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Abstract

The aim of this thesis is to present efficient (strongly polynomial) methods and algorithms

for problems in max-algebra when certain matrices have special entries or are structured.

First, we describe all solutions to a one-sided parametrised system. Next, we consider

special cases of two-sided systems of equations/inequalities. Usually, we describe a set

of generators of all solutions but sometimes we are satisfied with finding a non-trivial

solution or being able to say something meaningful about a non-trivial solution should

it exist. We look at special cases of the generalised eigenproblem, describing the full

spectrum usually. Finally, we prove some results on 2 × 2 matrix roots and generalise

these results to a class of n× n matrices.

Main results include: a description of all solutions to the two-dimensional gener-

alised eigenproblem; observations about a non-trivial solution (should it exist) to essen-

tial/minimally active two-sided systems of equations; the full spectrum of the generalised

eigenproblem when one of the matrices is an outer-product; the unique candidate for

the generalised eigenproblem when the difference of two matrices is symmetric and has a

saddle point and finally we explicitly say when a 2× 2 matrix has a kth root for a fixed

positive integer k.



Acknowledgments

I would like to thank my PhD supervisor Professor Peter Butkovič for introducing me to
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1. Introduction

When one replaces the operation of addition by maximum and the operation of multi-

plication by addition, one can provide mathematical theory and techniques for solving

classical, non-linear problems which take on the form of linear problems in this setting of

max-algebra.

1.1 Max-algebra

We assume everywhere that m,n ≥ 1 are natural numbers and denote M = {1, ...,m}

and N = {1, ..., n} ; the symbol R stands for R ∪ {−∞} and the symbol R stands for

R ∪ {+∞}. We use the convention max ∅ = −∞ and min ∅ = +∞.

If a, b ∈ R then we set

a⊕ b = max(a, b)

and

a⊗ b = a+ b.

Note that by definition

(−∞) + (+∞) = −∞ = (+∞) + (−∞) .

It will also be useful to define the dual operation. For a, b ∈ R, we set

a⊕′ b = min(a, b)
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and

a⊗′ b = a+ b.

Throughout this thesis we denote −∞ by ε (the neutral element with respect to ⊕)

and for convenience we also denote by the same symbol any vector, whose all components

are −∞, or a matrix whose all entries are −∞. A similar convention is used for 0 vec-

tors or matrices. If a ∈ R then the symbol a−1 stands for −a. The symbol ak (k ≥ 1

integer) stands for the iterated product a⊗ a⊗ . . . in which the symbol a stands k times

(that is ka in conventional notation). By max-algebra (also called “tropical linear alge-

bra”) we understand the analogue of linear algebra developed for the pair of operations

(⊕,⊗), extended to matrices and vectors as in conventional linear algebra. That is if

A = (aij) , B = (bij) and C = (cij) are matrices of compatible sizes with entries from R,

we write C = A⊕B if cij = aij ⊕ bij for all i, j and C = A⊗B if

cij =
⊕
k

aik ⊗ bkj = max
k

(aik + bkj)

for all i and j. If α ∈ R then α⊗ A = (α⊗ aij).

1.2 Literature overview

Max-algebra has been appearing in books and research papers since the 1960s. The

first paper, perhaps, was that of R. A. Cuninghame-Green [33] in 1960, where his work

in the Sheffield steelworks made it clear that max-algebra could be a powerful tool in

modelling industrial processes or, more generally, interactive processes. Cuninghame-

Green went on to produce other articles, including [34], [35], [36] and [37]. A number of

other, independent articles were also produced. For example: B. A. Carré [26], L. Elsner

[38], G. M. Engel and H. Schneider [39],[40],[60], M. Gondran and M. Minoux [52],[49],[50],

[51], B. Giffler [47], [48] and N. N. Vorobyov [64],[65].
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The field of max-algebra has been developed intensively since. In 1979, Cuninghame-

Green’s lecture notes [35] helped to popularise max-algebra and bring it to the attention

of the mathematical community. Another milestone was reached in 1981 when U. Zim-

mermann discussed combinatorial optimisation in ordered algebraic structures [68] - em-

phasising the importance of this area of mathematics. In 1984, there was a breakthrough

in the theory of two-sided systems when a first algorithm for finding a solution was made

by Butkovič and Hegedüs [16]. In 1992 Baccelli et al explored the uses of max-algebra

in synchronising dynamical systems [8] - emphasising the applications of max-algebra to

scheduling problems. Binding and Volkmer (2007) explored the generalised eigenproblem

in max-algebra [12] in parallel with Butkovič and Cuninghame-Green [32]. This theoreti-

cal problem has inspired much of the work in this thesis. Butkovič’s book [25] (2010) was

important in unifying well-known classical results and modern results.

Interest in max-algebra is partly due to its ability to take non-linear problems in

classical linear algebra and present them in a linear way (discrete event systems [28], [46]

for example). The problems arising in max-algebra are often of a managerial nature,

arising in areas such as: manufacturing [33], [34], transportation [26], traffic light control

[29], allocation of resources [1] and the natural sciences [37]. More recently, there is

a description of how to model the entire Dutch railway system using max-algebra [53].

There are also applications in banking using tropical geometry [54]. See [43] for more

applications.

For formal definitions, refer to chapter 2. We introduce some of the most important

problems related to this thesis with motivating examples and a brief discussion of what

is currently known and what is believed to be unknown.

Example 1.1. Consider m partial products Pi, prepared using n machines. Let aij be

the duration of the work of the jth machine needed to complete the partial product for Pi.
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Denote by xj the starting time of machine j. Then Pi will be ready at time

max (x1 + ai1, . . . , xn + ain) .

If b1, . . . , bm are target completion times, then we have the system of equations

(∀i) max (x1 + ai1, . . . , xn + ain) = bi.

The compact form (using max-algebraic notation) is

A⊗ x = b

and so the problem is to find a vector x such that A⊗ x = b.

The matrix A is called the production matrix. A related problem (when we require to

not exceed given target times) is

A⊗ x ≤ b.

The problems

A⊗ x = b (1.1)

and

A⊗ x ≤ b, x 6= ε (1.2)

are examples of scheduling problems and are called one-sided max-linear systems of equa-

tions (inequalities) respectively.

This model is called the multi-machine interactive production process (MMIPP) and

is the basis for subsequent models.

Systems (1.1) and (1.2) were studied in the first papers on max-algebra in [33], [64]
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and the theory has further evolved in the 1960s and 1970s [67], [68], and later [23], [24].

It should be noted that these one-sided max-linear systems can be solved more easily

than their linear-algebraic counterparts. Also, unlike in conventional linear algebra, sys-

tems of inequalities (1.2) always have a solution and the task of finding a solution to (1.1)

is strongly related to the same task for the system of inequalities.

We can describe, in strongly polynomial time, the full set of solutions to systems (1.1)

and (1.2), using algebraic and combinatorial methods.

We explore a generalisation of system (1.1) in chapter 3.

Example 1.2. As part of a wider MMIPP, suppose k other machines produce partial

products for products Q1, . . . , Qm and the duration and starting times times are bij and yj

respectively. The synchronisation problem is to find starting times of all n + k machines

(vectors x and y) so that each pair (Pi, Qi) is completed at the same time, yielding the

two-sided max-linear systems of equations

A⊗ x = B ⊗ y,

or

A⊗ x = B ⊗ x

in the case where starting times xj and yj must be the same.

Another variant is when the starting times are linked (a fixed interval between the

starting times xj and yj). This yields a generalised eigenproblem (GEP):

A⊗ x = λ⊗B ⊗ x,

where we are required to find a pair λ (real number) and starting time vector x.

The systems
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A⊗ x = B ⊗ x, x 6= ε, (1.3)

A⊗ x = B ⊗ y, x 6= ε, y 6= ε (1.4)

and

A⊗ x = λ⊗B ⊗ x, λ 6= ε, x 6= ε (1.5)

are synchronisation problems.

Unlike in conventional linear algebra, moving from the task of finding a solution to a

one-sided system (1.1) to finding a solution to a two-sided system (1.3) means a significant

change in difficulty of the problem. Systems (1.4) are studied in [31] and can be easily

transformed to systems (1.3). Two-sided linear systems (1.3) were first studied in [19] -

[22]. We know the solution set of (1.3) is finitely generated [16] and we are reasonably

confident in solving such systems (see the pseudopolynomial Alternating Method in [25]

and [7]).

We do not yet know whether two-sided systems (1.3) are polynomially solvable. It

follows from the results in [11] that two-sided systems (1.3) are polynomially equivalent

to mean payoff games, a well known problem in NP ∩ co-NP. Informally, NP is the

set of all decision problems for which “yes instances” have efficiently verifiable proofs

and co-NP is the class of problems for which “no instances” have efficiently verifiable

counterexamples given the appropriate certificate. It is known that P ⊆ NP ∩ co-NP and

it is not known whether equality holds. Thus, there is good reason to hope that two-sided

systems are indeed polynomially solvable. There exist algorithms to solve mean payoff

games in polynomial time in special cases [5] and the tropical shadow-vertex algorithm

[6] solves mean payoff games in polynomial time on average subject to some constraints.
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The theory of symmetrised semirings yields necessary conditions for the solvability of

(1.3). Chapters 4, 5, 7 and 8 are concerned with solving special cases of such two-sided

systems in polynomial time, in the hope of shedding light on the general case. Chapter 8

may prove to shed some light on the general case. The contents of chapter 8 have been

submitted as a paper to Discrete Applied Mathematics.

It is likely that GEP is much more difficult than the eigenproblem. This is indicated

by the fact that the GEP for a pair of real matrices may have no generalised eigenvalue,

a finite number or a continuum of generalised eigenvalues [32]. It is known [63] that the

union of any system of closed (possibly one-element) intervals is the set of generalised

eigenvalues for suitably taken A and B.

GEP has been studied for the first time in [12] and [32]. The first of these papers

solves the problem completely when the matrices have exactly two rows and special cases

for general sized matrices; the second solves some other special cases. No solution method

seems to be known either for finding a λ or an (non-trivial) x satisfying (1.5) for general

real matrices. Obviously, once λ is fixed, the GEP reduces to a system of the form (1.3).

We therefore usually concentrate on the task of finding the set of generalised eigenvalues.

The level set method [44] is a pseudopolynomial algorithm for finding the generalised

eigenvalues.

In chapters 6, 9, 10 and 11 we examine some special cases of GEP. Essential parts of

chapters 6, 10 and 11 are the contents of a published paper [17] in the SIAM Journal on

Matrix Analysis and Applications.

Other problems are obtained when the MMIPP is considered as a multi-stage process.

Example 1.3. Suppose the machines work in stages, in which all machines simultaneously

produce components necessary for the next stage of some or all other machines. If we

let xi (r) denote the starting time of the rth stage on machine i and let aij denote the

duration of the operation at which the jth machine prepares a component necessary for
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the ith machine at the (r + 1)st stage, then

x (r + 1) = A⊗ x (r)

in the max-algebraic notation. We say the system reaches steady regime if it moves forward

in regular steps after a certain point. That is, for some λ and r0 we have

x (r + 1) = λ⊗ x (r) for all r ≥ r0.

This happens if and only if for some λ and r, x (r) is a solution to

A⊗ x = λ⊗ x.

System (1.6) below is a stability problem and called the eigenproblem, where we are

required to find a pair λ (real number) and a starting time vector x. Considering also the

related subeigenvector problem, we have the stability problems

A⊗ x = λ⊗ x, x 6= ε (1.6)

and

A⊗ x ≤ λ⊗ x, x 6= ε. (1.7)

The eigenproblem (1.6) is of key importance in max-algebra. It has been studied

since the 1960s [34] in connection with the analysis of the steady-state behaviour of

production systems. All solutions of the eigenproblem, in the case of irreducible matrices,

are described in [35] and [49], see also [9] and [64]. A general spectral theorem for reducible

matrices has appeared in [45], [10] and partly in [27].
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A real number λ is an eigenvalue if there exists x ∈ Rn
, x 6= ε such that A⊗x = λ⊗x

and there are at most n such eigenvalues [25] (where A is an n × n matrix). The full

spectrum of eigenvalues and generators of all eigenvectors can be found in O (n3) time

and so system (1.6) is efficiently solved. The spectrum of eigenvalues can be used to bound

the size of the eigenvalues of an associated non-negative matrix in classical linear algebra

[4]. Also, [58] contains proofs that the max-algebraic roots of a max-algebraic polynomial

can provide a good approximation to the classical eigenvalues of an associated matrix

polynomial. The advantage of using max-algebra here is that the max-algebraic roots can

be calculated in low-order polynomial time, and can then be used as starting points for

algorithms which search for classical roots/eigenvalues.

All finite solutions to (1.7) are described in [62].

1.3 Thesis overview

The aim of this thesis is to present efficient (polynomial) methods and algorithms for

problems in max-algebra when certain matrices have special entries or are structured,

focusing on two-sided systems of equations/inequalities and the generalised eigenproblem.

The work herein can be viewed as a natural progression from our MSci project, which

concentrated on the eigenproblem A⊗ x = λ⊗ x (refer to chapter 2 for notation), where

the matrix A has special and/or structured forms.

The eigenproblem is polynomially solvable in the most general case, whereas no such

polynomial algorithms seem to be known for the most general cases of two-sided systems

of equations/inequalities and the generalised eigenproblem.

We summarise here the contents of the chapters of this thesis. We also briefly mention

what is already known about the relevant problem (including known complexity results

of any existing algorithms) and what is new in that chapter.

The first type of max-linear systems we consider are one-sided parametrised systems
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A ⊗ x = b (α) subject to upper and lower bounds on α. These differ from the known

one-sided systems A⊗ x = b with the appearance of a parameter α in the right hand side

vector. The regular one-sided systems are well known and can be solved in low order,

strongly polynomial time. In chapter 3, we explicitly describe the full set of α for which

the one-sided parametrised system has a solution. It then follows from known results

that we can describe the full set of solutions for any fixed α. Thus, we can describe all

solutions to the one-sided parametrised system in strongly polynomial time.

The next systems we explore are the two-sided systems A⊗x ≤ B⊗x,A⊗x = B⊗x

and A ⊗ x = B ⊗ y. We are not aware of any polynomial method for finding a solution

in the most general case for these problems, though the alternating method [25] is a

pseudopolynomial method for systems of two-sided equations for integer matrices. In

chapter 4, we describe a strongly polynomial method for solving the system A⊗x ≤ B⊗x

when B has exactly one finite entry per row. The aggregation method reduces the problem

to the well known subeigenvector problem (so allowing us to describe all finite solutions

in polynomial time). Continuing with the system A⊗x = B⊗x, in chapter 5 we consider

the case when A and B each have exactly two finite entries per row, appearing in the

same position. Again, by reducing to the subeigenvector problem, we are able to describe

all finite solutions (after some variables have been trivially set to ε).

In chapter 6 we describe all solutions to A⊗ x = B ⊗ x when matrices A and B each

have exactly two columnns. In the same chapter, we consider another problem, namely

the generalised eigenproblem A ⊗ x = λ ⊗ B ⊗ x. Since for fixed λ, this is a two-sided

system, the focus is usually on finding the set of λ for which there exists a corresponding

eigenvector. To our knowledge, there is no known method for finding even a single λ in

polynomial time in the most general case. In chapter 6 we explicitly describe the full set

of λ in the two-dimensional case.

In chapter 7 we explore the two-sided system A⊗x = B⊗y when B (say) has exactly
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two columns. By relating this to the one-sided parametrised systems of chapter 3, we can

describe all solutions in polynomial time.

In chapter 8 we demonstrate the pivotal role of the matrix C = A ⊕ B and its max-

algebraic permanent for solving two-sided linear systems A ⊗ x = B ⊗ x of minimally

active or essential type where A and B are finite square matrices.

In chapter 9 we show the generalised eigenproblem has a unique solution (which we

give explicitly) when the matrices A and B are circulant. Further, we show that the

constant vector is a corresponding eigenvector. In chapter 10, we give the full set of λ in

the case when B (say) is an outer-product.

In chapter 11 we show that if the matrix C = A − B (in the classical notation)

is symmetric and has a saddle point, then the value of the saddle point is the unique

candidate for the eigenvalue λ satisfying A⊗ x = λ⊗B ⊗ x. In the 3× 3 case we give a

necessary and sufficient condition for the saddle point to be an eigenvalue, we also give a

necessary condition in the n× n case.

Finally, in chapter 12, we consider a separate topic - the problem of finding matrix

roots in max-algebra. In general, this is known to be a hard problem. In the 2 × 2 case

we characterise all matrices for which there exists a matrix root and define the kth root

of a matrix for a positive integer k. We generalise this to identify a class of n×n matrices

for which there exists a kth root (which we give explicitly).

Among the main results of this thesis are:

• A description of all solutions to the two-dimensional generalised eigenproblem in

Section 6.4;

• Lemma 8.3 in Chapter 8 which is crucial for the main results - Theorems 8.6 and

8.29 (which identify active elements of a solution to the minimally active/essential

two-sided system) ;
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• Theorem 10.7 gives the full spectrum for GEP when B is an outer product;

• Theorem 11.6 identifies the unique candidate for the eigenvalue of GEP in the special

case where the difference of matrices A and B is symmetric and has a saddle point

and finally

• In Chapter 12 we explicitly say when a 2 × 2 real matrix has a kth root (for any

fixed positive integer k) and define the kth root in such cases. We also generalise

to special types of n× n matrices.
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2. Preliminaries

In this section we give the definitions and some basic results which will be used in the

formulations and proofs of the results of this thesis. For the proofs and more information

about max-algebra the reader is referred to [2], [8], [25] and [53].

Let A = (aij) ∈ Rm×n. We will use the following notation:

Mj (A) =

{
r ∈M ; arj = max

i∈M
aij

}
, j ∈ N ;

Ni (A) = {j ∈ N ; i ∈Mj (A)} , i ∈M.

We will also write Mj, Ni instead of Mj (A) , Ni (A) if no confusion can arise. The following

will be useful.

Proposition 2.1.
⋃
j∈N Mj = M if and only if Ni 6= ∅ for every i ∈M.

Proof. Straightforward from definitions. �

Although the use of the symbols ⊗ and ⊕ is common in max-algebra we will apply

the usual convention of not writing the symbol ⊗. Thus in what follows the symbol ⊗

will not be used and unless explicitly stated otherwise, all multiplications indicated are

in max-algebra.

When giving examples of matrices which contain many ε entries, we may replace these

by a blank space for convenience.

A vector or matrix is called finite if all its entries are real numbers. A square matrix
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is called diagonal if all its diagonal entries are real numbers and off-diagonal entries are ε.

More precisely, if x = (x1, ..., xn)T ∈ Rn then diag (x1, ..., xn) or just diag (x) is the n× n

diagonal matrix 

x1 ε ... ε

ε x2 ... ε

...
...

. . .
...

ε ε ... xn


.

The matrix diag (0) is called the unit matrix and denoted I. Obviously, AI = IA = A

whenever A and I are of compatible sizes. A matrix obtained from a diagonal matrix

[unit matrix] by permuting the rows and/or columns is called a generalized permutation

matrix [permutation matrix ]. It is known that in max-algebra, generalized permutation

matrices are the only type of invertible matrices [35], [25]. Clearly,

(diag (x1, ..., xn))−1 = diag
(
x−1

1 , ..., x−1
n

)
.

Remark 2.2. Note that (.)−1 has a different meaning on the left hand side (inverse of a

matrix) and right hand side (inverse of a real number) in the above.

The matrix A ∈ Rm×n
is called column (row) R−astic [35] if

⊕
i∈M aij ∈ R for every

j ∈ N (if
⊕

j∈N aij ∈ R for every i ∈ M), that is, when A has no ε column (no ε row).

The matrix A is called doubly R−astic if it is both column and row R-astic.

Given a matrix A ∈ Rm×n
and a subset K ⊆ M , we denote by A [K] the |K| × n

sub-matrix of A restricted to the rows of the set K. If, in addition, we have the subset

T ⊆ N , then denote by A [K : T ] ∈ R|K|×|T | the matrix A restricted to the rows of K and

columns of T .
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Given a 2× 2 matrix A = (aij), we define

d (A) := a11a22a
−1
12 a

−1
21 . (2.1)

The following statement is probably the historically first result in max-algebra [33]

(though the original notation was different); here we denote for A ∈ Rm×n
and b ∈ Rn

:

S (A, b) =
{
x ∈ Rn

;Ax = b
}
.

Theorem 2.3. [33], [25] If A ∈ Rm×n
is a matrix with no ε columns, b ∈ Rm and

B = (diag (b))−1A then S(A, b) 6= ∅ if and only if
⋃
j∈N Mj (B) = M.

Corollary 2.4. If A ∈ Rm×n
is a matrix with no ε columns, b ∈ Rm and B = (diag (b))−1A

then S(A, b) 6= ∅ if and only if Ni (B) 6= ∅ for every i ∈M.

Proposition 2.5. If A ∈ Rm×n
is a matrix with no ε columns, b ∈ Rm is a constant

vector and B = (diag (b))−1A, then Mj (A) = Mj (B) for all j ∈ N and consequently also

Ni (A) = Ni (B) for all i ∈M.

Proof. Straightforward from definitions. �

Given a matrix A = (aij) ∈ Rn×n
, the symbol DA will denote the weighted di-

graph (N,E,w) where E = {(i, j) : aij > ε} and w (i, j) = aij (or briefly w (ij)). If

π = (i1, . . . , ip) is a path in DA, then we denote the weight of π by w (π,A) = ai1i2 +

ai2i3 + · · · + aip−1ip if p > 1 and ε if p = 1. A path (cycle) is positive if it has positive

weight.

Given a matrix A ∈ Rm×n
, the symbol λ (A) will stand for the maximum cycle mean

of A, that is:

λ (A) = max
σ

µ (σ,A)
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where the maximisation is taken over all elementary cycles in DA (cycles in which there

are no repeated vertices) and

µ (σ,A) =
w (σ,A)

l (σ)

denotes the mean of a cycle σ, where l (σ) is the length (number of edges) of the cycle

σ. Clearly, λ (A) always exists since the number of elementary cycles is finite. It follows

that DA is acyclic if and only if λ (A) = ε.

Given a matrix A ∈ Rm×n
with no ε columns and a vector b ∈ R, solving the one-sided

system (A, b) (see Example 1.1) is the task of finding x ∈ Rn
such that

Ax = b. (2.2)

Given a square matrix A ∈ Rn×n
, finding a solution to the eigenproblem for the

matrix A (see Example 1.3) is the task of finding a λ ∈ R (eigenvalue) and x ∈ Rn
, x 6= ε

(eigenvector) such that

Ax = λx. (2.3)

Finding a solution to the subeigenproblem for the matrix A (see Example 1.3) is the task

of finding a λ ∈ R (subeigenvalue) and x ∈ Rn
(subeigenvector) such that

Ax ≤ λx. (2.4)

Given matrices A,B ∈ Rm×n
, the problem of finding a non-trivial solution to the

two-sided max-linear system of equations (A,B) (see Example 1.2) is the task of finding

x ∈ Rn
, x 6= ε such that

Ax = Bx. (2.5)

Finding a solution to the two-sided max-linear system of inequalities (A,B) (see Example
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1.2) is the task of finding x ∈ Rn
, x 6= ε such that

Ax ≤ Bx. (2.6)

If the matrices A and B are finite, then it is easy to see that a non-trivial solution exists

for the two-sided system of equations (A,B) if and only if a finite solution exists. As

such, we restrict our attention to finding finite solutions to (2.5) in this case. We denote

V (A,B) = {x ∈ Rn;Ax = Bx} . (2.7)

Note that some statements remain valid if the finiteness requirement is removed or re-

placed by the condition that there are no ε columns. We will remind the reader in each

chapter if the matrices being considered are finite or not.

Suppose that A = (aij) ∈ Rm×n
and B = (bij) ∈ Rm×n

are given. Finding a solution

of the generalized eigenproblem for (A,B) (see Example 1.2) is the task of finding x ∈

Rn
, x 6= ε (generalized eigenvector or just eigenvector) and λ ∈ R (generalized eigenvalue

or just eigenvalue) such that

Ax = λBx. (2.8)

Note that the case λ = ε is trivial and is not discussed here. We denote

V (A,B, λ) =
{
x ∈ Rn

;Ax = λBx, x 6= ε
}
,

Λ (A,B) = {λ ∈ R;V (A,B, λ) 6= ∅} .

The set Λ (A,B) will be called the spectrum of the pair (A,B) . It is easy to see that if the

matrices A and B are finite, then a generalized eigenvector exists if and only if a finite

generalized eigenvector exists.

The next two statements [25] provide useful information about the spectrum. Here

17



and in the rest of the thesis (unless said otherwise) we denote

C = A−B = (cij) ,

L (C) = max
i∈M

min
j∈N

cij

and

U (C) = min
i∈M

max
j∈N

cij.

We will write shortly L or U if no confusion can arise.

Proposition 2.6. [25] Λ (A,B) ⊆ [L,U ] holds for any A,B ∈ Rm×n.

The interval [L,U ] will be called the feasibility interval for the generalized eigenprob-

lem.

In [12] it is proved that if A and B are symmetric matrices, then |Λ (A,B) | ≤ 1.

