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Abstract

This work describes a Bayesian algorithm developed to tackle the problem of inference

from two-dimensional grids of terrestrial gravity measurements. Near-surface voids such as

pipelines and tunnels were the motivating application. The forward models used to approx-

imate the gravity signal due to these potentially complex underground anomalies were sums

of simple geometrical shapes: the sphere, �nite horizontal cylinder and cuboid. The model

parameters of these shapes are related non-linearly to the gravity signal. The reversible-jump

Markov chain Monte Carlo algorithm was used, allowing changes to the number of objects

comprising the forward model. The natural parsimony of the algorithm was shown to be key

for obtaining depth information without the need for arbitrary regularisation. Exploring the

Bayesian posterior distribution in this way, spatial, geometrical and anomaly mass informa-

tion can be obtained as outputs from the inference process, given prior information regarding

the soil-anomaly density contrast. This was demonstrated both with synthetic noisy gravity

and gravity gradient data and with �eld gravity data obtained using the Scintrex CG-5 com-

mercial gravimeter. The methodology used to obtain �eld survey data using the CG-5 over

multiple days is described, with discussion of the assignment of measurement uncertainty. A

134 point measurement grid was taken above two spatially separate concrete anomalies, for

which volume and density information were known. The data was input into the Bayesian

inference algorithm, the forward model parameters were successfully inferred within the total

uncertainty.
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Chapter 1

Introduction

Obtaining and analysing gravity data and that of its derivatives has been widely practised for

many years, providing a means of searching for minerals and other buried assets[1]. Due to

the large scale of these targets, terrestrial gravity surveys have been employed to measure on

the order of kilometres. However, with advances in instrument sensitivity made possible by

recent developments in the �eld of quantum atom interferometry (AI)[2] it is now plausible

to consider measuring gravity on smaller scales, for the detection of near-surface (< 10 m)

anomalies. Meaning that gravity measurements can potentially aid in the detection and clas-

si�cation of relatively small man-made structures, such as pipelines, tunnels and mine-shafts,

as a compliment to existing geophysical techniques[3]. Advances in other gravity instruments

such as the Micro-electromechanical systems (MEMS) sensors[4] also promise faster, cheaper

gravity surveys.

Gravity surveys provide a non-invasive means of target detection, which makes the method

ideal for applications where invasive exploration can be potentially costly, both economically

and socially, as in the detection of underground utility services[5]. Knowledge of the loca-

tion of existing utilities is generally poor and there is a requirement to be able to detect

and locate such assets in order that they be avoided during excavation, saving potential

damage and disruption. The gravity method does not su�er from the problems of other

near-surface geophysical techniques such as ground penetrating radar (GPR), which relies
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on the transmission of electromagnetic waves into the attenuating sub-surface[6]. As a result

of this, gravity surveys can be a useful complimentary data-set to obtain[7]. The limiting

factors for gravity surveys are the target volume, depth and density contrast with respect to

the surrounding material. Also, the time scales involved in gravity surveying are currently

large in comparison to other geophysical techniques. However, near-surface anomalies with a

su�cient volume and density contrast can in principle be detected using the gravity method,

given su�cient surveying time and a gravity signal larger than the total survey uncertainty.

Other natural targets could also be viable applications, such as near-surface sink-holes, which

have the potential to cause disruption as shown in Figure 1.1. Detection of sink-holes prior

to their collapse could help in preventing resource expense and potential injury.

Figure 1.1: A sink-hole causes disruption to a residential road in Dartford.

1.1 Geophysical Inference

When looking for underground targets of interest with measurements taken above the ground,

we are trying to solve a problem of inference. In geophysical inference problems we aim to

reconstruct a model of subsurface properties given a set of measurements that are taken

above the surface. We can represent the model by a vector θ and our data by a vector d

2
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given by,

d = [d1, d2, d3, ..., dNd ]
T

θ = [θ1, θ2, θ3, ..., θNθ ]
T

(1.1)

where we have a total number of model parameters Nθ, a total number of discrete measure-

ment points Nd and T represents the matrix transpose. The measurement points are related

to the model parameters via some set of functions[8],

d = f(θ) (1.2)

which de�ne the forward model. The forward model functions are generally non-linear. Geo-

physical inference su�ers from the problem of several models �tting the data equally well,

often termed the problem of uniqueness[9]. The gravity problem is no exception to this, with

inference being required from a �nite, often small set of measurement data points[10]. We

have a �nite set of measurements with which to infer subsurface properties that in the real

world often vary continuously in all directions. In practice we must represent the continuous

functions of interest as a �nite number of model parameters[11].

In order to address the uniqueness problem, assumptions need to be made about the forward

model used for a particular inference problem. For the gravity inference problem, this leads

to di�erent approaches, depending on the particular goals of the inference. Two main ap-

proaches have been taken in the literature, that of the spatial domain and that of the wave

number domain[12].

The wave number domain approach involves converting the gravity anomaly into a Fourier

series, commonly using the Fast Fourier Transform[13]. This approach e�ciently analyses

large data sets. To achieve convergence high frequency components are often removed, leav-

ing a smooth solution[14]. The datasets in which we are interested will be of more sharply

de�ned, near-surface anomalies, limiting the usefulness of this approach. Algorithm develop-

ment using the wave number domain approach is an active research area[15].
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The spatial domain approach is characterised by some discretisation of the model space into

a cell structure[16], with each cell given a constant, unknown density (vertical and horizontal

prism structures have also been used[17]). Known as `voxel modelling'[18], the densities of the

cells are varied until a best �t to the data is found within some speci�ed criterion. Such an ap-

proach is an e�ective linearisation of the problem, as the cell density is linearly related to the

gravity measurement data. Often these methods are developed such that prior information

is limited as far as possible[19]. However, depth weighting functions are employed to resolve

the problem of the density distribution preferring to rise to the near-surface cells[20], giving

erroneous values of anomaly depth. These methods generally involve the use of Tikhonov

regularisation[21], which favours certain solutions that have desirable properties by introduc-

ing a regularisation parameter. The methods have had much success when applied to the

search for density distributions of massive bodies and are ongoing areas of research[22][23][24].

By discretising the model space into voxels, the precision of estimates of target location is

entirely dependent upon the density of the cells. In this research we are concerned primarily

with the location and volume of near-surface targets. The discretisation of the near-surface

into cells could be prohibitively computationally expensive. For example, a 20 × 20 × 10 m

model space with a voxel structure split into cells of diameter 0.5 m yields 32, 000 separate

density values to be inferred. Even with the forward model formulation having a simple

linear relation between the model parameters and the data, this method uses a large number

of model parameters, and would provide us with relatively poor spatial resolution of our

targets.

An alternative spatial approach to simplify the forward relation for the gravity inference

problem is to assume the density and infer geometrical parameters of polygonal (2D) or

polyhedral (3D) bodies[25]. This method is intuitively appealing for the targets under in-

vestigation here, as we may have reasonable prior information that can inform our choice of

model. For example if we know a given gravity survey was carried out to search for near

surface pipelines, it is reasonable to use gravity model of a �nite cylinder. Making the as-

sumption that the average ground density is spatially homogeneous and known to within
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some uncertainty greatly reduces the number of model parameters required for inference,

relative to the voxel model approach. However, this assumption could be suspect in the pres-

ence of near surface soil clutter. The drawback is that these geometrical model parameters

are often related non-linearly to the gravity data.

In this research we formulate the gravity inference problem in a statistical Bayesian framework[26]

where we interpret the data and model parameter vectors as random variables. We use for-

ward models consisting of sums of simple shapes to approximate complex gravity measure-

ment data. Figure 1.2 shows this idea graphically, where we have a forward model consisting

of four cuboid model objects, each of which are de�ned by some number of model object

parameters. The gravity signal of each of the model objects sum to produce a more com-

plicated (relative to any single model object) gravity measurement grid. The challenge is

to infer from our measurement grid the properties of an unknown forward model. We can

Figure 1.2: Illustration of the di�erence between the forward and inverse (or inference)
problems.

use information available prior to data collection regarding the average ground density to

limit the model space of the inference problem. This is equivalent to the regularisation of

the previously mentioned approaches. We are concerned not only with the `existence half'

of the inference problem, where we wish to obtain a model that �ts the data, but also the

`uniqueness half'[27], where we measure how much the model may vary whilst �tting the

data, in order to understand the credibility of the model.
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A bespoke reversible-jump Markov chain Monte Carlo algorithm is developed to explore the

model space proportional to high probability regions of the Bayesian posterior distribution[28].

The model space has a variable number of parameters, allowing the complexity of the for-

ward model (number of simple objects and hence model parameters) to be determined by the

gravity measurement data and not de�ned as prior information. We show that information

useful to end users regarding target location and structure can be inferred from the algo-

rithm outputs, along with the corresponding uncertainty of the the models and parameter

distributions.

Applications of the Bayesian inference framework speci�cally to the three dimensional grav-

ity inference problem where the density is assumed as prior information are scarce. Work

that has been conducted usually involves the voxel forward model [29][30]. More recently

a Bayesian implementation has been shown, with methodology similar to this research for

parameter estimation of a single buried cuboid void[31]. Other implementations have been

demonstrated for inference of polygon models from single gravity measurement lines[32],

employing a similar reversible-jump Markov chain Monte Carlo scheme to vary the model

complexity of the polygon (number of sides).

Work has been carried out considering applications of gravity gradient measurements. Clas-

sical inference techniques (non-Bayesian) have been applied to the detection of anomalous

density distributions in transport vehicles, in order to identify potential �ssile materials[33].

1.2 Research Scope

This research was conduced as part of a multi disciplinary research group, the Gravity Gra-

dient Technologies and Opportunities Programme (GG-Top). The aim of GG-ToP was to

realise the �rst steps towards a portable quantum technology atom interferometer gravity

gradiometer, robust and portable enough for �eld measurements. My role within the pro-

gramme was to address the gravity inference problem, with a focus on possible civil engineer-

ing applications. My main contribution to the programme was development of the reversible
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jump-Markov chain Monte Carlo Bayesian inference algorithm, which was demonstrated to

be practically applicable using gravity measurements obtained using the Scintrex CG-5.

1.3 Thesis Structure

Initially we describe the gravity �eld, the generation of synthetic data and gravity measure-

ment and corrections in Chapter 2. Then in Chapter 3 we explain the theoretical aspects of

the Bayesian inference approach as applied to the gravity inference problem, along with the

theory of the reversible-jump Markov chain Monte Carlo algorithm. Chapter 4 explains the

practical implementation of the algorithm. Chapters 5 and 6 demonstrate the application

of the algorithm to synthetic data and real world data respectively. We conclude the the-

sis with a discussion of the results shown and outline possible algorithm improvements and

future work.
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Chapter 2

Gravity: Generation, Measurement and

Reduction

In this section we explain the theoretical aspects of the physical �elds with which we are

dealing with in this research. We also brie�y outline the measurement of gravity, describing

the workings of the Scintrex CG-5 and a future quantum technology atom interferometer

gradiometer. We explain why such an instrument will be able to cancel environmental noise

and consequently allow for faster, more precise terrestrial gravity gradient surveys. We also

outline the analytical gravity models of basic shapes: the sphere, �nite horizontal cylinder

and cuboid. These simple shapes will be summed to construct more complicated forward

models for inference from gravity and gravity gradient data in later chapters.

2.1 The Gravity Field

For two masses, m1 and m2 separated by a distance r12, the force incident on object two due

to object one is given by Newton's Law,

F12 = −Gm1m2

|r12|2
r̂12 (2.1)
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where r̂12 is a unit vector (de�ned as r2−r1
|r2−r1|) and G is the universal gravitational constant

(G = 6.674× 10−11 m3kg−1s−2). The acceleration of m2 due to m1 is then given by Newton's

Second Law, dividing Equation 2.1 by m2,

g = −Gm1

|r12|2
r̂12 (2.2)

The gravitational �eld is conservative, meaning that the energy required to move a mass from

one point to another is independent of the path taken between the two points. Any conser-

vative �eld can be given as the gradient of some scalar �eld[34], in this case the gravitational

potential U ,

g = ∇U (2.3)

where ∇ is the gradient operator or `del ' and is given by ∇ = î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z
.

The gravitational potential from an excess density distribution, ρ, in a volume, V , is given

by[35],

U(r) = −G
∫
V

ρ(r′)

|r − r′|
dV (2.4)

where r and r′ represent the observation and integration points respectively. The gravity gra-

dient tensor (also known as the Eötvös tensor) contains second derivatives of the gravitational

potential and is de�ned as[36],

∇⊗ g = ∇⊗ (∇U) =


Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

 =


∂2U
∂x2

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂y∂x

∂2U
∂y2

∂2U
∂y∂z

∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z2

 (2.5)

where the symbol ⊗ represents the vector outer product. Outside of the source the gravity

potential satis�es the Laplace equation,

∇.∇U(r) = ∇2U(r) = 0 (2.6)
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The gravity tensor is of rank two with �ve independent elements, due to the symmetry about

the leading diagonal and the fact that it is trace free[37]. Figure 2.1 shows the physical signi�-

cance of the gravity gradient tensor components in Cartesian coordinates. In this research we

Figure 2.1: Illustration of the physical signi�cance of the gravity tensor components in a
Cartesian coordinate system.

are concerned only with the gravity (Uz) and gravity gradient (Uzz) �eld components as they

are the easiest to accurately measure with current and future terrestrial �eld instruments (see

Section 2.3). Investigation into the information content of other components is ongoing, and

may be an area of future research as terrestrial instruments progress[38][39]. The SI units for

gravity are ms−2, much of the gravity community use µGal (10−8 ms−2) named after Galileo

Galilee. Another unit in use is the 'gravity unit' where 1 g.u = 10−6 ms−2. Sometimes the

'nano-g' unit is also used where 1 ng = 10−9 g ' 10−8 ms−2. The gravity gradient SI unit is

s−2, the Eötvös (10−9 s−2) is commonly used, named after Loránd Eötvös. In this research

we use the respective SI units unless stated otherwise.

