughly 

with soap and then with distilled water; Figure 5.3e shows the fabricated unit with quick fit 

connectors assembled. Ten replicas were fabricated and assembled to form the DCM tube 

(Figure 5.4).   

 

 

 

 

 

 

 

 

Figure 5.3. Fabrication process of the silicon unit of the in vitro model; a) acrylic segment 

manufactured to reproduce the geometry of the haustrum; b) acrylic segments filled with wax; 
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c) configuration of the mold used to fabricate the unit; d) filling the mold with deaerated liquid 

silicon rubber and d) fabricated silicon unit with quick fit connectors. 

The total length of the tube was 0.20 m and the internal total volume was 290 mL which is 

within the range of published in vivo data; average length of caecum-ascending colon was 

found to be 0.195 m (Sadahiro et al., 1992) and the volume was within the range 76 – 390 mL 

(Pritchard et al., 2014). A 3D printed rigid siphon was placed at the end of the biomechanical 

model which was used to keep the fluids inside the DCM tube during the motion of the flexible 

membrane.  

 

Figure 5.4. 3D model of the biomechanical Dynamic Colon Model of human proximal colon with 

main focus on caecum – ascending region. 

 

5.3.4 Measuring pressure amplitudes inside a single unit using a solid – state catheter 

To reproduce the physical amplitudes that occur in the proximal colon, the relationship 

between the membrane motion and the pressure forces generated inside the cavity of a single 

unit of the DCM tube were established.  

Ileum terminal 

Caecum 

Haustrum 

3D printed siphon  

(‘hepatic flexure’) 

Membrane 

Tube for sampling 

Quick fit connectors 



Konstantinos Stamatopoulos                                                                                Dynamic Colon Model 

 

132 

A computer – controlled hydraulic system was developed in order to synchronize the motion 

of the membranes in each unit and reproduce the motility patterns reported in vivo within the 

human proximal colon using manometry (Dinning et al., 2014a). Each unit was connected to 

a syringe which used to inflate and deflate the membrane; water was used as incompressible 

fluid for the hydraulic system. 

Initially, the hydraulic system was calibrated by developing a correlation between syringe 

displacements and membrane movements. A camera was used to capture images of the cross 

section of the DCM unit at 50 frames per second (fps). The images were used to determine 

the occlusion degree (i.e. reduction of the diameter of the DCM unit) and the occlusion rate 

(i.e. velocity) of the membrane with respect to different travel distance (0.005, 0.010, 0.015, 

0.020, 0.025, 0.035, 0.040, 0.042 and 0.045 m) and travel speeds (0.001, 0.002, 0.005 and 

0.008 m s-1) of the syringe. The syringe movements were controlled with stepper motor being 

driven by Nanopro software (Nanotec Electronic GmbH & Co. KG, Germany). 

After calibration of a single configuration (i.e. stepper motor – syringe – DCM unit), ten 

replicas were assembled into a framework manufactured by the Physics workshop at the 

University of Birmingham (Figure 5.5). The motors were connected in parallel using a 

controller (SMCI12, Nanotec Electronic GmbH & Co. KG, Germany) for each motor. The 

software used to control the hydraulic system was developed by the Biosciences workshop at 

the University of Birmingham; Figure 5.6 shows the interface of the software used.  

Then, manometric measurements were performed by placing a solid state catheter 

manufactured by Unisensor (Unisensor AG, Attikon, CH-8544, Switzerland) inside the cavity 

of the unit. The catheter was 2.6 mm in diameter and contained 1 pressure sensing element. 

The pressure forces generated by the oscillations of the membrane were measured using a 

modified version (Figure 5.7) of the apparatus used by Arkwright et al. (Arkwright et al., 2013). 
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Figure 5.5. Complete configuration of the computer – controlled hydraulic system used to 

control the motion of the membrane of the Dynamic Colon Model (DCM). 
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Figure 5.7. Schematic representation of the device used to generate movement of the flexible 

wall of a single unit of DCM tube. A syringe, controlled by a stepper motor, is used to inflate and 

deflate the membrane results in reductions in diameter. Thus, the membrane of the segment 

moves inward toward the manometric catheter, in a controlled rate producing pressure signals. 

The segment is filled with a solution of known NaCMC(MW:700000) concentration (w/w) (blue), from 

the two reservoirs. 

 

After filling the apparatus with fluid, the catheter was autozero-ed to subtract the initial 

pressure signal output of the catheter due to the hydrostatic pressure. Small changes of the 

hydrostatic pressure were observed due to the fluctuations of the lumen height caused by 

inflation and deflation of the membrane. However, these changes were of 0.01 mmHg 

magnitude and therefore their effect on the interpretation of the results was negligible. Since 

the interpretation of the manometric data was affected by the apparent viscosity of the fluids 

(Arkwright et al., 2013), the signal output of the catheter was recorded in different 
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concentrations of NaCMC aqueous solutions (0.25, 0.50, 0.62, 0.75 and 1.00%, (w/w)); the 

apparent viscosities (obtained at shear rate of 10 s-1) of the fluids are presented in Table 5.1.  

 

Table 5.1. Rheological properties of the fluids used in manometry and PET experiments 

 

 

5.3.5 Positron Emission Tomography (PET) to visualise fluid motion within the DCM 

Positron Emission Tomography was utilised to assess the propulsive and non-propulsive 

events within the DCM tube under predetermined motility patterns. In addition, relationships 

between wall motion and propulsion of contents were examined. Details of the PET system 

can be found in Broadbent et al. (1993). A half prefilled DCM tube (i.e. 100 mL of fluid) was 

placed between the two detectors of the DAC Forte PET scanner and 1 mL of radiolabelled 

water was injected in the first segment through a hole of 0.1 m Ø, which represents the human 

terminal ileum.  

Previous in vivo studies showed that the main motility pattern in human proximal colon is 

comprised of antegrade propagating pressure waves of low amplitude (Dinning et al., 2014a). 

Thus, the motility pattern of the DCM tube was set up to produce an antegrade propagating 

wave of 0.02 m s-1 speed and 0.2 m travel distance; i.e. the total length of the DCM tube. The 

speed is within the range of velocities of cyclic propagating pressure waves which is the main 

motility type reported in the colon of healthy humans based on manometric measurements 

(Dinning et al., 2014a). In addition, this value is within the range of the velocities (0.002 – 

%NaCMC (w/w) 𝝁𝑨 (m Pa s)   (kg m-3) 

0.25 8 1017.60 

0.50 106 1020.40 

0.62 123 1021.23 

0.75 200 1024.50 

1.00 525 1031.80 
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0.012 m s-1) of the pressure waves considered as PSs (Dinning et al., 2008). PET images 

were recorded at 1s/frame and synchronized with the membrane motion.  

Fig 5.8a shows the inflation (i.e. contraction) and deflation (i.e. relaxation) profile of the 

membrane of each individual segment and the corresponding pressure amplitude measured 

with using solid-state catheter (Fig 4b), whereas Fig 4c shows the overall profile of the CPPW. 

To reproduce the intestine law (i.e. contraction of the first segment with the simultaneous 

relaxation of the proximal segment), the profile of the wave of the DCM wall was setup as 

follows: 1) the membrane of the first segment was inflated (i.e. contraction; ascending 

excitatory) whereas in the second was deflated (i.e. relaxation; descending inhibition) at the 

same speed 0.0016 m s-1. 2) When the first segment reaches the maximum degree of luminal 

occlusion (i.e. 40%), it stays at this position for 1 s before going back to its neutral position 

with a speed of 0.0035 m s-1; the slower speed was used to mimic the viscoelastic properties 

of the colon wall. 

 

Figure 5.8. a) Profile of contraction-break-relaxation cycle of each DCM unit, b) the overall cyclic 

propagating pressure wave (CPPW) traveling along the DCM tube.   

In addition, keeping the segment at the contraction stage for 1 s prevents back flow as shown 

in Fig. 5.9. The timings of the motion of each segment were aligned so that the motion within 

the DCM was representative of that within the human colon and minimised backflow within the 

DCM. 
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Figure 5.9. Forward fluid motion is induced by introducing a standing period (break) at the 

contraction stage of the starting segment. 

 

5.4 Results and Discussion 

Different methods were tested (§ 5.3.2) to develop the haustra prior to the fabrication and 

the further calibration of the DCM system. The challenge was how to effectively attach the 

membrane to the acrylic without tearing the membrane and with no leakage of the hydraulic 

liquid (i.e. water) during oscillations of the membrane. In addition, the fabrication process 

should be easy, fast and robustness to efficiently produce several haustra (Fig. 5.3 e). The 

issue with the blu-tack was that there was no a permanent and good isolation, whereas it was 

not the proper method to produce several units for the DCM tube. With regards to the use of 

side bars (Fig. 5.2 e), the problem here was that the membrane could easily be torn at the 

edges of the groove when tightening the bar with the screws on the main acrylic body. The 

following approach was to use a rubber O-ring to hold the membrane tightly to the acrylic piece 

(Fig. 5.2 f – g). With this method, the membrane could easily be attached and without having 

Direction of pressure wave 
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issues of tearing the membrane. However, when assembling the three haustrum, leakage of 

the hydraulic liquid was occurring regardless of how tightly the acrylic bodies were attached 

to each other. That was due to the unequal pressure around the groove and the folds of the 

membrane that occurred after assembling the three haustra. The final and most successful 

method was to cover the whole acrylic body with liquid silicone. However, the main challenge 

here was how a thin layer would be created above the cavity of the acrylic body. The solution 

was to fill the cavity with wax, and after curing the silicone, wax was melted with using heat to 

leave a thin layer of silicone. After this stage, the fabrication process of a single unit consisted 

from three haustrum (Fig. 5.3) was developed (§ 5.3.3). 

5.4.1 Calibration of the hydraulic system 

Calibration of the hydraulic system was performed to correlate the occlusion degrees and 

rates of the membrane with the syringe travel distances and speeds. Figure 5.10 shows an 

example of how the membrane oscillates under different travel speeds of the syringe; Figure 

5.10a and Figure 5.10b refer to 1 mm s-1 and 2 mm s-1 travel speed of the syringe, respectively. 

The distance covered, for a certain syringe’s displacement (i.e. 10 mm), was determined by 

measuring the difference between the lowest points of the membrane observed in the images 

(Figure 5.10c; white dot) captured at the initial and final position of the syringe. The results 

showed good reproducibility with constant peak height and width, revealing the accuracy and 

stability of the hydraulic system operated at different speeds. Figure 5.11a shows the second 

order polynomial relationships between the membrane oscillation rate and syringe travel 

speeds. The results showed that the membrane covers a certain distance at twice the syringe 

travel speed for velocities < 2 mm s-1 whereas for syringe travel speeds between 5 – 8 mm s-

1 the corresponding membrane velocities were 7.8 – 9.8 mm s-1. Since water, used as 

hydraulic incompressible fluid, there should be an absolute correspondence between the 

syringe and the membrane movements. These dissimilarities probably should be due to the 

elasticity of the silicone rubber used and its relaxation relative to the speed of fill. Due to 

viscoelastic properties, the silicone rubber behaves as rigid material at high strain rate (i.e. 
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high syringe speeds) and thus the relaxation of the membrane is smaller relative to the syringe 

speed. On the other hand, the relaxation of the membrane is much faster at low strain rate; 

i.e. syringe speeds. Figure 5.11b shows the linear relationship between syringe and 

membrane displacements as well as the corresponding percentage of the diameter decrease 

at given membrane covered distance.   

 

 

 

Figure 5.10. Curves of membrane oscillations obtained at (a) 1mm s-1 and (b) 2 mm s-1 syringe 

travel speeds for fixed travel distance (10 mm). The white dot on the cross section image of the 

DCM unit shows the reference point used to measure the travel distance of the membrane; a 

camera used at 50 fps to capture images of the cross section of the DCM unit during membrane’s 

oscillations. 
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Figure 5.11. Calibration of the hydraulic system; a) plot of syringe speeds (mm s-1) and the 

corresponding membrane speed displacement (mm s-1); b) plot of syringe displacements (mm) 

and the corresponding membrane displacement (mm), indicating also the % reduction of the 

cross-section area of the DCM unit. Standard deviation bars for the membrane travel speed (n = 

3). 

 

5.4.2 Effect of membrane oscillations and viscosity of the fluid on manometry measurements 

Figure 5.12 shows the measured amplitudes of the pressure forces generated from the 

membrane oscillations under different displacements, velocities and fluid viscosities. The 

results showed that the dominant parameters affecting the measured pressure amplitudes are 

the occlusion rate and the fluid viscosity; the occlusion degree has only a weak effect. For a 

given apparent viscosity (e.g. 525 mPa s for 1% NaCMC, w/w) the amplitude of the measured 

pressure increased from 2.2 to 5.7 mmHg for an increase in the occlusion rate from 4.3 to 9.8 

mm s-1, regardless of the occlusion degree. For the low viscosity fluid (i.e. water, 1 mPa s) the 

amplitude of the measured pressure was the same regardless of the occlusion degree and 

displacement velocity (i.e. from 1.8 to 2 mmHg) for apparent viscosities ≤ 106 mPa s (i.e. 

NaCMC concentrations ≤ 0.5% (w/w). When the NaCMC concentration was between 0.62 – 

1% (w/w), which corresponds to apparent viscosities between 132 – 525 mPa s, a noticeable 

increase of the amplitude was observed. A plateau after the peak was observed for membrane 
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displacements >4 mm and low occlusion rates (i.e. 4.3 mm s-1) when the membrane was 

traveling back to the initial position. This plateau was less significant at low viscosities and 

higher displacement velocities.  

 

Figure 5.12. Measured pressures in different NaCMC concentrations (w/w), membrane 

displacements (a = 4 mm; b = 12 mm; c = 16 mm; d = 18 mm) and membrane occlusion rates (1: 

4.3 mm s-1; 2: 8.5 mm s-1; 3: 9.8 mm s-1). 
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High amplitudes of 120 mmHg magnitude were obtained only when the occlusion degree 

was 98% (almost complete constriction of the diameter of the DCM unit) where the membrane 

touched and partially squeezed the pressure sensor of the catheter (Figure 5.13). In this case 

the pressure amplitude was the same regardless of the viscosity and the occlusion rate of the 

membrane. 

