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Abstract 

Adrenocortical carcinoma (ACC) is an aggressive malignancy with high recurrence rates and 

poor response to chemotherapy. With this work, we have evaluated a potential new treatment 

target focusing on the mitochondrial NADPH generator Nicotinamide Nucleotide 

Transhydrogenase (NNT). NNT has a central role within the mitochondrial antioxidant 

pathways, which protect cells from oxidative stress. Our hypothesis was that NNT silencing 

will expose cells to cytotoxic levels of oxidative stress.  We knocked down NNT transiently 

in NCI-H295R ACC cells in vitro; this led to an increase in cellular oxidative stress and a 

strong cytotoxic and cytostatic effect. With stable NNT knockdown, we observed the 

emergence of a partially compensated phenotype over the course of time, with restored redox 

balance. Surprisingly, steroidogenesis was stimulated by transient NNT loss, challenging 

current perceptions about the impact of oxidative stress on steroidogenesis.  

In our clinical study, we evaluated a new diagnostic tool for biochemical detection of ACC 

recurrence. Serial post-operative urine samples were collected from a large cohort of patients 

who had undergone complete ACC resection. Standardised review of longitudinal steroid 

measurements resulted in detection of disease recurrence prior to or concurrently with 

imaging with high sensitivity in cases where a pre-operative steroid profile had been 

provided.
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1.1 The organ: the adrenal gland and adrenal steroidogenesis  

1.1.1 Development and anatomy of the adrenal gland 

The adrenal glands, first described by Eustachius in 1563, are two endocrine glands located in 

the retroperitoneal space above the kidneys. The right adrenal is pyramidal in shape, while the 

somewhat larger left gland is semilunar. Normal adrenal glands do not size more than 5x3 cm 

and do not weigh more than 7-10 g.  Each gland consists of two parts, the outer cortex and the 

inner medulla, with distinct embryogenic extractions and biosynthetic orientations. The 

adrenal cortex arises from the urogenital ridge of the mesoderm during early foetal life, thus 

sharing the same origin as testicular Leydig cells. Conversely, the medulla arises from the 

neural crest, part of the ectoderm, and eventually migrates to the adrenal primordium around 

gestational week seven. The foetal adrenal cortex consists of two zones: the temporary foetal 

zone, which undergoes apoptotic demise after birth, and the definitive adult zone. Molecular 

pathways which have been implicated in the embryonic development of the adrenal gland 

include the b-catenin and sonic hedgehog pathways (Wood and Hammer, 2011). 

 

 The adult adrenal cortex consists of three parts, named according to their microscopic 

structure:  

a) The outer zona glomerulosa, site of mineralocorticoid hormone secretion  

b) The central zona fasciculata, site of glucocorticoid secretion 

c) The inner zona reticularis, site of sex steroid precursor secretion 

The adrenal medulla specialises in the synthesis of catecholamines (adrenalin, noradrenalin 

and dopamine).    
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Arterial blood supply to the adrenal gland is provided through three main branches: the 

superior suprarenal artery (from the inferior phrenic artery), the middle suprarenal artery 

(directly from the aorta) and the inferior suprarenal artery (from the renal artery). Venous 

drainage is through a central adrenal vein; on the right this is short and drains directly to the 

inferior vena cava, while on the left venous flow follows a longer route, the adrenal vein 

draining to the left renal vein (Fig. 1-1, 1-2).  

 

 

 

Figure 1-1. The adrenal glands. Source:(Ritchie and Balasubramanian, 2011). Reproduced 

with permission of Elsevier. 
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Figure 1-2 Adrenal histology. The adrenal cortex consists of 3 distinct zones, each 

specialising in the secretion of a different class of steroid hormones: the outer zona 

glomerulosa (ZG - mineralocorticoids), the intermediate zona fasciculata (ZF -

glucocorticoids) and the inner zona reticularis (ZR - androgens). This nomenclature springs 

from the respective microscopic appearance of each zone. The adrenal medulla comprises the 

core of the gland and synthesizes catecholamines (adrenalin/noradrenalin/ dopamine). Image 

provided by Dr K Skordilis from her personal archive. 
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1.1.2 Steroidogenesis 

1.1.1.1 Regulation 

Steroid synthesis in each zone of the adrenal cortex is regulated by distinct trophic hormones 

and negative feedback loops.  

a) Zona glomerulosa. Mineralocorticoid (e.g. aldosterone) synthesis in the external zone 

of the adrenal cortex occurs within the context of the renin-angiotensin-aldosterone 

axis. Briefly, renin is generated in the juxtaglomerular cells of the kidneys and 

mediates the cleavage of angiotensin I in the liver. Angiotensin I is converted to 

angiotensin II by the angiotensin-converting enzyme, and binds to the angiotensin type 

II receptor in the adrenal cortex to stimulate aldosterone synthesis. Aldosterone 

stimulates sodium reabsorption and potassium excretion in the renal tubules; the same 

electrolytes regulate renin production, closing the feedback loop.  

 

b) Zona fasciculata. Glucocorticoid (e.g. cortisol) synthesis in this middle zone of the 

adrenal cortex is stimulated by the pituitary peptide adrenocorticotropic hormone 

(ACTH), which is released in response to the hypothalamic hormone CRH 

(corticotropin-releasing hormone).  ACTH release follows a pulsatile pattern which 

underpins the characteristic circadian rhythm of cortisol excretion by the adrenal 

glands. Circulating glucocorticoids exert negative feedback on the hypothalamus 

(CRH) and the pituitary (ACTH), completing the loop. Stressful stimuli (trauma, 

sepsis, surgery, psychological stress) can acutely potentiate ACTH excretion and, 

consequently, augment glucocorticoid synthesis. 
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c) Zona reticularis. The release of adrenal androgen precursors DHEA and 

androstenedione is also regulated by ACTH; those can be converted in the periphery 

to active androgens and oestrogens.  

 

1.1.2.1 Adrenal steroidogenic pathways 

Adrenal steroidogenesis is a complex, multi-stage biosynthetic process leading to the 

generation of mineralocorticoids (aldosterone, zona glomerulosa), glucocorticoids (cortisol, 

zona fasciculata) and androgen precursors (DHEA/androstenedione, zona reticularis) from the 

common initial precursor cholesterol. ACTH is implicated in the first stages of cholesterol 

handling by the adrenocortical cells:  ACTH interaction with the melanocortin 2 receptor 

(MC2R) stimulates intracellular cyclic AMP (cAMP) formation, triggering the protein kinase 

A signalling pathway; this accelerates both ingress of cholesterol esters into adrenocortical 

cells and intracellular cleavage of esters to cholesterol. The ensuing steps of cholesterol 

metabolism are mediated by two broad categories of enzymes: a) cytochrome P450 enzymes 

and b) hydroxysteroid dehydrogenases. The former can be further grouped into mitochondrial 

(type I) P450 enzymes (side chain cleavage enzyme, CYP11A1; 11β-hydroxylase, CYP11B1; 

aldosterone synthase, CYP11B2) and microsomal (type II) P450 enzymes (17α-hydroxylase, 

CYP17A1; 21-hydroxylase, CYP21A2; aromatase, CYP19A1) (Miller, 2005, Payne and 

Hales, 2004). All P450 enzymes catalyse monooxygenase reactions, inserting one atom of 

oxygen into organic substrates while the other oxygen atom is reduced to water; for this they 

require co-factor proteins which supply the essential electrons. Adrenodoxin/ adrenodoxin 

reductase (also referred to as ferrodoxin/ ferrodoxin reductase) is the protein couple donating 

electrons to all mitochondrial P450 enzymes, using reduced nicotinamide adenine 

dinucleotide (NADPH) as their cofactor. Endoplasmic reticulum-based P450 enzymes receive 
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their essential electron flow from P450 oxidoreductase (POR) (Miller, 2005). Cholesterol (27 

carbons) is transported across the mitochondrial membrane by the steroid acute regulatory 

protein (StAR), where it is converted to pregnenolone (21 carbons) by the cholesterol side-

chain cleavage enzyme (CYP11A1) in a reaction requiring three oxygen molecules and three 

NADPH molecules. The glucocorticoid pathway involves conversion of pregnenolone to 

progesterone by 3β-hydroxysteroid dehydrogenase type II (HSD3B2) activity, hydroxylation 

to 17-hydroxyprogesterone by 17a-hydroxylase (CYP17A1), further hydroxylation at carbon 

21 by 21-hydroxylase (CYP21A2) and, finally, 11β-hydroxylation by 11β-hydroxylase 

(CYP11B1) to form cortisol. In the mineralocorticoid pathway, progesterone is first converted 

to deoxycorticosterone by 21-hydroxylase activity, followed by three CYP11B2-mediated 

hydroxylation steps leading to the ultimate generation of aldosterone via the intermediate 

precursors corticosterone and 18-hydroxycorticosterone. Finally, androgen synthesis requires 

consecutive 17a-hydroxylase and 17-20 lyase activities of the enzyme CYP17A1, which 

utilises its dual enzymatic potential to successively hydroxylate pregnenolone to 17-

hydroxypregnenolone and then convert the latter to dehydroepiandrostenedione (DHEA). 

DHEA is predominantly secreted by the adrenal in the form of its sulfate ester, DHEAS, 

generated from unconjugated DHEA by DHEA sulfotransferase (SULT2A1). Glucocorticoid 

and mineralocorticoid hormones consist of 21 carbon atoms, while androgens consist of 19 

and oestrogens of 18 carbon atoms. A schematic outline of adrenal steroidogenesis is 

provided in Fig. 1-3. Table 1-1 summarises the characteristics of adrenal steroidogenic 

enzymes. 
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Figure 1-3. Steroidogenesis includes three biosynthetic pathways: the mineralocorticoid 

pathway (zona glomerulosa), the glucocorticoid pathway (zona fasciculata) and the 

androgen pathway (zona reticularis). Each pathway involves steps mediated by 

endoplasmic reticulum (ER) enzymes and mitochondrial enzymes. 
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Gene Enzyme Protein Tissue 
expression 

Subcellular 
localization 

CYP11A1 Cholesterol 
side-chain 
cleaving 
enzyme 

CYP11A1, 
P450scc 

Adrenal cortex, 
ovary, testis, 
placenta 

Mitochondria 

CYP11B1 11β-
hydroxylase 

CYP11B1, 
P450c11 

Adrenal cortex 
(zona 
fasciculata/ 
reticularis) 

Mitochondria 

CYP11B2 Aldosterone 
synthase 

CYP11Β2, 
P450c18 

Adrenal cortex 
(zona 
glomerulosa) 

Mitochondria 

CYP17A1 17α-
hydroxylase- 
17/20 lyase 

CYP17A1, 
P450c17 

Adrenal cortex, 
ovary, testis 

Endoplasmic 
reticulum 

CYP21A2 21-hydroxylase CYP21A2, 
P450c21 

Adrenal cortex Endoplasmic 
reticulum 

HSD3B2 3β-
hydroxysteroid 
dehydrogenase 
type II 

HSD3B2, 3β-

HSDII  

Adrenal cortex  Endoplasmic 
reticulum  

 

 

1.2 The disease: Adrenocortical Carcinoma 

1.2.1 Epidemiology of adrenocortical carcinoma 

Adrenocortical carcinoma (ACC) is a rare but aggressive malignancy arising from the adrenal 

cortex. The exact incidence of ACC is unknown, but data from cancer registries in the United 

States and Europe suggest an estimate of 0.7-2 cases per million population per year (1975, 

Kerkhofs et al., 2013, Fassnacht et al., 2011). This statistic is in striking contrast to the high 

prevalence of adrenal masses in general, which are encountered in 3-10% of the population 

according to radiological and autopsy series and are usually benign (Bovio et al., 2006, Kloos 

Table 1-1 Enzymes participating in adrenal steroidogenesis  
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et al., 1995, Fassnacht et al., 2016). A singularity in global ACC epidemiology is observed in 

Southern Brazil, an area afflicted by a 2.9-4.2 case-per-million incidence of paediatric ACC 

(worldwide incidence = 0.2 cases per million per year), largely due to the correspondingly 

high prevalence of mutations in the tumour suppressor gene TP53 (Custodio et al., 2012). 

ACC appears to have a bimodal age distribution, with a relative peak in the first decade of life 

and a second, higher peak in the fourth and fifth decade (Wajchenberg et al., 2000). Gender 

distribution is characterised by female preponderance (1.5:1). Interestingly, this predilection 

for the female sex seems to apply exclusively to hormonally functional tumours (Wooten and 

King, 1993, Fassnacht and Allolio, 2009). Limited observational data suggest that long-term 

use of oral contraceptives may be an additional risk factor (hazard ratio = 1.8, confidence 

interval 1-3.2) (Hsing et al., 1996). This suggests oestrogens may be involved in the 

pathogenesis of ACC in some cases; indeed, there is in vitro evidence of a pro-proliferative 

effect of oestrogens on ACC cells (Montanaro et al., 2005, Somjen et al., 2003). The same 

case-control study identified smoking history as a risk factor in male patients (hazard ratio 2, 

95% confidence interval 1-4.4). This finding was corroborated by another series of 250,000 

US veterans, as well as rodent studies involving tobacco exposure; the paucity of histological 

confirmation of ACC in the aforementioned clinical studies, however, mandates caution in the 

interpretation of these data (Hsing et al., 1996, Chow et al., 1996, Dalbey et al., 1980). 

Another interesting, and thus far unexplained, epidemiological feature of ACC is the 

predominance of left-sided tumours over right-sided ones. A literature review of 14 recent 

publications identified 2607 left-sided vs. 2169 right-sided (Mihai, 2015). Selection bias has 

been proposed as a potential explanation for this disparity: right-sided tumours are more often 

inoperable due to liver invasion or vena cava involvement, which may render them less likely 
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to be reported (Mihai, 2015). Bilateral ACCs are extremely rare and it is usually unclear 

whether they represent independent tumours or metastases to the contralateral adrenal gland. 

 

1.2.2 Presentation 

The majority (45-60%) of new ACC patients present with symptoms of hormone excess, most 

commonly glucocorticoid (50-80% of hormone secreting ACCs) and/or androgen hormone-

related (40-60% of hormone secreting ACCs) (Else et al., 2014, Allolio and Fassnacht, 2006, 

Luton et al., 1990). Clinical manifestations of glucocorticoid excess (Cushing’s syndrome) 

include centripetal obesity, supraclavicular/ dorsocervical fat pads, facial plethora, skin 

atrophy, easy bruising, violaceous abdominal striae, oligomenorrhoea (<9 menstrual periods 

per year), amenorrhoea (total cessation of menses for more than 6 months), diabetes mellitus, 

osteoporosis with pathological fractures and psychiatric symptoms of depressive or psychotic 

character (Fassnacht et al., 2011, Else et al., 2014, Libe, 2015). Hypertension and 

hypokalaemia are often observed in the context of glucocorticoid excess, as the overabundant 

cortisol can saturate the protective renal enzyme 11β-hydroxysteroid dehydrogenase type II 

(inactivates cortisol to cortisone) and activate the mineralocorticoid receptor. Androgen 

excess can become clinically manifest in female patients as hirsutism, acne or, in more 

extreme cases, virilism (androgenetic alopecia, voice masculinisation, clitoromegaly) (Fig. 1-

4). In men, overall androgen activity is predominated by testicular testosterone, which 

obscures the incipient adrenal androgen excess. Oestrogen excess is uncommon (1-5% of 

cases) and can present as feminisation (gynaecomastia, loss of libido, testicular atrophy) in 

males or menstrual perturbations in female patients (Allolio and Fassnacht, 2006, Else et al., 

2014). Concurrent secretion of glucocorticoids and androgens is not uncommon 
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(approximately 50% of functional ACCs) and portends underlying adrenocortical malignancy 

(Else et al., 2014). Aldosterone-producing ACCs are rarely encountered; in such cases, drug-

resistant hypertension is the clinical hallmark of mineralocorticoid excess (Seccia et al., 2005, 

Abiven et al., 2006) .  

 

 

Loco-regional manifestations due to mass expansion occur at diagnosis in about 20% of ACC 

patients, including abdominal discomfort, nausea and vomiting (Berruti et al., 2010, Luton et 

Figure 1-4 Severe virilisation in a female patient with cortisol and androgen- producing 

ACC. Reproduced with permission of Prof W. Arlt from her personal archive with patient 

consent. 
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al., 1990, Else et al., 2014). Nonspecific symptoms of malignancy (fever, weight loss, 

myalgia, malaise) are rarely the presenting complaint.  Pathological fractures as a result of 

bone metastases can be the initial symptom in patients presenting with advanced disease. 

Finally, about 10-20% of new ACCs are discovered incidentally in the context of abdominal 

cross-sectional imaging requested for reasons other than the suspicion of adrenal disease 

(adrenal incidentalomas) (Fassnacht and Allolio, 2011). This proportion is expected to rise 

progressively with the ever-increasing use of computed tomography (CT) and magnetic 

resonance imaging (MRI).  

ACCs are generally large tumours at presentation, averaging 10-13 cm in diameter (Berruti et 

al., 2010, Abiven et al., 2006, Sturgeon et al., 2006). Since 2009, the European Network for 

the Study of Adrenal Tumours (ENSAT) classification has replaced the International Union 

Against Cancer (UICC) staging classification, as it demonstrated a higher prognostic accuracy 

with respect to disease recurrence and overall survival. The new classification emerged from 

the study of 492 ACC patients from the German Registry (mean follow-up of 36 months) and 

was subsequently validated in a North American Population of 573 patients (Fassnacht et al., 

2009, Lughezzani et al., 2010).  According to this system (Table 1-2), malignant adrenal 

tumours associated with periadrenal fat extension, adjacent organ invasion or local lymph 

node involvement are classified as stage III disease and are associated with poorer prognosis 

than localised tumours of any size. Stage IV consists solely of patients with distant metastases 

and is associated with a very poor prognosis. A modified version of this classification system 

was recently proposed by Libe et al. This involves a) a shift of all tumours with local lymph 

node involvement to stage IV, as this is a finding with dismal prognostic implications and b) 

definition of three stage IV subgroups depending on the number of organs that are affected 
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(IVa: 2 organs, IVb: 3 organs, IVc: > 3 organs; primary tumour and local lymph node 

involvement count as one organ each) (Libe et al., 2015).  

As with many other malignancies, the percentage of patients presenting with advanced 

tumours has decreased in recent decades with the widespread use of cross-sectional imaging, 

which allows earlier diagnosis. In a meta-analysis of studies published from 1952-1992, 49% 

of patients presented with metastatic disease, while less than a third of patients presented with 

localised tumour (stage I or II) (Wooten and King, 1993). In more recent series, 25-30% of 

ACC patients appear to present with metastatic disease, and stage II disease has become the 

most common stage at presentation. ACCs measuring less than  5 cm at presentation remain 

uncommon (about 5% of cases at presentation) (Fassnacht and Allolio, 2011, Else et al., 

2014). In patients with advanced disease, the lungs and the liver are the most common 

metastatic sites (each affecting 40-80% of metastatic cases), followed by the skeleton (5-20%) 

(Bilimoria et al., 2008, Fassnacht and Allolio, 2011). 
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ENSAT ACC Classification System 
Stage TNM classification TNM Definitions 
I T1, N0, M0 T1, tumor ≤5 cm 
  N0, no positive lymph node 
  M0, no distant metastases 

II T2, N0, M0 T2, tumor >5 cm 
  N0, no positive lymph node 

  M0, no distant metastases 
III T1–T2, N1, M0 N1, positive lymph node(s) 
 T3–T4, N0–N1, M0 M0, no distant metastases 
  T3, tumor infiltration into surrounding tissue 
  T4, tumor invasion into adjacent organs or 

venous tumor thrombus in vena cava or 
renal vein 

IV T1–T4, N0–N1, M1 M1, presence of distant metastases 
 

 

1.2.3 Diagnosis 

1.2.3.1 Biochemistry 

Securing a thorough adrenal hormone profile is indispensable in the work-up of newly 

discovered adrenal lesions for a number of clinical reasons. Firstly, the functional status of the 

tumour will often inform management decisions (surgical vs. conservative management) and 

can accurately diagnose medullary lesions (phaeochromocytomas). Secondly, it is imperative 

to identify patients with glucocorticoid excess before surgery: these patients are at very high 

risk of post-operative adrenal suppression, which can lead to a life-threatening ‘adrenal crisis’ 

if appropriate hydrocortisone replacement is not in place. Finally, routine evaluation of 

Table 1-2 ENSAT ACC Classification 
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adrenal steroidogenesis can sometimes provide helpful diagnostic clues to the underlying 

nature of the lesion (benign adenoma vs ACC), as androgen and/or oestrogen production is 

extremely uncommon in benign adenomas. Urinary adrenal steroid profiling by mass 

spectrometry-based techniques represents an emerging diagnostic tool to differentiate benign 

from malignant adrenocortical tumours, with very promising results in retrospective studies 

(Arlt et al., 2011).  

A comprehensive way of excluding adrenal hormone excess is described in Table 1-3. 

Screening for glucocorticoid hypersecretion is typically based on the overnight 

dexamethasone suppression test (ONDST), which involves morning serum cortisol 

measurement after night-time administration of 1mg dexamethasone; the drug’s potent 

glucocorticoid activity suppresses endogenous cortisol in healthy individuals, generally to a 

serum concentration of <50 nmol/L. Abnormal ONDSTs should be corroborated by second-

line tests such as 24-hour urinary free cortisol and salivary midnight cortisol. Morning or 

random serum cortisol is of little diagnostic value. Most patients with autonomous adrenal 

glucocorticoid hypersecretion will also have a suppressed plasma ACTH (Nieman et al., 

2015, Fassnacht et al., 2016).  

Screening for mineralocorticoid excess is mandatory in patients with adrenal tumours and 

concurrent hypertension or hypokalaemia but should always be done if ACC is suspected. 

High plasma aldosterone with suppressed renin is suggestive of mineralocorticoid excess 

(Conn’s syndrome) (Nieman et al., 2015, Fassnacht et al., 2016).   Screening for adrenal sex 

steroid excess includes plasma DHEAS, androstenedione, oestradiol, testosterone and 17-

hydroxyprogesterone and should be performed in all patients with clinical evidence of 

hyperandrogenism/ hyperoestrogenism or in patients with high clinical/ radiological suspicion 
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of ACC (Fassnacht et al., 2016). Analysis of 24-h urine samples by Gas Chromatography-

Mass Spectrometry (GC-MS) is a more sensitive means of detecting androgen excess, but is 

not readily available in all centres at present (Arlt et al., 2011, Kerkhofs et al., 2015). Finally, 

exclusion of a medullary chromaffin tumour (phaeochromocytoma) is essential in all patients 

with adrenal masses, not least because of the risk of a potentially fatal adrenergic crisis if 

surgery is attempted without prior institution of alpha adrenergic receptor blockade. Plasma or 

urine metanephrines (metabolites of adrenalin and  noradrenalin) have overtaken urine 

catecholamines as the best performing screening test, able to detect phaeochromocytomas 

with a sensitivity of 98% and specificities above 90% (Lenders et al., 2014).   

 

Adrenal zone Hormone class Screening tests Comments 

Zona 

glomerulosa 

Mineralocorticoids Aldosterone, renin Essential if 
concurrent 
hypertension or 
suspicion of ACC 

Zona 

fasciculata 

Glucocorticoids Overnight dexamethasone 
suppression test (ONDST) 
24-hour urine free cortisol 
(UFC) 
Paired (day/night) salivary 
cortisol 
ACTH 

Abnormal response 
in ONDST should 
be confirmed by 
second-line tests 

Zona reticularis Androgens, 
oestrogens 

Testosterone, DHEAS, 
Androstenedione, 17-OH-
Progesterone, Oestradiol, 
Progesterone 

Essential if clinical 
suspicion of sex 
hormone excess or 
ACC 

Adrenal 

medulla 

Catecholamines Plasma or urine 
metanephrines 

Repeat in supine 
position if modestly 
raised 

 

Table 1-3 Overview of adrenal steroidogenesis 
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1.2.3.2  Imaging 

Adrenal lesions are most commonly discovered in the context of cross-sectional imaging 

undertaken for reasons other than the suspicion of adrenal pathology (adrenal 

incidentalomas). Imaging remains instrumental in the diagnostic work-up of a new adrenal 

lesion, providing useful clues that aid the differentiation of benign adrenocortical adenomas 

(ACAs) from ACCs and other adrenal pathologies (e.g. phaeochromocytomas, metastases, 

myelolipomas). Imaging-based characterisation is largely based on the tendency of ACCs to 

be larger than ACAs and lipid-poor.  

Computed tomography (CT) is the most commonly used imaging modality in the work-up of 

adrenal lesions. Generally, adrenal adenomas tend to have a diameter of < 4cm (mean size 

3.5cm) while ACCs tend to measure > 6 cm; however, it is worth noting that no more than 

25% of adrenal masses > 6 cm  turn out to be ACCs (Mantero et al., 2000, Adams et al., 

1983). A diagnostic cut-off of > 4 cm provides a sensitivity of 97% for ACC detection, but its 

specificity is disappointingly low at 52%. Raising the cut-off to 6cm improves specificity to 

80% at the cost of a diminished sensitivity of 91%, which is unsatisfactory for definitive 

cancer diagnostics (Sturgeon et al., 2006).  Non-contrast attenuation reflects the lipid content 

of the lesion; lesions with attenuation < 10 Hounsfield Units (HU) are lipid-rich, a trait which 

is common in adrenal adenomas but is never encountered in ACCs. Consequently, baseline 

attenuation lower than 10 HU is 100% specific for benignity and can be safely relied on to 

exclude malignancy (Dinnes et al., 2016). However, it should be noted that up to 30% of 

adenomas have an attenuation of >10 HU (lipid-poor adenomas), which is diagnostically 

unavailing. In patients with previous history of extra-adrenal malignancies and, consequently, 

higher risk of adrenal metastasis from the primary tumour, false-negatives (i.e. missed cases 

of malignancy) can occur using >10 HU as a diagnostic cut-off (estimated up to 7%) (Dinnes 



Chapter 1                                                                                                                                                       General Introduction 

19 
 

et al., 2016). Heterogeneity is most commonly a feature of ACCs, due to the frequent 

presence of necrosis, haemorrhage or calcification within the malignant tumour, as is 

irregularity of tumour perimeter. 

In cases where attenuation cannot help to differentiate between benign and malignant 

tumours, contrast washout studies can provide further diagnostic clues, as contrast retention 

within the tumour tends to be more prolonged with malignancy. Contrast washout of > 50% 

after 15 mins is suggestive of  ACA, but available evidence on the test’s performance is poor 

(Dinnes et al., 2016). Finally, CT of chest, abdomen and pelvis including intravenous contrast 

remains the first-line investigation to exclude metastases and stage ACC in most centres. 

Magnetic Resonance Imaging (MRI) can also be of value in the characterisation of adrenal 

tumours. ACCs appear isointense to hypo-intense relative to the liver parenchyma on T1-

weighted images and hyper-intense relative to the liver parenchyma on T2-weighted images. 

A particularly useful feature is the loss of signal intensity comparing in-phase to out-of-phase 

T1-weighted imaging with chemical-shift MRIs, indicative of high lipid content. Persistence 

of signal intensity on out-of-phase imaging provided a sensitivity of 90% and specificity of 

85% for malignancy detection in a small study (Ream et al., 2015), but further studies are 

required to establish the actual diagnostic performance of this imaging modality (Dinnes et 

al., 2016).  

Fluorodeoxyglucose- Positron Emission Tomography/ Computed Tomography (18F-FDG-

PET/CT). 18F-FDG-PET/CT technology has been increasingly used in diagnostic oncology in 

recent years, predicated on the principle that malignant cells tend to have higher glycolytic 

rates than healthy cells (Warburg effect). Consequently, administered glucose will be taken up 

by malignant masses, which will appear as ‘hot spots’ on the scan (Kunikowska et al., 2014). 
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3 small studies have explored the diagnostic performance of 18F-FDG-PET/CT in the work-up 

of adrenal tumours; pooled estimates suggest a sensitivity of 84% and specificity of 90% but 

evidence quality remains poor (Dinnes et al., 2016).  

In summary, no single imaging modality appears to display sufficient accuracy to function 

independently as a reliable diagnostic test in a high-stake clinical context (considerable pre-

test probability of malignancy). Moreover, most relevant studies are plagued by poor 

methodology and/or small sample size. On this background, the only diagnostic strategy 

really supported by good quality evidence is excluding malignancy in lesions with non-

contrast attenuation of <10 HU in patients with no previous history of malignancy. In 

moderate/ high attenuation lesions, clinicians and patients still have to live with uncertainty, 

precariously placed on a clinical field covered by a very thin ground of evidence.  

 

1.2.3.3 Pathology 

As in all malignancies, histopathology provides the conclusive diagnosis of ACC; 

nevertheless, the differentiation between benign and malignant adrenal tumours can often be 

challenging even on a microscopic level. A recent retrospective study suggested that 13% of 

adrenocortical tumours assessed in Germany are incorrectly classified on surgical histology 

(Johanssen et al., 2010). Importantly, transcutaneous core biopsy of an adrenal lesion cannot 

differentiate between ACA and ACC in the absence of metastases and may lead to disease 

dissemination (needle canal seeding); therefore its role in the work-up of patients with 

suspected ACC is very limited  (Fassnacht et al., 2016, Bancos et al., 2016). In whole-tumour 

specimens provided post-operatively, a number of features are used to diagnose ACC, 

including nuclear grade, mitotic rates, atypical mitoses, cytoplasmic morphology, microscopic 
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architecture, necrosis, venous or sinusoidal invasion and capsular invasion (Fig. 1-5). These 

have been incorporated in validated scoring systems that are widely used to diagnose ACC, 

most notably the Weiss scoring system (Table 1-4) (Weiss et al., 1989). Tumours with a 

Weiss score of 3 or above are considered malignant, while scores 0-2 are diagnostic of ACA. 

Aubert et al. subsequently proposed a modification of the Weiss system, excluding four 

criteria with substantial inter-observer variability (Table 1-4) (Aubert et al., 2002); despite its 

claim to diagnostic superiority, however, the modified Weiss model has not managed to 

overtake its predecessor in clinical practice (Papotti et al., 2011).  

Ki67 is a proliferation marker that is also diagnostically relevant, as the vast majority  of 

ACCs have a Ki67 value of > 3% (Libe, 2015). High Ki67 values are generally associated 

with more aggressive behaviour, although rare cases of metastatic ACCs with Ki67 <1% have 

also been described (Libe et al., 2015, Berruti et al., 2012, Beuschlein et al., 2015). 

Immunohistochemical features that are employed to distinguish adrenocortical from 

medullary tumours include positivity for steroidogenic factor 1 (SF1), inhibin, melan A, 

calretinin and synaptophysin, and negativity for chromogranin A, epithelial membrane 

antigen and cytokeratin (Weiss, 1984, Papotti et al., 2011, Sbiera et al., 2010).  

Histologic variants of ACC include oncocytic ACC, myxoid ACC and sarcomatoid ACC. 

Oncocytic ACC is the most common of the three and is characterised by an abundance of  

cells with granular cytoplasm due to accumulation of mitochondria and endoplasmic 

reticulum (Wong et al., 2011, Macchi et al., 1998). The Weiss score is less accurate in this 

context and can lead to over-diagnosis of malignancy (Else et al., 2014). 
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        Histologic criteria               Comments Score  
(Weiss system) 

Score  
(Aubert 
modification) 

Nuclear grade 3 or 4 
(Fuhrman criteria) 

 1 Not included 

>5 mitoses per 50 high-
power visual fields 

  2 

Atypical mitoses Defined by abnormal 
distribution of 
chromosomes or 
excessive number of 
mitotic spindles 

1 1 

<25% of tumour cells 
are clear cells 

Resembling the normal 
zona fasciculata 

1 2 

Diffuse architecture More than one third of 
tumours forming 
patternless sheets of cells 

1 Not included 

Necroses  1 1 
Venous invasion Tumour cells within 

endothelium-lined vessel 
with smooth muscle as 
wall component 

1 Not included 

Sinusoidal invasion Tumour cells within 
endothelium-lined vessel 
with little or no 
supporting tissue 

1 Not included 

Capsular invasion  1 1 
Maximum score  9 7 

 

Table 1-4 Weiss criteria for histologic ACC diagnosis, as per a) the classical Weiss model 

(Weiss et al, 1989) and b) its subsequent modification by Aubert et al (Aubert et al, 2002).  

Each criterion scores one point if present. Total scores ³ 3 are diagnostic of ACC. 
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1.2.3.4  Emerging modalities – urinary steroid profiling 

An intriguing alternative approach which has gained impetus in  recent years utilises 

biochemistry to distinguish between benign and malignant lesions, employing mass 

spectrometry-based approaches which can overcome the major limitations of routine 

biochemistry (cross-reactivity, low specificity) and provide a much more comprehensive 

steroid profile (Taylor et al., 2015). 24-h urine collections analysed by mass spectrometry 

allow quantification of steroid hormones whose plasma concentration is too low, and also 

neutralise the effects of diurnal variation which can be significant in adrenal biochemistry.  

ACCs present an inefficient pattern of steroidogenesis, characterised by relative abundance of 

Figure 1-5 ACC histology. A) Macroscopic view of an excised ACC; B) High-grade ACC with 

nuclear polymorphism; C) ACC with necrotic area; D) ACC (brown) with capsular invasion 

and infiltration of surrounding fat (yellow). Images provided by Dr K. Skordilis from her 

personal archive.  
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precursor steroids produced during the intermediate steps of steroidogenesis. This distinct 

steroid fingerprint, attributed to the typical dedifferentiation, and therefore relative 

immaturity, of malignant adrenocortical cells, can be of diagnostic value (Arlt et al., 2011). 

Sporadic case reports published over 60 years ago noted the excretion of ‘atypical’ steroid 

hormones in ACC patients, most notably the glucocorticoid precursor metabolite 11-

tetrahydrodeoxycorisol (THS) and the androgen metabolite pregnenetriol (5-PT), 

corresponding to intermediate steps of steroidogenesis (Hirschmann and Hirschmann, 1950, 

Touchstone et al., 1954, Okada et al., 1959). Similar findings were reproduced independently 

in two small case series comparing ACAs to ACCs, published over the next three decades 

(Biglieri et al., 1963, Minowada et al., 1985). A subsequent small study compared plasma 

levels of 11-deoxycorticosterone, corticosterone, 11-deoxycortisol and cortisol between 4 

paediatric patients with ACC and 4 with ACA. The ratio of corticosterone/ 11-

deoxycorticosterone was lower in ACC  and increased post-operatively, suggesting 11β-

hydroxylase deficiency (Doerr et al., 1987). Grondal et al. analysed the urinary steroid profile 

of 24 patients with ACCs, comparing them to ACAs and healthy controls. 23/24 ACCs 

displayed increased excretion of 3 beta-hydroxy-5-ene steroids and cortisol precursor 

metabolites, indicative of 3 beta-hydroxysteroid dehydrogenase/delta isomerase and 11β-

hydroxylase deficiency (Grondal et al., 1990). Similar findings were reported in a series of 5 

ACC patients, revealing low ratios of cortisol metabolites/ tetrahydrocortisol metabolites and 

high levels of the androgen metabolite pregnenetriol (Tiu et al., 2009). Obviously, the small 

cohorts used in these studies represent a major limitation. This was overcome in a recent 

international retrospective study, which managed to recruit a sizeable cohort of 102 ACA and 

45 ACC patients (Arlt et al., 2011). Urinary steroid profiling using gas chromatography-mass 

spectrometry provided an extensive panel of 32 steroid metabolites. Computational analysis 
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generated a machine learning-based prediction algorithm able to differentiate ACCs from 

ACAs with a sensitivity and specificity of 90%, a performance superior to that of any 

available imaging modality (Arlt et al., 2011). Nine steroid biomarkers were selected as the 

most diagnostically relevant ones in this context, and utilisation of their values alone yielded a 

sensitivity/specificity of 90% (Fig. 1-6). These results were corroborated in a subsequent 

smaller retrospective study (27 ACCs, 107 ACAs) also demonstrating disparate urinary 

steroid excretion patterns between benign and malignant adrenocortical tumours. THS was the 

biomarker with the highest accuracy at discriminating ACCs from ACAs (Kerkhofs et al., 

2015). Finally, a recent retrospective study in a similar cohort (31 ACCs, 108 ACAs) also 

ascertained increased urinary excretion of THS and DHEAS in ACCs, as well as evidence of 

lower CYP11A1 and CYP11B1 activity based on product/substrate ratios (Velikanova et al., 

2016). An ongoing prospective study (EURINE-ACT) will endeavour to validate these results 

and establish urine steroid metabolomics as a diagnostic tool for the differential diagnosis of 

adrenal tumours, in a cohort exceeding 2,000 patients. 
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1.2.4 Prognosis 

ACC is generally a disease with poor prognosis, with overall 5-year survival rates ranging 

from 16-44% in different series (Fassnacht and Allolio, 2009). This considerable inter-study 

variability has been ascribed to selection bias leading to under-reporting of operated patients 

in some series with particularly grim survival estimates. 