2.2 Synthetic Gravity Data

In this section we state the analytical expressions used to calculate the gravity and gravity

gradient values of various simple shapes. Many of the target assets of interest in this research

10
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such as pipelines are approximately cylindrical in shape, as such we are interested in modelling

�nite cylinders. We are also interested in underground structures such as mine-shafts and

tunnels, these anomalies can be approximated by a cuboid model. We start with the simplest

of the gravity forward models, that of a uniform density sphere. Models of arbitrary 3D

gravity shapes have been developed and applied to problems such as inference of salt dome

extent[40].

2.2.1 Sphere Forward Model

The gravitational attraction of a sphere of uniform density is the most fundamental gravity

relation. It can be used as an approximation to any irregular body at a distance larger than

the diameter of the body[41]. For a sphere centred at (x0, y0, z0) the gravitational acceleration

at measurement point (x, y, z) is[42],

Uz(x, y, z) =
4

3
Gπ

∆ρR3z′

r3

r =
√
x′2 + y′2 + z′2 .

(2.7)

where x′ = x − x0, R is the sphere radius and ∆ρ is the density di�erence between the

sphere and the surrounding material. This simple relation provides an insight into the non-

uniqueness of the gravity �eld. The density volume product de�nes the anomaly and neither

can be determined individually.

Figure 2.2 shows the 5 independent Eötvös tensor components, along with the Ux, Uy and

Uz components of a buried spherical void. We can see that the spatial position of the sphere

is de�ned more precisely by the Uzz than by the Uz data. The numerical calculation of, for

example, the Uzz component is achieved by di�erencing symbolically calculated acceleration

at heights z1 and z2 (where z1 < z2) as given by,

Uzz =
Uz1 − Uz2

∆l

∆l = |z2 − z1|
(2.8)
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Figure 2.2: Gravity and gravity gradient signal produced by a buried spherical void. With
density −2000 kgm−3, depth 2 m and radius 0.5 m. (Bottom left, Uz, centre left Ux, bottom
centre Uy, bottom right Uzz)

The other numerical tensor components are calculated in the same way using the appropriate

values, an example being,

Uxz =
Uxa − Ux2

∆l

∆l = |z2 − z1|
(2.9)

explained in words, this is the Ux gravity acceleration as measured in two locations o�set in

the z direction.
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Although the analytical expressions for the Eötvös tensor are easily derived for the sphere

(see [37] for expressions), it is more challenging for increasingly complex geometries. Us-

ing the relations above we can numerically compute the tensor components, requiring two

calculations of the forward model, for each tensor component.

2.2.2 Finite Cylinder Forward Model

The �nite uniform density cylinder gravity model provides two extra degrees of freedom

compared to the sphere model. A rotation parameter ψ, de�nes anti-clockwise rotation

about the vertical axis, rotations about the x and y axes are assumed to be equal to zero.

The �nite length of the cylinder, L, is de�ned parallel to the y-axis.

For a measurement position (x, y, z) and cylinder centroid (x0, y0, z0), the coordinates are

translated and rotated about the cylinder centroid,

x′
y′

 =

cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)


x− x0
y − y0

 (2.10)

then we can compute the vertical gravity acceleration, Uz, using
[43],

Uz = Gπ
∆ρR2z′

(x′2 + z′2)

[
y′ + L

(x′2 + (y′ + L)2 + z′2)
1
2

− y′ − L
(x′2 + (y′ − L)2 + z′2)

1
2

]
(2.11)

with z′ = z − z0. Although not used in this research, of interest may be the in�nite cylinder

of uniform density, as given by[43],

Uz = 2Gπ
∆ρR2z′

(x′2 + z′2)
(2.12)

2.2.3 Cuboid Forward Model

The cuboid forward model adds a further degree of freedom to that of the �nite cylinder,

allowing the volume to vary independently in three spatial dimensions, as a result Equation

13
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2.13[44] is somewhat more complex,

Uz = G∆ρ

[
x′ ln (y′ + r) + y′ ln (x′ + r)− z′ arctan

x′ y′

z′ r

] ∣∣∣∣∣
x2

x1

∣∣∣∣∣
y2

y1

∣∣∣∣∣
z2

z1

r =
√
x′2 + y′2 + z′2 .

(2.13)

where x1 = x0 − lx
2
, x2 = x0 + lx

2
and x′, y′, z′ are de�ned by,

x′
y′

 =

cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)


x− x0
y − y0

+

x0
y0

 (2.14)

evaluated at each of the eight vertices (where x′, y′ and z′ are o�set when cycling through the

vertex positions (x1, y1, z1), (x2, y1, z1), etc.), the equation yields a total of 24 separate terms.

Due to the evaluation of 12 log and 24 arc-tan functions, the calculation speed of the cuboid

model is much slower when compared to the sphere or cylinder models[45]. The MATLAB

function used to calculate the cuboid model can be seen in Appendix C. Figure 2.3 de�nes

the cuboid vertices in the measurement coordinate system.

2.3 Measuring Gravity

The measurement of gravity is a very diverse �eld with many applications. In this research

we are concerned speci�cally with terrestrial gravity measurements for small scale area sur-

veys. However, gravity surveys are readily undertaken on land, underground, in the air, at

sea and from satellites. With such a diversity of possible applications comes a wide variety

of di�erent instruments often specialised to a certain type of survey.

Measurements of gravity can be placed into two categories, relative and absolute. An abso-

lute gravity measurement is made with direct observations of displacement or time. Relative

gravity measurements give gravity di�erences between locations.

Throughout this research we have been working with two instruments in mind. The �rst

being the Scintrex CG-5 (see Section 2.3.1), which is a relative gravimeter designed for ter-
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Figure 2.3: Cuboid model de�ned relative to the measurement coordinate axes x − y − z.
Originally from [44].

restrial surveys. The other, which is yet to be realised as a completely �eld robust instrument

(although progress has been made towards this goal[46][47]), is the quantum technology atom

interferometer gradiometer. This is an absolute instrument promising increased accuracy and

speed over current sensors[48] (see Section 2.3.2).

A terrestrial gravity survey is concerned with the measurement of Uz, the vertical derivative

of the gravity potential. The average value of gravity at the Earth's surface is 9.81 ms−2[49].

For near-surface anomalies we are looking for deviations from this value around one part in

109, requiring highly sophisticated instrumentation and rigorous survey techniques[50]. Sur-

veys requiring this level of accuracy are often referred to as microgravity surveys. In order

to reach this level of accuracy, information regarding the unwanted gravity e�ects at a given

measurement point must be corrected for. The gravity data need to be `reduced' to the

signal of the anomalous density alone, commonly known as the Bouger anomaly (see Section

2.4)[49].

Microgravity surveys searching for relatively (5− 20 m depth) near-surface voids have been

conducted[51] with some success. Due to suppression of long wavelength (deep, regional)

15



CHAPTER 2. GRAVITY: GENERATION, MEASUREMENT AND REDUCTION

anomalies, the measurement of the gravity gradient �eld Uzz is also of interest[52] for near

surface anomalies, and has been used for many years[53].

2.3.1 Scintrex CG-5

The Scintrex CG-5 relative gravimeter is the current United Kingdom industry standard

instrument for terrestrial gravity measurements. Figure 2.4 shows a picture of the CG-5 in

the �eld, along with a schematic diagram of the general operating principle. A test mass

Figure 2.4: Left: Scintrex CG-5 with Leica 360 degree prism positioned directly above the
internal sensor head. Right: Schematic of CG-5 operation. Using a zero length spring,
correcting the position of a suspended mass to a null position using a variable capacitor
control circuit.

is suspended from a zero length quartz spring[54]. The mass is continuously returned to a

null position by an electronic control circuit, this restoring force is equivalent to the gravity

acceleration after accounting for corrections due to temperature �uctuations and instrument

tilt. The zero length spring has the property that if the test mass were to be removed, the

force would be zero and the spring would have zero extension. This property is possible by
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manufacturing the spring to spiral inwards, so that it would have zero length with no added

mass[37]. The choice of quartz spring is preferable to metal because of its excellent elastic

properties, low thermal response, and is approximately non-magnetic. However, the spring

does relax over time, causing the instrument to drift. The drift is rated at < 20× 10−8 ms−2

per day when static, increasing above this value when the instrument is moved. The Scintrex

CG-5 has a resolution of 1 × 10−8 ms−2 and a survey precision of < 5 × 10−8 ms−2[55]. It

can automatically correct for temperature, tilt, tide and instrument drift. It measures at a

rate of 6 Hz, with a single measurement of up to 256 seconds possible (longer measurements

would be a�ected by the instrument drift).

Figure 2.5 shows a typical sixty second raw data measurement output by the CG-5. This

particular measurement was taken as part of a gravity survey used later in this research (see

Chapter 6). The low frequency, high amplitude variations are due to microseisms caused by

Figure 2.5: A typical raw gravity reading from the CG-5 taken in Birmingham United King-
dom. The low frequency (0.1 − 0.3 Hz) high amplitude variations due to the signal from
ocean waves is visible.

ocean waves hitting the coast[56]. The amplitude of these microseisms is often the limiting

factor for precise gravity surveys in the UK, requiring long measurement times to average out

to a required uncertainty level. The high frequency noise is due to wind and other vibrational
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e�ects.

2.3.2 Quantum Technology Atom Interferometer

The use of atom interferometry (AI) to measure gravity was �rst demonstrated by Chu[57]

et al in 1991. An AI essentially exchanges the roles of light and matter from the more

conventional laser interferometer. Laser cooled atoms (typically to micro-Kelvin level)[58]

traverse the interferometer arms and light pulses are e�ectively used as the interferometer

mirrors and beam splitters. Exploiting the wave-nature of atoms in this way allows for

a resolution far higher than that achievable with laser interferometers as the de Broglie

wavelength of atoms is small in comparison to wavelengths of light typically used in laser

interferometers.

The π
2
− π − π

2
interferometer set-up, analogous to the Mach-Zehnder laser interferometer

is shown in �gure 2.6[59]. Stimulated Raman transitions between hyper�ne ground states

Figure 2.6: Originally from [59]. The π
2
− π − π

2
interferometer set-up The straight paths

represent the atom trajectories if gravity were not present (no path length di�erence), the
curved lines represent the path di�erence caused by gravity.

are used to excite the atoms. The �rst π
2
transition is analogous to a beam splitter, atoms

are driven into a superposition of hyper�ne states | a〉 and | b〉, they subsequently drift

apart spatially. A time T later the π pulse toggles the states (| a〉 →| b〉 and | b〉 →| a〉)
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meaning the superposition of states drift back together. A time T later the states overlap,

but only interfere when the �nal π
2
pulse is applied. The fraction of atoms in one state is then

detected, this results in an oscillatory function of the path di�erence, which is dependent on

local gravity[60]. This phase shift is given by,

∆φ = ke�gT
2 (2.15)

where ke� is the e�ective wave number of the counter propagating Raman beams, T is the

time between Raman pulses and g is the acceleration due to gravity. There is a squared

dependence on the time between Raman pulses T , the longer the atom clouds can be left

in free-fall the greater the accuracy of the gravity reading. To form a gradiometer, two of

the interferometers described above are aligned and interrogated simultaneously. This allows

for common mode noise rejection, making the device less sensitive to vibrational noise than

mechanical devices. Practically this means that the vertical gravity gradient Uzz can be

measured to a high precision (< 4 × 10−9 s−2/
√
Hz[61]). Other Eötvös tensor components

that require simultaneous interrogation in axes orthogonal to the vertical are measured with

less accuracy, as the time T is necessarily signi�cantly shorter due to the horizontal alignment

of Raman beams (limited by the beam width).

2.4 Gravity Corrections

Gravity data can only be compared to synthetic models when the so called gravity anomaly is

calculated. That is, the theoretical gravity value at a given point is computed and compared

with the observed gravity measurement[62]. The di�erence between the observed gravity and

theoretical gravity at multiple points in space gives the two or three dimensional gravity

anomaly. As the only measurements presented in this research were taken using the Scintrex

CG-5 gravimeter, we address the corrections with it in mind. The corrections are split into

time varying (temporal) and spatially varying. The methodology of a small scale gravity

survey is discussed in Chapter 6, where these corrections are implemented.
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2.4.1 Temporal Corrections

The largest natural variation of gravity is due to the Earth tide, which can produce variations

of up to 300 × 10−8 ms−2 per day. The tidal gravity variations are caused primarily by the

gravitational attraction of the Moon (the Sun is also signi�cant) and from the deformation

of the ground as a result. The tidal signals are periodic and can be accurately (to < 1 ×

10−8 ms−2 precision) predicted. The Longman tidal model[63] is used by the Scintrex for

automatic tidal correction, it requires input values of instrument latitude, longitude and

Universal Coordinate Time (UTC).

After removing the tidal signal, the instrument drift can be removed by taking multiple

readings on a survey day at a chosen base station location (see Section 6.1.1). Figure 2.7 shows

the base station readings with corresponding linear quadratic and cubic least squares �ts for

CG-5 raw analogue-to-digital converter data. We can see that the drift is approximately

linear, as the goodness of �t does not increase substantially with higher order polynomials.

Figure 2.8 shows the base station readings of the Scintrex CG-5 corrected data. There is

non-linearity in this data, possibly due to an incorrect initial setting of the drift parameter

or to unknown a�ects of the built in black-box seismic �lter. For comparisons between

the raw corrected data and CG-5 corrected data we remove a second order drift correction

from the gravity values. By obtaining regular base station measurements, other temporal

corrections can be removed as part of the drift correction, such as changes in atmospheric

pressure[64]. However, the corrections due to atmospheric pressure changes are less than the

survey precision of the Scintrex.

2.4.2 Spatial Corrections

The spatial corrections that need to be applied to gravity data are illustrated in Figure 2.9.

These corrections can be summarised by[66],

gcorr = gobs − gN − gFA + gBC (2.16)
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Figure 2.7: A collection of base station readings taken using the CG-5 during a survey day.
Raw analogue to digital converter measurement data is shown.

Figure 2.8: A collection of base station readings taken using the CG-5 during a survey day.
Scintrex corrected measurement data is shown. Some non-linearity is introduced by the CG-5
corrections.

where we have; the observed gravity gobs, the normal gravity gN, the free air anomaly gFA

and the Bouger correction, gBC. The spatial corrections are usually made with respect to the
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Figure 2.9: Illustration of the free-air and Bouger corrections. Adapted from [65].

geoid (the equipotential surface represented by average sea level[37]). However, for relative

surveys not tied to absolute measurements, we can de�ne our height di�erence relative to an

arbitrary measurement point.