For clarity, we use the notation
⊕

when taking the maximum over a set (max-sum)

and the notation
∑

when taking the conventional linear sum.

We have the following Lemma ([25], Lemma 7.4.1) which will be used in examples

throughout this thesis.

Lemma 2.7 (Cancellation Rule). Let v, w, a, b ∈ R, a < b. Then for any real x, we have

v ⊕ ax = w ⊕ bx

if and only if

v = w ⊕ bx.

Let S ⊆ Rn
. The set S is called a max − algebraic subspace if

αu⊕ βv ∈ S
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for every u, v ∈ S and α, β ∈ R. The adjective “max-algebraic” will usually be omitted.

Let D ∈ Rn×n and denote by Pn the set of permutations on N . The

max − algebraic permanent of D is

maper (D) =
⊕
σ∈Pn

⊗
i∈N

di,σ(i) = max
σ∈Pn

∑
i∈N

di,σ(i).

The set of optimal solutions to the assignment problem (AP) is given by

ap (D) =

{
σ ∈ Pn :

⊗
i∈N

di,σ(i) = maper (D)

}
.

It is known that

ap (D) = ap (diag (v)⊗D) (2.9)

for all v ∈ Rn. (See [13] for more information on the assignment problem).

Given A ∈ Rm×n
, we define the following series:

A+ = A⊕ A2 ⊕ A3 ⊕ . . .

and

A∗ = I ⊕ A+ = I ⊕ A⊕ A2 ⊕ . . . .

If these series converge to matrices that do not contain +∞, then the matrix A+ is

called the weak transitive closure of A and A∗ is called the strong transitive closure of A.

Note that this happens if and only if λ (A) ≤ 0. In this case, we have

A+ = A⊕ A2 ⊕ · · · ⊕ Ak for all k ≥ n− 1
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and

A∗ = I ⊕ A⊕ A2 ⊕ · · · ⊕ Ak for all k ≥ n.

The matrices A+ and A∗ are of fundamental importance in max-algebra. This follows

from the fact that they enable us to efficiently describe all solutions to

Ax = λx, λ ∈ R (2.10)

in the case of A+, and all finite solutions to

Ax ≤ λx, λ ∈ R (2.11)

in the case of A∗. Note that in (2.10), for all matrices A there are at most n eigenvalues

and all eigenvalues can be found in O (n3) time. All corresponding eigenspaces also can

be found in O (n3) time [25].
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3. One-sided parametrised systems -

a strongly polynomial algorithm

3.1 Introduction

In this chapter we develop a theory for a generalisation of one-sided max-linear systems

by considering a parametrised version of the problem. Briefly, in addition to constant

entries, the vector b also has some parameter entries. The work of this chapter identifies

the values of the parameter for which a non-trivial solution exists to the one-sided system.

We show that we can identify the full set for the parameter easily and then, using

known methods on one-sided systems, describe all solutions for every such parameter

value. That is, we can describe all solutions in strongly polynomial time. The results here

are interesting in their own right but the real usefulness of these one-sided parametrised

systems is in their ability to find solutions to the seemingly more complicated two-sided

systems appearing in chapters 7 and 10.

3.2 Problem formulation

Remark 3.1 (Motivation). In chapter 7 we explore systems Ax = By, where B has

exactly two columns and in chapter 10 we explore systems Ax = λBx, where B is an

outer product. The one-sided parametrised systems in this chapter will be used there.
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By one-sided systems we mean systems of the form

Ax = b, (3.1)

where A ∈ Rm×n, x ∈ Rn and b ∈ Rm. It is known (see [25] and [35]) that a solution to

(3.1) exists if and only if x is a solution, where

(∀j)xj :=
′⊕

i∈M

(
bia
−1
ij

)
. (3.2)

We are interested here in the similar system

Ax = b (α) , (3.3)

where the parameter α ∈ [α, α] for some real α < α and b is of the form

b (α) =



α

...

α

0

...

0



 k

m− k

.

That is, (∀i) (1 ≤ i ≤ k) bi = α and (∀i) (k + 1 ≤ i ≤ m) bi = 0, for some 1 ≤ k ≤ m.

We define K := {1, 2, . . . , k} . Also, define A[K] to be the matrix A restricted to the

rows from K, similarly b[K].

As in the non-parameter version, the vector x defined by (3.2) is key but now x = x (α).

It is still true that system (3.3) has a solution if and only if x (α) is a solution. As a result,

a key question now is “for what values of α, if any, in the interval [α, α] is the vector x (α)
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a solution to the system Ax = b (α)?” Note it is also known (see [25] and [35]) that

(∀α)Ax (α) ≤ b (α) . (3.4)

Clearly, a necessary condition for the existence of a solution to the parametrised system is

the existence of a solution to the sub-system A [K]x = b [K], or equivalently, the system

A [K]x = (α, α, . . . , α)T . (3.5)

It will be clear in later work why this obvious point is worth mentioning.

Let j ∈ N , then

xj (α) =
′⊕

i∈M

(
bia
−1
ij

)
=

′⊕
i∈K

(
αa−1

ij

)
⊕′

′⊕
i∈M\K

(
a−1
ij

)

=

(
α

′⊕
i∈K

a−1
ij

)
⊕′
 ′⊕
i∈M\K

a−1
ij

 .

For notational purposes, denote

(∀j ∈ N)φj :=
′⊕

i∈K

a−1
ij (3.6)

and

(∀j ∈ N) πj :=
′⊕

i∈M\K

a−1
ij , (3.7)

so that

(∀j ∈ N)xj (α) = (αφj)⊕′ πj. (3.8)
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3.3 The subsystem A [K]x = (α, . . . , α)T

Recall (3.5) and let i ∈ K. Then, by (3.8)

(Ax (α))i =
⊕
j∈N

(aijxj (α))

=
⊕
j∈N

(aij ((αφj)⊕′ πj))

=
⊕
j∈N

((aij (αφj))⊕′ (aijπj))

=
⊕
j∈N

((αaijφj)⊕′ (aijπj)) . (3.9)

Recall that if we wish to solve the subsystem (3.5), then we require (Ax)i = α for

i ∈ K. Note also, since i ∈ K, that for each j ∈ N we have

aijφj = aij

′⊕
u∈K

a−1
uj ≤ 0,

(since
⊕′

u∈K a
−1
uj ≤ a−1

ij ) and equality holds if and only if
⊕′

u∈K a
−1
uj = a−1

ij , which holds if

and only if ⊕
u∈K

auj = aij. (3.10)
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Note that if inequality holds strictly for every j ∈ N , then

(∀j ∈ N) aijφj < 0

⇒ (∀j ∈ N)αaijφj < α

⇒ (∀j ∈ N) (αaijφj)⊕′ (aijπj) < α

⇒
⊕
j∈N

((αaijφj)⊕′ (aijπj)) < α

⇒ (Ax (α))i < α.

We conclude in this case that no solution to the subsystem (3.5) (and so also to the system

(3.3)) exists. This gives us the following Lemma.

Lemma 3.2. If the subsystem A[K]x = α has a solution, then for each i ∈ K there exists

j ∈ N such that
⊕

u∈K auj = aij.

In terms of the set covering problem, the above necessary condition is equivalent to

saying that the column maxima of A (restricted to the rows from K) cover K.

In view of Lemma 3.2, we assume from now on that for each i ∈ K, there exists j ∈ N

such that (3.10) holds. That is, Ni is non-empty, where:

(∀i ∈ K)Ni :=

{
j ∈ N : aij =

⊕
u∈K

auj

}
,

so that

(∀j ∈ Ni)
⊕
u∈K

auj = aij

and

(∀j ∈ N\Ni)
⊕
u∈K

auj > aij.

Now let i ∈ K be fixed again and let j ∈ Ni (we can do this since we are assuming now
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that Ni is non-empty). Then αaijφj = α by (3.6) and (3.3). Note that if aijπj ≥ α also,

then (αaijφj)⊕′ (aijπj) = α and

α ≥ (Ax (α))i (by (3.4))

=
⊕
t∈N

((αaitφt)⊕′ (aitπt)) (by (3.9))

≥ (αaijφj)⊕′ (aijπj)

= α,

so (Ax (α))i = α, as required.

So, we conclude that if there exists j ∈ Ni such that aijπj ≥ α∗ for some α∗ ∈ [α, α],

then x (α∗) solves the ith equation. Equivalently, if there exists j ∈ Ni such that aijπj ≥ α,

then x (α) solves the ith equation for all α ∈ [α, aijπj] ∩ [α, α] = [α, (aijπj)⊕′ α].

Conversely, if (∀j ∈ Ni) aijπj < α, then

(Ax (α))i =
⊕
j∈Ni

(αaijφj)⊕′
<α≤α︷ ︸︸ ︷

(aijπj)

⊕⊕
j 6∈Ni

<α since j 6∈ Ni︷ ︸︸ ︷
(αaijφj) ⊕′ (aijπj)


< α⊕ α

= α,

and so no solution exists for the ith equation. We conclude with the following Lemma.

Lemma 3.3. Let i ∈ K. Then there exists a solution to the ith equation if and only if

Ni 6= ∅ and there exists j ∈ Ni such that aijπj ≥ α.

A couple of remarks:

Remark 3.4. Suppose j ∈ Ni is such that aijπj < α. Then the quantity (aijπj) ⊕′ α =

aijπj < α.
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Remark 3.5. If there are multiple j ∈ Ni satisfying aijπj ≥ α, then we want to choose a

j which maximises the size of the solution interval for α.

By combining Remarks 3.4 and 3.5, we see that the set of α for which x (α) solves the

ith equation is [
α, α⊕′

⊕
j∈Ni

(aijπj)

]
.

Note that the above interval is empty if and only if (∀j ∈ Ni) aijπj < α, as expected.

Finally, we wish to solve the ith equation for all i ∈ K. We should then see that we

require

(∀i ∈ K)α ≤ α⊕′
⊕
j∈Ni

(aijπj)

⇔α ≤
′⊕

i∈K

(
α⊕′

⊕
j∈Ni

(aijπj)

)

⇔α ≤ α⊕′
′⊕

i∈K

(⊕
j∈Ni

(aijπj)

)
.

We summarise our results in the following Lemma.

Lemma 3.6. The vector x (α) solves the subsystem A [K]x = α if and only if (∀i ∈ K)Ni 6=

∅ and

α ≤ α ≤ α⊕′
′⊕

i∈K

(⊕
j∈Ni

(aijπj)

)
.

In fact, since by definition we have max ∅ = ε and α < α, we also have

Lemma 3.7. The subsystem A [K]x = α has a solution if and only if

′⊕
i∈K

(⊕
j∈Ni

(aijπj)

)
≥ α.
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3.4 The subsystem A [M\K]x = b [M\K]

Let i ∈M\K. Then, by (3.8),

(Ax (α))i =
⊕
j∈N

((αaijφj)⊕′ (aijπj)) .

Recall we require (since i ∈M\K) that

(Ax (α))i = 0.

Note also, since i ∈M\K and using (3.7), that for each j ∈ N ,

aijπj = aij

′⊕
u∈M\K

a−1
uj ≤ aija

−1
ij = 0

and that equality holds if and only if a−1
ij =

⊕′
u∈M\K a

−1
uj , which holds if and only if

aij =
⊕

u∈M\K

auj. (3.11)

Note if inequality holds strictly for each j ∈ N , then

(∀j ∈ N) (αaijφj)⊕′ (aijπj) ≤ aijπj < 0

and so ⊕
j∈N

((αaijφj)⊕′ (aijπj)) < 0.

In this case, it follows that the ith equation is not solved for any α ∈ [α, α].

As a result, we assume that for each i ∈ M\K there exists j ∈ N such that (3.11)
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holds. That is, Ni is non-empty, where

(∀i ∈M\K)Ni :=

j ∈ N : aij =
⊕

u∈M\K

auj

 .

It follows that a necessary condition to solve the ith equation for all i ∈M\K is that the

column maxima in A (restricted to the rows of M\K) cover M\K. We state this in a

Lemma.

Lemma 3.8. If the subsystem A [M\K]x = 0 has a solution, then Ni 6= ∅ for each

i ∈M\K.

Let i ∈ M\K be fixed again. Note that (∀j ∈ Ni) aij =

=π−1
j︷ ︸︸ ︷⊕

u∈M\K

auj ⇔ aijπj = 0, and

(∀j 6∈ Ni) aij <
⊕

u∈M\K auj ⇔ aijπj < 0.

Let j ∈ Ni, then

aijπj = 0.

Note that if αaijφj ≥ aijπj (= 0) which holds if and only if

α ≥ a−1
ij φ

−1
j ,

then

(αaijφj)⊕′ (aijπj) = aijπj = 0

⇒ (Ax (α))i = 0,

as required.

We conclude, if there exists j ∈ Ni such that a−1
ij φ

−1
j ≤ α∗ for some α∗ ∈ [α, α], then

x (α) solves the ith equation. Equivalently, if there exists j ∈ Ni such that a−1
ij φ

−1
j ≤
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α, then x (α) is a solution for the ith equation for all α ∈
[
a−1
ij φ

−1
j , α

]
∩ [α, α] =[

α⊕
(
a−1
ij φ

−1
j

)
, α
]
.

Conversely, if (∀j ∈ Ni) a
−1
ij φ

−1
j > α (⇒ αaijφj < 0), then

(Ax (α))i =
⊕
j∈Ni

<0 by assumption︷ ︸︸ ︷
(αaijφj) ⊕′ (aijπj)

⊕⊕
j 6∈Ni

(αaijφj)⊕′
<0 since j 6∈Ni︷ ︸︸ ︷

(aijπj)


< 0⊕ 0

= 0

and so no equality holds.

In conclusion, for i ∈ M\K, there exists α ∈ [α, α] such that x (α) solves the ith

equation if and only if Ni 6= ∅ and there exists j ∈ Ni such that a−1
ij φ

−1
j ≤ α ≤ α. We

summarise with the following Lemma.

Lemma 3.9. Let i ∈ M\K. There exists a solution to the ith equation if and only if

Ni 6= ∅ and there exists j ∈ Ni such that a−1
ij φ

−1
j ≤ α.

We have a couple of remarks.

Remark 3.10. Suppose j ∈ Ni such that a−1
ij φ

−1
j > α. Then α⊕

(
a−1
ij φ

−1
j

)
= a−1

ij φ
−1
j > α.

Remark 3.11. If there are multiple j ∈ Ni such that a−1
ij φ

−1
j ≤ α, then we want to choose

a j which maximises the size of the solution interval for α.

Combining Remarks 3.10 and 3.11 we see that the set of α for which x (α) solves the

ith equation is [
α⊕

′⊕
j∈Ni

(
a−1
ij φ

−1
j

)
, α

]
.

Note that the above interval is empty if and only if (∀j ∈ Ni) a
−1
ij φ

−1
j > α.
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Finally, we want to solve the ith equation for all i ∈ M\K. We should see that we

require

(∀i ∈M\K)α ≥ α⊕
′⊕

j∈Ni

(
a−1
ij φ

−1
j

)
⇔α ≥

⊕
i∈M\K

(
α⊕

′⊕
j∈Ni

(
a−1
ij φ

−1
j

))

⇔α ≥ α⊕
⊕

i∈M\K

(
′⊕

j∈Ni

(
a−1
ij φ

−1
j

))
.

We summarise our results in the following Lemma.

Lemma 3.12. The vector x (α) solves the subsystem A [M\K]x = 0 if and only if

(∀i ∈M\K)Ni 6= ∅ and

α⊕
⊕

i∈M\K

(
′⊕

j∈Ni

(
a−1
ij φ

−1
j

))
≤ α ≤ α.

In fact, since by definition we have max ∅ = ε and by assumption α < α, we have the

following.

Lemma 3.13. The subsystem A [M\K]x = 0 has a solution if and only if

⊕
i∈M\K

(
′⊕

j∈Ni

(
a−1
ij φ

−1
j

))
≤ α.

31



3.5 The whole system Ax = b (α)

We are now at the stage where we can solve the entire system by simply taking the

intersection of the intervals from Lemmas 3.7 and 3.13. This intersection isα⊕ ⊕
i∈M\K

(
′⊕

j∈Ni

(
a−1
ij φ

−1
j

))
, α⊕′

′⊕
i∈K

(⊕
j∈Ni

(aijπj)

) .
We summarise with our Theorem.

Theorem 3.14. The parametrised system Ax = b (α) has a solution if and only if

α⊕
⊕

i∈M\K

(
′⊕

j∈Ni

(
a−1
ij φ

−1
j

))
≤ α ≤ α⊕′

′⊕
i∈K

(⊕
j∈Ni

(aijπj)

)
,

which can be checked in O (mn) time.

Example 3.15. Let

A =



2 1 3 1

1 3 1 2

0 2 3 1

1 1 2 2


and consider the one-sided parametrised system



2 1 3 1

1 3 1 2

0 2 3 1

1 1 2 2


x =



α

α

0

0


.

We have K = {1, 2} and M\K = {3, 4}. Further, by (3.6) and (3.7), φ1 = −2, φ2 =

−3, φ3 = −3, φ4 = −2, π1 = −1, π2 = −2, π3 = −3 and π4 = −2. We calculate the
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following so we may apply Theorem 3.14:

maxj∈N1 (a1jπj) = max (1, 0) = 1,

maxj∈N2 (a2jπj) = max (1, 0) = 1,

minj∈N3

(
a−1

3j φ
−1
j

)
= min (1, 0) = 0,

minj∈N4

(
a−1

4j φ
−1
j

)
= min (1, 0) = 0.

Applying Theorem 3.14 we find Ax = b (α) has a solution if and only if max (0, 0) ≤

α ≤ min (1, 1) if and only if 0 ≤ α ≤ 1.

3.6 Summary

We have studied the m × n parametrised system Ax = b (α) for the finite matrix A and

vector b with a special structure (refer to (3.2)). By considering the two arising subsystems

separately, we are able (in O (mn) time) to explicitly give the set of α, restricted to the

given interval [α, α], for which the parametrised system Ax = b (α) has a solution. Further,

due to known results on one-sided systems, for any such α, we can describe the full set of

solutions.
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4. Two-sided, homogeneous systems

of inequalities - two strongly polyno-

mial solution methods if B has exactly

one finite entry per row

4.1 Introduction

We present a strongly polynomial method for solving two-sided systems of inequalities

Ax ≤ Bx, (4.1)

where A ∈ Rm×n and B ∈ Rm×n
has exactly one finite entry per row. Necessarily,

m ≥ n. We give an O (mn+ n3) method (based on the sub-eigenvector problem) called

the aggregation method . We will see also that the aggregation method finds a set of

generators for the solution set of (4.1).

The aggregation method essentially takes every inequality and rewrites each as a set of

inequalities, each comparing exactly two variables. The problem therefore is transformed

to a system of dual inequalities, which is essentially the sub-eigenvector problem and a

set of generators for the solution set can be found in strongly polynomial time.
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We note here that we may assume without loss of generality that B has no ε columns

(that is, B is column R-astic). To see this, let j ∈ N and suppose Bj = ε, where Bj

denotes column j of B. Note now that the xj term in any vector x does not affect the

vector Bx and the vector Ax is component-wise non-increasing for decreasing xj. Since

we are looking for x such that Ax ≤ Bx, it follows that we can simply choose xj to

be sufficiently small, or even set xj = ε, effectively removing columns Aj and Bj from

our system. A consequence of this note is that we also have m ≥ n (this follows by the

pigeonhole principle).

4.2 The strongly polynomial “aggregation method”

for converting to the sub-eigenvector problem

For all j ∈ N define

Rj := {i ∈M : bij ∈ R} .

That is, Rj is the set of rows i such that bij is finite.

Note that, by our assumed form of B, that each Rj is non-empty and that
⋃
j∈N Rj =

M . Let j ∈ N , we have

(∀i ∈ Rj) ai1x1 ⊕ · · · ⊕ ainxn ≤ xj. (4.2)

Since all the right-hand sides of (4.2) are the same, we can apply the method of aggregation
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to realise that (4.2) holds if and only if

⊕
i∈Rj

ai1x1 ⊕ · · · ⊕ ainxn ≤ xj

⇔
⊕
i∈Rj

⊕
t∈N

aitxt ≤ xj

⇔
⊕
t∈N

⊕
i∈Rj

aitxt ≤ xj. (4.3)

We have reduced the system of inequalities A [Rj]x ≤ B [Rj]x, j ∈ N to a single inequality

(4.3). It is clear now that the system Ax ≤ Bx can be reduced (by considering (4.3) for all

distinct Rj) to an equivalent n×n system A′x ≤ B′x. Note that B′ still has the property

that each row contains exactly one finite entry (since B′ is obtained by deleting rows of B)

and, in addition, B′ has the property that every column contains exactly one finite entry.

This new property follows from the reduction of multiple inequalities of the same type

to a single one. The matrix B′ is, by definition, a permutation matrix and so its inverse

B′−1 exists. It is now easy to convert system (4.1) to one of the form Cx ≤ x, where

C = B′−1A is an n× n matrix. We have reduced the system (4.1) to the sub-eigenvector

problem, for which there exist O (n3) methods to find a set of generators of the solution

set [25].

The main step in the reduction process is converting the system of inequalities (4.2)

for i ∈ Rj (of size O (m)) to a single inequality (4.3) and repeating this for all j ∈ N

(O (n)), so the reduction process takes O (mn) time. It follows that we can find a set of

generators for (4.1) in O (mn+ n3) time.

The following very simple example shows the reduction process working.

36



Example 4.1. Consider the system


−1 4

0 1

−6 −2

x ≤


0 ε

0 ε

ε 0

x.

The first two inequalities can be combined (both contain an x1 term on the right-hand

side). We get the reduced system

 0 4

−6 −2

x ≤

 0 ε

ε 0

x.

In this example, B′ is already the identity matrix and we are left with the sub-eigenvector

problem  0 4

−6 −2

x ≤ x.
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5. Two-sided homogeneous systems of

equations - strongly polynomial

method if matrices have exactly two

finite entries per row, appearing in

the same position

5.1 Introduction

We consider here the two-sided system Ax = Bx where A,B ∈ Rm×n
each have exactly

two finite entries per row, appearing in the same position in A and B.

By making use of the Cancellation Rule (Lemma 2.7), we show that the two-sided

system can be converted to an equivalent sub-eigenvector problem in strongly polynomial

time. It follows that we can find a set of generators for the solution set in strongly

polynomial time.
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5.2 Problem formulation

We consider two-sided systems of equations in max-algebra of the form

Ax = Bx (5.1)

for matrices A,B ∈ Rm×n
, each having exactly two finite entries per row according to the

rule (∀i) (∀j) aij ∈ R if and only if bij ∈ R. It should be stressed that we aim to find a

non-trivial solution x 6= ε which is not necessarily finite. Indeed, in the method presented

we may set some components xj equal to ε. The ith equation is

aijixji ⊕ aikixki = bijixji ⊕ bikixki , (5.2)

for some ji, ki ∈ N and aiji , aiki , biji , biki ∈ R.

An example illustrates the assumed form of matrices A and B.

Example 5.1. 

1 2

2 0

2 2

3 1


x =



0 1

1 2

0 0

2 1


x.

Solving this small system reveals that the solution set S is given by

S =
{

(ε, ε, ε, ε, c) : c ∈ R
}

and so no finite solution exists.

We now make some remarks which allow us to remove certain rows and columns of

matrices A and B in (5.1), reducing (5.1) to a desirable special form, from which we can
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find a solution.

5.3 Remarks

We make some important remarks which will allow us to simplify our problem. Recall

the Cancellation Rule 2.7, page 18.

Remark 5.2. If for any equation, the ith equation (5.2), say, there are exactly two can-

cellations (on opposite sides), then (after cancelling) we obtain an equality of the form

aijxj = bikxk

for some j and k. We may then remove the column k (say) from both sides of (5.1) (that

is, remove column k from both A and B), writing all instances of xk in terms of xj and

incorporating these new coefficients into the j columns of A and B. Having done this we

may also remove row i, as the ith equation (5.2) is now solved by simply re-introducing

xk later. (Note we may now have that some rows of A (and so also B) have less than two

finite entries, this point is addressed later).

Remark 5.3. If for any equation, the ith equation (5.2), say, we have two cancellations

happening on the same side, then (after cancelling) we obtain an equality of the form

aijxj ⊕ aikxk = ε

for some j and k. It follows (since aij, aik are finite) that we set xj = xk = ε. Having

done this, we may remove the ith equation (5.2) as this is now satisfied and remove also

columns j and k from both A and B in (5.1). (Again, some rows of A, and so also of B,

may now have strictly less than two finite entries).

Remark 5.4. If for any equation, the ith equation (5.2), say, we have no cancellations
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happening, then we have

aijxj ⊕ aikxk = aijxj ⊕ aikxk

for some j and k. We then remove the ith equation (5.2) (that is, row i from both A and

B) as this is trivially satisfied.

Remark 5.5. We assume now that matrices A and B in (5.1) have been reduced according

to Remarks 5.2, 5.3 and 5.4. Note that these Remarks only deal with equations in which

none or exactly two cancellations happen. Equations for which exactly one cancellation

occurs have not yet been mentioned.