 

 

 

 

Figure 5.13. Measured pressures obtained at different occlusion degrees of the membrane in 

full filled apparatus and pressure sensor positioned at the centre of the DCM unit. At 96% 

occlusion, the pressure is rising gradually before a sharp peak appeared due to physical contact 

of the membrane with the sensor. In case of 98% occlusion a slight increase in the pressure was 

observed before a sharp increase occurred due to physical contact and squeeze of the sensor, 

reaching amplitude of ≈130 mmHg. The travel speed of the membrane was 2 mm s-1. 

 

The results showed that the manometry failed to capture all the oscillations of the membrane. 

The manometry will show similar pressure amplitudes for a given viscosity and occlusion rate 

regardless of the degree of luminal occlusion (Figure 5.14). This means that for the same 

measured pressure, different volume of fluids will be propelled, since the higher the occlusion 

degree the higher the volume expelled during the contraction of the wall. It is likely that one of 

0

20

40

60

80

100

120

140

0 100 200 300 400 500

M
e

a
s

u
re

d
 p

re
s

s
u

re
 (

m
m

H
g

)

Time (sec)

0

2

4

6

8

0 100 200 300 400M
e

a
s

u
re

d
 p

re
s

s
u

re
 (

m
m

H
g

)

Time (sec)

96% occlusion 98% occlusion 



Konstantinos Stamatopoulos                                                                                Dynamic Colon Model 

 

144 

the parameters that probably would affect the correlation between the amplitude and the fluid 

flow is that the manometry fails to differentiate the different occlusion degrees of the 

membrane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Measured pressures obtained at different occlusion rates and degrees in full filled 

apparatus and pressure sensor positioned at the centre of the DCM unit. Only the occlusion rate 

affects the interpretation of the manometry whereas the method failed to differentiate the 

different occlusion degree. Positive values correspond to inward occlusion of the membrane 

whereas negative values obtained when the membrane returned to its initial position. 

 

However, it was only possible to distinguish between the different occlusions degree at low 

occlusion rates, achieved due to the plateau, appearing for occlusion degrees between 62 – 

88%. 

In previous studies, manometry missed the vast majority of the motility events in the proximal 

colon (Von Der Ohe et al., 1994). This is because the diameter in this region is ≥ 0.05 m, which 
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affects the sensitivity of the technique (Dinning et al., 2008). In addition, the colon is only 

partially filled with fluids (Sutton, 2009) which, as the results showed, further decreases the 

performance of the method. However, it should be noted that gas production upon 

fermentation has not been reproduced in the in vitro model and this is likely to also affect the 

interpretation of the manometric results.  

Beside this limitation, our results agree with von der Ohe et al. (1994); revealing the 

limitations of manometry. Furthermore, the study by Arkwright et al. (2013) concluded that the 

viscosity affects the manometry measurements and that this technique can monitor non – 

occluding events (i.e. physical contact and/or squeezing of the pressure sensor). However, 

Arkwright et al. (2013) did perform experiments in fully-filled apparatus and at fixed occlusion 

degree.  

It must also be noted that in Arkwright et al. (2013) study the catheter was positioned exactly 

at the centre of the tube under slight tension to be exactly at the centre of the tube. In our 

study, there were two configurations. In the first one the catheter was placed in the same way 

as in Arkwright et al. (2013) study and in the other was not under tension, allowing the catheter 

to naturally settle representative of in vivo studies. Further experiments with half-filled 

apparatus and the catheter positioned at the centre of the tube (i.e. under tension and no 

physical contact with the membrane) the pressure was 1.0 ±0.2 mmHg independent of the 

degree of luminal occlusion, occlusion rate and the viscosity of the fluid. The pressure was 

raised only when the membrane touched and squeezed the catheter. In the case where the 

catheter was settled, the measured pressure was unchanged (i.e. 1.1 mmHg) for occlusion 

degrees ≤88% (Figure 5.15); a sharp increase was observed only when the membrane 

touched and squeezed the sensor. 
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Figure 5.15. Measured pressures at different occlusion rates and occlusion degrees of the 

membrane in half-filled apparatus and catheter located at the bottom of the DCM unit. The 

experiments were performed with using 0.75% NaCMC (w/w). When the apparatus is half filled 

and the occlusion is <94% the amplitude of the pressure is relatively unaffected from the 

occlusion rate and occlusion degree. Similar results were obtained in the less viscous media. 

 

In viscous fluids, a second peak was observed in the manometry graphs for occlusion 

degrees ≥75% (Figure 5.16). This peak appeared before a sharp increase in the pressure 

amplitude, caused from the physical contact of the membrane with the catheter. It seems that 

in the partially filled apparatus, the viscosity will first cause a small increase of the pressure 

(i.e. 2 ±0.3 mmHg) and then a further increase will depend on the degree of the luminal 

occlusion. Hence, the volume of the fluids also affects the manometry measurements. As the 

occlusion rate was increasing, the amplitude of the first peak was decreasing and for 80% 
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occlusion, the measured pressure amplitude of the first peak was decreased from 1.8 ±0.1 

mmHg to 0.7 ±0.1 mmHg when the occlusion rates increased between 2 – 8 mm s-1. It was 

noted, in the low – to – medium viscosity media (i.e. 0 – 0.5% NaCMC w/w), that at high 

occlusion rates the expulsion of the fluid was faster during the contraction of the membrane. 

Thus, the catheter was not sufficiently submersed in the fluid, decreasing further the sensitivity 

of the manometry. In contrast, the occlusion rate did not affect the results in high viscosity 

media. For the most viscous media (i.e. 0.75 and 1.00% NaCMC w/w), the fluid behaved like 

solid body over the short timescales of the wall motion (insufficient time for appreciable level 

change due to fluid flow) raising the level of the medium accordingly to the membrane 

displacement thus, in this case the catheter was sufficiently submersed.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Measured pressures obtained at 94% occlusion degree of the membrane in half 

filled apparatus and with catheter being positioned at the bottom of the DCM unit. The catheter 

freely moved in this configuration. The first peak (a) in the manometry graphs appeared due to 

the pressure applied on the sensor from the fluid (apparent viscosity 525 mPa s; 0.75% NaCMC 

w/w). The second peak (b) appeared due to the physical contact of the sensor with the 

membrane. 
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A recently published work by Schneider et al. (2016), showed the high variability of the 

pressures occurred in human colon at fed and fasted state. The authors used a wireless 

SmartPill® enabling to monitor simultaneously the pH, temperature, pressure and transit times 

in human GI tract. The highest pressure monitored in the colon was 105 ±56 mmHg and 123 

±21 mmHg in fasting and fed state respectively. Our experiments showed, but also 

manometric measurements (refer to Chapter 1 & 2), that that high pressures mainly occurred 

when strong contractions of the smooth muscle (in our case complete occlusion of the 

membrane of the DCM) take place; normally during peristaltic motion (i.e. mass movements). 

However, SmartPill® will be also suffer from the technical limitations similar to the manometry. 

Thus, to fully characterize the hydrodynamics in human GI tract, different monitoring 

techniques should be combined, if possible simultaneously, enabling to establish relationship 

between pressures and flow episodes (i.e. mixing). Furthermore, as it will be discussed in the 

following Chapter, the properties of the SmartPill®, or any particle tracer used to monitor the 

motility, in terms of density, buoyancy, relaxation times, should be carefully addressed, to 

ensure that the particle will adequate follow the motion and the transit of the chyme. 

 

5.4.3 Positron Emission Tomography 

Relationships between membrane motion and fluid flow were investigated, performing 

positron emission tomography in different viscous media. Unlike the dynamically changing 

colonic environment, the conditions were fixed in this in vitro study to understand, the interplay 

between the wall motion, fluid flow, viscosity etc. 

Figure 5.17, Figure 5.18 and Figure 5.19 show the time series of PET images of single 

antegrade CPPW in 0.25, 0.50 and 0.75% NaCMC (w/w), respectively. Furthermore, the 

relaxation, neutral and contraction stage of the flexible wall of the DCM is also presented. It 

should be noted that the image capture rate in PET was much higher (i.e. one fps) compared 

to in vivo studies (one frame per 10 s; Dinning et al. 2008). This allowed a more detailed 

temporal analysis of the flow episodes as a function of the wall motion. The results showed 
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that at low viscosity (Figure 5.17) the movement of the fluid followed the motion of the wall for 

the first 3 seconds after which the fluid flows back while the wave was travelling towards the 

end of the tube. This occurred because the level of the fluid was raised close to the wall of the 

rigid siphon without passing over it, resulting in a strong backflow due to gravity and relaxation 

of the wall back to neutral; leading to poor overall propulsion of the contents. This backflow 

effect was less significant in the more viscous media. Figure 5.18 shows a portion of the 

radioactive tracer to cover a longer distance (see frame at 7 s) before it moved back. In 

contrast, in the most viscous fluid (Figure 5.19) the radioactive tracer travelled across the 

entire length of the tube before flowed back, ending at the middle of the tube. In addition, PET 

images showed that the DCM can reproduce the typical bolus movements, as the portion of 

the tracer, traveling with the wave-front of the membrane, was located inside the relaxing point. 

Furthermore, the tracer appeared in the form of pockets, especially at low viscosity media, 

located within the haustra during the wall motion. However, these pockets disappeared after 

the completion of the wave and its redistribution due to backflow. This phenomenon occurred 

less frequently in more viscous fluids.  

‘To and fro’ motion occurred during and after the end of the wave. However, this was less 

extended as the viscosity increased. In less viscous medium, retrograde motion appeared 

between 4 – 6 s frames whereas antegrade occurred between 7 – 12 s frames (Fig. 5.17). In 

case of medium viscosity medium, the corresponding backward and forward motion took place 

between 8 – 10 s and 10 – 12 frames, respectively (Fig. 5.18). In the most viscous medium, 

retrograde motion appeared between 7 – 11 s frames but less significant antegrade in 11 – 

12 s frames. 

In all PET experiments, a significant amount of the tracer remained at the beginning of the 

tube (i.e. within the caecum and close to terminal ileum), something which has also been 

observed in the in vivo scintigraphy studies  (Dinning et al., 2008, Cook et al., 2000). This is 

probably because the propulsion of the fluids might not be strong at the beginning of the 

human proximal colon contraction, as the propagating wave is not yet fully developed. 
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It should be noted that these observations might differ significantly if PET images captured 

using different fluid volume, though, with the same motility pattern. Nevertheless, the 

behaviour of the colon wall depends on the mechanical and chemical stimulus and the disease 

state as described in Chapter 2. Thus, propulsion and mixing of the contents should carefully 

be assessed when changing only the volume but keeping the same motility pattern. However, 

this approach might be far from the reality of what occurs in the proximal colon. For instance, 

increased motility index of the proximal colon has been reported in the presence of elevated 

amounts of short chain fatty acids upon fermentation (Kamm et al., 1992) or after meal 

ingestion (Reddy et al., 1991). Taking also into account that the fluid volumes range 10 – 125 

mL (Sutton, 2009), the same motility pattern of various occlusion degrees (i.e. decrease of the 

tube diameter) could probably occur in the presence of different fluid volumes due to a strong 

chemical (e.g. fatty acids) or neurogenic (e.g. meal) stimulus. Thus, the current work can be 

further extended to examine the interplay between wall motion, external stimulus and fluid 

motion. However, this task is beyond the scope of this work, since advances in e.g. stimulus-

response soft materials should be introduced. 
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Figure 5.17. Time series of PET images (recording time 1s/f) and the corresponding membrane 

status obtained during an antegrade propagating wave using 0.25% NaCMC (w/w) as fluid. The 

occlusion degree was 73%; wave speed 0.02 m s-1; DCM tube filled 50% with fluid. 
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Figure 5.18. Time series of PET images (recording time 1s/f) and the corresponding membrane 

status obtained during an antegrade propagating wave using 0.50% NaCMC (w/w) as fluid. The 

occlusion degree was 73%; wave speed 0.02 m s-1; DCM tube filled 50% with fluid. 
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Figure 5.19. Time series of PET images (recording time 1s/f) and the corresponding membrane 

status obtained during an antegrade propagating wave using 0.75% NaCMC (w/w) as fluid. The 

occlusion degree was 73%; wave speed 0.02 m s-1; DCM tube filled 50% with fluid. 
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The most important output of this experimental set up is that flow episodes can be associated 

with the wall motion; even for short distances as in the case of low viscosity media. However, 

this requires a higher recording frequency to be detectable. Furthermore, the occlusion degree 

was 73% and the DCM tube was filled 50% with fluids. Previously the manometry showed, 

under these conditions, a pressure amplitude of ≤2 mmHg. Based on the criteria used in the 

in vivo studies for what is considered a propagating sequence (PS) of low amplitude (i.e. 2 – 

5 mmHg with velocity 0.002 – 0.02 m s-1), the flow episodes in the present work should not be 

associated with the wall motion, since the pressure forces were ≤2 mmHg. This would 

underestimate how extensively the wall motion (i.e. pressure waves) is associated with the 

fluid flow. However, the researchers/clinicians rely mainly on the manometry to decide what is 

the lowest limit of the amplitude based on which a pressure wave will be considered as PS. 

The propulsion of the fluids within the DCM under increasing viscosity and fixed motility 

pattern was also assessed by applying repeated CPPW; a delay of 10 s between the waves 

was applied to ensure stagnant fluid before the next CPPW. Since the CPPW lasted for 10 s, 

in this case the PET images captured after the end of the CPPW; this recording duration time 

was the same used in previous in vivo studies (Dinning et al., 2008). Thus, the distribution of 

the tracer is due to a motility event, occurred earlier to the captured image. The PET images 

showed that at low viscosity media (0.25% NaCMC w/w) the tracer was distributed throughout 

the DCM tube after nine antegrade CPPWs (Fig. 5.20). However, as the viscosity increased 

the distribution of the tracer was much less uniform (Fig. 5.21). Two spots with high tracer 

intensities were formed showing that plug flow occurred in high viscosity media. The final 

distribution of the tracer was affected by the ‘to and fro’ motion of the fluid. These movements 

are a combination of the forward propulsion of the fluid and the backflow after the wave has 

passed. The extension of the ‘to and fro’ depends on the viscosity of the fluid.  

Several issues were raised with using prolonged recording time. The first is that the tracer 

could already be distributed in the colon before capturing the final image, which might cause 

difficulties in distinguishing clear movement of the tracer in a later motility event. Secondly, 
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several pressure waves which are not considered as motility events (i.e. <2 mmHg), may have 

taken place before a pressure wave of amplitude >2 mmHg occurred and thus, the tracer 

might have occupied a significant area of the colon before capturing an image. Third, high 

resolution manometry showed that there are motility events of duration <10 s (Dinning et al., 

2014a), that means that capturing frames at 10 s, will miss flow episodes occurred earlier and 

associated with the wall motion.  