The ENSAT staging system has been the foundation of prognostication in ACC patients in the 

last decade. Stage I is associated with the highest 5-year survival rates (66-82%); this drops to 

58-64% for stage II and 24-50% for stage III. Prognosis is extremely poor for patients with 

metastatic disease, with reported 5-year survival rates in the range of 0-17% (Fassnacht et al., 

2009, Icard et al., 1992, Kerkhofs et al., 2013, Lughezzani et al., 2010) (Fig. 1-7). 

Figure 1-6 Differences in secretion of 9 urinary steroid metabolites between ACAs and ACCs. 

THS: tetrahydrodeoxycortisol; 5-PT: 5-pregnenetriol; 5-PD: pregnenediol; PT: 

pregnanetriol; THDOC: tetrahydrocorticosterone; 5α-ΤΗΑ: 5α-tetrahydro-11-

deoxycorticosterone; Etio: etiocholanolone; 5a-THF: 5a-tetrahydrocortisol; PD: 

pregnanediol.  Source: (Arlt et al., 2011). Reproduced with permission of the Endocrine 

Society.   
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Importantly, lymph node involvement is a particularly ominous sign, associated with 13% 5-

year survival in a recent retrospective study in the North American population (Bilimoria et 

al., 2008). Patients younger than 55 years of age display higher survival rates than their older 

counterparts (Bilimoria et al., 2008). 

 

 
Figure 1-7 Disease-specific survival according to ENSAT stage, based on data from the 

German Registry. Source: (Fassnacht and Allolio, 2009). Reproduced with permission of the 

Endocrine Society. 

 

Post-operatively, tumour resection status appears to be the most important predictor of 

outcome. Microscopically complete (R0) resection is associated with 50% 5-year survival, 

while prognosis for patients with microscopically (R1) or macroscopically (R2) incomplete 

resection is clearly poorer (5-year survival 20% and 15%, respectively) (Bilimoria et al., 

2008). Amongst patients who have undergone complete resection, the proliferation marker 

Ki67 is the most significant predictor of recurrence-free and overall survival, as demonstrated 

recently in a large retrospective study including 2 independent European cohorts (Beuschlein 

et al., 2015). In another recent retrospective study in patients with advanced ACC (stage III-
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IV), poor prognosis was portended by the following factors: patient age > 50 years, 

symptomatic disease at presentation, incomplete resection, presence of multiple metastatic 

sites and high tumour grade (Weiss score  ≥ 6 and/or Ki67 ≥ 20%) (Libe et al., 2015). 

Genomic and epigenomic markers of prognostic relevance (hyper-methylation status, driver 

gene mutations, miRNA profile) have recently started to emerge and represent a dynamic 

field of high potential in ACC research (Assie et al., 2014). 

 

1.2.5 Molecular pathology  

The last 2 decades have seen radical progress in our understanding of the molecular basis of 

ACC, although this has not, as yet, been translated into changes in the clinical management of 

these patients. 

 

1.2.5.1  Clonality and chromosomal aberrations 

ACCs consist of  a monoclonal cell population; this suggests a biological history of clonal 

expansion in response to genetic mutations, eventually leading to cancer formation 

(Beuschlein et al., 1994, Gicquel et al., 1994). Aneuploidy is highly prevalent in ACCs and 

rare in ACAs, but it is as yet unclear whether the resulting genomic instability is a driver of 

carcinogenesis. Phenotypically, diploidy was associated with poor prognosis in one study 

(Haak et al., 1993). Structural chromosomic defects are also more frequent in ACCs than in 

ACAs, as revealed by a number of comparative genomic hybridisation (CGH) studies. 

Chromosomal gains at chromosome 5, 7, 12, 16, 19, and 20, as well as losses at chromosome 

13 and 22, appear to be the most common aberrations observed in ACCs at this level 
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(Kjellman et al., 1996, Kjellman et al., 1999, Gicquel et al., 2001, Dohna et al., 2000, Barreau 

et al., 2013). 

 

1.2.5.2  Gene expression 

Global gene expression studies (gene expression arrays) have identified a number of foci and 

patterns of altered gene expression in ACCs. A study comparing 33 ACCs to 22 ACAs 

distinguished chromosomal regions of enhanced (12q and 5q) or repressed (11q, 1p, 17p) 

expression (Giordano et al., 2009). Increased expression of genes involved in cellular 

proliferation is an important feature of ACC; this is contrary to the pattern of increased 

expression of steroidogenic genes which characterises ACAs (de Fraipont et al., 2005). 

Interestingly, two distinct clusters of gene expression were discovered in ACCs in a 

subsequent study, each carrying different prognostic implications. Increased expression of 

genes involved in cellular proliferation was associated with poor patient survival, while 

overexpression of genes involved in cell differentiation, metabolism, and intracellular 

transport resulted in a less aggressive clinical phenotype (de Reynies et al., 2009). Combined 

overexpression of  BUB1B and PINK1, genes involved in cell cycle regulation, was 

independently associated with poor outcome, a finding which was corroborated in a 

subsequent independent study (de Reynies et al., 2009, Fragoso et al., 2012).  

 

1.2.5.3  Gene mutations  

ACC is a genetically diverse malignancy. The most commonly reported somatic mutations on 

loss of heterozygosity (LOH) studies involve TP53 (tumour protein p53), MEN1 (menin), 
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IGF2 (insulin-like growth factor 2), IGF2R (IGF2 receptor),  p16/INK4A (CDKN2A) and 

CTNNB1 (β-catenin) (Else et al., 2014). The tumour suppressor gene TP53, involved in the 

molecular pathogenesis of several cancer types, is the most commonly affected gene, with 

mutations found in about a third of ACC patients (Barzon et al., 2001, Ohgaki et al., 1993, 

Reincke et al., 1994, Reincke et al., 1996). TP53 is involved in cell cycle control, impeding 

cell cycle progression in response to certain insults.  It has a pivotal role within the apoptotic 

pathways, affecting the expression of genes that facilitate mitochondrial apoptosis or 

increasing the expression of cell death receptors.  Molecular inducers of TP53 mutations 

include DNA damage by UV light, redox stress and chemotherapy (Else et al., 2014, Malkin 

et al., 1990). Loss of TP53 function results in uncontrolled cellular proliferation, with failure 

to respond to apoptotic triggers. TP53 mutations in ACC can be either somatic or, less 

commonly, germline mutations in the context of Li-Fraumeni syndrome (Malkin et al., 1990, 

Wu et al., 2006). Germline mutations are rare in adult ACC patients (4%) but the commonest 

mutation in paediatric ACC (50-80% of cases) (Fassnacht et al., 2011).  Li-Fraumeni patients 

have an exceedingly high lifetime cancer risk (> 70% in males, almost 100% in females) (Wu 

et al., 2006).  

Insulin growth factors 1 and 2 (IGF-1 and IGF-2) are important inducers of adrenal cell 

proliferation and steroidogenesis. High IGF-2 and/or IGF-1 levels are encountered in >80% of 

sporadic ACCs and are associated with a more aggressive clinical behaviour with high 

recurrence rates (Gicquel et al., 2001, de Reynies et al., 2009). Overgrowth syndromes driven 

by mutations in the IGF-2 locus leading to up-regulation of IGF-2 (Beckwith-Wiedemann 

syndrome and Idiopathic Hemihypertrophy) are also associated with a higher risk of ACC, 

which appears to comprise 7-15% of malignant tumours observed in such patients 
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(Lapunzina, 2005, Wiedemann, 1997). Overgrowth syndromes are also associated with a high 

prevalence of adrenocortical adenomas and cysts (Lapunzina, 2005). 

The WNT/beta-catenin pathway is instrumental in foetal adrenal development. Activating 

mutations in the catenin gene CTNNB1 are present in at least 25% of both ACCs and ACAs 

(Gaujoux et al., 2008, Tadjine et al., 2008). WNT/beta-catenin signalling can lead to 

mesenchymal transformation promoting cell invasion, and beta-catenin overexpression 

portended aggressive disease course in one study of ACC patients (Ragazzon et al., 2010). 

Cases of ACC have been reported in patients with Familial Adenomatous Polyposis, an 

inherited syndrome of multiple intestinal polyps which is molecularly underpinned by 

constitutive beta-catenin activation, but it is unclear whether this reflects a genuine 

association or mere statistical coincidence of two rare conditions (Else, 2012). 

Other genetic syndromes for whom an association with a higher ACC risk has been suggested  

include Multiple Endocrine Neoplasia type 1 (MENIN gene) and Neurofibromatosis type 1 

(neurofibromatin gene); however, the epidemiological evidence supporting these associations 

is so far less than convincing (Else, 2012). 

 

1.2.5.4 Recent advances - Epigenetic changes and integrated genomic characterisation 

On an epigenetic level, gene promoter hyper-methylation leading to altered gene expression 

was ascertained in a series of 51 ACCs and was correlated with poor clinical outcomes 

(Barreau et al., 2013).  

Two recent studies applied state-of-the-art integrated genomic analysis and identified discrete 

clusters of ACCs. Assie et al. analysed a group of 45 ACCs and identified two subgroups: a 
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group characterised by high number of mutations and methylation alterations (C1A) and a 

group defined by specific deregulation of two miRNA clusters (C1B) (Assie et al., 2014). 

Clinical outcomes were disparate between the two groups, C1A tumours being associated 

with poor prognosis. Two years later, genomic analysis in a cohort of 76 ACCs identified 

three broad molecular clusters of ACCs, integrating data from four platforms (DNA copy 

number, DNA methylation, mRNA expression, miRNA expression) (Zheng et al., 2016). 

Importantly, each cluster was associated with different outcomes (Fig. 1-8). 

 

Figure 1-8 Cluster of clusters molecular analysis in a cohort of 76 ACC patients (source: 

Zheng et al., 2016). A) Cluster of clusters analysis integrating data from four different 

platforms (DNA copy number, black; MRNA expression, red; DNA methylation, blue; miRNA 

expression, purple) identifies three distinct clusters (groups). Black bars represent sample 

positivity for the corresponding molecular parameter. CIMP: CpG island methylation 

phenotype. C1A and C1B refer to the gene expression profiles defined by de Reynies et al, 

2009 B) Event-free survival analysis of the three groups shows correlation of molecular 

clustering with patient outcomes. Reproduced with permission of Elsevier. 
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1.2.6 Management 

1.2.6.1 Surgery 

Surgery for primary tumours. The only hope of cure for ACC patients is complete (R0) 

tumour resection. Radical surgery with curative intent should be offered to all fit for surgery 

patients with localised, resectable tumours. This includes all patients with ENSAT stage I-II 

disease and most patients with stage III disease (Mihai, 2015, Fassnacht and Allolio, 2009). 

There is still debate as to the optional mode (open vs. laparoscopic) and extent of surgery (e.g. 

inclusion of local lymph nodes). There is no definitive clinical evidence for the superiority of 

an open vs a laparoscopic approach; however, most experts would advocate open 

adrenalectomy in suspicious adrenal tumours, especially if the size is such that renders full 

excision without breach of the tumour capsule technically challenging (e.g. tumour diameter > 

5-6 cm), or if there is radiological suspicion of locally infiltrative disease with lymph node 

involvement (Berruti et al., 2010, Libe, 2015, Mihai, 2015). Lymph node dissection (LND) is 

not a formal part of radical adrenalectomy but has become more topical in recent years, after a 

retrospective study demonstrating reduced recurrence rates in ACC patients having undergone 

LND (Reibetanz et al., 2012).  

In cases where complete tumour resection is not feasible, debulking surgery may have a role 

in functional tumours associated with clinically distressing hormone excess (e.g. 

glucocorticoids) that is difficult to control medically (Mihai, 2015). There is no evidence to 

support the value of debulking resection in non-functional tumours, although some authors 

suggest it should be considered in slow-growing tumours (low Ki67) where over 90% of total 

tumour load can be resected (Schteingart et al., 2005). 
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Surgery for local recurrence or metastasis. Surgery also has a role in select patients who 

develop recurrent or metastatic disease after primary tumour resection. Three retrospective 

studies have suggested that resection of locally recurrent disease can improve survival, 

especially in cases where complete resection of the recurrent tumour is possible or patients 

who recurred more than 12 months after resection of the primary tumour (Schulick and 

Brennan, 1999, Erdogan et al., 2013, Dy et al., 2013). The role of metastasectomy in patients 

with low-volume distant metastatic disease (e.g. 1-2 small metastatic foci) is contentious and 

the number of described cases in the literature remains low. Data from small retrospective 

studies suggest some survival benefit may be conferred on patients with fully resectable lung 

or liver metastases, particularly if the metastasis occurred more than 12 months after the first 

surgery (Mihai, 2015, Assie et al., 2007, Di Carlo et al., 2006, op den Winkel et al., 2011, 

Datrice et al., 2012). Patients who recur less than 12 months from surgery have very poor 

prognosis and metastasectomy does not appear to have a role, as emergence of disseminated, 

multi-focal disease is all but inexorable (Mihai, 2015).  

 

1.2.6.2 Mitotane  

Mitotane (o,p’-DDD) is an analogue of the insecticide dichlorodiphenydichloroethane (DDD). 

It has been well established as the first line of recurrent/metastatic ACC management since 

the 1960s and, more than 5 decades later, remains the only drug specifically approved for this 

use by the Food and Drug Agency and the European Medicine Executive Agency (Hahner 

and Fassnacht, 2005, Terzolo, 2012). Mitotane is used as monotherapy in patients with 

inoperable recurrent disease of limited volume, or within combination chemotherapy 

regimens in patients with more advanced and/or aggressive disease. Despite its long history of 
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use, evidence supporting the efficacy of mitotane actually emanates from retrospective or 

small prospective studies, many of which used hormonal control rather than radiographic or 

survival data as indicator of clinical response. No randomised-controlled trial has ever 

formally compared mitotane to other treatment options (Hahner and Fassnacht, 2005, Berruti 

et al., 2010, Terzolo, 2012). Within these methodological limitations, available evidence 

suggests modest response rates ranging from 13-33% of treated patients; results tend to be 

short-lived. Mitotane has a narrow therapeutic window, as blood levels of at least 14 mg/l 

have to be attained to facilitate satisfactory anti-tumour activity, while levels above 20 mg/l 

are associated with high rates of toxicity (Terzolo, 2012, Else et al., 2014). In clinical 

practice, tolerability is highly variable, with some patients developing toxicity in sub-

therapeutic levels while others tolerating levels above 20 mg/l perfectly well. Adverse effects 

include gastrointestinal manifestations (nausea, vomiting, diarrhoea), hepatotoxicity and 

neurotoxicity (dysarthria, ataxic gait, confusion) (Hahner and Fassnacht, 2005). 

Hypogonadism and gynaecomastia are often observed, due to disturbance of testicular 

steroidogenesis, elevation of the steroid hormone binding globulin and inhibition of 5a-

reductase (Hahner and Fassnacht, 2005, Chortis et al., 2013). Another important feature of 

mitotane treatment is the invariable induction of adrenal insufficiency. This has been ascribed 

both to the drug’s adrenolytic activity (i.e. damage of the healthy adrenal gland) and to 

CYP3A4 enzyme induction leading to acceleration of cortisol breakdown. High-dose 

hydrocortisone replacement is therefore essential to avoid a life-threatening adrenal crisis 

(Chortis et al., 2013). Induction of the microsomal CYP3A4 enzymatic system by mitotane is 

also inopportune in view of its effects on other medications ACC patients may receive. 

Indeed, more than 50% of current formulary drugs are metabolised by this system, and dose 

adjustments may be necessary to avoid treatment failure. This includes several of the most 
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commonly used cytotoxic chemotherapy options in these patients (Chortis et al., 2013, Kroiss 

et al., 2011).  

Aside from its role in the treatment of active disease, mitotane is commonly used as adjuvant 

treatment after primary tumour resection. The ability of adjuvant mitotane to reduce 

recurrence rates in patients with surgically excised ACC was demonstrated in a large 

retrospective study comparing three cohorts of patients who had undergone complete tumour 

resection. One group received mitotane treatment post-operatively, while the other two were 

placed on observation only. Recurrence-free survival was significantly higher in the mitotane-

treated group; overall survival was significantly higher only with reference to one of the two 

control groups (Terzolo et al., 2007).  It is now widely accepted that adjuvant mitotane should 

be the norm in patients with high-risk features (proliferation marker Ki67 >10%, 

macroscopically or microscopically incomplete resection). An ongoing international, 

randomised prospective trial (ADIUVO) is exploring the value of mitotane administration 

post-operatively in the select group of patients with complete resection and low proliferation 

index (Ki67 <10%).  

 

1.2.6.3 Systemic chemotherapy 

Monotherapy. A number of cytotoxic drugs have been tried as single-agent treatment in ACC 

patients, mostly in the context of small case series or case reports. Modest clinical response 

has been displayed in case reports or series with doxorubicin, alkylating-like agents and 

cisplatin (Berruti, 2012). Doxorubicin (Adriamycin) is an anthracycline compound which 

causes DNA damage, cell cycle arrest and apoptotic cell death. Limited data from small case 

series and a phase II study suggest modest response rates of 19-25% (Berruti, 2012, Decker et 
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al., 1991, Haq et al., 1980, Pommier and Brennan, 1992). Administration to patients who had 

failed to respond to mitotane was to no avail in this cohort of cases. Cisplatin, a platinum-

based compound, is the agent with the highest efficacy as monotherapy against advanced 

ACC. It induces programmed cell death interfering with DNA replication. Out of 13 patients 

with advanced ACC included in three small series, seven showed initial response to treatment 

(Chun et al., 1983, Tattersall et al., 1980, Terzolo, 2012). Promising results were initially 

achieved by suramin, a polyanionic compound with adrenolytic activity, in vitro and in small 

case series; however, a subsequent stage II study revealed only modest, short-lived anti-

tumour effects with unacceptable toxicity (La Rocca et al., 1990a, La Rocca et al., 1990b, Arlt 

et al., 1994). Gossipol, a plant toxin with promising in vitro and in vivo effects in pre-clinical 

ACC models, was used in a phase II clinical trial in advanced ACC patients who failed to 

respond to mitotane chemotherapy. 3/18 patients showed clinical response which lasted 

several months; after these results the drug never found its way to clinical practice. Finally, 

paclitaxel is an agent with considerable in vitro efficacy against adrenocortical cancer cell 

lines, but very scant clinical evidence to support its application in advanced ACC, with only 

isolated case reports and a phase I study. Overall, mitotane remains the undisputed first-line 

monotherapy option in routine clinical practice, primarily by virtue of its favourable side-

effects profile in comparison to systemic cytotoxic chemotherapy.  

Combination chemotherapy. Combination chemotherapy is offered to ACC patients who 

either present with advanced malignancy of high tumour load or  fail to respond to mitotane 

monotherapy (Terzolo, 2012) (Table 1-5). Mitotane is usually employed in combination with 

one or more cytotoxic agents. Multidrug resistance is a common clinical feature of ACC and 

has been associated with high levels of expression of multidrug resistance genes (MDR1, 

ABCB1), which enhance drug efflux from cancer cells. Mitotane has displayed an opportune 
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capacity to interfere with this resistance mechanism and increase intratumoural drug 

accumulation, which provides a strong rationale for including it in combination chemotherapy 

(Bates et al., 1991). A pertinent caveat is the CYP3A4-inducing effect of mitotane which can 

accelerate the breakdown of numerous drugs in the liver, as alluded to earlier (Chortis et al., 

2013, Kroiss et al., 2011). A number of cytotoxic regimens including mitotane have been 

evaluated in phase II clinical trials (Table 1-5), with response rates varying from 9-48%. The 

two best performing regimens, Mitotane + Etoposide/ Doxorubicin/Cisplatin (M+EDP) and 

Mitotane + Streptozotocin (M+S) were recently compared in the first ever randomised 

prospective study in ACC (n=304 patients with metastatic disease), through collaboration of 

several European Centres affiliated with the European Network for the Study of Adrenal 

Tumours (Fassnacht et al., 2012).  M+EDP afforded better progression-free survival (5 

months vs 2.1 months) and objective response rates (23.2% vs 9.2%) than M+S. Importantly, 

the effect on overall survival was meagre and not statistically different between the two 

regimens (15 vs 12 months) (Fig. 1-9). In light of these results, M+EDP is now considered the 

first-line cytotoxic chemotherapy option in patients not responding to mitotane monotherapy, 

for want of more effective treatment options.  In non-responding cases, the combination of 

gemcitabine and capecitabine has been proposed as salvage chemotherapy, leading to disease 

stabilization for at least 6 months in 29% of patients when offered as second-line 

chemotherapy according to a phase II trial (Sperone et al., 2010) 
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Study Drugs Patient n % patients 
with 
response 

% patients 
with 
response or 
stable 
disease 

Response 
duration 
(months) 

(van Slooten and 
van Oosterom, 
1983) 

CP/ P/ D 11 18 73 10-23 

(Schlumberger et 
al., 1991) 

5FU/ P/ D 13 31 54 6-42 

(Bukowski et al., 
1993) 

M/ P 37 30 NR 8 (median) 

(Bonacci et al., 
1998) 

E/ P/ (M) 18 33 44 9-26 

(Berruti et al., 
1998) 

M/ E/ D/ P  28 54 82 24 (median) 

(Williamson et 
al., 2000) 

E/ P 37 14  NR 

(Khan et al., 
2000) 

M/ S 23 30 52 7 (median) 

(Abraham et al., 
2002) 

M/ E/ D/ V 35 23 NR 12 (mean) 

(Baudin et al., 
2002) 

M/ I 12 0 25 NR 

(Khan et al., 
2004) 

CP/ V/ C/ T 11 18 82 7 (median) 

(Berruti et al., 
2005) 

M/ E/ D/ P 72 49 NR 18 (median) 

(Sperone et al., 
2010) 

M/ G/ 5FU 
or Cap 

28 7 46 10 (median) 

(Fassnacht et al., 
2012)* 

M/ E/ D/ P 151 21 56 5 (median) 

(Fassnacht et al., 
2012)* 

M/ S 153 8 30 2 (median) 

 

Table 1-5 Prospective studies of combination chemotherapy in ACC. * randomized-controlled 

trial. Abbreviations: CP: cyclophosphamide; P: cisplatin; D: doxorubicin; 5FU: 5-

Fluoruracil; E: Etoposide; M: Mitotane; S: Streptozotocin; V: Vincristin; I: Irinotecan; G: 

Gemcitabine; Cap: Capecitabin. Source: (Else et al., 2014). Adapted and reproduced with 

permission of the Endocrine Society. 
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In recent years, considerable effort has been expended towards the development of targeted 

therapies for ACC, mostly focusing on proteins that are highly expressed in malignant 

adrenocortical tumours. The epidermal growth factor receptor (EGFR) and the vascular 

endothelial growth factor (VEGF) were the first two genes to be targeted. In both cases the 

clinical results were disappointing with failure to yield any objective response, at least in 

patients with chemotherapy-resistant disease (Quinkler et al., 2008, Wortmann et al., 2010). A 

trial with the multi-tyrosine kinase inhibitor sorafenib in combination with paclitaxel had to 

be abandoned upon recruitment of 10 patients, as all demonstrated disease progression on first 

clinical evaluation (Berruti et al., 2012). Another tyrosine kinase inhibitor, sunitinib, was 

Figure 1-9 Overall survival in patients with metastatic ACC randomized to combination 

chemotherapy with Mitotane, Etoposide, Doxorubicin and Cisplatin (EDP-M) or Mitotane 

and Streptozotocin (Sz-M) (Fassnacht et al., 2012). Reproduced with permission of the 

Massachusetts Medical Society.  
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evaluated in a phase II study on patients with metastatic ACC who failed to respond to 

mitotane and first-line chemotherapy; only 5 out of 35 patients achieved disease stabilisation 

(14%) (Kroiss et al., 2012).  

More recently, Insulin Growth Factor-I Receptor (IGF1-R) inhibitors have been tried in 

clinical studies. Cixutumumab showed some modest success in combination with 

temsirolomus (inhibitor of mechanistic targets of Rapamycin - mTOR) with 42% of patients 

achieving stable disease (Naing et al., 2013). Combination treatment with Cixutumumab and 

mitotane, however, failed to show any effectiveness in a phase II study (Lerario et al., 2014). 

A similar agent (linstinib, IGF1-R inhibitor) was overall no better than placebo at yielding 

clinical response in a recent phase III trial, although a small group of patients enjoyed 

sustained response over long periods (Fassnacht et al., 2015). Overall, despite rather 

auspicious pre-clinical data, targeted therapies so far have failed to demonstrate effectiveness 

in clinical studies and improve the outcome of patients with advanced disease. 

 

1.2.6.4 Medical treatment to control hormone excess 

Medical control of the detrimental hormone excess is often a secondary treatment aim in 

ACC. Glucocorticoid excess is the most common hormonal perturbation emanating from 

ACCs and its clinical sequelae involve the classic constellation of symptoms and signs 

comprising Cushing’s syndrome. Aside from its adrenolytic activity, mitotane has additional 

adrenostatic effects, i.e. direct inhibitory effects on steroidogenesis. These include CYP11A1 

inhibition, as well as cortisol breakdown through CYP3A4 induction (Chortis et al., 2013, 

Else et al., 2014). Of note, mitotane can inhibit steroidogenesis at lower levels than the 

threshold for its antineoplastic effect (Baudry et al., 2012, Nieman et al., 2015).  
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Metyrapone is a specific inhibitor of CYP11B1 which is commonly used in the medical 

control of cortisol excess. It has a rather favourable side-effect profile (mainly mild 

gastrointestinal symptoms), with the caveat that it can exacerbate underlying androgen excess 

and induce adrenal insufficiency (Daniel et al., 2015).  

Ketoconazole inhibits CYP17A1, CYP11A1 and CYP11B1 and is still used in many 

countries, but carries a risk of severe idiosyncratic hepatotoxicity and interacts with other 

drugs through inhibition of liver microsomal enzymes (e.g. CYP3A4) (Nieman et al., 2015). 

Etomidate is an anaesthetic agent which can inhibit CYP11A1 and CYP11B1 even at low 

doses. It is used as intravenous infusion at non-anaesthetic doses for rapid control  of 

glucocorticoid excess in some centres in challenging cases of florid Cushing’s, but requires 

close inpatient monitoring (Schulte et al., 1990).  

Finally, mifepristone is a glucocorticoid receptor antagonist which completes the modern 

armamentarium for Cushing’s syndrome control. Its main disadvantage is its inability to block 

the action of excessive cortisol on the mineralocorticoid receptor, which can cause 

hypertension and hypokalaemia. Therefore, additional treatment with mineralocorticoid 

receptor blockers (e.g. spironolactone) may be required (Nieman et al., 2015). In challenging 

cases, recourse to combination therapy with two or even three of the above agents is common, 

as the success rates of any monotherapy in mitigating overwhelming glucocorticoid excess are 

limited (Nieman et al., 2015) (Fig. 1-10).  
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Androgen excess may require medical treatment when it manifests itself clinically as severe 

hirsutism or virilisation in female patients. Options include a number of agents with anti-

androgenic effects, including spironolactone (mineralocorticoid and androgen receptor 

blocker), finasteride (5a-reductase inhibitor) and flutamide (Else et al., 2014). Furthermore, it 

has been shown that mitotane is a powerful inhibitor of 5a-reductase activity, thereby 

reducing the activation of testosterone to 5a-dihydrotestosterone and ameliorating androgen 

excess, but also compromising androgen action in male patients without androgen excess 

(Chortis, 2013). 

Oestrogen excess causing severe gynaecomastia in male patients can be addressed by 

institution of aromatase inhibitors or oestrogen receptor antagonists, although this is very 

rarely encountered in clinical practice (Else et al., 2014).   

Figure 1-10 Effects of adrenostatic agents on adrenal steroidogenesis. Red lines indicate 

inhibition.  
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1.2.6.5  Other treatment options 

Radiotherapy has not found a wide application in ACC, but is occasionally employed either as 

adjuvant treatment post-operatively or to palliate patients with advanced disease. Adjuvant 

radiotherapy administration has only been explored in three retrospective studies, all based on 

small patient cohorts (< 20 patients). Two of the studies showed reduced incidence of local 

recurrence; however, no improvement in overall survival was demonstrated (Else et al., 2014, 

Fassnacht et al., 2006, Habra et al., 2013). No firm conclusions can be drawn on the ground of 

such slender evidence. Some experts advocate the use of radiotherapy in cases of incomplete 

tumour resection (Berruti et al., 2010). There may be a role for radiotherapy in patients with 

metastatic disease of limited volume, but pertinent evidence is so far limited to small 

retrospective studies (Polat et al., 2009, Ho et al., 2013, Hermsen et al., 2010). Effective pain 

alleviation has been reported in a number of small case series, especially in the event of spinal 

metastases (Else et al., 2014). Successful control of hormone excess has also been reported in 

a small case series (Magee et al., 1987). 

Radiofrequency ablation is occasionally employed in cases with isolated local or distal 

disease recurrence of low volume, especially in patients who are considered poor surgical 

candidates in view of poor overall performance status and/or comorbidities. Successful 

applications (e.g. in liver metastases) have been reported, but no clinical trials have formally 

assessed the performance of this intervention (Ripley et al., 2011). Generally, primary ACCs 

(high bleeding risk) and proximity to large vessels constitute contra-indications (Ripley et al., 

2011). Topical arterial chemoembolization is not widely used but may have a role in the 

palliative treatment of small (<3 cm) disease foci of high lipidol uptake (Soga et al., 2009). 

Finally, following up on the discovery that [123/131I]iodometomidate (IMTO) tracer is taken up 

avidly by adrenocortical tissue on single-photon emission CT, radionuclide treatment with  
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[123/131I]IMTO was recently attempted in a small cohort of 11 ACC patients. The results were 

promising, with one patient achieving partial remission and five patients achieving disease 

stabilisation for a median period of 14 months (Hahner et al., 2012). [123/131I] azetidinylamide 

(IMAZA), an IMTO metabolite, was recently introduced, boasting the relative advantage of 

more selective and durable adrenal uptake (Hahner, 2015). 

 

1.2.7 Follow-up 

The optimal protocol for the post-operative follow-up of patients with complete ACC 

resection has not been established, the low disease prevalence having hampered the 

development of evidence-based guidance. Empirically devised protocols are imaging-centred 

and aim to detect recurrences as early as possible, so that prompt treatment can be instigated. 

In principle, the high risk of disease recurrence, especially in the first two post-operative 

years, has to be weighed against the high radiation exposure which is ineluctably associated 

with regular whole-body CT scans. A commonly followed protocol involves contrasted CT 

scans of chest and abdomen (or CT chest with MRI of abdomen and pelvis in less 

parsimonious healthcare systems) every three months for the first two post-operative years, 

followed by six-monthly imaging for the next three years (Fassnacht and Allolio, 2009, Else 

et al., 2014, Arlt et al., 2011). FDG-PET scans are also employed in some centres as a more 

sensitive but costly surveillance method. (Fassnacht and Allolio, 2009). In post-operative 

years 6-10, a period associated with a very low recurrence risk (<5%), imaging typically takes 

place on an annual basis (Else et al., 2014). A typical modern ACC managing algorithm, 

representative of our practice at the Queen Elizabeth Hospital Birmingham, is displayed in 

Fig. 1-11. 
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Biochemical follow-up to detect recurrent adrenal steroid hormone excess has an ancillary 

role in the post-operative surveillance of ACC, with the important limitation that capturing the 

hormonal output of minuscule metastatic lesions in routine clinical biochemistry is difficult 

and usually radiological manifestation of recurrent disease precedes the development of 

deranged biochemistry. Routine clinical biochemistry in patients with history of ACC 

includes serum androgens, 17-hydroxyprogesterone, oestradiol, aldosterone and urinary free 

cortisol.  

Figure 1-11 ACC management algorithm. EDP: combination chemotherapy with Etoposide, 

Doxorubicin and Cisplatin 
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Diagnostic ambiguity in early stages of recurrence/ metastasis is not uncommon and may lead 

to delays in reaching a firm diagnosis and commencing treatment. FDG-PET scans or 

percutaneous biopsies are sometimes employed in such cases (Fassnacht and Allolio, 2009, 

Else et al., 2014). 

Urinary steroid profiling holds some promise as a future monitoring tool in operated patients. 

Disturbed steroidogenesis in the context of ACC and the emerging ability of urine steroid 

profiling by mass spectrometry to capture such changes and distinguish benign from 

malignant adrenal tumours has been discussed in previous sections. It may be reasonable to 

apply the same principle in the clinical context of recurrent ACC, anticipating that this will be 

accompanied by similar, progressive perturbations of steroidogenesis, possibly recapitulating 

the pre-operative profile. In a case series, Wangberg et al. obtained pre-operative and serial 

post-operative urinary steroid profiles from five operated patients with ACC. In two of them, 

disease recurrence was heralded biochemically by the re-emergence of the pre-operative 

secretion pattern (Wangberg et al., 2010). Interestingly, in one patient presenting with liver 

metastases and combined androgen-glucocorticoid excess, removal of the primary tumour 

was followed by a shift in the steroidogenic fingerprint, with persistence of glucocorticoid 

excess but disappearance of androgen excess. No other studies have attempted to formally 

evaluate the role of steroid profiling as a post-operative surveillance tool so far. 
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1.3 The target: Nicotinamide Nucleotide Transhydrogenase 

1.3.1 Nicotinamide Nucleotide Transhydrogenase and Familial Glucocorticoid 

Deficiency. 

In the search for novel therapeutic approaches in ACC, useful insights may be provided by 

recent advances in our understanding of adrenal pathophysiology. In 2012, SNP array 

genotyping studies revealed that antioxidant pathway defects are causally implicated in a rare 

form of hereditary primary adrenal insufficiency called Familial Glucocorticoid Deficiency 

(FGD) (Meimaridou et al., 2012). FGD is a rare autosomal recessive disorder which is 

characterised by congenital inability of the adrenal glands to produce sufficient amounts of 

cortisol despite sufficient ACTH stimulation by the pituitary (Meimaridou et al., 2013). 

Patients typically present in the first months of life with recurrent infections, failure to thrive, 

hypoglycaemic episodes, seizures or haemodynamic instability. Adrenal biochemistry 

characteristically reveals very low or undetectable cortisol with high ACTH and failure to 

respond to ACTH stimulation (short SYNACTHEN test), indicating primary adrenal 

insufficiency (Clark et al., 2009, Metherell et al., 2005).  Renin and aldosterone tend to be 

normal. Until recently, three gene mutations had been identified in association with this 

condition, accounting for 50% of reported cases. These included genes encoding proteins that 

mediate the transport of cholesterol to the adrenal cells (MC2R, MRAP and StAR), which 

represents the first step of steroidogenesis in response to ACTH stimulation (Clark et al., 

2009, Metherell et al., 2005). In their 2012 study, Meimaridou et al. identified a new genetic 

cause performing targeted exome sequencing in cryptogenic FGD patients of consanguineous 

parentage (Meimaridou et al., 2012). The new culprit, the chromosome 5-situated gene NNT, 

encodes a mitochondrial proton pump called Nicotinamide Nucleotide Transhydrogenase 

(NNT). NNT serves as one of the major mitochondrial generators of reduced nicotinamide 
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adenine dinucleotide phosphate (NADPH) and constitutes an essential component of the 

mitochondrial antioxidant pathways (Rydstrom, 2006, Leung et al., 2015).  In the original 

study, 19 NNT mutations were identified in 13 individuals, out of a total cohort of 100 

patients with FGD of unknown cause (Meimaridou et al., 2012). All affected individuals were 

homozygotes or compound heterozygotes, indicating an autosomal recessive pattern of 

inheritance. No NNT mutations had hitherto been discovered in humans, but since this 

discovery 34 NNT mutations have been reported in 41 patients with unexplained 

glucocorticoid deficiency. The majority of discovered mutations are either nonsense or 

frameshift mutations, predicted to lead to premature protein truncation; the rest comprise 

missense mutations affecting vital protein domains (Yamaguchi et al., 2013, Novoselova et 

al., 2015, Weinberg-Shukron et al., 2015, Jazayeri et al., 2015, Roucher-Boulez et al., 2016, 

Hershkovitz et al., 2015, Meimaridou et al., 2012). In a minority of described cases there was 

co-existent aldosterone deficiency (high renin, low aldosterone), consistent with global 

adrenal insufficiency  (Weinberg-Shukron et al., 2015, Roucher-Boulez et al., 2016).  