Latitude Variation

The Earth is not a perfect sphere, due to it's rotation it is deformed into an ellipsoid. The

average gravity value at the surface varies with latitude φ, using the International Gravity

Formula[65],

gN = geq(1 + c2 sin2 φ− c4 sin2 2φ) (2.17)

with geq = 9.780237 ms−2 , c2 = 0.0053024, c4 = 0.0000058, giving gN in units of mGal(10−5 ms−2).

These coe�cients depend only on the Earth mass, ellipticity, rate of rotation and radius.

Free Air Correction

The strength of the Earth's gravity �eld decreases as measurement height, ∆h, increases.

The free air correction is the mean vertical gradient above the surface of the Earth. It is

given by[67],

gFA = 0.3086×∆h (2.18)

in units of mGal per metre. A height di�erence of one centimetre gives a free air correction

value of 3 × 10−8 ms−2. Meaning that the height of the Scintrex sensor needs to be known

to within 0.01 m for measurement uncertainty < 3× 10−8 ms−2
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Bouger Correction

When we change elevation on the Earth following the topography, there is a di�erence in mass

between the relative measurement heights, ∆h. This either produces a positive correction

for extra mass (higher measurement point) or a negative correction for a mass de�cit (lower

measurement point). The simple in�nite slab relation is used,

gBC = 2πGρ∆h (2.19)

The density, ρ used for the Bouger correction is usually the estimated near-surface ground

density of a given survey area. Estimates can usually be obtained from nearby borehole log

data, using the British Geological Survey web applications[68]. If these logs are unavailable,

the Nettleton method can be used to determine the ground density using gravity readings

at di�erent heights on a slope, then minimising the correlation of the gravity measurements

with the topography[69]. This method is dependent upon measurement uncertainty, and often

requires extra data points to be taken away from the measurement area so as to avoid the

e�ect of any anomalies present. A typical density value of near-surface soil (1800 kgm−3)[43]

was used throughout this research.

Summary

In this chapter we have given an overview of the gravity and gravity gradient �elds. The

gravity models for the: sphere, cylinder and cuboid were stated for later use in the Bayesian

inference algorithm (see Section 5). The workings of the Scintrex CG-5 relative gravimeter

were discussed, along with the quantum atom interferometer gravity gradiometer. Finally,

the corrections required to reduce gravity data to the Bouger anomaly were explained, which

will be used later (Chapter 6) to correct survey data collected with the Scintrex CG-5. In

the next chapter we overview the Bayesian approach to geophysical inference problems.
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Chapter 3

Inference from Gravity Data

The Bayesian inference framework has seen increasing application to geophysical inference

problems in the last few decades, as computing power has increased allowing for power-

ful search techniques such as Markov chain Monte Carlo to explore the Bayesian posterior

distribution[70]. We skip over the philosophical nature of the disagreements between Fre-

quentist and Bayesian schools of statistical thought (for those interested there was a lively

debate in the literature of which [71][72][73][74] are just a sample). In some special cases the

Bayesian approach produces solutions that are equivalent to Tikhonov regularisation, except

that the Bayesian solution is always a probability distribution, whereas Tikhonov regularisa-

tion gives point estimates[75]. We begin the chapter with an overview of Bayes' theorem and

progress through to the global optimisation technique used to make draws from the Bayesian

posterior, the reversible-jump-Markov chain Monte Carlo algorithm. We keep the notation

completely general, as the Bayesian framework can be applied to any problem of inference.

3.1 Bayesian Inference

Bayesian inference was �rst proposed by Reverend Thomas Bayes, in a paper read posthu-

mously to the Royal Statistical Society in 1763[76]. The main distinction of the Bayesian

paradigm from that of the classical or frequentist statistical approach is that all unknown

quantities are treated as random variables (a variable used to represent the outcome of a
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random experiment[77]), namely the unknown parameters of interest and the measurement

data before observation. Bayesian inference explicitly incorporates all prior knowledge (data

independent) of the model parameters and combines it with information contained in the

measurement data to update our state of knowledge regarding our model parameters.

From the de�nition of conditional probabilities we have, for a vector of parameters θ and a

vector of data values d given by 1.1[78],

p(d,θ) = p(d | θ)p(θ) = p(θ | d)p(d) (3.1)

The notation used here reads as follows, p(d | θ) is the probability of d given that θ is true.

Rearranging gives the central equation of Bayesian inference, Bayes' Theorem,

p(θ | d, k, I) =
p(d | θ, k, I)p(θ | k, I)

p(d | k, I)
(3.2)

where p(θ | d, k, I) is the posterior distribution, which represents the probability distribution

of a vector of unknowns θ given the data vector d the number of model objects k and the

prior information I; p(d | θ, k, I) is the likelihood function, a measure of the likelihood

of observing data d given speci�c θ; p(θ | k, I) the prior distribution, which contains all

knowledge of the parameters before any data acquisition and p(d | k, I) the normalisation

constant, which can be shown to be[79],

p(d | k, I) =

∫
p(d | θ, k, I)p(θ | k, I)dθ (3.3)

for the case of continuous θ. This constant or evidence term ensures that the posterior

distribution integrates to one, as any valid probability distribution should. We can say that

the posterior, up to a normalising constant is,

p(θ | d, k, I) ∝ p(d | θ, k, I)p(θ | k, I) (3.4)
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The posterior probability distribution is the complete solution to the inference problem, as it

contains all the available information about the parameter vector. However, for problems of

high dimensionality (i.e. high number of parameters), accessing the information contained

within the distribution can be di�cult, as the normalizing integral can become mathemati-

cally intractable.

3.1.1 Likelihood Function

The likelihood function takes into account the information contained in the data points via

a mis�t function. The multivariate Gaussian distribution is usually chosen based upon the

assumption of normally distributed measurements, uncorrelated with zero mean[80]. It is

de�ned by,

p(d | θ, k, I) =
1√

(2π)Nd|Σ|
exp

[
−1

2
(d− f(θ))T Σ−1 (d− f(θ))

]
Σ = I

[
σ2

d + σ2
m

] (3.5)

where f(θ) represents our forward model and Nd is the number of data points. The covari-

ance matrix Σ contains the total uncertainty, which is de�ned as the sum of contributions

from the data uncertainty σd and the theoretical model uncertainty σm. The data uncer-

tainty is generally assumed known from experiment, with the model uncertainty an unknown

parameter to be found. It represents the inevitable uncertainty associated with �nite models

that are necessarily an approximation to a more complex reality. The likelihood function has

a relation to the method of least squares. For uniform prior distributions

3.1.2 Prior Probability Distribution

The prior probability distribution contains all information known about our model parame-

ters prior to taking the data measurements. There is some controversy over the assignment

of the prior distribution[81] as subjective choices can a�ect inference outputs, as we shall see
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in practice in Chapter 6. As such, all information of prior distribution parameters should be

made available and the inference outputs interpreted with respect to the priors used[82].

Often it is the case that we do not wish to bias our algorithm without good reason to do so.

In situations where we seemingly have null prior information a uniform prior distribution can

be used which only requires us to de�ne minimum and maximum bounding values. These

bounding values can be set to represent physical plausibility. An example is that of a cuboid

side length, which must take a positive value (lower bound equal to zero) and reasonably be

no larger than the measurement grid (upper bound equal to corresponding size of measure-

ment grid).

Careful consideration should be given to each model parameter's prior probability distribu-

tion, in this research we use either the uniform distribution, Gaussian distribution or Gamma

distribution.

For some parameter θ, the uniform prior distribution is de�ned,

p(θ | k, I, θmax, θmin) =


1

θmax−θmin , if θmin ≤ θ ≤ θmax

0, otherwise

(3.6)

The uniform distribution is an example of a `proper prior', meaning that it integrates to unity.

The uniform distribution gives zero outside the minimum and maximum limits, putting a

hard limit on the size of the model space.

The Gaussian distribution can be used when we have more information about a given model

parameter. For example if we know that the gravity anomaly density contrast is 2000 kgm−3

with a standard deviation uncertainty of ±100 kgm−3 then we would use the appropriate

Gaussian as our prior distribution with mean µ = 2000 and standard deviation σ = 100. The

univariate Gaussian is de�ned as,

p(θ | k, I, µ, σ) =
1

σ
√

2π
exp(
− (θ − µ)2

2σ2
) (3.7)
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The Gaussian distribution with a large standard deviation can be used for situations where

we do not wish to limit the model space abruptly, as with the uniform distribution.

The Gamma distribution, is de�ned for positive θ as[83],

p(θ | k, I, a, b) =
1

baΓ(a)
θa−1 exp(

−θ
b

) (3.8)

where a and b are the distribution shape and scale parameters respectively. The Gamma

distribution can be used for parameters with a known constraint on the sign. Examples

being parameters related to volume, such as radius and length. Figure 3.1 shows plots of the

Gamma distribution with various shape and scale parameters. Gamma distributions with

Figure 3.1: Gamma distributions for di�erent shape (a) and scale (b) parameters. The
distribution mode is located at (a− 1)b.

shape a = 2 and various scale values are used in this research. The total prior distribution

value is calculated by multiplying all of the individual parameter priors together,

p(θ | k, I,h) =

Nθ∏
n=1

p(θn | k, I,h) (3.9)

28



CHAPTER 3. INFERENCE FROM GRAVITY DATA

The parameters that de�ne the prior distributions are known as hyper-parameters These

parameters are de�ned prior to any measurements taking place.

3.2 Markov chain Monte Carlo

Monte Carlo (probabilistic) methods were �rst used to study the problem of neutron di�usion

in �ssile material for the development of the atomic bomb during the Second World War.

After successfully tackling this probabilistic problem, it was realised that Monte Carlo meth-

ods could be used to solve deterministic problems such as the evaluation of high-dimensional

integrals.[70]

A Markov chain X = [X0, X1, X2, ...] is a trajectory where the next quantity (Xt+1) is de-

termined probabilistically from the previous quantity (Xt) only, through some proposal dis-

tribution q(Xt+1 | Xt) (assuming that the proposal distribution q(.) has no dependence on

time, t), with no memory of how the previous quantity was arrived at[84]. This process can

be used to sample a target, invariant distribution, which will be the equilibrium distribution

of the Markov chain, to which the process will converge after many iterations[85]. In our

case the equilibrium distribution will be the Bayesian posterior probability distribution the

extent of which is de�ned by the model parameter prior distributions.

In order to ensure that a Markov chain will converge to the desired distribution, some con-

ditions must be adhered to. A Markov chain needs to be homogeneous, irreducible and

aperiodic[86]. A Markov chain is said to be homogeneous if the transition probabilities do

not depend on the time step, that is they do not change with time. A Markov chain is

irreducible when it is possible to access all states of the distribution from any other state.

That is, there are no jumps that can be made to a state from which the chain cannot return.

An aperiodic chain is when every state can recur at each time step[87].

Due to the intractability of the normalisation constant in problems of high dimensionality,

the Bayesian posterior distribution often cannot be independently directly sampled. An ex-

haustive search of the model space may be initially appealing, but as the dimensionality
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of the model space increases such sampling methods become too computationally intensive.

The approach of importance sampling is used, where model parameters that adhere closely

to the data and prior information are sampled more frequently[88].

Markov chain Monte Carlo methods have found widespread use in recent years in geophysics,

often to evaluate high dimensional Bayesian posterior distributions (although there are non-

Bayesian applications), an extensive overview of the history of Markov chain Monte Carlo

methods in geophysics is given in by Sambridge et al [70]. The most readily used algorithm

that ensures the equilibrium distribution will indeed sample the desired target distribution

is the Metropolis-Hastings algorithm[89], described in the following section.

3.2.1 Metropolis-Hastings algorithm

The Metropolis algorithm was �rst proposed by Nicholas Metropolis et al. in 1953[90], it

was used to calculate the properties of chemical substances. Hastings[91] generalized the

algorithm for non-symmetrical proposal distributions.

The algorithm starts at a random position in the model space, θ. At each step a proposal

is made to move from θ to a new point in the model space θ′. This new model is chosen

probabilistically from a de�ned proposal distribution q(θ′ | θ) that depends only on the

previous model. The new model is accepted with probability[92],

α = min

[
1,
p(θ′ | d, k, I)

p(θ | d, k, I)
· q(θ | θ

′)

q(θ′ | θ)

]
(3.10)

where the fraction on the left represents the ratio of a proposed posterior point and the

current posterior point. The fraction on the right represents the ratio of the proposal prob-

abilities (which equals one if the proposal distribution is symmetric). If the new model is

accepted, the next iteration will start with the model θ′, if the proposal is rejected the next

iteration of the process will start from θ. A proposal that increases the posterior distribu-

tion will always be accepted, this ensures that the random walk is targeted to areas of high

probability within the posterior distribution. However, if a proposal decreases the posterior
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distribution probability, it is either accepted or rejected based on the generation of a uni-

form random number[93], U [0, 1], accepting the proposal if u < α and rejecting if u > α.

Being able to accept moves that reduce the probability goes some way to ensuring that the

algorithm does not get stuck in local high probability regions. Due to the ratio of posterior

distributions (see Equation 3.2), the evidence term does not require calculation as it cancels.

The output of the algorithm is made up of the collection of models obtained at the end of

each step, from these models inferences can be made about the individual parameters of in-

terest. Figure 3.2 shows a representation of a Metropolis-Hastings update. The initial guess

Figure 3.2: Schematic representation of the Metropolis-Hastings algorithm for two arbitrary
parameters. The sampler starts far away from the high probability region, successive itera-
tions progress towards the high probability region with rejected iterations shown in red.

is far from the high probability region, successive guesses move towards the high probability

region. From here the chain will explore the high probability region proportional to the sta-

tionary distribution probability. For �nite length chains, this initial exploration of the low

probability region is often removed from the �nal models as a burn-in period (see Section

4.1.5)
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3.2.2 Reversible-Jump Markov chain Monte Carlo

There are a class of problems where the number of unknowns is something we do not know,

sometimes known as 'non-parametric' Bayesian inference. The �nal generalisation of the

Metropolis Hastings algorithm was made by Green [94] in his analysis of change point de-

tection in the rate of coal mining disasters, where he was interested in �nding the amount of

change points and their locations.