In more viscous media a portion of the tracer might be located several centimetres from the 

injection point after the wave (Figure 5.22). Thus, if a pressure wave, which fulfils the criteria 

of being a PS, starts from the caecum, a portion of the tracer will already be several 

centimetres ahead. Therefore, it would be difficult to associate the flow episode with the origin 

of the pressure wave. 

 

 

 

 

 

 

 

 

 

 

Figure 5.20. PET images of 0.25% NaCMC (w/w) after the completion of each antegrade cyclic 

propagating pressure wave (CPPW). The recording time is a frame per 10s. A time delay of 10 s 

was used before the next CPPW applied. 
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Figure 5.21. PET images of 0.50% NaCMC (w/w) after the completion of each antegrade cyclic 

propagating pressure wave (CPPW). The recording time is a frame per 10 s. A time delay of 10 s 

was used before the next CPPW applied. 
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Figure 5.22. PET images of 0.75% NaCMC (w/w) after the completion of each antegrade cyclic 

propagating pressure wave (CPPW). The recording time is a frame pre 10 s. A time delay of 10 s 

was used before the next CPPW applied. 

 

5.5 Conclusions 

A novel biomechanical computer – controlled model of the human proximal colon was 

designed, developed, fabricated and used to simulate colon motility. The effect of wall motion, 

viscosity and volume of the fluids on the performance of the manometry was investigated 

whilst Positron Emission Tomography was used to visualize the fluid flow within the colon 

model under fixed conditions.  

The results showed that the position of the catheter, the occlusion rate, the viscosity and the 

fluid volume affected the interpretation of the manometry. In particular, as the viscosity and 

the occlusion rate were increased the amplitude of the pressure also increased. Furthermore, 
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manometry failed to differentiate changes for lumen occlusion degrees of the membrane <80% 

and at low viscosities. In addition, the sensitivity of the manometry was dramatically decreased 

when the apparatus was half full. Thus, the criteria based on which a pressure wave should 

be associated with the movements of the contents, might have to be reconsidered. PET 

images revealed that pressure waves with amplitudes <2mmHg can be highly associated with 

flow episodes, distributing a significant amount of fluid (i.e. tracer) over long distances. In the 

half – full DCM unit, manometry can differentiate pressures caused by the viscous media and 

those caused by the physical contact of the membrane and the sensor; when the pressure 

sensor remains submerged in the fluid and the viscosity is sufficiently high. 

This study yields valuable information about the interpretation of the manometry results with 

potential consequences on clinical management strategies, both diagnostic and therapeutic, 

in the human proximal colon. This information is also useful to develop in vitro methods to 

assess the performance of dosage forms targeted to the colon under more biorelevant 

conditions.  

However, further investigation needs to be done with regards the velocities and the transit 

times of the fluids through the DCM tube under known wall motion and how the viscosity will 

affect these parameters. Limited work has been done in vivo using magnetic pill tracking 

system obtaining information with regards to the distance covered and the direction of the 

displacements of the pill as well as velocities during residence in the human colon (Hiroz et 

al., 2009, Hénin et al., 2016). Thus, in the following chapter Positron Emission Particle 

Tracking (PEPT) system is utilized to better understand the flow and the mixing process in 

human proximal colon using DCM. 
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Nomenclature 

 

n power law exponent 

Re Reynolds number 

𝑑𝑑  Particle diameter (m) 

𝑢̅ Fluid velocity (m s-1) 

𝑑ℎ Hydraulic diameter (m) 

𝑃𝑗 

Probability of the individual velocity data 

points to be within the range of the 

velocities 

𝑈𝑥  Propulsive velocities in x axis 

𝛥𝑥 Particle displacements in x axis 

ΔU Increments 

 

 

Greek symbols 

 

 

 

 

 

 

 

 

 

τ shear stress (Pa) 

τγ yield stress (Pa) 

𝛾̇ shear rate (s-1) 

µA Apparent viscosity (mPa s) 

p Density (kg m-3) 

𝜌𝑑  Particle density (kg m-3) 
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Abbreviations 

 

DCM  Dynamic Colon Model 

DGM  Dynamic Gastric model 

GI  Gastrointestinal 

NaCMC Sodium carboxymethylcellulose 

PEPT  Positron Emission Particle Tracking 

PET  Positron Emission Tomography 

PSs Propagating Sequences 

TIM-1  TNO (gastro-) Intestinal Models 

TIM-2  TNO Colon simulator 

TNO Nederlandse Organisatie voor Toegepast 

n.b neutrally buoyant 

CPDF Cumulative Probability Distribution 

Function 

L Low viscosity fluid 

M Medium viscosity fluid 

H High viscosity fluid 

CPPWs Cyclic Propagating Pressure Waves 

N.T Net Transport 

pp polypropylene 

ps polystyrene 
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6 Understanding flow and mixing process in proximal human colon 

 

Abstract 

 

The tubular Dynamic Colon Model (DCM) was utilised to understand fluid motion and mixing 

in the proximal human colon. The tube was half-filled with fluids with different apparent 

viscosities and flow measurements were carried out using a radioactive tracer particle; 

alteration of the particle buoyancy was performed to gain understanding of previous 

experiments carried out in vivo, and to examine particle motion relative to the bulk fluid and 

the gas-liquid interface. The net forward propulsion of the particle increased with the fluid 

viscosity, attributed to both viscous damping of the backflow of the fluid by gravity once the 

wall motion had ceased coupled with much reduced particle relaxation time in the viscous 

media. The backflow caused retrograde movements of the particle which were not related to 

the wall motion. Shorter residence times and greater velocities were obtained for a floating 

particle on the gas-liquid interface, implying the presence of a surface wave moving faster 

than the bulk liquid.   

These in vitro results give insight into in vivo observations, with potential implementation on 

improving the non-invasive techniques, used to monitor in vivo the colon motility. Furthermore, 

understanding the flow motion and the behaviour of the particles with different buoyancy, may 

also contribute to the proper design of drug formulations where fragments of the dosage form 

formed upon disintegration in the human proximal colon. 
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6.1 Introduction 

The human colon is the last site in the GI tract for absorption of digestive residues and is a 

potential location for systemic and local delivery of drugs (Antonin et al., 1996). The complex 

motor activity of the colon wall (Karaus and Wienbeck, 1991) facilitates propulsion and mixing 

of the colonic contents (Dinning et al., 2014a). Various motions of the colon wall have been 

previously observed with high amplitude propagating sequences causing mass movement of 

the colonic contents (Bassotti et al., 1995), whereas low-amplitude propagating sequences 

comprised of slow waves in both antegrade (forward) and retrograde (backward) directions 

facilitate both propulsion and mixing (Dinning et al., 2014a).  

Factors that contribute to the motion and transit of the fluids, include: (1) the short travel 

distance of the propagating sequences (PSs) (Dinning et al., 2014a), (2) the retrograde PSs 

(Dinning et al., 2008, Hiroz et al., 2009), (3) the reflux (i.e. backflow) of over half of the bolus 

movements and (4) the apparent viscosity (rheology) of the colonic luminal contents (Proano 

et al., 1990).  

A magnet tracking system has been employed as an in vivo  non – invasive technique which 

does not suffer from the technical limitations of manometry and scintigraphy (Hiroz et al., 

2009). This magnetic tracer comprised of a silicone coated pill, containing a cylindrical magnet 

of 1.8 g cm–3 density and ≈0.8 g and its position was tracked as a means of determining 

displacements and velocities of the colonic contents. However, the use of such a heavy pill 

causes issues in terms of the long relaxation time of the particle, so it may not follow the fluid 

motion. This can be revealed from the fact that the much lighter radio markers previously used 

[7] travelled much further through the fluid compared with the magnetic pill. Thus, although it 

is challenging, it is important to choose the particle properties to enable the fluid motion to be 

tracked over a wide range of viscosity, particularly since dewatering process takes place in 

the human colon.   

Given the above findings, an in vitro model that simulates the dynamic colon environment as 

well as the use of a proper tracking technique of the fluid flow under known conditions, offers 
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the capability to develop understanding of the relationships between these parameters and to 

what extent these affect the mixing process and propulsion of the fluids in the caecum – 

ascending region. This is also important from a pharmaceutical development perspective, 

since valuable information can be obtained on optimising drug delivery to the colon.  

Physiologically representative engineering intestinal models need to be able to reproduce 

the widely accepted law of the intestine (Bayliss and Starling, 1899), which states that the 

colonic fluids move in the digestive tract due to the combined ascending excitatory (muscle 

contraction) coupled with the forward descending inhibition (muscle relaxation) (Sinnott et al., 

2012). Although the most advanced models currently available such as the TNO TIM-1 

(Minekus, 2015), TIM-2 (Venema, 2015) and IFR Dynamic Gastric model (DGM) 

(Thuenemann et al., 2015), aim to simulate the GI environment under well controlled 

conditions and have advanced dissolution science, yet they are not considered to be the final 

solution to the problem (McAllister, 2010). Some of the major drawbacks of TIM-2 are the 

complexity of the technique and lengthy equipment setup time resulting in a limited amount of 

data which can be obtained in a reasonable time period. Furthermore, the TIM-2 is not 

physiologically representative, with a different length, volume and mixing process when 

compared with the human colon (Blanquet et al., 2001a). 

This chapter describes the first application of a computer – controlled biomechanical in vitro 

colon model to enable analysis of the mixing process in the proximal colon via analysis of the 

fluid motion in 3-D. The model mimics the colonic physical environment in terms of the 

anatomy of smooth muscle (Langer and Takács, 2004) and the propagating motor patterns 

monitored in the proximal colon (Dinning et al., 2014a). Thus, this study aims to determine 

how the hydrodynamics will be affected by the interplay between predetermined conditions 

(i.e. wall motion, viscosity, volume of fluids) in the partially filled artificial proximal colon. 

Positron Emission Particle Tracking (PEPT) developed at the University of Birmingham UK 

(Broadbent et al., 1993), was used to determine the displacement of a radioactive tracer 

particle inserted into the DCM tube and then subjected to a predetermined wall motility pattern; 
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altering the buoyancy (and thus relaxation time) of the particle enables the motion of the 

particle relative to the fluid to be examined, to some extent this mimics in vivo particle tracking 

experiments. Furthermore, this study aims to provide information about the physical conditions 

that colon-specific drug delivery systems will face during their passage through the proximal 

colon. 

 

6.2 Materials and Methods 

6.2.1 Materials 

Sodium carboxymethylcellulose (NaCMC) of 700000 molecular weight and sodium chloride 

(NaCI) were purchased from Sigma (St., Louis, USA).  

 

6.2.2 Fluids used in PEPT experiments 

Fluid of 0.25% (low apparent viscosity, denoted L), 0.50% (medium apparent viscosity, 

denoted M) and 0.75% NaCMC(700000) (w/w) (high apparent viscosity, denoted H) were used 

to mimic the dewatering process which takes place in the human colon. The concentrations of 

NaCMC were chosen based on previous studies published to evaluate the effect of the 

viscosity on dissolution profile of drugs targeted human colon (Stamatopoulos et al., 2016a, 

Stamatopoulos et al., 2015, Stamatopoulos et al., 2016b). The flow rheology of the media was 

measured after the addition of the sodium chloride (3% w/w) to adjust the density of the media 

relative to particles used in Positron Emission Particle Tracking experiments. A Discovery 

Hybrid Rheometer (TA Instruments) coupled with a 40 mm diameter, 4° cone and plate 

geometry was used to perform the rheological measurements. The flow rheology was well 

described by Herschel – Bulkley model for a shear thinning fluid,  

𝜏 = 𝜏𝛾 + 𝐾𝛾̇𝑛       (6.1) 
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 where   is the shear stress, 𝜏𝛾 is the yield stress,   is the shear rate, K  is the consistency 

index and n  is the power law exponent (< 1). The parameter values obtained are presented 

in  

6.2.3 Positron Emission Particle Tracking (PEPT) system 

Positron Emission Particle Tracking (PEPT), developed at the University of Birmingham was 

used to assess fluid patterns within the DCM tube under the CPPWs.  Details of the PEPT 

methodology can be found in previous publications (Broadbent et al., 1993, Simmons et al., 

2012).  The half-filled DCM tube was placed between the two detectors of the DAC Forte PET 

scanner (Fig. 6.1a – b) and the radioactive particle was introduced in the first segment.  

The tracer used was an ion-exchange resin particle of diameter 250 – 300 μm doped with 

18F, provided by the School of Physics at the University of Birmingham. Two larger particles 

made from different materials were then used to enclose the tracer. The first was a spherical 

polystyrene particle (3 mm Ø). The tracer was enclosed by drilling a hole of 1 mm Ø in the 

plastic particle and sealing the tracer inside by reheating the polystyrene. The same procedure 

was also carried out using a polypropylene of 3 mm Ø. Due to the different densities of the 

plastic particles, the former would be expected to be neutrally buoyant (n.b) whereas the latter 

will float, and thus was expected to indicate motion at the liquid – air interface.  

 

 

 

 

 

Figure 6.1. (a) DCM tube (A) in between PET cameras coupled with the hydraulic system (B); b) 

schematic representation of the DCM – PET configuration. 
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For both floating and n.b particles, the particle relaxation time, which is the time for the 

particle to respond to changes in the fluid motion, was determined using Eq. 6.2, giving the 

particle’s response time to fluid flow.  

A

dd
o

d
t





18

2

       (6.2) 

where 𝜌𝑑 is the particle density (kg m-3), 𝑑𝑑 is the particle diameter (m) and 𝜇𝐴 is the apparent 

viscosity (kg m-1 s-1) of the fluid at  = 10 s-1. The value of Reynolds number, Re, for the flow 

in the partially filled DCM was determined using Eq. 6.3, the values in Table 6.1 show that the 

flow was laminar for all experiments (Re << 2000). 

A

hud




Re       (6.3) 

where u  is the flow velocity (m s-1), 𝑑ℎ is the hydraulic diameter (m) and   is the fluid density 

(kg m-3). 