Despite NNT’s ubiquitous expression in all human tissues (Meimaridou et al., 2012), the 

clinical phenotype associated with inactivating NNT mutations is remarkably specific, only 

affecting the adrenal glands in the vast majority of patients. This interesting clinical 

observation indicates a selective susceptibility of adrenocortical cells to NNT loss. Rare extra-

adrenal ailments described in these patients include testicular adrenal rest tumours, likely 

secondary to high ACTH (2 cases); cryptorchidism (2 cases); Leydig cell adenoma of the 

testicles (2 cases); congenital hypothyroidism (2 cases) and left ventricular hypertrophy (1 

case) (Hershkovitz et al., 2015, Roucher-Boulez et al., 2016).    
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1.3.2 Structure and physiology 

Current knowledge of NNT physiology provides putative biological mechanisms to explain 

this novel association. NNT is a redox-driven proton pump with inherent enzymatic activity, 

which resides in the inner mitochondrial membrane of eukaryotic cells, catalysing the 

reversible reduction of NADP+ to NADPH according to the reaction: 

            NADH + NADP+ + H+
intermembrane  ↔  NAD+ + NADPH + H+

matrix 

The physiological transmembrane proton gradient shifts the reaction strongly to the right, 

maintaining a high mitochondrial ratio of NADPH/NADP+ under physiological conditions 

(Arkblad et al., 2005, Rydstrom, 1974, Rydstrom, 2006, Rydstrom et al., 1998). Reversal of 

the direction of the reaction, so that NADH can be produced from NADPH with concurrent 

H+ pumping against the transmembrane gradient, appears to be possible under hypoxic 

conditions (Ying, 2008). In normoxic conditions, however, the biological role of NNT is to 

replenish the mitochondrial pool of NADPH, powered by the transmembrane proton gradient.  

NNT (molecular weight 114 kD) is a homodimer; each half consists of a lipophilic, 

membrane-embedded domain (DII) and two hydrophilic domains (DI and DIII) protruding 

into the inner mitochondrial matrix (eukaryotic cells) or cytosol (bacteria) (Yamaguchi et al., 

1988, Leung et al., 2015). DI binds NAD(H), while DIII binds NADP(H) (Fig. 1-12). The 

structure of the hydrophilic domains has been successfully studied in a number of species, 

including Homo sapiens, but the structure of the transmembrane domain that facilitates proton 

pumping remained elusive. Recently, Leung et al. managed to elucidate the whole protein 

structure in Thermus thermophilus, using a combination of crystallography and cryo-electron 

microscopy (Leung et al., 2015). This elegant study revealed a peculiar pattern: while the two 

membrane-bound domains (DII) are symmetrical, each containing a putative proton channel, 
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NNT as a whole displays a striking asymmetry as the two DIII domains have opposite 

orientations. The authors hypothesised that this asymmetry facilitates division of labour 

between the two subunits in alternating cycles, so that one of the two DIII domains mediates 

hydride transfer from NADH to NADPH, while its counterpart participates in proton transfer. 

                  

 

It is still unknown what percentage of the total mitochondrial NADPH pool is contributed by 

NNT. Studies on redox balance in Escherichia coli suggested that NNT generates 

approximately 45% of the total NADPH pool (Rydstrom, 2006, Sauer et al., 2004), but more 

recent studies have underscored the complexity of NADPH-generating networks in eukaryotic 

cells and indicated that the relative contribution of each pathway can vary according to cell 

type and metabolic circumstances (Lewis et al., 2014, Fan et al., 2014). Our current 

 

Figure 1-12 Schematic representation of NNT structure and function. The NAD(H) binding 

domain (dI) and the NADP(H) binding domain (dIII) catalyse hydride transfer between 

nicotinamide nucleotides, with concurrent translocation of protons to the mitochondrial 

matrix. Source: (Leung et al., 2015). Reproduced with permission of the American 

Association for the Advancement of Science. 
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understanding of cytosolic and mitochondrial pathways of NADPH synthesis is described 

separately in the succeeding section.  

The existence of many redundant biosynthetic pathways generating NADPH is explained by 

the important biological roles of this versatile electron carrier. Contrary to NADH, which 

predominantly acts as an electron donor to the mitochondrial electron transfer chain to fuel 

ATP synthesis, NADPH is involved in two distinct areas: reductive biosynthesis and 

antioxidant defence. Maintaining a constant NADPH supply to fuel lipid, aminoacid and 

nucleotide biosynthesis is of major importance in highly proliferating cells (Fan et al., 2014, 

Vander Heiden et al., 2009). With regard to its second role as a safeguard of cellular redox 

homeostasis, NADPH acts as an essential electron donor to the two most important 

antioxidant pathways: the glutathione pathway and the thioredoxin pathway, both of which 

mediate the detoxification of chemically reactive oxygen molecules (reactive oxygen species, 

ROS) to H2O (Prasad et al., 2014b). ROS are constantly generated intracellularly as by-

products of aerobic metabolism, and their efficient scavenging represents an existential need 

for all cells (Gupta et al., 2012). Reduced glutathione (GSH) has a well-established, central 

role in the mitochondrial redox balance system as it is involved in the detoxification of the 

major ROS molecule hydrogen peroxide (H2O2), both directly and through the action of 

glutathione peroxidise (GPX) (Prasad et al., 2014a, Mari et al., 2009, Andreyev et al., 2005). 

The second major mitochondrial antioxidant system (thioredoxin pathway) involves reduction 

of mitochondrial thioredoxin by thioredoxin reductase (TXNRD2), using two electrons from 

NADPH. Reduced thioredoxin in its turn regenerates reduced peroxiredoxin 3 (PRDX3) from 

its oxidised form. Two molecules of  reduced PRDX3 can then serve to reduce H2O2 to H2O, 

while they are oxidized to a disulfide-linked peroxiredoxin dimer (Mustacich and Powis, 

2000).  
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In summary, NNT generates NADPH to support anabolic processes and fuel the 

mitochondrial antioxidant defence network with reducing equivalents, preventing oxidative 

damage caused by excessive ROS accumulation (oxidative stress) (Fig. 1-13).  A more 

thorough description of ROS and their scavenging pathways is provided in subsequent 

sections. 

 

               

 

As expected, NNT inhibition has been shown to compromise NADPH synthesis, hamper ROS 

scavenging and alter the cellular redox status (i.e. the balance between oxidising and reducing 

Figure 1-13 Interaction between NNT and the mitochondrial antioxidant pathways. ETC: 

electron transfer chain; ATP: adenosine triphosphate; GSR: glutathione reductase; GSSG: 

oxidised glutathione; GSH: reduced glutathione; GPX1: Glutathione peroxidase 1; TXNRD2: 

thioredoxin reductase 2; TXN: oxidised thioredoxin; TXN-SH: reduced thioredoxin; GPX3: 

peroxiredoxin 3; O2
.-: superoxide; H2O2: hydrogen peroxide                  
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elements) in various cell lines, as indicated by a number of pertinent metabolic parameters 

(NADPH/NADP+ ratio, reduced/oxidised glutathione ratio, ROS concentration)    (Ripoll et 

al., 2012, Arkblad et al., 2005, Meimaridou et al., 2012, Yin et al., 2012). Transient 

knockdown (KD) of NNT in PC12 rat phaeochromocytoma cells also resulted in impaired 

mitochondrial metabolism, most notably inhibition of oxidative phosphorylation with 

decreased oxygen consumption rates (Yin et al., 2012). This was ascribed to the paradoxically 

decreased ratio of NADH/NAD+ observed in the aftermath of NNT inhibition, potentially due 

to inhibition of the Kreb’s cycle enzyme pyruvate dehydrogenase through redox-controlled 

signalling (e.g. JNK-mediated). Perturbation of mitochondrial respiration was accompanied 

by increased levels of apoptosis. In an elegant metabolic in vitro study on melanoma and renal 

carcinoma cells, Gameiro et al. showed that NNT KD impedes glutamine utilisation in Kreb’s 

cycle, due to functional inhibition of isocitrate dehydrogenase by the low NADH/NAD+ ratio 

(Gameiro et al., 2013). This increased the dependence of malignant melanoma cells on 

glucose to derive anabolic carbons for their proliferation. Indeed, NNT-KD cells were more 

sensitive to glucose deprivation. Overexpression of NNT had the opposite effects, increasing 

reductive carboxylation of glutamine. Finally, xenografts derived from NNT-KD melanoma 

cells showed at least a tendency towards lower proliferation than their controls (Gameiro et 

al., 2013). In another recent study on neuronal cells, NNT KD disrupted the thioredoxin 

pathway, limiting reduced peroxiredoxin availability and, consequently, increasing ROS 

levels. This enhanced cellular susceptibility to chemically-induced oxidative stress (paraquat 

treatment) (Lopert and Patel, 2014)  

A number of in vivo studies have explored the sequelae of NNT dysfunction in rodents. 

Rather opportunely, a spontaneous loss-of-function Nnt mutation was discovered in 

C57BL/6J mice in 2005 (Toye et al., 2005). The first metabolic perturbation identified in this 
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mouse strain was impaired glucose tolerance, as a result of deficient insulin secretion  

(Freeman et al., 2006, Shimomura et al., 2009, Toye et al., 2005). The same phenotype was 

reproduced in a different mouse strain upon Nnt knockout. The mechanism underlying this 

association remains elusive (Parker et al., 2009). Ronchi et al. evaluated the metabolic effects 

of Nnt mutation in the same strain with ex vivo studies on liver mitochondria. In keeping with 

in vitro data, they showed that Nnt mutant mice had liver mitochondria with a lower ratio of 

NADPH/NAPD, impaired redox balance (decreased reduced/ oxidised glutathione ratio) and 

inability to detoxify exogenous ROS, when compared to a BL6 strain with wild-type Nnt. Of 

note, the ratio of NADH/NAD+ was higher in Nnt mutant mice, which is at odds with the 

results of the aforementioned in vitro studies (Ronchi et al., 2013). Meimaridou et al. 

demonstrated a decrease in circulating corticosterone (the major glucocorticoid and 

mineralocorticoid hormone in rodents) in Nnt mutant mice, underpinned by histological 

findings of disorganised structure and increased apoptosis in the zona fasciculata of the mouse 

adrenals (Meimaridou et al., 2012). Blunted corticosterone response to restrain stress was 

observed in NNT knockout mice by Picard et al., as well as augmentation of the 

hyperglycaemic response to stress due to deficient insulin secretion (Picard et al., 2015). 

Recently, the first study evaluating the effects of NNT mutations in FGD patients 

(homozygotes) and carriers (heterozygotes) ex vivo using circulating lymphocytes was 

published. Suppression of NNT activity to <60% of normal (homozygotes and heterozygotes) 

resulted in decreased mitochondrial mass and mitochondrial DNA copies. Suppression to 

<30% of normal activity (homozygotes only) additionally resulted in impaired oxidative 

phosphorylation and high rates of mitochondrial gene deletions, presumably reflecting 

oxidative DNA damage (Fujisawa et al., 2015).  
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Interestingly, it has been long known that NADPH (and by inference NNT) also serves as an 

essential electron donor to a number of steroidogenic cytochrome P450 enzymes that reside in 

the mitochondria (CYP11A1, CYP11B1, CYP11B2) (Hanukoglu, 2006). This provides a 

putative mechanism to explain the association of NNT dysfunction with adrenal insufficiency, 

alongside the possibility of adrenal cortex damage due to oxidative stress.  

  

1.3.3  NADPH metabolism 

The role of NNT as a mitochondrial NADPH generator is best appreciated if considered 

within the complete network of biosynthetic pathways that can produce NADPH alongside it. 

The total NADPH pool can be divided into cytosolic NADPH and NADPH located within 

intracellular orgenelles (most notably mitochondria). Cellular membranes appear to be 

impermeable to NADP(H) and NAD(H), and transfer of reducing equivalents across them 

requires multi-step reaction pathways such as the malic acid cycle (Nikiforov et al., 2011, 

Pollak et al., 2007). The ability to rapidly reduce NADP to NADPH in response to oxidative 

stimuli or starvation is important. This can be facilitated by a number of enzymes: 

a) Isocitrate dehydrogenase (ICDH). ICDHs catalyse the oxidative decarboxylation of 

isocitrate to a-ketoglutarate in the tricarboxylic acid (TCA) cycle, a reaction during 

which NAD(P)H is generated. Three isoforms of ICDH have been described in 

mammals: mitochondrial NAD+-dependent ICDH (IDH), mitochondrial NADP+-

dependent dehydrogenase (IDPm) and cytosolic NADP+-dependent dehydrogenase 

(IDPc). IDPm, also known as ICDH type II, catalyses the following reaction, 

contributing to the mitochondrial NADPH pool:   

Isocitrate + NADP+ + H+           IDPm              α-ketoglutarate + NADPH   (Jo et al., 2001) 
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b) Malic enzyme. Malate dehydrogenase or NADP-malic enzyme is an oxidoreductase 

catalysing the carboxylation of malate to pyruvate, generating NADPH. 

(S)-malate + NADP+     malic enzyme       pyruvate + CO2 + NADPH      (Peron et al., 1975) 

Malate and pyruvate can be transported across the mitochondrial membrane, thus 

allowing some flexibility in reducing power shifts between the cytosol and the 

mitochondria (malate-pyruvate shuttle). For instance, cells can invest cytosolic 

NADPH to generate malate and transport it to the mitochondria, where it can be used 

by malic enzyme to generate NADPH locally (Fan et al., 2014).  

 

c) Glucose-6-Phosphate dehydrogenase (G6PD). This enzyme is considered the major 

cytosolic NADPH generator, but is not expressed in mammalian mitochondria. It 

catalyses the first and rate-limiting step of the Pentose Phosphate Pathway:  

Glucose-6-Phosphate + NADP++ H+    G6PD         6-Phosphoglucono-delta-lactose + 

NADPH    (Frederiks et al., 2007, Ursini et al., 1997). 

 

G6PD is the sole NADPH generator in red cells. G6PD deficiency is the most 

common enzyme deficiency in humans and is particularly prevalent in Asian, African 

and Mediterranean populations due to the phenotype of partial resistance to malaria it 

confers to carriers. Clinically, it only appears to be associated with haemolytic 

anaemia in response to oxidative stress triggered by various agents (fava beans, drugs, 

ketoacidosis), while patients with mild deficiency are completely asymptomatic 

(Beutler, 1996). 

 



Chapter 1                                                                                                                                                       General Introduction 

58 
 

d) Tetrahydrofolate reductase. The importance of folate-dependent NADPH synthesis 

has been highlighted by modern metabolic mammalian cell studies based on hydrogen 

tracing.  Folate-dependent NADPH-generating pathways involve transfer of a single 

carbon from serine to tetrahydrofolate (THF) to produce methylene-THF. The latter is 

subsequently oxidised by methylene-THF reductase (MTHFD) to form the purine 

precursor formyl-THF, in a reaction involving NADPH generation. MTHFD exists in 

both a cytosolic and a mitochondrial form. Recent studies suggest this pathway may 

contribute up to a quarter of the total NADPH pool in mammalian cells (Fan et al., 

2014, Lewis et al., 2014). 

An overview of known sources of mitochondrial NADPH is provided in Figure 1-14. 
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1.3.4 Reactive oxygen species (ROS) – basic physiology 

Reactive oxygen species (ROS) are chemically reactive, oxygen-containing molecules which 

can be further subdivided into radical ROS [containing one or more unpaired electrons, such 

as superoxide (O2
-), hydrocyl radical (OH-), nitric oxide (NO)] and non-radical ROS 

[hydrogen peroxide (H2O2), ozone (O3), organic hydroxyperoxide (Fruehauf and Meyskens, 

2007, Gupta et al., 2012). ROS are constantly generated within cells, their production 

Figure 1-14 Mitochondrial sources of NADPH. THF: tetrahydrofolate; SHMT2: serine 

hydroxymethyltransferase 2; MTHFD2: methylenetetrahydrofolate dehydrogenase; IDH2: 

isocitrate dehydrogenase type II; a-KG: alpha-ketoglutarate; OAA: oxaloacetate  
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ineluctably intertwined with aerobic metabolism entailing electron transfer reactions. The 

main intracellular generation loci include 

Peroxisomes: xanthine oxidase and other oxidases generate superoxide and hydroxyl radicals 

(del Rio et al., 1992) 

Cell membrane: Membrane-bound enzymes from the NADPH oxidase (NOX) family 

generate ROS (Bedard and Krause, 2007) 

Endoplasmic reticulum (ER): ROS are generated within the ER during protein folding and 

disulphide bond formation by oxidoreductin 1, disulphide isomerase and NOX4 (Gupta et al., 

2012). 

Mitochondria: The major ROS generating area within eukaryotic cells. A number of 

mitochondrial sources of ROS can be enumerated: 

The tricarboxylic acid cycle (TCA cycle) or Kreb’s cycle. The TCA cycle (Fig. 1-15) is a 

series of reactions oxidising carbohydrates, fats and proteins to generate CO2 and energy 

(ATP).  NADH and NADPH are generated during the cycle and serve as electron transporters 

from TCA substrates to the electron transfer chain. Several TCA enzymes can produce ROS 

as by-products during electron transfer (NADH dehydrogenase, pyruvate dehydrogenase, a-

ketoglutarate dehydrogenase, succinate dehydrogenase). All these enzymes use flavin-

containing groups to facilitate electron transfer; during this process some electrons remain 

stranded in the flavin groups and eventually leak generating superoxide (Sabharwal and 

Schumacker, 2014). Consequently, inhibition of any enzymatic step along the TCA cycle 

results in increased ROS generation as more free electrons accumulate (Sabharwal and 

Schumacker, 2014). 
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The Electron transport chain (ETC). The ETC involves a series of mitochondrial membrane-

abiding enzymes (complexes I-V) which mediate the transfer of electrons generated in the 

TCA cycle to O2, with synchronous generation of energy in the form of ATP (oxidative 

Figure 1-15 ROS production in the TCA cycle. CoASH: coenzyme A; PDH: pyruvate 

dehydrogenase; IDH: isocitrate dehydrogenase; a-KG: alpha-ketoglutarate; a-KGDH: 

alpha-ketoglutarate dehydrogenase; SCoA-S: SuccinylCoenzyme A synthase; MDH: malate 

dehydrogenase; OAA: oxaloacetate; GDP: guanosine diphosphate; GTP: guanosine 

triphosphate 
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phosphorylation). ROS (superoxide) are generated during this process through premature, 

single electron transfer to O2 in complexes I (NADH dehydrogenase) and III (Cytochrome C 

reductase) (Sabharwal and Schumacker, 2014). Depending on the exact site of their 

generation, ETC-derived ROS may be directed to the mitochondrial matrix or the 

mitochondrial intermembrane space. Escape from the matrix to the intermembrane space and 

from there to the cytosol can also occur, as ROS can cross membranes through aquaporins 

and anion channels (Sabharwal and Schumacker, 2014, Bienert et al., 2007, Han et al., 2003). 

Mitochondrial CYP450 Type I enzymes. These include the cholesterol side chain cleavage 

enzyme (CYP11A1 or P450scc), 11β-hydroxylase (CYP11B1 or P450c11) and its isoenzyme 

aldosterone synthase (CYP11B2 or P450c11AS).  The hydroxylation reactions catalysed by 

these enzymes involve electron transfer from NADPH, which can lead to electron leakage to 

O2 generating superoxide. The interaction between ROS and steroidogenesis is complex and 

is analysed in more details in a subsequent section.  

Cytochrome b5 reductase. This outer mitochondrial membrane enzyme oxidises NAD(P)H 

and reduces cytochrome b5. Superoxide production at high rates has been reported (Whatley 

et al., 1998, Andreyev et al., 2005). 

Monoamine oxidases A and B. Also located in the outer mitochondrial membrane, these 

enzymes catalyze the oxidation of biogenic amines. Hydrogen peroxide is produced during 

this reaction (Andreyev et al., 2005) (Fig. 1-16). 
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Aside from these intracellular sources, ROS can be generated by a plenitude of external/ 

environmental triggers, including smoking, asbestos, inflammation, hypoxia, chemotherapy 

and radiotherapy (Gupta et al., 2012). Increased levels of ROS can cause oxidative damage to 

Figure 1-16 Main sources of ROS in adrenal mitochondria. Superoxide is produced during 

electron leakage in respiratory chain complexes I - III, mitochondrial steroidogenesis (P450 

monooxygenases) and the TCA cycle. CoQ: coenzyme Q; CytC: cytochrome C; Preg: 

pregnenolone; S: deoxycortisol; F: cortisol; B: corticosterone; Aldo: aldosterone; SOD2: 

mitochondrial superoxide dismutase 
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DNA, proteins and lipids, disrupting cellular function and, in severe cases, triggering cell 

death. This deleterious impact of high intracellular ROS levels is commonly referred to as 

oxidative stress, and can be a result of high endogenous ROS production, exogenous insults or 

impaired scavenging mechanisms (antioxidant pathways) (Gupta et al., 2012, Fruehauf and 

Meyskens, 2007, Schieber and Chandel, 2014). Different ROS display different degrees of 

reactivity with cell macromolecules. Superoxide (O2
-) is the most commonly produced 

intracellular ROS and is only mildly reactive. It is rapidly converted to hydrogen peroxide 

(H2O2) by superoxide dismutase 1 (cytosol, mitochondrial intermembrane space) or 2 

(mitochondrial matrix). H2O2 is moderately reactive with cellular macromolecules. When 

allowed to accumulate inordinately, it can be converted to highly reactive hydroxyl radicals 

(Schieber and Chandel, 2014, Sabharwal and Schumacker, 2014).  

In the last two decades, it has become increasingly evident that oxidative stress is but one 

dimension of ROS (patho)physiology, which is mainly pertinent in the context of ROS 

excess. When present in moderation, ROS are involved in various signalling pathways (redox 

signalling), hence serving a useful biological role as mediators of adaptive cellular responses 

to various environmental stress inducers (Schieber and Chandel, 2014).  A good example of 

this ‘virtuous to vicious’ spectrum of ROS activity can be found in their interaction with 

proteins. Low-level hydrogen peroxide (H2O2) oxidises cysteine residues to sulfenic anions 

(Cys-SOH). This triggers allosteric changes in protein structure that modify their function and 

can initiate signalling cascades. Sulfenic anions can be reduced back to thiolate anions (Cys-

S-) by thioredoxin reductase and glutaredoxin; hence, this reversible oxidation can serve as a 

temporary signalling transduction mechanism. When H2O2 is allowed to accumulate 

excessively, however, it causes irreversible oxidation of cysteine residues to sulfinic (SO2H) 

or sulfonic (SO3H) species, permanently damaging the affected protein (Schieber and 
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Chandel, 2014). Redox signalling regulates numerous cell processes including proliferation, 

survival, angiogenesis, lipid metabolism, immune response and aging (Schieber and Chandel, 

2014, Gupta et al., 2012).  

The following sections focus on the role of ROS in steroidogenesis and cancer 

pathophysiology, which are most relevant to this work. 

 

1.3.5 ROS and steroidogenesis 

The interaction between ROS and steroidogenesis has yet to be fully elucidated, but appears 

to be bidirectional. Mitochondrial steroidogenesis is ineluctably associated with ROS 

generation in the reactions catalyzed by CYP11A1, CYP11B1 and CYP11B2, all cytochrome 

P450 monooxygenases which transfer reducing equivalents and an oxygen atom to steroid 

substrates, according to the following hydroxylation reaction: 

 Substrate-H + NADPH + H+ + O2 → Substrate-OH + NADP+ + H2O (Hornsby, 1980, 

Hanukoglu and Hanukoglu, 1986) 

 

Electron transfer from NADPH to the steroid substrate occurs via two intermediate electron 

transfer proteins, adrenodoxin reductase (FAD-containing flavoenzyme) and adrenodoxin 

(ferrodoxin-type iron-sulfur protein) (Grinberg et al., 2000, Ziegler et al., 1999).  

Adrenodoxin and adrenodoxin reductase are ubiquitously expressed, but predominantly so in 

the adrenal cortex and corpus luteum (Brentano and Miller, 1992, Hanukoglu and Hanukoglu, 

1986). Of note, they are not substrate-specific, i.e. a single form of adrenodoxin reductase and 
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adrenodoxin react with all mitochondrial P450 steroidogenic enzymes. The order of electron 

transfer is always the same: 

 

NADPH             Adrenodoxin reductase           Adrenodoxin               P450 (Hanukoglu, 2006) 

 

The efficiency of this process, however, is never 100%, and superoxide (O2
-) is also generated 

as a by-product when an unpaired electron is transferred to O2. This is often described as 

‘electron leakage’ or ‘uncoupling of electron transfer’. Electron leakage has been studied in 

reconstituted forms of CYP11A1 and CYP11B1, which showed that about 15% and 40% of 

the total electron flow through each enzymic system, respectively, is directed to ROS 

formation (Rapoport et al., 1995). By comparison, leakage within the mitochondrial electron 

transfer chain occurs at an estimated rate of only 0.15% of the total electron flow (St-Pierre et 

al., 2002). Interestingly, uncoupling of CYP11A1 appears to be inversely proportional to 

substrate availability, while in CYP11B1 uncoupling increases with increasing concentrations 

of deoxycorticosterone (Rapoport et al., 1995). Within the adrenal cortex, expression of P450 

mitochondrial enzymes is much higher (up to ten-fold) than the expression of other electron 

transfer chain enzymes or microsomal P450 enzymes (Hanukoglu and Hanukoglu, 1986). 

Therefore, it can be surmised that they account for a substantial proportion of total ROS 

generation within adrenocortical cells.  This fact can potentially explain the higher 

concentration of antioxidants (e.g. Vitamin C, selenium) in the adrenal gland in comparison to 

other tissues (Prasad et al., 2014a). Derouet-Humbert et al. were able to demonstrate ROS-

associated mitochondrial apoptosis is various cell lines overexpressing adrenodoxin or 

CYP11A1 (Derouet-Humbert et al., 2005). 
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The opposite direction of this interaction, i.e. the impact of oxidative stress on 

steroidogenesis, has been explored in a small number of in vitro studies, often with conflicting 

results. In 1980, Hornsby et al., working on cultured bovine adrenocortical cells, showed that 

treatment with antioxidants can ameliorate the decrease in CYP11B1 activity that is seen in 

response to treatment with cortisol, and augment the stimulation of CYP11B1 activity seen in 

response to ACTH treatment (Hornsby, 1980). 10 years later, Behrman et al. found that 

hydrogen peroxide (H2O2) has a specific inhibitory effect on cholesterol transport to the 

mitochondria in rat luteal cells, but did not seem to affect downstream steroidogenesis 

(Behrman and Aten, 1991). In another study, an inhibitory effect of H2O2 on 3beta-

hydroxysteroid dehydrogenase was demonstrated in MA-10 Leydig tumour cells (Stocco and 

Ascoli, 1993).  Similarly, Diemer et al. showed that treatment of MA-10 Leydig tumour cells 

with H2O2 suppressed CYP11A1 activity after 3h of cAMP stimulation in a dose-dependent 

manner, as evidenced by lower progesterone synthesis, although CYP11A1 expression was 

not affected. Exogenous xanthine oxidase administration, leading to superoxide generation, 

was associated with down-regulation of StAR and suppression of progesterone production 

(Diemer et al., 2003). Interestingly, Zhao et al. demonstrated a biphasic relationship between 

chemically induced oxidative stress and steroidogenesis in rat Leydig cells. Moderate 

oxidative stress increased testosterone synthesis activating CYP11A1, 3β-HSD and 17β-HSD, 

while higher levels had the opposite effect (Zhao et al., 2012). 

There is hardly any evidence on the effects of oxidative stress on mineralocorticoid synthesis. 

The only relevant in vitro study of aldosterone synthesis on NCI-H295R (ACC) cells 

surprisingly showed that CYP11B2 (aldosterone synthase) is actually up-regulated by 

oxidative stress (Rajamohan et al., 2012).   
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In clinical medicine, a number of familial forms of adrenal insufficiency have been associated 

with impaired redox status, including triple A syndrome, X-linked adrenoleukodystrophy and, 

as discussed previously, Familial Glucocorticoid Deficiency (FGD) (Prasad et al., 2014b). 

Triple A syndrome (Allgrove’s syndrome) is an autosomal recessive disease characterized by 

the clinical constellation of alacrima (absence of tears), oesophageal achalasia and primary 

adrenal insufficiency. This is often accompanied by a progressive neurodegenerative process 

(Allgrove et al., 1978).  The genetic culprit, AAAS, encodes a nucleoporin (ALADIN) whose 

exact role has yet to be elucidated. Dermal fibroblasts from Triple A patients display high 

levels of ROS. It is unclear what drives this oxidative stress and to what extent this is causally 

linked to the clinical syndrome. Histological evidence of atrophic zona fasciculata and 

reticularis have been reported (Prasad et al., 2014b, Allgrove et al., 1978). In a recent study, 

stable knockdown of Aaas in NCI-H295R ACC cells increased oxidative stress and led to a 

suppression of cortisol synthesis and expression of CYP11B1 and StAR; CYP11A1 did not 

appear to be affected (Prasad et al., 2013). These results were subsequently contradicted by 

Juhlen et al., who found that ALADIN knockdown in NCI-H295R-S1 (substrain 1) cells only 

has an impact on the CYP450 type II microsomal enzymes CYP17A1 and CYP21A2, and 

their electron donor enzyme POR. Steroidogenically, only 17-hydroxyprogesterone, 11-

deoxycortisol and androstenedione were significantly suppressed (Juhlen et al., 2015). 

Interestingly, Aaas knockout in mice fails to reproduce the features of human patients 

(Huebner et al., 2006). 

Adrenoleukodystrophy is another rare genetic disease (X-linked) afflicting the central nervous 

system (progressive demyelination) and the adrenal glands (primary adrenal insufficiency). It 

is caused by mutations of ABCD1, a gene encoding the ALP protein, which mediates 

intracellular transfer of very long chain fatty acids (VLCFA) into the peroxisomes for beta-
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oxidation (van Roermund et al., 2008). Accumulation of VLFCA results in ROS generation, 

although the exact mechanism is poorly understood (Ivashchenko et al., 2011). Abcd1 

knockout mice, however, have a much milder phenotype and the adrenal glands are spared 

(Forss-Petter et al., 1997, Prasad et al., 2014b). 

In 2014, whole exon sequencing in three related patients with FGD revealed they all shared an 

inactivating mutation of mitochondrial thioredoxin reductase type 2 (Prasad et al., 2014a). 

This discovery of a second gene (after NNT) participating in the mitochondrial antioxidant 

defence network in FGD patients consolidated the importance of redox homeostasis for the 

adrenal gland. Whether glucocorticoid deficiency in these patients arises as a consequence of 

ROS-induced adrenal cell damage, developmental failure of adrenal cortex formation due to 

aberrant redox signalling or functional inhibition of steroidogenic enzymes remains unknown 

(Prasad et al., 2014a). 

 

1.3.6 ROS and cancer 

The multi-layered relationship between ROS and cancer has been extensively explored in the 

last two decades and several levels of interaction have been identified. It is now recognised 

that ROS are involved in signalling pathways implicated in oncogenesis (malignant cellular 

transformation), response to hypoxia, cell proliferation, cell viability and angiogenesis, all 

important parameters of malignant pathophysiology (Fruehauf and Meyskens, 2007, Gupta et 

al., 2012, Schumacker, 2006) (Fig. 1-17).  
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1.3.6.1 ROS and malignant transformation 

Oncogenesis or malignant cellular transformation refers to the process whereby healthy cells 

acquire properties of malignant cells, either through activation of oncogenes or inactivation of 

tumour suppressor genes.  Our understanding of ROS involvement in malignant cell 

transformation is still incomplete, but an ever-increasing body of work has accrued evidence 

supporting ROS involvement in this process (Fruehauf and Meyskens, 2007, Sabharwal and 

Schumacker, 2014, Schumacker, 2006, Gupta et al., 2012). Stimulation of malignant 

transformation by oxidising agents (Radisky et al., 2005, Azad et al., 2010) and suppression 

of malignant transformation by antioxidants (Wang et al., 2011, Irani et al., 1997, Yan et al., 

2009)  have been demonstrated in vitro. ROS-induced DNA damage leading to genomic 

Figure 1-17 Interaction between ROS and important cellular processes involved in cancer 

pathophysiology. Double arrows represent bidirectional relationships.  
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instability and oncogene activation is a putative pathophysiological link (Gupta et al., 2012, 

Fruehauf and Meyskens, 2007). Mitochondrial DNA is particularly susceptible to ROS-

induced damage owing to its proximity to the electron transfer chain, and its mutations can 

lead to loss of function of crucial cell cycle ‘checkpoints’, a hallmark feature of malignant 

cells (Schumacker, 2006). 

Malignant cells generally have higher levels of oxidative stress than normal cells. This 

difference is partly due to the higher metabolic rates of cancer cells, leading to higher rates of 

ROS generation in the electron transfer chain. Elegant in vitro studies involving immortalised 

benign cell lines as controls, however, indicated that the increased oxidative stress of 

malignant cells is probably an attribute related to the malignant transformation itself, even 

allowing for the differences in metabolic rates between malignant and healthy cells 

(Trachootham et al., 2006). Maintaining modestly elevated ROS levels may be beneficial to 

malignant cells in a number of ways, including accelerated proliferation, resilience to hypoxia 

and stimulation of angiogenesis, as detailed in the following paragraphs. 

 

1.3.6.2 ROS and hypoxia 

Dealing with a hypoxic microenvironment is a challenge almost invariably facing cancer 

cells. Malignant cell response to hypoxic stress is mediated by the hypoxia-inducible factor 1 

(HIF-1). HIF-1 is a cytosolic heterodimer consisting of HIF-1α and HIF-1β. In response to 

hypoxia, it translocates to the nucleus and induces the transcription of a number of target 

genes; the end effect is enhanced cell proliferation and stimulation of angiogenesis. Under 

normoxic conditions, HIF-1 is quickly inactivated through hydroxylation of proline residues 

by PHD (prolyl hydroxylase), followed by degradation by the ubiquitin–proteasome system. 
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PHD uses O2 as a substrate and thus its action is inhibited by hypoxia, allowing free 

expression of HIF-1 and, consequently, the whole panel of hypoxia-response genes which 

mediate cellular resistance to hypoxic conditions (Pugh and Ratcliffe, 2003). The effect of 

ROS on HIF-1 is not as yet fully elucidated and existing evidence is contradictory. A series of 

in vitro studies have demonstrated that both exogenous and endogenous ROS can augment 

HIF-1a stabilization and binding and, consequently, augment cell survival, proliferation and 

angiogenesis (Duyndam et al., 2001, Brauchle et al., 1996, Chandel et al., 2000, Guzy et al., 

2007, Wang et al., 1995). However, other studies have demonstrated diametrically different 

results, with exposure to exogenous or endogenous excessive ROS inhibiting HIF-1a 

stabilization and/or binding (Huang et al., 1996, Hellfritsch et al., 2015). From an alternative 

perspective, it has been ascertained that hypoxia itself paradoxically stimulates mitochondrial 

ROS production, enhancing electron leakage in the ETC (Guzy and Schumacker, 2006). 

 

1.3.6.3 Role of ROS in cellular proliferation.  

The ability of ROS to enhance cellular proliferation has been demonstrated in a large number 

of in vitro and in vivo studies using various cancer types. This also applies to healthy cells, as 

redox signalling can augment growth factor-mediated cellular proliferation (Schumacker, 

2006). Molecular targets through which the proliferative effect of excess ROS is facilitated 

include ERK (extracellular signal-regulated kinases), Nf-κB (nuclear-factor-kappa-light-chain 

enhancer of activated B cells), Cyclin E, EGFR, JNK (c-Jun N-terminal kinases) and others 

(Fruehauf and Meyskens, 2007, Gupta et al., 2012, Liu et al., 2002, Ruiz-Ramos et al., 2009). 