The reversible-jump Markov chain Monte Carlo algorithm extends the use of the Metropolis-

Hastings rule to cases where the proposal distribution is not only able to move to a point

within the current model, but between models too. The power of the reversible-jump Markov

chain Monte Carlo algorithm (sometimes called the Metropolis-Hastings-Green algorithm) is

that we are no longer required to assign the length of the model parameter vector as prior

information, the measurement data e�ectively determines the model complexity required to

best �t the data within the total uncertainty. Equation 3.11 shows the modi�cation made

by Green to the Metropolis-Hastings acceptance ratio,

α = min

[
1,
p(θ′ | d, k′, I)

p(θ | d, k, I)
· q(θ | θ

′)

q(θ′ | θ)
· | J |

]
(3.11)

the only di�erence compared to Equation 3.10 is the addition of the `Jacobian' term, de�ned

as,

| J |= ∂(θ′,uk
′
)

∂(θ,uk)
(3.12)

the role of which is to account for scale changes in the transformation between models θ and

θ′. Using vectors of random numbers uk
′
and uk of length r and r′ respectively, to match

the dimension of the two models being compared[95] such that r+ k = r′+ k′. The Jacobian

term for a regular Metropolis-Hastings update is simply equal to one.

Green notes that for nested models where the only dimension change necessary is the addi-

tion of deletion of model parameters, the reversible jump formalism is not required. This is

due to the deletion being essentially equivalent to setting the parameters to zero[96]. We use

such models in this research, where gravity anomalies consisting of multiple model objects

32



CHAPTER 3. INFERENCE FROM GRAVITY DATA

are simply summed in the forward model.

This leads to a special case of the reversible-jump Markov chain Monte Carlo algorithm that

provides the ability to explore di�erent models without the added complication of calculat-

ing the Jacobian[93]. Such processes are called `Birth-Death' Markov chain Monte Carlo[97].

The birth-death Markov chain Monte Carlo scheme works by suggesting only moves that are

reversible when transitioning between models.

For a birth move, a number of parameters (multiple parameters constitute one model object)

are added to the model, their starting values drawn from their respective prior probability

distributions. With the condition that the number of model objects is less than some maxi-

mum speci�ed as prior information, k < kmax.

For the death move an object is chosen at random and deleted from the model, with the

condition that k > 1.

The birth move increases the complexity of the model, the death move decreases the com-

plexity. It is intuitive to see why this process is deemed to be a natural Ockham's razor, as

the more parameters there are to explain a model the lower the prior probability (as given

by Equation 3.9) becomes.

The simple implementation of the birth-death Markov chain Monte Carlo algorithm has seen

it used many times in the geophysical literature, �rst by Malinverno [28] [11]. It is usually

applied to problems where the number of layers of a given Earth model are unknown, and a

layer can be added or deleted via a birth-death proposal[98].

A common criticism of the reversible-jump method is that we could simply obtain similar

results by varying the number of model objects and completing multiple runs with station-

ary k, essentially many separate standard Markov chain Monte Carlo runs. This may seem

appealing, however, for runs with a high number of model objects, the computational time

will become prohibitive. Further to this, simply de�ning multiple model objects does not

mean that they will contribute to the total model in any meaningful way, an object that is

super�uous to the �tting of the data will be marginalised, making assessment of convergence

di�cult (see Section 4.1.4). It is more e�cient to simply delete the objects that are not

33



CHAPTER 3. INFERENCE FROM GRAVITY DATA

required to �t the given dataset, as is done in the reversible-jump Markov chain Monte Carlo

algorithm.

Summary

In this section we have given an overview of Bayesian inference and it's application to geo-

physical inference problems. The work horse of Bayesian inference for complex models,

Markov chain Monte Carlo, was discussed. The importance sampling method of Metropolis-

Hastings which guarantees convergence to the Bayesian posterior distribution was explained,

along with the extension into determination of the model complexity using a special case

of the reversible-jump Markov chain Monte Carlo algorithm, the birth-death Markov chain

Monte Carlo. In the following chapter we discuss the implementation of these ideas into an

algorithm to tackle the gravity inference problem.
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Chapter 4

The Reversible-jump Markov chain

Monte Carlo Algorithm

An overview of Bayesian theory and Monte Carlo methods was described in Sections 3.1

and 3.2 respectively. In this chapter we detail the algorithm produced to make draws from

the Bayesian posterior probability distribution for the gravity inference problem, where the

number of unknowns, or model complexity, is itself unknown. The basic outline of the

algorithm is described in Section 4.1. Explanations of adaptive Markov chain Monte Carlo

and simulated annealing, which are employed to address the practical problem of chain

mixing are discussed in later sections. Methods to identify convergence failure are described

in Section 4.1.4.

4.1 Algorithm implementation

The reversible-jump Markov chain Monte Carlo algorithm developed in this research was

coded in MATLAB (see appendix C for the main code body). We put the theory described

in the previous chapter into practice for the gravity inference problem. The �ow chart shown

in Figure 4.1 describes the basic algorithm outline. The algorithm presented is due to an

accumulation of experience with running reversible-jump Markov chain Monte Carlo for the

detection of near surface gravity anomalies over the course of the research. It represents the
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best method found for ensuring reasonable convergence for the three forward model types.

The user decides on initial values for the following parameters,

Figure 4.1: Flow chart of basic code structure. There are four possible update schemes. The
initial inputs are de�ned by the user.

� imax: The maximum number of iterations for the reversible-jump Markov chain Monte

Carlo run.

� iburn: The number of iterations de�ned as the burn-in period.

� iad: When i mod iad = 0, the proposal distributions are updated (see section 4.1.2)
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� a, b: Determine the relative frequency of di�erent updates.

In this research, a and b are both set to 0.5. Meaning that we have equal probability for all

four updates to take place at each iteration. This is arbitrary and can be altered to improve

chain mixing. The burn-in period is set as some percentage of the total number of iterations.

We set iburn = 50, 000 here, or 0.25× imax. The adaptive proposal update is carried out every

iad iterations up to the end of the de�ned burn-in period. Section 4.1.2 describes the details

of this update.

Now we consider the four separate update schemes and the reasoning behind their inclusion,

from left to right as shown in Figure 4.1.

The all parameter update is self explanatory, we take our current parameter vector and pro-

pose new values from the respective parameter proposal distributions.

When updating a subset of the model parameters we randomly select a pre-de�ned parameter

block from a random model object (which is dependent upon the forward model being used).

If we currently have k model objects, we generate a uniform random number U [1, k] to select

the object which we wish to update. Then we randomly select the parameter block of this

model object which we will update. Here we used two parameter blocks, one for parameters

that are generally well de�ned by a gravity anomaly; the x-y centroid and rotation (if appli-

cable). The second block consisting of volume, depth and density parameters, all of which

are in general highly correlated. The number of parameter blocks and their relative update

frequencies are at the discretion of the user. When we go towards the extreme case of only

updating a single parameter at each iteration, it is easy to see how many more iterations will

be required for each parameter to converge. In this research we update the two parameter

blocks with equal frequency. However, it may be useful to update the highly correlated pa-

rameters more often than those expected to be well de�ned by the dataset[87]. It is noted

that all other parameters are held constant during a block update.

These two updates are standard Metropolis-Hastings schemes where the number of model

objects stays the same. We have two separate updates for constant k so that the forward

model objects have the �exibility to be updated one at a time and all together. Updating
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all objects together is advantageous as it allows all of the model parameters to be updated

at once. However, if we only allowed this update we would have no way of knowing which

objects are having a large a�ect on the acceptance percentages and hence mixing of the sam-

pler. To address this issue, a block update for a single object is used which allows tracking of

the acceptance percentage of parameters within a particular object, and using the adaptive

Markov chain Monte Carlo scheme outlined in Section 4.1.2 we can improve the mixing (see

Section 4.1.4) of individual objects.

The next two updates are reversible-jump updates, where the number of model objects k

changes. For a birth update, we add a new object to our parameter vector, whilst holding

all other parameters constant, so long as k < kmax. The initial parameters of our new object

are drawn at random from the prior probability distribution.

For a death update, we randomly select a model object, U [1, k] and delete it from the pa-

rameter vector, ensuring that k > 1.

After an update has been completed, the acceptance ratio is computed (from Equation 3.10),

log(α) =
log(p(θ′ | d, k′, I))− log(p(θ | d, k, I))

1 + t
(4.1)

and accepted if log(α) > log(U [0, 1]). Where t is the simulated annealing temperature

(see Section 4.1.3). Logarithms are used to ensure the values stay within a computable

range. If an iteration is accepted, the parameter values are updated accordingly, if rejected

the parameters stay the same. The parameter values from all accepted iterations are saved

together in a parameter matrix. The values saved after the burn-in are regarded as converged

parameters, unless failure of convergence is found using the diagnostics discussed in Section

4.1.4.

4.1.1 Proposal Distributions

The choice of proposal distributions has a signi�cant impact on the quality of Markov chain

Monte Carlo mixing and hence convergence. Usually a normal distribution centred on the
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current model value is used to make a new model proposal. Figure 4.2 shows a comparison

between a normal distribution and the Cauchy distribution. The Cauchy distribution has

Figure 4.2: Comparison of the Normal distribution and Cauchy distribution with γ = 1 and
x0 = 0.

higher chance of proposing values further away from the mean value than the normal distri-

bution. In this research, it was deemed advantageous to have an increased chance of large

steps in the model space for the spatial and geometric parameters of a model object, allowing

for large jumps between model parameter values. As such, the Cauchy distribution was used

as the proposal distribution for all parameters, it is de�ned by,

f(x|x0, γ) =
1

πγ

[
1 +

(
x−x0
γ

)2] (4.2)

where γ is the half-width half maximum and x0 is the peak centroid. The Cauchy distribution

is equivalent to a student-t distribution with ν = 1. The initial values of the proposal

distributions width for unknown parameters need to be de�ned by the user, values used

here are de�ned depending on the particular model being used. As a rule, parameters that

are expected to mix and converge well are given a smaller proposal scaling value than for
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parameters which we expect to be highly correlated and to mix poorly and converge slowly.

4.1.2 Adaptive Markov chain Monte Carlo

Usually, the proposal distribution for each parameter is set at the start of a Markov chain

Monte Carlo run and left unchanged throughout. A system of trial and error is used to

choose the proposal distribution widths which seem to provide the best mixing of the chain

(see Section 4.1.4). This trial and error can be di�cult, and the rigidity of this approach can

mean that the acceptance percentages of the updates are far from the optimum of 0.23 for

high dimensional distributions[99].

Adaptive Markov chain Monte Carlo[100] updates the proposal distribution widths based on

past information from the Markov chain. As a result the technique is non-Markovian.

By keeping track of the sum of the total attempted iterations and the accepted iterations

we can easily calculate the acceptance percentage. For a given number of iterations, iad, if

the acceptance percentage is lower than some minimum bound admin, the proposal distri-

bution standard deviation values are scaled by some factor addec where addec < 1. Smaller

jumps in the parameter space will result in a larger acceptance percent. If the acceptance is

larger than admax the values are scaled by adinc where adinc > 1. The assignment of these

values is somewhat arbitrary, although it is recommended that the scaling parameters are

symmetrical. In this research we used; iad = 1000, addec = 0.9, adinc = 1.1, admax = 0.4

and admin = 0.1. So, at every thousandth iteration the respective acceptance percentages are

calculated. If a given acceptance percent is less than 10% the proposal width is decreased

by 10%. If the acceptance percent is greater than 40% the proposal widths are increased by

10%.

As described in Section 4.1, we have one update which alters all of our parameters and one

which updates only a subset or block of the parameter vector. We use both of these updates

to alter di�erent aspects of the proposal distributions.

After assessing the acceptance percentage of the all parameter update, a scale factor adall is

adjusted as explained above. This value should be initialised at a value less than one. As we
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are updating many parameters, the overall proposal scaling needs to be smaller to ensure a

reasonable acceptance percentage is obtained. The block update allows us to alter the pro-

posal distributions for these parameters only. This gives �exibility as di�erent model objects

and parameter blocks will require di�erent proposal distributions to mix well. However, more

iterations are required when sampling only a sub-set of model parameters at each iteration.

As we have proposal distributions that are speci�c to our individual model objects, we need

to ensure that the proposal distributions are created and deleted accordingly with the birth

and death updates. For a death move we deleted the corresponding proposal distribution

values. For a birth move we assign the same proposal distributions as for the k = 1 object

(which can never be deleted).

The adaptive Markov chain Monte Carlo scheme does nothing to alter the rate at which

birth-death updates are accepted, as there is no speci�c proposal distribution associated

with these updates. It is not clear that the reversible-jump Markov chain Monte Carlo birth-

death moves should follow the same acceptance percent rules as for standard �xed dimension

MH moves. As is the case with many reversible jump algorithms, the dimension jumps

create a large perturbation of the likelihood function and as a result generally have a very

low acceptance percentage (<1%) [101]. As the adaptive process is non-Markovian, we only

allow updates of the proposal distribution during the pre-de�ned burn-in period (see Sec-

tion 4.1.4). After this period the proposal distribution widths are �xed at their current values.

4.1.3 Simulated Annealing

Simulated annealing increases the chance of updates being accepted early in a run, by altering

the Metropolis-Hastings acceptance criterion[102]. Iterative cooling returns the acceptance

probability to the standard Metropolis Hastings acceptance as the temperature approaches

zero as given by Equation 4.1. A simple exponential cooling schedule was used, for current
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iteration i the temperature is given by,

ti = ti−1C
i (4.3)

Figure 4.3 shows di�erent schedules for various constant values. In this work we use a short

Figure 4.3: Di�erent simulated annealing schedules for various C values.

simulated annealing schedule with C = 0.99999 and t0 = 1000000 so that after around a

thousand or so iterations we return to the correct Metropolis-Hastings acceptance. This

initial period allows exploration of di�erent k values that otherwise might not be explored

due to the low acceptance rate of birth-death updates.