The data acquisition algorithm developed by the School of Physics (Leadbeater and Parker, 

2009) provides the location of the particle in Cartesian co – coordinates at discrete time 

intervals. Repeated CPPWs were applied at a speed of 0.02 m s-1 with a 10 s time delay 

between them to ensure the fluid became static before the next CPPW occurred. Thus, one 

particle pass was considered as a complete travel of the tracer along the DCM tube. When 

the radioactive particle reached the very end of the tube, the tracer was collected and placed 

back inside the first segment. Then, a new series of CPPWs were applied. This procedure 

was repeated 30 times for each viscous media used.   

 

6.2.4 PEPT data processing 

The data were reconstructed to reflect the position of the radioactive tracer with respect to 

the DCM tube coordinates. Before starting the experiments, the tracer was positioned at the 

middle of the first segment, so that the x, y and z coordinates were obtained. In all experiments, 
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the particle was positioned approximately at the same starting point; i.e. x = 0 ± 0.002 m and 

y = 0 ± 0.003 m. However, in case of the neutrally buoyant particle, the zero position with 

regards the z axis was 5 ± 2 mm below the surface of the fluid.  Subsequently, smoothing of 

the PEPT data was performed using the Savitzky-Golay smoothing/filter method (Savitzky and 

Golay, 1964) with 2nd order polynomial fitting, giving a low signal – to – noise ratio. Since both 

plastic particles had a characteristic dimension of 0.003 m, a minimum reasonable 

displacement along the tube (i.e. x axis) was considered to be 0.01 m. Thus, analysis of 

propulsive velocities in the DCM tube was performed using Eq. (6.4) 

                                                       𝑈𝑥 =
𝛥𝑥

𝛥𝑡
                                                                   (6.4) 

where 𝛥𝑥 is for displacements ≥ 0.01 m. 

 Further statistical analysis of the velocities obtained as well as the residence times of the 

particle within each unit of the DCM tube was performed using the cumulative probability 

distribution function (CPDF) shown in Eq. 6.5 below. 

𝐶𝑃𝐷𝐹𝑗 = 𝑃1 + 𝑃2 …+ 𝑃𝑗      (6.5) 

where (𝑃𝑗) is the probability of the individual velocity data points to be within the range of the 

velocities. PEPT data the individual locations of the particle along the DCM tube (i.e. x axis) 

were split into 10 matrices reflecting the 10 units of the DCM. Thus, for example, the first 

matrix contains only the individual positions of the particle located within the width of the first 

unit (𝑖. 𝑒. 0 < 𝑥𝑖 ≤ 2𝑐𝑚) as well as the corresponding time points. Subsequently, the velocities 

were sorted out based on the positions of the particle found within the width of 𝑖𝑡ℎ unit and 

which had been used to calculate 𝑈𝑥𝑖
. Thus, ten new matrices were obtained containing the 

velocities determined with in each unit. Then, the range of the velocity of the particle in each 

matrix is divided into equal increments, 𝛥𝑈. The probability (𝑃𝑗) of the individual velocity data 

points to be within the range of the velocities, was obtained by dividing the number of data 
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samples occurring in an increment by the total number of data samples. Therefore, the CPDF 

was calculated giving the probability that a velocity will be within the 𝑗𝑡ℎ increment (Eq. 6.5). 

In order to assess the mixing across the cross section area of the DCM tube, the distribution 

of the particle, as it moves through each unit, was visualized by condensing all the 

experimental data into a single 2D grid of 1x10-6 m2 resolution. Then, counting of the passes 

of the particle from each cell of the grid was performed and presented in a data density plot.    

 

6.2.5 Synchronization of PEPT data with DCM wall motion 

The relationship between the wall motion and the movement of the radioactive particle was 

investigated. Synchronization of the PEPT data with the motility pattern of the flexible 

membrane of the DCM was performed by matching the sampling frequency of the PEPT 

system with the frame rate of the camera used to record the membrane motion. However, this 

was not a straight forward procedure since the acquisition frequency was not constant as it 

was dependent upon the radioactivity of the tracer and the probability of detection which varied 

with its spatial location (Guida et al., 2009).  

The occlusion degree (73%) and rate (1.6 cm s-1) as well as the time of the membrane to go 

back to the initial position (0.36 cm s-1) were the same for all units. These values were obtained 

after capturing images of the cross section of a single unit of DCM during oscillations of the 

flexible membrane using a camera operating at a frame rate of 50 fps. A CPPW was produced 

by adding a time delay between the motions of each unit. Thus, knowing the position of the 

membrane of each unit every second, the acquisition frequency of the particle movements in 

its x coordinate was determined every second of the entire recording time. Giving a simple 

example, let’s assume that at the first second the data points were 100 whereas in the next 

one the data points were 50. Thus, in the first case the total displacement of the membrane 

(i.e. 1.6 cm) was divided in 100 equal increments i.e. 0:0.016:1.6, whereas in the second case 

in 50 equal increments i.e. 0:0.032:1.6. Frames at different time points gave information about 
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the membrane status – motion and the corresponding behaviour of the particle; i.e. location 

as well as forward – backward movements. MATLAB R2015a (The MathWorks, Inc., Natick, 

MA) was used to perform image and data analysis. 

 

6.2.6 Statistical analysis 

Sigmaplot vs. 12.5 was used to perform statistical analysis of the PEPT data. Comparisons 

between multiple groups for non-normal and unequal size data were performed using Krustal 

– Wallis one way ANOVA on ranks. Differences were considered significant at p < 0.05. 

 

6.3 Results 

6.3.1 Velocity and residence time distribution within each unit of the DCM tube 

Table 6.1 shows the relaxation times of the floating and neutrally buoyant (n.b) particle used 

in this study with respect to the relaxation times of the magnetic pill which was used to monitor 

in vivo colonic movements (Hiroz et al., 2009). The particle tracers used in this study had 

relaxation times an order of magnitude smaller than the magnetic pill. In particular, the floating 

particle had relaxation times of 0.059, 0.004 and 0.002 s whereas values for the n.b particle 

are 0.065, 0.005 and 0.003 s for L (8 mPa s), M (100 mPa s) and H (200 mPa s) fluids 

respectively. The magnetic pill had values of relaxation time of 0.4, 0.03, 0.015 s for L, M and 

H fluids respectively. The results showed that the particles used in this study, will more 

accurately describe the fluid flow for a wider range of viscosity than the magnetic pill. The pill 

used by Hiroz et al., (2009) might be expected to somewhat follow the flow only when the 

viscosity of the colonic fluids is sufficiently high.   

Table 6.1. Rheological properties of the fluids used in PEPT experiments as well as relaxation 

times and range of the residence times of the floating and neutrally buoyant particle along the 

Dynamic Colon Model tube obtained in different viscous media. 
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a The low values correspond to the residence times observed in the 1st unit of DCM tube; b The high 

values correspond to the residence times obtained in the last unit of the tube; +𝑡𝑜: particle relaxation 

times (s) of floating particle; ++𝑡𝑜: particle relaxation times (s) of neutrally buoyant particle; +++𝑡𝑜: particle 

relaxation times (s) of magnetic pill used in Hiroz et al., (2009). 

 

Figure 6.2 shows the cumulative probability distribution function for the particle velocities and 

the residence times for both the floating and neutrally buoyant particles tracked within each 

unit respectively. High probabilities for positive velocities were obtained for both particles and 

for all the viscous media, demonstrating net forward propulsion of the fluids under antegrade 

CPPWs. However, as the viscosity increased, significant variations were noticed between the 

units (i.e. elements as indicated in the legend in Fig. 6.2). For example, unlike the low viscous 

media, L, in the medium, M and high, H apparent viscosity media, high variation was observed 

in CPDF values for velocities within the range 0 – 0.02 m s-1; based on the data obtained for 

the floating particle (Fig. 6.2a1). Examining closely the data for the 6th – 10th units, the 

probability of velocities close to zero decreases below 60% but is significantly larger for 

velocities > 0.02 m s-1. This implies a non-uniform distribution of the velocities on the surface 

of the fluid and along the tube. In addition, high velocities were observed mainly within the 

region of the DCM where the wave has grown sufficiently; i.e. after the 5th unit. In contrast, 

lower variation was observed in the probabilities for the neutrally buoyant (n.b) particle for the 

M and H media (Fig. 6.2a2). In particular, the probability for the floating particle to reach 

velocities of e.g. 0.02 m s-1 magnitude, varied between 57% – 100% and 60% – 96% for the 

M and H media, respectively. On the other hand, the corresponding probabilities for the n.b 

particle were found to be 85% – 95% and 85% – 98%. Thus, it is likely for the n.b particle to 

experience similar velocities in the most viscous media, H, regardless to its location along the 

tube. This implies a more uniform distribution of the velocities in the bulk fluid compared to the 

surface.  

          Residence times (s) 

Fluid 
%NaCMC 

(w/w) 
𝜇𝐴          

(m Pa s) 
𝑘       

(Pa s-n) 
𝑛 Re 𝑡𝑜 (s) 

Floating 
particle 

Neutrally 
buoyant particle 

L 0.25 8 
106 
200 

0.04 0.9 80 0.059+ 0.065++ 0.378+++ 25a – 125b 50a – 300b 

M 0.50 0.20 0.7 5.6 0.004+ 0.005++ 0.028+++ 50a – 125b 150a – 300b 

H 0.75 0.83 0.6 0.9 0.002+ 0.003++ 0.015+++ 100a – 125b 175a – 300b 
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With regards to the residence times, significant differences were observed between the 

floating and the n.b particle. In particular, in fluid L, for a residence time of 150 s, a probability 

above 95% was observed for the floating particle independent of its location along the tube 

whereas the corresponding residence time for the n.b particle was found to be twice this value 

(i.e. 300 s). In fluid M the transit time for the floating particle was 125 s and the corresponding 

value for the n.b tracer was 250 s. In the case of fluid H the residence times for the floating 

and n.b particle were found to be 250 s and 300 s, respectively. Moreover, for fluids L and M 

higher variation of the probability distribution functions was observed between the units for 

residence times < 100 s (Fig. 6.2b1) compared to the n.b particle (Fig. 6.2b2). In contrast, for 

fluid H, similar residence times were obtained (i.e. 300 s) for probabilities >95% for both 

particles.  

The overall result observed was that a wider range of residence times was obtained for the 

n.b particle compared to floating one for probabilities >80%, regardless of the media. In 

addition, the extreme limits of those ranges were higher for the n.b particle compared to the 

floating particle. These differences might be due to slightly lower relaxation times of floating 

particle, i.e. faster response to fluid flow and hence lower variation in residence times after 

each CPPW applied. In addition, the relocation of the n.b particle (i.e. either close to wall or 

close to the surface of the fluid) after every contraction of each unit could also be causing 

variation in the residence times, since the path of the n.b particle depends greatly upon its 

starting position. 
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6.3.2 Assessing mixing in DCM model 

Figure 6.3 shows the data density plots of the axial displacements of the floating and n.b 

particle in each of the media. In media L, the motion of the floating particle was limited around 

the centre of the DCM tube. This means that the particle follows the small changes in the level 

of the wave height during the wall motion without significant oscillations in the y and z 

directions. However, considering the wider area covered by the n.b particle, it seems that the 

mixing in the bulk fluid was more intensive.   

 

Figure 6.3. Data density of the axial displacements of floating and neutrally buoyant particle 

across the cross section of the Dynamic Colon model tube, in different viscous media. 

 

 

 

 

Neutrally buoyant particle 
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However, increasing the apparent viscosity by using fluids M and H led to a significant 

change in the behaviour of the floating particle, with large oscillations observed. Indeed, in 

fluid L the movements of the floating particle around the centre of the tube were ±0.005 m in 

both axes whereas in fluid M and fluid H the oscillations were approximately ±0.01 m in the y 

direction and ±0.015 m in the z direction for both. It seems that for low viscosities the fluid is 

more prone to a sloshing motion whereas for high viscosities this motion is damped and the 

fluid moves in a plug – like manner (plug flow). This could explain why the values of the wave 

height for the M and H media were closer to the maximum displacement (0.012 m) of the 

membrane during the contraction. 

In case of the n.b particle, the apparent viscosity seemed to affect the efficiency of the mixing 

of the bulk fluid, since a relatively smaller area was occupied by the tracer in the M and H 

media compared to fluid L. Unlike fluids L and M, the particle movements in fluid H were mainly 

close to the surface of the fluid and along the z axis whereas in the other two viscous media 

the tracer had almost reached the bottom of the haustrum. However, it must be noted that the 

behaviour of the n.b particle depends also on its location along the y and z axes after each 

propagating wave. Thus, if the n.b particle is located e.g. 0.005 – 0.01 m below the surface of 

the fluid and after a single or several waves it has been relocated closer to the surface, then 

it will follow different path compared to the circumstance in which the particle remains at its 

original depth. Indeed, the data for the n.b particle showed that a significant reallocation of the 

tracer occurred after the contraction of the first unit (Figure 6.4). However, in case of fluids L 

and M, the n.b particle remained sufficiently submerged in the fluid compared to fluid H. 
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Figure 6.4. Plots of y and x axes of the floating and neutrally buoyant particle for all the individual 

passes of the tracer along the DCM tube. 

 

6.3.3 Analysis of distances covered at different velocities 

Previous in vivo analysis of the movements of the fluids of the colon using magnetic pill 

(Hiroz et al., 2009) revealed a large spectrum of distances covered at different velocities, 

however, their distribution was identical in both forward and backward directions. In this study, 

similar results were obtained. However, a direct comparison with the in vivo data is not 

straightforward since the particles in this study have relaxation times which are an order of 

magnitude smaller than those used in (Hiroz et al., 2009). In addition, the wall motion as well 

as the viscosity, the volume and the density of the fluid were predetermined and fixed in the 

experiments presented in this work in contrast to the dynamically changing in vivo colonic 

environment. 
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Figure 6.5 shows the distance covered by the tracer particles at different velocities, in both 

retrograde (negative velocity) and antegrade (positive velocity) directions. In fluid L for both 

floating and n.b particles a strong backflow is observed with similar magnitude to the forward 

motion; the distances covered at different velocities were within the same range 0.01 – 0.095 

m. This was also revealed from the high negative velocities observed for both particles, 

reaching values ≈0.04 m s-1. With regards to fluid M, the range of the distances for the floating 

particle covered in retrograde direction were within the range of 0.01 – 0.08 m for velocities 

between 0.002 – 0.015 m s-1 whereas the distances covered in antegrade direction were in 

the range of 0.01 – 0.18 m for velocities between 0.001 – 0.02 m s-1. However, the n.b particle 

experienced a backflow similar to that observed for fluid L. In the case of fluid H, results 

showed the least backflow of the fluid with retrograde velocities of 0.002 – 0.01 m s-1 for the 

floating particle and 0.002 – 0.017 m s-1 for the n.b particle. The range of the antegrade 

displacements were between 0.01 – 0.19 m and 0.01 – 0.17 m for the floating and n.b particle, 

respectively. In addition, most retrograde displacements were < 0.05 cm for the floating and 

n.b particle, respectively. The maximum velocity for the antegrade displacements was 

analogous to the wave speed (0.02 m s-1) with the only exception to be the data obtained in 

fluid H for the floating particle where the velocities were slightly higher than the wave speed 

(0.023 m s-1). 
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Figure 6.5. Analysis of distances covered at different velocities based on tracking data of the 

floating and neutrally buoyant particle obtained in different viscous media. Negative and 

positive velocities indicate the retrograde and antegrade motion of the particle, respectively. 