In cancer studies, exogenous H2O2 stimulated proliferation in hepatoma cells through 

activation of protein kinase B (Liu et al., 2002), while arsenite-induced ROS reproduced the 
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same effect on breast cancer cells (Ruiz-Ramos et al., 2009). Similarly, increase in 

endogenous ROS production has been associated with enhanced proliferation in lung cancer, 

breast cancer and ovarian cancer cells (Hu et al., 2005, Na et al., 2008). In keeping with these 

findings, treatment with ROS scavengers (e.g. catalase, N-acetylcysteine) has demonstrated 

anti-proliferative effects in vitro (Saunders et al., 2010, Martin et al., 2007, Policastro et al., 

2004). Conversely, a smaller number of studies have demonstrated suppression of cellular 

proliferation in response to ROS loads, suggesting that the net effect of ROS on cellular 

proliferation may be dose-dependent, with modest rises stimulating and steep elevations 

inhibiting proliferation (Koka et al., 2010, Donadelli et al., 2007, Qu et al., 2011).  

 

1.3.6.4 ROS and cell death 

ROS excess can trigger cell death by apoptosis, necrosis or autophagy. Apoptosis is a 

controlled form of cell death induced either by the mitochondria (intrinsic pathway) or non-

mitochondrial death receptors (extrinsic pathway) (Gupta et al., 2012). ROS can induce 

apoptosis through the extrinsic pathway: death receptor Fas can be activated by ROS, 

eventually leading to caspase 8 activation and apoptosis (Denning et al., 2002, Medan et al., 

2005, Reinehr et al., 2005, Uchikura et al., 2004). Mitochondrial ROS-dependent apoptosis 

involves opening of the mitochondrial permeability transition pore complex (MPTP), a 

multimeric channel consisting of adenine nucleotide translocase, cyclophilin D, creatine 

kinase and a voltage dependent ion channel (VDAC). ROS-induced pore opening is mediated 

by activation of pore-destabilising proteins (Bcl-2-associated X protein, Bcl-2 homologous 

antagonist) as well as inactivation of pore-stabilising proteins (Bcl-2 and Bcl-Xl) (Martindale 

and Holbrook, 2002). MPTP opening is followed by cytochrome c release, apoptosome 
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formation and caspase activation, effectuating the apoptotic demise of the cell (Martindale 

and Holbrook, 2002, Gupta et al., 2012) (Fig 1-18). When ROS accumulation becomes even 

more excessive, it can act as a trigger of necrosis rather than apoptosis, in a caspase-

independent fashion. Necrosis is a rapid and uncontrolled form of cell death, involving 

disruption of cell membranes and release of cell contents to the extracellular space (Krysko et 

al., 2008). The capacity of excessive ROS to act as triggers of necrosis has been demonstrated 

in a number of cell lines in vitro, including Jurkat T-lymphocytes, multiple myeloma, 

lymphoma and prostate cancer cells (Nair et al., 2009, Hampton and Orrenius, 1997, 

Garbarino et al., 2007). A third mode of cell death associated with ROS excess is autophagy. 

Autophagy comprises a self-catabolic process of lysosomic degradation of cellular organelles 

and proteins. Autophagy in response to ROS accumulation has been demonstrated in various 

cancer types in vitro, including colon cancer, gliomas, glioblastomas and breast cancer (Chen 

et al., 2008, Xie et al., 2011, Shrivastava et al., 2011, Park et al., 2011).  

As with proliferation, the interaction between ROS and cell death is not entirely straight-

forward, and more modest levels of ROS have been shown, in a smaller number of studies, to 

have the opposite effects, promoting cell survival (Yang et al., 2007, Brar et al., 2003). Sub-

cellular localisation also seems to be important, with moderate elevations in cytoplasmic ROS 

supporting cell survival while mitochondrial ROS inducing apoptosis (Deshpande et al., 

2003). Overall, there appears to be a multi-phasic relationship between ROS and cellular 

growth kinetics, whereby low ROS levels can promote cell survival and stimulate 

proliferation, higher (supra-physiological) levels trigger apoptosis and more overwhelming 

rises can directly induce necrosis or autophagy (Gupta et al., 2012, Schafer and Buettner, 

2001). 
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1.3.6.5 ROS and cell invasion/ angiogenesis 

Similar to their effect on cell proliferation, modest ROS rises can also promote angiogenesis 

and tissue invasion and enhance the metastatic potential of malignant cells in vitro and in 

vivo. Signalling pathways mediating this effect include mitogen-activated protein kinase 

(MAPK), CXC chemokine receptor, VEGF and VEGF receptors 1 and 2 (Ho et al., 2011, 

Arbiser et al., 2002, Chetram et al., 2011).  Suppression of invasion/ angiogenesis by ROS has 

also been described in a smaller number of studies, suggesting that, as with other previously 

Figure 1-18 H2O2-induced apoptosis through mitochondrial permeability transition pore 

(MPTP) opening. H2O2 destabilises MTP through direct oxidation of ANT (adenine 

nucleotide translocase) and/or the pore-stabilising protein Bcl-2.  Resulting VDAC 

(voltage-dependent anion channel) opening allows influx of anions and water into the 

mitochondria, cytochrome c activation and, eventually, apoptosis. Source: (Fruehauf and 

Meyskens, 2007) . Adapted and reproduced with permission of the American Association of 

Cancer Research.  

 



Chapter 1                                                                                                                                                       General Introduction 

76 
 

described effects, this impact may also be dosage/location-dependent (Adhikary et al., 2010, 

Qu et al., 2011, Hellfritsch et al., 2015). 

 

1.3.6.6 ROS and resistance to chemotherapy 

Adaptation to chronic exogenous oxidative stress has been observed in various cancer cell 

lines in vitro (Trachootham et al., 2009, Gupta et al., 2012). This can be explained by two 

interacting factors: 

a) The toxicity (to the extent of cell death) of excessive ROS accumulation creates a 

selective pressure under which cells that manage to adapt (e.g. by strengthening their 

antioxidant pathways) have an advantage and dominate the population. 

b) An oxidized intracellular microenvironment creates genomic instability due to 

oxidative DNA damage and defective DNA repair, augmenting the genetic plasticity 

of malignant cells and accelerating their adaptation to new metabolic challenges. 

Molecular pathways through which adaptation to oxidative stress is achieved often involve 

Nf-κΒ, Nrf-2 (nuclear  factor E2- related factor 2) and HIF-1 (hypoxia inducible factor 1); all 

of them converge to the up-regulation of antioxidant genes (Trachootham et al., 2009). Redox 

adaptation can be a dynamic process following a ‘vicious cycle’ pattern, eventually resulting 

in late-stage cancer cells that manage to survive despite high endogenous ROS by virtue of 

their hypertrophic antioxidant defence mechanisms. Not only does successful redox 

adaptation allow malignant cells to survive despite high ROS levels, but it can often enhance 

their resilience to chemotherapy, especially when it comes to drugs that exert part of their 

cytotoxic effect through oxidative stress (Fig.1-19) (Trachootham et al., 2009). From a 
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different perspective, the dependence of such cells on their antioxidant capacity may represent 

a metabolic ‘Achilles’ heel’ that can be targeted therapeutically. This is discussed 

comprehensively in a separate section, after an overview of the antioxidant defence 

mechanisms.     
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1.3.7 ROS scavenging (antioxidant pathways) 

Given the versatile role of ROS in intracellular signalling and cell viability, a number of 

antioxidant pathways have evolved to create an efficient buffering system that can maintain 

these potentially toxic metabolic by-products at sustainable levels and respond promptly to 

exogenous stressors. The key players in these systems are described below: 

Superoxide dismutases (SODs). SODs catalyse the dismutation of superoxide (O2
-) to 

hydrogen peroxide (H2O2), in order to protect mitochondrial iron-sulfur cluster-containing 

enzymes from superoxide toxicity (Andreyev et al., 2005). Two isoforms of SOD can be 

distinguished in mammalian cells: Cu,Zn-SOD (cytoplasm, nucleus) and MnSOD 

(mitochondria).  SODs cannot act as ROS scavengers independently, as they require systems 

that can react with H2O2. Expression of MnSOD is often low in malignant cells, and cell lines 

overexpressing SOD have reduced proliferation rates and cellular viability in vitro and in 

vivo, presumably due to accumulation of H2O2 (Andreyev et al., 2005). In mice, homozygous 

MnSOD mutations result in a lethal phenotype, but MnSOD overexpression is also 

Figure 1-19 ROS as a double-edged sword in cancer pathophysiology. Increase in 

intracellular ROS levels in cancer cells, both constitutively and exogenously, can lead to 

diametrically different outcomes. Excessive/ uncontrolled rises can induce lethal oxidising 

toxicity, leading directly to cell death. With more modest increases cells may manage to adapt 

to the increased oxidative stress, upregulating ROS scavenging pathways and survival agents 

(e.g. Bcl-2). This response is often orchestrated by multi-target transcription factors such as 

NF-κΒ and/or Nrf2. When successful, this response may lead to a more aggressive phenotype, 

characterised by chemo- and radio-resistance and rapid proliferation.  
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detrimental, begetting a phenotype of developmental delay and subfertility (Li et al., 1995, 

Raineri et al., 2001).  

The glutathione pathway. Glutathione (L-c-glutamyl-L-cysteinyl-glycine or GSH) is the most 

abundant antioxidant molecule in most tissues (Lee et al., 2008). It is a tripeptide with a thiol 

(–SH) group in its cysteine residue when at a reduced state.  GSH synthesis is performed in 

the cytoplasm via the action of c-glutamylcysteine ligase (GCL) and GSH synthetase, which 

are ubiquitously expressed in all tissues. From there it can be transferred to cellular 

organelles, including the mitochondria, through numerous transporters and carriers (Andreyev 

et al., 2005). Glutathione peroxidases (GPXs) use reduced glutathione as an electron donor to 

reduce H2O2 to H2O. GPXs are selenoproteins which possess redox-active selenocysteine 

residues at their catalytic sites (Mari et al., 2009, Lee et al., 2008). Overall, reduced 

glutathione is a versatile antioxidant molecule which acts to maintain cellular redox balance 

in the following ways: 

a) It serves as a substrate to glutathione peroxidase type 1 (GPX1) and peroxiredoxin in 

reactions that detoxify H2O2 to H2O, both in the cytosol and the mitochondrial matrix 

b)  It protects mitochondrial membrane lipids from oxidative damage through reduction 

of hydroperoxide groups, in reactions that are catalysed by mitochondrial glutathione-

S-transferases and glutathione peroxidase type 4 (GPX4). This reaction is of vital 

importance, as indicated by the fact that GPX4 knockout in mice results in embryonal 

lethality, while GPX1 knockout is viable. 

c) It can react non-enzymatically with toxic electrophilic compounds (endogenous or 

exogenous). 
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d) It serves as a substrate to glutaredoxin, a disulfide oxidoreductase able to reduce 

disulfides in various proteins to prevent oxidative damage (cytosol and mitochondria) 

(Mari et al., 2009). 

Upon reducing ROS or oxidised protein/ lipids, either enzymatically or non-enzymatically, 

glutathione switches to its oxidised form (GSSG). The ratio of reduced to oxidised glutathione 

is a widely-used marker of cellular antioxidant capacity. Within the mitochondria, 

approximately 90% of total glutathione is at its reduced form (Mari et al., 2009, Andreyev et 

al., 2005). Importantly, GSSG cannot cross the mitochondrial membrane; therefore, 

mitochondria are dependent on NADPH to reduce GSSG back to GSH within the 

mitochondrial matrix, in a reaction catalysed by glutathione reductase (Andreyev et al., 2005) 

(Fig. 1-20). 
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Figure 1-20 The glutathione pathway. Oxidised and reduced molecules are presented in 

yellow and green, respectively. Reduced glutathione (GSH) is regenerated from oxidised 

glutathione (GSSG) by glutathione reductase (GSR), using NADPH as a donor of reducing 

equivalents. GSH can be used by glutathione peroxidase type I (GPX1) to reduce H2O2 to 

H2O, or interact with oxidised glutaredoxin (GRX-S2) to generate its reduced form (GRX-

(SH)2). GRX-(SH)2 can act non-enzymatically to break disulphide bonds in proteins to 

reverse oxidative damage.  
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The thioredoxin pathway. Thioredoxins are a group of small, redox-active proteins 

characterised by the presence of a conserved -Trp-Cys-Gly-Pro-Cys-Lys- catalytic site that 

can undergo oxidation/reduction of the two Cys residues reversibly, with concurrent transfer 

of reducing equivalents to or from a disulfide substrate. Oxidised thioredoxin (TXN-S2) can 

be reduced back to its reduced form (TXN-(SH)2) by thioredoxin reductase (TXNRD), in a 

reaction requiring electron donation by NADPH.  

TXN-(SH)2 + X-S2               TXN-S2 + X(SH)2 

TXN-S2 + NADPH            TXN-(SH)2 + NADP+ 

Two isoforms of thioredoxin reductase have been described: thioredoxin reductase 1 

(cytosolic) and thioredoxin reductase 2 (mitochondrial) (Powis and Montfort, 2001, 

Mustacich and Powis, 2000). Reduced thioredoxin in its turn offers its reducing equivalents to 

peroxiredoxins type 1-5 (PRDX 1-5). Peroxiredoxins can then act directly with H2O2 and 

detoxify it to H2O, in a reaction during which two reduced PRDX subunits are converted to an 

oxidised disulphide-linked dimer. PRDX type 3 and, to a lesser extent, PRDX type 5 are 

located in the mitochondria, the former being mitochondria-specific (Prasad et al., 2014b, 

Powis and Montfort, 2001).  Like glutathione peroxidase, peroxiredoxins are also involved in 

the detoxification of lipid peroxides, protecting the mitochondrial membrane. Kinetic analysis 

has suggested that peroxiredoxin type 3 reacts with 90% of the total H2O2 concentration 

within the mitochondrial matrix (Cox et al., 2010).  Of note, regeneration of reduced 

peroxiredoxin can be alternatively facilitated by glutaredoxin, in which case reduced 

glutathione acts as the reducing agent (Cox et al., 2010). Thioredoxin reductase type 2 

knockout (but not peroxiredoxin knockout) is lethal in mice (Andreyev et al., 2005) (Fig. 1-

21).  
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Taken together, the glutathione and thioredoxin/peroxiredoxin pathways comprise the bulk of 

the antioxidant armamentarium of eukaryotic mitochondria. Some important points to 

consider regarding their interaction are the following: a) both pathways use NADPH as an 

essential donor of reducing equivalents – therefore, the antioxidant capacity of mitochondria 

Figure 1-21 The mitochondrial thioredoxin pathway. TXN: thioredoxin; TXNRD2: 

thioredoxin reductase 2; PRDX3: peroxiredoxin 3; H2O2: hydrogen peroxide. 
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is vitally dependent on their ability to produce ample NADPH; b) each of the two pathways 

can be up-regulated to compensate for dysfunctions in the other pathway (redundancy) (Ueda 

et al., 2002) and c) exogenous oxidants as well as certain endogenous oxidative stress-

inducing agents may occasionally preferentially interact with one of the two pathways, 

indicating that this redundancy is not complete (Halvey et al., 2005, Hansen et al., 2006). 

Catalase. Catalase is a non-NADPH-dependent, enzymatic ROS scavenger. Structurally, it is 

a tetrameric molecule with four haeme groups, through which its antioxidant activity is 

facilitated (Nagem et al., 1999). Catalase is ubiquitously expressed in all major organs, but 

predominantly in the liver, kidneys and erythrocytes. The main catalatic reaction involves 

detoxification of H2O2 to H2O and O2. Intracellularly, catalase is mostly expressed in the 

peroxisomes and the cytoplasm (Glorieux et al., 2015). Catalase expression in low 

concentrations has also been detected in rat heart and liver mitochondria, as well as the 

cytoplasmic membrane of cancer cells (Bauer, 2012, Glorieux et al., 2015). Catalase 

expression in malignant cells is variable.  Suppressed catalase levels in comparison to healthy 

cells of the corresponding organ have been observed in a number of malignancies; conversely, 

high catalase expression has been demonstrated in certain aggressive malignancies with 

pronounced resistance to chemotherapy and radiotherapy (gliomas, mesotheliomas). Of note, 

up-regulation of catalase seems to mediate resistance to prolonged treatment with oxidising 

agents (cisplatin, ionising radiation, bleomycin) in vitro (Glorieux et al., 2015). 
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1.3.8 ROS modulation as a treatment strategy in oncology 

1.3.8.1 Chemotherapy  

Cytotoxic chemotherapy has been the mainstay of advanced cancer treatment since 1945. A 

broad range of chemotherapy agents have been developed since then, with various molecular 

mechanisms of action largely converging to a single output: inhibition of cell division. A 

number of commonly used cytotoxic chemotherapy agents have the additional capacity to 

induce oxidative stress, an effect to which part of their therapeutic potential has been ascribed 

(Table 1-6). It should be noted that these drugs’ impact on redox balance is rather a 

secondary effect, alongside the primary molecular toxicity mechanisms on whose grounds 

they were originally developed (e.g. disruption of DNA replication, disruption of mitotic 

spindle). Consequently, it is difficult to ascertain how much of the cytotoxic effect is directly 

attributable to oxidative stress. A classic example of a routinely used chemotherapy agent 

which also acts as oxidative stressor is doxorubicin. Doxorubicin is an anthracycline 

compound used in the treatment of various cancer types, including ACC, by virtue of its 

ability to disrupt DNA synthesis. It has also been shown that doxorubicin acts as a ‘redox 

cycler’: it reacts with flavoprotein reductases (e.g. NADPH:quinine oxidoredictase – NQO1) 

and generates superoxide, especially when intracellular NADPH is low. Doxorubicin also 

contributes to intracellular iron chelation, which may eventually generate highly reactive 

hydroxyl radicals through a Fenton type reaction (Kotamraju et al., 2002). 
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Drug Effect on redox 

balance 

Other cytotoxic 

effects 

Reference 

Arsenic trioxide ROS generation, 

oxidation of reduced 

glutathione 

Degradation of the 

promyelocytic 

leukaemia protein 

(Fruehauf and 

Meyskens, 

2007, Lu et al., 

2007) 

Bleomycin Metal-dependent 

ROS generation 

Disruption of cellular 

division 

(Chen and 

Stubbe, 2005, 

Chow et al., 

2008) 

Cisplatin ROS generation, 

ROS-triggered 

apoptosis 

DNA damage (Berndtsson et 

al., 2007) 

Anthracyclines 

(doxorubicin, 

epirubicin) 

ROS generation, 

ROS-triggered 

apoptosis 

Disruption of cellular 

division 

(Wondrak, 

2009) 

Topoisomerase II 

inhibitors 

(etoposide) 

ROS generation, 

ROS-triggered 

apoptosis 

Inhibition of DNA 

replication 

(Oh et al., 2007) 

Taxanes (paclitaxel, 

docetaxel) 

ROS generation, 

ROS-triggered 

apoptosis 

Inhibition of mitotic 

spindle formation 

(Alexandre et 

al., 2006, 

Alexandre et al., 

2007) 

 

 Chemical induction of oxidative stress with a view to inducing cell death has been used as a 

strategy to develop novel anti-cancer agents in experimental oncology in the last two decades. 

This can be effectuated either through direct ROS generation or abrogation of antioxidant 

Table 1-6 Approved chemotherapy agents which can induce oxidative stress. Source:  

(Montero and Jassem, 2011).  Adapted and reproduced with permission of Springer. 
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pathways. As described above, malignant cells are characterised by higher baseline ROS 

levels than healthy cells, which brings them closer to the toxic threshold beyond which cell 

death is triggered. Therefore this treatment strategy is expected to exert a selective toxic effect 

on cancer cells (Gupta et al., 2012, Fruehauf and Meyskens, 2007, Trachootham et al., 2006). 

Novel agents currently under study which act as exogenous ROS inducers include redox 

cyclers (MGd), iron chelators (Dp44mT) and electron transfer chain modulators (arsenic 

trioxide) (Trachootham et al., 2009). Elesclomol is another ROS generator that received 

considerable attention after prolonging recurrence-free survival in malignant melanoma 

patients (phase II trial). The drug (used in combination with paclitaxel) had to be withdrawn 

due to concerns regarding unacceptable toxicity in phase III trials (Kirshner et al., 2008). 

The limitation of exogenous ROS induction in oncology is that cancer cells, especially in 

aggressive/ advanced disease types, can be notoriously adaptable to environmental challenges, 

including oxidative stress. Up-regulation of antioxidant defence mechanisms can result in the 

development of resistant phenotypes (Fruehauf and Meyskens, 2007, Trachootham et al., 

2009). An alternative ROS-centred strategy involves antioxidant pathway inhibition, aiming 

to provoke a gradual accumulation of endogenous ROS. This option has been explored both 

as monotherapy and as part of combination chemotherapy, with a view to enhancing cellular 

sensitivity to oxidative stress (Fruehauf and Meyskens, 2007, Watson, 2013). ROS 

scavenging pathways targeted so far include: 

The glutathione pathway, largely considered the most important pillar of cellular antioxidant 

defence. Up-regulation of glutathione synthesis (e.g. glutathione sulfotransferase) often 

accompanies malignancy and is associated with tumour aggressiveness (Hsu et al., 2002). A 

number of agents have been developed to target glutathione synthesis and action (Renschler, 
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2004, Trachootham et al., 2006, Trachootham et al., 2009).  BSO (buthionine sulfoximine) is 

an inhibitor of GSH synthesis which has demonstrated in vitro ability to suppress growth in 

pancreatic cancer cells, reverse BCL-2-mediated cisplatin resistance in breast cancer cells and 

enhance oxidative stress-induced cytotoxicity in leukemic cells (Schnelldorfer et al., 2000, 

Rudin et al., 2003). In vivo, BSO enhanced the cytotoxic effects of melphalan and arsenic 

trioxide (both intracellular ROS inducers) in xenograft models of multiple myeloma and solid 

tumours (Tagde et al., 2014, Maeda et al., 2004). Beta-phenylethyl-isothiocyanate. (PEITC) is 

another agent which depletes reduced glutathione and inhibits glutathione peroxidase. Anti-

tumour activity has been demonstrated in vitro in ovarian cancer, leukaemia and 

osteosarcoma models (Trachootham et al., 2009, Gupta et al., 2012).  NOV-002 is a 

compound that decreases the intracellular ratio of reduced to oxidised glutathione. It has 

demonstrated an in vitro capacity to suppress cellular proliferation and invasion, through 

interference with redox signalling pathways. Clinically, it has shown promising cytotoxic 

effects in combination treatment regimens in phase II clinical trials on non-small cell lung 

cancer, breast cancer and ovarian cancer. In a phase III trial however, it failed to demonstrate 

any additional cytotoxic activity in combination with paclitaxel and carboplatin in non-small 

cell cancer patients (Uys et al., 2010, Townsend and Tew, 2009, Montero et al., 2012, 

Gumireddy et al., 2013, Montero and Jassem, 2011).  

Drugs inhibiting glutathione-S-transferase have also been developed: canfosfamide and 

ezatiostat hydrochloride. Confosfamide was used successfully in combination with 

carboplatin/ paclitaxel for advanced non-small cell carcinoma, but failed to demonstrate 

superiority to routine chemotherapy as third line chemotherapy in advanced ovarian 

carcinoma (Sequist et al., 2009, Vergote et al., 2009). Ezatiostat has been applied in the 

treatment of myelodysplastic symptoms and was beneficial improving haematological 
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parameters and reducing transfusion needs in a substantial proportion of patients (Raza et al., 

2009). Finally, Imexon is another developing agent that depletes reduced glutathione. 

Correlation of efficiency against beta-cell lymphoma with tumour expression levels of 

glutathione peroxidase and superoxide dismutase 2 has been demonstrated (Barr et al., 2014).  

The thioredoxin pathway. Considerable effort has been recently expended on targeting this 

antioxidant pathway, given its habitual up-regulation in cancer cells which is associated with 

a more aggressive clinical course (Trachootham et al., 2009, Ceccarelli et al., 2008, Kaimul et 

al., 2007). Agents targeting this pathway include PX-12, Dimensa, motexafin gadolinium and 

arsenic trioxide (Montero and Jassem, 2011, Gupta et al., 2012, Trachootham et al., 2009). 

PX-12 irreversibly inhibits thioredoxin type I. It has been used in clinical trials (phase II) 

against advanced pancreatic cancer; its effect on progression-free survival, however, was 

evidently inferior to standard second line chemotherapy agents (Kona et al., 2011, Baker et 

al., 2013). Auranofin, a gold complex agent traditionally used in rheumatoid arthritis, is also 

able to act as a thioredoxin reductase inhibitor. It has displayed cytotoxicity against a number 

of cell lines in vitro (e.g. melanoma, leukemia, lung cancer) as well as lung cancer in vivo 

(Cox et al., 2008, Gandin et al., 2010, Park and Kim, 2005, Talbot et al., 2008). Dimensa is a 

novel disulphide drug which inhibits thioredoxin reductase and glutathione reductase. It has 

demonstrated clinical efficacy at prolonging progression-free and overall survival in patients 

with metastatic non-small cell lung carcinoma in phase II and III clinical trials (Montero and 

Jassem, 2011). Motexafin gadolinium inhibits thioredoxin reductase and transfers electrons 

from antioxidant molecules (NADPH, glutathione, ascorbate) to oxygen. A phase III clinical 

trial of motexafin in combination with radiotherapy in non-small cell lung cancer patients 

with brain metastases showed promising results (Mehta et al., 2009). Finally, arsenic trioxide 

(As2O3) is a cytotoxic agent which can induce major redox perturbations through superoxide 
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generation, thioredoxin reductase inhibition and interference with mitochondrial respiration 

(Jing et al., 1999, Maeda et al., 2004, Niu et al., 1999, Shen et al., 1997, Pelicano et al., 2003, 

Lu et al., 2007). As2O3 efficacy against promyelocytic leukaemia has been demonstrated in a 

number of in vitro studies, as well as phase III clinical trials (Lo-Coco et al., 2013). In vitro, it 

has also been used successful against other types of CLL and ALL, as well as in neuronal, 

liver and lung cancer cell lines (Gupta et al., 2012). 

Superoxide dismutase (SOD). SOD catalyses the conversion of superoxide to hydrogen 

peroxide, which can then be detoxified to water by the various antioxidant pathways 

(glutathione, peroxiredoxin, catalase). SOD inhibitors used in clinical trials include ATN-224 

and 2-methoxyestradiol.  ATN-224 has displayed modest efficacy against recurrent prostate 

cancer in phase II clinical trials (Lin et al., 2013). 2-methoxyestradiol (2-ME) showed some 

anti-tumour effect against metastatic carcinoid tumours in combination with procarbazine in 

phase II clinical trials; conversely, it failed to show clinical efficacy against metastatic renal 

cell carcinoma and recurrent prostate cancer (James et al., 2007, Sweeney et al., 2005). 

Another intriguing strategy which has been tentatively explored in recent years involves 

combination of two redox ‘hits’ to limit the possibility of successful metabolic adaptation, 

especially in highly resistant tumour types. A classic example of this approach is the use of 

ascorbic acid -resulting in glutathione depletion- to enhance arsenic trioxide cytotoxicity in 

refractory multiple myeloma (Bahlis et al., 2002). In vitro, introduction of arsenic trioxide 

alongside 2-ME reversed leukemia cell resistance to 2-ME (Zhou et al., 2003). Similarly, the 

combination of BSO with auranofin (thioredoxin reductase inhibitor) resulted in impressive 

synergy against glioblastoma cells (Sobhakumari et al., 2012). An obvious concern with such 
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approaches is the potential side effects of combined redox manipulation; future clinical data 

will be required before this question can be convincingly answered.  

 

1.3.8.2 Radiotherapy  

Radiotherapy is used in oncology to suppress proliferation and induce apoptotic death of 

malignant cells. A number of in vitro and in vivo studies in various cancer types (breast, lung, 

prostate cancer) have indicated that part of this cytotoxic effect is due to oxidative stress 

induction by radiotherapy (Di Pietro et al., 2006, Gordan et al., 2007, Shil et al., 2005, Gupta 

et al., 2012). Findings from clinical studies have also been in support of this concept (Bhosle 

et al., 2002, Gupta et al., 2010, Jones et al., 2011). On these grounds, employing drugs that 

generate ROS or interfere with antioxidant pathways may be an attractive ancillary strategy to 

enhance radiotherapy sensitivity. This concept has been successfully applied in a range of 

tumours in recent studies (Gupta et al., 2012). 

 
 

1.4 Summary, hypotheses and project objectives 

1.4.1 In vitro work to evaluate NNT as a novel therapeutic target in ACC 

ACC is a rare but aggressive malignancy, with the majority of patients presenting with, or 

eventually developing, metastatic disease (Libe, 2015, Else et al., 2014, Fassnacht and 

Allolio, 2011). No current medical treatments are particularly efficient at controlling disease 

progression. A recent randomised-controlled trial revealed a dismal median survival of < 15 

months for patients with disseminated disease receiving combination chemotherapy, 
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underscoring the urgent need to develop more effective management strategies (Fassnacht et 

al., 2012). Unfortunately, the rapid progress in our understanding of the genetic make-up and 

molecular biology of ACC in the last two decades has so far failed to enrich the meagre 

pharmacological armamentarium of attending clinicians (Libe, 2015). 

Recent studies revealed that inactivating mutations of genes encoding mitochondrial 

antioxidant enzymes (NNT, TXNRD2) cause a rare, hereditary form of primary adrenal 

insufficiency (Familial Glucocorticoid Deficiency), interestingly manifesting in isolation 

without involvement of other target organs (Meimaridou et al., 2012, Prasad et al., 2014a). 

These findings suggest a selective susceptibility of the adrenal glands to oxidative stress. It is 

still unclear whether the adrenal insufficiency of these patients results from oxidative stress-

induced adrenocortical cell death, functional inhibition of steroidogenesis or a combination 

thereof. Oxidative stress also represents a known area of metabolic vulnerability in cancer cell 

biology. Malignant cells have constitutively higher levels of oxidative stress than healthy 

cells; antioxidant pathway targeting has been employed successfully as a treatment strategy in 

a number of in vitro and in vivo studies in various cancer types, but never in ACC (Gupta et 

al., 2012, Trachootham et al., 2009). The objective of such approaches is to increase 

intracellular oxidative stress, leading to oxidative cell toxicity and, eventually, triggering cell 

death. 

Within this context, the first aim of this project is to explore the value of antioxidant targeting 

as a therapeutic approach in ACC, focusing on NNT as a putative treatment target. 

Therapeutic merit may be afforded either by inhibition of cell proliferation or suppression of 

steroidogenesis.  My specific hypotheses are outlined below: 
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Hypothesis 1: NNT silencing in ACC cells will induce deleterious oxidative stress, resulting 

in cell death and/or impaired cellular proliferation (Fig. 1-21). 

I will explore this hypothesis in vitro using NCI-H295R ACC cells, the only existing human 

immortalised ACC cell line, with the following approaches juxtaposing different temporal 

frames: 

a) I will acutely inhibit NNT expression [transient NNT knockdown by small interfering 

RNA (siRNA) transfection] and evaluate the immediate effects of this manipulation 

on cellular redox balance, mitochondrial respiration, cell proliferation and apoptotic 

rates.  

 

b) I will chronically inhibit NNT expression [stable NNT knockdown by short hairpin 

RNA (shRNA) transfection] and evaluate the longer-term effects of this manipulation 

on the same outputs. 
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Figure 1-22 A) NNT as a mitochondrial NADPH generator feeding the antioxidant pathways 

B) Hypothesis 1: NNT inhibition is expected to compromise the mitochondrial pool of 

NADPH, disrupting the function of the mitochondrial antioxidant pathways. The consequent 

accumulation of H2O2 will increase oxidative stress and eventually trigger cellular apoptosis. 

ETC: electron transfer chain; ATP: adenosine triphosphate; GSR: glutathione reductase; 

GSSG: oxidised glutathione; GSH: reduced glutathione; GPX1: Glutathione peroxidase 1; 

TXNRD2: thioredoxin reductase 2; TXN: oxidised thioredoxin; TXN-SH: reduced 

thioredoxin; GPX3: peroxiredoxin 3; O2
.-: superoxide; H2O2: hydrogen peroxide                 
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Hypothesis 2: NNT silencing in ACC cells will inhibit steroidogenesis  

I propose to explore this hypothesis in vitro using NCI-H295R ACC cells, which have long 

been established as the main cell model of human adrenal steroidogenesis, using the following 

approaches: 

a) I will acutely inhibit NNT expression (transient NNT KD by siRNA transfection) and 

evaluate the immediate impact of this manipulation on steroidogenesis through a 

combination of gene expression analysis (real-time PCR) and comprehensive steroid 

profiling in cell media by liquid chromatography/ tandem mass spectrometry (LC-

MS/MS).  

b) I will chronically inhibit NNT expression (stable NNT KD by shRNA transfection – 

duration: weeks/months) and evaluate the longer-term effects of this manipulation on 

steroidogenesis by gene expression analysis and steroid profiling (Fig. 1-22). 

                  
 

 Figure 1-23 Overview of in vitro project objectives 
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1.4.2 Clinical study to provide proof-of-concept for the use of urine steroid 

metabolomics in detecting ACC recurrence 

Adrenocortical carcinoma is a rare (incidence 1-2 cases/ million/ year) but aggressive 

malignancy. Disease recurrence rates are high, exceeding 50% even in patients with 

microscopically complete (R0) resection, necessitating close follow-up in all cases for several 

years (Libe, 2015, Else et al., 2014). Cross-sectional imaging remains the mainstay of the 

surveillance strategy, but has important disadvantages including cost, prolonged radiation 

exposure and frequent diagnostic ambiguity in early stages of recurrent/ metastatic disease 

(Cawood et al., 2009). Early detection of disease recurrence is important, as it may allow 

either radical re-do surgery in cases of limited metastatic disease volume, or early institution 

of mitotane and/or cytotoxic chemotherapy, potentially prolonging survival (Libe, 2015, Else 

et al., 2014, Erdogan et al., 2013, Datrice et al., 2012, Mihai, 2015, Schulick and Brennan, 

1999). 

Most ACCs are biochemically active, but tend to present an immature steroidogenic pattern 

characterized by abundance of steroid precursor metabolites (Arlt et al., 2011). This pattern 

appears to be a distinguishing feature of ACC that can be diagnostically relevant. Urine 

steroid profiling by gas chromatography-mass spectrometry (GC-MS) in conjunction with 

sophisticated machine learning analysis (steroid metabolomics) has recently been introduced 

as a sensitive and specific biomarker tool for the original diagnosis of primary ACCs in a 

large retrospective study (Arlt et al., 2011). Building on these promising results, I intend to 

explore the value of this approach as a surveillance tool to detect disease recurrence in 

patients who have undergone complete ACC resection. 
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Hypothesis 3: Urine steroid metabolomics can be employed diagnostically to detect disease 

recurrence in patients who have undergone complete ACC resection. 