4.1.4 Assessing Convergence

When implementing any Markov chain Monte Carlo algorithm, it is crucial to consider the

questions of convergence and whether the Bayesian posterior distribution has been fully

explored. These are active research questions in the statistics community, and as such there

is no generic rule to decide when a particular run has su�ciently explored the posterior

distribution or has converged, indeed the answers to these questions may be much harder
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when considering the reversible-jump Markov chain Monte Carlo algorithm as we can no

longer directly compare parameters between individual runs due to the model switching

problem[103][104].

A well implemented Markov chain Monte Carlo algorithm should show what is known as

good mixing. Mixing is an indicator that draws from the Bayesian posterior distribution

are independent. Figure 4.4 shows a comparison of good and poor parameter mixing. Good

parameter mixing leads to faster algorithm convergence. As the process starts at a random

Figure 4.4: An example of good mixing (left) and poor parameter mixing (right) for some
arbitrary model parameter.

point in the model space there is a `burn-in' period due to the very likely scenario of initializing

the algorithm in a low probability region of the model space. To account for this, early

samples are rejected until a criterion (the standard deviation of the data error vector e = d−θ

becomes smaller than the expected standard deviation of the measurement errors) is met[28]

or the process is simply run for so many iterations that the e�ect of the burn in period is

negligible. Alternatively, the method used in this research is to initialise a run with a set

burn-in period. The determination of the length of the burn-in is based on trial and error,

running the algorithm with a given measurement set and forward model multiple times.

Although simulated annealing and adaptive Markov chain Monte Carlo, described above,

can help chain mixing and hence speed up convergence, they cannot guarantee convergence.

For this reason we are required to run many realisations of the reversible-jump Markov chain

Monte Carlo process from multiple random starting points in the model space. Once the burn

in period has been removed, the problem of assessing convergence needs to be addressed[105].
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There are many possible diagnostics that can be used. However, most cannot be used in this

research as they rely on parameters maintaining their meaning across models and chains[103].

The chosen diagnostics of Geweke (see below) and manual autocorrelation inspection are used

as they can be applied to any marginal posterior distribution.

Geweke Diagnostic

The Geweke diagnostic is de�ned by Equation 4.4[106][85].

zG =
µa − µb√
σ2
a + σ2

b

→ N (0, 1) (4.4)

A parameter's marginal posterior is split into two windows. The �rst window encompassing

the �rst 10% of the iterations, the second spanning the �nal 50% of iterations. If the chain

is stationary the values of the mean and variance at the start and end should be similar.

As the number of iterations approaches in�nity, the Geweke diagnostic approaches a normal

distribution if the chain has converged. So any values obtained that stray far from the normal

distribution are warnings of failed convergence. The diagnostic can only give warnings of

potentially failed convergence, it cannot prove convergence. Figure 4.5 outlines how the

Geweke diagnostic is calculated for an arbitrary model parameter output chain. The Geweke

diagnostic gave a value of 4.47 for this chain. We set a threshold of 3 throughout this

research, above this value chains are automatically rejected. Depending on the importance

of the dataset this value can be altered as required. The Geweke diagnostic can also be

used to determine when the burn-in period has ended, if we imagine removing progressively

more of the chain from the left hand side of the �gure, we would eventually obtain a Geweke

diagnostic within our accepted threshold.

Auto-correlation

Autocorrelation is a measure of how much the value of a parameter posterior probability

distribution correlates to other values of itself at di�erent points in time. The autocorrelation
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Figure 4.5: Geweke diagnostic for an arbitrary parameter output chain.

of a parameter marginal posterior distribution can provide information on slow mixing and

potentially slow convergence. A low autocorrelation is desirable as it is a good indicator

that the draws from the posterior probability distribution are independent. For the trace

displayed in Figure 4.5 the autocorrelation plot is calculated using the MATLAB function

xcorr. Arbitrary bounds of ±0.2 were added to aid the visual inspection, correlation values

outside of these bounds usually indicates poor mixing and slow model parameter convergence.

The autocorrelation is not used to automatically reject reversible-jump Markov chain Monte

Carlo runs in this research, as some of the highly correlated parameters of the non-linear

gravity forward model are expected to mix slowly. Instead it is used simply as a visual aid

to understand the status of mixing and convergence of di�erent model parameters.

4.1.5 Algorithm Outputs

Figure 4.7 shows a plot of a parameter trace, not corrected for the burn-in period. The red

outline shows the initial simulated annealing period where the parameter undergoes large

changes due to the altered Metropolis-Hastings acceptance ratio. The orange section shows

the extent of some pre-de�ned burn-in period where adaptive Markov chain Monte Carlo is
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Figure 4.6: The autocorrelation plot for the trace in Figure 4.5. The initial chain values
skewed the autocorrelation. The vertical dashed line represents the end of the burn-in period.

permitted. The green section is taken as the `converged' output distribution for the model

parameter. We can plot this converged distribution as a histogram with appropriate summary

Figure 4.7: Trace plot showing the stages of a an arbitrary model parameter output chain.
Red area is simulated annealing, orange is burn-in and green is accepted iterations.

statistics of: mean, mode and 95% credibility intervals (there is a 95% probability that the
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parameter value lies between these bounds) as shown in Figure 4.8. Figure 4.9 shows the

Figure 4.8: A histogram of the accepted region of Figure 4.7 trace. The 95% credibility
interval is shown by vertical dashed lines, the mean by a solid line and the mode by a
dot-dash line.

evolution of the number of model objects. The initial period allows for an exploration of the

model space. The parameter quickly converges to a stationary value, where new objects are

rarely accepted and when they are accepted, they are swiftly deleted.

Summary

In this chapter we outlined the coding implementation of the reversible-jump Markov chain

Monte Carlo algorithm. The four di�erent types of updates were discussed: all parameters,

model object parameter blocks, birth and death. The key methods used to ensure good pa-

rameter mixing were described. Simulated annealing was shown to allow an early exploration

of low probability areas of the model space before returning the acceptance ratio to the usual

Metropolis-Hastings rule. The adaptive Markov chain Monte Carlo scheme was outlined,

showing how the proposal distributions for the all parameter and model object parameter

block updates are changed by retaining some limited memory of the chain (updating the ac-
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Figure 4.9: The evolution of the number of model objects parameter k over one reversible-
jump Markov chain Monte Carlo run.

ceptance percentages). The adaptive scheme was halted at a set burn-in period; after which

the marginal posterior distributions were deemed to have converged unless shown otherwise

by the Geweke diagnostic.
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Chapter 5

Synthetic Data Examples

Here we apply the reversible-jump Markov chain Monte Carlo algorithm to a number of

synthetic targets of interest contaminated with added Gaussian noise. The �rst is a large

buried cuboid void, modelled from the Scintrex CG-5 survey outlined in Appendix A.2. We

imagine a situation where we have prior information that we are looking for a cuboid, and

thus use the cuboid forward model. We also imagine a situation where we are unsure of the

shape of the anomaly and hence use the simplest geometry - that of a sphere. We brie�y

investigate the change in inference outputs due to a reduction in data point density.

The other model considered is that of a near-surface gas pipeline in Section 5.2. Again we

consider the case where we know the true model (cylinder) and the case when we do not. This

anomaly provides an interesting `semi-in�nite' scenario whereby the gravity signal extends

past the measurement grid bounds. For both targets, we compare the inference for synthetic

gravity measurement data with uncertainty comparable to that of the Scintrex CG-5, and

the vertical gravity gradient as we would expect to collect with a quantum technology atom

interferometer gradiometer.

5.1 The Buried Void Problem

An obvious target for which gravity measurements have direct application is that of a buried

void. Here we describe the application of the reversible-jump Markov chain Monte Carlo
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algorithm to simulated noise corrupted data of a near surface nuclear bunker of centroid

depth −2.3 m and dimensions 5.5×2.25×2.25 m. As mentioned previously, this is a synthetic

representation of an anomaly that was measured using the Scintrex CG-5 but for which only

one measurement line was obtained due to unforeseen circumstances and time constraints.

The gravity measurement data collected is shown in Appendix A.2. Good agreement was

found with the forward model generated using the known anomaly location and geometric

properties, assuming an average density of limestone. We can be con�dent that the synthetic

data generated here is at least partially supported by experimental measurement. A full

gravity survey would contain further complications; the bunker had an entry shaft that

protruded from the ground approximately half a metre, measurements at this location would

not be available, producing a gap in the measurement grid.

The noise corrupted synthetic data is shown in Figure 5.1. The model that produced the

data is shown in Figure 5.2. The measurement points are spaced by 0.5 m on a square

10 × 10 m grid, giving a total of 441 data points. The data points are taken in a �at plane

with z = 0.25 m, which is the approximate distance between the Scintrex CG-5 test mass and

ground level. It will be useful to de�ne some approximate measure of the signal strength

within the data grid, so that we can quickly compare the signal strength for di�erent synthetic

gravity anomalies. Although the signal-to-noise ratio is usually de�ned as the ratio of the

signal power to the noise power, for the rest of this work we de�ne the signal-to-noise ratio

for a gravity anomaly as,

SNR =
max(|d|)
〈σd〉

(5.1)

which is the maximum value of the measurement vector, divided by the average measurement

uncertainty, 〈σd〉. This gives an intuitive comparison between the measurement uncertainty

and the peak signal of the gravity anomaly, whether negative or positive. We are assuming

that the maximum signal is relative to a zero background. For this simple void anomaly we

obtain a value of 17.4 for synthetic gravity measurements with uncertainty comparable to

the single gravity line obtained.
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Figure 5.1: Synthetic data of buried near surface void. The data is o�set by the mean value.
Gaussian noise with σ = 3×10−8 ms−2 was added to the data. A measurement point spacing
of 0.5 m was used (red dots). There are a total of 441 data points.

Figure 5.2: Nuclear bunker modelled as a single void. The model density, ∆ρ, was set as
−2700 kgm−3. Red dots are the measurement point locations.
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5.1.1 Cuboid Forward Model

Depending on the circumstances of a given gravity survey, the level and quality of prior

information may vary quite substantially. Initially, let us assume that we know the geometry

of the buried void to be that of a cuboid, or multiple cuboids. With such strong prior

knowledge of our model, we are now engaged in a parameter estimation problem. We wish to

�nd the marginal Bayesian posterior distributions of the geometrical and locational properties

of any cuboids present in the data-set.

We de�ne our forward model as a sum of contributions from individual cuboids (model

objects), with the gravitational acceleration due to each being given by Equation 2.13. The

forward model vector is then,

Uz (θ) =

(
kmax∑
k=1

Uzk −

〈
kmax∑
k=1

Uzk

〉)
+ η (5.2)

for a number of objects k, with gravity o�set parameter η. Removing the mean from the

forward model ensures that the o�set parameter will be close to zero. Note that we have made

a slight re-parametrisation to Equation 2.13. The z0 parameter is rede�ned as z0 = z0 − `z
2
,

meaning that the anomaly cannot exist above the z = 0 plane.

The likelihood function (Equation 3.5) is then given by,

p(d | θ, k, I) =
1√

(2π)Nd|Σ|
exp

[
−1

2
(d−Uz))T Σ−1 (d−Uz))

]
Σ = I

[
σ2

d + σ2
m

] (5.3)

where d is the measurement vector, σd is the measurement uncertainty vector and σm is the

model uncertainty parameter. In-total the model consists of 8k + 2 separate parameters, as

the model dimension k is indirectly assessed by the reversible-jump algorithm (hence it does

not require an explicit parameter). The prior probability distributions of the model param-

eters are shown graphically in Figure 5.3, with Table 5.1 showing the distribution types and

their respective hyper-parameters. We are assuming prior knowledge of the average ground
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Figure 5.3: Prior distributions of key model parameters. Note that the y-centroid has the
same distribution as the x-centroid, similarly for the x,y and z lengths.

density, ∆ρ. It is usually feasible to estimate the ground density from local borehole mea-

surements, as outlined in Appendix A.2. The rotation parameter, ψ, is tightly de�ned so that

large jumps in degenerate values are avoided. A rotation of nπ radians, where n is any integer

yields exactly the same model. Such degeneracy is only a problem in so far as the stationarity

of parameters is used as an indication of reversible-jump Markov chain Monte Carlo chain

convergence. The x− y centroid values; x0, y0, are given Gaussian prior probabilities linked

to the maximum values of the measurement coordinates. Such an assignment assumes that

the measurement grid is rectangular and has been shifted to the coordinate origin. Any prior

information based on measurement position is completely dependent on the data-set being

analysed, and should be altered accordingly. The depth to the top of the anomaly, z0 is given

a Gamma distribution. Ensuring that any model object cannot be above the z = 0 plane

(which is equal to `ground-level' here, but in general this will not be true for non-uniform

z measurement positions). The three length parameters; `x, `y, `z are always positive, as a

result Gamma distributions are used. Depending on the type of anomaly being investigated,

it may be appropriate to scale the Gamma distribution scaling hyper-parameter of the `z
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Gamma Prior Distribution
Parameter Unit a (shape) b (scaling)
z0 m 2 1
`x m 2 1
`y m 2 1
`z m 2 1
σm 10−8 ms−2 2 〈σd〉

Normal Prior Distribution
Parameter Unit µ σ
x0 m 0 max(x)
y0 m 0 max(y)
ψ rad 0 0.25
η 10−8 ms−2 0 〈σd〉
∆ρ Mgm−3 -2.7 0.1

Uniform Prior Distribution
Parameter Unit Minimum Maximum
k Dimensionless 1 10

Table 5.1: List of prior distributions used for all model parameters.

parameter prior distribution accordingly; as we may suspect that the height of an anomaly

will not exceed more than a few metres for man made structures. The gravity o�set, η is

assigned a Gaussian distribution, scaled relative to the average of the measurement uncer-

tainty vector. As we have already subtracted the mean of the model, we know that the o�set

parameter will be approximately zero. The model uncertainty, σm, will take values greater

than zero. A reasonable scaling value is again the average of the measurement uncertainty

vector, meaning that we expect it to be of the order of our measurement uncertainty. The

number of model objects, k, is assigned a uniform prior between a minimum of one and a

maximum of 10. As we have no information of this parameter beforehand, the maximum

bound is set for practical reasons of computational time.