As noted in Remarks 5.2 and 5.3, for each i we now have that row i of matrix A (and

so also matrix B) has at most two finite entries in (5.1). (Note that by Remarks 5.2, 5.3

and 5.4, for each i matrices A and B will have exactly the same number of finite entries

in row i, this number may be zero, one or two).

If row i has no finite entries we may simply remove row i, since ε = ε is trivially

satisfied.

If row i has exactly one finite entry (in both A and B), then the ith equation will read

aijxj = bijxj

for some j. If aij = bij, then again we may remove row i (from A and B) since the ith

equation is trivially satisfied. Otherwise, we set xj = ε and remove row i and column j

(from A and B).

Finally, if row i has exactly two finite entries, then it must be that exactly one cancel-

lation is due to happen here.

Remark 5.6 (conclusion). Based on Remarks 5.2, 5.3, 5.4 and 5.5, we may assume

without loss of generality that (5.1) is a system in which every row of A and B has exactly
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two finite entries appearing in the same position and exactly one cancellation happens per

equation.

An example helps make clear the reduction process.

Example 5.7. Consider the 5× 4 system



5 1

2 1

1 0

3 0

3 4


x =



0 2

1 1

0 0

2 4

2 4


x.

In the first equation, we have two cancellations, happening on opposite sides. We have

the equality 5x1 = 2x2 ⇔ x2 = 3x1. Making this substitution throughout and removing the

first equation and second column yields the following system, where columns correspond

to original variables x1, x3, x4.



5 1

1 0

3 0

6 4


x′ =



4 1

0 0

2 4

5 4


x′.

From the third equation of the reduced system, we have two cancellations happening on

opposite sides. We have

3x3 = 4x4 ⇔ x4 = (−1)x3.
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Applying the same procedure as in the previous step we now reach the final reduced form


5 0

1 0

6 3

x′′ =


4 0

0 0

5 3

x′′,

where columns correspond to original variables x1, x3. Notice how each row has exactly

two finite entries and exactly one cancellation occurs in each row. This is our final form,

we assume this form without loss of generality for the remainder of this chapter.

Below is an example of a system in its reduced form, showing that our final form in

general will not necessarily have only two R-astic columns in A and B.

Example 5.8. 
1 0

0 1

1 1

x =


1 3

3 1

0 1

x.

5.4 Systems of inequalities and the sub-eigenvector

problem

From this point we assume without loss of generality that (5.1) is a system for which in

each row there are exactly two finite entries in the matrices A and B, appearing in the

same position and with the extra property that exactly one cancellation occurs per row

(per equation).

5.4.1 Algorithm A1

Algorithm A1 :

Input : Matrices A,B ∈ Rm×n
, where each row of A and B have exactly two finite
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entries, appearing in the same position. Also, in each row there is exactly one cancellation.

Output : Answer to the question of finite solvability of the system Ax = Bx and a

set of generators of the solution set in the affirmative case.

(I) Define (∀i ∈ N) (∀j ∈ N) , i 6= j

Iij := {k ∈M : aki, bki, akj, bkj ∈ R, aki = bki, akj 6= bkj} .

(II) Define (∀i ∈ N) (∀j ∈ N) , i 6= j

cij :=
⊕
k∈Iij

(max (akj, bkj)− aki) .

(III) Define (∀i ∈ N) cii := ε.

(IV) If λ (C) > 0, then identify a positive cycle (i0, i1, . . . , ir = i0), some r, in C and

go to (V). Else, λ (C) ≤ 0 and go to (VI).

(V) Set xis := ε for s = 0, . . . , r − 1 and update C by deleting rows/columns is of

C. If this deletes all rows/columns of C, then STOP and return “there is no non-trivial

solution”, else, go to (IV).

(VI) STOP and return “x is a solution if and only if x = C∗u, u ∈ Rm×n”.

Theorem 5.9. The algorithm A1 is correct and terminates in O (mn2 + n4) time.

Proof. Let A,B ∈ Rm×n
be as in the input of Algorithm A1. Let i, j ∈ N, i 6= j. Define

Iij := {k ∈M : aki, bki, akj, bkj ∈ R, aki = bki, akj 6= bkj} .

Iij is the set of equations in which variables i and j appear together with finite coef-

ficients and the cancellation happens with the coefficients of xj.

Now, let k ∈ Iij for some i 6= j. Then equation k:
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akixi ⊕max (akj, bkj)xj = akixi.

Now, equation k is satisfied if and only if

max (akj, bkj)xj ≤ akixi,

which holds if and only if

xi − xj ≥ max (akj, bkj)− aki.

Since this is true for all k ∈ Iij, we have

xi − xj ≥
⊕
k∈Iij

(max (akj, bkj)− aki) = cij,

as defined in A1.

Note that for all i, xi − xi ≥ ε is trivially satisfied.

The two-sided system Ax = Bx is therefore equivalent to

(∀i) (∀j)xi − xj ≥ cij,

which (in max-algebraic notation) is equivalent to

(∀i ∈ N)
⊕
j∈N

(cijxj) ≤ xi,

or, in the compact form,

Cx ≤ x.

This is the subeigenvector problem for λ = 0.
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It is known ([25], Theorem 1.6.18(b)) that if λ (C) ≤ 0, then Cx ≤ x, x ∈ Rn if and

only if x = C∗u, u ∈ Rn.

If λ(C) > 0, it is then possible to find such a positive cycle in the associated digraph

DC . Suppose we have the positive cycle (i0, i1, . . . , ir−1, ir = i0), for some r. Then we

have 

xi0 ≥ ci0i1xi1

xi1 ≥ ci1i2xi2

...

xir−1 ≥ cir−1i0xi0 .

(5.3)

Putting together the inequalities from (5.3) we have

xi0 ≥ ci0i1ci1i2 . . . cir−1i0xi0 > xi0 ,

a contradiction (if one assumes that xi0 , xi1 , . . . , xir−1 ∈ R). It follows that at least one of

xi0 , xi1 , . . . , xir−1 , say xis , is equal to ε. But then we have that

ε = xis ≥ cisis+1xis+1 ⇒ xis+1 = ε

and so on. We conclude that xi0 = xi1 = · · · = xir−1 = ε, and so we may remove these

variables, reducing the size of the matrix C and eliminating the positive cycle. Repeating

this process we either destroy the matrix C completely, or reach a matrix C ′ such that

λ (C ′) ≤ 0.

To see the complexity of the algorithm observe the following.

Step (I) defines Iij for all i, j ∈ N, i 6= j. For every such Iij, we consider each k ∈M .

Thus, this step takes O (mn2) time. Similarly, it takes O (mn2) time to calculate cij for

all i, j ∈ N, i 6= j. Step (III) is trivial and takes O (1) time.
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There will be at most n repetitions of steps (IV) and (V). In each, we calculate λ (C)

(O (n3) time) and identify a positive cycle (O (n2) time). Together, these steps run in

O (n4) time.

Finally, in step (VI) we calculate C∗ in O (n3) time.

In total, the computational complexity is O (mn2) +O (n4) = O (mn2 + n4) time.

�

We conclude with a non-trivial example to show that our method works. (Blank spaces

denote ε).

Example 5.10. Consider the system



1 ε 0

1 ε 1

1 2 ε

3 ε 4

2 ε 6


x =



2 ε 0

1 ε 0

0 2 ε

5 ε 4

2 ε 4


x.

We calculate

I61 = {1, 4} ,

I37 = {2} ,

I42 = {3} ,

I28 = {5} .

For all other i 6= j, Iij = ∅. Note that
⋃
i 6=j Iij = M.
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Now,

c61 =
⊕
k=1,4

(⊕
(ak1, bk1)− ak6

)
=
⊕(⊕

(1, 2)− 0,
⊕

(3, 5)− 4
)

=
⊕

(2− 0, 5− 4)

= 2.

c37 =
⊕

(a27, b27)− a23 = 1− 1 = 0.

c42 =
⊕

(a32, b32)− a34 = 1− 2 = −1.

c28 =
⊕

(a58, b58)− a52 = 6− 2 = 4.

For all other i 6= j, cij = ε. Also, (∀i) cii = ε.

We have

C =



ε

ε 4

ε 0

−1 ε

ε

2 ε

ε

ε



.
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We can check that λ(C) < 0 and so we compute

C∗ =



ε

ε 4

ε 0

−1 ε 3

ε

2 ε

ε

ε



.

Now let us choose some vector u, say the zero vector, then



ε

ε 4

ε 0

−1 ε 3

ε

2 ε

ε

ε



u =



ε

4

0

3

ε

2

ε

ε



.

It is easy to check that this is a solution to our original system!

5.5 Summary

By making some natural, simplifying assumptions, we were able to assume without loss

of generality the extra condition that in each row there is exactly one entry in A with

the same value as the corresponding entry in B. This allowed us to use the Cancellation
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Rule - reducing (5.1) to the sub-eigenvector problem, which is easily solved. We finished

with a few examples.
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6. Two-dimensional, two-sided homo-

geneous systems of equations and two-

dimensional GEP - strongly polyno-

mial solution methods

6.1 Introduction

In this chapter all matrices are finite, have exactly two columns and all vectors have

exactly two components.

We approach this chapter in stages. First, we give a complete description of the

solution space for two-dimensional two-sided systems Ax = Bx. This will help us to solve

the 2× 2 generalised eigenproblem Ax = λBx, which in turn is used to give the explicit

set of solutions for the two-dimensional generalised eigenproblem. We extensively use the

Cancellation Rule (Lemma 2.7) to obtain our results.

The contents of this chapter have been published in [17].
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6.2 Problem formulation

The case when x1 = ε reduces the generalized eigenproblem

Ax = λBx (6.1)

to the question of whether or not the second columns of A and B are proportional (and

the coefficient of proportionality is then the unique generalized eigenvalue). Similarly for

x2 = ε, so we will restrict our attention to the task of finding finite x satisfying (6.1).

By homogeneity of V (A,B, λ) we can assume that x1 = 0. We will therefore study the

problem of finding x2 ∈ R such that

ai1 ⊕ ai2x2 = λbi1 ⊕ λbi2x2; i ∈M. (6.2)

Before we discuss the generalised eigenproblem, we will show in Subsection 6.3 how

to find all solutions of two-sided systems

Ax = Bx, x ∈ R2 (6.3)

for A,B ∈ Rm×2 and then in Subsection 6.4 we show how to solve (6.2) for m = 2.

Section 6.5 can be seen as an independent generalisation of the results in [12], where

the set of solutions to (6.2) in the 2× 2 case is described, to the system (6.2) in the m× 2

case.

6.3 Two-dimensional two-sided systems
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In system (6.3) we can assume without loss of generality x1 = 0:

ai1 ⊕ ai2x2 = bi1 ⊕ bi2x2; i ∈M. (6.4)

Let us denote

Vi = {x2 ∈ R; ai1 ⊕ ai2x2 = bi1 ⊕ bi2x2} ; i ∈M

and V =
⋂
i∈M

Vi.

We will explicitly describe each Vi. Let us apply the Cancellation Rule of Lemma 2.7

to (6.4). For every i ∈M there are either two, or one or no cancellations.

(i) If there is no cancellation then

ai1 = bi1 and ai2 = bi2

and so Vi = R.

(ii) If there is exactly one cancellation then it can be assumed without loss of generality

to take place on the left-hand side and we consider two cases.

Either ai1 < bi1 and ai2 = bi2 so that (6.4) reduces to

ai2x2 = bi1 ⊕ ai2x2

yielding Vi = [a−1
i2 bi1,+∞).

Or ai1 = bi1 and ai2 < bi2 so that (6.4) reduces to

ai1 = ai1 ⊕ bi2x2

yielding Vi = (−∞, ai1b−1
i2 ].

(iii) If there are two cancellations and they take place on the same side then this side
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becomes ε yielding Vi = ∅. If the two cancellations take place on different sides then either

ai1 > bi1 and ai2 < bi2 so that (6.4) reduces to

ai1 = bi2x2

yielding Vi =
{
ai1b

−1
i2

}
or, ai1 < bi1 and ai2 > bi2 yielding similarly Vi =

{
a−1
i2 bi1

}
.

Since each Vi obtained above is a closed interval (including possibly a singleton or

empty set) and can be found in a constant number of operations, the intersection V =⋂
i∈M

Vi is also a closed interval (including possibly a singleton or empty set) and can be

found in O (m) time.

We conclude:

Proposition 6.1. The solution set to (6.3) is of the form

{
α (0, x2)T ;α ∈ R, x2 ∈ V

}

where V is a closed interval (including possibly a singleton or empty set), which can be

found in O (m) time as described above.

6.4 Generalized eigenproblem for 2× 2 matrices

Our aim in this subsection is to describe the whole spectrum for the 2 × 2 generalized

eigenproblem (6.1) which, without loss of generality, can be written

a11 ⊕ a12x2 = λb11 ⊕ λb12x2 (6.5)

a21 ⊕ a22x2 = λb21 ⊕ λb22x2,

where all aij and bij are real numbers.

This is a very special case, already solved in [12] but will be of key importance for
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solving the general two-dimensional case in the next subsection for which we use a different

methodology from that in [12] for solving the general case in Subsection 6.5.

Recall (Proposition 2.6), Λ (A,B) ⊆ [L,U ]. Both L and U can easily be found (in

O (mn) time). We will therefore assume that L < U since otherwise we have Λ (A,B) = ∅

(if L > U) or L = U is the unique candidate for a value in Λ (A,B) and this can be verified

easily for instance using the tools of Subsection 6.3. We will distinguish four cases and

describe the spectrum in each of them. Recall

C = (cij) =
(
aijb

−1
ij

)
.

The feasibility interval [L,U ] has exactly one of the forms below:

[max (c11, c21) ,min (c12, c22)] ,

[max (c12, c22) ,min (c11, c21)] ,

[max (c11, c22) ,min (c12, c21)] ,

[max (c12, c21) ,min (c11, c22)] .

Note that the first case can be equivalently described by inequalities c11 < c12, c21 <

c22, similarly the other cases. The first two cases can be transformed to each other by

swapping the variables x1 and x2. Similarly the last two cases. So we essentially have only

two cases. In fact we will only deal with the third (and thus also with the fourth) case as

the first (two) will be covered by the discussion in Subsection 6.5.

In what follows we denote

γ2 = a12a21b
−1
11 b
−1
22 . (6.6)

Proposition 6.2. If c11 < c12, c22 < c21 and L < U then Λ (A,B) = {γ̂} , where γ̂ is the
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unique projection of γ onto [L,U ] , that is

γ̂ =


L if γ ≤ L,

γ if γ ∈ (L,U) ,

U if γ ≥ U.

Proof. Note first that by the assumptions we have L = max (c11, c22) and U =

min (c12, c21) . Let us denote

S = (L,U) ∩ Λ (A,B) .

It is sufficient to prove the following statements:

(i) S 6= ∅ =⇒ S = {γ} ,

(ii) γ ∈ (L,U) =⇒ γ ∈ S,

(iii) γ ∈ (L,U) =⇒ L,U /∈ Λ (A,B) ,

(iv) γ ≤ L =⇒ Λ (A,B) = {L} and

(v) γ ≥ U =⇒ Λ (A,B) = {U} .

In order to prove (i) suppose λ ∈ S. Hence we have

c11, c22 < λ < c12, c21

and thus (using cij = aijb
−1
ij )

a11 < λb11, a12 > λb12,

a22 < λb22, a21 > λb21.

System (6.5) reduces by the Cancellation Rule (Lemma 2.7) in this case to

a12x2 = λb11

a21 = λb22x2.

}
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So x2 = λb11a
−1
12 and x2 = λ−1a21b

−1
22 , from which λ = γ follows.

(ii) Suppose γ ∈ (L,U) and put λ = γ. By taking x2 = λb11a
−1
12 = λ−1a21b

−1
22 we see

that λ ∈ Λ (A,B) .

(iii) Suppose that γ ∈ (L,U) and λ = L ∈ Λ (A,B) . If c11 < c22 then

c11 < c22 = λ < c12, c21

and thus

a11 < λb11, a12 > λb12,

a22 = λb22, a21 > λb21.

By cancellations and substituting λb22 for a22 system (6.5) reduces to

a12x2 = λb11

a21 ⊕ λb22x2 = λb22x2.

}

So x2 = λb11a
−1
12 and x2 ≥ λ−1a21b

−1
22 , from which λ2 ≥ γ2, a contradiction.

A contradiction is obtained in a similar way when c11 > c22 or c11 = c22.

The case of λ = U ∈ Λ (A,B) is dealt with in a similar way.

(iv) Suppose γ ≤ L. Due to (i) it is sufficient to prove that L ∈ Λ (A,B) and U /∈

Λ (A,B) . Let λ = L. It is easily verified that x2 is a solution to (6.5) where

x2 =


λb11a

−1
12 , if c11 < c22;

λ−1a21b
−1
22 , if c11 > c22 and

any value in
[
a11a

−1
22 , a11a

−1
12

]
if c11 = c22.
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Let λ = U and suppose c12 < c21. Then λ > γ and

c11, c22 < λ = c12 < c21

and thus

a11 < λb11, a12 = λb12,

a22 < λb22, a21 > λb21.

By cancellations and substituting λb12 for a12 system (6.5) reduces to

a12x2 = λb11 ⊕ a12x2

a21 = λb22x2.

}

So x2 ≥ λa−1
12 b11 and x2 = λ−1b−1

22 a12, from which λ2 ≤ γ2, a contradiction.

A contradiction can similarlly be obtained when c12 > c21 or c12 = c21.

(v) The proof of this part is similar to that of (iv) and is omitted here. �

6.5 Generalized eigenproblem: the two-dimensional

case

As before, due to the finiteness of x and homogeneity we assume that x1 = 0 and we

therefore study system (6.2).

We will distinguish three cases.

Case 1: If ci1 = ci2 for some i ∈ M then by Proposition 2.6 this value is the unique

candidate for the generalized eigenvalue. Using the method of Subsection 6.3 it can be

readily checked whether this is indeed the case.
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Case 2: If ci11 < ci12 and ci21 > ci22 for some i1, i2 ∈M then the 2× 2 system

 ai11 ai12

ai21 ai22

x = λ

 bi11 bi12

bi21 bi22

x

has a unique eigenvalue by Proposition 6.2 and is therefore a unique candidate for an

eigenvalue of the whole system. This can easily be checked by the method of Subsection

6.3.

Case 3: If ci1 < ci2 for all i ∈M (the case when ci1 > ci2 for all i ∈M can be discussed

similarly) then for any i ∈M the feasibility interval for the ith equation alone is [ci1, ci2] .

Suppose λ ∈ Λ (A,B) ∩ (ci1, ci2) . Then ai1 < λbi1 and ai2 > λbi2 and the equation

ai1 ⊕ ai2x2 = λbi1 ⊕ λbi2x2 (6.7)

reduces using cancellations to

ai2x2 = λbi1.

Hence

x2 = λbi1a
−1
i2 (6.8)

and thus the dependence of x2 on λ over (ci1, ci2) is expressed by a linear function (with

slope 1). This concludes the case when λ is strictly between ci1 and ci2. To finish Case 3

suppose now that λ = ci1 ∈ Λ (A,B) . Then ai1 = λbi1 and ai2 > λbi2 and equation (6.7)

reduces using cancellations to

ai1 ⊕ ai2x2 = ai1.

Hence x2 ≤ ai1a
−1
i2 . Similarly if λ = ci2 ∈ Λ (A,B) then x2 ≥ bi1b

−1
i2 . Note that

lim
λ→ci1

λbi1a
−1
i2 = ai1a

−1
i2 and lim

λ→ci2
λbi1a

−1
i2 = bi1b

−1
i2
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λL = ai1b
−1
i1 U = ai2b

−1
i2

ai1a
−1
i2

bi1b
−1
i2

x2

x2 = λbi1a
−1
i2

Figure 6.1: dependence of x2 on λ over [ci1, ci2]

and so the graph of dependence of x2 on λ over [ci1, ci2] is a continuous, piece-wise linear

map, see Figure 6.1. This result is consistent with the fact that ai1a
−1
i2 < bi1b

−1
i2 , since this

is equivalent to ci1 < ci2.

Finally we note that for the whole system we have

(L,U) =
⋂
i∈M

(ci1, ci2) .

Thus if λ ∈ Λ (A,B) ∩ (L,U) then λ ∈ Λ (A,B) ∩ (ci1, ci2) for every i ∈ M and so x2 is

the common value of all λbi1a
−1
i2 , i ∈ M (6.8). This implies (L,U) ⊆ Λ (A,B) . We have

proved:

Proposition 6.3. If A,B ∈ Rm×2 and ci1 < ci2 for every i ∈ M then a generalized

eigenvalue in (L,U) exists if and only if all values in (L,U) are generalized eigenvalues.

This is equivalent to the requirement that all values bi1a
−1
i2 for i ∈M coincide.

If the condition in Proposition 6.3 is satisfied then by continuity also L,U ∈ Λ (A,B)

and in this case Λ (A,B) = [L,U ] . If not then L,U have to be examined separately for

being generalized eigenvalues. Figures 6.2-6.6 indicate that all possibilities may occur
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λa21b
−1
21 a12b

−1
12

a21a
−1
22

a11a
−1
12

b21b
−1
22

a11b
−1
11 a22b

−1
22

b11b
−1
12

x2

x2 = λb11a
−1
12 = λb21a

−1
22

Figure 6.2: A continuum of solutions: λ ∈ [L,U ] =
[
a21b

−1
21 , a12b

−1
12

]
, x2 = λb11a

−1
12 =

λb21a
−1
22

(both of L,U, exactly one, or none of them in Λ (A,B)).

Summarizing all cases we have that if A,B ∈ Rm×2 then Λ (A,B) can be found in

O (m) time and has one of the following forms (the illustrating figures are drawn for

m = 2):

• [L,U ] , see Figure 6.2,

• {L,U} , see Figure 6.3,

• {λ} , where λ ∈ [L,U ] , see Case 2 and Figures 6.4 and 6.5,

• ∅, see Figure 6.6 and Case 1.

In all cases the eigenspace associated with a fixed generalized eigenvalue is described

in Proposition 6.1.

6.6 Summary

We saw that the Cancellation Rule can be a powerful tool. Using it carefully allowed us

to give explicit solutions for two-dimensional two-sided systems and the two-dimensional
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λa21b
−1
21 a12b

−1
12

a21a
−1
22

a11a
−1
12

b21b
−1
22

a11b
−1
11 a22b

−1
22

a21b
−1
21 b11a

−1
12

a12b
−1
12 b21a

−1
22

b11b
−1
12

x2

Figure 6.3: Two solutions: (λ, x2) =
(
L = a21b

−1
21 , a21b

−1
21 b11a

−1
12

)
and (λ, x2) = (U =

a12b
−1
12 , a12b

−1
12 b21a

−1
22 )

λa21b
−1
21 a22b

−1
22

a21a
−1
22

a11a
−1
12

b21b
−1
22

a11b
−1
11 a12b

−1
12

a21b
−1
21 b11a

−1
12

b11b
−1
12

x2

Figure 6.4: One solution: (λ, x2) = (L = a21b
−1
21 , a21b

−1
21 b11a

−1
12 )
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λa21b
−1
21 a22b

−1
22

b21b
−1
22

a11a
−1
12

a21a
−1
22

a11b
−1
11 a12b

−1
12

a22b
−1
22 b11a

−1
12

b11b
−1
12

x2

Figure 6.5: One solution: (λ, x2) = (U = a22b
−1
22 , a22b

−1
22 b11a

−1
12 )

λa21b
−1
21 a12b

−1
12

a11a
−1
12

b21b
−1
22

a21a
−1
22

a11b
−1
11 a22b

−1
22

b11b
−1
12

x2

Figure 6.6: No solutions
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generalised eigenproblem.

64



7. Two-sided systems of equations with

separated variables - strongly polyno-

mial solution method if B has exactly

two columns

7.1 Introduction

In this chapter, the matrices A and B are finite and the matrix B (say) has exactly two

columns.

We show that such two-sided systems with separated variables Ax = By can be solved

in strongly polynomial time, in that we can find a finite solution. We do this by considering

this system as a sequence of one-sided parametrised systems, of the form studied in chapter

3. It is possible, by considering different solution types, to fully describe the solution set

for each type.

7.2 Problem formulation

We are concerned here with a special case of the two-sided systems of max-linear equations

with separated variables; namely

Ax = By, (7.1)
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where A ∈ Rm×n, B ∈ Rm×2, x ∈ Rn
, y ∈ R2

. Our aim is to find a non-trivial solution

if it exists and identify the case when it does not. (We will see that we can in fact look

for a finite solution). Throughout this work we assume (x, y) is a non-trivial solution,

unless otherwise stated. Note that the algorithm in this chapter can be adapted to find

all solutions in polynomial time.

We note that due to the finite nature of A and B, for any solution we have y = ε ⇔

x = ε, therefore we have a non-trivial solution if and only if we have a solution for which

y is non-trivial. Throughout this work we will therefore assume that y 6= ε.