To test this hypothesis, we collected longitudinal 24-h urine samples from ACC patients 

having undergone complete (R0) resection of their tumour and used gas chromatography/ 

mass spectrometry to derive comprehensive steroid profiles. Collaboration with several major 

adrenal centres in Europe facilitated the accretion of a sizeable cohort of operated ACC 

patients. I will evaluate the diagnostic performance of machine learning analysis of these 

profiles at detecting disease recurrence by the time of its first radiological manifestation.
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2 General Methods 
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2.1  Description of adrenocortical carcinoma cell line (NCI-H295R) and cell 

line validation 

NCI-H295R adrenocortical carcinoma cells were provided as a gift by Professor Enzo Lali 

(University of Nice, France). This cell line was initially established in late 1980s from a 

female patient with ACC, which later metastasised (Gazdar et al, 1990). The parental cell line 

(NCI-H295) represented a mixed cell population from the original tumour; to circumvent the 

problem presented by the slow growth of these cells, a sub-population of cells able to grow in 

a monolayer was selected over a period of 3 months during which cells were repeatedly 

flushed with growth medium. The new cell line (NCI-H295R)  expresses all major human 

steroidogenic enzymes, including CYP11A1, CYP11B1, CYP17A1, CYP21A2, CYP11B2 

and HSD3B2, and secretes all 3 classes of adrenocortical steroid hormones (glucocorticoids, 

mineralocorticoids and androgens) (Wang and Rainey, 2012, Xing et al., 2011). NCI-H295R 

cells respond well to angiotensin II and K+ as inducers of mineralocorticoid synthesis but are 

minimally responsive to ACTH. This problem can be overcome by use of either forskolin 

(adenyl cyclase activator) or CAMP analogues. NCI-H295R cells were cultured under 

standard conditions using Dulbecco’s Modified Eagle’s Medium (DMEM)/Ham’s F-12 

medium (Gibco, Thermo Fisher) supplemented with 2.5% Nu serum (Sigma), 1% penicillin-

streptomycin (Gibco, Thermo Fisher) and 1% ITS+ universal cell culture premix (BD 

Biosciences). ITS+ is a proliferation-promoting supplement containing human insulin, human 

transferrin, selenous acid, BSA and linoleic acid. Media was refreshed twice weekly. Cells 

were grown in 25cm2 or 75 cm2 cell culture flasks (Corning) and split to new flasks when 

they reached 70-80% confluence. Splitting involved washing with Phosphate-Buffered Saline 

(Sigma) followed by addition of 2 ml trypsin (Thermo Fisher) and incubation at 37oC for 2 

min. Trypsin was inactivated by addition of cell media; cells were centrifuged at 12,000 rpm 
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for 5 min. The resulting pellet was re-suspended in cell media and transferred to new flasks 

using a 1:3–1:5 ratio. During experimental work described in the succeeding sections, 6-well 

plates (Corning) and 96-well (Falcon) cell culture plates were also used.  All experiments 

were performed using passage numbers 10-25.  

 

 

 

Cell line identity was confirmed through Short Tandem Repeat (STR) genetic analysis 

performed by the DNA Diagnostics Company (London, UK) followed by comparison to 

genetic profiles provided by the American Tissue Culture Collection (ATCC) ( 

http://www.lgcstandards-atcc.org). STRs are microsatellite DNA areas consisting of series of 

2-13 nucleotides repeated several times in a row. Analysis identifies the number of repeats for 

each STR; combination of multiple STRs generates a profile which is unique for each cell 

line.   

 

Figure 2-1 Microscopic caption (10x) of NCI-H295R cells growing in a 6-well plate. 
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2.2 Gene expression   

2.2.1 RNA extraction 

RNA extraction was performed using the RNeasy mini kit (Qiagen) following the 

manufacturer’s instructions. The kit uses a silica-based membrane and a high-salt buffer 

system which allows purification of RNA molecules comprising > 200 nucleotides from cell 

lysates. Cells were grown in 6-well plates at loading concentrations of 300,000 – 500,000 

cells/ well, and cultured for 1-9 days prior to RNA extraction.  At the selected time-points, 

cells were washed with Phosphate Buffered Saline and detached by tapping after incubation 

with 500 µl trypsin for 2 minutes at 37oC. Trypsin was inactivated by addition of quadruple 

volumes of serum-replete culture media and cells were pelleted with 5-10 min centrifugation 

Figure 2-2. Genetic STR analysis of H295R cells used in this project, including 22 highly 

polymorphic areas (loci). Number of sequence repeats is indicated for each locus. 
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at room temperature (12,000 rpm). Supernatant was removed and pelleted cells were 

disrupted by mixing with 350 µl RLT buffer, supplemented with 1% β-mercaptoethanol 

(Sigma-Aldrich). Cells were homogenised using a sterile, 21-gauge needle (10 aspirations per 

sample) and then diluted with 350 µl of 70% ethanol in de-ionised H2O to promote selective 

binding of RNA to the RNeasy membrane. Samples were transferred to spin columns and 

centrifuged at 15,000 rpm for 15 seconds. Subsequently, 700 µl RW1 buffer was added to 

each column and samples were centrifuged at 15,000 rpm for 15 seconds. 500 µl of RPE 

buffer was next loaded to each column, followed by centrifugation at 15,000 rpm for 15 

seconds and, after reloading 500 µl RPE, for 2 min. The follow-through was decanted after 

each centrifugation. To minimise ethanol carry-over, spin columns were then transferred to 

new microtubes and centrifuged for an additional minute. Finally, 30 µl of RNase-free water 

was added to each column and centrifuged at 15,000 rpm for 1 minute. The follow-through 

solutions, containing all eluted RNA, were collected in 1.5 ml Eppendorf tubes and stored at -

20oC, or -80oC for prolonged storage. RNA concentration was determined by 

spectrophotometry (Labtech Nanodrop Spectrophotometer ND-1000), by addition of 1.5 µl of 

each RNA sample. A 260/280 nm absorbance ratio of at least 2 was considered suggestive of 

satisfactory RNA purity. 

 

2.2.2 Reverse transcription 

Reverse transcription to generate complementary DNA (CDNA) was carried out using the 

TetrocDNA Synthesis Kit (Bioline), following the manufacturer’s instructions. 200ng - 2µg 

CDNA (volume up to 12 µl) were added to 8 µl of a reaction mix, consisting of 1µl reverse 

transcriptase, 1µl oligo(dT)18 primer, 1 µl dNTP mix, 1 µl Ribosafe RNAse inhibitor and 4 µl 
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Reverse Transcription Buffer. Total volume was complemented to 20 µl by addition of 

nuclease-free water if required. Reactions were incubated at 45oC for 30 min, followed by 

heat-blocking at 85oC for 5 min to terminate. All handling of RNA and CDNA samples was 

performed on ice, to avoid nucleic acid degradation. 

 

2.2.3 cDNA concentration measurement 

cDNA concentration was measured using a fluorescent DNA dye (Picogreen assay®, 

Invitrogen). The assay is based on a fluorescent DNA dye (Quant-iT™ PicoGreen® dsDNA 

reagent) which allows accurate estimation of cDNA concentration by comparison of sample 

fluorescence to the fluorescence exhibited by a dilution series of DNA samples with known 

concentrations (standard curve). Samples to be measured were loaded to a flat-bottomed 96-

well plate with transparent wells (Corning) at a volume of 1 µl/ well, and diluted in 99 µl of 

buffering solution (1xTE). A standard curve was prepared by serial dilutions of a stock cDNA 

solution (2 mcg/ml) in 1x TE buffer, to end-concentrations of 0, 10, 100 and 1,000 ng/ml. The 

fluorescent DNA dye was diluted 200x in TE and added to all wells at a volume of 100 µl/ 

well. After 5 min incubation at room temperature, fluorescence was measured (excitation 480 

nm, emission 520 nm) (Wallac Victor 1420 multilabel counter) and cDNA concentrations 

were determined based on fluorescence readings, using an equation derived from the standard 

curve. Results were multiplied by 200 to derive the cDNA concentration in the samples of 

interest. 

 



Chapter 2                                                                                                                                                             General Methods 

104 
 

2.2.4 Real-time PCR 

Gene expression (NNT and steroidogenic enzymes) was quantified by Real-Time polymerase 

chain reaction (qPCR), using TaqmanTM Gene Expression Assays (Thermo Fisher). With 

Real-Time PCR, the DNA template of interest is subjected to consecutive cycles of 

replication by use of sequence-specific primers, with synchronous measurement of the end-

product at the end of each cycle by fluorescence. The higher the concentration of the specific 

sequence (template) in the original sample, the earlier the cycle in which fluorescence first 

becomes detectable. With this principle, serial measurements of template fluorescence during 

the exponential replication phase allow reliable estimation of DNA concentration in the 

original sample. 

Each replication cycle consists of 3 steps:  

- Denaturation. During this step, high temperature is applied (typically 95oC) to ‘melt’ 

double-stranded DNA to single-stranded DNA.  

- Annealing. This step allows the primers to hybridize with their complementary 

sequences within the single strands of DNA. The temperature in this stage must be 

lower than the melting temperature of the primers.  

- Extension. At this stage DNA polymerase extends the primers, leading to replication 

of the sequence/ gene of interest. Typical temperatures at this stage range from 60-

72oC. In this project, annealing and extension stages were combined to a 1 min 

incubation at 60oC per cycle. 

With TaqMan technology, fluorescence emission is accomplished by use of specially 

designed probes. Each probe is complementary to a sequence within the gene of interest, 

where it promptly binds during annealing, downstream of the primer. The 5’ end of the probe 
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has an attached ‘reporter’ fluorescent dye, while the 3’ end has a ‘quencher’ dye of different 

wavelength, which quenches the reporter fluorescence. During replication cycles, DNA 

polymerase cleaves the probes that are attached to the DNA template releasing the reporter, 

whose fluorescence can now be emitted. The earliest cycle in which emitted fluorescence 

exceeds the threshold of ‘significant’ detection is termed Ct, and is inversely related to the 

original template concentration in the sample of interest. Gene expression is normalised to a 

housekeeping gene, i.e. a gene which is constitutively expressed in high levels in all human 

tissues.   

All reactions were carried out at a total volume of 12 µl, comprising: 

• 1-4 µl of cDNA (10-100 ng) 

• 8-11 µl of a reagent mix consisting of 2xTaqman Universal PCR Master mix (Thermo-

Fisher), probe-primer mix for gene of interest and housekeeping gene RPLPO 

(Thermo-Fisher) and nuclease-free water, using the following ratio: 6.25 µl Taqman 

Master Mix: 0.625 µl probes: 4 µl nuclease-free water. 

10-50 ng of cDNA were used per reaction, with the proviso that loading cDNA mass in all 

wells should be equal within each plate.   Reactions were run in a 7500 ABI qPCR analyser 

[50oC incubation for 2 minutes, 95oC incubation for 10 minutes, followed by 40 cycles of 

95oC incubation for 15 seconds (denaturation) then 60oC for 1 minute (annealing-extension)]. 

All reactions were normalised against the housekeeping gene RPLPO (large ribosomal 

protein). Data were expressed as the cycle number at which logarithmic PCR plots cross a 

calculated threshold line (Ct values) and used to determine ΔCt values [ΔCt= (Ct of the target 

gene) – (Ct of the housekeeping gene)].  To compare gene expression between a sample of 

interest and a control sample, ΔΔCt values were used, defined as ΔΔCt= ΔCt (sample) – ΔCt 



Chapter 2                                                                                                                                                             General Methods 

106 
 

(control). Results were also expressed as fold change in gene expression to control, derived 

using the equation fold change = 2-ΔCt. 

 

2.3 Protein expression 

2.3.1 Protein lysate generation 

Protein lysates were generated applying RIPA buffer (Sigma) with protease inhibitor cocktail 

(Sigma) to adherent cells grown in 6-well plates (30 µl of protease inhibitor cocktail per 1ml 

RIPA Buffer; 150 µl RIPA per well). Wells were washed with PBS before RIPA addition. 

Plates with RIPA were incubated on ice for 5 min. Cells were then detached by scraping and 

stores at -80oC for at least 1 h. Samples were subsequently thawed on ice and centrifuged for 

10 minutes at 8,000 g (4oC), followed by collection of the supernatant.  Lysates were stored at 

-80oC. 

 

2.3.2 Protein concentration measurement 

Total protein concentration was determined colorimetrically using the BCA Protein Assay Kit 

(Thermo Fisher) as per the manufacturer’s instructions. The reaction on which the assay is 

based involves protein-mediated reduction of Cu2+ to Cu+ in an alkaline environment; 

bicinchoninic acid (BCA) then reacts with Cu+ to generate an end-product that can be detected 

colorimetrically, generating strong absorbance at 562 nm.  4 µl of each protein sample were 

loaded to flat-bottomed, transparent-walled 96-well plates. A standard curve was prepared 

using serial dilutions of a stock protein solution to generate concentrations of 0 – 2,000 µg/ml. 
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BCA reagent B was added to reagent A using a 1:50 ratio, and the mix was added to wells at a 

volume of 76 µl/ well. After 30 min incubation at 37oC for 30 min, absorbance was measured 

at 560 nm using a Wallac Victor 1420 multilabel counter. 

 

2.3.3 Western Blotting 

 Protein expression was assessed using Western Blotting. Western Blotting involves 

separation of denatured proteins as they travel through a gel across an electric current, 

followed by detection of the protein of interest by use of protein-specific antibodies. 

 Sample volumes corresponding to 7.5 - 15 µg of protein were mixed with equal volumes of 

1x Laemmli buffer (Bio-rad), containing SDS (sodium dodecyl sulfate) detergent [475 ml 1x 

Laemmli buffer (Bio-rad) mixed with 25 µl 2-mercaptoethanol (Sigma)]. SDS induces protein 

denaturation and gives polypeptides a negative charge to facilitate separation; 2-

mercaptoethanol is added to reduce intra- and inter- molecular bonds. Samples were loaded to 

10% SDS-PAGE (polyacrylamide) Gels (Thermo Fisher) and subjected to electrophoresis at 

80 V for 15 min and 140 V for 90 min; this step achieves protein separation along the gel 

according to molecular weight. A mix of ten multicolour recombinant protein standards 

(Precision Plus ProteinTM KaleidoscopeTM Standards, Bio-Rad) was used as a guide (‘ladder’) 

to indicate molecular weight. Proteins were then transferred to a nitrocellulose membrane 

using the iBLOTTM Dry Transfer System (Thermo Fisher), a method which allows buffer-free 

transfer within 7 min.  

Membranes were washed with Tris-Buffered saline with Tween 20 (TBS-T; recipe: 50 ml 

Tris-HCL, 20g NaCl, 0.625 ml Tween80, 2447 ml deionized H2O), followed by overnight 
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incubation in TBS-T with 5% milk at 4oC overnight to reduce non-specific antibody binding. 

The next day, after 3 x 5 min washes with TBS-T, membranes were probed for 60 minutes 

with anti-NNT antibody produced in rabbit (HPA004829, Sigma), and diluted in tris-buffered 

TBS-T at a 1:500 dilution. After 3x15 min washes with TBS-T, membranes were probed with 

secondary anti-rabbit antibody, horseradish peroxidase (HPR) and alkaline phosphatase-

conjugated (sc-2030, Santa-Cruz), for 60 min (1:2000 dilution in TBS-T). After a further 

series of TBS-T washes, membranes were imbued with ECL. ECL is a chemiluminescent 

agent that reacts with HPR, allowing detection of the primary-secondary antibody complexes 

attached to the membrane. This was accomplished simply by exposing an X-Ray film to the 

membrane in a cassette protected from light, followed by film developing. Developing times 

of 20-30 mins were usually required to produce strong bands. 

B-actin was used as control protein, to normalise NNT expression to the actual protein load. 

Primary and secondary antibodies were stripped off by 2x10 min washes in a stripping buffer 

(15g Glycine, 1g SDS, 2.5 ml Tween80, 1L deionised H2O), followed by incubation with 

milk and antibodies as detailed above. Primary antibody for β-actin (produced in mice) was 

purchased from Sigma and used at a 1:10,000 dilution in TBS-T. Secondary antibody (anti-

mouse) was purchased from Santa-Cruz and was used at 1: 20,000 dilution. 

Initial Western Blotting attempts were unsuccessful, with no NNT bands despite strong β-

actin binding. These attempts involved a boiling step, whereby protein samples in Laemmli 

buffer were boiled at 95oC for 5 min before loading to the gel, to complete the process of 

protein denaturation and render the sample easier to load to the gel (less viscous). The 

problem resolved, and NNT bands started to appear, once this step was omitted from the 

protocol. 
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Ultra-Glo  rLuciferase + ATP 

2.4 Redox state 

The ratio of reduced to oxidized glutathione was used as a marker of intracellular oxidative 

stress in this work; the ratio is inversely proportional to oxidative stress (Sun et al., 1997, 

Rebrin and Sohal, 2008). Reduced glutathione (GSH), oxidized glutathione (GSSG) and total 

glutathione were measured by luminescence, using the GSH/GSSG-GloTM Assay (Promega) 

according to the manufacturer’s instructions. The assay takes place in white, opaque-walled 

96-well plates (Perkin-Elmer) and generates a luminescent signal which is proportional to the 

amount of reduced glutathione present in the well. This is achieved by use of a GSH-

dependent luciferin probe according to the following series of reactions: 

GSH + Luciferin-NT                                                 GSH-NT + Luciferin 

Luciferin                                               Light 

These reactions are used to measure total glutathione or oxidised glutathione separately, using 

two distinct biochemical manipulations after cell lysis (Fig. 2-3). To measure total 

glutathione, oxidised glutathione is first reduced to GSH, so that the end amount of GSH 

within the well represents the original sum of intracellular GSH and GSSG. To measure 

GSSG, GSH is blocked with N-ethylmaleidine (NEM), followed by GSSG reduction to GSH. 

This way, luminescence eventually reflects intracellular GSSG only. 

 

 

Glutathione sulfotransferase 
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Before the assay, NCI-H295R cells were grown in white, opaque-walled 96-well plates.  

Triplicate samples were assayed for total glutathione or GSSG after medium removal. 2 wells 

were pre-treated with Menadione (Sigma) 40 µM for 2 hours to induce oxidative stress as 

positive controls. First, cells were lysed by addition of 50 µl of either Total Glutathione 

Reagent (1 µl Luciferin-NT + 10 µl Passive Lysis Buffer + 39 µl deionised H2O) or Oxidised 

Glutathione Reagent (1 µl Luciferin-NT + 10 µl Passive Lysis Buffer + 0.5 µl NEM + 38.5 µl 

deionized H2O). After 5 minutes, an equal volume of Luciferin Generation Reagent was 

added, consisting of 1.25 µl 100 mm DTT, 3 µl Glutathione-S-Transferase and 45.75 µl 

Glutathione Reaction Buffer. After 30 min incubation, wells were treated with Luciferin 

Detection Reagent (100 µl/well) for 15 mins and luminescence was measured in a Wallac 

Figure 2-3 The GSH/GSSG-GloTM assay (Promega). GSH: reduced glutathione; GSSG: 

oxidized glutathione; GLR: glutathione lysis reagent. Adapted and reproduced with 

permission of Promega. 
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Victor 1420 multilabel counter. Blank measurements (no cells) were subtracted from sample 

values to produce net results. GSH /GSSG ratios were calculated directly from Net Relative 

Luminescence Units (RLU) measurements using the equation GSH/GSSG ratio = [Net total 

glutathione RLU-Net GSSG RLU]/ [Net GSSG RLU/2].  

 

2.5 Metabolic Flux Analysis (Seahorse XF) 

Metabolic Flux analysis was employed to assess the effect of NNT knockdown on 

mitochondrial bioenergetics, using the Seahorse XF 24 Analyser. Seahorse Analysers have 

the ability to measure changes in oxygen and proton concentration in a minute volume (< 2 

µL) of medium above a cell monolayer within a microplate, by use of solid-state sensor 

probes residing 200 microns above the cell monolayer. Changes in oxygen concentration 

provide the oxygen consumption rate (OCR), reflective of mitochondrial respiration. Changes 

in proton concentration (or pH) provide the extracellular acidification rate (ECAR), reflective 

of the rate of anaerobic glycolysis (glycolysis leads to the production of lactate, which 

increases extracellular proton concentration). Measurements are taken automatically at 

intervals of approximately 5-8 minutes until the rate of change is linear; the slope is then 

calculated and used to determine OCR and ECAR. Once a measurement is completed, the 

probes lift to allow the larger supernatant medium volume to mix with the medium in the 

‘transient microchamber’, restoring cell values to baseline. Up to four treatment compounds 

can be added sequentially at regular intervals through an integrated drug delivery system. For 

this project, the Seahorse XF Cell Mito Stress Test was used to measure a number of key 

parameters (Basal respiration, ATP-linked respiration, H+ (Proton) Leak, Maximal 

Respiration, Spare Respiratory Capacity, and Non-mitochondrial respiration). This is 
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achieved through serial treatments with the following reagents, each inhibiting a different 

complex within the mitochondrial electron transfer chain (Fig. 2-4): 

a) Oligomycin, inhibitor of ATP synthase (complex V). Oligomycin triggers a decline in 

OCR, as stage 3 oxidative phosphorylation has been blocked. This OCR decline 

reflects the component of oxygen consumption that is used for ATP production. 

ECAR increases as cells resort to anaerobic glycolysis, which releases lactic acid. 

b) FCCP (Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone), mitochondrial 

membrane uncoupler. FCCP causes proton leak from the mitochondrial 

intermembrane space to the mitochondrial matrix, resulting in a collapse of the 

mitochondrial membrane potential. Under these conditions, oxygen flow through the 

electron transfer chain is uninhibited and oxygen is maximally consumed by complex 

IV in an attempt to restore the proton gradient across the inner mitochondrial 

membrane. The difference between this stimulated OCR and baseline OCR provides 

the spare respiratory capacity, a measure of cellular ability to cope with increased 

energy demands. ECAR remains higher than baseline as anaerobic glycolysis is still 

employed to make up for the diminished aerobic energy production. 

c) Mix of rotenone and antimycin A, inhibitors of complex I and III, respectively. This 

combination generates a total inhibition of mitochondrial respiration. Remaining 

oxygen consumption reflects non-mitochondrial respiration. ECAR remains high 

(www.agilent.com). 
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One day before the planned metabolic flux analysis, NCI-H295R cells were trypsinised and 

transferred to Seahorse XF-24 plates at a density of 100,000 cells/well. Typical cell culture 

media volume per well was 100-150 µl. On the day of metabolic flux analysis, media was 

replaced with a DMEM-based medium supplemented with 25 mM glucose, 2 mM sodium 

pyruvate, 31 mM NaCl, 2 mM GlutaMax (pH 7.4) and incubated at 37 °C in a non-CO2 

Figure 2-4 The Seahorse XF Cell Mito Stress Test. Serial injections of Oligomycin, FCCP 

and Antimycin A-Rotenone alter mitochondrial respiration, generating characteristic, 

measurable changes in oxygen consumption. FCCP: Carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone. Source: www.agilent.com. Adapted and reproduced with 

permission of Agilent. 
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incubator for 60 min. Baseline oxygen consumption rate (OCR, measured by oxygen 

concentration change) and extracellular acidification rate (ECAR, measured by pH change) 

were measured, followed by serial treatment with the following mitochondrial inhibitors: 

oligomycin (ATP synthase inhibitor, 2 µM), FCCP (mitochondrial respiration uncoupler, 1 

µM), and rotenone and antimycin A (Complex I inhibitor, 1 µM). After the assays, plates 

were stored at -80 C to be used for protein concentration measurements as surrogate markers 

of cell density. Results were normalised to protein concentration, measured by the BCA 

Protein Assay Kit (Thermo-Fisher). 

 

2.6 Cellular Proliferation  

Cellular proliferation was assessed after culturing cells in flat-bottomed, transparent-walled 

96-well plates, using the CyQUANT® Proliferation Assay Kit (Thermo Fisher) and following 

the manufacturer’s instructions. CyQUANT® uses of a proprietary green fluorescent dye, 

CyQUANT® GR, which exhibits strong fluorescence enhancement when bound to cellular 

nucleic acids after cell lysis. The fluorescence emitted by a given well is therefore 

proportional to the total amount of DNA, which in its turn is proportional to cell number 

before lysis. The linear detection range is wide (500 – 50,000 cells).  

In proliferation time-courses, NCI-H295R cells were grown in transparent, flat-bottomed 96-

well plates (Falcon), loaded at a concentration of 8,000 cells/well and cultured in 200 µl of 

plain culture media or treatment media. At least 5 biological replicates (wells) per group of 

cells were used in each experiment. Media was refreshed every 48h by removal and addition 

of 100 µl fresh media. At pre-determined time points, the media was removed and cells were 
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frozen at -80oC. The beginning of treatment was used as the baseline time point (t=0) at each 

proliferation series.  

On the day of the assay, plates were defrosted in room temperature for 30 min and a 

mastermix was freshly prepared, containing 19 ml of dH2O, 1 ml Lysis Buffer and 50 µl 

CyQUANT® GR fluorescent dye for every 100 wells to be assayed. After vortexing, 180 µl of 

the mastermix were added to each well. Blank wells were also used to measure background 

fluorescence. Plates were then run in a Wallac Victor 1420 multilabel counter using 480 nm 

excitation/ 520 nm emission maxima.  

 

2.7 Cellular apoptosis 

Cellular apoptosis was assessed after growing cells in white, opaque-walled 96-well plates, 

using the Caspase-Glo 3/7TM Assay kit (Promega).  The Caspase-Glo 3/7TM assay measures 

the activity of the effector caspases 3 and 7, which are activated during programmed cell 

death (apoptosis) through proteolytic cleavage by initiator caspases. Once activated, caspases 

3 and 7 swiftly proceed with proteolytic degradation of intracellular proteins, executing 

programmed cell death (Garcia-Calvo et al., 1999). The assay provides a luminogenic 

substance with a tetrapeptide sequence which is cleaved by caspases, releasing a substrate for 

luciferase. Therefore, emitted luminescence is proportional to caspase activity in the 

corresponding well.  

To perform this assay, cells were grown in white, opaque-walled, flat-bottomed 96-well plates 

(Perkin-Elmer) in 200 µl of growth media. At least 10 biological replicates were used per 

group of cells. At the assaying time-point, 4 wells/ group were randomly chosen to measure 
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caspase activity. 100 µl media were removed and replaced by 100 µl of a solution of the 

luminogenic Caspase-Glo 3/7 substrate in Caspase-Glo 3/7 buffer (Caspase-Glo 3/7 Reagent). 

The buffer facilitates cell lysis and also contains a thermostable luciferase. Plates were 

incubated at room temperature for 50 min after shaking briefly, protected from light. This 

period allows cell lysis to occur, followed by caspase 3 and 7-mediated cleavage and release 

of the luminogenic substrate. Luminescence was measured in a Wallac Victor 1420 multilabel 

counter. A blank well containing cell media and Caspase-Glo 3/7 Reagent only was also 

included, its luminescence deducted from sample measurements to produce net luminescence 

values. 

At the end of the assay, media and reagents were removed from all wells and stored at -80oC. 

The next day, relative quantification of cell number in the remaining wells (i.e. wells not used 

for caspase activity measurement) was performed by use of the CyQuant® Proliferation Assay 

Kit (Thermo Fisher), as described above. Luminescence values obtained in the apoptosis 

assay were normalised to the fluorescence results of the proliferation assay. 

During the course of this work, the above protocol was modified to allow culture of cells in 

transparent-walled plates, which allow microscopic evaluation of cell growth and are more 

suitable for fluorescence measurement. With the new protocol, cells were loaded and cultured 

in transparent-walled 96-well plates, using at least 10 biological replicates/ plate. On the day 

of the assay, the luminogenic solution was added to 4 wells/ group (100 µl of the solution 

replacing 100 µl of cell media) and, after 5 min of gentle shaking, solution and media were 

transferred to a white, opaque-walled plate. Caspase activity was measured as described 

above. The transparent-walled plate was frozen at -80oC and subsequently used for cell 

number quantification with the CyQuant® Proliferation Assay Kit. 
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2.8 In vitro steroid profiling by liquid chromatography and tandem mass 

spectrometry (LC-MS/MS)   

The impact of NNT loss on the hormonal output of ACC cells was delineated by use of 

comprehensive steroid profiling in cell media by LC-MS/MS. LC-MS/MS is a powerful 

analytical tool which combines the ability of liquid chromatography to separate substances in 

a sample according to their chemical properties with the capacity of mass spectrometry for 

separation according to mass.  With modern liquid chromatography (also called high-

performance LC – HPLC), the sample is carried through a column by a liquid (mobile phase).  

The column is equipped with a lining (‘stationary phase’) which binds the various molecules 

within the sample (analytes) with a strength that depends on the molecule polarity. The 

polarity of the mobile phase then increases progressively, leading to sequential elution of the 

analyte detachment at different times (retention times) according to their polarity (Taylor et 

al., 2015). 

Having been separated according to their polarity, analytes enter the mass spectrometry 

analysers. In LC-MS/MS, two sequential MS analysers are employed to enhance overall 

specificity.  Entering the first MS analyser, sample analytes are ionised and travel through a 

quadrupole at times that are determined by their mass-to-charge ratio. In the second analyser, 

molecules undergo fragmentation into smaller particles in a special collision cell; generated 

ionised fragments are then selected according to their mass-to-charge ratio with a second 

quadrupole. This results in highly specific detection, as the various analytes beget unique 

fragmented ions, leaving their very specific analytical fingerprint (Taylor et al., 2015). 

Modern mass spectrometry-based techniques (be it LC-MS/MS or GC-MS) have been 

established as the most sensitive and specific method of steroid hormone analysis, 

outperforming the traditional immunoassays with their significant analytical lacunae (cross-
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reactivity between similar analytes, low sensitivity, poor inter-lab standardisation) (Taylor et 

al., 2015). LC-MS/MS has distinct advantages over GC-MS as a high-throughput analytical 

test, by virtue of its short running times and relatively low cost.  

To explore steroidogenesis in our in vitro cell model, NCI-H295R cells were incubated in 6-

well plates in 1 ml of serum-free DMEM/Ham’s F-12 medium (Gibco, Thermo Fisher), 

supplemented with 1% penicillin-streptomycin and 1% ITS universal cell culture premix. 

Serum-free media was used as serum itself contains steroids which may confound results. 

Media was collected after 48 h incubation (120 hours post transfection) to silinised glass tubes 

and stored at -20oC.  

To extract steroid hormones from cell media, 20 µl of serum steroid internal standard solution 

was transferred to each tube and vortexed briefly, followed by addition of 3 ml Methyl tert-

butyl ether (MTBE, Sigma). After vigorous vortexing, samples were frozen at -20oC for at 

least 1 hour. The top layer (liquid phase) was transferred to a 96-well plate using Pasteur 

pipettes. MTBE was evaporated to dryness at 55oC and samples were reconstituted in 125 µl 

of 1:1 H2O/methanol. Steroid metabolite identification and quantification was performed by 

liquid chromatography/tandem mass spectrometry (LC/MS/MS), with reference to a linear 

calibration series and appropriate internal standards (AcquityTM Ultra Performance Liquid 

Chromatographer, Xevo TQ Mass Spectrometer) as described previously (Juhlen et al., 2015, 

Haring et al., 2013) (Table 2-1).  
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Calibration 
number 

Added volume of 
serum steroid 
stock (1µg/ml) 

Added volume of 
cell media (µl) 

Concentration (ng/ml) 

C0 0 1000 0 
C1 0.5 999.5 0.5 
C2 1 999 1 
C3 5 995 5 
C4 10 990 10 
C5 25 975 25 
C6 50 950 50 
C7 100 900 100 
C8 250 750 250 
C9 500 500 500 

 

 

2.9 Statistical analysis 

Statistical analysis and schematic depiction of data was completed using GraphPad Prism 

Software. Data are represented as mean ± standard error (mean ± SEM) values, unless 

otherwise stated. Data that are not normally distributed are presented as median ± interquartile 

range (IQR).  Two-group comparisons were made using Student’s paired t-test for normally 

distributed data or Wilcoxon’s signed-rank test for data not following a Gaussian distribution. 

Multiple comparisons (paraquat, BSO and auranofin treatment courses) were performed by 

one-way ANOVA followed by post-hoc multiple comparison testing (Turkey’s test).  

Table 2-1 Calibration series used to quantify steroid metabolites in cell media samples by LC-

MS/MS 



Chapter 3                                Effects of transient NNT knockdown on ACC cell metabolism, proliferation and steroidogenesis  

120 
 

 

 

 

3 Effects of transient NNT knockdown on 

ACC cell metabolism, proliferation and 

steroidogenesis 
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3.1 Introduction                        

NNT is a proton pump of the inner mitochondrial membrane that transfers reducing 

equivalents from NADH to NADP+, fuelling the main mitochondrial antioxidant pathways as 

well as anabolic cellular metabolism (Rydstrom, 2006, Leung et al., 2015).  NNT inactivation 

in a number of in vitro cell models has been associated with a multifaceted metabolic impact, 

including induction of oxidative stress, disruption of mitochondrial respiration and inhibition 

of glutamine utilisation in the TCA cycle (Arkblad et al., 2005, Meimaridou et al., 2012, 

Ripoll et al., 2012, Lopert and Patel, 2014, Yin et al., 2012, Gameiro et al., 2013). Limited 

pre-clinical data suggest an adverse effect of NNT inactivation on the proliferation and 

viability of certain malignant cell lines (apoptosis in PC12 rat phaeochromocytoma cells in 

vitro, suppression of melanoma xenografts in rodents), presumably due to the deleterious 

effects of high oxidative stress (Yin et al., 2012, Gameiro et al., 2013). Recent human genetic 

studies underscored the importance of NNT in adrenal (patho)physiology, demonstrating that 

NNT mutations underlie a rare hereditary form of primary adrenal insufficiency (Familial 

Glucocorticoid Deficiency) (Meimaridou et al., 2012, Roucher-Boulez et al., 2016). In 

keeping with this, 2-month-old Nnt mutant mice have low circulating levels of corticosterone; 

on histology, their adrenal glands displayed disorganised zonae fasciculatae with high levels 

of apoptosis (Meimaridou et al., 2012). The clinical phenotype of patients with inactivating 

NNT mutations is remarkably specific: the adrenals glands are the only affected organs in the 

majority of described cases, suggesting a particular vulnerability of adrenal cells to NNT loss. 

The roots of this vulnerability may be putatively  traced down to the high metabolic activity 

of the adrenal cortex and its steroidogenic commitment, both incurring a high oxidative toll 

on the adrenal mitochondria (Hanukoglu, 2006, Prasad et al., 2014b). On this background, 
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NNT emerges as an attractive treatment target in the clinical condition in which 

adrenocortical cell damage is most desirable therapeutically, i.e. ACC.  

Antioxidant enzyme targeting with a view to curtailing the capacity of malignant cells to deal 

with their high endogenous ROS levels is not new under the sun in the world of Experimental 

Oncology. Promising results have been delivered in preclinical models and a limited number 

of clinical studies (Gupta et al., 2012, Watson, 2013, Fruehauf and Meyskens, 2007, 

Trachootham et al., 2009). NNT has not been explored as a oncologic treatment target so far, 

with the only exception of recent pre-clinical studies on malignant melanoma where a 

detrimental effect of NNT inhibition was demonstrable both in vitro and in vivo (Gameiro et 

al., 2013).  
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3.2 Methods 

3.2.1 Research strategy 

In this Chapter, we will explore the acute effects of NNT silencing on ACC redox balance and 

mitochondrial bioenergetics, and try to ascertain whether these may have a detrimental impact 

on ACC tumour growth (increased cell death and/or suppressed proliferation) and steroid 

biosynthesis. Transient NNT silencing will be achieved through anti-NNT siRNA transfection 

of NCI-H295R ACC cells, using Viromers as transfection vehicles. Viromers are synthetic 

polymers emulating the structure of the influenza virus haemaglutinin, which can bind siRNA 

molecules forming complexes that are naturally taken up by cells through endocytosis. This 

way, they facilitate the introduction of the siRNA molecules directly into cells without 

compromising cell function and viability. SiRNA molecules break down the mRNA of their 

target gene, leading to temporary gene expression silencing (gene knock-down) for a period 

which typically lasts a few days. Having transiently knocked down NNT in NCI-H295 cells, 

we will explore the immediate ramifications of NNT loss with respect to  

a) Cellular redox balance, as reflected on the ratio of reduced to oxidised glutathione  

b) Mitochondrial bioenergetics, focusing on mitochondrial oxygen consumption rates 

and glycolytic rates (extracellular flux analysis – Seahorse XF) 

c) Cellular proliferation, using longitudinal assessment of cell numbers under routine cell 

culture conditions as well as under metabolic stressors (oxidative stress, glucose 

deprivation) 

d) Cellular apoptosis, measuring caspase 3 and 7 activity 

e) Steroidogenesis, through a combination of Real-Time PCR and steroid profiling by 

LC-MS/MS 
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All experiments were paired, NNT knockdown cells being plated and treated alongside their 

controls, to mitigate the confounding effects of inter-experiment variability and enhance the 

power of statistical analysis. 