The choice of prior probability distributions used is subjective. Hopefully we have given

plausible reasons for the choices made here. Explicitly stating the priors in this way allows

interpretation of inference results to be seen in the context of the available model space.

The importance of the parameter prior distributions is magni�ed here as we readily make

draws from the prior distributions during the reversible-jump Markov chain Monte Carlo

birth update. We can see that the prior probability distributions favour the generation of

small model objects with length parameters of the order of 1 m. Birth steps generally cre-

ate a large change to the forward model, and as a result are accepted very rarely. So it is

advantageous to have a high probability to generate smaller model objects that are more

likely to be accepted. The initial Cauchy proposal distribution (see section 4.1.1) scaling
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parameters for the model parameters are de�ned as shown in Table 5.2. These parameters

were chosen by trial and error. However, it makes little di�erence when using an adaptive

Markov chain Monte Carlo scheme to tune the scaling values over the burn-in period. The

x0 y0 z0 `x `y `z ψ ∆ρ σm η
0.05 0.05 0.1 0.1 0.1 0.1 0.05 0.1 0.05 0.05

Table 5.2: List of proposal distribution scaling parameters for the Cauchy distribution.

scaling parameter for the reversible-jump Markov chain Monte Carlo update in which all

parameters are changed simultaneously is initiated as 0.5. This parameter is required, as

the more parameters that are updated simultaneously the lower the chance of acceptance

becomes. As more parameters are changed simultaneously there is a higher chance of the

proposed model changing dramatically with respect to the current model.

Having de�ned the forward model, prior probability distributions and parameter proposal

distributions, we can proceed as outlined in Chapter 4. We run the reversible-jump Markov

chain Monte Carlo algorithm for 200,000 iterations, a number chosen based on trial and error

of initial runs.

We employ both the adaptive Markov chain Monte Carlo scheme and simulated annealing

outlined in Sections 4.1.2 and 4.1.3 respectively. The simulated annealing parameters were

set as, t0 = 1 × 106 and C = 0.99999. Meaning that after approximately one thousand

iterations the acceptance ratio returns to the correct Metropolis-Hastings ratio.

The adaptive Markov chain Monte Carlo scheme was updated at every thousandth iteration,

if the acceptance percentage of a parameter block was greater than 0.4 the proposal scaling

was multiplied by 1.1. If the ratio was less than 0.1 the proposal scaling was multiplied by

0.9. As explained in Section 4.1, we have two possible standard Metropolis-Hastings up-

dates, one where all parameters are updated together, and one where we select a group of

parameters from one object to update in isolation. Two groups of parameters were de�ned,

group one consisted of x0, y0 and ψ, group two consisted of the rest of the object param-

eters. These groups were chosen because the group one parameters are often well de�ned

by gravity measurements, whilst the parameters in group two are highly correlated. After a

55



CHAPTER 5. SYNTHETIC DATA EXAMPLES

pre-de�ned burn-in period of 50,000 iterations (25% of the total number of iterations), the

adaptive scheme is halted and the proposal distributions are �xed at their current values.

For this particular implementation, a chain of 200,000 iterations took approximately �fteen

minutes to run (on a standard laptop computer).

After the algorithm has �nished, the marginal posterior distributions of all the model param-

eters are checked for obvious convergence failure using the Geweke diagnostic as described

in section 4.1.4. The number of model objects k is also tested with the diagnostic. If the

Geweke diagnostic gave a value greater than 3 for any parameter, we take a close look at the

parameter trace and rejected the run if it was clear that convergence had failed. Aided by

trace plots and autocorrelation plots. For this particular run, the Geweke diagnostic values

are displayed in Table 5.3. Figures 5.5 and 5.6 show the output trace plots and histograms

x0 y0 z0 `x `y `z ψ ∆ρ σm η
0.006 0.07 0.059 −0.39 −1.08 0.86 −0.08 −0.24 −0.1 0.05

Table 5.3: Geweke diagnostic values for all model parameters.

of the separate model parameter posterior distributions. It is useful to show both the his-

tograms and the trace side by side, as the trace gives information on the quality of mixing

for a given parameter that a histogram alone does not. The object number, k is not shown

as it is e�ectively constant at k = 1; meaning that the run has found the simplest model to

�t the measurement data. Each trace shows the distribution with mean values (solid line),

maximum a posteriori probability (MAP, dash-dotted line), 95% credibility interval (dashed

line) and the actual parameter value (red line). The histograms also show the parameter

prior probability distribution (blue line). We can see that the prior distributions have no

e�ect on the posterior distributions, except for the density parameter which follows the prior

distribution, telling us that the measurement data contains no information to improve upon

our prior knowledge. All parameters were found within the 95% credibility intervals, except

the for the model uncertainty. For this synthetic case we know that the model uncertainty

is actually zero. However, for real measurement data this would not be the case. Analysing

the parameter trace plots it is clear that we have correlation between the: z0, `x, `y and
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Figure 5.4: Histogram and trace plots of the algorithm output for the x0, y0, z0, `x model
parameters (from top to bottom).
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Figure 5.5: Histogram and trace plots of the `y, `z, ψ,∆ρ model parameters (from top to
bottom).
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Figure 5.6: Histogram and trace plots of the model uncertainty, σm and gravity o�set, ν,
parameters (from top to bottom).

`z parameters (all de�ned in parameter block two). The `y and `z parameters are highly

correlated and show signs of poor mixing and hence slow convergence. Figure 5.7 shows a

scatter plot of the two parameters output vectors. The correlation value obtained using the

MATLAB corr function was −0.91. There is correlation between all three volume parame-

ters, due to the unavoidable ambiguity between them. The smallest side parameter (`y) is

less well de�ned than the longer side length due to the �nite measurement grid spacing. The

forward model is least sensitive (relative to the other length parameters) to the height of the

void `z. Due to the re-parametrisation described earlier, any change in `z adds volume to the

cuboid at its lowest point, which is furthest from the measurement grid. As a consequence,

altering the value of `z has a small a�ect on the forward model values when contrasted with

a comparable change to either the `x or `y parameters.

We can combine the marginal posterior distributions of the three length parameters; `x, `y

and `z to obtain the marginal distribution for the object volume. Also, we can rescale the z0
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Figure 5.7: Correlation between `y and `z parameters. Red line shows linear �t, with the
orange cross indicating the actual parameter values.

parameter to represent the depth to centroid instead of the depth to top. Figure 5.8 shows

these combined posteriors. As we might expect, correlation between model volume and depth

is clearly shown. Comparison of the centroid depth and depth to the model object top as

seen in Figure 5.5 shows that the depth to the top is a more well de�ned parametrisation

than the centroid depth alone. Figure 5.8 also shows the combined volume and density of

the object which gives the object mass. In this case the value is negative, as we are dealing

with a void. As previously discussed, it is di�cult in a reversible-jump Markov chain Monte

Carlo algorithm to compare parameters between runs due to the problem of converging to

models of varying complexity. To sidestep this problem, we can investigate combinations

of parameters that are consistent between individual reversible-jump Markov chain Monte

Carlo runs. One such combination is the model total mass,

Mtotal =
kmax∑
k=1

∆ρkVk (5.4)

where we sum the mass of each model object. Figure 5.9 shows the correlation between

the object centroid depth and the object model mass. A correlation coe�cient of 0.99 was
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Figure 5.8: Combined length parameter posteriors show the object volume. A re-
parametrisation of the z0 and `z parameters give the depth.

found using the MATLAB function corr. It is clear from Figure 5.9 that the high probability

regions of the Bayesian posterior distribution are situated on a thin line in the model space.

Although the histograms and trace plots above give us useful information on the convergence

and uncertainty of parameters or combinations of parameters, it is not clear how this infor-

mation can be used to aid decision making by a potential end-user of the algorithm. In an

attempt to display the information obtained in a more intuitive way, one hundred random

model samples are drawn, each plot in 3D with one percent transparency. A comparable
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Figure 5.9: Scatter plot of centroid depth and object mass. Red line shows linear �t, with
the orange cross indicating the actual parameter value.

technique was �rst proposed in [107], where similar plots are called `probability of excavation

maps'. These maps were constructed by splitting the model space into cells, and increasing

each cells transparency relative to the number of posterior models encompassed by each cell.

Here we do not claim that we are displaying a probability of excavation, as we only plot a

small subset of the total number of accepted models. However, such plots are still useful for

displaying the models spatially, with darker areas of the plot being proportional to higher

probability models. We only make one hundred draws due to the limitations of MATLAB's

transparency rendering. It should be noted that such plots do not render correctly using

versions of MATLAB later than 2014b, as after this version major changes were made to

graphics rendering. Figure 5.10 shows various views of such a plot, with the actual anomaly

location shown in red. It is clear that the object is well resolved in the xy plane, along with

the depth to the top of the object. The data contain less information regarding the height of

the buried object. The usefulness of such a plot will become clearer in later sections, where

we deal with more complex multi-object models.

Above, we have tried to focus on displaying the Bayesian posterior information in terms of
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Figure 5.10: Plots of one hundred posterior models each of one percent transparency. The
actual model is shown in red.

the marginal distributions, as we believe that it is the best way to display the uncertainty

inherent in any inference problem. Any attempt to give a single `correct' solution to the infer-

ence problem is in danger of giving an over con�dent interpretation of the inference process.

However, in the interest of completeness, Figure 5.11 shows the forward models of the mean

and maximum a-posteriori (MAP) models, as compared to the synthetic data. As with any

Markov chain Monte Carlo sampler, we must run multiple separate chains to ensure that we

fully explore the Bayesian posterior distribution, as one run alone could get stuck in a local

minima due to the necessarily �nite number of iterations. Now that we have summarised the

outputs for one reversible-jump Markov chain Monte Carlo run, we now focus on interpreting

and displaying the outputs of many separate runs.

Ten independent runs were performed, Figure 5.12 shows the distribution of the number of

model objects, k. This is not corrected for burn in, as the sampler �nds the simplest solution

(k = 1 in this case) within a few thousand iterations. During a reversible-jump Markov chain
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Figure 5.11: Forward models calculated using point estimates. In this instance the average
model values �t the data-set more closely than the maximum posterior model values.

Monte Carlo run, early iterations usually �t the data using a complex model (large k). As

the sampler proceeds, model objects that are super�uous become marginalised. The objects'

contribution to the forward model decreases, by increasing its depth or decreasing its volume,

or both. At some stage, a death update will delete these marginalised objects.

Of the ten separate runs, one run was deemed not to have converged satisfactorily, alerted

to by multiple Geweke diagnostic values larger than the threshold. As previously stated, we

can use the total mass (Equation 5.4) to summarise the output of multiple chains, without

regard for the parameter switching problems of the reversible-jump Markov chain Monte

Carlo process. We can also combine the traces of parameters whose meanings stay the same

between models of varying k; the model uncertainty parameter σm, the gravity o�set param-

eter η and the total mass, M . Figure 5.13 shows the plots of these parameters, combined

from the successfully converged data-sets. We see that the individual runs converge to the

same model parameter values, as we would expect given that all of the runs converged to one

model object. The total mass of the void is found within the 95% credibility interval, having

considerable spread in favour of a larger total mass.
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Figure 5.12: Number of model objects, k. Data not corrected for burn-in. The simplest
model k = 1 is found for all converged runs. Prior probability distribution for the number of
model objects is uniform.

This initial analysis of a single cuboid model has demonstrated that the algorithm is capable

of �nding the parameters of the buried void within the uncertainty.

5.1.2 Sphere Forward Model

Now we consider the more general case where we do not know the exact forward model

relation. In such a case, we have little choice but to resort to the simplest gravity forward

model, that of a uniform density sphere. The sphere model can be used as a reasonable

approximation to any compact anomaly measured at a distance of a few diameters of the

anomaly[41]. We use Equation 5.2 as our forward model, where Uz is given by equation 2.7.

The sphere model contains 5k+ 2 model parameters. Three less parameters per object than

the cuboid model. However, more objects may be required to �t a given data-set relative

to the cuboid model which has more degrees of freedom. The prior distributions used are

shown in Figure 5.14, the respective hyper parameters are displayed in Table 5.4. The scaling

factors for the initial Cauchy proposal distributions are shown in Table 5.5. We have similar

reasoning for the assignment of prior distributions here as we did in the previous section.
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Figure 5.13: The model uncertainty, gravity o�set and total model mass retain the same
meaning between models of di�ering k value. The marginal posterior distributions of these
parameters can be combined from multiple runs.

The sphere radius, R, is given a Gamma distribution peaked at 0.5 as this is of the order of

our expected anomaly scale.

When using the sphere forward model we must acknowledge that we are no longer interested

in direct parameter estimation. At least not of all of the sphere parameters. We are more

concerned with the combined e�ect of multiple model objects. A single sphere cannot give

us meaningful knowledge of a complex anomaly structure. We need to interpret the model

objects together. Let us begin by showing the spatial plot of ten combined reversible-jump
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Figure 5.14: Prior probability distributions used for the sphere forward model.

Gamma Prior Distribution
Parameter Unit a (shape) b (scale)
z0 m 2 1
R m 2 0.5
σm 10−8 ms−2 2 〈σd〉

Gaussian Prior Distribution
Parameter Unit µ σ
x0 m 0 max x
y0 m 0 max y
η 10−8 ms−2 0 〈σd〉
∆ρ Mgm−3 -2.7 0.1

Uniform Prior Distribution
Parameter Unit Minimum Maximum
k Dimensionless 1 10

Table 5.4: List of prior distributions used for all sphere model parameters.

Markov chain Monte Carlo runs, eight of which were deemed to have converged successfully

using the Geweke diagnostic. Figure 5.15 shows the spatial distribution of the sphere objects.

We can see that the algorithm converged to a model consisting of two spheres with which to

�t the anomaly, as con�rmed by Figure 5.16. The algorithm is �nding the simplest model

to describe the data within the total uncertainty. We shall see later on that data with

smaller uncertainty leads to a more complex model (a model consisting of more objects).