 

6.3.4 Relationships between particle movements and wall motion 

As already mentioned, previous in vivo studies have demonstrated contradictory correlation 

between the propagating pressure waves driven by the wall movement and the net movement 

of the colonic contents (Cook et al., 2000), despite improvements in the analytical techniques 

over time (Dinning et al., 2008). Thus, it is important to understand the relationship between 

the wall motion and movements of the contents. Hiroz et al. 2009 used magnetic pill tracking 

system to examine displacements of the colonic contents in healthy subjects; although, the 

authors did not compare the tracking data with manometry or scintigraphy. An alternative 

technique was implemented here in order to evaluate relationships between the wall motion 

of the flexible membrane of the DCM tube and the corresponding movements of a radioactive 

tracer. Thus, PEPT experiments were conducted in different apparent viscosities of NaCMC 

solutions.  
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Figures 6.6, 6.7 and 6.8 show the tracking data of the displacements of the floating and the 

n.b particle along the DCM tube (i.e. x axis) after every CPPW. In particular, every peak 

corresponds to a complete CPPW and each line to a single passing of the tracer before be 

positioned at the beginning of the DCM tube and new measured started. The tracking data 

showed that in some cases there was a ‘to and fro’ motion of the tracer for several CPPWs, 

before the particle moves gradually close to the very end of the tube whereas in other cases 

the particle needed just one and/or two CPPWs to cover the entire length of the DCM tube.  

The number of the CPPWs needed in order the particle to cover the entire length of the DCM 

tube was estimated for all viscosities and for both particles (Figure 6.9). Statistical analysis 

showed that there was significant difference between the floating and the n.b particle in H fluid 

(p<0.05) but not in L and M fluids. In this case, it seems that in high viscosity fluid the 

effectiveness of the propulsion differed between the two particles with more CPPWs needed 

for the n.b particle. This is probably due to high variability (i.e. large standard deviation bars, 

Figure 6.9) of the data obtained for the number of CPPWs in L fluid resulting in no statistically 

significant difference between the two particles. This variation is most likely linked to the 

variability of the data with regards to the distance covered per wave in antegrade and 

retrograde direction (Figure 6.10).  
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Figure 6.6. Plot of individual passes of the (a) floating particle and (b) neutrally buoyant particle 

along the DCM tube (x axis) in 0.25% NaCMC (w/w); every line represents one pass whereas 

each peak represents the motion of the particle in antegrade or retrograde direction after a 

single antegrade propagating wave (CPPW). The plateau between the peaks is the time delay of 

10 s before the next CPPW applied. 
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Figure 6.7. Plot of individual passes of the (a) floating particle and (b) neutrally buoyant particle 

along the DCM tube (x axis) in 0.50% NaCMC (w/w); every line represents one pass whereas 

each peak represents the motion of the particle in antegrade or retrograde direction after a 

single antegrade propagating wave (CPPW). The plateau between the peaks is the time delay of 

10 s before the next CPPW applied. 
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Figure 6.8. Plot of individual passes of the (a) floating particle and (b) neutrally buoyant particle 

along the DCM tube (x axis) in 0.75% NaCMC (w/w); every line represents one pass whereas 

each peak represents the motion of the particle in antegrade or retrograde direction after a 

single antegrade propagating wave (CPPW). The plateau between the peaks is the time delay of 

10 s before the next CPPW applied. 
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Figure 6.9. Mean values of the number of propagating waves needed for the particle to reach the 

very end of the tube; pp (polypropylene – floating particle); ps (polystyrene – neutrally buoyant 

particle); n=number of samples 

 

Figure 6.10 shows the boxplots of the distance covered per wave for each particle and for 

each viscous media. The net transport (N.T) was within the range of 0.05 – 0.2 m, almost 

independent of the rheology of the fluid, but with slightly higher values in fluids M and H. 

However, there was a statistically significant difference between floating particle (0.053 m 

±0.074) and n.b particle (0.026 m ±0.054) with regards to the net transport in M fluid. In 

general, the floating particle showed higher N.T per wave in all fluids compared to n.b particle. 

In particular, the average N.T values were 0.014 m ±0.019 and 0.049 m ±0.061 for L and H 

fluid, respectively, whereas the corresponding values for the n.b particle were 0.012 m ±0.023 

and 0.037 m ±0.039.  
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Figure 6.10. Box plots of distance covered per peristaltic wave in different viscous media (0.25%, 

0.50% and 0.75% NaCMC(w/w); (A) anterograde motion, (R) retrograde motion and (N.T) net 

transport of the particle.  
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In case of L fluid, there was no statistically significant differences between the two particles 

with regards to the distance covered in antegrade and retrograde direction as well as in N.T 

per wave. This might explain why there was no also significant difference between the particles 

in the average number of CPPWs applied to cover the entire length of the DCM tube (Fig. 6.9). 

However, a no clear association could be found for the other two fluids. In M fluid, there was 

statistically significant difference (p< 0.05) between the particles with regards to the distance 

covered in retrograde direction as well as in N.T but not with the average number of CPPWs. 

In case of H fluid, statistically significant difference was found between the particles only with 

regards to the distance covered in retrograde direction but not in N.T. However, there was 

significant difference in the number of CPPWs applied. This unclear correlation might be 

related to the big variation in the data with regards the antegrade distance covered per wave, 

especially in M and H fluid, resulting in big variation on the number of CPPWs per pass. 

Indeed, the boxplots showed that the antegrade displacement of the floating particle varied 2 

– 12 cm, 2 – 21 cm and 3 – 20 cm in L, M and H fluid, respectively. This means, as mentioned 

above, that in some cases the particle will need several CPPWs to reach the end of the tube 

and in some other case just one. This uncertainty of the results might be linked to the 

relationships between the motion of the membrane and the corresponding location of the 

particle. Thus, during the contraction/relaxation of the membrane, if the particle is located 

before, within or after the contraction point, it is possible to affect the effectiveness of the 

transit of the particles.  

Figures 6.11 and 6.12 show the series of frames indicating the status of the membrane and 

the direction of its movement for each unit as well as the extension of the propagating wave 

with the corresponding location of the n.b particle. The red bars refer to the stage of the 

membrane between the neutral position (indicated with capital letter N) and the contraction 

(indicated with capital letter C) whereas green bars refer to the stage of the membrane 

between the neutral and the relaxed position (indicated with capital letter R). The arrows 

indicate the direction of the motion of the membrane; i.e. either towards the relaxation point or 
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back to neutral position. These frames represent three different cases where different 

distances covered per CPPW. These examples illustrate how the extension of the propagating 

wave and the corresponding location of the particle can be not strongly related.  

In the first case (Figure 6.11a), the particle moves forward in the first two frames following 

the front of the antegrade propagating wave. However, in the third frame, the particle is seen 

to return to its initial position while the wave travels towards the very end of the tube. In the 

last frame, a small forward displacement of the particle was observed after the completion of 

the wave. Thus, the net transport in this case was ≈ 0.01 m whilst the wave travelled a distance 

of 0.2 m. In the second case (Figure 6.11b), the particle followed the wave for a longer 

distance, covering the 62% of the total DCM tube length before moving back, covering a 

distance of 0.075 m in the retrograde direction and ending up in the second unit. A small net 

forward displacement of 0.057 m, greater than that for the first case, occurred after the wave 

reached the end of the tube.  In the third case (Figure 6.11c) the particle travels with the wave 

for 0.065 m before moving in retrograde direction, with a net transport of 0.02 m. 
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Figure 6.11. Series of four frames of a single antegrade wave, showing the relationship between 

the wall motions of the DCM tube and the movements of the radioactive tracer in L media. 

Membrane travels both from the neutral position (N) towards the contraction (C) or relaxation 

(R) position and vice versa as indicated by the arrows. The solid line represents the steady 

period of 1 s of the membrane before travel back to the neutral position. 

 

Figure 6.12 shows the frames for the second CPPW which was applied 10 s after the first. 

For the first case (Figure 6.12a), the particle covered a longer distance with a net forward 

transport of 2.5 cm. For the second case (Figure 6.12b), the particle was located after the third 

unit of the DCM and it was always 2 – 3 cm ahead of the wave front. Thus, the particle covered 

a distance of 10 cm before moving backwards resulting in a net forward transport of 3 cm. 

With regards to the third case (Figure 6.12c), the n.b particle travelled almost the entire length 

0.25% NaCMC (w/w) 

1 2 3 4 

0.50% NaCMC (w/w) 

0.75% NaCMC (w/w) 

(b)  2nd case 

(a) 1st case 

(c)  3rd case 
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of the tube before it moved backwards due to the backflow. In this case the net transport was 

0.09 m. There was no antegrade displacement of the particle after the accomplishment of the 

CPPW, as indicated in the fourth frame, although, it was observed in the other two cases. This 

short forward displacement of the particle occurred always after the completion of the CPPW 

and may imply that there was a “to and fro” fluid motion across the entire length of the tube. 

This motion moves firstly in retrograde direction along the entire length of the DCM tube and 

then again in the antegrade direction causing a small forward displacement to the particle. 

However, this “to and fro” motion was weaker in the fluid H; refer to Figure 6.8 and compare 

with L (Figure 6.6) and M fluid (Figure 6.7). 
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Figure 6.12. Series of four frames of the second antegrade wave applied after 10 s from the first 

wave. Relationship is presented between the wall motions of the DCM tube and the movements 

of the radioactive tracer in different viscous media. Membrane can travel both from the neutral 

position (N) towards the contraction (C) or relaxation (R) position and vice versa as indicated by 

the arrows. The solid line represents the steady period of for 1 s of the membrane before travel 

back to the neutral position. 
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6.4 Discussion 

A novel biomechanical engineering model of the human proximal colon was used to assess 

the mixing under antegrade CPPWs by tracking the displacements of a radioactive tracer in 

three dimensions. Relationships between the particle movements and the wall motion of the 

DCM tube were also examined. The advantage of using an in vitro model is that parameters 

such as motility pattern, viscosity, volume of fluids and properties of the tracking particles can 

be predetermined and controlled during the experiment. This allows assessment of the 

interplay between these parameters and how they affect the mixing and propulsion of the fluids 

in proximal colon. However, this is not possible in in vivo studies due to lack of control and 

constant change in the colonic environment. For example, the rheological properties of the 

colonic fluids will change in terms of viscosity as a function of time since the dewatering 

process occurs at the rate of 2.7 ± 0.3 mL min-1 (Palma et al., 1981). Moreover, as the results 

showed, the viscosity might affect the propulsion of the fluids causing variability on the 

movements of the particles. However, the effect of the viscosity should be assessed in relation 

to the location of the particle linked to the wall motion. This means that, even if the particle is 

front of the contraction point, it likely that the particle will follow the CPPW for short distances 

in low viscosity fluid, as indicated in most cases of the individual passes (Figure 6.6) and which 

can be related to the first case in Figures 6.11a and 6.12a. In contrast, if the viscosity of the 

fluid is high and the particle has the desired position with respect to the contraction point, it is 

likely to follow the CPPW for much longer distances as indicated in several cases for M (Figure 

6.7) and H fluid (Figure 6.8). However, this is not the case for the n.b particle for L and M fluids 

where a mixture of different patterns appeared even in case where the particle was ahead to 

the first units of the DCM tube after the CPPW had ended. Another parameter which 

complicates the relationships between particle displacements and wall motion, is the 

relocation of the particle along the vertical axis (Y axis) of the DCM tube, i.e. displacement 

close to the wall or close to the surface of the fluid, the flow field will be different; see the 

individual passes of the two particles as presented in Figure 6.4 and Figure 6.5 in which the 
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path that the particles followed is not the same for each run even when the particle was placed 

more or less at the same location at the beginning of each run. 

The motion of the wall was well controlled and with fixed viscosity of the fluid, hence, the 

pressure force profile for each repeated CPPW was constant. However, as the series of PEPT 

experiments showed, the location and the properties of the particle used to track the 

propulsion of the fluids made the interpretation of the fluid flow more complicated. This 

demonstrates why correlation of pressure waves monitored with manometry in vivo and 

colonic movements is not an easy task. However, more passes of each particle for all the 

fluids are needed to fully describe the flow field. However, in this first analysis valuable 

information was obtained of what might cause variations in the tracking data from in vivo 

studies; since the passes per subject (only one per subject) and the total number of subjects 

(n=20) used are limited in in vivo studies (Hiroz et al., 2009). 

However, the above observations might explain several phenomena which occur within the 

human proximal colon. As the wave ends before the end of the DCM tube (i.e. the rigid siphon), 

leading to backflow, the same occurrences could be observed in the in vivo proximal colon 

since the majority of the propagating waves are of short extension (Dinning et al., 2008, 

Bampton et al., 2000) (i.e. before the hepatic flexure). This could also explain why in the in 

vivo studies, over the half of the identified flow episodes occurred in the absence of the 

pressure waves. Thus, apart from the low sensitivity of manometry which occurs when the 

gut’s diameter exceeds 0.056 m (Von Der Ohe et al., 1994), the gravity causes flow which is 

not correlated with the wall motion, which may also explain the reduced association between 

flow and pressure waves in proximal colon. 

Different results were obtained when different particles were used to monitor fluid flow. In 

particular, it seemed that the residence times of the n.b particle were much higher compared 

to those of the floating particle. Thus, for example, transit times recorded in vivo, could vary 

significantly not only due to differences among the volunteers but also due to the different 

behaviour of the particles used to monitor the colonic movements, for example, in the case of 
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the magnetic pill tracking system (Hiroz et al., 2009). This is also important to understand 

possible changes in the residence times of particles, agglomerates and intact tablets (or tablet 

fragments/particles) of different dosage forms which are designed to reach the colon.  