Note that if y1 = ε, say, then we can set y2 = 0 and then (7.1) is simply equivalent to

a one-sided system of the form Ax = b for some vector b; such systems are easily solved

(see [25]). Similarly if y2 = ε. That is, we can always start by checking solvability of

Ax = B1y1 and Ax = B2y2, where Bj denotes column j of the matrix B for j = 1, 2. For

the rest of this chapter, we assume that these two one-sided systems have been checked

and any solutions that have been found have been added to the solution set. As such, we

assume from now on that y is finite and so, without loss of generality, y1 = 0. It follows

now that we may also assume without loss of generality that x is finite.

A preliminary observation simplifies our work. Firstly, we may assume, without loss

of generality, that (∀i) bi1 = 0 (by scaling rows of the matrices A and B appropriately).

We will also assume without loss of generality, by rearranging rows, that the sequence

b12, b22, . . . , bm2 is non-increasing. It is then possible for us to conveniently partition the

set M according to the values of bi2.

Rigorously, we have

b12 = · · · = bk12 > bk1+1,2 = · · · = bk2,2 > · · · > bkp−1+1,2 = · · · = bkp,2. (7.2)
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We denote

K1 = {1, . . . , k1} , K2 = {k1 + 1, . . . , k2} , . . . , Kp = {kp−1 + 1, . . . , kp} . (7.3)

So if we let 1 ≤ t ≤ p, then (∀i ∈ Kt) bi2 = bkt2. We then have that the sequence

bk12, bk22, . . . , bkp2 is strictly decreasing, equivalently, the sequence b−1
k12, b

−1
k22, . . . , b

−1
kp2 is

strictly increasing. Let us also define

(∀t) γt := bk12b
−1
kt2
, (7.4)

so γ1 = 0. Note also that (γ) is a strictly increasing sequence.

An example illustrates the partitioning process.

Example 7.1.



−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



0 1

0 −1

0 −1

0 −3


 y1

y2

 .

We set K1 = {1} , K2 = {2, 3} , K3 = {4} .

In Example 7.1 above we therefore have γ1 = 1⊗ 1−1 = 0, γ2 = 1⊗ (−1)−1 = 2, γ3 =

1⊗(−3)−1 = 4. Note also in Example 7.1 that for y2 ∈ (−∞,−1], our system is equivalent

to 

−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



0

0

0

0


,
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a one-sided system which is easily solvable (see chapter 2).

Similarly, if y2 ∈ [−1, 1], then our system is equivalent to



−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



α

0

0

0


,

where α ∈ [0, 2]. This is a one sided system where b is now a parametrised vector. We

have seen in chapter 3 that such systems, whilst more involved, are also easily solvable.

Again, if y2 ∈ [1, 3], then our system is equivalent to



−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



α

α− 2

α− 2

0


,

where α ∈ [2, 4] .

Finally, if y2 ∈ [3,∞], then our system is equivalent to



−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



α

α− 2

α− 2

α− 4


,

where α ∈ [4,∞).

There is a pattern emerging and we summarise it in the following Lemma. The reader

should refer to the definitions and results of chapter 3 and also to (7.2), (7.3) and (7.4)
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for definitions of terms used in the following Lemma.

Lemma 7.2. Consider the system Ax = By for finite matrices A and B, where B has

exactly two columns.

1. For y2 ∈
(
−∞, b−1

k12

]
, (7.1) is equivalent to Ax = 0, a one-sided max-linear system

of equations.

2. For y2 ∈
[
b−1
kp2,∞

)
, (7.1) is equivalent to Ax = b (α), where

(∀1 ≤ t ≤ p) (∀i ∈ Kt) bi = αγ−1
t , α ∈ [γp,∞).

3. For all 1 ≤ r ≤ p−1, for y2 ∈
[
b−1
kr2
, b−1
kr+12

]
, (7.1) is equivalent to Ax = b (α), where

(∀1 ≤ t ≤ r) (∀i ∈ Kt) bi = αγ−1
t , (∀r + 1 ≤ t ≤ p) (∀i ∈ Kt) bi = 0, α ∈ [γr, γr+1].

Proof. The proof is in three parts.

1. First assume y2 ∈
(
∞, b−1

k12

]
. It follows (∀1 ≤ t ≤ p) (∀i ∈ Kt) that

−∞ ≤ bi2y2 ≤ bi2b
−1
k12 ≤ bk12b

−1
k12 = 0 = bi1y1, (bi2 ≤ bk12 due to the monotonicity of

the column vector B2). It follows that (∀i ∈M) bi1y1 ⊕ bi2y2 = bi1y1 = 0, the result

follows.

2. Next, assume that y2 ∈
[
b−1
kp2,∞

)
. Let 1 ≤ t ≤ p and i ∈ Kt. When y2 = b−1

kp2

we have that bi2y2 = bkt2b
−1
kp2 =

(
bk12b

−1
kp2

) (
bk12b

−1
kt2

)−1
= γpγ

−1
t ≥ 0 (due to the

sequence (γ) being strictly increasing).

It follows that bi1y1 ⊕ bi2y2 ≥ γpγ
−1
t and equality holds if and only if y2 = b−1

kp2. The

result follows.
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3. Now let 1 ≤ r ≤ p − 1 and let y2 ∈
[
b−1
kr2
, b−1
kr+12

]
. Let 1 ≤ t ≤ r and i ∈ Kt. Then

firstly, bi2y2 = bkt2y2 ≥ bkt2b
−1
kr2

= γrγ
−1
t and equality holds if and only if y2 = b−1

kr2
.

(Note also the inequality γrγ
−1
t ≥ 0).

Secondly, bi2y2 = bkt2y2 ≤ bkt2b
−1
kr+12 = γr+1γ

−1
t and equality holds if and only if

y2 = b−1
kr+12.

It follows that bi = αγ−1
t , where α ∈ [γr, γr+1].

Now let r + 1 ≤ t ≤ p and i ∈ Kt. Then bi2y2 = bkt2y2 ≤ bkt2b
−1
kr+12 ≤ 0 (due to

monotonicity of column vector B2 and since t ≥ r + 1). It follows that

bi1y1 ⊕ bi2y2 = 0⊕ bi2y2 = 0. The result follows.

�

7.3 Outline of work

The following is a brief outline of how the work in this chapter will continue. In the above

we have shown that the two-sided system (7.1) with separated variables can be viewed

as a sequence of one-sided systems of the form Ax = b (α), where α ∈ [α, α] for some

α, α ∈ R. In fact, the first system, i.e. for y2 ∈
(
−∞, b−1

k12

]
, is a one-sided system without

a parameter, which we will call S0. It is easy to find all solutions (if any) to S0 since it

is essentially a one-sided system. We are now left with p ≤ m one-sided parametrised

systems. The system corresponding to the case y2 ∈
[
b−1
kp2,∞

)
will be called Sp and

(∀r) (1 ≤ r ≤ p− 1) the system corresponding to the case y2 ∈
[
b−1
kr2
, bkr+12

]
will be called

Sr.

7.4 Theory

Consider the one-sided parametrised system Sr for some r ≥ 1. By scaling the equations

appropriately we may assume without loss of generality that Sr is of the form discussed in

chapter 3. As a consequence, the results there are available to us here. The system Sr has
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a very distinct form. More precisely, it can be split into two parts: the top half (where

the parameter α appears in the vector b); and the bottom half (where the parameter does

not appear in b). In the language of chapter 3, we call the top half K and the bottom

half M\K. Define for all r, K ′r :=
⋃

1≤t≤rKt. An important result for cutting down the

complexity time for a solution is the following.

Lemma 7.3. Consider the system Sr for some 1 ≤ r ≤ p − 1. If there does not exist

α ∈ [γr, γr+1] such that x(r) (α) solves Sr restricted to K ′r, namely the system

A [K ′r]x = b [K ′r], then there is no non-trivial solution to Sr′ for any r′ ≥ r.

Proof. This possibly surprising result is essentially a consequence of the homogeneity

of our system.

Let 1 ≤ r ≤ p − 1 and consider the system Sr. Let 1 ≤ t ≤ r and i ∈ Kt. Before

we continue, note that the vector x depends not only on α but also the system we are

considering. So in system Sr we denote x (α) by x(r) (α). We aim to show that if there

does not exist α ∈ [γr, γr+1] such that x(r) (α) solves the ith equation in Sr, then for all

r′ > r, there does not exist α ∈ [γr′ , γr′+1] such that x(r′) (α) solves the ith equation in

Sr′ .

So, assume that for all α ∈ [γr, γr+1], we have

(
Ax(r) (α)

)
i
< αγ−1

t .

Here we have used the fact that (∀i) (Ax (α))i ≤ (By)i and we are assuming in this case

that equality does not hold. Also, we saw in Lemma 7.2 the form of the right hand side.

Now let r′ > r. Let αr ∈ [γr, γr+1] and αr′ ∈ [γr′ , γr′+1] be fixed. We have that

(
Ax(r) (αr)

)
i

=
⊕
j∈N

(
aijx

(r)
j (αr)

)
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and (
Ax(r′) (αr′)

)
i

=
⊕
j∈N

(
aijx

(r′)
j (αr′)

)
.

We wish to examine the change in these two quantities, in order to do that, we must

examine the change in the quantities x(r) (αr) and x(r′) (αr′). In particular, we wish to

find the maximum possible size of the increase from the quantity x(r) (αr) to the quantity

x(r′) (αr′).

Let j ∈ N . Then (by (3.2))

x
(r)
j (αr) :=

′⊕
i∈M

(
bia
−1
ij

)
=

′⊕
i∈∪1≤t≤rKt

(
αrγ

−1
t a−1

ij

)
⊕′

′⊕
i∈∪r+1≤t≤r′Kt

(
a−1
ij

)
⊕′

′⊕
i∈∪r′+1≤t≤pKt

(
a−1
ij

)
= αr

′⊕
i∈∪1≤t≤rKt

(
γ−1
t a−1

ij

)
⊕′

′⊕
i∈∪r+1≤t≤r′Kt

(
a−1
ij

)
⊕′

′⊕
i∈∪r′+1≤t≤pKt

(
a−1
ij

)
.

Define

a := αr

′⊕
i∈∪1≤t≤rKt

(
γ−1
t a−1

ij

)
b :=

′⊕
i∈∪r+1≤t≤r′Kt

(
a−1
ij

)
c :=

′⊕
i∈∪r′+1≤t≤pKt

(
a−1
ij

)
,

so that x
(r)
j (αr) = a⊕′ b⊕′ c.
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Similarly,

x
(r′)
j (αr′) =αr′

′⊕
i∈∪1≤t≤rKt

(
γ−1
t a−1

ij

)
⊕′ αr′

′⊕
i∈∪r+1≤t≤r′Kt

(
γ−1
t a−1

ij

)
⊕′

′⊕
i∈∪r′+1≤t≤pKt

(
a−1
ij

)
.

Define

a′ := αr′
′⊕

i∈∪1≤t≤rKt

(
γ−1
t a−1

ij

)
b′ :=

′⊕
i∈∪r+1≤t≤r′Kt

(
γ−1
t a−1

ij

)
c′ :=

′⊕
i∈∪r′+1≤t≤pKt

(
a−1
ij

)
,

so that x
(r′)
j (αr′) = a′ ⊕′ αr′b′ ⊕′ c′.

Notice that a′ = (αr′α
−1
r ) a and so the size of the increase from a to a′ is αr′α

−1
r . Also,

c′ = c and so there is no increase here. Examining the increase from b to b′ is where the

difficulty lies, this is due to the γ−1
t term appearing in b′. Note that here r + 1 ≤ t ≤ r′

and that 0 > γ−1
r+1 > γ−1

r+2 > · · · > γ−1
r′ due to the monotonicity of γ. As a result, there is

actually a decrease from the quantity b to b′. We are trying to maximise increase and so

equivalently, we are trying to minimise decrease. This happens when the minimum in b

is attained for t = r + 1 and so the smallest decrease possible is γ−1
r+1. It follows that the
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maximum possible increase from b to αr′b
′ is αr′γ

−1
r+1. But

αr ≤ γr+1 ⇒ α−1
r ≥ γ−1

r+1 ⇒ αr′γ
−1
r+1 ≤ αr′α

−1
r .

We conclude that the maximum possible increase from x(r) (αr) to x(r′) (αr′), given by

x(r′) (αr′)
(
x(r) (αr)

)−1
is

x(r′) (αr′)
(
x(r) (αr)

)−1
= (a′ ⊕′ (αr′b′)⊕′ c′) (a⊕′ b⊕′ c)−1

≤
((
a
(
αr′α

−1
r

))
⊕′
(
b
(
αr′α

−1
r

))
⊕′ c

)
(a⊕′ b⊕′ c)−1

≤ αr′α
−1
r .

It follows, finally, that since the maximum possible increase from x(r) (αr) to x(r′) (αr′) is

αr′α
−1
r , that the maximum possible increase from

(
Ax(r) (αr)

)
i

to
(
Ax(r′) (αr′)

)
i

is αr′α
−1
r .

We have examined the left hand side of the ith equation in systems Sr and Sr+1 and seen

that the increase is no more than αr′α
−1
r . We now examine the corresponding right hand

sides.

Recall i ∈ Kt, where 1 ≤ t ≤ r. So

(
Ax(r) (αr)

)
i

= αrγ
−1
t

and (
Ax(r′) (αr′)

)
i

= αr′γ
−1
t .

It is clear that the increase from αrγ
−1
t to αr′γ

−1
t is exactly αr′α

−1
r .

We now have everything we need.
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We start with the strict inequality in system Sr:

(
Ax(r) (αr)

)
i
< αrγ

−1
t .

From Sr to Sr′ , the left hand side increases by at most αr′α
−1
r and the right hand side

increases by exactly αr′α
−1
r . It follows that the inequality still holds strictly! Since this

argument is true for any αr ∈ [γr, γr+1] and any αr′ ∈ [γr′ , γr′+1], it follows that for all

α ∈ [γr′ , γr′+1], the vector x(r) (α) does not solve the ith equation. �

We now have everything we need to create an algorithm for finding a solution (x, y) for

the system Ax = By; we proceed as follows. Refer to (7.2), (7.3) and (7.4) for definitions

of quantities used.

7.5 Algorithm A2

Algorithm A2:

Input: Finite matrices A and B where B has exactly two columns.

Output: Answer to the question of solvability of the system Ax = By. A non-trivial

solution if one exists.

(I) Identify sets K1, K2, . . . , Kp and quantities γ1, γ2, . . . , γp.

(II) Identify one-sided parametrised systems S0, S1, . . . , Sp and scale each so of the

form in previous Section.

(III) Solve the system S0. If there is a solution, then return it and terminate algorithm.

If not, go to (IV).

(IV)r := 1.

(V) Consider the system Sr. Find the interval from Theorem 3.14. If the interval is

non-empty, then we have found a solution (there is a one-to-one correspondence between

α and y2). Return the solution and terminate the algorithm. If the interval is empty and
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r ≤ p− 1, go to (VI). If the interval is empty and r = p; then terminate the algorithm,

no solution exists.

(VI) Check the inequality from Lemma 3.7. If the interval is non-empty, then r := r+1

and go back to (V). If the interval is empty, then terminate the algorithm as all the

subsequent systems have no solution (Lemma 7.3).

Theorem 7.4. The algorithm A2 is correct and terminates in O (m2n) time.

Proof. Correctness follows immediately from the work in this chapter.

To see the complexity, observe the following.

In step (I), the quantities Kt and γt are found in O (m) time.

In step (II) we identify O (m) parametrised systems and scale each (where each such

system has O (m) equations). This takes O (m2) time.

Finding the principal solution for the system S0 takes O (mn) time - this is the com-

plexity for step (III).

Steps (V) and (VI) iterate O (m) times. For each iteration, the interval in (V) is

found in O (mn) time, the inequality in (VI) is checked in the same time. These iterations

therefore take O (m2n) time.

In total, we conclude the algorithm A2 runs in O (m2n) time. �

Example 7.5. Recall Example 7.1. Let us apply the algorithm to that example. We had

S0 :



−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



0

0

0

0


,

but here the principal solution x = (−2,−1,−1)T is not a solution and so we consider S1.
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Recall

S1 :



−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



α

0

0

0


,

where α ∈ [0, 2]. Applying Theorem 3.14 we see that the unique solution is α = 1. Making

the substitution we obtain the one-sided system



−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



1

0

0

0


with principal solution x = (−2,−1, 0)T . Relating back to the original system



−1 0 1

−1 −2 0

2 0 0

1 1 0




x1

x2

x3

 =



0 1

0 −1

0 −1

0 −3


 y1

y2



we get the corresponding solution x = (−2,−1, 0)T , y = (0, 0)T .

7.6 Summary

We saw that we could consider the two-sided system with separated variables as a sequence

of one-sided parametrised systems, as studied in chapter 3. We could construct a strongly

polynomial algorithm for finding a solution in an iterative process. Further, the algorithm

could be modified depending if the user wishes to find a solution or describe all solutions.

This follows since we can partition the problem into a set of parametrised systems, for
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each of which we can describe the full solution set as in chapter 3.
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8. Two-sided systems of homogeneous

equations - minimally active and es-

sential systems

8.1 Introduction

The focus in this chapter is in demonstrating a pivotal role of the matrix A⊕B (denoted

C throughout this chapter) and its max-algebraic permanent for solving two-sided linear

systems Ax = Bx where A and B are finite, square matrices. Note that the results of

this chapter can be extended to the non-finite case, provided that the permanent of C is

finite. We study only the finite case here.

We study two special types of the system Ax = Bx. The first type, called

minimally active, is defined by the requirement that for every non-trivial solution x, the

maximum on each side of every equation is attained exactly once (see Definition 8.4).

For the second type, called essential systems , we require that every component of any

non-trivial solution is active on at least one side of at least one equation. By active

component xj we mean that there exists i ∈ M such that in the matrix A, say, we have⊕
t∈N aitxt = aijxj. So “active” essentially means “attains a maximum”. Equivalently,

all non-trivial solutions are finite (see Definition 8.17).

We prove that in every solvable two-sided max-linear system of minimally active or
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essential type, all positions in C := A ⊕ B active in any optimal permutation for the

assignment problem for C, are also active for some non-trivial solution (any non-trivial

solution in the minimally active case). This enables us to deduce conditions on a solution

x for which it is possible in some cases to find x in polynomial time. It is also proved

that any essential system can be transformed to a minimally active system in polynomial

time. Theorem 8.6 is the key theorem of this chapter.

The contents of this chapter have been submitted to the journal Discrete Applied

Mathematics.

8.2 Notes

Let D = (dij) ∈ Rm×n
and x ∈ Rn

. Then

A (x,D) :=

{
(i, j) ∈M ×N : dijxj =

⊕
t∈N

ditxt

}
, (8.1)

where “A” is for “active”. Let i, j ∈ N and x ∈ V (A,B) (see (2.7)). If (i, j) ∈ A (x,A)

((i, j) ∈ A (x,B)), then we say (i, j) is x − active in A (B). It follows that A (x,A)

(A (x,B)) is the set of positions which are x− active in A (in B).

Let i ∈M and define

avx,D (i) := {k ∈ N : (i, k) ∈ A (x,D)} , (8.2)

where “av” stands for “active variable”.

Finally, let j ∈ N and define

aex,D (j) := {i ∈M : (i, j) ∈ A (x,D)} , (8.3)

where “ae” stands for “active equation”.
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Suppose that A = (aij) ∈ Rm×n
and B = (bij) ∈ Rm×n

are given. The problem

of solving the two-sided linear system (A,B) is the task of finding x ∈ Rn
, x 6= ε (a

non-trivial solution) such that

Ax = Bx. (8.4)

Due to the finiteness of A and B, it can be shown (see chapter 2) that a non-trivial

solution exists if and only if a finite solution exists. As such, we restrict our attention to

finding finite solutions to (8.4).

Recall

V (A,B) = {x ∈ Rn : Ax = Bx} . (8.5)

We will assume in the rest of this section that m = n and C := A ⊕ B. Recall from

Chapter 2, page 19 that ap (C) = ap (diag (v)C) for all v ∈ Rn.

Note that

(∀x ∈ V (A,B)) (∀i)
⊕
t∈N

aitxt =
⊕
t∈N

bitxt =
⊕
t∈N

citxt. (8.6)

Hence A (x,C) = A (x,A) ∪ A (x,B) and for all i we have avx,C (i) = avx,A (i) ∪

avx,B (i) .

For x ∈ V (A,B) and i ∈ N , we have (∃j1, j2) such that (i, j1) ∈ A (x,A) and

(i, j2) ∈ A (x,B). Note that j1 and j2 are not necessarily distinct.

We have (∀x ∈ V (A,B)) (∀i) |avx,A (i) |, |avx,B (i) | ≥ 1.

It is easily shown that if V (A,B) 6= ∅, then there exists x ∈ V (A,B) such that for

all j, aex,C (j) 6= ∅. As such, we define

Ṽ (A,B) := {x ∈ V (A,B) : (∀j) aex,C (j) 6= ∅} . (8.7)

In the rest of this chapter, we are interested in finding solutions x ∈ Ṽ (A,B).

Definition 8.1. Let x ∈ Ṽ (A,B) and let σ ∈ ap (C), σ is called “x − optimal” if
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(∀i) (i, σ (i)) ∈ A (x,C).

Example 8.2.

A =


3 8 2

7 1 4

0 5 3

 , B =


5 5 5

3 4 5

5 3 2

 , C =


5 8 5

7 4 5

5 5 3

 = A⊕B.

Note that

ap (C) = {(1, 2) (3) , (1, 2, 3)} .

Let x = (0,−1, 2)T . Then, σ = (1, 2) (3) ∈ ap (C) is x-optimal since

(1, 2) , (2, 1) , (3, 3) ∈ A (x).

Similarly, σ′ = (1, 2, 3) ∈ ap (C) is x-optimal since (1, 2) , (2, 3) , (3, 1) ∈ A (x).

Lemma 8.3. If
(
∃x ∈ Ṽ (A,B)

)
(∃σ ∈ ap (C))σ is x− optimal, then

(∀σ′ ∈ ap (C))σ′ is x− optimal.

Proof. Let σ ∈ ap (C) be x − optimal, so that (∀i) ci,σ(i)xσ(i) =
⊕

t∈N citxt. Now

consider σ′ ∈ ap (C) , σ′ 6= σ.

Define I := {i ∈ N : σ′ (i) = σ (i)} , I := N\I.

Clearly, (∀i ∈ I) (i, σ′ (i)) ∈ A (x), since (i, σ′ (i)) = (i, σ (i)). If for all i ∈ I,

ci,σ′(i)xσ′(i) = ci,σ(i)xσ(i), then
(
∀i ∈ I

)
(i, σ′ (i)) ∈ A (x). It follows in this case that σ′ is

x− optimal. So suppose there exists i ∈ I such that

ci,σ′(i)xσ′(i) 6= ci,σ(i)xσ(i). (8.8)

Now note that σ, σ′ ∈ ap (C), which implies σ, σ′ ∈ ap (Cx). Therefore

∑
i∈N

ci,σ′(i)xσ′(i) =
∑
i∈N

ci,σ(i)xσ(i), (8.9)
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which is equivalent to

∑
i∈I

ci,σ′(i)xσ′(i) +
∑
i∈I

ci,σ′(i)xσ′(i) =
∑
i∈I

ci,σ(i)xσ(i) +
∑
i∈I

ci,σ(i)xσ(i). (8.10)

Hence ∑
i∈I

ci,σ′(i)xσ′(i) =
∑
i∈I

ci,σ(i)xσ(i). (8.11)

It follows from (8.8) and (8.11) that
(
∃u ∈ I

)
cu,σ′(u)xσ′(u) > cu,σ(u)xσ(u), but this contra-

dicts the assumption that (u, σ (u)) ∈ A (x). We conclude that σ′ is x− optimal. �

8.3 Minimally active systems

Definition 8.4. The system (A,B) is called minimally active if(
∀x ∈ Ṽ (A,B)

)
(∀i ∈ N) |avx,A (i) | = |avx,B (i) | = 1.

Interestingly, we have the following property for minimally active systems. Recall (2.7)

and (8.7) for the defnitions of V (A,B) and Ṽ (A,B) respectively.

Lemma 8.5. Let (A,B) be a minimally active system. Then Ṽ (A,B) = V (A,B).

Proof. We only need to show that for the minimally active system (A,B), we have

V (A,B) ⊆ Ṽ (A,B).

Suppose for a contradiction that
(
∃x ∈ V (A,B) \Ṽ (A,B)

)
. Let j ∈ N such that

aex (j) = ∅. We increase xj until xj becomes active in some equation i (this will happen

due to the finiteness of A and B), producing a new solution x′. But, since |avx,A (i) | =

|avx,B (i) | = 1, it follows that, say, |avx′,A (i) | = 2, contradicting the assumption of

minimal activity. �

It is known ([25], Lemma 7.1.1) that V is a subspace. Lemma 8.5 confirms that Ṽ is a

subspace also when (A,B) is minimally active. Note that in the remainder of the section,

we will always have V = Ṽ .
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We state now the main result of this section.

Theorem 8.6. Let (A,B) be a minimally active system. Then V (A,B) 6= ∅ if and only

if (∃x ∈ V (A,B)) (∀σ ∈ ap (A⊕B))σ is x− optimal.