One parameter that we would expect to �t with the known model parameters is the object

depth. Taking one of the converged runs, Figure 5.17 shows the trace and histogram plot

for the depth of object one. We can see that the anomaly depth is found within the 95%
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x0 y0 z0 R ∆ρ σm η
0.05 0.05 0.1 0.5 0.1 0.05 0.05

Table 5.5: List of proposal distribution scaling parameters for the Cauchy distribution.

Figure 5.15: Spatial plot of ten combined runs of the reversible-jump Markov chain Monte
Carlo algorithm using the sphere forward model.

credibility interval. Now that our output model consists of multiple objects, we not only

have to be concerned with correlation between object parameters as we saw with the cuboid

model, but indeed correlation between objects themselves. It is clear in this scenario that the

x centroid parameter of both of the objects may well be correlated, as the objects `wobble'

about some average position. Figure 5.18 con�rms this, with a calculated correlation value of

0.81. As before, we can summarise the parameters whose interpretation does not change with

k, the total mass, σm and η. Figure 5.19 shows their respective trace and histogram plots.

A direct comparison of the total mass obtained using the sphere model and that obtained

using the cuboid model (Figure 5.13) shows that the sphere model �ts the total mass more

closely than the cuboid model. A result that is perhaps somewhat unexpected given that the
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Figure 5.16: Combined number of objects, k for eight converged reversible-jump Markov
chain Monte Carlo runs. Two objects are favoured to �t the data-set.

Figure 5.17: The centroid depth of sphere 1. Matches the known anomaly centroid (red line)
within the 95% credibility interval (dot-dash lines).

synthetic data was generated using a cuboid model. This result may be due to the simpler

nature of the sphere model; it does not have the same problems of within object parameter

correlation between length parameters as was observed for the cuboid model (see Figure 5.7)

as its volume is determined solely by the radius parameter. An obvious trade o� with using

the sphere model is the inability to �t the exact geometrical parameters of the anomaly.

However, the need to obtain such precise geometrical information from a small scale gravity

survey may be unimportant compared to the model parameters of object depth and total
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Figure 5.18: The x centroid values of the two objects are correlated.

mass, which were inferred within the calculated credibility intervals.

The sphere model does have a number of advantages over the cuboid model, the obvious

being that the model itself is much simpler and can be computed more quickly than the

cuboid model. It also does not require extra angle parameters to be added in order to �t

anomalies which are not at constant depth, as would be required to extend the cuboid model

to cope with such a scenario. Finally it is also potentially easier to extend to more complex

models where ground density is non-uniform.

5.1.3 Decreased Data Density

The number of measurement points used for the previous data-set (411) was large in terms of

what is currently realistically possible with the gravity method, especially at the measurement

uncertainty level of 3 × 10−8 ms−2, without the survey extending into multiple weeks. We

brie�y consider an increase in the grid spacing to from 0.5 m to 1 m. This reduces the

number of data points to 121, a more realistic amount to commit to such a small area. The

exact values for these data points are used for the previous analysis, by simply deleting every

second measurement row and column. Doing this we can be sure that we are comparing
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Figure 5.19: The model uncertainty, o�set and total mass retain the same meaning between
models of di�ering k value. The marginal posterior distributions of these parameters can be
combined from multiple runs.

like for like, the same survey but with less data points. Figure 5.20 shows the reduced data

grid. Using the same prior probability distributions as for the previous cuboid model, �ve

reversible-jump Markov chain Monte Carlo runs were completed, all of which converged. We

truncate the individual analysis to show the combined three dimensional spatial plot, Figure

5.22. As expected, when compared to Figure 5.10, we have increased uncertainty in the

location and extent of the anomaly due to the reduced measurement point density. The

lower uncertainty obtained when taking 320 more measurements is minimal and not worth
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Figure 5.20: Synthetic gravity data (121 points) generated for the nuclear bunker anomaly.
Gaussian noise with σ = 3× 10−8ms−2 was added to the data.

Figure 5.21: Spatial plot of �ve combined runs of the reversible-jump Markov chain Monte
Carlo algorithm, �tting a cuboid model to the reduced data-set.
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the considerable added survey e�ort that would be required.

The corresponding analysis for the sphere forward model results in the spatial distribution

shown in Figure 5.22. When compared to Figure 5.15 we can see that the spheres are spatially

Figure 5.22: Spatial plot of �ve combined runs of the reversible-jump Markov chain Monte
Carlo algorithm, �tting a sphere model to the reduced data-set.

more di�use. The spheres are no longer symmetrical in terms of position and volume. Due

to the decreased number of measurement points, the gravity values at each point (relative to

the dense measurement grid) have more in�uence on the inference algorithm. If we have an

outlier in a low density measurement grid, it has a more pronounced a�ect on the inference

than the same outlier would have in a high density measurement grid.

5.1.4 Inference from Synthetic Gravity Gradient Data

We now take a brief look at the results that we might expect if measuring the nuclear

bunker anomaly using an atom interferometer gravity gradiometer. We assume a lower cloud

measurement position the same as that of the Scintrex CG-5 (za = 0.25 m) and a cloud
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spacing of 0.5 m, giving zb = 0.75 m. Which gives an e�ective gradient measurement position

equal to 0.5 m. Figure 5.23 shows the synthetic data. The signal-to-noise ratio (Equation

5.1) for this data-set is 48.

Figure 5.23: Synthetic gravity gradient data generated for the nuclear bunker anomaly.
Gaussian noise with σ = 0.5× 10−8 s−2 (5 E) was added to the data.

Cuboid Forward Model

We use the forward model as de�ned by Equation 2.13 taking Uzz as given by Equation

2.8. The proposal distribution for the o�set η and model uncertainty σm are reduced by a

factor of 10 from those used previously for gravity data. This is due to the change of scale

of gravity gradient measurements. Five runs, each of 200,000 iterations were carried out.

Figure 5.24 shows the spatial combination of the �ve runs, the high signal-to-noise ratio of

the data-set results in a very close �t to the actual model. As the signal-to-noise ratio is

very high for this data-set, the reversible-jump Markov chain Monte Carlo algorithm is being

limited by the uncertainty on the density contrast parameter. In reality we would not expect

to obtain a data-set with such a high signal-to-noise ratio, as other e�ects not accounted

for in the synthetic model generation will increase our experimental uncertainty. Issues such
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Figure 5.24: Spatial distribution of 100 accepted models. The large signal-to-noise ratio leads
to a very close �t.

as near-surface soil density variation, accurate location of the instrument and accuracy of

terrain corrections will combine to increase the overall survey uncertainty. The extent to

which these will a�ect a quantum atom interferometer gradiometer in the �eld is at present

unknown.

Sphere Forward Model

We can now apply the sphere forward model to the synthetic gravity gradient data-set. Figure

5.25 shows that the much higher signal to noise ratio of the gravity gradient data allows the

forward model to become more complex, in order to �t the data more accurately. We carried

out �ve combined runs each of 200,000 iterations. Each run converged to three model objects.

We have shown in this section the capabilities of the reversible-jump Markov chain Monte

Carlo algorithm for classifying a near surface anomaly whose gravity signal is large enough

to be detected by the Scintrex CG-5. We have partial con�rmation of the synthetic model
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Figure 5.25: Spatial distribution of 100 accepted models. The large signal-to-noise ratio leads
to a more complex model (k = 3).

from a line of data obtained over the Broadway Tower nuclear bunker as shown in Appendix

A.2. We have seen parsimonious behaviour of the reversible-jump Markov chain Monte Carlo

algorithm, converging consistently to the simplest model solution. The issues associated with

assessing convergence have been addressed using the Geweke diagnostic. The parameter

switching problem was sidestepped by summarising the total mass, M , and displaying the

spatial information in 3D plots of the model objects. We investigated the di�erence in the

inference outputs due to an increased and more realistic measurement survey spacing of 1 m.

The corresponding gravity gradient signal of the void was analysed, which had a much larger

signal to noise ratio than the gravity signal (48 to 17.4) . We saw how the increased signal

strength allowed the model to become more complex in the case of the sphere (k = 2→ k = 3)

relative to the gravity data. Showing that the model complexity is determined by the data.

Essentially a built in Ockham's Razor[108].
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5.2 The `Dog-leg' Pipeline Problem

The underground bunker modelled in the previous section was a simple anomaly, as it could

be described by a single model object, assuming the object forward model was known a-priori.

Now we tackle a problem where none of the simple shape models can describe the data using

a single object. Such a problem could arise in civil engineering, with a curved or `dog-

leg' pipeline. The model used here is an approximation of a near surface gas pipeline. The

cylinder model was used (Equation 2.11) to generate the model shown in Figure 5.26, with the

corresponding gravity data shown in Figure 5.27. The cylinder properties were: R = 0.6 m,

Figure 5.26: Model of curved pipeline. Consisting of two, e�ectively semi-in�nite cylinders
of radius 0.6 m, buried at a depth of 1 m to the anomaly top (1.6 m to centroid). Object
one is rotated an angle of 45◦ with respect to object two.

∆ρ = −2000 kgm−3. The measurement points are spaced by 0.5 m on a square 15 × 15 m

grid. The measurement points are taken in a �at plane with z = 0.25 m. The signal-to-noise

ratio for this anomaly was found to be 5.6. Signi�cantly lower than the signal strength that

we were dealing with in the previous section. A further complication with the data-set is the
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Figure 5.27: Synthetic gravity gradient data generated for the pipeline anomaly. Gaussian
noise with σ = 3× 10−8 ms−2 was added to the data.

semi-in�nite nature of the anomaly. The anomaly is larger than our measurement grid, which

may in general be the case for real world small scale gravity surveys. First, let us consider

the case where we have prior information regarding the appropriate forward model to use in

the reversible-jump Markov chain Monte Carlo algorithm, that of the �nite cylinder.

5.2.1 Cylinder Forward Model

De�ning our forward model from Equations 2.11 and 5.2, we proceed as before. Prior and

proposal distributions are de�ned, see Figure 5.28 and Tables 5.6 and 5.7. We now have

7k+ 2 parameters de�ning our forward model. Similar reasoning is used for the assignment

of prior distributions to previous problems. One di�erence here is that the length parameter

`y is de�ned with a Gamma scale parameter of four. Essentially stating that we expect the

anomalies to be relatively long in one direction, as is reasonable for a suspected pipeline.

Ten runs of the reversible-jump Markov chain Monte Carlo algorithm were carried out, of

which 8 were deemed to have converged. Selecting a converged run at random, we can assess

the output parameters. Figure 5.29 shows a random selection of one hundred accepted models
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Figure 5.28: Prior probability distributions used for the cylinder forward model.

Gamma Prior Distribution
Parameter Unit a (shape) b (scale)
z0 m 2 1
R m 2 0.5
`y m 2 4
σm 10−8 ms−2 2 〈σd〉

Gaussian Prior Distribution
Parameter Unit µ σ
x0 m 0 max(x)
y0 m 0 max(y)
ψ m 0 0.25
η 10−8 ms−2 0 〈σd〉
∆ρ Mgm−3 -2 0.1

Uniform Prior Distribution
Parameter Unit Minimum Maximum
k Dimensionless 1 10

Table 5.6: List of prior distributions used for all model parameters.

of the run. Considering the signal-to-noise ratio of the data-set, the spatial �t seems reason-

able. We can see that there is some ambiguity around the meeting point of the two objects.

So we expect the two objects to have correlated parameters, as we encountered previously

with the sphere model �t to the nuclear bunker anomaly. Figures 5.31 and 5.33 show the

marginal posterior distributions of objects one and two respectively. For completeness Figure

5.34 shows the marginal posterior of the error and o�set parameters. The parameters of

object one, which is encompassed by the measurement grid, are all found within the marginal

distribution credibility intervals. The credibility interval widths for the depth and radius are
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x0 y0 z0 R `y ψ ∆ρ σm η
0.05 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.05

Table 5.7: List of proposal distribution scaling parameters for the Cauchy distribution.

Figure 5.29: Converged run for dog-leg pipeline anomaly.

small, only 0.4 m and 0.13 m respectively. Object two, which is semi-in�nite with respect to

the measurement grid is well de�ned for all parameters except for y0 and `y, where an in�nite

number of solutions exist. This ambiguity causes problems for the Geweke diagnostic, which

relies on stationarity to assess convergence. Parameters that can undergo a random walk

together whilst still �tting the data equally well have no stationary property. This problem

of semi-in�nite anomalies does not have a simple solution without raising other issues. We

may consider a uniform distribution for our centroid values that equals the extent of the

measurement grid, e�ectively forcing the object to be within the grid. This would solve the

current problem, but would create other issues by limiting the model space. Anomalies that

lie just outside of the measurement grid could not be investigated even though their gravity

signal could be non-negligible.
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Figure 5.30: Marginal posterior distributions for object one. Histogram and trace plots of
parameters x0, y0, z0 and `y are shown.
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Figure 5.31: Histogram and trace plots of object one parameters: R,ψ and ∆ρ.

Figure 5.35 shows the combined k value for the eight converged runs. We see that the al-

gorithm again converges to the simplest solution to describe the measurements within the

uncertainty. As before, we combine the total mass of the multiple runs. Figure 5.36 shows

that with a semi-in�nite anomaly we can no longer rely on the total mass to be a descriptive

distribution. The ambiguity due to the object length means that there is also ambiguity in

the total mass. Further to this, with a semi-in�nite object we cannot say exactly what the

total mass parameter should be, as we do not know the total anomaly volume a�ecting our

gravity measurement grid. As with the bunker anomaly, we can also approach the problem
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Figure 5.32: Marginal posterior distributions for object two. Object parameters
x0, z0, R and ψ are shown. The y0 parameter is omitted as it has no correct value due to the
semi-in�nite anomaly.
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Figure 5.33: Marginal posterior distributions for object two continued. The `y parameter is
omitted as it has no correct value due to the semi-in�nite anomaly.

Figure 5.34: Marginal posterior distributions for the global parameters: σm (model uncer-
tainty) and η (gravity o�set).

from a state of increased ignorance by using the sphere forward model. However, we may

beforehand expect a less than satisfactory �t, as the limits of the sphere approximation (see

Appendix B) are violated by this anomaly.
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Figure 5.35: k parameter for the eight converged reversible-jump Markov chain Monte Carlo
runs.