Assuming the particles are following the fluid motion, enables an Eulerian analysis of the 

mixing across the cross section of the DCM tube to be carried out. This showed that the mixing 

is more intensive if the n.b particle is used as a reference, although it gets less efficient as the 

viscosity is increased (refer to Figure 6.5). Thus, increasing the apparent viscosity might 

promote to some extent the propulsion of the fluids but does not promote mixing in the radial 

direction. However, it must be noted that the efficiency of the mixing should be carefully 

assessed since the location of the particle along the y axis is critical in defining which path the 

particle will follow and hence more passes of the particle need to be obtained in order to map 

the entire flow field in the DCM tube. Thus, if the n.b particle is relocated close to the surface 

of the fluid after the contraction of the first unit without having the time to be efficiently re-

submerged, then it will remain close to the surface and it will mainly move along the z axis; 

this is mainly the case for the most viscous media (fluid H). This could be also the case for 

dosage forms where the lighter agglomerates – particles, formed from the partial disintegration 

of the formulation, will reach a different level in the DCM tube.  

It should note that information about how particles with bioadhesive properties would interact 

with the DCM wall, as in the human colon, cannot be obtained in this stage. Hence 

characterization of the mixing of this type of particles could probably give a wider spectrum 

with regards to behaviour of these particle under colon wall motion. However, this a very 

challenging task since the turnover of the mucus layer would probably affect also the motion 

of the particles close to the surface and possibly their redistribution in the bulk fluid. This task 

would be interesting to be investigated but it’s beyond the scope of this work. 

The velocities experienced by the particles during the wall motion of the DCM tube never 

exceed 0.022 m s-1
 for antegrade displacements, which are relatively close to values reported 

in in vivo studies i.e. 0.017 m s-1 (Hiroz et al., 2009). However, velocities as high as 0.04 m s-
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1 were observed for the retrograde displacements of the particles. These values are higher 

than those observed using the magnetic pill in vivo and are most probably due to the shorter 

particle relaxation times in this study.     

The relaxation times showed that for fluid L  both particles would need more time to respond 

to flow compared to much shorter times in M and H fluid, respectively. However, floating and 

n.b particle will follow the fluid motion in all fluids with higher accuracy in M and H media. The 

higher particle relaxation time and the stronger backflow in L fluid might explain why there was 

not good correlation between the wall motion and the particle displacements as well as why 

no significant differences were observed between the range of the velocities in both retrograde 

and antegrade direction for both particles. This might also be the reason why there were no 

significant variations in the probabilities of the velocities that the particles would experience 

between the units of the DCM tube. These observations are very important in order to correctly 

assess the propulsion of the contents in the human colon and especially in the proximal region. 

In particular, the magnetic pill used in (Hiroz et al., 2009) will fail to accurately describe the 

movements of the contents unless the viscosity of the fluids would be sufficiently high. 

Therefore, the hypothesis that the magnetic pill follows the luminal contents accurately should 

be applied with caution. 

 

6.5 Conclusions 

 

In the present study, the novel biorelevant model of the proximal colon was used to examine 

how the flow and the mixing of the colonic fluids will be affected by the interplay between wall 

motion, viscosity and the properties of the particle used to monitor fluid movements. The 

proposed in vitro model allowed understanding the relationships between the wall motion and 

the propulsion of fluids which are affected by the viscosity, the location of the particle and the 

strong backflow caused by the gravity effect after the wave has passed. Different results can 

be obtained in terms of velocities and residence times by changing the particle used as 
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reference for analysing the fluid motion. In general, high velocities and longer retrograde 

displacements were observed for the floating particle which is also controlled by the viscosity 

of the fluids. These differences also reflected how accurately the particle describes the fluid 

motion, since small relaxation times were obtained for different viscous media. In addition, it 

seems that the viscosity promotes the propulsion of fluids; provided that the particle has the 

desired location with respect to the contraction point. 

Furthermore, flow episodes can occur which are not related to the wall motion. A large 

variation in the data for the total number of the propagating waves needed for the particle to 

reach the very end of the tube was obtained demonstrating that the short extent waves, the 

viscosity, the position of the particle and the reflux of the fluids strongly influence the transit of 

the contents.  

The in vitro observations might help to explain in vivo phenomena, using the proposed 

Dynamic Colon Model for assessing different parameters which are difficult if not impossible 

to be determined or controlled during in vivo experiments. In addition, this work could be 

potentially extended to examine different motility patterns which reflect a disease state of the 

colon such as diarrhoea and constipation. Furthermore, different fluid volumes should also be 

examined reflecting the fasted and fed state in the colon. 
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Abbreviations 

 

DCM  Dynamic Colon Model 

GI  Gastrointestinal 

HCl Hydrochloric acid 

NaCMC Sodium carboxymethylcellulose 

PET  Positron Emission Tomography 

PSs Propagating Sequences 

S Sampling Point  

TIM-2  TNO Colon simulator 

TNO Nederlandse Organisatie voor Toegepast 

USP  United States Pharmacopeia 
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7 Dissolution profile of theophylline modified release tablets, using a 

biorelevant Dynamic Colon Model (DCM)3 

 

Abstract 

The human proximal colon has been considered a favourable site to deliver drugs for local 

and systemic treatments. However, modified dosage forms face a complex and dynamically 

changing colonic environment. Therefore, it has been realized that in addition to the use of 

biorelevant media, the hydrodynamics also need to be reproduced to create a powerful in vitro 

dissolution model to enable in vivo performance of the dosage forms to be predicted. 

The novel biorelevant Dynamic Colon Model (DCM) has been developed which provides a 

realistic environment in terms of the architecture of the smooth muscle, the physical pressures 

and the motility patterns occurring in the proximal human colon.  

The dissolution profile and the distribution of the highly soluble drug, theophylline, was 

assessed by collecting samples at different locations along the DCM tube. Differences in the 

release rates of the drug were observed which were affected by the sampling point location, 

the viscosity of the fluid and the mixing within the DCM tube. Images of the overall convective 

motion of the fluid inside the DCM tube obtained using Positron Emission Tomography 

enabled relation of the distribution of the tracer to likely areas of high and low concentrations 

of the theophylline drug. 

This information provides improved understanding of how phenomena such as 

supersaturation and precipitation of the drug during the passage of the dosage form through 

the proximal colon. 

 

                                                           
3 Stamatopoulos, K., Batchelor, H. & Simmons, M. J. H. 2016. European Journal of Pharmaceutics and 
Biopharmaceutics, 108, 9-17. 
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7.1 Introduction 

The environment of the human colon is considered favourable for systemic and local delivery 

of drugs (Antonin et al., 1996, Tozaki et al., 1997). The neutral pH, the reduced digestive 

enzymatic activity and the much longer transit times compared to the upper gastrointestinal 

(GI) tract (Sinha and Kumria, 2003), makes the colon an attractive site for drug delivery.  

Predictive dissolution methods can contribute to a reduction in or refinement of in vivo studies 

during the design, development and evaluation of drug delivery systems. Thus, the 

establishment of an in vivo-in vitro correlation is of great importance. Temperature, pH, ionic 

strength, buffer capacity, present of surfactants and or digestive enzymes, greatly influence 

the release of the drug from modified-release dosage forms (Garbacz et al., 2008). However, 

it has been realised that both physicochemical characteristics of the gastrointestinal fluids as 

well as hydrodynamics need to be reproduced in order to make a powerful in vitro model to 

predict in vivo performance (Garbacz et al., 2008, Garbacz and Klein, 2012, Fotaki et al., 

2009a). Existing compendial dissolution methods oversimplify the complex and dynamic 

environment of the human colon (Spratt et al., 2005). Thus, apart from the application of the 

biorelevant media in the dissolution methods (Schellekens et al., 2007, Jantratid et al., 2009, 

Klein, 2010, Jantratid et al., 2008, Wagner et al., 2012), attempts have been made to improve 

the bio-relevance of the hydrodynamic and mechanical conditions in dissolution methods 

(Klančar et al., 2013, Abrahamsson et al., 2005, Thuenemann et al., 2015, Garbacz et al., 

2008, Blanquet et al., 2004). 

Advances in manometry (Dinning et al., 2014a) and in non-invasive monitoring systems 

(Hiroz et al., 2009, Rao et al., 2009) have provided insights on colon motility and transit times; 

demonstrating the complex and dynamic environment that a modified dosage form is exposed 

to during its passage through the lower GI tract. Five types of propagating motor patterns have 

been identified by use of high – resolution fibre – optic manometry (Dinning et al., 2014a). 

Four of them (cyclic motor, short single, long single and occasional retrograde motor pattern) 

are related to low – amplitude propagating sequences (range of average values: 2 – 10 mmHg) 
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and form the majority of the motility events (Dinning et al., 2014a). The remaining pattern 

forms high – amplitude propagating sequences (PSs) (>116 mmHg) (Dinning et al., 2014a). 

The low – amplitude PSs were as likely to be associated with colonic movements as high - 

amplitude PSs (Dinning et al., 2008). However, the low – amplitude PSs seem to be related 

mainly to the mixing of fluids (segmentation) (Gabrio Bassotti, 1999) whereas high – amplitude 

PSs cause mass movements (peristalsis) of the colonic fluids (Bharucha, 2012). However, the 

pressure signal of the catheter is affected by the viscosity of the colonic fluids (Arkwright et 

al., 2013). Arkwright et al, (Arkwright et al., 2013) showed that the predetermined amplitude 

of the applied pressure on a flexible wall was not the same as the pressure measured by the 

catheter placed inside the elastic tube filled with viscous lumen. Thus, in vitro models should 

take this into consideration. Otherwise, it is likely that the applied pressures in the lumen by 

the flexible tube, like in case of the large intestine simulator TIM-2 (Venema, 2015), will not 

accurately reflect the physical amplitudes. 

In vivo studies of the human colon have shown that other factors, in addition to the PSs, 

affect the propulsion and the mixing of the colonic fluids (Dinning et al., 2008). The travel 

distance of the PSs, the viscosity (Proano et al., 1990) and the reflux of 50% of the bolus, slow 

the propulsion of the fluids (Dinning et al., 2008). Thus, the mixing of the colonic fluids is 

served with the combination of these parameters causing ‘to and fro’ motion of the contents. 

Apart from the use of biorelevant media, the proper simulation of the hydrodynamics in 

proximal colon should be performed via the reproduction of the architecture of the colon. 

Moreover, the volume and the spread of the fluids will also affect the dissolution and the 

distribution of the drug along the proximal colon. The distribution of the drug could be also 

considered as a parameter which might determine the fraction of the absorptive surface area 

of the colon wall on which the drug will be exposed. Thus, it is also critical to understand how 

colon motility influences not only the dissolution profile but also the distribution of the drug 

within the proximal colon. 
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The aim of this study was to use the developed computer – controlled Dynamic Colon Model 

(DCM), in order to understand the colonic behaviour of an extended release oral dosage form 

exposed to a more realistic colonic environment. The model was designed to reproduce the 

anatomy and propagating motor patterns within the human proximal colon. A solid phase 

catheter was used to monitor the pressure forces generated by the wall motion within the DCM 

and Positron Emission Tomography (PET) was used to visualize the overall convection of 

fluids. The dissolution behaviour of an extended release dosage form (theophylline) was 

assessed in different viscous media within the DCM; the different media represented the 

dewatering process which takes place in the human colon. 

7.2 Materials and methods 

7.2.1 Materials 

Sodium carboxymethylcellulose (NaCMC) of 90000 and 700000 molecular weight was 

purchased from Sigma (St., Louis, USA). Theophylline anhydrous and potato starch were 

bought from Acros Organics (Loughborough, UK). Sodium hydroxide, hydrochloric acid (1M) 

and potassium hydrogen (KH2PO4)- and dihydrogen phosphate (K2HPO4) were purchased 

from Sigma (St., Louis, USA). The radioactive solution of radionuclide 18F, used in PET 

experiments, was provided from the School of Physics and Astronomy of the University of 

Birmingham, UK. 

7.2.2 Dissolution experiments 

The dissolution profile of the theophylline released from the NaCMC(90000) based tablet 

was assessed in different viscous media and under a fixed motion of DCM flexible wall which 

was engineered to mimic the main motility pattern observed in human proximal colon. The 

tablet was directly introduced into the prefilled DCM tube; assuming that the dosage form 

reached the human colon intact. This approach is not far from the reality since studies have 

shown that colon-specific coated formulations reach the lower GI tract intact (Amidon et al., 

2015b).  
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The preparation of the tablets was performed as described in section 2.9.3. 

The dissolution experiments were set up based on two assumptions: (i) the DCM tube was 

placed horizontally in accordance to the normal reclining position of patients during 

manometric, scintigraphy and MRI procedures; (ii) it is assumed that the DCM operates in the 

fed state in which more propagating sequences of pressure waves are taking place in proximal 

colon (Dinning et al., 2014a). The DCM tube was filled to 50% full which corresponds to 100 

mL of NaCMC (700000) using solutions with different concentrations (0.25 and 0.50%, w/w). This 

volume was chosen in order to compare the results with the published data obtained from the 

mini volume USP 2 (Stamatopoulos et al., 2015).  In addition, 100 mL is close to the overall 

volume that a dosage form is likely to be exposed to during its passage through the human 

colon (McConnell et al., 2008). 

The frequency of the pressure events during the dissolution test was set up to represent 

values within the human colon previously reported in the literature (Dinning et al., 2008). Thus, 

the total duration time of the dissolution experiments was selected to be 560 min and every 5 

min an CPPW was applied. Samples were collected from three different locations: at the 

beginning (S1), in the middle (S2) and at the end (S3) of the DCM tube (Figure 7.1) in order 

to evaluate the distribution of the released drug. The samples were collected at predetermined 

time intervals (5, 10, 30, 60, 120, 240, 360, 480 and 560 min). Subsequently, all the samples 

were passed through a 0.4 μm PTFE filter (Stamatopoulos et al., 2015) prior to the quantitative 

analysis of theophylline which was performed using UV analysis according to Stamatopoulos 

et al. (Stamatopoulos et al., 2015). The temperature during the dissolution experiments was 

maintained at 37 oC using a 300W infrared ceramic lamp. The volume of the medium removed 

at each time point was replaced with fresh media. 
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Figure 7.1. 3D model of DCM tube using ANSYS Spaceclaim 2015; S1, S2 and S3 represent the 

location of the sampling points along the DCM tube. 