 

3.2.2 SiRNA transfection  

Transient NNT gene silencing was achieved with introduction of small interfering RNA 

(siRNA) molecules into NCI-H295R cells. SiRNAs are short (20-25 base pairs), double-

stranded RNA molecules which are able to effect post-transcriptional silencing of their target 

gene through a process known as RNA interference (Agrawal et al., 2003). Once introduced 

into the cell, the two strands of each molecule are separated after binding of a protein 

complex called RNA-induced silencing complex (RISC). Following this, RISC is guided by 

the siRNA to its complementary sequence within the target mRNA; if base pairing is precise, 

RISC degrades the mRNA, leading to silencing of the corresponding gene. This effect lasts 

until the siRNA molecules become themselves degraded, typically a few days. RNA 

inhibition by siRNA transfection is a cost-effective way of inhibiting gene function in vitro, 

with the limitation that the effect is short-lived and may not necessarily recapitulate the long-

term sequelae of the particular gene loss. A second caveat is that inadvertent silencing of 

other genes with partially complementary sequences may also occur, especially with high 

transfection concentrations (Jackson and Linsley, 2010). This phenomenon is widely known 

as ‘off target effects’ and suggests that the biological effect seen with a given siRNA may not 

be caused by the target gene of interest. This risk can be mitigated through independent 

application of two different siRNAs targeting different areas of the gene of interest.  
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Viromers (Viromer Blue®, Lipocalyx, Germany) were used as transfection vehicles. Viromers 

are polymeric molecules which bind siRNAs and introduce them into cells deploying a viral 

fusion mechanism akin to the one used by the influenza virus (https://viromer-

transfection.com). The siRNA-viromer complex is taken up by cells through endocytosis. The 

acidic environment of the endosomes triggers a structural change whereby the fusion peptide 

loses its charge, becomes hydrophobic and penetrates the endosomic membrane, escaping into 

the cytosol. Once in the cytosol, viromers regain charge, which precludes regression into the 

endosomes. siRNAs then dissociate from them into the cytosol and the process of RNA 

interference begins.  

Three different siRNAs against human NNT were assessed, all purchased from Thermo 

Fisher:  

a) HSS118902 siRNA, targeting exon 21; this siRNA is referred to in the Results section 

as KD SiRNA1. NCI-H295R cells transfected with SiRNA1 are referred to in the 

Results section as KD SIRNA1 cells. 

b) HSS118901 siRNA, targeting exons 20 and 21; this siRNA is referred to in the results 

section as KD SiRNA2. NCI-H295R cells transfected with SiRNA2 are referred to in 

the Results section as KD SIRNA2 cell. 

c) HSS118900 siRNA, targeting exons 16 and 17; this siRNA is referred to in the results 

section as KD SiRNA3. 

d) A scramble, non-sense siRNA (Silencer Select 1 negative control) not targeting any 

genes was used as negative control; this siRNA is referred to in the Results section as 

SCR SiRNA. NCI-H295R cells transfected with SCR SiRNA are referred to in the 

Results section as SCR SIRNA. 
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Viromer transfection was performed according to the following protocol: 

NCI-H295R cells were grown in 75 cm2 flasks (Corning) in full culture media as described in 

Chapter 2. When 70-80% confluence was attained, media was removed and cells were 

washed with Phosphate Buffered Saline (PBS, Sigma), followed by 37oC incubation in 2 ml 

of Trypsin (Gibco, Thermo Fisher) for 2 min. Cells were detached by gentle tapping and 

diluted in full media in plastic tubes (Corning) to be centrifuged at 12,000 rpm for 5 min. 

Pelleted cells were re-suspended in 10-15 ml of full media and cell density was estimated by 

microscopy. Following this, cells were loaded to a) 6-well plates at a concentration of 

300,000 cells/well in 2 ml media, or b) 96-well plates at a concentration of 8,000 cells/ well in 

100 µl media, and incubated overnight at 37oC. The next day, working solutions of siRNAs in 

Buffer F (Viromer Blue kit, Lipocalyx, pH 7.2) were prepared at a concentration of 11 µM. 

Working solutions of Viromers in Buffer F were also prepared (by addition of 1000 µl Buffer 

F to 11 µl Viromer Blue stock solution) and vortexed for 5 sec. The working solutions of 

Viromers were then added to each siRNA solution (989 µl of diluted Viromers per 100 µl 

diluted siRNA) and mixed well by pipetting. After 15 min incubation at room temperature to 

allow formation of siRNA-Viromer complexes, the Viromer-siRNA mix was  

a) applied directly to cells in 6-well plates (100-300 µl to 2 ml media for optimisation, 200 µl/ 

well in subsequent experiments) and mixed by gentle plate rocking or  

b) diluted in cell media in falcon tubes at a concentration of 80 µl per 1 ml of media and then 

added to cells in 96-well plates -after complete removal of old media- at a volume of 108 µl/ 

well.  

Gene knockdown efficiency was assessed by Real-Time PCR and Western Blotting from 2-7 

days post-transfection. Media was changed on day 3 post-transfection and every 48 h 
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thereafter. In 96-well plates, 100 µl of media was added to each well 48 h post transfection to 

avoid disruption of cell proliferation by media evaporation. 6-well plates were used to assess 

knockdown efficiency by Real-Time PCR and Western Blotting, as well as for steroid 

profiling in cell media (LC-MS/MS). 96-well plates were used for proliferation, apoptosis and 

redox balance assessment. 

The above protocol had to be modified temporarily for a period of three months during the 

course of this project due to changes introduced by the manufacturing company (Lipocalyx). 

The modification consisted of substitution of Opti-MEM media (Gibco, Thermo Fisher) for 

Buffer F. SiRNA and Viromer concentrations in the working solution were maintained. 

Transfection efficiency was not affected. After three months, Lipocalyx reinstated Buffer F 

and the protocol was resumed as detailed above. 

An important problem encountered during 6-well transfection was the eventual loss of cells in 

the centre of the wells (both in the knockdown and control transfection group), which limited 

the RNA yield and required pooling of several wells to achieve sufficient RNA concentrations 

to proceed with cDNA synthesis and quantitative PCR. This problem resolved with a protocol 

modification whereby cell media was not changed on the day of transfection. This suggested 

the previously observed cell loss was due to cell detachment during media change on the day 

of transfection, as H295R cells adhere poorly to the bottom of the wells in the first 24-48 h. 

 

3.2.3 Redox balance assessment 

To assess the effect of NNT knockdown on cellular redox balance, NCI-H295R cells (passage 

10-20) were loaded onto white opaque-walled, flat-bottomed 96-well plates (Perkin-Elmer) at 
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a concentration of 8,000 cells/well. The next day, media was removed carefully trying not to 

disrupt plated cells. Cells were transfected with siRNA-Viromer complexes as described 

above, using 100 µl media and 8 µl siRNA-Viromer solution per well. 48 h post-transfection, 

100 µl growth media was added to each well, and media was refreshed by removal and 

addition of 100 µl media the next day. 96 h post-transfection, the intracellular ratio of 

reduced/oxidised glutathione was measured (in triplicates) using the GSH/GSSG-GloTM assay 

(Promega) as described in Chapter 2. 

 

3.2.4 Metabolic Flux analysis 

NCI-H295R cells were transfected in 6-well plates as described above and cultured for 6 

days. On day 6 (144h post-transfection), cells were washed with PBS and collected by 

trypsinisation. Cell density was measured microscopically and cells were loaded to Seahorse 

XF 24-well microplates at a loading density of 100,000 cells/well (media volume 100-150 µl). 

The next day (166 h post-transfection), metabolic flux analysis was completed as described in 

Chapter 2. 

 

3.2.5 Proliferation time-courses 

Assessment of cellular proliferation and viability was performed in flat-bottomed, 

transparent-walled 96-well plates (Falcon). At the beginning of each proliferation series, NCI-

H295R cells (passage 10-25) were loaded onto plates, at a loading concentration of 8,000 

cells/ well, in 110 µl of cell media. This loading concentration was selected after optimisation 

experiments comparing proliferation rates with various loading concentrations (5,000 - 15,000 



Chapter 3                                Effects of transient NNT knockdown on ACC cell metabolism, proliferation and steroidogenesis  

129 
 

cells/ well, data not shown). The next day, media was removed carefully trying not to disrupt 

plated cells and cells were transfected with siRNA as described above, using a total cell media 

volume of 108 µl of media per well. 48 h post-transfection, 100 µl of growth media was added 

to each well. At 72 h post-transfection (baseline point), media was replenished and one plate 

was frozen at -80oC to determine ‘baseline’ cell numbers. In the remaining plates, cells were 

cultured for a further 96 h (i.e. until 166 h post-transfection), with intermediate media 

replenishment at 120 h hour post transfection (removal of 100 µl old media and addition of 

100 µl fresh media per well). At least 5 biological replicates (wells) per group (i.e. NNT 

knock-down or scramble siRNA-transfected cells) were used in each time-course. At the end 

of the time-course, cell numbers were derived using DNA fluorescence, as described earlier. 

Proliferation rates were established using the formula 

 Proliferation rate = %(fluorescence at 166 h – fluorescence at 72 h)/ fluorescence at 72 h. 

In some time-courses, concurrent drug treatment or conditioned culture media was applied to 

evaluate cellular proliferation and viability under special conditions (chemically-induced 

oxidative stress, adrenotoxic chemotherapy, glucose deprivation). Treatment was started 72h 

post-transfection (baseline time-point) and lasted 96 h. Treatment courses applied in the 

course of this project included: 

a) Paraquat (N,N′-dimethyl-4,4′-bipyridinium dichloride, Sigma). Paraquat is a herbicide 

which is widely used as a chemical inducer of oxidative stress (superoxide generation) 

(Lei et al., 2014). Paraquat was administered for a total duration of 96 h and was 

replenished once in cell media during the proliferation course (48h). Stock solution of 

paraquat in sterile-filtered dH2O was stored in 4oC. 
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b) Glucose-deplete media (DMEM, L-Glutamine (+), glucose 1 g/dl, sodium pyruvate, 

catalogue number 11966025, Gibco). Media was supplemented with 2.5% Nu Serum 

(Sigma) and 1% ITS+ premix (BD Biosciences). This formulation contains 1/3 of the 

glucose concentration of regular NCI-H295R culture media. Glucose-deplete media 

was administered for a total duration of 96 h and was replenished once during the 

proliferation course (48h). 

c) L-buthionine sulfoximine (BSO, Cayman Scientific). BSO is a potent, specific 

inhibitor of g-glutamylcysteine synthetase, the rate-limiting step in glutathione (GSH) 

biosynthesis (Bailey, 1998).  BSO was administered for a total duration of 96 h and 

was replenished once in cell media during the proliferation course (48h). Doses ranged 

from 10-4,000 nM. Sterile-filtered solution of BSO in sterile-filtered dH2O was 

generated fresh on the day of the experiments, as the substance is unstable in liquid 

form. Powder BSO was stored at -20oC.  

d) Auranofin (Sigma). Auranofin is a gold-complex agent and the most potent inhibitor 

of thioredoxin reductase. In proliferation series, it was administered for a total 

duration of 96 h and was replenished once in cell media during the proliferation course 

(48h). Doses ranged from 200-2,000 nM. Sterile-filtered liquid stock solution of 

auranofin in DMSO was stored at 4oC.  

 

3.2.6 Apoptosis  

To evaluate the effects of NNT knockdown on cellular redox balance and apoptosis, NCI-

H295R cells were loaded to opaque-walled, flat-bottomed 96-well plates (Perkin-Elmer) at a 

loading concentration of 8,000 cells/well, and transfected the next day as described above 
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(10-15 wells/ transfection group). Media was refreshed on days 2 and 4 post-transfection. On 

day 5 (120 h post-transfection), caspase activity was measured as described in Chapter 2 

(Caspase 3/7-GloTM assay, Promega) using 4 wells (replicates) per transfection group. After 

the end of the assay, plates were frozen at -80oC and relative cell density in the remaining 

wells was assessed the next day using the CyQuantâ Cell Proliferation kit (Thermo Fisher). 

 

3.2.7 Steroid profiling by Liquid Chromatography/ Tandem mass spectrometry 

To outline the impact of NNT knockdown on steroid production, NCI-H295R cells 

transfected in 6-well plates were incubated in 1 ml of serum-free media (DMEM/F12 

supplemented with 1% ITS+ premix and 1% Penicillin-Sterptomycin) for 48h, starting 72h 

post-transfection. At the end of the incubation, media was collected in silinised glass tubes 

and stored at -20oC. Protein was harvested as described in Chapter 2 and used to standardise 

the results to protein concentration. Steroid extraction from stored cell media was 

subsequently completed as described in Chapter 2. 
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3.3 Results 

3.3.1 NNT silencing by siRNA transfection 

The efficacy and duration of NNT silencing in NCI-H295R cells transfected with siRNA in 6-

well plates was evaluated by Western Blotting and Real-Time PCR. Three different siRNAs 

against NNT were evaluated (KD SiRNA 1, 2 and 3). Scramble, non-sense siRNA was used 

as negative control (SCR SiRNA). Gene silencing at a translational level was assessed by 

Western Blotting, from 24 h to 166 h post-transfection (Fig. 3-1). KD SiRNA1 was selected 

as the siRNA of choice as it displayed the most consistent knockdown efficiency, and was 

used in all subsequent experiments. KD SiRNA2 was used to corroborate results in 

proliferation and apoptosis assays, whose results are most likely to be confounded by off-

target effects. KD SiRNA3 produced less satisfactory knock-down and thus was not used in 

subsequent experiments. Real-time PCR was deployed to measure NNT expression at a 

transcriptional level 72 h – 166 h post-transfection. Good levels of NNT silencing were 

achieved with both KD SiRNA1 and KD SiRNA 2 throughout this time window (Fig. 3-1). 
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Figure 3-1 Assessment of NNT knockdown in siRNA-transfected NCI-H295R cells by Western 

Blotting and Real-Time PCR. A) Protein expression at serial time-points in the first week 

post-transfection with KD SiRNA 1. Cells transfected with SCR siRNA were used as controls 

[indicated as (-)]. B) Comparison of NNT expression in cells transfected with scramble, non-

sense siRNA (SCR SiRNA, negative control) and three alternative SiRNAs against NNT (KD 

SiRNA 1, 2 and 3) 72 h post-transfection. C) Whole NNT blot from time-series displayed in 

panel A, added to demonstrate antibody specificity. D) Real-time PCR comparing NNT 

expression in SCR SIRNA cells, KD SIRNA1 and KD SIRNA2 cells, 72 h post-transfection. 

****p<0.0001, ***p<0.001; n>5 independent experiments. 
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3.3.2 Cellular redox balance 

The effect of acute NNT silencing on NCI-H295R cellular redox balance was determined by 

measurement of the cellular ratio of reduced to oxidised glutathione (GSH/GSSG ratio), 96 h  

post-transfection (GSH/GSSG-GloTM assay, Promega). Lower GSH/GSSG ratios suggest 

higher intarcellular levels of oxidative stress and impaired residual antioxidant capacity 

(Rebrin and Sohal, 2008). In keeping with our hypothesis, NNT silencing by KD SiRNA1 

increased intracellular oxidative stress, as suggested by a statistically significant decrease in 

the GSH/GSSG ratio compared to cells transfected with SCR SiRNA [median (IQR) 

GSH/GSSG ratio in KD SIRNA1 cells normalised to SCR SIRNA cells 0.83 (0.41 – 0.9); 

p<0.05, n=8 independent experiments] (Fig. 3-2).  

                                    

 

Figure 3-2 GSH/GSSG ratio in NCI-H295R cells transfected with KD SiRNA1, normalised to 

the GSH/GSSG ratio of SCR SiRNA-transfected cells. Low GSH/GSSG ratio levels suggest 

higher intracellular oxidative stress, as a result of NNT loss. Menadione: NCI-H295R cells 

treated with the potent oxidising agent Menadione (40 µM) for 2h as positive control 

(*p<0.05, n=8 independent experiments). 
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3.3.3 Mitochondrial bioenergetics 

 Changes in mitochondrial respiration were evaluated by direct measurement of cellular 

oxygen consumption, using Extracellular Flux analysis (Seahorse XF analyser). We observed 

no statistically significant difference between SCR SiRNA-transfected cells and KD SiRNA1-

transfected cells [median (IQR) oxygen consumption rates 6 (4.4-7.8) and 7 (5-8.2) pmol/min/ 

µg protein, respectively; n=4 independent experiments, p>0.05). After baseline OCR 

measurement, oligomycin was used to inhibit respiratory chain complex V (ATP synthase); 

this led to a similar OCR decrease in both transfection groups [post-oligomycin OCR 2.5 (1.9-

3.2) in SCR SIRNA wells vs 2.7 (2.2-3.9) pmol/min/ µg protein in KD SIRNA1 cells, p> 

0.05]. Treatment with the mitochondrial uncoupler FCCP (Carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone) led to an expected sharp rise in OCR in both cell groups; 

again, no differences were observed [post-FCCP OCR 5.3 (3.1-7.3) pmol/min/µg in SCR 

SIRNA cells vs 5.6 (4-6.7) pmol/min/µg in KD SIRNA1 cells, p>0.05]. Of note, the maximal 

oxygen consumption displayed post-FCCP was similar to the baseline OCR of NCI-H295R 

cells, an unusual but reproducible finding which may suggest that NCI-H295R cells tend to 

operate close to their maximal respiratory capacity even under normal growing conditions. 

Finally, combination treatment with Antimycin A and Rotenone was deployed to inhibit all 

mitochondrial respiration; residual oxygen consumption (non-mitochondrial respiration) was 

also comparable between the two groups [1 (0.8-1.2) pmol/min/ µg for SCR SIRNA cells vs 

1.1 (0.7-2.3) pmol/min/ µg for KD SIRNA1 cells]. Baseline extracellular acidification rates, 

representative of baseline glycolytic rates, did not differ between the two groups (0.69 ± 0.13 

mpH/min/protein for SCR SiRNA cells vs 0.63 ± 0.08 mpH/min/protein for KD SIRNA1 

cells; p> 0.05, n=4) (Fig. 3-3). 
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Figure 3-3 A) Seahorse XF24 analysis of cellular oxygen consumption rates (OCR) in siRNA-

transfected NCI-H295R cells at baseline and after successive application of three 

mitochondrial respiration inhibitors. Bars represent median ± IQR values. No significant 

difference was detected between KD SIRNA1 and SCR SIRNA cells. FCCP: Carbonyl 

cyanide-p-trifluoromethoxyphenylhydrazone. A&R: Antimycin A plus Rotenone (p>0.05, n= 4 

independent experiments); B) Baseline extracellular acidification rates in siRNA-transfected 

NCI-H295R cells. Bars represent mean ± SEM values. No significant difference was detected 

between KD SIRNA1 and SCR SIRNA cells (p>0.05, n= 4 independent experiments). 
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3.3.4 Cellular proliferation 

Cellular proliferation rates were assessed over the time window from 72h-166 h post-

transfection, a period during which consistent NNT knock-down had been confirmed on a 

protein level. NNT knock-down by KD SiRNA1 transfection led to a decrease in proliferation 

rates from 111.8% ± 11.3% in SCR SIRNA cells to 39.2% ± 11.3% in KD SIRNA1 cells 

(p=0.0001, n=13 independent experiments). To exclude the possibility that this impact was 

driven by non-specific, off-target siRNA effects, these results were corroborated by use of a 

second siRNA against NNT (KD SiRNA2), which had an even more striking effect, 

completely obliterating cell proliferation (proliferation rate -4.6% ± 15.1% vs 115.0% ± 

19.1%; p<0.01, n=5 independent experiments) (Fig. 3-4).  
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3.3.5 Apoptosis 

In order to establish whether the increased oxidative stress observed with NNT knockdown 

leads to higher rates of apoptosis -as predicted by ROS physiology- we measured intracellular 

caspase 3 and 7 activity 120 h post-transfection. We also quantified relative cell numbers 

(DNA fluorescence) at the same time-point to standardise the results to cell numbers. KD 

SIRNA1 cells exhibited significantly higher caspase 3/7 activity than SCR SIRNA cells 

[median (IQR) ratio KD SIRNA1 to SCR SIRNA cells 1.27 (1.05-2.1); p<0.001, n=8 

independent experiments], confirming that NNT KD triggers cell death by apoptosis in 

keeping with our core hypothesis. The effect was even more marked with KD SiRNA2 

transfection [median (IQR) ratio KD SIRNA2 to SCR SIRNA cells 3.9 (2-5.4); p<0.05, n=4 

independent experiments], paralleling the results of the proliferation assays (Fig. 3-5). 
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Figure 3-4 Proliferation rates observed in siRNA-transfected NCI-H295R cells, 72-166 h 

post-transfection, using DNA fluorescence. NNT knock-down with two different siRNAs 

suppressed cell proliferation. Proliferation rate = %[(DNA fluorescence emitted at 166 h 

post-transfection - DNA fluorescence emitted at 72h post-transfection)]/ DNA fluorescence 

emitted at 72h post-transfection. ***p<0.001,   **p<0.01; n³ 5 independent experiments.  
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3.3.6 Proliferation under chemically-induced oxidative stress and glucose deprivation 

Given the integral role of NNT in mitochondrial antioxidant defence and the detrimental 

effect of NNT inhibition on redox balance, we further hypothesised that NNT loss will render 

NCI-H295R cells more sensitive to chemically induced oxidative stress. To assess this 

assumption, we treated NCI-H295R cells with a low dose of paraquat, a pesticide which 

induces oxidative stress in vitro, generating superoxide. Treatment with 10 µM of paraquat for 

96 h (72 h -166 h post-transfection) led to a statistically significant impairment of cellular 

proliferation and viability in cells transfected with KD SiRNA1, but not in their counterparts 

that were treated with SCR SiRNA (ratio of cell fluorescence after 96 h paraquat treatment to 

cell fluorescence without paraquat treatment 0.98 ± 0.07 in SCR SIRNA cells vs 0.79 ± 0.05 

in KD SIRNA1 cells; p<0.05, n=6 independent experiments) (Fig. 3-6).  These results have 

implications of potential translational importance, suggesting that NNT knockdown may 

potentiate the cytotoxic effects of chemotherapy agents which induce oxidative stress. 
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Figure 3-5 Caspase 3/7 activity ratio in KD SIRNA1 and KD SIRNA2 cells to SCR SIRNA 

cells, after standardization for cell numbers. Increased caspase activity indicates higher 

apoptotic rates in KD SIRNA cells (*p<0.05, n³ 4 independent experiments).  
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Previous work has suggested that NNT inhibition can impede glutamine utilisation in the 

TCA cycle (Gameiro et al., 2013). In response to this, cells have to resort to glucose to derive 

the missing carbons to fuel their anabolic needs and continue to proliferate. To establish 

whether NNT silencing renders ACC cells more sensitive to glucose deprivation, we cultured 

cells in low-glucose DMEM/F12 media, containing 1/3 of the glucose concentration of 

regular NCI-H295R culture media (1 g/L vs 3.1 g/L). Culturing cells under these conditions 

for 96 h (72-166 h post-transfection), we observed a more pronounced effect on the 

proliferation of KD SIRNA1 cells than of SCR SIRNA cells (Fig. 3-7). 
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Figure 3-6 Effect of low-dose Parquat treatment (10 µΜ) on NCI-H295R cell proliferation, 

72-166 h post siRNA transfection. KD SIRNA1 cells are more sensitive to chemically-induced 

oxidative stress (*p<0.05, n=7 independent experiments). 
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3.3.7 Alternative antioxidant targeting 

Given the auspicious effects of NNT inhibition on NCI-H295R cell growth, we went on to 

evaluate the sensitivity of ACC cells to isolated inhibition of each of the two pillars of cellular 

antioxidant defence: the glutathione pathway and the thioredoxin pathway. We used 

buthionine sulfoximine (BSO, a potent inhibitor of the glutathione-producing enzyme c-

glutamylcysteine ligase), to deplete intracellular glutathione. BSO has a proven capacity to 

inhibit > 90% of total glutathione synthesis in vitro, with excellent tolerability in clinical 

studies (Bailey, 1998). We observed a significant cytostatic effect with BSO doses of 200 µM 

after 96 h of treatment (Fig. 3-8A).   

Pharmacological manipulation of the alternative mitochondrial antioxidant pathway, the 

thioredoxin pathway, was achieved by auranofin, a gold complex with well-established 

capacity to inhibit thioredoxin reductase  (Madeira et al., 2012). Auranofin has exhibited anti-

tumour effects against certain cancer types in vitro (e.g. leukemia, melanoma, non-small cell 

Figure 3-7 NCI-H295R cell proliferation in low-glucose media, 72-166 h post siRNA 

transfection. Glucose deprivation suppresses proliferation in KD SIRNA1 cells (*p<0.05, n=5 

independent experiments). 
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lung cancer) and is currently being studied in clinical trials against leukemia (Gandin et al., 

2010, Weir et al., 2012, Sobhakumari et al., 2012).  NCI-H295R treatment with auranofin 

concentrations of 1 µM led to a substantial suppression of proliferation, while higher 

concentrations effected massive cytotoxicity (Fig. 3-8B). 
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Figure 3-8 Effects of glutathione and thioredoxin pathway inhibitors on NCI-H295R cell 

proliferation. A) 96 h treatment with incremental doses of BSO (0-200 µM), inhibitor of 

glutathione synthesis. Control cells were treated with vehicle only. *p<0.05; n= 9 

independent experiments. B) 96 h treatment with incremental doses of auranofin (0-5 µM), 

thioredoxin reductase inhibitor. Control cells were treated with vehicle only. **p<0.01, 

***p<0.001,****p<0.0001; n=8. 
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3.3.8 Steroidogenesis 

The effects of transient NNT silencing on steroidogenesis were evaluated through 

comprehensive steroid profiling in cell media by LC-MS/MS, as well as gene expression 

analysis by Real-Time PCR. We postulated that NNT silencing will disrupt steroidogenesis 

either depriving mitochondrial steroidogenic monooxygenases -Cholesterol side-chain 

cleaving enzyme (CYP11A1), 11b-hydroxylase (CYP11B1), aldosterone synthase 

(CYP11B2)- of their essential electron donor NADPH, or due to oxidative stress-induced 

down-regulation of key steroidogenic enzymes. Surprisingly, we observed the opposite 

response in the acute aftermath of NNT inhibition: KD SiRNA1-transfected cells produced 

significantly more cortisol (0.13 ± 0.03 nM/µg vs 0.05 ± 0.01 nM/µg protein; p<0.01, n=5 

independent experiments) and androstenedione (1.25 ± 0.29 nM/µg vs 0.57 ± 0.17 nM/µg; 

p<0.05, n=5) than their SCR SiRNA-transfected controls (Fig. 3-9). Individual enzyme 

activity was measured by computation of the corresponding product to substrate ratios for 

three key steroidogenic enzymes [11b-hydroxylase (CYP11B1), 21-hydroxylase (CY21A2), 

17/20-lyase (CYP17A1)]; all three displayed higher activity in KD SiRNA1-transfected cells, 

in keeping with a paradoxical generalised stimulation of steroidogenesis by acute NNT loss 

(Table 3-1). Interestingly, the ratio of cortisol/cortisone was also consistently higher in NNT 

KD cells. Other steroid metabolites were below the threshold of quantification in most 

experiments, therefore no other product-to-substrate ratios could be computated. 

We also explored the gene expression alterations underpinning the enhanced steroidogenic 

capacity of cells transfected with KD SiRNA1, comparing the expression of core 

steroidogenic genes (STAR, CYP11A1, CYP21A2, CYP17A1, 3bHSD2, CYP11B1, 

CYP11B2) between KD SIRNA1 and SCR SIRNA cells. There was a statistically significant 
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increase in the expression of CYP21A2 (p<0.05), CYP17A1 (p<0.05) and 3bHSD2 (p<0.01) 

in KD SIRNA1 cells (Table 3-2). Expression of CYP11B1 and CYP11B2 was below 

detection in both groups due to low baseline expression levels of these enzymes in NCI-

H295R cells.   

 

 

 

 

 

 

 

 

Figure 3-9 Effect of transient NNT knockdown on NCI-H295R cell cortisol and 

androstenedione production. NNT knockdown stimulates cortisol and androstenedione 

synthesis. *p<0.05, **p<0.01; n=5 independent experiments 
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Table 3-1 Steroidogenic enzyme activity in SCR SIRNA and KD SIRNA1 cells, derived from 

product-to-substrate ratios (LC-MS/MS). Results are expressed as mean ± SE values (n=6 

independent experiments). HSD11B1: cortisone reductase. 

 

 

 

Table 3-2 Effects of transient NNT KD on steroidogenic enzyme expression as assessed by 

Real-Time PCR. ΔCt= Ct (NNT) – Ct (RPLPO). n³ 6 independent experiments   

 SCR SIRNA 
median ΔCt 

(IQR) 

KD SIRNA1 
median ΔCt 

(IQR) 

P value Median fold 
change 

KD SIRNA1/ 
SCR SIRNA 

StAR    4.0  (2.3-6.8)    2.2   (1.9 - 3.0) > 0.05  
CYP11A1    5.9  (3.3 - 9)   4.8   (3.5 - 4.9) > 0.05  
3bHSD2    8.7  (7.6 -10.3)   8.0   (7.4 - 8.8) < 0.01 2 
CYP17A1    2.8  (1.5 - 5.2)    1.8   (0.7 - 2.9) < 0.01 2.5 
CYP21A2    9.3  (4.2 -12.9)    6.4   (0.4 - 9.2) < 0.05 11.5 

 
 
  

Enzyme Product/  
substrate ratio 

SCR SiRNA 
(nM/µg) 

KD SiRNA1 
(nM/µg) 

P value 

CYP11B1 cortisol/ 
11-deoxycortisol 

0.011±0.001 0.021±0.005 P<0.01 

CYP21A2 11-deoxycortisol/  
17-OH-progesterone 

37.6±9 81.1±15.2 P<0.01 

CYP17A1 androstenedione/  
17-OH-progesterone 

4.7±1 17.1±2.5 P<0.01 

HSD11B1 cortisol/cortisone 5.1±1.1 13.1±2.9 P<0.001 
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3.4 Discussion 

With this work, we explored the immediate impact of NNT silencing on ACC cells with 

respect to redox balance, mitochondrial bioenergetics and cellular proliferation, using 

transient NNT knockdown in NCI-H295R cells by siRNA transfection. Our aim was to 

establish whether NNT inhibition can have therapeutically beneficial effects, limiting tumour 

growth or suppressing steroidogenesis, as is suggested by the development of adrenal 

insufficiency in patients with inactivating NNT mutations. We hypothesised that NNT 

inhibition will compromise the ability of adrenocortical mitochondria to effectively deal with 

oxidative stress, leading to progressive accumulation of ROS. ROS excess has multiple toxic 

sequelae, and can directly impair cell viability triggering apoptosis (Gupta et al., 2012, 

Fruehauf and Meyskens, 2007). We also postulated that NNT inhibition will suppress 

steroidogenesis. 

In the acute setting (transient knockdown), NNT loss increased intracellular oxidative stress, 

leading to a dramatic suppression of cell proliferation and increased rates of apoptosis. Redox 

balance perturbations in response to NNT loss have been previously demonstrated in a limited 

number of cell lines in vitro (rat phaechromocytoma, human melanoma) as well as in 

lymphocytes derived from NNT mutant patients ex vivo (Yin et al., 2012, Gameiro et al., 

2013, Fujisawa et al., 2015). Meimaridou et al. reported increased levels of oxidative stress in 

NCI-H295R cells with chronic NNT silencing (shRNA knockdown) (Meimaridou et al., 

2012). These findings are in keeping with the biological role of NNT as a major 

mitochondrial generator of NADPH, which is the essential provider of reducing equivalents to 

the two main antioxidant pathways (Rydstrom, 2006, Leung et al., 2015). Importantly, NNT 

silencing led to a swift inhibition of cell proliferation (by > 60% in comparison to controls), 

with increased rates of apoptotic death. The association between excessive oxidative stress 
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and mitochondrial apoptosis has been well established in the literature (Martindale and 

Holbrook, 2002, Nair et al., 2009, Hampton and Orrenius, 1997, Garbarino et al., 2007, Gupta 

et al., 2012), but data on the effects of NNT loss on cellular proliferation and viability are 

scarce. Transient NNT silencing increased rates of apoptosis in PC12 (rat 

phaechromocytoma) cells (Yin et al., 2012). Stable NNT knockdown in human melanoma 

cells, another cancer type particularly vulnerable to oxidative stress, was associated with 

reduced cellular viability and high apoptotic rates in vitro, as well as deceleration of 

melanoma xenograft growth in mice (though the latter was statistically significant for only 

one of the two anti-NNT shRNAs that were used) (Gameiro et al., 2013). Meimaridou et al. 

reported high levels of apoptosis in the zona fasciculata of adrenals derived from NNT mutant 

mice, as well as in NCI-H295R cells stably transfected with shRNA against NNT in vitro; 

effects on cell proliferation were not explored in their study (Meimaridou et al., 2012). It is 

not clear whether the pronounced suppression of cell proliferation we observed with NNT 

knockdown can be ascribed entirely to the cumulative effects of increased apoptotic death 

(cytotoxicity), or whether NNT loss had an additional cytostatic effect, suppressing cell 

division. Although ROS have been typically associated with a stimulation of cellular 

proliferation, a number of in vitro models have demonstrated the opposite effect (suppression 

of cell division), in a complex relationship that may depend on the magnitude of ROS excess 

and/or tissue type (Gupta et al., 2012, Koka et al., 2010, Donadelli et al., 2007). NNT 

inhibition may also interfere with cellular proliferation in a ROS-independent way, curtailing 

the amount of NADPH available to fuel the voracious anabolic needs of malignant cells. 

 An additional interesting feature observed in KD SIRNA1 cells, also predicted by our 

hypothesis, is their sensitivity to chemically induced oxidative stress - even at sub-toxic doses 

of oxidising agents- as demonstrated by treatment with the superoxide-generating agent 
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paraquat. This finding is of translational importance, as oxidative stress induction is also a 

feature of a number of classic chemotherapy agents and is considered to contribute to their 

cytotoxic effect (Trachootham et al., 2009, Montero and Jassem, 2011). NNT inhibition may 

thus be envisaged as a meaningful strategy to sensitize ACC to such drugs. Synergy with 

mitotane would also appear theoretically plausible, as the latter has been associated with 

endoplasmic reticulum stress induction (Sbiera et al., 2015).  

Monitoring of cell growth in low-glucose media suggested that NNT KD renders ACC cells 

more sensitive to glucose deprivation. This corroborates previous work demonstrating 

diminution of cell proliferation in melanoma cells under low-glucose culture conditions 

(Gameiro et al., 2013). The underlying mechanism involved inhibition of glutamine utilisation 

in the TCA cycle; consequently, cells were more dependent on glucose as an alternative 

source of anabolic carbons. It should be noted, however, that our Metabolic Flux analysis did 

not demonstrate a difference in baseline glycolytic rates between KD SIRNA1 and SCR 

SIRNA cells, which seems to be at odds with the proliferation results. A potential explanation 

for this ostensible discrepancy arises if we consider cell proliferation as a relevant factor: KD 

SIRNA1 cells consume glucose at the same rate as the SCR SIRNA cells despite having 

lower proliferation rates and, consequently, lower overall anabolic needs. 