This Theorem may be very useful. Such a result would allow us to deduce important

information about a solution, without any a priori knowledge of what such a solution

might be. Further, this information is obtained by finding ap (C), something which is

easily done (in polynomial time) with the help of, say, the Hungarian algorithm [56].

Remark 8.7. The ‘if ’ statement of Theorem 8.6 is trivial, we need the proof of the ‘only

if ’ part only. Also, due to Lemma 8.3, we only need to show there exists x ∈ V (A,B)

such that σ is x− optimal for some sigma ∈ ap (C).

Note that we have not given any way to check that a system is minimally active in

general. Example 8.8, however, is easily shown to be minimally active. To see this, first

apply the Cancellation Rule, yielding the system


8x2 = 5x1 ⊕ 5x3

7x1 = 4x2 ⊕ 5x3

5x1 = 5x2 ⊕ 3x3.

Equivalently,


x2 = (−3)x1 ⊕ (−3)x3

x1 = (−3)x2 ⊕ (−2)x3

x1 = x2 ⊕ (−2)x3.

Without loss of generality, x1 = 0. We see also that x1 ≥ x2 > (−3)x2. Therefore,

x1 = (−2)x3 and so x3 = 2. It follows that x2 = (−3)⊕ (−1) = −1. We have then, after
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scaling, the unique solution is xT = (0,−1, 2). Note that for x as defined above we have

(∀i = 1, 2, 3) |avx,A (i) | = |avx,B (B) | = 1.

Before the proof of Theorem 8.6, we give some examples to show the power of the

theorem. Example 8.9 is not minimally active but the application of Theorem 8.6 still

yields a solution - we will see why in Section 8.4.

Example 8.8.

A =


3 8 2

7 1 4

0 5 3

 , B =


5 5 5

3 4 5

5 3 2

 , C =


5 8 5

7 4 5

5 5 3

 .

We see that maper (C) = 18 and ap (C) = {(1, 2) (3) , (1, 2, 3)}. So if V (A,B) 6= ∅, then

(∃x ∈ V (A,B)) (1, 2) , (2, 1) , (3, 3) , (2, 3) , (3, 1) ∈ A (x), in which case we have


8x2 = 5x1 ⊕ 5x3

7x1 = 5x3

5x1 = 3x3.

We set without loss of generality x1 = 0 and deduce x3 = 2 ⇒ x2 = −1, hence xT =

(0,−1, 2). Indeed, xT = (0,−1, 2) is a solution.

Example 8.9.

A =


−4 3 0 2

5 −1 6 3

7 3 0 4

 , B =


0 2 6 1

3 5 0 7

2 12 6 3

 , C =


0 3 6 2

5 5 6 7

7 12 6 4

 .

By simply repeating the last rows, we can convert this to an equivalent (identical solution
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set) square system as follows.

A′ =



−4 3 0 2

5 −1 6 3

7 3 0 4

7 3 0 4


, B′ =



0 2 6 1

3 5 0 7

2 12 6 3

2 12 6 3


, C ′ =



0 3 6 2

5 5 6 7

7 12 6 4

7 12 6 4


.

We apply the Hungarian method for finding ap (C).

C ′ =



0 3 6 2

5 5 6 7

7 12 6 4

7 12 6 4


→



−6 −3 0 −4

−2 −2 −1 0

−5 0 −6 −8

−5 0 −6 −8



→



−4 −3 0 −4

0 −2 −1 0

−3 0 −6 −8

−3 0 −6 −8


→



−4 −6 0 −4

0 −5 −1 0

0 0 −3 −5

0 0 −3 −5


.

We have highlighted the elements of all optimal permutations from ap (C ′). In the original

matrix C ′ (before Hungarian method is applied), this corresponds to



0 3 6 2

5 5 6 7

7 12 6 4

7 12 6 4


.

Now, without loss of generality x1 = 0. From the third (fourth) row: 7x1 = 12x2 ⇒ x2 =

−5. From the first row: 6x3 = (0x1) ⊕ (3x2) ⊕ (2x4) = 0 ⊕ (2x4) ⇒ x3 = −6 ⊕ (−4)x4.
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(Note we are using the Cancellation Rule by no longer distinguishing between matrices A

and B, considering only entries of the matrix C as possible active entries).

From row two: 7x4 = 5x1 ⊕ 5x2 ⊕ 6x3 = 5⊕ 2x4. So 7x4 = 5⇔ x4 = −2.

Then, x3 = −6⊕ (−4− 2) = −6.

Finally then, we have xT = (0,−5,−6,−2) , which we can confirm is a solution.

It is not at all obvious that we will always have enough information about x to find

it exactly, as we did in Examples 8.8 and 8.9 (since finding ap (C) does not necessarily

highlight all elements of A (x)). This leads to some interesting open questions, which we

discuss in Section 8.6. For now though, we focus on the task of proving Theorem 8.6.

Lemma 8.10. If for some x ∈ V (A,B), there exists a permutation σ ∈ Pn such that for

all i ∈ N we have (i, σ (i)) ∈ A (x), then σ ∈ ap (A⊕B). Further, σ is x− optimal.

Proof. We prove this by showing σ ∈ ap (diag (x)C), by contradiction.

Suppose not, then (∃i ∈ N) ci,σ(i)xσ(i) <
⊕

t∈N citxt, which contradicts

(i, σ (i)) ∈ A (x).

Further, σ is x− optimal by definition. �

Our task is clear. As a consequence of Lemma 8.10, it suffices to show that if

V (A,B) 6= ∅, then there exists x ∈ V (A,B) such that the elements of A (x) admit

a permutation σ, in which case σ ∈ ap (C) by Lemma 8.10. Theorem 8.6 then follows as

a result of Lemma 8.3. See also Remark 8.7.

The problem of finding a permutation is equivalent to the 1-factor problem in bipartite

graphs, which in turn is equivalent to the problem of finding a perfect matching in a

corresponding bipartite graph.

For clarity of exposition, we will use different symbols for row/column indices.

Definition 8.11. Let A,B ∈ Rn×n such that V (A,B) 6= ∅. Let x ∈ V (A,B) and

define the bipartite graph Gx (A,B) (or simply Gx when it is clear to which system of
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matrices we are referring) with vertex sets Sx and Tx as follows. Sx = {s1, . . . , sn} , Tx =

{t1, . . . tn} , (∀si ∈ S) (∀tj ∈ T ) sitj ∈ E (Gx) if and only if (i, j) ∈ A (x), (effectively,

Sx = Tx = N). We also define a 3− colouring of the edges of Gx as follows:

c (sitj) =


c1, if (i, j) ∈ A (x,A) \A (x,B)

c2, if (i, j) ∈ A (x,B) \A (x,A)

c3, if (i, j) ∈ A (x,A) ∩ A (x,B) .

We call c the activity colouring. We denote by c (Gx) the graph Gx edge-coloured with c.

Definition 8.12. • For s ∈ Sx, define N (s) := {t ∈ Tx : st ∈ E (Gx)}.

• For s ∈ Sx, for r ∈ {1, 2, 3}, define

Ncr (s) := {t ∈ Tx : t ∈ N (s) and c (st) = cr}.

• For S ′ ⊆ Sx, define N (S ′) := ∪s∈S′N (s).

• For t ∈ Tx, define N (t) := {s ∈ Sx : st ∈ E (Gx)}.

• For T ′ ⊆ Tx, define N (T ′) := ∪t∈T ′N (t).

Remark 8.13. We may refer to vertex sets S or T when there is no ambiguity for which

vector x we are considering.

Essentially,

Nc1 (s) = avx,A (s) \avx,B (s) ,

Nc2 (s) = avx,B (s) \avx,A (s) ,

Nc3 (s) = avx,A (s) ∩ avx,B (s) .
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For x ∈ V (A,B), vertex si ∈ Sx corresponds to equation i in the system Ax = Bx

and so we may talk about i ∈ Sx without any confusion. Similarly, tj ∈ Tx corresponds to

xj, so we may talk about j ∈ Tx, or even xj ∈ Tx.

From now we assume that V (A,B) 6= ∅. Our goal then, is to show there is an

x ∈ V (A,B) such that Gx has a perfect matching. Equivalently, we show there is an

x ∈ V (A,B) such that the size of the minimum vertex cover in Gx is n, due to the

following Lemma, which follows from König-Egervary Theorem [55].

Lemma 8.14. Let Gx be a bipartite graph with vertex sets S, T such that |S| = |T | = n.

For any x, a perfect matching in Gx exists if and only if the size of a minimum vertex

cover is n.

We are ready now for the proof of the main result, Theorem 8.6. We complete the

proof via the following equivalent Lemma.

Lemma 8.15. If (A,B) is minimally active, then (∃x ∈ V (A,B)) such that the size of

the minimum vertex cover in Gx is n.

Proof. Let (A,B) be minimally active and x ∈ V (A,B). Consider the activity

colouring; c (Gx). Note that Sx covers all edges in Gx and so the size of the minimum

vertex cover is always less than or equal to n. Let W be a minimum vertex covering of

Gx. If |W | = n, then we are done, so suppose |W | ≤ n− 1.

Also note that (∀x′ ∈ V (A,B)) (∀s ∈ Sx′) 1 ≤ |N (s) | ≤ 2, due to x′ ∈ V (A,B) (≥ 1)

and the minimal activity property (≤ 2). Note |N (s) | = 2 corresponds to the case when

|Nc1 (s) | = |Nc2 (s) | = 1 and |Nc3 (s) | = 0. Also, |N (s) | = 1 corresponds to the case

when |Nc1 (s) | = |Nc2 (s) | = 0 and |Nc3 (s) | = 1.

Define WS := W ∩ S,WT := W ∩ T . Define WS := S\WS,WT := T\WT . If we have

|WT | ≤ |WS|, then it follows that |W | ≥ n, a contradiction. So |WT | > |WS|.
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Since (∀s ∈ Sx) |N (s) | ≥ 1 (x ∈ V (A,B)) and (∀t ∈ T ) |N (t) | ≥ 1 (definition of

Ṽ (A,B) and V = Ṽ due to (A,B) being minimally active), it follows that |WS|, |WT | ≥ 1.

In fact, from the definition of W , we have that

(
∀j ∈ WT

)
(∃s ∈ WS) (s, j) ∈ E (Gx) .

Every s ∈ WS has a neighbour in WT (else N (s) covered by WT and by removing s

from W we obtain a smaller vertex cover). Also, for every s ∈ WS, s has no neighbours

in WT (by definition of W ). It follows that N
(
WT

)
⊆ WS. In fact, it follows that

N
(
WT

)
= WS, though we only need that N

(
WT

)
⊆ WS. Now:

If
(
∀s ∈ N

(
WT

))
|Nc1 (s) ∩WT | = |Nc2 (s) ∩WT | = 1 (recall then that(

∀s ∈ N
(
T
))
N (s) ∩WT = ∅), then we can define the solution x′ by:

x′k :=


αxk, if xk ∈ WT

xk, otherwise,

where

α :=
′⊕

i∈WS


′⊕

j∈WT

[(⊕
t∈N

citxt

)
(cijxj)

−1

] .

The vector x′ is a solution to equations corresponding to WS since(
∀j ∈ WT

) (
∀i ∈ WS

)
(i, j) 6∈ A (x). The constant α is defined so that the variables of WT

are increased to exactly the first point where (u, t) becomes x− active for some u ∈ WS

and some t ∈ WT .

It follows that x′ ∈ V (A,B) and we then have that
(
∃u ∈ WS

)
at least one of the

following holds:

• |avx′,A (u) ∩ avx′,B (u) | ≥ 2;
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• |avx′,A (u) | ≥ 2;

• |avx′,B (u) | ≥ 2; or

• |avx′,A (u) ∩ avx′,B (u) | = 1 and |avx′,A (u) |+ |avx′,B (u) | ≥ 1.

In any case, we contradict the assumption that (A,B) is minimally active.

It follows then that (for original solution x)
(
∃s1 ∈ N

(
WT

)
= WS

)
with exactly one

neighbour in WT (say t1, with c (s1t1) = cr1 , r1 ∈ {1, 2, 3}), and at most one neighbour in

WT (no such neighbour in the case r1 = 3, exactly one such neighbour otherwise).

Consider now WT\ {t1}. Note that

∅ 6= N
(
WT\ {t1}

)
⊆ WS\ {s1} .

As before, if(
∀s ∈ N

(
WT\ {t1}

))
|Nc1 (s) ∩

(
WT\ {t1}

)
| = |Nc2 (s) ∩

(
WT\ {t1}

)
| = 1, then we can

define a solution x′ which contradicts the assumption of minimal activity of (A,B).

Again then, we conclude
(
∃s2 ∈ N

(
WT\ {t1}

)
⊆ WS\ {s1}

)
with exactly one neigh-

bour in WT\ {t1} (say t2 with c (s2t2) = cr2 , r2 ∈ {1, 2, 3}), and at most one neighbour in

T\
(
WT\ {t1}

)
.

We continue in this way, pairing off elements of WS and WT . Eventually, since |WT | >

|WS|, we run out of vertices in WS. We have defined t1, . . . , t|WS | and s1, . . . , s|WS |. Let

T ′ := WT\
{
t1, . . . , t|WS |

}
6= ∅. It follows that N (T ′) ⊆ WS\

{
s1, . . . , s|WS |

}
= ∅. This

contradicts the assumption that (∀t ∈ T ) |N (t) | ≥ 1.

We conclude that it was our initial assumption, namely that |WT | > |WS|, which was

wrong. It follows that for our original x, the size of the minimum vertex cover in Gx is n.

In fact, since x ∈ V (A,B) was arbitrary, the result holds true for all x ∈ V (A,B). �
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In fact, we proved a stronger result than Theorem 8.6. To be exact, we showed that

the conditions of Theorem 8.6 hold for all solutions, not just one.

Theorem 8.16. Let (A,B) be a minimally active system. Then V (A,B) 6= ∅ if and only

if (∀x ∈ V (A,B)) (∀σ ∈ ap (A⊕B))σ is x− optimal.

8.4 Essential systems

In this section we show that we can generalise the results of Section 8.3 to a wider class

of systems, which we call essential systems .

Definition 8.17. Let A,B ∈ Rn×n. We say that (A,B) is essential if V (A,B) =

Ṽ (A,B) 6= ∅, where the sets V (A,B) and Ṽ (A,B) are defined in (2.7) and (8.7) re-

spectively.

We use the term essential for the following reason. If V (A,B) 6= Ṽ (A,B), then there

exists x ∈ V (A,B) \Ṽ (A,B) , x 6= ε, such that Ax = Bx. By definition of V and Ṽ ,

there exists j ∈ N such that xj = ε. It follows that the system (A′, B′) (where A′ and B′

are obtained from A and B respectively by removing column j) has a non-trivial solution.

Variable j is inessential in the original system.

It can be shown that (A,B) in Example 8.28 is an essential system which is not

minimally active. To see that (A,B) is not minimally active, consider the solution xT =

(1, 0, 2). To see that the system is essential, note that it is equivalent to show for i = 1, 2, 3

that there is no non-trivial solution x for which xi = ε. It is easy to check that no such

solution exists. As an example, suppose for a contradiction there exists x ∈ Rn
, x1 =

ε, x 6= ε such that Ax = Bx. After applying the Cancellation Rule, it follows that
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3x3 = 5x2 ⊕ 3x3

3x2 = 1x3

ε = 4x2 ⊕ 2x3,

contradicting x 6= ε.

For the remainder of this Section, (A,B) is an essential system. As in Section 8.3,

we will only use the notation V (A,B) (or simply V where no confusion can arise) but it

should be remembered that V = Ṽ .

We generalise the results of Section 8.3 by showing that essential systems are related

to minimally active systems. The following Lemma is key to showing that this can be

done.

Lemma 8.18. Let A,B ∈ Rn×n such that (A,B) is essential and not minimally active.

Let z ∈ V (A,B) , r ∈ N such that, say, |avz,A (r) | ≥ 2 (the case for |avz,B (r) | ≥ 2 is

similar). Let s ∈ avz,A (r). Then there exists δ∗ > 0 sufficiently small such that for all

0 < δ ≤ δ∗ the matrices A(δ), B(δ) defined by

a(δ)
uv =


arsδ

−1, if u=r,v=s

auv, o.w.

B(δ) = B

satisfy the following:

1. z ∈ V
(
A(δ), B(δ)

)
.

2. avz,A(δ) (r) = avz,A (r) \ {s}.
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3. ∅ 6= V
(
A(δ), B(δ)

)
⊆ V (A,B).

4.
(
∀x ∈ V

(
A(δ), B(δ)

))
(∀i ∈ N) avx,A(δ) (i) ⊆ avx,A (i) ,

avx,B(δ) (i) ⊆ avx,B (i).

5. For all x ∈ V
(
A(δ), B(δ)

)
, (r, s) 6∈ A

(
x,A(δ)

)
.

6.
(
A(δ), B(δ)

)
is essential.

Before we prove Lemma 8.18, we have some comments.

Remark 8.19. For x ∈ V (A,B) , i ∈ N and si ∈ Sx, consider the activity colouring

c (Gx) . Then for si, at least one of the following holds:

• si is incident with an edge of colour c3;

• si is incident with an edge of colour c1 and an edge of colour c2.

Note that if si is incident with only one edge, then that edge is coloured c3 (the converse

is not true in general).

Definition 8.20. If for all j1, j2 ∈ T , there is a path from j1 to j2 in Gx, then we say Gx

is variable connected.

Remark 8.21. Since for all s ∈ S, |N (s) | ≥ 1, it follows that Gx is variable connected

if and only if Gx is connected. From now, we say only connected.

Clearly, if x = αx′ for some x, x′ ∈ V (A,B) , α ∈ R, then Gx = Gx′. In the next

Lemma we show that the converse is also true (that this cannot happen otherwise).

Lemma 8.22. If G ∈ G is connected, then for all x, x′ ∈ V (A,B) such that Gx = Gx′ =

G, there exists α ∈ R such that x′ = αx. That is, G corresponds to exactly one solution

(up to scaling).
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Proof. Let G ∈ G be connected and let x ∈ V (A,B) such that Gx = G. Let

t1, t2 ∈ T, t1 6= t2 and let P be a path from t1 to t2 in Gx. Using the definition of E (Gx),

we see that xt1x
−1
t2 is a fixed constant. That is

(∀x ∈ V (A,B)) (∀t1, t2)xt1x
−1
t2

= ∆t1,t2 (constant).

Since t1, t2 were arbitrary, the result follows.

Note that it doesn’t matter which path we choose if many are available. If path P1 yields

xt1x
−1
t2 = α1, and path P2 yields xt1x

−1
t2 = α2, α1 6= α2, then x 6∈ V (A,B), a contradiction.

�

Definition 8.23. x ∈ V (A,B) is called a connected solution if Gx is connected.

Definition 8.24. Let x ∈ V (A,B). Denote by com (x) the number of components of Gx.

The following Lemma is given without proof but it should be noted that the ideas of

the proof are similar to those used in the proof of Lemma 8.15.

Lemma 8.25. Let x ∈ V (A,B) , x not connected and consider a component of Gx with

the set of nodes X. Define S ′ := X ∩ S and T ′ := X ∩ T . Then for all s ∈ S ′ we have at

least one of the following (by Remark 8.19):

• |Nc3 (s) ∩ T ′| ≥ 1, or

• |Nc1 (s) ∩ T ′|, |Nc2 (s) ∩ T ′| ≥ 1.

Define a new vector x′ using

α :=
′⊕

i 6∈S′

{
′⊕

j∈T ′

[(⊕
t∈N

citxt

)
(cijxj)

−1

]}
,

95



and

x′k :=


αxk, if xk ∈ T ′

xk, if xk 6∈ T ′.

Then x′ ∈ V (A,B) and com (x′) < com (x).

Let x ∈ V (A,B) , x not connected. By applying Lemma 8.25 repeatedly, we can

transform x to a vector x such that x is connected and x ∈ V (A,B).

Note x may not be unique (the connected solution x depends on which component we

use in Lemma 8.25). We denote by connect (x) the set of connected x ∈ V (A,B) that

can be obtained from x in this way.

We are now ready for the proof of Lemma 8.18.

Proof. [Proof of Lemma 8.18] We are essentially reducing exactly one element in the

system (A,B). Let x ∈ V (A,B). Immediately, we can see that for all δ > 0, x ∈

V
(
A(δ), B(δ)

)
(property (1)), which in turn means V

(
A(δ), B(δ)

)
6= ∅ (first part of property

(3)). It is also clear for all δ > 0 that avx,A(δ) (i) = avx,A (i) \ {j} (property (2)).

• We show next that for all δ > 0 sufficiently small V
(
A(δ), B(δ)

)
⊆ V (A,B) (second

part of property (3)). First note that if aij = bij = cij, then this follows immediately.

To see this, let δ > 0 and let

x ∈ V
(
A(δ), B(δ)

)
\V (A,B). It follows that aijxj >

⊕
t∈N bitxt ≥ bijxj = aijxj, a

contradiction. So assume aij 6= bij.

Let us start with a fixed δ0 > 0. If V
(
A(δ0), B(δ0)

)
⊆ V (A,B), then we are done,

so suppose not.

Let Γ (δ) be the set of connected solutions in V
(
A(δ), B(δ)

)
\V (A,B) for any δ > 0.

Since the number of connected bipartite graphs with the set of nodes S, T is finite

and each corresponds to only one solution (up to multiples), it follows that Γ (δ0) is

finite (up to multiples).
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Now, let w ∈ Γ (δ0). We have (∀u)u 6= i, auw = buw, and so aiw 6= biw. Also, since

(∀v 6= j) a
(δ0)
iv = aiv, it follows that aijwj > biw and

⊕
t∈N aitwt = aijwj. (Recall

that bi denotes row i of B).

We have then that 
a

(δ0)
ij wj ≤ biw ⇔ aijδ

−1
0 wj ≤ biw

aijwj > biw.

Therefore, (∃δ′0) 0 < δ′0 ≤ δ0 such that aij (δ′0)−1wj = biw, thus for any δ1, 0 < δ1 <

δ′0, we have

a
(δ1)
ij wj > biw

and so w 6∈ V
(
A(δ1), B(δ1)

)
\V (A,B). Note then that we also have for all multiples

of w, namely αw, α ∈ R, that αw 6∈ V
(
A(δ1), B(δ1)

)
\V (A,B).

Let δ1 = 1
2
δ′0 (for instance). Define δ (w) := δ1, and define δ (w′) in the same way

for all w′ ∈ Γ (δ0). Since Γ (δ0) is finite (up to multiples) and for all w′ ∈ Γ (δ0), for

all α ∈ R we have δ (w′) = δ (αw′), we can define

δ∗ := min
w∈Γ(δ0)

δ (w) > 0.

We see that Γ (δ∗) = ∅.

We now show that δ∗ is sufficiently small so that V
(
A(δ∗), B(δ∗)

)
⊆ V (A,B), as

desired.

Let δ∗ be as defined and suppose for a contradiction that there exists

w ∈ V
(
A(δ∗), B(δ∗)

)
\V (A,B).

Vector w is not connected because Γ (δ∗) = ∅ and since w 6∈ V (A,B), we have

aijwj > biw. Let X1 be the set of nodes of the component of Gw that contains wj

and define S ′ := X1 ∩ S, T ′ = X1 ∩ T . Note that N (T ′) = S ′. Since w is not
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connected it follows that (∀u ∈ N (T ′) = S ′) either:

– |Nc1 (u) ∩ T ′|, |Nc2 (u) ∩ T ′| ≥ 1; or

– |Nc3 (u) ∩ T ′| ≥ 1.

As such, we may increase wk, k ∈ T ′ (similarly as in the proof of Lemma 8.15) by γ1,

say, until there is a new edge between T ′ and S\S ′. Call this new solution w′. We

have aijw
′
j = aijwjγ1 > biwγ1 ≥ biw

′, and so w′ ∈ V
(
A(δ∗), B(δ∗)

)
\V (A,B) also.

Repeat the procedure with the component of Gw′ containing w′j, until we obtain a

connected solution w ∈ V
(
A(δ∗), B(δ∗)

)
\V (A,B), contradicting Γ (δ∗) = ∅.

• Note that property (6) follows immediately from property (3).

• Next, we show property (4) holds. Let x ∈ V
(
A(δ∗), B(δ∗)

)
⊆ V (A,B) and let u ∈

N, u 6= i. Then avx,A(δ∗) (u) = avx,A (u) and avx,B (u) = avx,B (u), since a
(δ∗)
u = au

and b
(δ∗)
u = bu. Also, since aitxt ≤ bix (∀t) and b

(δ∗)
i = bi, it follows that avx,A(δ∗) (i) ⊆

avx,A (i) and avx,B(δ∗) (i) = avx,B (i).

• Finally, property (5). We show that for all x′ ∈ V
(
A(δ∗), B(δ∗)

)
we have j 6∈

avx′,A(δ∗) (i). Suppose for a contradiction
(
∃x′ ∈ V

(
A(δ∗), B(δ∗)

))
j ∈ avx′,A(δ∗) (i) ,

that is

a
(δ∗)
ij x′j = b

(δ∗)
i x′ ⇔ aij (δ∗)−1 x′j = bix

′.