 

7.2.3 Positron Emission Tomography (PET) experiments 

 

The PET experiments were conducted according to §5.3.4. Ten antegrade waves, with 10 s 

time delay between them, were applied. As in scintigraphy studies, each PET image shows 

the distribution of the radioactive solution along the length of the DCM tube. The PET data 

was used to correlate to the dissolution data of the theophylline tablets.  

 

7.3 Results and discussion 

 

7.3.1 Release profile of theophylline in different viscous media  

Figure 7.2 shows the dissolution profile of the theophylline in viscous media which was 

obtained from the three different sampling points, located at the beginning, at the middle and 

at the end of the DCM tube. The results for the 0.25% NaCMC(700000) (w/w) solution (Figure 

7.2a), show that there was an unequal distribution of the released drug along the length of the 

tube, resulting in a different release rate. The highest release rate, and hence the highest 

concentration, was observed at the beginning of the DCM tube, where the tablet was initially 

S1 
S2 

S3 
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located, followed by the second sampling point and finally by the third one located at the end 

of the tube, as expected. The dissolution profile of the theophylline in 0.50% NaCMC (w/w) 

(Figure 7.2b) followed the same order as in 0.25% NaCMC (w/w) in terms of the release rate 

according to the sampling point. The results showed relatively similar release rate of the drug 

in S1 for the 0.50% NaCMC (w/w) to that one in 0.25% NaCMC (w/w) for the same sampling 

point, but very slow for the other two sampling points (i.e. S2, S3). In particular, at the following 

sampling time points, i.e. 2, 6 and 8 h, the released drug (%) in 0.25% NaCMC (w/w) was 

within the range of 3.7% – 30.7%, 15% – 76.6% and 34.8% – 85.5% respectively, whereas in 

0.5% NaCMC was 0.2% – 29.5%, 0.5% – 82.4% and 3% – 76.7%. The lower values in all 

above ranges correspond to S3 and the high ones to S1. These results demonstrated several 

key features. Firstly, the fluctuations in the drug concentrations and hence of the dissolution 

profile, most likely reflect the ineffective transport of the drug along the tube, resulting in the 

formation of areas with high accumulation of the drug; especially at the beginning of the DCM 

tube, at which the tablet had been introduced. Furthermore, the distribution of the drug in 

0.50% NaCMC (w/w) solution was less efficient compared to 0.25% NaCMC (w/w), as 

anticipated. In the case of 0.50% NaCMC (w/w), most of the drug was accumulated mainly at 

the beginning of the tube giving release rates close to those obtained in 0.25% NaCMC (w/w). 

However, this doesn’t mean a faster hydration of the tablet and hence a faster release of the 

drug in more viscous media (Stamatopoulos et al., 2015). It means that beside the slower 

release rate of the drug, the inadequate transport in 0.50 NaCMC (w/w) solution leads to high 

accumulation of the drug molecules in a small area, which may be of value in the local 

treatment of the ascending colon. In contrast, the distribution of the drug in 0.25% NaCMC 

(w/w) seems to be more effective. 
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Figure 7.2. Dissolution curves of theophylline obtained from three different sampling points 

along the length of the DCM tube (  S1;  S2;  S3). The dissolution experiments were 

performed in (a) 0.25% and (b) 0.50% NaCMC(700000) (w/w) solutions adjusted at pH 7.4 using 

phosphate buffer; Temperature was 37 oC; Standard deviation bars for the dissolution profile 

theophylline (n=6). 

 

Second, higher variability was observed in the dissolution data obtained with using 0.50% 

NaCMC (w/w). It was noticed, by plotting separately the dissolution data of two single different 

runs, that the dissolution curves of S1 and S2, and to a much lesser extent of S3, showed 

completely different profiles (Figure 7.3) compared to the dissolution curves of S1 & S2 

obtained in the less viscous solution (0.25% NaCMC (w/w)). It seems that as well as the non-

homogeneous distribution of the drug along the DCM tube, the location and the erosion of the 

tablet due to wall motion might affect the release rate of the drug.  
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Figure 7.3. Dissolution profile of theophylline of two different runs in 0.50% NaCMC (w/w) 

adjusted at pH 7.4 using phosphate buffer; The dissolution curves were obtained from three 

different sampling points along the length of the DCM tube (  S1;   S2;   S3). Temperature 

was 37 oC; Error bars for the dissolution profile of theophylline (n=3). 

 

Indeed, images from the interior of the DCM tube (Figure 7.4A) showed fragments of the 

dosage form which were found to be located either in the cavity of the membrane (Figure 7.4B) 

or on the connection point, the so-called semilunar folds, between the two segments. It seems 

that if the tablet is located within the cavity of the membrane then the disintegration could be 

intensive, since the membrane will squeeze and break the dosage form. These observations 

in combination with the poor distribution of the released drug could explain the differences 

observed in dissolution profiles and consequently the irregular absorption profiles observed 

from extended release tablets (Garbacz et al., 2008).  
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Figure 7.4. (A) Images of the cross section of the DCM tube and (B) schematic illustration of the 

in vitro model along the x axis, showing the position of the partially disintegrated tablet in two 

separated runs of the dissolution experiments. Arrows in (A) showing the fragments of the 

tablet. 

 

Moreover, observations of the final solution of 0.25% NaCMC (w/w) (Figure 7.5) collected 

after the end of the dissolution experiments, showed that the dosage form had been 

disintegrated in small agglomerates. In this experiment the tablet was directly placed in the 

colon model without being exposed to gastric and subsequently to intestinal fluids as normally 

happens for the oral administrated dosage forms. In addition, there was partial disintegration 

of the tablet in the mini volume USP 2 dissolution apparatus. However, in this experiment, 

mechanical stress applied on the tablet due to membrane oscillation, leading to complete 

disintegration of the tablet. Thus, the current model can be utilised to profile localised delivery 

profiles for colonic specific delivery systems. However, since the passive or active transport is 
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not reproduced, the current model is limited for giving information about the systemic delivery 

profiles. 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Images of the final solutions of the two different viscous media (a) 0.25% and (b) 

0.50% NaCMC(700000) (w/w) after the end of two separate runs of the dissolution experiments. 

Big agglomerates of the disintegrated tablet found in the final solution of 0.50% NaCMC(700000) 

(w/w) indicated inside the circles. 

 

 

7.3.2 Visual identification of propagating wall motion of DCM tube using Positron Emission 

Tomography (PET) 

In order to better understand the fluctuations in the concentration of the drug along the tube 

caused by the wall motion of DCM, PET experiments were performed. This was possible by 

recording the intensity of the radioactive tracer injected at the beginning of the tube, during 

a 

b 
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repeating CPPWs waves with 10 s time delay. This time delay was allowed to represent 

sequential waves whilst condensing the overall time of the experiment to manage the lifespan 

of the radioactive marker. A 10 s delay provided sufficient time for the fluid to become static 

between waves. 

PET images of the 0.25% w/w NaCMC solution (Figure 7.6) showed a gradual distribution of 

the radioactive tracer along the DCM, with only a small amount of tracer detected at the very 

end of the tube even after 10 waves (Figure 7.6d). Higher intensities were observed in the 

areas at which S1 and S2 are located. In addition, although, the tracer intensity around points 

S1 and S2 seem to be approximately of the same magnitude after 10 waves (with a slight 

lower intensity at S1), the corresponding dissolution curves showed greater differences. 

Nevertheless, it has to be acknowledged that the PET is an accelerated mimic of the 

dissolution test, since a CPPW was occurring every 10 s, compared with a CPPW wave every 

5 min in the dissolution experiments. In addition, the drug is gradually released from the tablet 

resulting in a continuously “injection” in the solution making the dissolution experiment a 

repeating cycle of the PET experiment. Practically this means that a high concentration of the 

drug will always be observed at the beginning of the DCM tube, representing the injection 

point in PET experiments (Figure 7.6a), and after several CPPWs the drug will gradually 

distribute along the tube as shown in Figure 7.6b, Figure 7.6c and Figure 7.6d.  

The PET images represent an approximation of the distribution of the drug giving information 

about the zones of high and low concentrations. In particular, only a small portion of the tracer 

reached the very end of the tube; where the S3 is located (Figure 7.6d). This explains why low 

release rates (e.g. 45% @ 9 h) were obtained in the dissolution profiles at point S3 in 0.25% 

NaCMC (w/w). In addition, radioactive tracer was mainly accumulated around point S2 

whereas a slight decrease was observed at S1 (Figure 7.6d). The same pattern was observed 

in dissolution test in which the release rate was increasing and was getting closer to that of 

S1 as the end of the experiment was reached. 
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Figure 7.6. PET images of (a) injection, (b) 1st wave, (c) 5th wave and (d) 10th wave using 0.25% 

NaCMC (w/w). 

Further increase in viscosity leads to a different profile of the distribution of the radioactive 

tracer. With 0.50% NaCMC (w/w) (Figure 7.7) a significant amount of the tracer remained at 

the beginning of the tube whereas another considerable amount appeared between the points 

S2 and S3 after 5 (Figure 7.7c) and 10 (Figure 7.7d) CPPWs. However, close to S2 a slight 

increase on the intensity of the radiolabelled solution was observed due to the backward tailing 

of the radioactive tracer caused by the backflow formed as the CPPWs wave reached the very 

end of the tube. In addition, no tracer reached the very end of the tube explaining why very 
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low release rates, almost zero percent, were found in 0.50% NaCMC (w/w) based on the 

dissolution data obtained from samples collected in S3 location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7. PET images of (a) injection, (b) 1st wave, (c) 5th wave and (d) 10th wave using 0.50% 

NaCMC (w/w). 

 

Furthermore, due to the DCM wall motion and the partial disintegration of the tablet, 

fragments of the dosage form were found several centimetres from the first segment of the 

model (Figure 7.4A). Assuming that the drug will be mainly accumulated around the fragments, 

areas of high drug concentrations (Figure 7.4B) might be differently distributed along the DCM 

tube with respect to the spots of high intensities of the tracer; as indicated in PET images of 

0.50% NaCMC (w/w) (Figure 7.7). In particular, PET experiments showed one spot close to 
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the injection point and another one several centimetres further from the S2 (Figure 7.7d). 

However, elongation of the first spot was observed towards the direction of the wave whereas 

lengthening of the second spot was appeared mainly in the opposite direction due to the 

backflow which is stronger as getting closer to the very end of the tube. Thus, tracers of the 

radioactive solution were detected close to S2. Thus, this ‘to and fro’ fluid motion will also 

affect the distribution of the drug. Hence, if the tablet or fragments are located between S1 

and S2, it is likely that “elongation” of the high drug accumulation area might be occurred in 

both directions (Figure 7.4B; 1st case). As a further consequence the release rates of the drug 

obtained from S1 and S2 will be approximately similar (Figure 7.6b). In contrast, when the 

tablet remains in the first segment and only a small fragment is located a few centimetres 

further, the distribution of the drug might be looked like as in the 2nd case (Figure 7.4B; 2nd 

case) and the corresponding release rates as showed in Figure 7.6a.  

Although PET images do not actually show the entire distribution of the drug, valuable 

information can be obtained about the high and low accumulation zones of the drug in viscous 

media. However, the protocol of the PET experiments is not far from what is applied in vivo 

during scintigraphy studies, since a watery solution is injected in human colon without knowing 

the actual viscosity of the colonic fluids which is presumably higher than that of the radioactive 

solution.  

 

7.3.3 Comparison of the DCM with the compendial mini volume USP 2 dissolution apparatus 

Table 7.1 presents the release rates of theophylline in different viscous media as published 

by Stamatopoulos et al., (Stamatopoulos et al., 2015). The release rates obtained from DCM 

showed higher variability between the sampling points compared to the mini volume USP 2; 

this is a result of the more realistic geometry and motility within the DCM. However, this means 

that the comparison of the two dissolution apparatus is not straightforward due to their different 

configurations. In DCM tube the medium fills 50% of the tube whereas the flow is induced by 

the wall motion as well as by the reflux of the fluid. In addition, in DCM there is a discontinuous 
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wall motion in comparison to the continuous impeller rotation in USP 2. Furthermore, in USP 

2 the tablet is normally placed within the stagnant zone below the shaft in which low velocities 

(Stamatopoulos et al., 2015) and low shear rates (Bai et al., 2011) have been reported and 

which are not changing as the agitation speed is increased (Bai et al., 2011). In contrast the 

dosage form faces a dynamic environment in the DCM tube in which disintegration takes place 

due to the oscillation of the flexible wall. Moreover, by reproducing the architecture of the 

smooth muscle and the dimensions of the proximal colon, DCM provides information about 

the distribution of the drug, with respect to the available surface area of the colonic wall; 

however, this needs further investigation since with PET only the 18F ions were tracked and 

not the drug molecules. Moreover, mimicking the variability in the distribution of the drug could 

be useful to evaluate the variability in humans. This is not possible with the compendial 

dissolution methods (e.g. USP 1 – 4 dissolution apparatus) or with their improvements, e.g. 

stress test apparatus (Garbacz et al., 2008) or with the most advanced multi-compartmental 

computer controlled large intestine simulator (TIM-2, TNO) since the volume, dimensions and 

the geometry are not relevant to the physical organ (Blanquet et al., 2001a). However, the 

dissolution profile of the current formulation used in this work, was tested only in one volume 

and using a fixed motility pattern. The current work should be extended to understand how the 

formulation and the distribution of the drug will be affected under different motility patterns 

reflecting different colonic conditions (e.g. normal, disease, fasted or fed state). This 

information might help to understand under which conditions the formulation needs to be 

tested using DCM and where a simple compendial dissolution methods is sufficient to 

described the in vivo performance of the formulation. 
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Table 7.1. Comparison of the release rates of the theophylline obtained from Dynamic Colon 

Model (DCM) with the published data obtained from mini volume USP2 

a The low limit of the ranges corresponds to the third sampling point (S3) and the high one to the first 

sampling point (S1); 
b The low values correspond to the SP1 (close to the surface of the medium) and 

the high to the SP2 (close to the tip) (Stamatopoulos et al., 2015). 