The effects of NNT silencing on NCI-H295R steroidogenesis were surprising and refuted our 

initial hypothesis. In the acute setting (siRNA knockdown) we observed a generalised 

stimulation of steroidogenesis leading to increased production of cortisol and 

androstenedione, respectively the main glucocorticoid and androgen metabolites excreted by 

these cells. This is contrary to what one would have anticipated considering that 

mitochondrial NADPH is an essential cofactor to CYP11A1, CYP11B1 and CYP11B2. 
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Furthermore, most of the few published studies exploring the relationship between ROS and 

steroidogenesis (mostly on testicular Leydig cell tumour cells) have reported down-regulation 

of steroidogenic enzymes with oxidative stress (most notably CYP11A1) (Diemer et al., 2003, 

Stocco et al., 1993, Prasad et al., 2013, Behrman and Aten, 1991, Stocco and Ascoli, 1993, 

Zhao et al., 2012) (Diemer et al., 2003, Stocco et al., 1993, Prasad et al., 2013, Behrman and 

Aten, 1991, Stocco and Ascoli, 1993, Zhao et al., 2012) (Diemer et al., 2003, Stocco et al., 

1993, Prasad et al., 2013, Behrman and Aten, 1991, Stocco and Ascoli, 1993, Zhao et al., 

2012) (Diemer et al., 2003, Stocco et al., 1993, Prasad et al., 2013, Behrman and Aten, 1991, 

Stocco and Ascoli, 1993, Zhao et al., 2012) (Diemer et al., 2003, Stocco et al., 1993, Prasad et 

al., 2013, Behrman and Aten, 1991, Stocco and Ascoli, 1993, Zhao et al., 2012) (Diemer et 

al., 2003, Stocco et al., 1993, Prasad et al., 2013, Behrman and Aten, 1991, Stocco and 

Ascoli, 1993, Zhao et al., 2012) (Diemer et al., 2003, Stocco et al., 1993, Prasad et al., 2013, 

Behrman and Aten, 1991, Stocco and Ascoli, 1993, Zhao et al., 2012). Interestingly, Zhao et 

al. demonstrated a biphasic relationship between ROS and steroidogenesis, which suggests 

that the direction of the effect may be dose-dependent (Zhao et al., 2012)(Zhao et al., 

2012)(Zhao et al., 2012)(Zhao et al., 2012)(Zhao et al., 2012)(Zhao et al., 2012)(Zhao et al., 

2012). Two relevant studies on NCI-H295R cells focused on ALADIN, a gene whose 

dysfunction is associated with a constellation of adrenal insufficiency, neurological disorders 

and oxidative stress. Prasad et al. reported deficient cortisol synthesis and suppressed 

expression of CYP11B1 and StAR with ALADIN knockdown in these cells; CYP11A1 did 

not appear to be affected (Prasad et al., 2013). These results were contradicted by Juhlen et 

al., who found that ALADIN knockdown in H295R-S1 (substrain 1) cells only has an impact 

on the CYP450 type II microsomal enzymes CYP17A1 and CYP21A2, and their electron 

donor POR. Steroidogenically, only 17-hydroxyprogesterone, 11-deoxycortisol and 
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androstenedione were significantly suppressed, with no demonstrable effect on cortisol 

production (Juhlen et al., 2015).  

Of note, the enhanced steroidogenic output we observed would be expected to incur a 

substantial oxidative burden on ACC cells, as CYP11B1 and, to a lesser extent, CYP11A1 

generate ROS through electron leakage as detailed in Chapter 1. Therefore, this response 

appears counter-intuitive from a redox economy standpoint. A potential explanation is that the 

observed stimulation of steroidogenesis is but an incidental event in the context of a 

generalized acute-phase response to an insult (NNT loss) that threatens cell viability. The 

possibility of off-target siRNA effects contributing to the observed phenotype cannot be 

excluded. Despite the limitations of in vitro work, NCI-H295R cells remain the most widely 

used model to study disorders of adrenal steroidogenesis. To the extent that this model can 

recapitulate in vivo adrenal physiology, our data suggest that the degree of NADPH shortage 

generated by NNT loss is not limiting for adrenal steroidogenesis; furthermore, it indicates 

that oxidative stress does not functionally inhibit steroidogenesis in the human adrenal cortex. 

Mechanistic conjectures aside, our results indicate that there is no role for NNT targeting to 

inhibit adrenal steroidogenesis. 

Finally, within the same framework we also explored the anti-tumour potential of alternative 

antioxidant targets, focusing on the glutathione and thioredoxin pathways. We used 

buthionine sulfoximine (BSO) to inhibit glutathione synthesis. BSO is a specific and 

competitive inhibitor of γ-glutamylcysteine synthetase, the rate-limiting enzyme in 

glutathione synthesis (Bailey, 1998). It has long been known that intratumoural glutathione 

levels correlate with resistance to cytotoxic chemotherapy (Traverso et al., 2013). BSO has 

exhibited anti-tumour effects (inhibition of cell proliferation and/ or increased rates of 



Chapter 3                                Effects of transient NNT knockdown on ACC cell metabolism, proliferation and steroidogenesis  

151 
 

apoptosis) against neuroblastoma, ovarian cancer, breast cancer, pancreatic cancer and small 

cell lung cancer in vitro (Bailey, 1998, Maeda et al., 2004, Schnelldorfer et al., 2000, Tagde et 

al., 2014, Anderson et al., 1999).  It can also augment cell sensitivity to oxidative stress, 

especially in combination with alkylating agents such as melphalan (Dusre et al., 1989). In 

vivo, a combination of intravenous BSO and melphalan has been used in three phase I clinical 

trials, with good tolerability except for a possibly increased incidence of melphalan-induced 

bone marrow toxicity (Bailey et al., 1994, Bailey, 1998, O'Dwyer et al., 1996, Bailey et al., 

1997). Successful intratumoural GSH depletion was demonstrated in these studies. More 

recently, the same regimen was administered to 38 children with refractory neuroblastoma, 

inducing a clinical response in six of them (Anderson et al., 2015). In our work, we observed 

a suppression of  NCI-H295R cell growth with doses ³ 200 µΜ, i.e. at a dose that is clinically 

attainable in plasma without substantial toxicity (Bailey, 1998). These findings suggest that 

ACC is susceptible to the anti-tumour effects of glutathione depletion.  

Auranofin, a gold complex-based agent able to inhibit thioredoxin reductase, was used to 

evaluate the sensitivity of NCI-H295R cells to thioredoxin pathway abrogation. Auranofin 

was initially applied in the treatment of rheumatoid and psoriatic arthritis in the ‘80s, by 

virtue of its versatile anti-inflammatory properties [activation of mitogen-activated protein 

kinases (MAPK), inhibition of nuclear factor kappa-light-chain-enhancer of activated-B-cells 

(NF-κB) and suppression of pro-inflammatory cytokines] (Madeira et al., 2012). Chronic 

administration is very well tolerated, with similar dropout rates to placebo (Glennas et al., 

1997). More recently, attention shifted to the drug’s newfound ability to inhibit thioredoxin 

reductase (cytosolic and mitochondrial), thereby inducing oxidative stress and inhibiting 

DNA synthesis (Brown et al., 2010, Cox et al., 2008, Hill et al., 1997). This has translated 

into cytotoxicity against a number of cell lines in vitro (e.g. melanoma, leukemia, lung 
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cancer), most notably through mitochondrial apoptosis (Gandin et al., 2010, Li et al., 2016, 

Sobhakumari et al., 2012, Weir et al., 2012, Park and Kim, 2005).  Of note, auranofin has the 

additional ability to interfere with selenium metabolism, potentially also causing some 

inhibition of glutathione peroxidase (Talbot et al., 2008). In vivo, efficacy was demonstrated 

against non-small cell lung cancer in a xenograft model (Li et al., 2016).  Auranofin is 

currently being investigated in clinical trials against leukemia, non-small cell lung cancer and 

ovarian cancer (www.clinicaltrials.gov).  

Taken together, our in vitro work supports the value of antioxidant targeting as a novel 

therapeutic approach to suppress tumour growth in ACC. Further work, e.g. in the context of 

in vivo animal studies, will be required to confirm these promising results and identify the 

most effective of available targets. 
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4.1 Introduction 

In the previous chapter, we explored the acute ramifications of NNT silencing on ACC redox 

balance, mitochondrial respiration, cell proliferation/ viability and resistance to oxidative 

stress. We ascertained that NNT knockdown impairs cellular redox balance, suppresses cell 

proliferation, induces apoptosis and renders cells more susceptible to chemically-induced 

oxidative stress. We also observed a paradoxical stimulation of steroidogenesis. Our findings 

support the value of NNT targeting as a novel therapeutic approach to control ACC 

proliferation and/ or enhance the cytotoxic activity of chemotherapy agents that are associated 

with oxidative stress. A limitation of our model was that it can only outline the short-term 

effects of NNT knockdown, as siRNA-induced gene silencing only lasts a few days. The 

plasticity of malignant cells and their notorious adaptability to exogenous insults is well 

known to any clinical or experimental oncologist and constitutes a major obstacle to the 

development of durable treatments (Watson, 2013).  The eventual development of resistance 

to cytotoxic chemotherapy is all but inexorable in the vast majority of solid organ 

malignancies, ACC being no exception (Gupta et al., 2012, Fassnacht et al., 2012). 

Interestingly, redox adaptation (that is the ability of cells to adapt to higher ROS scavenging 

requirements) is now believed to comprise an important part of the molecular changes 

mediating chemotherapy (and radiotherapy) resistance (Gupta et al., 2012, Trachootham et al., 

2009, Watson, 2013). Indeed, cell resistance to pro-oxidant chemotherapy agents such as 

doxorubicin, paclitaxel or platinum-based agents has been shown to correlate with the 

endogenous antioxidant capacity of various cell lines in vitro (Ramanathan et al., 2005, 

Hoshida et al., 2007, Trachootham et al., 2009).   Redox adaptation, achieved through 

successful stimulation of various antioxidant pathways, can boost malignant cell survival not 

only by neutralising chemotherapy or radiotherapy-induced oxidative stress but also by 
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inhibiting cell death signalling (such as caspases), stimulating pro-survival molecules (such as 

Bcl-2) and augmenting DNA repair (Trachootham et al., 2009).  

In this chapter, we will try to delineate the long-term effects of NNT loss on ACC cell 

metabolism, proliferation and steroid synthesis, establishing whether progressive redox 

adaptation is possible and to what extent this can alter the response we described in the 

transient silencing model of Chapter 3. 
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4.2 Methods 

4.2.1 Research strategy 

In order to characterise the chronic effects of NNT silencing on NCI-H295R cells, we used a 

stable, short-hairpin RNA (shRNA)-mediated knockdown system established by lentiviral 

transfection. Mirroring the experimental work undertaken with the transient knockdown 

model, we evaluated the chronic effects of NNT knockdown on: 

a) Cellular redox balance, as reflected on the ratio of reduced to oxidised glutathione  

b) Mitochondrial bioenergetics, focusing on mitochondrial oxygen consumption rates 

and glycolytic rates (extracellular flux analysis – Seahorse XF) 

c) Cellular proliferation, using longitudinal assessment of cell numbers under routine cell 

culture conditions as well as under metabolic stressors (oxidative stress, glucose 

deprivation) 

d) Cellular apoptosis, measuring caspase 3 and 7 activity  

e) Steroidogenesis, by steroid profiling in cell media (LC-MS/MS) 

All experiments were paired, NNT knockdown cells being plated and treated alongside their 

controls. 

 

4.2.2 Lentiviral transfection for shRNA knockdown 

ShRNAs are oligonucleotides consisting of two complementary 19–22 base pair RNA 

sequences connected by a short, hairpin-like loop of 4–11 nucleotides. Stable expression of 

shRNAs against the gene of interest within cells is accomplished through transfection with 
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genetically modified lentiviruses containing plasmids into which a shRNA-coding sequence 

has been introduced. The plasmid integrates into the host cell genome, allowing continuous 

transcription of shRNA. Within the cytosol, shRNA molecules are recognized by an 

endogenous Dicer enzyme which processes the shRNAs into siRNA duplexes; following this, 

silencing of the target gene is effected through the RNA interference mechanism described in 

Chapter 3 (Moore et al., 2010).  

Lentiviruses belong to the the Retroviridae family and are widely used to transfect 

mammalian cell lines in vitro by virtue of their unique biological properties, most notably 

their ability to infect both dividing and non-dividing cells with high efficiency and  integrate 

permanently into the host cell genome (Ramezani and Hawley, 2002). Most lentiviral vectors 

are based on the Human Immunodeficiency type I Virus (HIV-1). Plasmids used in lentiviral 

transfection often also possess an antibiotic resistance gene which allows selection of 

transfected from non-transfected cells and a green fluorescence protein (GFP) allowing 

visualization of transfected cells in fluorescent microscopes (https://www.addgene.org). To 

increase the safety of lentiviral use, the genes required for viral replication are distributed in 3 

plasmids (2nd generation lentiviral systems): 

- A plasmid expressing the viral envelope 

- A packaging plasmid containing the Gag, Pol, Rev and Tat genes, required for viral 

replication 

- A plasmid containing the sequence encoding the shRNA of interest, flanked by long 

terminal repeats (LTRs) that facilitate integration into the genome of host cells. 

(https://www.addgene.org). 

For this project, the following plasmids were used: 
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a) Pmd2.g (https://www.addgene.org/12259/) 

Purpose:  VSV-G envelope expressing plasmid (2nd generation) 

This plasmid expresses the VSV-G gene under the control of the human CMV promoter. The 

gene encodes the Vesicular Stomatitis Virus envelope G glycoprotein (VSV-G) to allow 

production of a pseudotyped retrovirus with a broad host range. It also contains an ampicillin 

resistance gene to allow selection of the plasmid in Escherichia Coli.  

b) PCMV delta r8.2  (https://www.addgene.org/12263/) 

Purpose: Packaging lentiviral plasmid  

This is a packaging plasmid (2nd generation) containing the HIV-1 gag, pol, tat and rev coding 

sequences, which encode the viral core proteins and replication enzymes required for the 

formation of the lentiviral structure and for replication and integration of the lentivirus. 

Expression is controlled by the CMV promoter. The plasmid also encodes an HIV-1 Rev 

response element (RRE) to allow Rev-dependent expression of the tet genes. An ampicillin 

resistance gene is also included to allow selection of the plasmid in E.coli. An SV40 early 

promoter and origin sequence facilitate high-level expression of the selection marker and 

episomal replication in cells expressing the SV40 large T antigen. 

c) pGIPZ lentiviral vectors expressing shRNA against NNT (RHS4430-98851990; 

RHS4430-98913600; RHS4430-98524425; RHS4430-101033169 RHS4430-

101025114 from Dharmacon) (http://dharmacon.gelifesciences.com) 

 

Purpose: lentiviral Gateway destination vectors, shRNA expression 
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These are the lentiviral expression vectors which will express the shRNA of interest in the 

transfected mammalian cells. They include 2 bacteriophage-derived recombination sites; 

puromycin resistance genes for plasmid selection in mammalian cell cultures and bacterial 

cultures, respectively; a turboGFP (green fluorescent protein)-encoding sequence for 

microscopic confirmation of transfection; an human CMV promoter driving strong trans-gene 

expression; a packaging sequence; a Rev response element to enhance packaging efficiency. 

For additional safety, the 3' long terminal repeat (LTR) is self-inactivating. A mix of the 5 

different plasmids detailed above was used, all containing anti-NNT shRNAs. Plasmids 

containing scramble, nonsense shRNA (SCR ShRNA) were used separately to generate 

negative controls.  

All plasmids were kindly donated by Dr Eirini Meimaridou and Dr Lou Metherell from 

Queen Mary University of London, in the context of collaborative work.  

Plasmids were applied to 6-well plates containing HEK-293T (human embryonic kidney 

tumour) cells. HEK-293T cells contain the SV-40 large T-antigen, thus allowing the fast 

replication of plasmids containing the SV40 reference sequence. Cells were transfected in 

Opti-MEM reduced serum media (Thermo Fisher), using the following plasmid quantities 

(per well) and employing lipofectamine (Thermo Fisher) as transfection vehicle: 

a) Pmd2.g: 500 ng 

b) PCMV delta r8.2: 1,000 ng 

c) ShRNA-expressing plasmids: 1,500 ng 

d) Lipofectamin 2000 Reagent (Thermo Fisher): 9 µl 

Cells were incubated overnight at 37oC; the next day, media was changed to normal HEK-

293T culture media [Dulbecco’s Modified Eagle Medium (DMEM - Gibco, Thermo Fisher) 



Chapter 4                                    Effects of stable NNT knockdown on ACC cell metabolism, proliferation and steroidogenesis  

160 
 

supplemented with 10% Fetal Bovine Serum (Sigma), 2 mM L-glutamine (Sigma) and 1% 

Penicillin-Streptomycin (Sigma)]. After 24h, media was again changed to NCI-H295R cell 

culture media (DMEM-F12 supplemented with 2.5% Nu serum, 1% ITS+ Premix and 1% 

Penicillin-Streptomycin). The next day, media was collected, centrifuged at 1200 rpm, filtered 

using a 0.2 µm filter and applied to NCI-H295R cells, which had been plated at 6-well plates 

at 70-80% confluence. At the same time, fresh NCI-H295R media was added to the HEK-

293T wells. The next day, the same process was repeated and virus-containing media was 

again applied to the same NCI-H295R cells. After 3-day incubation, transduction efficiency 

on microscopic evaluation (% fluorescent cells) exceeded 80%. At that point, selection with 

Puromycin (4 µg/ml) was commenced, boosting the percentage of fluorescent cells to over 

90-95%. 

All subsequent experiments/ assays were undertaken from 4-12 weeks post-transfection 

(passage 17-30, passage from transfection 5-18). 4 weeks was the earliest time-point for 

which the growth of a cell population sufficient to facilitate the desired experimental work 

was accomplished. Cells transfected with shRNA against NNT will hence be referred to as 

KD SHRNA cells, while their controls transfected with non-sense, scramble shRNA will be 

referred to as SCR SHRNA cells. Puromycin was regularly added to cell media for 1-week 

periods to maintain high percentage of transfected cells, but was not used during any of the 

experiments described below. 
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4.2.3 Redox balance assessment 

To assess the effect of NNT knockdown on cellular redox balance, KD SHRNA cells and 

SCR SHRNA cells were loaded onto white opaque-walled, flat-bottomed 96-well plates at a 

concentration of 15,000 cells/well. After 24 hours, the intracellular ratio of reduced/ oxidised 

glutathione was measured (in triplicates) using the GSG/GSSG-GloTM assay (Promega) as 

described in Chapter 2. Menadione was applied to a pair of wells as positive control (potent 

inducer of oxidative stress) 2h before the assay. 

 

4.2.4 Metabolic Flux Analysis 

KD SHRNA and SCR SHRNA cells of the same passage growing in flasks were collected by 

trypsinisation and cell density was established by microscopy. Cells were loaded to Seahorse 

XF 24-well microplates at a loading density of 100,000 cells/well (media volume 100-150 µl). 

The next day, metabolic flux analysis was completed as described in Chapter 2. 

 

4.2.5 Proliferation time-courses 

Assessment of cellular proliferation and viability was performed in flat-bottomed, 

transparent-walled 96-well plates. At the beginning of each proliferation series, KD SHRNA 

and SCR SHRNA cells were loaded at a concentration of 8,000 cells/ well, in 100 µl of cell 

media. This loading concentration was selected after optimisation experiments comparing 

proliferation rates observed with various loading concentrations (5,000 – 15,000 cells/ well, 

data not shown). The next day, media was removed carefully to avoid disruption of plated 

cells and replaced by 200 µl of fresh media. One plate was frozen down at -80OC to provide 
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baseline cell numbers (t=0 h). Cells were cultured for a further 96 h; media was replenished at 

48h by removal of 100 µl old media and addition of 100 µl fresh media (per well). At least 5 

wells per group (i.e. knockdown or control) were used in each time-course. At the end of the 

time-course, cell numbers were measured using DNA fluorescence, as described earlier 

(Chapter 2). Proliferation rates were established using the formula 

 Proliferation rate (%) = %(fluorescence at 96 h – fluorescence at 0 h)/ fluorescence at 0 h 

In some time-courses, concurrent drug treatment or special growth media was applied to 

evaluate cellular proliferation and viability under special conditions (chemically-induced 

oxidative stress, glucose deprivation). Treatment was started 24h post cell loading (baseline 

time-point) and lasted 96 h. Treatment courses applied in the course of this project included: 

a) Paraquat (N,N′-dimethyl-4,4′-bipyridinium dichloride, Sigma). Paraquat is a herbicide 

which is widely used as a chemical inducer of oxidative stress (superoxide generation) 

(Lei et al., 2014). Paraquat was administered for a total duration of 96 h and was 

replenished once in cell media during the proliferation course (48 h). Doses ranged 

from 10-30 µM. Stock solution of paraquat in sterile-filtered dH2O was stored at 4oC. 

b) Glucose-deplete media (DMEM, L-Glutamine (+), glucose 1 g/dl, sodium pyruvate –  

Gibco, Thermo Fisher). Media was supplemented with 10% Foetal Bovine Serum 

(Sigma) and 1% ITS+ premix (BD Biosciences). Glucose-deplete media was 

administered for a total duration of 96 h and was replenished once during the 

proliferation course (48 h). 

 



Chapter 4                                    Effects of stable NNT knockdown on ACC cell metabolism, proliferation and steroidogenesis  

163 
 

4.2.6 Apoptosis  

To evaluate the effects of NNT knockdown on cellular apoptosis rates, KD SHRNA and SCR 

SHRNA cells were loaded to opaque-walled, flat-bottomed 96-well plates (Perkin-Elmer) at a 

loading concentration of 8,000 cells/well (10 wells/ group). Media was refreshed after 48 h by 

addition of 100 µl of cell media. Caspase activity was measured as described in Chapter 2 

using 4 wells (replicates) per transfection group. At the end of the assay, plates were frozen at 

-80oC and relative cell density in the remaining wells was assessed the next day using the the 

CyQuant® Proliferation Assay Kit (Thermo Fisher). Results from the proliferation assay were 

deployed to normalise the caspase assay results. 

 

4.2.7 Steroid profiling by Liquid Chromatography/ Tandem mass spectrometry 

To outline the impact of NNT knockdown on steroid production, stably transfected NCI-

H295R cells were loaded to 6-well plates at a concentration of 500,000 cells/ well and 

incubated at 37oC overnight. The next day, media was carefully removed and replaced by 1 

ml of serum-free media (DMEM/F12 supplemented with 1% ITS+ premix and 1% Penicillin-

Sterptomycin). Cells were incubated for 48 h at 37oC. At the end of the incubation, media was 

collected in silinised glass tubes and stored at -20oC. Protein was harvested as described in 

Chapter 2 and used to standardise the results to protein concentration. Steroid extraction from 

stored cell media was subsequently completed as described in Chapter 2.  
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4.3 Results 

4.3.1 NNT silencing by shRNA transfection 

The efficacy and duration of NNT silencing in NCI-H295R cells transfected with shRNA in 

6-well plates was evaluated by Western Blotting and Real-Time PCR. We observed consistent 

suppression of NNT expression by > 80% in cells transfected with anti-NNT shRNA (KD 

SHRNA) in comparison to cells transfected with scramble, non-sense shRNA (SCR SHRNA). 

Gene silencing at a translational level was confirmed by Western Blotting, demonstrating all 

but complete elimination of the corresponding band (Fig. 4-1A). Real-time PCR was used to 

measure NNT expression at a transcriptional level 2-16 weeks post-transfection (Fig. 4-1B). 

The durability of NNT silencing was confirmed by repeated Real-Time PCR/ Western 

Blotting at regular intervals and microscopic evaluation confirming green fluorescence 

emission by > 90% of cultured cells. 
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4.3.2 Cellular redox balance 

The effect of stable NNT silencing on NCI-H295R cellular redox balance was determined by 

measurement of the cellular ratio of reduced to oxidised glutathione (GSH/GSSG ratio), 96 h  

post-transfection (GSH/GSSG-GloTM assay, Promega). Lower GSH/GSSG ratios suggest 

higher intracellular levels of oxidative stress and compromised residual antioxidant capacity. 

Contrary to the phenotype observed in the transient KD model (where acute NNT loss was 

associated with a decrease in the ratio of reduced/ oxidised glutathione), we observed no 

Figure 4-1. Assessment of NNT knockdown in shRNA-transfected NCI-H295R cells by Real-

Time PCR and Western Blotting. A) Western Blotting comparing NNT expression in cells 

transfected with SCR ShRNA vs KD ShRNA; B) Comparison of NNT mRNA expression in 

cells transfected with scramble, non-sense shRNA (SCR SHRNA, negative control) and 

shRNA against NNT (KD SHRNA). Results are expressed as fold-change to control 

(****p<0.0001; n>10 independent experiments).  
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significant differences between the redox status of SCR SHRNA and KD SHRNA cells 

[median (IQR) GSH/GSSG ratio in KD SHRNA cells normalised to SCR SHRNA cells 0.96 

(0.83 – 1.03); p>0.05, n=10 independent experiments] (Fig. 4-2). This suggests development 

of redox adaptation with time in this cell model to compensate for NNT loss.  

 

 

 

4.3.3 Mitochondrial bioenergetics 

Changes in mitochondrial respiration were evaluated by direct measurement of cellular 

oxygen consumption, using Extracellular Flux analysis (Seahorse XF analyser). We observed 

a statistically significant increase in baseline oxygen consumption rates (OCR) in KD 

SHRNA cells in comparison to SCR SHRNA cells [median (IQR) OCR for SCR SHRNA 

cells 10 (4.3-11) pmol/l/µg protein, KD SHRNA cells 15 (7.8-16.5) pmol/l/µg; p<0.05, n=7 

independent experiments]. This difference was sustained in response to successive 

Figure 4-2 GSH-GSSG ratio in stably transfected NCI-H295R cells. No significant difference 

was observed between KD SHRNA and SCR SHRNA cells. Menadione: NCI-H295R cells 

treated with Menadione (40 µM) for 2 h as positive control. Bars represent median ± IQR 

values (p>0.05, n=10 independent experiments).    
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administrations of mitochondrial respiration inhibitors (oligomycin, FCCP, Antimycin A & 

Rotenone), though narrowly missing statistical significance (Fig. 4-3A). Similar to the 

transient KD model, we observed that the maximal oxygen consumption displayed post-FCCP 

was similar to the baseline OCR of NCI-H295R cells, although post-FCCP OCRs exhibited 

considerable variability. There was also a trend towards higher baseline extracellular 

acidification rates (ECAR), representative of glycolytic rates, with stable NNT KD (1.85 ± 

0.24 mpH/min/protein for SCR SHRNA cells vs 2.3 ± 0.30 mpH/min/protein for KD SHRNA 

cells; p=0.063, n=7) (Fig. 4-3B). 
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Figure 4-3 A) Seahorse XF24 analysis of cellular oxygen consumption rate (OCR) in stably 

transfected NCI-H295R cells, at baseline and after successive application of three 

mitochondrial respiration inhibitors. Results were standardised for cell number using 

protein content as a surrogate marker. Bars represent median ± IQR values. KD SHRNA 

cells displayed higher baseline OCR than their controls. O/mycin: Oligomycin; FCCP: 

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; A&R: Antimycin A plus Rotenone. 

*P<0.05, n=7 independent experiments.  B) Baseline extracellular acidification rate 

standardised for protein content. Bars represent mean ± SEM values. A tendency towards 

higher ECAR was observed in KD SHRNA cells, without reaching statistical significance 

(p=0.06, n=7). 
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4.3.4 Cellular proliferation 

Cellular proliferation was assessed over a 96h period; repeat experiments were conducted 

from 4-12 weeks from initial transfection. Proliferation rates were provided by the following 

ratio: %[(DNA fluorescence emitted at end point - DNA fluorescence emitted at baseline)]/ 

DNA fluorescence emitted at baseline. In this model, NNT knockdown was also associated 

with slower proliferation, but the effect was evidently less marked than the one observed in 

the acute knockdown model (proliferation rate of SCR SHRNA cells 164% ± 17%, KD 

SHRNA cells 135 ± 17%; p<0.05, n=13 independent experiments) (Fig. 4-4).  

 

 

 

  

Figure 4-4 Proliferation rate of NCI-H295R cells over a 96h period of growth, measured by 

DNA fluorescence. KD SHRNA cells displayed significantly lower proliferation than SCR 

SHRNA cells. Proliferation rate = %[(DNA fluorescence emitted after 96 h - DNA 

fluorescence emitted at baseline)/ DNA fluorescence emitted at baseline] (*p<0.05, n=13 

independent experiments). 
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4.3.5 Apoptosis 

We explored the effect of chronic NNT silencing on cell death measuring intracellular activity 

of caspase 3 and 7, effector caspases of cellular apoptosis. In antithesis with our findings in 

the transient KD model, we observed no effect of NNT knockdown on cellular apoptosis rates 

with chronic gene silencing [median (IQR) caspase activity ratio normalised for cell number 

KD SHRNA vs SCR SHRNA cells 0.925 (0.74-1.15); p>0.05, n=4 independent experiments] 

(Fig. 4-5). 

 

 

4.3.6 Proliferation under chemically induced oxidative stress and glucose deprivation 

Paraquat was administered over a 96 h period to establish whether chronic NNT silencing 

renders NCI-H295R cells more sensitive to chemically induced oxidative stress, as was the 

case with acute NNT knockdown. We observed no difference in cellular proliferation between 

KD SHRNA and SCR SHRNA cells with either low- or high-dose paraquat exposure (Fig. 4-

Figure 4-5 Effect of stable NNT knockdown on cellular apoptosis, measured by determination 

of caspase 3 and 7 activity. No significant difference was observed in apoptotic rates between 

KD SHRNA and SCR SHRNA cells (p>0.05, n=4 independent experiments). 
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6). These results are congruous with the evaluation of baseline redox balance in the same 

model, which also revealed no difference between KD and control cells.  

 

 

We also explored the effect of glucose deprivation on ACC cell proliferation, culturing KD 

SHRNA and SCR SHRNA cells in low-glucose media. We observed that proliferation was 

similarly suppressed in the two groups of cells, with no statistically significant difference 

between them (Fig. 4-7).  

 

Figure 4-6 Effect of stable NNT KD on cellular response to chemically-induced oxidative 

stress. The pro-oxidant agent paraquat was administered to KD SHRNA and SCR SHRNA 

cells for 96 h at incremental doses (10, 20 and 30 µΜ) and cell proliferation was assessed. No 

difference was observed between the two groups (p>0.05, n=13 independent experiments). 
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Figure 4-7 Proliferation of stably transfected NCI-H295R cells in low-glucose media. No 

significant difference was observed between KD SHRNA and SCR SHRNA cells (p>0.05, n=5 

independent experiments). 

 

 

4.3.7 Steroidogenesis 

The compensated phenotype we observed with chronic (shRNA-mediated) NNT knockdown 

extended to steroidogenesis. We observed no statistically significant difference in cortisol 

(SCR SHRNA cells 0.039 ± 0.008 nM/ µg protein, KD SHRNA 0.049 ± 0.005 nM/ µg 

protein; p>0.05, n=6 independent experiments) or androstenedione synthesis (SCR SHRNA 

cells 0.44 ± 0.05 nM/ µg protein, KD SHRNA 0.41 ± 0.05 nM/ µg protein; p>0.05, n=6 

independent experiments) between KD SHRNA and SCR SHRNA cells (Fig. 4-8), although a 

trend towards higher cortisol production with NNT KD was noted. Likewise, activity of 

CYP11B1, CYP21A2 and CYP17 was not significantly different between the two groups, 

although a trend towards higher CYP11B1 and CYP21A2 activity for KD SHRNA cells was 

noted (Table 4-1). 
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Table 4-1 Steroidogenic enzyme activity in SCR SIRNA and KD SIRNA cells, derived from 

product-to-substrate ratios (LC-MS/MS). Results are expressed as mean ± SEM values (n=6 

independent experiments) 

 

Figure 4-8 Effects of stable NNT knockdown on adrenal glucocorticoid (cortisol) and 

androgen (androstenedione) synthesis. No differences were observed between KD SHRNA and 

SCR SHRNA cells (p>0.05, n=6 independent experiments). 

Enzyme Product/  
substrate ratio 

SCR SiRNA 
(nM/µg) 

KD SiRNA1 
(nM/µg) 

P value 

CYP11B1 cortisol/ 
11-deoxycortisol 

0.03 ± 0.005 0.04 ± 0.006 p>0.05 

CYP21A2 11-deoxycortisol/  
17-OH- 
progesterone 

18.9 ± 4.4 22.9 ± 5 p>0.05 

CYP17A1 androstenedione/  
17-OH-
progesterone 

3.8 ± 0.8 3.8 ± 0.6 p>0.05 

HSD11B1 cortisol/ cortisone 6.6 ± 3.7 7.3 ± 2.4 p>0.05 
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4.4 Discussion 

The longer-term effects of NNT loss on ACC cells, as delineated in the stable knockdown 

model we generated, were disparate from the ones encountered in the acute setting. 

Importantly, with long-term culture (4-12 weeks) under constant NNT silencing, NCI-H295R 

cells managed to restore their redox balance. This compensation abrogated the pro-apoptotic 

early impact of NNT loss. Interestingly, a persistent proliferative handicap was demonstrated, 

though this was less marked than the one observed in the acute setting. Extracellular flux 

analysis revealed higher rates of oxygen consumption in KD SHRNA cells, as well as a trend 

towards higher glycolytic rates. This response may reflect higher energy needs. Of note, these 

results contradict the findings of Yin et al. and Fuzisawa et al., who reported suppressed 

oxidative phosphorylation in response to NNT loss in rat phaeochromocytoma cells and 

human lymphocytes, respectively (Yin et al., 2012, Fujisawa et al., 2015).  

Said compensation appears to have developed during the first four weeks of culture post-

transfection. Successful knockdown was first confirmed 2 weeks post transfection, but 4 

weeks was the first time point at which an adequate bulk of transfected cells had been grown 

to allow repeat experiments. We observed no differences in the metabolic, proliferative or 

steroidogenic phenotype of cells from 4-12 weeks post-transfection. 

Redox adaptation to chronic oxidative stress has been previously described in tumour models 

in vitro; this process is driven by the strong selective pressure of oxidative toxicity and 

promoted by the genomic instability (oxidative DNA damage/ impaired DNA repair) which 

characterises the oxidised intracellular microenvironment (Trachootham et al., 2009). The 

adaptive response is often orchestrated by versatile transcription factors, most notably Nrf2 

and Nf-κB, which can up-regulate the expression of core antioxidant genes (superoxide 
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dismutase, catalase, glutathione pathway, thioredoxin pathway). Inactivation of apoptotic 

factors (e.g. caspases) and/or stimulation of pro-survival molecules (e.g. Bcl2) has also been 

described (Trachootham et al., 2009, Sullivan and Graham, 2008, Chen et al., 2007). In the 

absence of NNT, potential compensatory mechanisms that may mediate redox adaptation 

include alternative NADPH resources (e.g. malic enzyme, isocitrate dehydrogenase, 

tetrahydrofolate reductase) or NADPH-independent ROS scavengers (e.g. catalase). Ongoing 

work, which has not been completed at the time of submission of this thesis, involves 

comparative analysis of the complete molecular landscape that is shaped by acute and chronic 

NNT silencing, through whole-transcriptome RNA sequencing and whole metabolome 

analysis. This is expected to provide useful insights illuminating the adaptive cell response to 

NNT loss. 

It is noteworthy that no chronic impact of NNT loss on steroidogenesis was apparent in this 

model, completing the picture of successful metabolic adaptation. These results confirm that 

NNT deficiency does not functionally inhibit steroidogenesis as a result of the compromised 

NADPH supply within the mitochondria. This finding could be explained either by 

compensatory up-regulation of alternative NADPH resources or because the proportion of 

mitochondrial NADPH that is contributed by NNT is not high enough to constitute a limiting 

factor for steroidogenic monooxygenases. On the basis of our results, it appears most likely 

that the adrenal insufficiency of NNT-deficient patients is due to oxidative adrenocortical cell 

damage, which could potentially evolve already in utero. Of relevance, pathways with an 

integral role in adrenocortical development during embryogenesis (e.g. Sonic Hedgehoc 

pathway) can be disrupted by oxidative stress (Xiao et al., 2015).  
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Overall, our in vitro work suggests that NNT targeting as a treatment strategy in ACC merits 

further exploration with in vivo pre-clinical models (e.g. xenograft mouse models). It is 

difficult to predict whether the transient KD or the stable KD model better reflects the anti-

tumour potential of NNT silencing in vivo, but it is worth noting that the anti-proliferative 

effect was maintained even with chronic gene silencing, if to a lesser degree. Inducible 

knockdown may provide the most suitable xenograft model. An alternative option would be to 

employ pharmacological inhibitors of NNT. A caveat here is that although a number of 

inhibitors have been described in the literature (adenosine derivatives, palimityl-CoA 

derivatives, dicyclohexylcarbodiimide, dethylpyrocarbonate), all available data stem from in 

vitro studies (Phelps and Hatefi, 1981, Rydstrom, 1972). A major advantage of NNT targeting 

is the anticipated low toxicity of such an approach, given the adrenal-specific clinical 

phenotype of patients with NNT mutations. 
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5.1 Introduction 

Adrenocortical carcinoma is a rare (incidence 1-2 cases/million/year) but aggressive 

malignancy (Kebebew et al., 2006, Libe et al., 2015). Disease recurrence rates are high, 

exceeding 50% even in patients with microscopically complete (R0) resection (Pommier and 

Brennan, 1992, Stojadinovic et al., 2002). Therefore, vigilant surveillance of all operated 

patients by regular cross-sectional imaging is essential for several years (Libe, 2015, 

Fassnacht et al., 2013, Else et al., 2014). Although the optimal surveillance protocol has yet to 

be established, a common approach in expert centres (including University Hospitals 

Birmingham) involves three-monthly CT scans (thorax and abdomen) in the first two post-

operative years, six-monthly CT scans in the next three years and annual scans in years 6-10 

post-operatively. This is associated with considerable costs, prolonged radiation exposure and 

frequent diagnostic ambiguity in early stages of recurrent/ metastatic disease (Cawood et al., 

2009). Early detection of disease recurrence is important, as it may allow either radical re-do 

surgery in cases of limited metastatic disease volume, or early institution of mitotane and/or 

cytotoxic chemotherapy, potentially prolonging survival (Libe, 2015, Else et al., 2014, 

Erdogan et al., 2013, Datrice et al., 2012, Mihai, 2015, Schulick and Brennan, 1999). The 

number of metastatic sites at diagnosis of recurrent disease has been shown to be an 

independent prognostic factor (Erdogan et al., 2013, Assie et al., 2007). 