But then aijx
′
j > bix

′, and so x′ 6∈ V (A,B), a contradiction since

V
(
A(δ∗), B(δ∗)

)
⊆ V (A,B) (property (3)). (The entry a

(δ∗)
ij has essentially become

a “dead element”).

�

Remark 8.26. Property (6) of Lemma 8.18 should serve to clarify that we are safe to

refer only to V in the statement of Lemma 8.18 and that for both systems in the statement
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of Lemma 8.18, we still have V = Ṽ .

The following Theorem is the final step to convert an essential system to a minimally

active one.

Theorem 8.27. Let A,B ∈ Rn×n, (A,B) essential and not minimally active. Then there

is a sequence of systems (A,B) ,
(
A(1), B(1)

)
, . . . ,

(
A(k), B(k)

)
, such that

∅ 6= V
(
A(k), B(k)

)
⊆ V

(
A(k−1), B(k−1)

)
⊆ · · · ⊆ V

(
A(1), B(1)

)
⊆ V (A,B) ,

and
(
A(k), B(k)

)
is minimally active, for some k ∈ N.

Proof.

We construct a sequence of systems by repeated use of Lemma 8.18. We call this

process “reduction”. It is not clear immediately that reduction terminates in finite time

but if it does terminate in a finite number of steps with system
(
A(k), B(k)

)
, then, since

reduction has terminated, we have

(
∀x ∈ V

(
A(k), B(k)

))
(∀i ∈ N) |avx,A(k) (i) | = |avx,B(k) (i) | = 1

and so
(
A(k), B(k)

)
is minimally active by definition. Then, from repeated use of Lemma

8.18, property (3), we have

∅ 6= V
(
A(k), B(k)

)
⊆ V

(
A(k−1), B(k−1)

)
⊆ · · · ⊆ V

(
A(1), B(1)

)
⊆ V (A,B) .

It remains to show that reduction does indeed terminate in a finite number of steps. In

fact, we will show that reduction terminates in less than 2n2 iterations.

Suppose not for a contradiction and so we define systems(
A(1), B(1)

)
, . . . ,

(
A(2n2), B(2n2)

)
using Lemma 8.18. Define

(
A(0), B(0)

)
:= (A,B). Now,
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(∀r) 1 ≤ r ≤ 2n2, the transition from
(
A(r−1), B(r−1)

)
to
(
A(r), B(r)

)
is based on the

reduction of exactly one entry of A or B. That is, either aij or bij for some i, j. We define

(i (r) , j (r)) := (i, j).

Consider (i (s) , j (s)), some 1 ≤ s ≤ 2n2 − 1. By Lemma 8.18, property (5), we have(
∀x ∈ V

(
A(s), B(s)

))
(i (s) , j (s)) 6∈ A

(
x,A(s)

)
. Now, let s + 1 ≤ r ≤ 2n2 and let x′ ∈

V
(
A(r), B(r)

)
. We claim that (i (s) , j (s)) 6∈ A

(
x′, A(r)

)
. To see this, note that (by

repeated use of Lemma 8.18, property (4))

avx′,A(r) (i (s)) ⊆ avx′,A(r−1) (i (s)) ⊆ · · · ⊆ avx′,A(s) (i (s)) .

We have essentially shown that once we reduce an element in the matrix A (in the

matrix B) in the reduction process, then that element is now a “dead element” for all

subsequent systems in the reduction process. Since there are n2 elements in matrix A (in

matrix B), there are a total of 2n2 elements in total which may be eliminated. This, with

the fact that every system in the reduction process has non-empty solution set (Lemma

8.18, property (3)), leads us to conclude that reduction must terminate in at most 2n2

iterations. �

We give here an example of the process of reduction.

Example 8.28. Let A =


4 0 3

0 3 0

3 0 0

 , B =


0 5 3

1 0 1

0 4 2

 and consider the system

Ax = Bx.

It is easily checked that the unique solution (after scaling and making the smallest

component equal to zero) is xT = (1, 0, 2). Note also that x is a connected solution and

so V (A,B) =
{
α (1, 0, 2)T : α ∈ R

}
.

Now, avx,A (1) = {1, 3} and so we reduce, say, component a13. Reducing a13 by 1 is
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sufficient since then A′ =


4 0 2

0 3 0

3 0 0

 , B =


0 5 3

1 0 1

0 4 2

 and we have:

1. x ∈ V (A′, B′)⇒ V (A′, B′) 6= ∅.

2. avx,A′ (1) = {1} = {1, 3} \ {3} = avx,A (1) \ {3}.

3. It is easily checked that xT = (1, 0, 2) is the unique solution for the system A′x = B′x

and so indeed we have V (A′, B′) = {α (1, 0, 2) : α ∈ R} ⊆ V (A,B).

4. It is clear that (∀u ∈ N) avx,A′ (u) ⊆ avx,A (u) and avx,B′ (u) ⊆ avx,B (u).

5. The entry (1, 3) is not (x,A′)− active.

Now, note that avx,B′ (1) = {2, 3} and so we reduce, say, component b12. Reducing b12

by 1 is sufficient, since then A′′ =


4 0 2

0 3 0

3 0 0

 , B′′ =


0 4 3

1 0 1

0 4 2

 and we have

1. x ∈ V (A′′, B′′)⇒ V (A′′, B′′) 6= ∅.

2. avx,B′′ (1) = {3} = {2, 3} \ {2} = avx,B′ (1) \ {2}.

3. It is easily checked that xT = (1, 0, 2) is the unique solution for the system A′′x =

B′′x and so indeed we have V (A′′, B′′) = {α (1, 0, 2) : α ∈ R} ⊆ V (A′, B′).

4. It is clear that (∀u ∈ N) avx,A′′ (u) ⊆ avx,A′ (u) and avx,B′′ (u) ⊆ avx,B′ (u).

5. The entry (1, 2) is not (x,B′′)− active.

Now, note that avx,B′′ (3) = {2, 3} and so we reduce, say, component b33. Reducing b33

by 1 is sufficient, since then A′′′ =


4 0 2

0 3 0

3 0 0

 , B′′′ =


0 4 3

1 0 1

0 4 1

 and we have
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1. x ∈ V (A′′′, B′′′)⇒ V (A′′′, B′′′) 6= ∅.

2. avx,B′′′ (3) = {2} = {2, 3} \ {3} = avx,B′′ (3) \ {3}.

3. It is easily checked that xT = (1, 0, 2) is the unique solution for the system A′′′x =

B′′′x and so indeed we have V (A′′′, B′′′) = {α (1, 0, 2) : α ∈ R} ⊆ V (A′′, B′′).

4. It is clear that (∀u ∈ N) avx,A′′′ (u) ⊆ avx,A′′ (u) and

avx,B′′′ (u) ⊆ avx,B′′ (u).

5. The entry (3, 3) is not (x,B′′′)− active.

We see that (A′′′, B′′′) is minimally active.

Now that we have shown that every essential system can be reduced to a minimally

active system, we are able to show that Theorem 8.6 from Section 8.3 for minimally active

systems, holds also for essential systems. (Note that the stronger result of Theorem 8.16

from Section 8.3 does not hold).

Theorem 8.29. Let A,B ∈ Rn×n such that (A,B) is an essential system. Then V (A,B) 6=

∅ if and only if (∃x ∈ V (A,B)) (∀σ ∈ ap (C))σ is x− optimal.

Proof. If (A,B) is minimally active then the result follows immediately from Theorem

8.6. So suppose (A,B) is not minimally active. We have seen in Lemma 8.18 and Theorem

8.27 that there is a sequence of systems

(A,B) ,
(
A(1), B(1)

)
, . . . ,

(
A(k), B(k)

)
, such that

∅ 6= V
(
A(k), B(k)

)
⊆ V

(
A(k−1), B(k−1)

)
⊆ · · · ⊆ V

(
A(1), B(1)

)
⊆ V (A,B) ,

and
(
A(k), B(k)

)
is minimally active, for some k ∈ N. Define C(r) = A(r) ⊕ B(r) and

let x ∈ V
(
A(k), B(k)

)
. We have seen in Lemma 8.15 that

(
∀σ ∈ ap

(
C(k)

))
σ is x −

optimal for the system
(
A(k), B(k)

)
. That is to say, there is a perfect matching M in
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Gx

(
A(k), B(k)

)
. In moving from

(
A(k), B(k)

)
to
(
A(k−1), B(k−1)

)
we are not losing any

edges in Gx

(
A(k), B(k)

)
. That is to say E

(
Gx

(
A(k), B(k)

))
⊆ E

(
Gx

(
A(k−1), B(k−1)

))
.

(To see this, recall by construction of
(
A(k), B(k)

)
that we reduced exactly one element in

the system
(
A(k−1), B(k−1)

)
). It follows that M is a perfect matching in Gx

(
A(k−1), B(k−1)

)
also. Continuing, we see that M is a perfect matching in Gx (A,B), as desired.

It follows that (∃x ∈ V (A,B)) (∀σ ∈ ap (C))σ is x− optimal.

�

8.5 Next steps

The ideas in this section allow us to take a square, finite and essential system (A,B) and

find, for each equation, an active entry (in A without loss of generality). It is known that

when the system (A,B) is regular (that is to say (∀i) (∀j) aij 6= bij), then if (A,B) is

solvable, then |ap (C) | ≥ 2 and so it follows that for some equations we know multiple

active entries (not necessarily any in B though). We have obtained important information

about a solution but we have not completed the job of finding a solution to the two-sided

system.

8.5.1 Minimally active systems

Let (A,B) be minimally active. Then, without loss of generality, by finding ap (C), we

identify active entries in A and B. Note that maper (C) = 0 without loss of generality.

In the following, blocks with 0̃ entries denote a block containing a zero cycle.

103



A =



0

0

. . .

. . .

. . .

0

0



, B =



0

0

0̃ 0̃
0̃ 0̃


.

Due to the minimal activity property, there will be no other active entries in A and

the zero cycles/loops identified in B will be non-intersecting - yielding the block-diagonal

form shown above.

Now, denote by K the set of indices which do not lie on a zero cycle in B. For k ∈ K,

we have the substitution

xk =
⊕

t∈N,t6=k

cktxt.

With these substitutions, we can reduce to a necessary system of size

(n− |K|) × (n− |K|) which is essentially a system of dual inequalities (since for each

equation we have identified exactly one active entry in each of A,B). In fact, the set of

solutions to the necessary system of dual inequalities is of the form Gu, where G ∈ Rr×r, r

is the number of zero cycles in B. By backtracking our substitutions, we may convert our

original system to a an r-dimensional two-sided system, with |K| equations - that is, a

TSLS of size |K| × r.

8.5.2 Other cases

One important special case to consider is when maper (A) = maper (B) = maper (C),

since in this case our methods will identify at least one active element in both A and

B for every equation - thus making the two-sided system essentially a system of dual
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inequalities (solvable in polynomial time). In general though, this will not be the case.

One interesting possibility is to notice the necessary condition

(∀i ∈ R) aiixi =
⊕
t6=i

citxt,

where R := {r ∈ N : arr 6= brr} . Such a subsitution allows us to eliminate variables until

we are left with a system of dual inequalities (importantly with strictly less variables

than the original system). We can solve such systems in polynomial time but this set of

solutions to the reduced system of dual inequalities would only lead to a superset of the

set of solutions to the original system.

Remark 8.30. The ideas of this section work also when instead of finite systems (A,B),

we take A and B over R, with the condition that maper (C) is finite.

8.6 Open questions

Question 1 How can we recognise if a square system is essential?

Question 2 How can we recognise if a square system is minimally active?

Question 2 Can the ideas of this section be adapted for the case of non-square systems?

Question 4 What can we say about two-sided systems for which there is no finite permutation

in C?

8.7 Summary

We have shown that under reasonable assumptions (the matrices A and B are square

and finite and every variable is finite in a non-trivial solution to (8.4)), two-sided systems

(8.4) have a strong connection with the assignment problem. Further, if a solution exists,

then by solving the assignment problem we identify active elements of a solution. The
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drawbacks, of course, are that it is not clear how to identify such systems (though an easily

identifiable subset of such systems has been discussed here) and that after identifying

active elements, it is not always clear how we can ‘fill in the gaps” to identify the rest of

the active elements.
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9. The generalised eigenproblem -

strongly polynomial algorithm if ma-

trices are circulant

9.1 Problem formulation

We begin with a definition.

Definition 9.1 (Circulant Matrix). A Circulant matrix, denoted C, is a matrix in which

each column is a circular shift of its preceding column.

In this chapter A and B are finite, circulant matrices. We are interested in the gen-

eralised eigenproblem for such matrices

Ax = λBx. (9.1)

9.2 The strongly polynomial “aggregation method”

By using the method of aggregation we deduce some necessary conditions on the value of

the (unique) generalised eigenvalue. Specifically, if the spectrum is non-empty, then the

unique eigenvalue is the value of the greatest entry in A, less the value of the greatest

entry in B. The result is that the generalised eigenproblem for circulant matrices is easily
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converted to the problem of solving two-sided systems for circulant matrices.

T =



t0 tn−1 . . . t2 t1

t1 t0 tn−1 t2
... t1 t0

. . .
...

tn−2
. . . . . . tn−1

tn−1 tn−2 . . . t1 t0


. (9.2)

Let A,B ∈ Rn×n be circulant matrices. Then C = A − B is circulant too. Con-

sider the generalised eigenproblem (9.1) and the feasible interval [L,U ], where L :=

maxi minj cij and U := mini maxj cij. Since C is circulant, (∀i) minj cij = mink tk. Simi-

larly, (∀i) maxj cij = maxk tk and so we have

[L,U ] = [min
k
tk,max

k
tk]. (9.3)

Clearly the feasible interval is non-empty.

Suppose that (λ;x) is a solution for some λ ∈ [L,U ] and x ∈ Rn
, x 6= ε. Then we have



a0x1 ⊕ an−1x2 ⊕ · · · ⊕ a1xn = λb0x1 ⊕ λbn−1x2 ⊕ · · · ⊕ λb1xn

a1x1 ⊕ a0x2 ⊕ · · · ⊕ a2xn = λb1x1 ⊕ λb0x2 ⊕ · · · ⊕ λb2xn

...

an−1x1 ⊕ an−2x2 ⊕ · · · ⊕ a0xn = λbn−1x1 ⊕ λbn−2x2 ⊕ · · · ⊕ λb0xn.
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By aggregation using max-plus we then have that

n−1⊕
i=0

(
n⊕
j=1

(aixj)

)
=

n−1⊕
i=0

(
n⊕
j=1

(λbixj)

)

⇒
n−1⊕
i=0

(
ai

n⊕
j=1

xj

)
= λ

n−1⊕
i=0

(
bi

n⊕
j=1

xj

)

⇒
n⊕
j=1

xj

n−1⊕
i=0

ai = λ

n⊕
j=1

xj

n−1⊕
i=0

bi

⇒λ
n−1⊕
i=0

bi =
n−1⊕
i=0

ai

⇒λ =
⊕

ai

(⊕
bi

)−1

.

In fact, it is not too hard to show that this choice of λ with the vector x = 0 is always a

solution for circulant matrices! A less than obvious corollary of this is that this choice of

λ must always lie within the feasible interval.

Corollary 9.2. Let A,B be circulant matrices. Then

′⊕(
aib
−1
i

)
≤
⊕

ai

(⊕
bi

)−1

≤
⊕(

aib
−1
i

)
.

9.3 Summary

By a simple application of the method of aggregation, we showed that the unique eigen-

value can be described as the greatest entry in A, less the greatest entry in B, if A and B

are circulant matrices. This also allowed us to deduce an inequality for circulant matrices

which is not obvious at first sight.
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10. The generalized eigenproblem -

strongly polynomial algorithm if B is

an outer-product

10.1 Introduction

In this chapter, B (say) is the max-algebraic outer-product of two vectors and we consider

the generalised eigenproblem

Ax = λBx. (10.1)

We show that without loss of generality we can assume B is the all zeros matrix.

By using the one-sided parametrised systems from chapter 3, we convert (10.1) to

an equivalent one-sided parametrised system. The one-sided systems appearing here are

slightly different to those in chapter 3 but are easily converted. It follows that we can

describe all solutions to (10.1) in strongly polynomial time.

The contents of this chapter have been published in [17]
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10.2 Converting to a one-sided parametrised system

Let us consider the generalized eigenproblem (10.1) where B is an outer product of two

vectors, say v = (v1, ..., vm)T ∈ Rm and w = (w1, ..., wn)T ∈ Rn. Thus we can write

B = (bij) = vwT = (vi + wj) .

Let V = diag (v) and W = diag (w) . Then (10.1) reads

Ax = λvwTx

and is equivalent to

V −1Ax = λV −1Bx,

or,

V −1Ax = λ


0

...

0

wTx.

Set x = W−1y, where y = (y1, ..., yn)T and we obtain

V −1AW−1y = λ


0

...

0

 (y1 ⊕ y2 ⊕ ...⊕ yn) .

Here the right-hand side is actually equal to

λ


0 · · · 0

...
. . .

...

0 · · · 0

 y
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and so in the system (10.1) with B being an outer product, it can be assumed without

loss of generality that B is a zero matrix (a matrix with all entries equal to 0). In such

a system the right-hand side of each equation is λ (x1 ⊕ x2 ⊕ ...⊕ xn) and so an x 6= ε

satisfying Ax = λ0x exists if and only if there is a z ∈ R satisfying

A′x =


z

...

z

 , (10.2)

where A′ is obtained from A by adding an extra row whose every entry is λ, that is

A′ =

 A

λ ... λ

 =
(
a′ij
)
.

Clearly, A′ is an (m+ 1)× n matrix. Theorem 2.3 and Proposition 2.5 enable us to solve

such systems and we use them in the next two propositions. It will be useful to denote

M ′ = M ∪ {m+ 1} ,

M ′
j =

{
r ∈M ′; a′rj = max

i∈M ′
a′ij

}
, j ∈ N

and

N ′i =
{
j ∈ N ; i ∈M ′

j

}
, i ∈M ′.

Proposition 10.1. Let A ∈ Rm×n. Then λ ∈ Λ (A, 0) if and only if
⋃
j∈N M

′
j = M ′.

Proof. Follows straightforwardly from the previous discussion, Theorem 2.3 and Propo-

sition 2.5. �
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Proposition 10.2. Λ (A, 0) ⊆ [λ0, λ1] holds for every A = (aij) ∈ Rm×n, where

λ0 = min
j∈N

max
i∈M

aij (10.3)

and

λ1 = max
j∈N

max
i∈M

aij. (10.4)

Proof. A real number λ is in Λ (A, 0) if and only if the system (10.2) has a solution for

some z ∈ R. This is a one-sided system whose solvability does not depend on z because

the right-hand side is a constant vector. The solvability criterion is given in Theorem 2.3.

We apply this condition to A′ using Proposition 2.5, separately to the first m rows and

to the last row:

(∀i ∈M) (∃j ∈ N) (∀r ∈M) aij ≥ arj ⊕ λ (10.5)

and

(∃j ∈ N) (∀i ∈M)λ ≥ aij. (10.6)

The latter is equivalent to λ ≥ minj∈N maxi∈M aij, which proves the lower bound. The

first is equivalent to the requirement that for every i ∈M there is a j ∈ N satisfying

aij ≥ max
r∈M

arj ⊕ λ.

Since

max
r∈M

arj ⊕ λ ≥ max
r∈M

arj ≥ aij

it follows that

aij = max
r∈M

arj ⊕ λ = max
r∈M

arj

and λ ≤ maxr∈M arj ≤ maxj∈N maxi∈M aij, which proves the upper bound. �
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Proposition 10.2 does not provide any tool for checking whether Λ (A, 0) is non-empty.

We give this answer next.

Proposition 10.3. The following statements are equivalent for every A = (aij) ∈ Rm×n:

(a) Λ (A, 0) 6= ∅,

(b)
⋃
j∈N Mj = M,

(c) Ni (A) 6= ∅ for every i ∈M and

(d) λ0 ∈ Λ (A, 0) .

Proof. The equivalence of (b) and (c) has been shown in Proposition 2.1. We prove (b)

⇒ (d) ⇒ (a) ⇒ (b). Suppose (b) is true. There is an index k ∈ N such that

λ0 = max
i∈M

aik ≤ max
i∈M

aij

holds for every j ∈ N. Hence for λ = λ0 and for every j ∈ N we have Mj ⊆ M ′
j and

m+ 1 ∈M ′
k. It follows that

⋃
j∈N

M ′
j ⊇

⋃
j∈N

Mj ∪ {m+ 1} = M ∪ {m+ 1} = M ′

thus ⋃
j∈N

M ′
j = M ′

and so (10.2) has a solution for λ = λ0, which proves (d) by Proposition 10.1.

The second implication is trivial, so suppose now that λ ∈ Λ (A, 0) . Hence (10.2) has

a solution with this value of λ and thus
⋃
j∈N M

′
j = M ′. Let i ∈M then i ∈M ′

j for some

j ∈ N and therefore also i ∈ Mj because for any j ∈ N the set M ′
j either coincides with

Mj or is Mj ∪ {m+ 1} or is just {m+ 1} . Statement (b) now follows. �
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Corollary 10.4. If A ∈ Rn×n is symmetric then Λ (A, 0) is either empty or {λ0} .

Proposition 10.3 shows that the lower bound for the spectrum specified in Proposition

10.2 is tight for every matrix with non-empty spectrum. In general this is not true about

the upper bound. For instance if

A =

 1 0

0 2

 , B = 0

then C = A is symmetric and so Λ (A,B) = {1} by Proposition 10.3 and Corollary 10.4.

However, λ1 = 2 > 1.

In order to give exact bounds we now introduce the following:

λ = min
i∈M

min
j∈Ni

aij

and

λ = min
i∈M

max
j∈Ni

aij.

Proposition 10.5. λ = λ0 for any A ∈ Rm×n.

Proof. There exist r ∈M and s ∈ N such that

λ0 = min
j∈N

max
i∈M

aij = max
i∈M

ais = ars.

So ars is the smallest column maximum in A. Let k ∈M. The quantity

minl∈Nk akl is the smallest of all column maxima appearing in row k of A (recall that this

value is +∞ if Nk = ∅). Hence minl∈Nk akl ≥ ars and therefore also

λ = mink∈M minl∈Nk akl ≥ ars = λ0.

On the other hand λ = mink∈M minl∈Nk akl ≤ minl∈Nr arl = ars = λ0. �
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Proposition 10.6. Λ (A, 0) ⊆
[
λ, λ
]

holds for every A = (aij) ∈ Rm×n and
{
λ, λ
}
⊆

Λ (A, 0) whenever Λ (A, 0) 6= ∅.

Proof. The lower bounds in Propositions 10.2 and 10.6 coincide by Proposition 10.5 so

we only need to prove the upper bound and its tightness. Suppose without loss of gener-

ality that Λ (A, 0) 6= ∅ and so Ni 6= ∅ for every i ∈ M. Let λ = λ = mini∈M maxj∈Ni aij.

Then λ = maxi∈M ais for some s ∈ N and thus m + 1 ∈ M ′
s. At the same time if r ∈ M

then maxj∈Nr arj ≥ mini∈M maxj∈Ni aij = λ. Therefore r ∈ M ′
j for some j ∈ Nr. This

shows that λ ∈ Λ (A, 0) by Proposition 10.1.

Suppose now that λ > λ. Then λ > maxj∈Ni aij for some i ∈ M. Hence λ > aij for

all j ∈ Ni and so i /∈ M ′
j for all j ∈ Ni. Since also i /∈ Mj for all j /∈ Ni and Mj ⊆ M ′

j

for every j ∈ Ni we have that i /∈ Mj for all j ∈ N, thus λ /∈ Λ (A, 0) by Proposition

10.3. �

Theorem 10.7. Λ (A, 0) =
[
λ, λ
]

holds for every A = (aij) ∈ Rm×n.

Proof. If Λ (A, 0) = ∅ then by Proposition 10.3 Ni = ∅ for some i ∈M and so λ = −∞,

λ = +∞ and
[
λ, λ
]

= ∅.

Suppose now Λ (A, 0) 6= ∅. Due to Proposition 10.6 we may also assume that λ < λ

and we only need to prove that
(
λ, λ
)
⊆ Λ (A, 0) . Let λ ∈

(
λ, λ
)
. If i ∈ M, then

λ < λ ≤ maxj∈Ni aij = ait for some t ∈ Ni. Hence i ∈ Mt = M ′
t and so i ∈

⋃
j∈N M

′
j.

On the other hand λ > λ ≥ ars, where r ∈ M, s ∈ Nr, hence λ = maxi∈M ′ a
′
is, thus

m+ 1 ∈M ′
s. We conclude that

⋃
j∈N M

′
j = M ′ and so λ ∈ Λ (A, 0) by Proposition 10.1.

�

10.3 Summary

The results of this chapter show a connection between two-sided systems and the set-

covering problem if B (say) is an outer-product. In this case, GEP can be solved in
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O
(
max (m,n)3) time (the whole spectrum can be found). To see the complexity, we

assume we know the vectors v and w such that B = vwT , then it takes O
(
max (m,n)3)

time to calculate V −1AW−1. Once the conversion has happened (B is the zero matrix), we

calculate λ and λ in O (mn) time. In total, the complexity is O
(
max (m,n)3)+O (mn) =

O
(
max (m,n)3) time.
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11. The generalized eigenproblem -

unique candidate if difference of ma-

trices is symmetric and has a saddle

point

11.1 Introduction

In this chapter the matrices A and B are square and finite and the matrix C := A−B is

symmetric with a saddle point.