 

7.4 Conclusions 

 

Dissolution experiments of theophylline released from NaCMC(90000) based tablets were 

performed in different viscous media and under fixed wall motion profile similar to the main 

colon motility pattern recorded in vivo in healthy humans (Dinning et al., 2014a). Thus, the 

disintegration of the tablet and the release of the drug took place under biorelevant conditions. 

However, the exact history of the pressures applied on the tablet during the repeated wave 

pressures needs to be investigated by tracking the position of the tablet. This will allow 

evaluating if the tablet was phasing pressures within the range measured in the centre of the 

contracting point (Figure 5.11, 73% occlusion) or lower which probably take place between 

the pockets. 

The distribution of the drug was determined by collecting samples from different locations 

along the DCM tube and performing Positron Emission Tomography (PET). The results 

showed areas of high and low accumulation of the drug. Thus, using the proposed in vitro 

model it is possible to assess the behaviour not only of the dosage form but also how the drug 

will be distributed along the human colon; assuming that the more the surface area that the 

drug would be exposed the higher the possibility of being absorbed by the GI tract or the more 

available for local therapy. In addition, this information, might allow understanding how of 

  

 %NaCMC (w/w) 

 0.25% 0.50% 

Time (h) DCM
a mini USP2

b DCM
a mini USP2

b 

2 3.7 – 30.7 10.0 – 15.0 0.2 – 29.5 10.0 – 12.0 
6 15.0 – 76.6 30.0 – 40.0 0.5 – 82.4 30.0 – 50.0 
8 34.8 – 85.5 45.0 – 58.0 3.0 – 76.7 40.0 – 55.0 
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phenomena like supersaturation and precipitation of the drug during the passage of the 

dosage form through the proximal colon. 
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8 Conclusions & Future Work 

8.1 Final Conclusions 

The study presented here was concerned with understanding the impact of the 

hydrodynamics in the human proximal colon, in particular relating the motility of the colon wall 

and the viscosity of the fluids to the performance of MR dosage forms, mixing processes and 

underlying fluid hydrodynamics. The overall aim was to understand the environment in which 

targeted dosage forms are exposed during their passage through the human colon. 

It has been realized that physicochemical properties of the fluids as well as the 

hydrodynamics within the GI tract should be both reproduced to adequately evaluate in vitro 

performance of drug delivery systems. The current compendial dissolution methods 

oversimplify the GI tract whereas the advanced in vitro models (e.g. TIM-2) are not completely 

biorelevant. 

Nevertheless, USP 2 is still used in pharmaceutical industry during the design, development 

and evaluation of the dosage forms. Numerous studies have analysed the hydrodynamics in 

1L USP 2 dissolution apparatus, showing the poor mixing performance and reproducibility of 

dissolution testing data. Recently mini volume USP 2 has gained popularity due to the reduced 

mass of material required, analytical methodology and discriminatory power of conventional 

apparatus. However, hydrodynamics are still needed to be analysed since they don’t reflect 

those of the 1L USP 2. In addition, mini volume UPS 2 is the closest to the volume of fluids 

presented in the human proximal colon and therefore it can be partially compared with the in 

vitro model of the human colon developed in this project.  

The experiments presented in Chapter 3 investigated the impact of the viscosity on the 

dissolution profile of theophylline (a high water soluble drug) released from a hydrophilic 

matrix. To understand how the viscosity as well as sampling point can affect the release rates 

of the drug, images of a fluorescence dye released from the same hydrophilic matrix were 

captured with using PLIF technique. The current dye (i.e. Rhodamine 6G) matched the 
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dissolution profile of the drug, allowing a more systematic assessment of the distribution of 

the drug, mainly around the sampling points. Thus, the current optical technique might allow 

to predefine factors such as viscosity, impeller rotation speed, sampling point which will affect 

the consistency of the dissolution method and hence the release profile of the drugs with using 

fluorescence dye release data. 

The results showed a time delay for the released dye-drug to reach the upper zone of the 

dissolution apparatus leading to different release rates when different sampling points are 

used for generating the dissolution profile of the targeted drug. In addition, as the viscosity 

was increasing the dye was manly accumulated at the bottom of the mini vessel whereas the 

hydration and the disintegration of the tablet were slower in most viscous fluids.  

The proof – of – concept that the dye matches the dissolution profile of the drug allowed a 

more systematic evaluation of the mixing performance of the mini volume USP 2. Thus, in 

Chapter 4 the areal distribution method and the individual striations method were combined to 

provide an improved and more detailed measure of the mixing performance according to the 

level of mixedness, Gi. This is advantageous to determine which region within the USP 2 mini 

vessel shows the highest mixing level; something very important in terms of choice of sampling 

point. The results showed that the highest mixedness level was mainly located above the 

blade and close to the wall, i.e. the region where intensive mixing takes place; therefore, the 

recommendation is that the sample tube (cannula) should be placed in this region. 

In Chapter 5 the development of the biorelevant in vitro model of the human proximal colon 

is presented. The proposed model reproduces the main features of the human colon anatomy. 

The design was based on clinical data and fieldwork in the operation theatres of the Heartland 

Hospital of Birmingham.  

The effect of wall motion, viscosity and volume of the fluids on the performance of the 

manometry was investigated whilst Positron Emission Tomography was used to visualize the 

fluid flow within the colon model under fixed conditions.  
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The results showed that the position of the catheter, the occlusion rate, the viscosity and the 

fluid volume affected the interpretation of the manometry. As the viscosity and the occlusion 

rate were increased the amplitude of the pressure was also increased. Furthermore, 

manometry failed to differentiate changes for occlusion degrees of the membrane <80% and 

at low viscosities. In addition, the sensitivity of the manometry was dramatically decreased 

when the apparatus was half full. Thus, the criteria based on which a pressure wave should 

be associated with the movements of the contents, might have to be reconsidered. PET 

images revealed that pressure waves with amplitudes <2mmHg can be highly associated with 

fluid flow. 

Further investigation on the mixing and fluid flow under predetermined condition was 

presented in Chapter 6.  Positron Emission Particle Tracking (PEPT) system was used as an 

alternative to magnetic pill tracking system, used to analyse in vivo the motility events in 

human colon. In this chapter, how the interpretation of the flow and the mixing of the colonic 

fluids will be affected by the interplay between wall motion, viscosity and the properties of the 

particle used to monitor colonic movements, was examined. Different results can be obtained 

in terms of velocities and residence times by changing the particle used as reference for 

analysing the fluid motion. In general, high velocities and longer retrograde displacements 

were observed for the floating particle which is also controlled by the viscosity of the fluids. 

These differences also reflected how accurately the particle describes the fluid motion, since 

small relaxation times were obtained for different viscous media. 

Finally, in Chapter 7 the dissolution profile of theophylline released form a hydrophilic matrix 

was obtained using the Dynamic Colon Model (DCM). The dissolution profile and the 

distribution of theophylline, was assessed by collecting samples at different locations along 

the DCM tube. Differences in the release rates of the drug were observed which were affected 

by the sampling point location, the viscosity of the fluid and the mixing within the DCM tube. 

Images of the overall convective motion of the fluid inside the DCM tube obtained using 

Positron Emission Tomography enabled relation of the distribution of the tracer to likely areas 
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of high and low concentrations of the theophylline drug. In overall, the distribution of the drug 

was interplay of dissolution, mixing and spread of the dosage forms along the DCM tube. 

Furthermore, the release rates obtained from DCM showed higher variability between the 

sampling points compared to the mini volume USP 2 (refer to Table 7.1); this is a result of the 

more realistic geometry and motility within the DCM. However, the comparison of the 

dissolution apparatus is not straightforward due to different configuration. The DCM tube was 

half-filled whereas the flow is induced by the wall motion as well as by the reflux of the fluid. 

In addition, in DCM there is a discontinuous wall motion in comparison to the continuous 

impeller rotation in USP 2. Furthermore, in USP 2 the tablet is normally placed within the 

stagnant zone below the shaft in which low velocities (Stamatopoulos et al., 2015) and low 

shear rates (Bai et al., 2011) have been reported and which are not changing as the agitation 

speed is increased (Bai et al., 2011). In contrast the dosage form faces a dynamic environment 

in the DCM tube in which disintegration takes place due to the oscillation of the flexible wall. 

The present study demonstrated that the Dynamic Colon Model provided a more realistic 

colonic environment to understand phenomena which are difficult to be assessed in vivo. 

Using the proposed in vitro model, it is possible to assess the behaviour not only of the 

dosage form but also how the drug will be distributed along the human colon; assuming that 

the more the surface area that the drug would be exposed the higher the possibility of being 

absorbed by the GI tract or the more available for local therapy.  

8.2 Future work 

The primary development of the proposed Dynamic Colon Model could be further improved 

by (i) optimising the wall motion of the flexible membrane, (ii) developing stimuli-response 

artificial colon wall to mechanical and/or chemical external signals (i.e. myogenic and/or 

neurogenic stimuli of the smooth muscle), (iii) reproduce the dewatering process in human 

proximal colon incorporating hydrogels into the wall surface and (iv) extended analysis of the 

fluid flow inside the DCM tube. 
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Optimisation of the wall motion of the flexible membrane 

The reproduction of the smooth motion of the colon wall needs further improvement. In the 

current model the two edges (i.e. semilunar folds) of the haustrum are fixed and they don’t 

contract. Thus, part of the transit is missed since there is a gap between two haustra without 

wall motion. This problem could only partially be solved by keeping the previous haustrum at 

the contraction stage for enough time until the next one is being completely contracted. The 

acrylic body used in this version of the DCM could be replaced by changing the design of the 

mould and compartmentalizing the haustrum in smaller sections. Thus, the semilunar fold will 

also contract providing a smoother wall motion. This will provide a more accurate reproduction 

of the motility patterns and the fluid flow in the human colon. For instance, during mixing and 

propulsion of fluids there is a front peak at the contraction point which is moving continuously 

at the direction of the wave causing vortexing of the fluid within the ahead relaxing region 

(Figure 8.1). This is not possible with the current design. 

 

 

 

Figure 8.1.Velocity and pressure gradients within the contraction/relaxation region (reproduced 

from Sinnot et al. 2012 with permission) 

Development of a stimuli-response artificial colon wall 

In the current in vitro model the motility of the flexible wall was adjusted to the pressure 

amplitudes measured in vivo. However, the results showed that the manometry failed to 

differentiate changes in the occlusion degrees. Thus, different motility patterns might give 

similar profile of the pressures. Thus, an alternative strategy should be followed in order to 

reproduce the motility, based on the response of the viscoelastic smooth muscle to chemical 

front peak at the contraction point 

Vortex ring Direction of the wave 
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and mechanical stimuli. Therefore, the occlusion degrees and the occlusion rates should be 

based on the strength of the stimulus and the corresponding mechanical tolerance (e.g. 

stiffness) of the elastic material to that stimulus.  

 

Reproduce the dewatering process in human proximal colon 

Previous in vivo studies have shown that the absorption rate of the water from the colon wall 

is 2 – 3 mL/min (Palma et al., 1981) using PEG – 4000 as a non-absorbable marker. This 

information can be used to develop a flexible membrane which can match the dewatering rate 

of the colon with following the principle of the dialysis membranes. Thus, stretchable hydrogels 

combined with silicone (Zhang et al., 2014, Cha et al., 2013) could be a potential solution. This 

would enable better demonstration of the uptake/absorption of drugs at the colonic wall 

surface, providing an opportunity to better investigate how drugs and nutrients are absorbed 

and the influence of dosage form design on their delivery. However, it has to point out that 

with the current approach only the passive and not the active transport of the drugs will be 

reproduced. Nevertheless, the results can be combined with assessing the permeability of the 

released drug using cell lines. 

Extending analysis of the fluid flow inside the DCM tube 

In the current work the fluid flow inside the DCM tube was analysed under one motility 

pattern. However, relationships between wall motion, fluid volume, and fluid flow need further 

investigation with performing experiments under different motility patterns. Moreover, the 

passes of the trace particle through the DCM tube should be increased with improving the 

PEPT technique. Normally, in static mixers the passes to ensure full mapping of the fluid flow 

are close to 500. However, in this case there is a closed loop of constant flow rate whereas in 

the DCM tube the tracer needed to be replaced manually at the beginning for each run. Thus, 

a reasonable number of passes assuring adequate characterization of the fluid flow in DCM 

tube should be chosen for this purpose. In addition, improved design of the radioactive tracers 
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will help to use particles which follow the fluid flow more accurately (i.e. small relaxation times) 

for a wider range of viscosities. In addition, further work required to examine other types of 

dosage forms and the volume of the fluids by regulating the flow rate of the inlet medium, 

mimicking the ileum emptying process. Moreover, the colonic fluids are an inhomogeneous 

mixture of small particles dispersed in a viscous liquid. There is limited in vivo data on the 

particle size and particle size distribution of the solid fraction of the colonic fluids (Reppas et 

al., 2015). The results provided by Reppas et al. (2015) will be used to formulate biorelevant 

solution which contains a solid fraction of known particle sizes and particle size distribution. 

These particle sizes will also be used as reference to design tracers for analysing and visualize 

the fluid motion in DCM model with using PET/PEPT.  

Another important issue which needs to be examined is the effect of gases produced upon 

fermentation on the interpretation of the manometry. The lumen is only infrequently open to 

atmospheric pressure during flatus or belching, and is not normally able to freely vent gas.  

Comparison of in vitro dissolution data obtained from DCM with other dissolution 

apparatuses such as USP 1, 3, 4 and TNO TIM-2 as well as in vivo data. This is important 

because the compendial dissolution apparatuses are still used during the development of a 

formulation. In addition, the wall motility and the generated shear forces may not be the 

parameters that affect the drug release mechanism, like in case of the osmotic pressure 

delivery systems. However, on the other hand the composition of the media might affect the 

performance of the dosage form (e.g. present of solubilizers or emulsifiers) like in case of 

formulations contain low water soluble drugs. Thus, in practice might different in vitro models 

be used focusing on single or multiple aspects affecting the in vivo performance of the dosage 

form. Hence, in which case as well as at which stage of the development of the formulation 

the DCM should be used, it should be examined with respect to the existing in vitro models 

and the targeted product.  
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Utilization of PLIF method to analysis drug release from dosage forms 

Further work should be done on utilizing the current PLIF method (refer to Chapter 3) for 

drugs of a range of solubilities; provided that the most appropriate dye has been selected. 

This is of great importance especially for poorly water soluble drugs, where the low amounts 

dissolved in viscous media could lead to even higher variance in the dissolution data 

generated with the conventional sampling technique. 
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