Most ACCs (45-70%) are biochemically active, usually presenting an inefficient 

steroidogenic pattern dominated by steroid precursor metabolites (Arlt et al., 2011, Fassnacht 

and Allolio, 2009, Luton et al., 1990). The cause of this characteristic steroidogenic pattern 

has not been definitively elucidated, but it has been tentatively attributed to the relative 

dedifferentiation of malignant cells or the high frequency of mutations within the malignant 

cellular microenvironment (Arlt et al., 2011, Kerkhofs et al., 2015). Most of these hormones, 
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which represent intermediate steps along the three biosynthetic pathways, are not detectable 

in routine clinical biochemistry. Analysis of 24h urine collections by gas chromatography and 

mass spectrometry (GC-MS), however, can quantify the metabolites of every adrenal steroid 

(precursor) hormone, providing a truly comprehensive outline of steroidogenesis. This allows 

the detection of minute changes in steroidogenesis and the illumination of all intermediate 

steps that tend to be perturbed in the setting of adrenocortical malignancy (Arlt et al., 2011, 

Kerkhofs et al., 2015). This approach was first explored in a sizeable retrospective patient 

cohort by Arlt et al. in 2011 with a multi-centre European Study facilitated through the 

European Network for the Study of Adrenal Tumours (ENSAT) (Arlt et al., 2011). Urinary 

steroid metabolite profiles from 102 patients with benign adrenocortical adenomas and 56 

patients with ACC were compared using computational analysis (machine learning). The nine 

steroid biomarkers with the highest diagnostic performance were selected and integrated in a 

diagnostic algorithm which managed to differentiate between benign and malignant tumours 

with a sensitivity and specificity of 90%. Some degree of adrenal hormone/ hormone 

precursor hypersecretion was present in 95% of ACCs (Arlt et al., 2011). In this study, we are 

evaluating the diagnostic performance of this novel approach in a different clinical context: 

the post-operative surveillance of ACC patients following microscopically complete (R0) 

tumour resection. 
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5.2 Methods 

5.2.1 Study population 

Serial post-operative 24-hour urine samples were prospectively collected from patients with 

histologically confirmed ACC, who had undergone microscopically complete (R0) tumor 

resection in 12 clinical specialist referral centers participating in the European Network for 

the Study of Adrenal Tumors (ENS@T; www.ensat.org), after approval of local ethical 

review boards and informed patient consent. Participating countries included the UK 

(Birmingham), Germany (Wurzburg, Munich, Berlin), France (Paris), Italy (Florence, Turin), 

the Republic of Ireland (Dublin, Galway), Poland (Warsaw), Croatia (Zagreb) and Portugal 

(Lisbon). Urine samples were collected between 2007 and 2016. Inclusion criteria were 

defined as a) history of ACC with histological confirmation, b) complete (R0) tumor resection 

and c) provision of at least one post-operative urine sample at a disease-free state, i.e. before 

any radiological evidence of disease recurrence, and within two years from surgery.  ACC 

recurrence had to be confirmed by one of the following:  a) emergence of new lesions on 

cross-sectional imaging (CT, MRI) which either enlarge on follow-up scans, or regress in 

response to chemotherapy, b) emergence of enhancing lesions on PET or PET-CT scans, or c) 

histological evidence of recurrent/metastatic ACC on percutaneous biopsy or metastasectomy. 

Participating centres were prompted to provide urine samples every three months, but actual 

frequency of provided samples did not constitute an exclusion criterion as long as at least one 

post-operative sample at disease-free state had been provided. 
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5.2.2 Biochemical analysis 

Measurement of 24-h urinary steroid metabolite excretion in 129 recruited ACC patients as 

well as in a healthy control cohort (50 men, 77 women, age range 20–81 yr) was carried out 

by GC-MS. Urinary steroid profiling by GC-MS was established 40 years ago by Shackleton 

et al. (Shackleton and Snodgrass, 1974) and Sjovall (Sjovall, 1975), and still boasts the 

highest analytical sensitivity for steroid metabolite detection in biological samples (Arlt et al., 

2011). The first separation stage (gas chromatography) involves evaporation of purified and 

chemically processed (derivatised) steroid samples which run -in a gaseous form- through a 

liquid column (stationary phase) at different speeds according to their affinity to the column. 

At the end of the column, steroids reach the mass spectrometer, where they are bombarded 

with electrons and fragmented into molecule-specific ionised particles in a special collision 

cell. The resulting fragments are then selected according to their mass-to-charge ratio through 

acceleration within a quadrupole (Arlt et al., 2011, Taylor et al., 2015).   

 

To prepare samples for GC-MS analysis, free and conjugated steroids were extracted from 5 

ml urine samples by solid-phase extraction using SepPak columns (Waters, Milford, Ma, 

USA). Columns were prepared by washes with 4 ml methanol (Sigma) and 4 ml double-

distilled water (ddH2O). After sample loading, the columns were washed with 4 ml ddH2O 

and steroids were eluted in 4 ml methanol in a clean biosilicate tube. Samples were left to 

evaporate in a heat-block (55oC), aided by N2 steam. The remaining dry samples (steroids) 

were incubated for 3 hours at 55oC in a special hydrolysis buffer (3 ml 0.1M acetate buffer 

[pH 4.8-5.0] + 10 mg ascorbate + 10 mg sulfatase/glucoronidase; all ingredients purchased 

from Sigma) to remove glucuronide and sulphate groups (deconjugation). Deconjugated 

steroids were subsequently reloaded onto SepPak columns and eluted into glass tubes with 4 
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ml methanol.  The final stage of sample preparation consisted in chemical derivatisation, to 

enhance the sensitivity of mass spectrometry. To achieve this, samples were again evaporated 

and three drops of 2% methoxyamine-pyridine were added. After vortexing, tubes were 

incubated at 55oC for one hour, then evaporated under N2. In the next step, 75 µl of N-

trimethylsilylimidazole (Sigma) were added; tubes were vortexed again and incubated at 

120oC overnight. Subsequently, samples were extracted by adding 2 ml cyclohexane and 2 ml 

dH2O, each step followed by vortexing. After centrifugation (1,000 x g for 5 minutes), the 

bottom layer was discarded. Another 2 ml dH2O were added, followed by the same sequence 

of vortexing, centrifugation and removal of the bottom layer. The top layer, which contained 

the extracted steroids in cyclohexane, was transferred into injection vials. The samples were 

then injected into an Agilent 5973 GC mass-spectrometer operating in selected-ion-

monitoring (SIM) mode to achieve sensitive and specific detection and quantification of 33 

selected steroid metabolites (Table 5-1, Fig. 5-1). 

 

 

 

 

 

 

 

Table 5-1 Steroid metabolites detected in 24h urine collections by GC-MS, tabulated against 

the steroid hormones they originate from. 
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Steroid metabolite                                                            Metabolite of 
Androgen metabolites                                                         
Androsterone (An) Androstenedione, testosterone, 5α-

dihydrotestosterone 
Etiocholanolone (Et) 
   

Androstenedione, testosterone 

11β-hydroxyandrosterone (11β-OH-An) 11β-hydroxyandrostenedione 
Androgen precursor metabolites 
Dehydroepiandrosterone    
(DHEA) 

DHEA and DHEA sulphate (DHEAS) 

16α-hydroxy- DHEA  
(16α-OH-DHEA) 

DHEA + DHEAS 

Pregnenetriol (5-PT) 17-hydroxypregnenolone 
Pregnenediol (5-PD)/ Pregnadienol Pregnenolone 
Mineralocorticoid metabolites 
Tetrahydro-11-dehydrocorticosterone (THA) Corticosterone,  

11-dehydrocorticosterone 
5α- tetrahydro-11-dehydrocorticosterone  
(5α-THA) 
 

Corticosterone, 
11-dehydrocorticosterone 

18-hydroxy-dehydrocorticosterone (11-OH-THA) 11-oxo-corticosterone,  
11-dehydrocorticosterone 

Tetrahydrocorticosterone (THB) Corticosterone 
5α-tetrahydrocorticosterone (5α-THB) Corticosterone 
Tetrahydroaldosterone (3α5β-THALDO) Aldosterone 
Mineralocorticoid precursor metabolites 
Tetrahydro-11- deoxycorticosterone  (THDOC) 11-deoxycorticosterone 
5α-tetrahydro-11-deoxycorticosterone               
(5α-THDOC) 

11-doxycorticosterone 

Gluocorticoid precursor metabolites 
Pregnanediol (PD) Progesterone 
3α, 5α-17-hydroxypregnanolone (3α5α-17HP) 17-hydroxyprogesterone 
17-hydroxy-pregnanolone (17HP) 17-hydroxyprogesterone 
Pregnanetriol (PT) 17-hydroxyprogesterone 
Pregnanetriolone (PTONE) 21-deoxycortisol 
Tetrahydro-11-deoxycortisol (THS) 11-deoxycortisol 
Total glucocorticoid metabolites                                                                                  
Cortisol (F)                                                                            Cortisol 
6β-hydrocortisone (6β-OHF) Cortisol 
Tetrahydrocortisol (THF) Cortisol 
5α-tetrahydrocortisol (5α-THF) Cortisol 
α-cortol Cortisol 
β-cortol Cortisol 
11β-hydroxyetiocholanolone (11β-OH-Etio) Cortisol 
Cortisone (E) Cortisone 
Tetrahydrocortisone (THE) Cortisone 
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α-cortolone Cortisone 
β-cortolone Cortisone 
11-oxo-etiocholanolone (11-oxo-Etio) Cortisol 

Figure 5-1 Adrenal steroid hormones and precursor hormones along the steroidogenic 

pathways (small print) and their metabolites detected by GC-MS in urine (coloured bold 

print). AKR1C3: Alpha-Keto-Reductase Family 1 Member C3. 
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5.2.3 Expert review of steroid profile 

Three clinical endocrinologists with experience in adrenal disease were provided with 24-

steroid profiles derived from serial post-operative samples contributed by patients who either 

a) developed disease recurrence or b) remained recurrence-free over a follow-up period of at 

least 3 years. The latter comprised a negative control cohort, as the chances of disease 

recurrence past this time-point are relatively low (Beuschlein et al., 2015). Pre-operative 

steroid profiles were also provided when available. Clinicians were asked to independently 

review the longitudinal steroid profile series from each individual patient retrospectively and 

identify any samples which they considered highly suggestive of disease recurrence. 

Reference ranges derived from the healthy controls groups were provided for each steroid. All 

assessors were blinded with regard to clinical information other than basic patient 

demographics (age, sex), sampling time in relation to surgery and use of mitotane. Recurrence 

detection was considered successful only if it preceded or coincided with the earliest urine 

sample collected after the first radiological manifestation of recurrent disease (i.e. late 

biochemical detections in relation to imaging did not count as true positives). 

 

5.2.4 Statistical analysis 

Data analysis and graphic representation was completed using Graphpad Prism Software. 

Data are summarised as median (IQR) values unless otherwise stated. Two-group 

comparisons were performed using the Mann-Whitney test. Comparisons between multiple 

groups were performed using the Kruskal-Wallis test. 
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5.3 Results 

5.3.1 Patient characteristics 

129 patients (62 men, 67 women) who had undergone complete (R0) resection of a 

histologically confirmed ACC provided at least one 24-hour urine sample whilst considered 

disease-free according to the most recent clinical and radiological assessment and no later 

than 2 years post-operatively. Median age at diagnosis was 55 years (range 14-80 years). 

Frequency and total number of urine samples varied considerably among participants. The 

follow-up period, as determined by perusal of relevant clinical entries on the ENSAT online 

clinical registry, was variable with a median follow-up of 31 months (IQR 18-42 months). 

During this period, 41 patients developed disease recurrence; 9 of them had to be excluded as 

no post-recurrence urine could be provided (Fig. 5-2). Two patients developed serial 

recurrences (with intermediate complete metastasectomy), providing urine samples before and 

after each one of them, so that the total number of recurrences amounted to 34. Of the 

remaining patients, 40 were clinically and radiologically followed up for over 3 years; these 

were considered cured comprising a ‘negative control’ cohort for the purposes of this study, 

as the natural history of ACC rarely involves recurrences presenting after this post-operative 

time-point (Beuschlein et al., 2015). Relevant clinical details for the 32 recurred patients and 

the 40 disease-free controls are provided in Table 5-1.  

Of the 32 recurred patients, 13 had provided a urine sample before resection of the primary 

tumour; the remaining 19 patients only contributed post-operative urine samples. All samples 

provided by patients in these two subgroups are depicted in Fig. 5-3, plotted against time after 

surgery.  
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Figure 5-2 Recruitment flow chart. 32 patients with recurrence comprised the ‘disease-

positive’ cohort. 40 patients with no evidence of recurrence for over three years comprised 

the ‘disease-negative’ control group. 
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Figure 5-3 Urine samples provided by 32 patients who developed post-operative disease 

recurrence, plotted against time from surgery. Each line corresponds to a single patient. Red 

represents samples provided after the first radiological manifestation of recurrent disease; 

blue represents pre-recurrence samples. Purple dots represent pre-operative samples. A) 

Patients who provided both pre- and post-operative samples. B) Patients who provided post-

op urine samples only. 

      A 

       B 
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Table 5-2 Characteristics of study participants who developed ACC recurrence or remained 

disease-free for at least three years post-operatively. 

 
 

 

5.3.2 Steroid ratios  

The expected longitudinal biochemical trail of a gradually enlarging ACC mass (local 

recurrence or metastasis) would consist in a progressive rise in the value of one or more 

urinary steroid metabolites. Examples of such trends for some recurred patients in this study 

are provided in Figure 5-4.  Figure 5-5 presents two indicative heat-maps with longitudinal 

changes in urinary steroid metabolites during follow-up.  
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Figure 5-4 Longitudinal post-operative changes in the urinary steroid biomarker 5-PD 

(pregnenediol) in four female patients who eventually developed disease recurrence. Arrows 

point to the time of the first radiological detection of recurrent ACC for each patient. The 

shaded area of the graph represents the 5th-95th centile area for sex-matched healthy controls.    
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Figure 5-5 Heat-map representation of the longitudinal changes in the urinary steroid 

metabolome of two ACC patients who eventually developed disease recurrence. Arrows point 

to the time of surgery or the first radiological evidence of recurrent disease. Red represents 

metabolites that are raised above the mean control value; blue represents suppressed steroid 

metabolites. 
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In the proof-of-concept study for the use of urinary steroid metabolomics for differentiating 

benign from malignant adrenocortical tumors, Arlt et al. had distinguished 9 steroid 

biomarkers with the highest diagnostic value in detecting ACC: Etio, 5-PT, 5-PD (androgens 

and androgen precursors); THDOC, 5α-THA (mineralocorticoids and mineralocorticoid 

metabolites); PT, PD, THS, 5α-THF (glucocorticoids and glucocorticoid metabolites) (Arlt et 

al., 2011). 5α-reduced steroid biomarkers  5α-THA and 5α-THF are ill-suited for the specific 

clinical context of post-operative surveillance, as they are invariably suppressed in patients 

receiving adjuvant mitotane treatment due to the drug’s potent inhibitory effects on 5α-

reductase activity (Chortis et al., 2013). In this study, we have thus selected a modified 

version of this group, substituting DHEA for the two 5α-reduced steroids. DHEA had also 

been  significantly higher in ACCs than in ACAs in the adrenal incidentaloma study and had 

the highest average absolute excretion values than any other biomarker in ACCs (Arlt et al., 

2011).  

Considering the first post-operative urine as the ‘baseline’ sample for each patient, we 

calculated the following ratios for each of these 8 malignant biomarkers: a) Recurred patients: 

ratio of steroid excretion in the first post-recurrence sample to excretion of the same steroid in 

the ‘baseline’ post-operative sample (n=34 ratios) and b) non-recurred patients: ratio of 

steroid excretion in each follow-up sample to the the excretion of the same steroid in the 

‘baseline’ sample (n=163 ratios). We then selected the highest of these ratios for each sample. 

We divided the samples further into four groups, according to recurrence status and mitotane 

exposure, taking into consideration the inhibitory effect of mitotane on steroidogenesis (Fig. 

5-6). The median of selected (highest) ratios was significantly higher in samples from 

recurred than non-recurred patients, in non-mitotane-treated subjects. The same trend was 

observed in mitotane-treated patients, failing to reach statistical significance. In the sub-group 
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of patients with available pre-operative urine samples, we tried a different approach, selecting 

the three highest pre-operative steroid metabolites (when normalised to the 95th percentile of 

the reference range for the same metabolite). We then looked at the ratio of the value of each 

of the selected steroid biomarkers in the first post-recurrence urine sample to the value of the 

same metabolite in the first (‘baseline’) post-operative urine sample (n=15 ratios). For the 

four patients with available pre-operative urine in the ‘non-recurred’ cohort, we followed the 

same process and calculated the ratio of the value of each of the selected steroid biomarkers in 

every post-operative urine sample to the value of the same metabolite in the first (‘baseline’) 

post-operative urine sample (n=13 ratios). This method produced a better separation between 

‘recurred’ and ‘non-recurred’ samples (Fig. 5-7). 

 

 

 

Figure 5-6 Highest urinary steroid metabolite ratios (recurrence sample to baseline post-

operative sample) in recurred patients and non-recurred control patients. Patients have been 

further classified according to use of adjuvant mitotane. Bars represent median (IQR) values 

(***p<0.001). 
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5.3.3 Expert review of the urinary steroid metabolome 

Longitudinal series of urinary steroid profiles derived from 52 patients (n=32 with 

documented post-operative recurrence and n=20 with a recurrence-free history of at least 

three years) were reviewed independently by three clinical endocrinologists in a retrospective 

and blinded fashion. Only patients who had contributed at least 2 post-operative samples were 

included, as this was the minimum essential number of samples for patients who recurred 

according to our inclusion criteria. Clinicians were able to correctly identify recurrent disease 

by the time of the first post-recurrence sample (defined by reference to the first abnormal 

surveillance scan) with sensitivities of 65%, 53% and 74%. This improved substantially in the 

subgroup (n=15 recurrences) of patients who had provided pre-operative urine samples 

(sensitivities 73-93%) (Fig. 5-8A). Of note, 10/15 (67%) of recurrences in these patients were 

Figure 5-7 Highest post-operative urinary steroid ratio (recurred sample to first post-

operative sample) when focusing on the three steroid biomarkers that were the most elevated 

in the pre-operative sample. Samples from four non-recurred patients were used as controls. 

Bars represent median (IQR) values (****p<0.0001). 
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correctly detected unanimously by all reviewing clinicians. Absence of a pre-operative sample 

curtailed diagnostic sensitivities to 37-58% (Fig. 5-8A). Specificities, defined as the 

proportion of non-recurred patients who were correctly identified as such by perusal of the 

steroid profiles, varied considerably among the assessors (Fig. 5-8B). The effect of pre-

operative urine availability on specificity could not be reliably assessed as only four non-

recurred patients had provided a pre-operative sample.  It is worth noting that the diagnostic 

performance of the steroid profile review was not significantly altered by adjuvant mitotane 

treatment, despite the drug’s known inhibitory effect on steroidogenesis (Fig. 5-9). 

Importantly, the diagnosis of recurrence by assessing clinicians preceded the first radiological 

evidence of recurrent disease by more than two months in a substantial proportion of cases; 

with one exception, all these early detections pertained to mitotane-treated patients (Fig. 5-

10).  

 

Figure 5-8 Clinician review of serial urinary steroid profiles. A) Recurrence detection 

(Sensitivity) in ACC patients grouped according to availability of pre-operative urine. B) 

Recurrence exclusion (Specificity) in disease-free patients  

A 

B 



Chapter 5                                                           Urinary steroid profiing as a novel surveillance tool to detect ACC recurrence 

197 
 

 
 

 

 

 

 

 

Figure 5-9 Clinician review of serial urinary steroid profiles. A) Recurrence detection 

(Sensitivity) in ACC patients grouped according to pre-operative urine availability and 

mitotane treatment.  B) Recurrence exclusion (Specificity) in disease-free patients grouped 

according to mitotane treatment.  
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Figure 5-10 Recurrences detected biochemically by assessing clinicians on samples provided 

> 2 months before the first radiological manifestation of recurrent disease 
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5.4 Discussion 

In this study, we have explored a novel diagnostic tool to facilitate post-operative surveillance 

for recurrence in patients who have undergone resection of primary ACC. This involved high-

sensitivity urinary steroid profiling by GC-MS, a tool which has given highly promising 

results in the differentiation of benign from malignant adrenal tumours in recent retrospective 

studies (Arlt et al., 2011). We have assessed the diagnostic potential of urinary steroid 

profiling in the clinical context of post-operative monitoring in a subjective manner, based on 

blinded, retrospective clinician review of serial urinary steroid profiles from ACC patients 

who recurred (positive patient cohort) or remained disease-free for over 3 years (negative 

control cohort). Our next step will be to develop an automated, machine-learning-based model 

of analysis; this work has not been completed at the time of writing this thesis. 

The need for close post-operative monitoring of ACC patients is dictated by the high rates of 

disease recurrence, even after microscopically complete (R0) resection. In aggressive tumours 

(Ki67 > 10%), 5-year recurrence-free survival is lower than 25%. Importantly, histological 

evidence of less aggressive behaviour (Ki67 < 10%) does not obviate the need for close post-

operative follow-up, as recurrence-free survival does not exceed 50% in this patient cohort 

either (Beuschlein et al., 2015). Current follow-up protocols are based on clinical examination 

and routine biochemistry orientated towards detecting clinical or biochemical evidence of 

hormone excess, as well as regular cross-sectional imaging by CT or MRI scans. FDG-PET is 

also useful in this context but its use is limited by its high cost. Imaging is currently 

indispensable, as recurrences/ metastases can remain clinically and biochemically 

inconspicuous until they attain a sizeable volume, which usually exceeds the minimal 

detection limit of a modern CT/ MRI scan. The frequency of surveillance imaging is however 

limited by the considerable radiation exposure it ineluctably incurs (CT and FDG-PET scans) 
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or its high cost (MRI and FDG-PET scans). No consensus exists on the optimal surveillance 

imaging protocol; however, in most centres this is tailored to match the gradual decline in 

recurrence rates with time: recurrence rates are highest in the first two years post-operatively, 

lower in years 3-5 and lowest > 5 years post-operatively (Beuschlein et al., 2015). At 

University Hospitals Birmingham, the current follow-up protocol entails surveillance CT 

scans every three months post-operatively in the first two years, every six months in years 3-5 

and annually thereafter. Patients who have been disease-free for > 10 years can be discharged 

as no recurrences have been reported after this time-point.  

Our cohort consisted of adult patients with fully resected ACC who were able to provide a 24 

h urine sample within two years from surgery and whilst still considered disease free 

according to the most recent clinical and radiological assessment. This time point was used to 

increase the yield of recurred patients, as patients who have already been disease-free for two 

years are less likely to recur. The overall cohort was demographically representative of the 

general population of ACC patients, with a female preponderance and median age at 

presentation in the 6th decade of life. Of the 72 patients who completed three years of follow-

up, 32 (44%) recurred, a rate that is somewhat lower than previous retrospective studies 

(Beuschlein et al., 2015, Terzolo et al., 2007). This is likely to be due to selection bias related 

to the stipulation that a urine sample at a disease-free state must be provided for inclusion to 

the study – patients who recurred before a 24 h urine sample could be provided were 

excluded.  

On retrospective, blinded assessment of serial 24 h urine collections clinicians were able to 

detect recurrence by the time of its first radiological manifestation with high sensitivity in 

cases where a pre-operative urine sample was available. The diagnostic value of a pre-
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operative urine sample stems from its ability to impart the individual steroid profile of the 

particular tumour, which is likely to re-emerge in a future recurrence. With this information to 

hand, clinicians can focus on steroid biomarkers which were elevated pre-operatively and use 

a lower threshold to suspect recurrence when changes in their excretion are detected. Of note, 

10/15 (67%) of recurrences in these patients were detected unanimously by all reviewing 

clinicians. In patients who were only able to contribute post-operative urine samples, the 

ability of clinicians to detect recurrence was substantially lower. Specificity varied 

considerably among the three clinicians, and correlated inversely to their respective 

sensitivities.  The sub-optimal overall diagnostic accuracy for this patient cohort in 

comparison to previously reported sensitivities and specificities in patients with adrenal 

incidentalomas can be explained by the limited disease volume of recurrent/ metastatic ACC, 

with lesions that are often smaller than 1 cm in maximal diameter at the time of first 

radiological detection. By comparison, the median ACC size in the 2011 study on adrenal 

incidentalomas amounted to 9 cm in maximum diameter (Arlt et al., 2011). Consequently, the 

resulting perturbation of steroidogenesis might be very mild and not always distinguishable 

from normal sample-to-sample variability.  

Interestingly, adjuvant mitotane did not compromise the diagnostic performance of reviewing 

clinicians, despite the drug’s well documented ability to inhibit steroidogenesis. Mitotane 

interferes with adrenal steroidogenesis in a number of ways, including a) overall suppression 

of steroidogenesis resulting in lower excretion values for all steroid metabolites, b) rapid 

glucocorticoid breakdown by CYP3A4 necessitating high-dose hydrocortisone replacement; 

this means glucocorticoid metabolites are no longer diagnostically relevant in these patients 

and c) 5α-reductase inhibition, leading to a diminution of 5α-reduced steroids (Chortis et al., 

2013).  Although mitotane obtunds the ascending trends in steroid biomarkers in recurred 
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patients, it also suppresses the random sample-to-sample variability (noise), which can be 

diagnostically opportune.  

Obviously, an effective diagnostic tool should be able to produce objective and unbiased 

outputs which do not rely on the individual clinician’s experience and perspicacity. Due to the 

complexity of the system (multiple biomarkers, modest elevations due to small disease 

volumes), applying numerical diagnostic cut-offs appears to be too crude a way to predict the 

underlying disease status. Machine learning-based approaches would offer a good way of 

utilising the full wealth of information provided by 33-steroid profiles in a systematic, 

objective and reproducible fashion, as already demonstrated in the case of adrenal 

incidentalomas (Arlt et al., 2011).  

This is the first clinical study exploring the diagnostic potential of urine steroid profiling in 

the specific clinical setting of post-operative surveillance for recurrence in ACC patients, with 

only small case series previously reported on this subject. The limitations of our work pertain 

to the relatively small recurred patient numbers and inconsistency in quality of provided data 

(e.g. availability of pre-operative urine samples, frequency of post-operative urine samples). 

After completion of our current analysis by machine learning, we will endeavour to validate 

these findings in a dedicated prospective study with more stringent inclusion criteria which 

will address the aforementioned weaknesses (pre-operative urine collection mandatory and 

short intervals between post-operative urine). Our results so far do not suggest that urinary 

steroid profiling could obviate the need for follow-up imaging, but it can be useful as a 

complimentary surveillance tool that could expedite scans in patients with suspicious 

biochemistry, inform discussions in patients with ambiguous imaging results or suggest the 

need for institution of adjuvant mitotane treatment. 
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6.1 Antioxidant targeting as a novel therapeutic approach in ACC 

In this work, we have explored a novel therapeutic avenue in the treatment of ACC. The 

urgent need to develop new approaches in the management of this rare endocrine malignancy 

has been highlighted in recent studies demonstrating the disappointing performance of classic 

combination chemotherapy in patients with advanced disease (Fassnacht et al., 2012). 

Unfortunately, the substantial progress in our understanding of ACC molecular genetics has 

so far failed to translate into therapeutic advances. This in vitro project draws on recent 

studies revealing the implication of mitochondrial antioxidant pathway defects in the 

pathogenesis of congenital adrenal failure. In 2012, genetic studies in patients with Familial 

Glucocorticoid Deficiency (FGD), a rare hereditary form of adrenal insufficiency, revealed 

inactivating mutations in the mitochondrial NADPH generator Nicotinamide Nucleotide 

Transhydrogenase (NNT) (Meimaridou et al., 2012). The biological role of NNT is to provide 

the mitochondrial antioxidant pathways (glutathione pathway and thioredoxin pathway) with 

reducing equivalents in the form of NADPH (Rydstrom, 2006). Inactivating mutations of 

thioredoxin reductase have recently also been discovered in FGD patients. Antioxidant 

pathways have a crucial biological role within cells, detoxifying Reactive Oxygen Species 

(ROS), the harmful by-products of aerobic metabolism. Inordinate accumulation of ROS has 

deleterious effects (oxidative stress), which can culminate to cell death if not counterbalanced 

by an effective antioxidant defence system. The risk of ROS toxicity is highest in 

metabolically active tissues such as the adrenal cortex, and most relevant in malignant cells 

which tend to have higher baseline ROS levels than normal cells. Our hypothesis was that 

NNT inactivation will compromise the -metabolically highly active- ACC cells’ capacity to 

scavenge ROS, exposing them to oxidative toxicity and, eventually, cell death.  
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We validated this hypothesis transiently knocking down NNT in NCI-H295R ACC cells in 

vitro (siRNA transfection) and observing an increase in cellular levels of oxidative stress, 

suppression of cellular proliferation and induction of apoptotic cell death. Furthermore, NNT 

loss rendered cells sensitive to sub-toxic doses of paraquat, a chemical inducer of oxidative 

stress. These results provide a first in vitro characterisation of the therapeutic potential of 

NNT in the management of ACC. Next, we employed a long-term silencing model, involving 

stable NCI-H295R transfection with shRNA against NNT, to delineate the chronic 

consequences of NNT loss. Here we captured the emergence of a compensated phenotype, 

with reinstatement of redox homeostasis and abrogation of apoptosis. This compensation was 

underpinned by higher oxygen consumption and glycolytic rates, indicating higher energy 

needs. Importantly, a longstanding suppression of proliferation was observed, although this 

was clearly much less pronounced than the one we observed in the acute setting (Fig. 6-1).  

A second output of interest was the impact of NNT loss on steroidogenesis; inhibition of 

steroidogenesis by NNT silencing would be therapeutically useful in patients with adrenal 

hormone excess, a common clinical and biochemical attribute of ACC. Suppression of 

steroidogenesis with NNT inactivation appeared theoretically likely, given the glucocorticoid 

deficiency of NNT mutant patients and the role of NADPH as an essential cofactor to 

important mitochondrial steroidogenic enzymes (CYP11A1, CYP11B1, CYP11B2).  

Surprisingly, we observed a paradoxical stimulation of steroidogenesis in the acute setting 

(siRNA knockdown), with no lingering effect in the long term (shRNA knockdown). Overall, 

these findings suggest NNT is not a meaningful treatment target as far as inhibition of 

steroidogenesis is concerned.  
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We did not exhaust our in vitro work in the study of NNT, but we also selectively inhibited 

the glutathione pathway (by buthionine sulfoximine, BSO) and the thioredoxin pathway (by 

auranofin) and monitored the individual impact of these interventions on cellular proliferation 

and viability. Both drugs demonstrated a cytotoxic potential in clinically attainable doses. 

Overall, our work suggests that ACC cells are susceptible to pharmacological inhibition of 

antioxidant pathways. The relative efficiency of the various possible target options (NNT, 

glutathione pathway, thioredoxin pathway) would need to be explored further with in vivo 

studies, e.g. NCI-H295R xenografts in mice. It is difficult to predict whether a compensated 

phenotype akin to the one we observed in the stable knockdown model would emerge with in 

vivo inhibition, and if so how long it would take for this to be established. An inducible 

knockdown model would be particularly attractive given the discrepancy we observed 

between the acute and chronic NNT knockdown models. Pharmacological inhibition of the 

glutathione or thioredoxin pathways (e.g. by BSO or auranofin administration) would be more 

straightforward and in vivo studies employing these agents in different malignancies have 

already been published (Bailey et al., 1994, Bailey, 1998, O'Dwyer et al., 1996, Bailey et al., 

1997, Li et al., 2016). Importantly, the ability of malignant cells to adapt to oxidative stress is 

well described in the literature; therefore, achieving a marked and sustained anti-tumour 

effect may require concurrent use of a pro-oxidant chemotherapy agent. With this approach, 

antioxidant targeting would be used as a chemotherapy sensitising strategy. Our in vitro 

results with co-implementation of NNT inhibition and paraquat-induced oxidative stress are 

promising in this respect. An alternative approach could involve dual inhibition of the 

glutathione and thioredoxin pathways; this has not been formally explored so far, but recent 

pilot experiments in our lab have suggested a synergistic effect leading to marked cytotoxicity 

with low doses of BSO and auranofin. 
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Ongoing work which is approaching completion comprises RNA sequencing and whole 

metabolome analysis of both NNT knockdown models (siRNA and shRNA transfected cells). 

We expect that this additional effort will provide useful mechanistic insights, illuminating the 

complete molecular impact of NNT inhibition and unravelling the compensatory response 

which leads to the distinct phenotype of stable NNT silencing. 

 

 

 

 

 

Figure 6-1 Effects of NNT knockdown on ACC cell metabolism, proliferation/viability and 

steroidogenesis in the acute and chronic setting. Horizontal arrows demonstrate paucity of 

change in reference to control cells.   
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6.2 Urine steroid profiling as a new surveillance tool to detect ACC 

recurrence 

Our clinical work followed a different direction, aspiring to develop a novel diagnostic tool to 

facilitate prompt recurrence detection in operated ACC patients. The majority of patients with 

resected ACCs will experience post-operative disease recurrence. Therefore, close monitoring 

is essential for many years. Currently post-operative surveillance is largely imaging-based, 

with all the limitations this entails in terms of cost, cumulative radiation exposure and 

diagnostic ambiguity at early recurrence stages. A highly auspicious novel diagnostic 

modality was recently introduced in the clinical context of adrenal incidentalomas, involving 

urinary steroid profiling by gas chromatography-mass spectrometry (GC-MS). The sensitivity 

of GC-MS supersedes the analytical capacity of traditional adrenal biochemistry; the method 

can quantify up to 34 steroid metabolites in 24h urine collections, spanning the whole 

spectrum of steroidogenesis. ACC presents a characteristic steroidogenic pattern, with a 

relative over-abundance of steroid precursors; this can be captured and utilised to differentiate 

malignant from benign adrenal tumours with high sensitivity and specificity.  

In our study, we evaluated the ability of the same technique to serve as a sensitive 

surveillance tool in the post-operative course of patients who have undergone full resection of 

ACC. On blinded retrospective review of serial steroid profiles by three clinical 

endocrinologists, recurrence was detected concurrently with or prior to cross-sectional 

imaging in the majority of cases. The single most important factor affecting the diagnostic 

success of subjective urinary steroid profile review was the availability of a pre-operative 

urine sample, which can reveal the individual steroidogenic fingerprint of the individual 

tumour. Importantly, adjuvant mitotane treatment did not seem to adversely impact on the 

results, despite the drug’s well-described inhibitory effect on steroidogenesis. We are 
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currently trying to introduce automated, machine learning-based analysis of the results as an 

objective and powerful analytical way of processing the complex data sets comprising the 

urinary steroid profile (urine steroid metabolomics). Upon completion of this work, we will 

endeavour to validate urine steroid profiling and metabolomics as a diagnostic tool for ACC 

recurrence detection with a dedicated prospective study with more stringent inclusion criteria 

(provision of pre-operative urine, high frequency of post-operative urine collection).  
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