We show that the value of the saddle point in C is the unique candidate for a gener-

alised eigenvalue. We give necessary conditions for the saddle point to be an eigenvalue

in the general n× n case.

The results on the saddle point being the unique candidate for the eigenvalue can be

found in [17].

11.2 Saddle point and unique generalised eigenvalue

Definition 11.1. The position (r, s) is a saddle point of a matrix C if crs is both a column

maximum and row minimum.
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Note that C is a symmetric matrix if we have the stronger assumption that both A

and B are symmetric matrices. The following [12] is given as a reminder.

Proposition 11.2. If A,B ∈ Rn×n are symmetric matrices, then |Λ (A,B) | ≤ 1.

Note that in general even if the premise of Proposition 11.2 is satisfied, it is not clear

what the unique candidate for the generalized eigenvalue is and even if such a candidate

is known it is not clear how to check in polynomial time whether it is such an eigenvalue.

Recall from chapter 2 that given a matrix C,

L (C) = max
i∈M

min
j∈N

cij

and

U (C) = min
i∈M

max
j∈N

cij.

In game theory, the following quantities are known as the gain-floor and loss-ceiling

functions respectively:

v1 (C) = max
i∈M

min
j∈N

cij,

v2 (C) = min
j∈N

max
i∈M

cij.

It is known that C has a saddle point if and only if v1 (C) = v2 (C).

Let C ∈ Rm×n be any matrix. Clearly, L (C) coincides with v1 (C) . Although in

general U (C) is different from v2 (C), we observe that for CT = (cji) =
(
c′ij
)

we have

U (C) = min
i∈M

max
j∈N

cij

= min
j∈M

max
i∈N

cji

= min
j∈M

max
i∈N

c′ij

= v2

(
CT
)
.
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Hence L (C) = v1 (C) and U (C) = v2 (C) if C is symmetric, in particular when C = A−B

and both A and B are symmetric. Thus if C is symmetric and has a saddle point, say

(r, s) , then L (C) = ars = L (C) and so either ars is the unique generalized eigenvalue

or there is no such eigenvalue, see Proposition 2.6. The next two examples confirm that

both cases are possible.

Example 11.3. If

A =

 2 1

1 0

 , B =

 0 0

0 0


then C = A is symmetric and has saddle point (1, 2) of value 1, which is therefore the

unique candidate for a generalized eigenvalue. If there is an associated eigenvector x =

(x1, x2)T , we may assume without loss of generality x1 = 0 and the individual terms in

Ax and λBx are as described in the following matrices:

 2 1 + x2

1 x2

 ,

 1 1 + x2

1 1 + x2

 .

The first equation implies 1 + x2 ≥ 2 and the second 1 + x2 ≤ 1, thus Λ (A,B) = ∅.

Example 11.4. If

A =

 0 0

1 0

 , B =

 −2 −1

0 0


then C is the same as in the previous example and so λ = 1 is the unique candidate for a

generalized eigenvalue. Now the zero vector x = (0, 0)T is an associated eigenvector and

thus Λ (A,B) = {1} .

The following example shows that Λ (A,B) may be non-empty even if C is symmetric

and has no saddle point.
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Example 11.5. If

A =

 1 2

3 1

 , B =

 1 0

1 0


then

C =

 0 2

2 1


is a symmetric matrix without a saddle point but λ = 2 is a generalized eigenvalue with

associated eigenvector x = (0, 1)T .

We summarize:

Theorem 11.6. If A,B ∈ Rn×n, C = A − B is a symmetric matrix with a saddle point

(r, s) and Λ (A,B) 6= ∅ then crs is the unique generalized eigenvalue for (A,B) .

The author is not aware of any polynomial method for checking that the saddle point

value of A−B is a generalized eigenvalue of (A,B). In the next two sections we address

conditions under which a saddle point is actually an eigenvalue.

11.3 Necessary condition for the saddle point to be

an eigenvalue for square matrices

Definition 11.7. Let C ∈ Rn×n. We say ckl is a strict saddle point of C if (∀i) ckl > cil

and (∀j) ckl < ckj.

For the remainder of this chapter we use the notation Akl to denote the 2 × 2 sub-

matrix of A obtained by taking the rows and columns k and l of A. Recall also (2.1),

page 15.

Theorem 11.8. Let C = A − B ∈ Rn×n where C is symmetric and has a strict saddle

point (k, l) for some k 6= l. Then Λ (A,B) = {ckl} ⇒ d (Akl) ≤ cll−ckl. That is, the above

121



is a necessary condition for the unique candidate ckl to be a solution to the max-algebraic

generalised eigenproblem Ax = λBx.

Proof. Let A = (aij) ∈ Rn×n and C = (cij) ∈ Sn×n, that is cij = cji for all i, j ∈ N .

Let B = (bij) ∈ Rn×n satisfy A−B = C, that is bij = aij − cij for all i, j ∈ N . Let (k, l),

k 6= l be a strict saddle point of C. Now ckl is a strict column maxima and so

(∀i 6= k) ckl − cil > 0. (11.1)

Similarly, since ckl is a strict row minima we have

(∀j 6= l) ckl − ckj < 0. (11.2)

We wish to solve the system Ax = cklBx, that is, Ax = B′x where B′ =
(
b′ij
)

=

(aij + ckl − cij). In what follows xk = 0 without loss of generality. Consider equation k

of this system:

max (ak1 + x1, . . . , akl + xl, . . . , akn + xn)

= max (ak1 + ckl − ck1 + x1, . . . , akl + ckl − ckl + xl, . . . , akn + ckl − ckn + xn) .

By inequality (11.2) and the Cancellation Rule, the right hand side becomes akl + xl. In

particular, then, we must have

akl + xl ≥ akk + xk = akk. (11.3)

Similarly, if we consider equation l of the system, we obtain
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max (al1 + x1, . . . , alk + xk, . . . , aln + xn)

= max (al1 + ckl − cl1 + x1, . . . , alk + ckl − clk + xk, . . . , aln + ckl − cln + xn) .

Equivalently, using the symmetry of C, we have

max (al1 + x1, . . . , alk + xk, . . . , aln + xn)

= max (al1 + ckl − c1l + x1, . . . , alk + ckl − ckl + xk, . . . , aln + ckl − cnl + xn) .

By inequality (11.1) and the Cancellation Rule, the left hand side becomes alk +xk = alk.

In particular, then, we must have

alk ≥ all + ckl − cll + xl. (11.4)

From (11.3) and (11.4), we have the system


xl ≥ akk − akl

xl ≤ alk − all + cll − ckl.
(11.5)

The system (11.5) is solvable if and only if

akk − akl ≤ alk − all + cll − ckl,

which holds if and only if

akk + all − akl − alk ≤ cll − ckl.
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Equivalently, (11.5) is solvable if and only if

d (A [{k, l} : {k, l}]) ≤ cll − ckl.

�

11.4 Summary

By making use of the connections with Game Theory, we have been able to identify

the unique candidate for the eigenvalue when C = A − B is a symmetric matrix with

a saddle point and we were able to give necessary conditions for the unique candidate

to be an eigenvalue. In general, it is not clear whether or not the candidate is indeed

an eigenvalue. It would be interesting to study the resulting special class of two-sided

systems of equations in order to answer this question (see chapter 13).
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12. Matrix roots

12.1 Introduction

We define positive integer roots of finite matrices in the 2×2 case. Where possible, we try

to generalise results to finite n× n matrices. Note that it was shown in [57] that finding

kth roots of Boolean matrices (equivalently kth roots of digraphs) for any fixed positive

integer k ≥ 2 is NP-complete.

12.2 Finite 2× 2 matrices

Let A = (aij) ∈ R2×2. We define the max discriminant of A to be the quantity

d (A) = a11a22a
−1
12 a

−1
21 ,

(see (2.1), page 15). Similarly for d (B). Also, define the max trace of A to be the

quantity

tr (A) := a11 ⊕ a22.

Similarly for tr (B). We use the shorthand a = tr (A) and b = tr (B). Note that
√
a for

a ∈ R should be taken to mean a
2

in the classical linear notation, while A for a matrix A

should be taken in the usual sense of matrix roots.

Theorem 12.1. Let A ∈ R2×2. Then there exists B ∈ R2×2 such that B2 = A if and only
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if d (A) ≥ 0. Moreover, if d (A) ≥ 0, the matrix B∗ defined by

B∗ =

 √
a11 a12

√
a
−1

a21

√
a
−1 √

a22


is such that (B∗)2 = A.

Proof. First, we suppose d (A) < 0 and suppose, for a contradiction, that there exists

B = (bij) ∈ R2×2 such that B2 = A. Then

 b2
11 ⊕ b12b21 b12b

b21b b2
22 ⊕ b12b21

 = A. (12.1)

Case 1 Suppose a11 < a22, so that a = a22. Then

b2
11 ⊕ b12b21 < b2

22 ⊕ b12b21 = b2
22 (12.2)

since the inequality yields

b12b21 < b2
22 (12.3)

by cancellation. In particular, by (12.2), b2
11 < b2

22, which gives

b11 < b22. (12.4)

It follows from (12.1), (12.3) and (12.4) that

A =

 b2
11 ⊕ b12b21 b12b22

b21b22 b2
22

 . (12.5)
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Clearly then,

b22 =
√
a22. (12.6)

By (12.5) and (12.6) we have then


b12 = a12

(√
a22

)−1

b21 = a21

(√
a22

)−1
.

(12.7)

By (12.5) and (12.7) it follows that

a11 = b2
11 ⊕ a12a21a

−1
22

implying that

a11 ≥ a12a21a
−1
22 ,

contradicting d (A) < 0.

Case 2 The case where a11 > a22 is similar and omitted here.

Case 3 Suppose a11 = a22 = a. Then

b2
11 ⊕ b12b21 = b2

22 ⊕ b12b21. (12.8)

It follows by (12.8) that

b12b21 ≥ b2
11 ⇔ b12b21 ≥ b2

22. (12.9)
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Assume both inequalties in (12.9) hold, then by (12.1)

d (A) = (b12b21)2 b−1
12 b
−1
21

[
(b)2]−1

(12.10)

= b12b21

[
(b)2]−1

. (12.11)

It follows by (12.9) that b12b21 ≥ (b)2, which gives

[
(b)2]−1 ≥ b−1

12 b
−1
21 .

Into (12.10), this yields

0 > b12b21

[
(b)2]−1

≥ b12b21b
−1
12 b
−1
21

= 0,

a contradiction. It follows that neither inequality in (12.9) holds. That is, b2
11 =

b2
22 = b2 > b12b21 and

B2 =

 b2
11 b12b

b21b b2
22

 .

Then we have


b11 = b22 =

√
a

b12 = a12 (
√
a)
−1

b21 = a21 (
√
a)
−1
.

(12.12)
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Define C = B2. Then, by (12.12)

C =

 a⊕ a12a21a
−1 a12 (

√
a)
−1√

a

a21 (
√
a)
−1√

a a⊕ a12a21a
−1

 (12.13)

=

 a11 ⊕ a12a21 (a)−1 a12

a21 a22 ⊕ a12a21 (a)−1

 . (12.14)

Clearly, C = A if and only if

a12a21 (a)−1 ≤ a

⇔d (A) ≥ 0,

a contradiction.

Having considered all cases, we conclude that there does not exist a matrix B ∈ R2×2

such that B2 = A.

Conversely now, suppose d (A) ≥ 0. It suffices to show that the matrix B∗ given by

B∗ =

 √
a11 a12 (

√
a)
−1

a21 (
√
a)
−1 √

a22

 (12.15)

is such that (B∗)2 = A.
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We can see that

(B∗)2 =

 a11 ⊕ a12a21a
−1 a12 (

√
a)
−1

(
√
a)

a21 (
√
a)
−1

(
√
a) a22 ⊕ a12a21a

−1

 (12.16)

=

 a11 ⊕ a12a21 (a)−1 a12

a21 a22 ⊕ a12a21 (a)−1

 . (12.17)

Now, since d (A) ≥ 0, we have a11 ≥ a12a21a
−1
22 , which implies

a11 ≥ a12a21a
−1. (12.18)

Similarly,

a22 ≥ a12a21 (a)−1 . (12.19)

By (12.17), (12.18) and (12.19) we see (B∗)2 = A. �

We now discuss matters of uniqueness in an attempt to define the quantity
√
A.

Suppose d (A) ≥ 0 and B = (bij) ∈ R2×2 such that B2 = A. Define C := B2. Then

C =

 b2
11 ⊕ b12b21 b12b

b21b b2
22 ⊕ b12b21

 .

We proceed by considering cases on the diagonal elements of C.

• It is easy to see that if 
c11 = b2

11

c22 = b2
22,

then B = B∗. Indeed, in this case b11 =
√
a11 and b22 =

√
a22. Then b =

√
a. It

follows that b12 = a12

√
a
−1

and, similarly, b21 = a21

√
a
−1

.
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• Suppose 
c11 = b12b21 ≥ b2

11

c22 = b2
22 ≥ b12b21.

(12.20)

It follows that b22 > b11, so

C =

 b12b21 b12b22

b21b22 b2
22

 .

We then have that 

b11 ≤
√
a12a21a

−1
22

b22 =
√
a22

b12 = a12

(√
a22

)−1

b21 = a21

(√
a22

)−1
.

It follows that a11 = b12b21 = a12a21a
−1
22 , which implies d (A) = 0. So, b11 ≤√

a12a21a
−1
22 if and only if b11 ≤

√
a11.

We see in this case that B∗ is the component-wise maximum over all matrices B

satisfying B2 = A.

• Similarly, if 
c11 = b2

11 ≥ b12b21

c22 = b12b21 > b2
22,

then d (A) = 0 and B∗ is the component-wise maximum over all matrices B satis-

fying B2 = A.

• Finally then, if

c11 = b12b21 = c22 > b2
11 ⊕ b2

22,
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then

C =

 b12b21 b12b

b21b b12b21

 .

One can show in this case that

B =

 √a12a21a−1
√
a12a

−1
21 a√

a21a
−1
12 a

√
a12a21a−1

 .

It follows that

B2 =

 a12a21a
−1 ⊕ a a12

a21 a12a21a
−1 ⊕ a


and so B2 = A if and only if a12a21a

−1 ≤ a if and only if d (A) ≥ 0, which holds.

Interestingly then in this final case, there are exactly two matrices B satisfying

B2 = A. Namely

B1 :=

 √
a a12 (

√
a)
−1

a21 (
√
a)
−1 √

a22

 , B2 :=

 √a12a21a−1
√
a12a

−1
21 a√

a21a
−1
12 a

√
a12a21a−1

 .

Note that

d (B1) = d (A) > 0, d (B2) = d−1 (A) < 0.

It follows that there does not exist a matrix D such that D2 = B2, but we know

there exists a matrix E such that E4 = A. This inconsistency with the matrix B2

leads to us to suggest that B1 = B∗ is the natural choice for
√
A.

Having considered all cases, we conclude that B∗ is the “natural choice” for
√
A, in

that (B∗)2 = A and B∗ is consistent with the properties that we would expect of the

square root of a matrix.
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Definition 12.2. Let A ∈ R2×2. If d (A) ≥ 0, then

√
A :=

 √
a11 a12 (

√
a)
−1

a21 (
√
a)
−1 √

a22

 .

In order to better understand matrix roots, we look here to better understand matrix

powers.

Let B = (bij) ∈ R2×2. Denote b := b11 ⊕′ b22 and recall b = b11 ⊕ b22. Note that

b2b−1
12 b
−1
21 ≤ d (B) ≤ b2b−1

12 b
−1
21 . (12.21)

Our aim is to give explicit formulas for natural powers of the 2×2 matrix B. We consider

three cases:

1 b2b−1
12 b
−1
21 < 0

2 b2b−1
12 b
−1
21 ≤ 0 ≤ b2b−1

12 b
−1
21

3 0 < b2b−1
12 b
−1
21

Case 1

B =

 b11 b12

b21 b22

 .

B2 =

 b2
11 ⊕ b12b21 b12b

b21b b2
22 ⊕ b12b21


=

 b12b21 b12b

b21b b12b21

 .
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B3 =

 b12b21 b12b

b21b b12b21


 b11 b12

b21 b22


=

 b11b12b21 ⊕ b12b21b b12 (b12b21 ⊕ b22b)

b21 (b11b⊕ b12b21) b12b21b⊕ b12b21b22


=

 b12b21b b2
12b21

b2
21b12 b12b21b

 .

Now, let P (l) be the statement:

“B2l =

 bl12b
l
21 bl12b

l−1
21 b

bl21b
l−1
12 b bl12b

l
21

 ”.

Clearly, P (1) holds. Now suppose P (l) holds for some l ≥ 1. Then

B2(l+1) = B2lB2

=

 bl12b
l
21 bl12b

l−1
21 b

bl21b
l−1
12 b bl12b

l
21


 b12b21 b12b

b21b b12b21


=

 bl12b
l
21 (b12b21 ⊕ b2) bl+1

12 b
l
21b⊕ bl+1

12 b
l
21b

bl+1
21 b

l
12b⊕ bl+1

21 b
l
12b bl12b

l
21 (b2 ⊕ b12b21)


=

 bl+1
12 b

l+1
21 bl+1

12 b
l
21b

bl+1
21 b

l
12b bl+1

12 b
l+1
21

 ,

and so P (l + 1) holds. By induction, P (l) holds for all l ∈ N.
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Corollary 12.3. Let B = (bij) ∈ R2×2 such that b2b−1
12 b
−1
21 < 0. Let l ∈ N. Then

d
(
B2l
)

= b12b21b
−2 > 0.

Let Q (l) be the statement:

“B2l+1 =

 bl12b
l
21b bl+1

12 b
l
21

bl+1
21 b

l
12 bl12b

l
21b

 ”.

Clearly, Q (1) holds. Suppose now that Q (l) holds for some l ≥ 1. Then

B2(l+1)+1 = B2l+1B2

=

 bl12b
l
21b bl+1

12 b
l
21

bl+1
21 b

l
12 bl12b

l
21b


 b12b21 b12b

b21b b12b21


=

 bl+1
12 b

l+1
21 b⊕ bl+1

12 b
l+1
21 b bl+1

12 b
l
21 (b12b21 ⊕ b2)

bl+1
21 b

l
12 (b12b21 ⊕ b2) bl+1

12 b
l+1
21 b

 =

 bl+1
12 b

l+1
21 b bl+2

12 b
l+1
21

bl+2
21 b

l+1
12 bl+1

12 b
l+1
21 b

 ,

and so Q (l + 1) holds. It follows by induction that Q (l) holds for all l ∈ N.

Corollary 12.4. Let B = (bij) ∈ R2×2 such that b2b−1
12 b
−1
21 < 0. Let l ∈ N. Then

d
(
B2l+1

)
= b2b−1

12 b
−1
21 < 0.

Case 2 Recall

b2b−1
12 b
−1
21 ≤ 0 ≤ b2b−1

12 b
−1
21 .
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Without loss of generality, assume b = b11 ≤ b22 = b. (The case b11 ≥ b22 is similar).

Now,

B =

 b11 b12

b21 b

 .

B2 =

 b2
11 ⊕ b12b21 b12b

b21b b2 ⊕ b12b21


=

 b12b21 b12b

b21b b2

 .

B3 =

 b12b21 b12b

b21b b2


 b11 b12

b21 b


=

 b12b21 (b11 ⊕ b) b12 (b12b21 ⊕ b2)

b21 (b11b⊕ b2) b12b21b⊕ b3


=

 b12b21b b12b
2

b21b
2 b3

 .

Let P (l) be the statement:

“Bl =

 b12b21b
l−2 b12b

l−1

b21b
l−1 bl

 ”.

Clearly P (2) and P (3) hold. Suppose now that P (l) holds for some l ≥ 2. Then
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Bl+1 =

 b12b21b
l−2 b12b

l−1

b21b
l−1 bl


 b11 b12

b21 b


=

 b12b21

(
bl−2b11 ⊕ bl−1

)
b12b

l−2 (b12b21 ⊕ b2)

b21b
l−1 (b11 ⊕ b) bl−1 (b12b21 ⊕ b2)


=

 b12b21b
l−1 b12b

l

b21b
l bl+1

 ,

and so P (l) holds. It follows that P (l) holds for all l ∈ N.

Similarly, if b11 ≥ b22, then

Bl =

 bl b12b
l−1

b21b
l−1 b12b21b

l−2

 .

Corollary 12.5. Let B = (bij) ∈ R2×2 such that b2b−1
12 b
−1
21 ≤ 0 ≤ b2b−1

12 b
−1
21 . Let

l ∈ N. Then

d
(
Bl
)

= 0.

Case 3 Recall

0 < b2b−1
12 b
−1
21 .

Assume without loss of generality b = b11 ≤ b22 = b. (The case b11 ≥ b22 is similar).
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B =

 b11 b12

b21 b

 .

B2 =

 b2
11 ⊕ b12b21 b12b

b21b b2 ⊕ b12b21


=

 b2
11 b12b

b21b b2

 .

B3 =

 b2
11 b12b

b21b b2


 b11 b12

b21 b


=

 b3
11 ⊕ b12b21b b12 (b2

11 ⊕ b2)

b21 (b11b⊕ b2) b12b21b⊕ b3

 =

 b3
11 ⊕ b12b21b b12b

2

b21b
2 b3

 .

Let P (l) be the statement

“Bl =

 bl11 ⊕ b12b21b
l−2 b12b

l−1

b21b
l−1 bl

 ”.

Clearly P (2) and P (3) hold. Suppose P (l) holds for some l ≥ 2. Then
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Bl+1 =

 bl11 ⊕ b12b21b
l−2 b12b

l−1

b21b
l−1 bl


 b11 b12

b21 b


=

 bl+1
11 ⊕ b12b21

(
b11b

l−1 ⊕ bl−1
)

b12

(
bl11 ⊕ b12b21b

l−2
)
⊕ b12b

l

b21b11b
l−1 ⊕ b21b

l b12b21b
l−1 ⊕ bl+1


=

 bl+1
11 ⊕ b12b21b

l−1 b12b
l

b21b
l bl

 ,

and so P (l + 1) holds. It follows by induction that P (l) holds for all l ∈ N.

Similarly, if b11 ≥ b22, then

Bl =

 bl b12b
l−1

b21b
l−1 bl22 ⊕ b12b21b

l−2

 .

Lemma 12.6. Let B = (bij) ∈ R2×2 such that b2b−1
12 b
−1
21 > 0. Let l ∈ N. Then

d
(
Bl
)
≥ 0.

Proof. Without loss of generality assume b11 ≤ b22 (the case b11 ≥ b22 is similar).

Now,

d
(
Bl
)

= bl11b
lb−1

12 b
−1
21 b

2−2l ⊕ b12b21b
l−2blb−1

12 b
−1
21 b

2−2l

= bl11b
2−lb−1

12 b
−1
21 ⊕ 0

≥ 0.
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12.2.1 Odd roots

Let A = (aij) ∈ R2×2. Let k ∈ N. We wish to find B = (bij) ∈ R2×2 such that B2k+1 = A.

• d (A) < 0

It follows from Corollaries 12.4, 12.5 and Lemma 12.6 that if there exists B such

that B2k+1 = A, then b2b−1
12 b
−1
21 < 0.

It follows that

A =

 bk12b
k
21b bk+1

12 bk21

bk+1
21 bk12 bk12b

k
21b

 .

So,


a11 = a22 = a = bk12b

k
21b

a12 = bk+1
12 bk21

a21 = bk+1
21 bk12

This is a system of three linear equations in three unknowns and can be solved easily

(by Gaussian elimination, say). The unique solution is


b = a (a12a21)

−k
2k+1

b12 = a12 (a12a21)
−k

2k+1

b21 = a21 (a12a21)
−k

2k+1 .

It follows that

140



B = (a12a21)
−k

2k+1

 λ a12

a21 µ

 ,

where λ⊕ µ = a.

In particular, the component-wise maximum over all such B is given by

B∗ = (a12a21)
−k

2k+1

 a a12

a21 a

 . (12.22)

• d (A) > 0

It follows from Corollaries 12.4, 12.5 and Lemma 12.6 that b2b−1
12 b
−1
21 > 0. Let us

assume first that b11 ≤ b22 (the case b11 ≥ b22 is similar). Now, if there exists B

such that B2k+1 = A, then

A =

 b2k+1
11 ⊕ b12b21b

2k−1 b12b
2k

b21b
2k b2k+1

22

 .

We have then


b22 = a

1
2k+1

22 = a22a
−2k
2k+1

22

b12 = a12a
−2k
2k+1

22

b21 = a21a
−2k
2k+1

22 .

Note that
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b12b21b
2k−1 = a12a

−2k
2k+1

22 a21a
−2k
2k+1

22 a
2k−1
2k+1

22

= a12a21a
−(2k+1)
2k+1

22

= a12a21a
−1
22

< a11.

We then have

b2k+1
11 = a11 ⇔ b11 = a

1
2k+1

11 .

To conclude,

B = (bij)

=

 a
1

2k+1

11 a12a
−2k
2k+1

22

a21a
−2k
2k+1

22 a
1

2k+1

22


=

 a11a
−2k
2k+1

11 a12a
−2k
2k+1

22

a21a
−2k
2k+1

22 a22a
−2k
2k+1

22


=
(
aij (aii ⊕ ajj)

−2k
2k+1

)
.

Similarly, if b11 ≥ b22, then

B = (bij) =
(
aij (aii ⊕ ajj)

−2k
2k+1

)
.
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• d (A) = 0

It follows from Corollaries 12.4, 12.5 and Lemma 12.6 that either

– b2b−1
12 b
−1
21 ≤ 0 ≤ b2b−1

12 b
−1
21 or

– b2b−1
12 b
−1
21 > 0.

Firstly, we consider b2b−1
12 b
−1
21 ≤ 0 ≤ b2b−1

12 b
−1
21 . Let us assume that b11 ≤ b22 (the case

b11 ≥ b22 is similar). We have then that

B2k+1 =

 b12b21b
2k−1 b12b

2k
22

b21b
2k b2k+1

 .

We have then


b = b22 = a

1
2k+1

22 = a22a
−2k
2k+1

22

b12 = a12a
−2k
2k+1

22

b21 = a21a
−2k
2k+1

22 .

Note that


b2

11 ≤ b12b21

b2k−1
11 ≤ b2k−1

22 .

Together, these imply
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b2k+1
11 ≤ b12b21b

2k−1
22

= a12a
−2k
2k+1

22 a21a
−2k
2k+1

22 a
2k−1
2k+1

22

= a12a21a
−(2k+1)
2k+1

22

= a12a21a
−1
22

= a11.

We then have

b11 ≤ a
1

2k+1

11 = a11a
−2k
2k+1

11 .

Conversely, if b11 = a
1

2k+1

11 , then it follows that


b2

11 = b12b21

b2k−1
11 = b2k−1

22 .

It follows that b11 = b22 and

b2b−1
12 b
−1
21 = d (B) = b2b−1

12 b
−1
21 = 0.

We can show in this case that B2k+1 is indeed equal to A, showing that the inequality

b11 ≤ a
1
2k
11 is the tightest possible.

We conclude that

B =

 λa
−2k
2k+1

11 a12a
−2k
2k+1

22

a21a
−2k
2k+1

22 a22a
−2k
2k+1

22

 ,
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where λ ≤ a11. It follows that the component-wise maximum over all such B is

given by

B∗ = (bij)

=

 a11a
−2k
2k+1

11 a12a
−2k
2k+1

22

a21a
−2k
2k+1

22 a22a
−2k
2k+1

22


=
(
aij (aii ⊕ ajj)

−2k
2k+1

)
.

Similarly, when b11 ≥ b22 we find

B∗ = (bij) =
(
aij (aii ⊕ ajj)

−2k
2k+1

)
.

Next, consider 0 < b2b−1
12 b
−1
21 . Again, let us suppose b11 ≤ b22 (the same results are

obtained in the case b11 ≥ b22). In this case we have

B =

 b2k+1
11 ⊕ b12b21b

2k−1 b12b
2k

b21b
2k b2k+1

 .

This yields


b = a

1
2k+1

22 = a22a
−2k
2k+1

22

b12 = a12a
−2k
2k+1

22

b21 = a21a
−2k
2k+1

22 .

Note that
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b12b21b
2k−1 = a12a

−2k
2k+1

22 a21a
−2k
2k+1

22 a
2k−1
2k+1

22

= a12a21a
−2k−1
2k+1

22

= a12a21a
−1
22

= a11.

It follows that

B =

 λa
−2k
2k+1

11 a12a
−2k
2k+1

22

a21a
−2k
2k+1

22 a22a
−2k
2k+1

22

 ,

where λ ≤ a11.

The component-wise maximum over all such B is given by

B∗ = (bij)

=

 a11a
−2k
2k+1

11 a12a
−2k
2k+1

22

a21a
−2k
2k+1

22 a22a
−2k
2k+1

22


=
(
aij (aii ⊕ ajj)

−2k
2k+1

)
.

Similarly, if b11 ≥ b22, then we find

B∗ = (bij) =
(
aij (aii ⊕ ajj)

−2k
2k+1

)
.
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12.2.2 Even roots

Let A = (aij) ∈ R2×2. Let k ∈ N. We wish to find B = (bij) ∈ R2×2 such that B2k = A.

• d (A) < 0

By Corollaries 12.3, 12.5 and Lemma 12.6 we see that there does not exist B such

that B2k = A.

• d (A) > 0

Suppose that b11 ≤ b22, the results for b11 ≥ b22 are similar. By Corollaries 12.3,

12.5 and Lemma 12.6 we see that

B2k =

 b2k
11 ⊕ b12b21b

2k−2
22 b12b

2k−1
22

b21b
2k−1
22 b2k

22

 .

From this we have


b22 = a

1
2k
22 = a22a

−2k+1
2k

22

b12 = a12a
−2k+1

2k
22

b21 = a21a
−2k+1

2k
22 .

Note that
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b12b21b
2k−2
22 = a12a

−2k+1
2k

22 a21a
−2k+1

2k
22 a

2k−2
2k

22

= a12a21a
−2k
2k

22

= a12a21a
−1
22

< a11.

It follows that

b2k
11 = a11

⇔b11 = a
1
2k
11 = a11a

−2k+1
2k

11 .

To conclude,

B = (bij)

=

 a11a
−2k+1

2k
11 a12a

−2k+1
2k

22

a21a
−2k+1

2k
22 a22a

−2k+1
2k

22


=
(
aij (aii ⊕ ajj)

−2k+1
2k

)
.

Similarly, if we have b11 ≥ b22, then we obtain

B =
(
aij (aii ⊕ ajj)

−2k+1
2k

)
.

148



• d (A) = 0

By Corollaries 12.3, 12.5 and Lemma 12.6 we have two possible cases, namely:

– b2b−1
12 b
−1
21 ≤ 0 ≤ b2b−1

12 b
−1
21 or

– 0 < b2b−1
12 b
−1
21 .

First, let us consider b2b−1
12 b
−1
21 ≤ 0 ≤ b2b−1

12 b
−1
21 . Suppose b11 ≤ b22, the results are

similar for b11 ≥ b22. We have

B2k =

 b12b21b
2k−2
22 b12b

2k−1
22

b21b
2k−1
22 b2k

22

 .

It follows that


b22 = a

1
2k
22 = a22a

−2k+1
2k

22

b12 = a12a
−2k+1

2k
22

b21 = a21a
−2k+1

2k
22 .

Note

b12b21b
2k−2
22 = a12a

−2k+1
2k

22 a21a
−2k+1

2k
22 a

2k−2
2k

22

= a12a21a
−2k
2k

22

= a12a21a
−1
22

= a11.

We have then that
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b11 ≤ a
1
2k
11 = a11a

−2k+1
2k

11 .

In conclusion,

B =

 λ a12a
−2k+1

2k
22

a21a
−2k+1

2k
22 a22a

−2k+1
2k

22

 ,

where

λ ≤ a11a
−2k+1

2k
11 .

The component-wise maximum over all such B is given by

B∗ = (bij)

=

 a11a
−2k+1

2k
11 a12a

−2k+1
2k

22

a21a
−2k+1

2k
22 a22a

−2k+1
2k

22


=
(
aij (aii ⊕ ajj)

−2k+1
2k

)
.

Similarly, if b11 ≥ b22, then

B∗ =
(
aij (aii ⊕ ajj)

−2k+1
2k

)
.

Next, consider 0 < b2b−1
12 b
−1
21 . Suppose b11 ≤ b22, the results are similar for b11 ≥ b22.

We have

B2k =

 b2k
11 ⊕ b12b21b

2k−2
22 b12b

2k−1
22

b21b
2k−1
22 b2k

22

 .

150



Note that

0 = d (A)

= d
(
B2k
)

= b2k
11b

2−2k
22 b−1

12 b
−1
21 ⊕ 0.

It follows that

b2k
11 = b12b21b

2k−2
22 ,

and so

B2k =

 b2k
11 b12b

2k−1
22

b21b
2k−1
22 b2k

22

 .

We have



b11 = a
1
2k
11 = a11a

−2k+1
2k

11

b22 = a
1
2k
22 = a22a

−2k+1
2k

22

b12 = a12a
−2k+1

2k
22

b21 = a
−2k+1

2k
22 .

To conclude,
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B = (bij) a11a
−2k+1

2k
11 a12a

−2k+1
2k

22

a21a
−2k+1

2k
22 a22a

−2k+1
2k

22


=
(
aij (aii ⊕ ajj)

−2k+1
2k

)
.

Similarly, when b11 ≥ b22, we obtain

B =
(
aij (aii ⊕ ajj)

−2k+1
2k

)
.

We summarise our results with some Theorems.

Theorem 12.7. Let A = (aij) ∈ R2×2 such that d (A) ≥ 0. Let k ∈ N. Define

B∗ :=
⊕{

B : Bk = A
}
.

Then

B∗ = (bij) =
(
aij (aii ⊕ ajj)

1−k
k

)
.

Corollary 12.8. Let A = (aij) ∈ R2×2 such that d (A) ≥ 0. In addition, suppose that

a11 = a22 =: a. Let k ∈ N. Then
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B∗ = (bij)

=
(
aija

1−k
k

)
= a

1−k
k A

=
(
a2 ⊕ a12a21

) 1−k
2k A.

Theorem 12.9. Let A = (aij) ∈ R2×2 such that d (A) < 0.

• If k is even, then there does not exist B such that Bk = A.

• If k is odd, then there exists B such that Bk = A if and only if a11 = a22. Moreover,

if a11 = a22, then

B = αA,

where

α = (a12a21)
1−k
2k .

Note that

lim
d(A)→0

(a12a21)
1−k
2k = a

1−k
k .

Corollary 12.10. Let A = (aij) ∈ R2×2 such that d (A) < 0. In addition, suppose that

a11 = a22 =: a. Let k ∈ N such that k is odd. Then Bk = A, where
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B = (a12a21)
1−k
2k A

=
(
a2 ⊕ a12a21

) 1−k
2k A.

To conclude:

Theorem 12.11. Let A = (aij) ∈ R2×2 such that a11 = a22 = a. Let k ∈ N. Then there

exists B such that Bk = A if and only if (B∗)k = A, where

B∗ =
(
a2 ⊕ a12a21

) 1−k
2k A

= perm (A)
1−k
2k A

and this is true when k is odd.

Remark 12.12. Note that B∗ in Theorem 12.11 is always a kth root of a 2 × 2 matrix

when k is odd. The result does not generalise to larger matrices, as in the following

example.

Example 12.13. Let

A =


1 0 1

0 1 0

0 2 1

 , k = 3.

Then

perm (A)
1−k
2k = 3

−2
6 = −1
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and so

B∗ =


0 −1 0

−1 0 −1

−1 1 0

 .

We can then show that

(B∗)3 =


0 1 0

−1 0 −1

0 1 0

 6= A.

12.3 A generalisation to special types of n×n matri-

ces

In this Section, A ∈ Rn×n is a matrix such that

(∀i) (∀j) (∀t) t 6= i, j; aijatt ≥ aitatj. (12.23)

Let k ≥ 1 be fixed and for the remainder of this section define

B = (bij) =
(
aij (aii ⊕ ajj)

1−k
k

)
, (12.24)

so

(∀i) bii = a
1
k
ii . (12.25)

Theorem 12.14.

(∀l ≥ 1)Bl =
(
b

(l)
ij

)
=
(
aij (aii ⊕ ajj)

l−k
k

)
.

The following lemma may be useful in the proof of Theorem 12.14.
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Lemma 12.15. Let a, b ∈ R and suppose r, s ≥ 0. Then

(a⊕ b)r+s ≥ arbs.

Proof. [Proof of Lemma 12.15] We complete the proof with the use of classical notation,

as follows.

(a⊕ b)r+s = (r + s) max (a, b)

= rmax (a, b) + smax (a, b)

≥ ra+ sb

= arbs.

�

Proof. [Proof of Theorem 12.14]

Let P (l) be the statement

“Bl =
(
b

(l)
ij

)
=
(
aij (aii ⊕ ajj)

l−k
k

)
”

for l ≤ k.

Clearly, P (1) holds.

Let 1 ≤ l ≤ k − 1 and suppose P (l) holds, that is

(∀i) (∀j) b(l)
ij = aij (aii ⊕ ajj)

l−k
k .

So

(∀i) b(l)
ii = a

l
k
ii .

We show that P (l + 1) holds also.
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(1) Let i ∈ N. Then

b
(l+1)
ii =

⊕
t∈N

b
(l)
it bti

=b
(l)
ii bii ⊕

⊕
t6=i

b
(l)
it bti

=aii (aii ⊕ aii)
l−k
k aii (aii ⊕ aii)

1−k
k

⊕
⊕
t6=i

ait (aii ⊕ att)
l−k
k ati (att ⊕ aii)

1−k
k

=a
l+1
k
ii ⊕

⊕
t6=i

aitati (aii ⊕ att)
l+1−2k

k .

Let t 6= i be fixed. We claim that

a
l+1
k
ii ≥ aitati (aii ⊕ att)

l+1−2k
k .

To see this, first observe

(aii ⊕ att)
2k−l−1

k ≥ a
k−l−1
k

ii a
k
k
tt (12.26)

by Lemma 12.15 (note k − l − 1 ≥ 0). We then have

a
l+1
k
ii ≥ aitati (aii ⊕ att)

l+1−2k
k

⇔a
l+1
k
ii

≥a
k−l−1
k

ii a
k
k
tt by (12.26)︷ ︸︸ ︷

(aii ⊕ att)
2k−l−1

k ≥ aitati

⇐a
l+1
k
ii a

k−1−l
k

ii a
k
k
tt ≥ aitati

⇔aiiatt ≥ aitati,
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which holds.

It follows

b
(l+1)
ii = a

l+1
k
ii = aii (aii ⊕ aii)

l+1−k
k ,

as required.

(2) Let i, j ∈ N, i 6= j. Fist observe

a
l
k
ii ⊕ a

1
k
jj (aii ⊕ ajj)

l−1
k = (aii ⊕ ajj)

l
k . (12.27)

We then have

b
(l+1)
ij =

⊕
t∈N

b
(l)
it btj

=b
(l)
ii bij ⊕ b

(l)
ij bjj ⊕

⊕
t6=i,j

b
(l)
it btj

=a
l
k
iiaij (aii ⊕ ajj)

1−k
k ⊕ aij (aii ⊕ ajj)

l−k
k a

1
k
jj ⊕

⊕
t6=i,j

b
(l)
it btj

=aij (aii ⊕ ajj)
1−k
k

=(aii⊕ajj)
l
k by (12.27)︷ ︸︸ ︷[

a
l
k
ii ⊕ a

1
k
jj (aii ⊕ ajj)

l−1
k

]
⊕
⊕
t6=i,j

b
(l)
it btj

=aij (aii ⊕ ajj)
l+1−k
k ⊕

⊕
t6=i,j

ait (aii ⊕ att)
l−k
k atj (att ⊕ ajj)

1−k
k .

Let t 6= i, j be fixed. We claim that

aij (aii ⊕ ajj)
l+1−k
k ≥ ait (aii ⊕ att)

l−k
k atj (att ⊕ ajj)

1−k
k . (12.28)

To see this, first observe
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(aii ⊕ ajj)
l+1−k
k (aii ⊕ att)

k−l
k (att ⊕ ajj)

k−1
k ≥ att. (12.29)

This follows since

(aii ⊕ ajj)
l+1−k
k (aii ⊕ att)

k−l
k (att ⊕ ajj)

k−1
k ≥ (aii ⊕ ajj)

l+1−k
k a

k−l−1
k

ii a
1
k
tta

k−1
k

tt

= (aii ⊕ ajj)
l+1−k
k a

k−l−1
k

ii att

= a
l+1−k
k

ii a
k−l−1
k

ii att ⊕ a
l+1−k
k

jj a
k−l−1
k

ii att

= att ⊕ a
l+1−k
k

jj a
k−l−1
k

ii att

≥ att,

where the first inequality holds by two uses of Lemma 12.15 (note that k−l−1 ≥ 0).

We can now show (12.28) holds, as follows.

aij (aii ⊕ ajj)
l+1−k
k ≥ ait (aii ⊕ att)

l−k
k atj (att ⊕ ajj)

1−k
k

⇔aij

≥att by (12.29)︷ ︸︸ ︷
(aii ⊕ ajj)

l+1−k
k (aii ⊕ att)

k−l
k (att ⊕ ajj)

k−1
k ≥ aitatj

⇐aijatt ≥ aitatj,

which holds.

Therefore

b
(l+1)
ij = aij (aii ⊕ ajj)

l+1−k
k .

We conclude P (l + 1) holds and the result follows by induction. �
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Corollary 12.16.

Bk = A.

Proof.

Bk =
(
b

(k)
ij

)
=
(
aij (aii ⊕ ajj)

k−k
k

)
= (aij) = A.

�

Example 12.17. A =


1 0 1

1 2 2

0 0 1

 satisfies the condition of Theorem 12.14. For k = 3

we have

B = (bij) =
(
aij (aii ⊕ ajj)−

2
3

)
=


1
3
−4

3
1
3

−1
3

2
3

2
3

−2
3
−4

3
1
3

 .

We then see that

B2 =


1
3
−4

3
1
3

−1
3

2
3

2
3

−2
3
−4

3
1
3




1
3
−4

3
1
3

−1
3

2
3

2
3

−2
3
−4

3
1
3



=


2
3
−2

3
2
3

1
3

4
3

4
3

−1
3
−2

3
2
3


and
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B3 =


2
3
−2

3
2
3

1
3

4
3

4
3

−1
3
−2

3
2
3




1
3
−4

3
1
3

−1
3

2
3

2
3

−2
3
−4

3
1
3



=


1 0 1

1 2 2

0 0 1


= A,

as expected.

Example 12.18. A =


1 0 1

1 2 2

1 1 1

 does not satisfy the conditions of Theorem 12.14

since a21a33 < a23a31.

If we define

B = (bij)

=
(
aij (aii ⊕ ajj)−

2
3

)

=


1
3
−4

3
1
3

−1
3

2
3

2
3

1
3
−1

3
1
3

 ,

then
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B2 =


1
3
−4

3
1
3

−1
3

2
3

2
3

1
3
−1

3
1
3




1
3
−4

3
1
3

−1
3

2
3

2
3

1
3
−1

3
1
3



=


2
3

0 2
3

1 4
3

4
3

2
3

1
3

2
3


and

B3 =


2
3

0 2
3

1 4
3

4
3

2
3

1
3

2
3




1
3
−4

3
1
3

−1
3

2
3

2
3

1
3
−1

3
1
3



=


1 2

3
1

5
3

2 2

1 1 1


6= A.

Interestingly, the matrix B3 is “off” in exactly two positions. We can also check that

the matrix A violates exactly two of the conditions of Theorem 12.14. In particular,

a21a33 < a23a31 and a12a33 < a13a32. All other conditions are satisfied. We have the

following remark.

Remark 12.19. In the proof of Theorem 12.14, we fix i, j and then prove b
(l)
ij is as ex-

pected. Not all conditions of the theorem are used however. To prove b
(l)
ij = aij (aii ⊕ ajj)

l−k
k
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we require

(∀t 6= i, j) aijatt ≥ aitatj. (12.30)

We call (12.30) the root constraints for (i, j). We summarise with the following corol-

lary.

Corollary 12.20. Let A ∈ Rn×n and k ≥ 2 an integer. Define the matrix

B = (bij) =
(
aij (aii ⊕ ajj)

1−k
k

)
.

If

(∀t 6= i, j) aijatt ≥ aitatj,

then

(∀l ≥ 1) b
(l)
ij = aij (aii ⊕ ajj)

l−k
k .

It follows that if a matrix A ∈ Rn×n satisfies the root constraints for (i, j) for most

pairs i, j, then B may serve as a good approximation (in some sense) to a kth root of A.

12.4 Summary

We defined kth roots (for integer k) for 2× 2, finite matrices (when such roots exist). We

also explicitly described when such roots do and do not exist. We were able to generalise

the formula for the kth root of a matrix to the general n × n case, provided the matrix

satisfied some conditions on some of its 2× 2 sub-matrices. Corollary 12.20 motivated a

question about approximations of matrix roots - which may be useful considering finding

exact roots for n× n matrices is NP-complete in the Boolean case.
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13. Thesis conclusions and further re-

search

We give here a brief summary of the most important results of the thesis and some

questions arising.

In chapter 3 we studied the finite, m × n parametrised system Ax = b (α). By de-

scribing the full solution set we developed a tool for finding non-trivial solutions to other

systems. In particular, in chapter 7 we showed that the two-sided system Ax = By, for

A ∈ Rm×n and B ∈ Rm×2, can be viewed as a sequence of one-sided parametrised systems.

In chapter 10 we showed that GEP can be viewed as a one-sided parametrised system if

B (say) is an outer-product.

Question: Is it possible to increase the number of parameters in the right-hand side and

still describe the whole set of solutions?

In chapter 4 we presented a strongly polynomial method for solving the two-sided

system of inequalities Ax ≤ Bx for A ∈ Rm×n and B ∈ Rm×n
where B has exactly

one finite entry per row. This is in contrast to the problem in which we replace “ ≤ ”

with “ = ”. In making this small change we move from being able to describe the set

of generators of all finite solutions in strongly polynomial time to having no obvious way

of finding even one solution in strongly polynomial time. This problem is suggesting,

then, that two-sided systems of inequalities are, probably, more tractable than two-sided

systems of equations.
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Question: Is it possible to solve such systems in strongly polynomial time if B has exactly

two finite entries per row?

In chapter 5 we have

Question: Can we find a solution to the two-sided system Ax = Bx in polynomial time

when A and B have exactly two finite entries per row but not necessarily in the same

position?

In chapter 6 we saw that the Cancellation Rule can be a powerful tool. Using it

carefully allowed us to give explicit solutions for the two-dimensional two-sided system

Ax = Bx for A,B ∈ Rm×2 and the two-dimensional generalised eigenproblem Ax = λBx

for A,B ∈ Rm×2.

Question: Can we give similar explicit solutions for the three-dimensional counterparts?

In chapter 7 we have

Question: Can we increase the number of columns in B to three and still solve the two-

sided system Ax = By?

In chapter 8 we showed a potentially useful connection between square, finite two-sided

systems Ax = Bx and the assignment problem. This connection can help to find “partial

solutions”, or even full solutions in some cases, in strongly polynomial time.

Question: Can we identify minimally active systems easily?

Question: Can we identify essential systems easily?

Question: Can we generalise the results to non-square systems?

Question: Can we say anything useful for non-finite, square matrices when there is no

finite permutation in C?

In chapter 9

Question: Can we perform a similar analysis for other structured matrices? For example,

Toeplitz or Hankel matrices.

In chapter 11 we found a new connection between the generalised eigenproblem Ax =
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λBx and Game Theory when the matrix C = A−B is finite, symmetric and has a saddle

point. We showed that the value of this saddle point is the unique candidate for the

generalised eigenvalue and gave some necessary conditions for checking if it is indeed an

eigenvalue. In the 3× 3 case we were able to give necessary and sufficient conditions.

Question: Can we find a necessary and sufficient condition for when the unique candidate

for the generalised eigenvalue is indeed an eigenvalue?

Question: In the positive case, can we find a corresponding eigenvector?

Finally, in chapter 12, we defined kth roots (for integer k) for 2 × 2, finite matrices

(when such roots exist). We also explicitly described when such roots do and do not

exist. We were able to generalise the formula for the kth root of a matrix to the general

n× n case provided the matrix satisfied some Monge-type conditions on some of its 2× 2

sub-matrices.

Question: Is the following statement true: “The matrix A ∈ Rn×n has a kth root (some

fixed k ≥ 2) if and only if Bk = A (where B is as given in Theorem (12.14))”?

Question: Is B a good approximation to the kth root when A does not satisfy the condi-

tions of Theorem 12.14?
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[62] S. Sergeev, H. Schneider and P. Butkovič, On visualisation scaling, subeigenvectors
and Kleene stars in max algebra, Linear Algebra and its Applications 431, pp. 2395-
2406, 2009.

[63] S. Sergeev, On the system Ax = λBx in max algebra: every system of intervals is a
spectrum, Kybernetika, Volume 47, no. 5, pp. 715-721, 2011.

[64] N. N. Vorobyov, Extremal algebra of positive matrices, Elektronische Datenverar-
beitung und Kybernetik, 3, pp. 39-71, 1967 (in Russian).

[65] N. N. Vorobyov, Extremal algebra of non-negative matrices, Elektronisch Informa-
tionsverarbeitung und Kybernetik, 6, pp. 302-312, 1970 (in Russian).

[66] E. A. Walkup and G. Boriello, A general linear max-plus solution technique, In:
Gunawardena J. (ed) Idempotency, Cambridge, pp. 406-415, 1988.

[67] K. Zimmermann, Extremálńı algebra, Výzkumná publikace Ekonomicko - matemat-
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