Figure 5.36: Total mass of the eight converged reversible-jump Markov chain Monte Carlo
runs

5.2.2 Sphere Forward Model

We apply the sphere forward model to the dog-leg pipeline data-set described in the previous

section. The prior distributions and initial Cauchy proposal distribution widths are set the
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same as those used in Section 5.1.2. Appendix B explains the approximation of spheres to

�t a cylindrical anomaly.

Ten runs (of 200,000 iterations each) of the reversible-jump Markov chain Monte Carlo al-

gorithm were completed, of which nine passed the convergence test. Figure 5.37 shows the

combined k value of the nine converged runs. Four objects are clearly favoured. Figure 5.38

shows the corresponding spatial distribution of the four objects. Starting from an initial

Figure 5.37: Number of objects for the nine converged runs.

situation of ignorance regarding the forward model, we should expect less information in our

Bayesian posterior distribution. The sphere model requires a total of twenty two parameters

to �t the gravity data-set within the total uncertainty; compared to sixteen parameters of

the cylinder model. The x0, y0 values of the spheres follow the cylinder centroid well. The

radii of the spheres is not directly comparable to the radii of the cylinders. However, we

would expect the depth of the sphere to correspond with the depth of the cylinders. Figure

5.39 shows the marginal posterior distribution of the depth of one of the four sphere model

objects. The model parameters that are independent of k are shown in Figure 5.40. We see

that due to the discrete nature of the sphere anomaly, the total mass posterior distribution

once again converges to a stationary distribution for separate runs, as we no longer have the
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Figure 5.38: Converged combined runs for dog-leg pipeline anomaly �t using the sphere
forward model.

Figure 5.39: Centroid depth of one of the spheres.

problem of model parameter degeneracy that we encountered with the cylinder model. This

can be seen as an advantage of using a simple sphere forward model to �t a gravity data-set

of a complex anomaly.

The drawback to using the sphere model is clear, the user is left to interpret the spatial dis-

tribution further. It is not clear if we are dealing with four independent anomalies or if the

discrete anomalies can be linked into a large continuous anomaly. The only way to obtain
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more information from our Bayesian posterior distribution is to incorporate more speci�c

prior information (as is provided by using the cylinder model) or using the gravity data-

set as part of a larger joint-inference algorithm, combining inference of multiple geophysical

data-sets simultaneously[109].

Figure 5.40: Marginal posterior distributions for the global parameters, model uncertainty
o�set and total mass.
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5.2.3 Inference from Synthetic Gravity Gradient Data

We brie�y discuss the reversible-jump Markov chain Monte Carlo algorithm outputs for

synthetic Uzz measurements of the dog-leg pipeline anomaly. Figure 5.41 shows the Uzz

synthetic gravity data. Using the same measurement positions as described in Section 5.1.4.

The signal-to-noise ratio for this anomaly was found to be 18.4. For the cylinder model we

Figure 5.41: Uzz data for the dog-leg pipeline anomaly. Data-set consists of 441 measurement
points, with added Gaussian noise with σd = 0.5× 10−8 s−2.

simply get back tighter marginal posterior distributions on the model parameters due to the

increased signal-to-noise ratio. So we move straight to the sphere forward model. Figure

5.42 shows the converged spatial distribution of one reversible-jump Markov chain Monte

Carlo run of 500,000 iterations. More iterations are required to reach convergence due to the

increased number of model objects. We see that the complexity of the model has e�ectively

doubled, with a total of eight spheres combining to best �t the gravity gradient data-set.

As a consequence, the sphere centroid depth more closely approximates that of the cylinder

anomaly. Figure 5.43 shows the total mass of the model objects.
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Figure 5.42: Spatial plot of the eight sphere objects. Double the amount of objects used to
�t the lower signal-to-noise gravity data.

Figure 5.43: The total mass for one run of 500,000 iterations. The margnal distribution is
more unstable with the large number of objects. Perhaps more iterations are needed.

Summary

In this section we have seen the application of the reversible-jump Markov chain Monte Carlo

algorithm to two synthetic noise corrupted data-sets. The simple void data-set was partially

con�rmed by experiment (appendix A.2) and the dog-leg gas pipeline was simply a reasonable

civil engineering application. We have shown that given su�cient prior information regarding
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the average ground density and forward model type, we can remove su�cient ambiguity in the

interpretation to achieve good agreement with the synthetic model truth. We demonstrate

the usefulness of the birth-death moves to �nd the appropriate model complexity given the

total measurement uncertainty. The three dimensional spatial plots show an intuitive method

of displaying the algorithm outputs, combined with the total mass parameter which allows

comparison between models of varying complexity. The synthetic gravity gradient data for

the two anomalies provided a much larger signal to noise ratio than the corresponding gravity

data, as as such the complexity of the model solutions for both cases were increased. The

multiple sphere forward model was shown to be a good approximation to both synthetic

anomalies investigated.
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Chapter 6

Where are the concrete blocks?

In order to demonstrate the practical use of the Bayesian inference algorithm, an experiment

to obtain gravity measurements of known anomalies was devised. Having knowledge of the

anomalies present in the data allows for a direct assessment of the outputs of the Bayesian

inference algorithm and thus its usefulness when applied to data with unknown anomalies.

This chapter explains the experimental process of small scale terrestrial gravity measurements

with a Scintrex CG-5 gravimeter, including survey method, data quality controls and data

reduction techniques. After these techniques have been applied, the data is ready for input

into the reversible-jump Markov chain Monte Carlo algorithm. The inference algorithm is

run for a number of di�erent measurement uncertainty values, with corresponding results

discussed.

6.1 Experimental Set-up

The experimental set-up is shown in Figure 6.3. The location of the experiment was chosen

for reasons of practicality, a rarely used car park close to the University o�ces, naturally

sheltered from wind, footfall and road tra�c. The car-park is located at 52.453965 N, -

1.927668 W. Eight separate concrete blocks were stacked into two distinct gravity anomalies

of four blocks each. Each block weighed 1600± 30 kg with dimensions of 2.3× 0.5× 0.7 m.

The two stacks of blocks were of dimension 2.3× 1× 1.4 m. Using a sca�old tower adjusted
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to the same height as the blocks, measurements were taken using a Scintrex CG-5 relative

gravimeter in a grid above the two anomalies. The CG-5 was accurately located (±0.002 m

Figure 6.1: Photograph of the experimental set-up used. Showing the Scintrex CG-5 on
top of the sca�old tower, with the Leica 360 degree prism on top, next to the two concrete
anomalies.

in horizontal plane, ±0.01 m vertically) using a Leica TS-15 by logging the location of the

360 degree prism positioned above the CG-5 sensor location as shown in �gure 6.2. The

location is only logged once the instrument has been levelled to within the threshold of 10

arc seconds. The actual position of the concrete blocks was also mapped using the Leica

station, so that it was possible to know where our measurement points were in relation to

the anomalies. The measurement points relative to the concrete blocks are shown in Figure

6.3. We o�set the Easting and Northing values to an arbitrary measurement point. Here,

the middle point of the survey, 508, was chosen. A rotation of -27 degrees was applied

to the measurement grid, making it approximately parallel to the xy axes. The height

was scaled to the minimum height measurement. This o�set and rotation process allows

for easier integration into the reversible-jump Markov chain Monte Carlo algorithm. The

original coordinates can be obtained by reversing the rotation and o�set process.
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Figure 6.2: Location of the CG-5 sensor and Leica 360 degree prism. Adapted from [50] and
[55].

Figure 6.3: Schematic birds eye view of the concrete block set-up, with data lines shown
along with the survey midpoint, point 508. Point 411 was chosen as a repeat point for each
measurement day to check for consistency. The concrete block edges were found using the
Leica total station, along with the measurement points (red dots).
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6.1.1 Survey Procedure

As previously mentioned, the Scintrex CG-5 is often used for large scale terrestrial gravity

measurements, looking for targets with a much larger gravity signal than the small near

surface targets which are of interest here. To detect small anomalies we are pushing the

CG-5 to its limits and as a result we require careful experimental procedure. Commercial

companies such as RSK do carry out small scale surveys using the CG-5 in the UK, usually

looking for sink-holes or other potentially dangerous gravity anomalies. These surveys can

take many days or weeks to complete[110]. Most of the problems associated with terrestrial

gravity measurements can be eliminated or limited by good survey practice[111]. Here we

explain our general survey procedure, arrived at after many small scale surveys with the

CG-5. To ensure the best chance of a successful survey, thorough planning is required before

any gravity measurements take place. The survey site should be visited beforehand to at-

tempt to foresee issues that may arise during the survey. Basic questions such as the location

and extent of the measurement grid, and grid spacing should be addressed. The extent of

a measurement grid is a trade o� between available time and required accuracy. Horizontal

spatial resolution of a survey is the minimum separation that permits recognition of nearby

individual anomalies As such it is an important consideration as it determines the smallest

anomalies that can be identi�ed in a given survey. The horizontal spacing can be estimated

beforehand using rough prior knowledge of the anomaly of interest.

A suitable location for the Leica base-station should be identi�ed, ideally one which has line

of sight to all required measurement points. The exposure of the site should be considered,

as particularly windy conditions may require the use of wind defenders (see Appendix A.1).

Finally, any instruments to be used on site should be recently calibrated as per their user

manual instructions. After this initial planning phase, the measurement campaign can pro-

ceed.

The �rst day of measurements at a given site requires the Leica total station to be set up,

with its position referenced to two GPS points, or control points. These control point loca-

tions are usually chosen to be orthogonal with respect to the total station location. Both the
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total station and the GPS should be levelled on tripods, and their locations set by placing

a survey peg in the ground directly below. On the �rst measurement day, the Leica Viva

GS08 GPS logs the position of the control points over a number of hours. Once the initial

set-up has been completed, the total station can be set-up relatively quickly between days

by logging the positions of the control points[112].

When arriving on site, the Scintrex should be levelled and set measuring as soon as possible.

This initial settling period usually lasted for approximately thirty minutes, during which

time other survey tasks were carried out. This is required to ensure the instrument recovers

su�ciently from the transportation and that it adjusts to the environmental conditions of

the site. Whilst in this settling period, the Scintrex GPS attachment was used to log the site

location and ensure that the internal clock was synchronised.

For each measurement, the instrument was placed carefully on the tripod and levelled using

the tripod screws. A threshold of 10 arc sec (∼ 50 µrad) is recommended[113] to achieve a

measurement precision of 1× 10−8 ms−2. The Scintrex CG-5 screen outputs real-time infor-

mation relating to the quality of a given measurement, which can be used as a quality control

reference in the �eld. The xy tilt is displayed in arc seconds. When the instrument is initially

levelled, the on screen tilt values should be monitored to ensure that there is no tilt drift

from level. Often, tilt drift is unavoidable, especially on unstable ground. The best course of

action in this situation is to re-level the instrument after each individual measurement. Care

should be taken when stepping away from the instrument after levelling. For certain ground

types the deformation under the operator's weight will cause the instrument to deviate from

level. The Scintrex CG-5 allows a time to be set that delays the start of a measurement. This

delay gives time to move a reasonable distance away from the instrument, to avoid imparting

unwanted signals to the measurement. Ideally, if available the remote control should be used

to initialise a measurement.

The measurement standard deviation is also displayed. This is highly dependent upon en-

vironmental conditions, large micro-seismic noise leads to large standard deviation values.

There can be short spikes in micro-seismic noise which can cause measurements to have es-
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pecially large standard deviations. At the end of a measurement or set of measurements the

standard deviation values should be logged and extra measurements taken where spikes were

identi�ed.

The individual measurement time is somewhat dependent upon �eld conditions. The CG-5

allows a maximum single measurement time of 256 seconds. After some experimentation, it

was decided that multiple shorter measurements were often the most e�cient to collect. At

each measurement point we aim to collect �ve-one minute measurements that fall within the

quality controls de�ned for a given survey. The gravity value for each point is then taken as

the average of the measurements that meet the quality controls.

The Scintrex CG-5 can su�er from what is known as a `tare'. This is where the magnitude

of the gravity reading changes abruptly for reasons that are not obvious. We speculate that

abnormally large shocks when placing the instrument on the tripod or vigorous movement

between measurement points could make tares more likely. Gentle handling of the instrument

at all times may help with tare prevention. To detect a tare in the �eld, a set of measurements

need to be observed and the mean values logged. An abnormal mean value with respect to

the rest of the measurement set is usually a sign of a tare.

As the instrument su�ers from mechanical drift, a base-station needs to be set up on site

on which multiple measurements are taken throughout the day. The base-station can be

an arbitrary point, however a few practical considerations can help improve the speed of a

survey. The base-station should be placed in a quiet area, where the ground is stable and

levelling the instrument will be a quick task. Ideally the location should not be too far from

the measurement grid, to avoid unnecessary transportation of the instrument over large dis-

tances. The Scintrex CG-5 claims a linear drift coe�cient, even so, here we opted to take

base-station readings approximately every hour[41].

Once the gravity measurements have been collected as detailed above. The data are cor-

rected as outlined in section 2.4 for each individual survey day. We can then combine the

measurement points from di�erent days and proceed with analysis of our survey uncertainty,

as outlined in the next section.
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6.1.2 Measurement Consistency and Uncertainty

Data point uncertainty is input into the Bayesian inference through the covariance matrix in

the likelihood function (see Equation 3.5). Determination of the Scintrex CG-5 uncertainty

is a non-trivial exercise, especially within the small measurement survey framework[111]. A

small scale survey carried out over multiple days brings in areas of uncertainty that cannot

be e�ectively determined by only accounting for the scatter of �ve separate measurements

on each measurement point. E�ects such as regular movement of the instrument between

measurement points and location uncertainty and repeatability need to be taken into account

when considering what number should be placed on the measurement uncertainty. In this

experiment we make use of the base-station measurements to determine both the instru-

ment drift and the measurement consistency. On each survey day the base-station is visited

multiple times in order to allow the removal of the instrument drift in post-processing. If

we had a noise-free instrument with perfect data reduction and experimental practice, we

would expect our corrected base-station values to all be equally zero. In reality we have some

distribution about zero as shown in Figure 6.4. The histogram shows base-station readings

taken on the same day as measurement line �ve (see Figure 6.3). Although the number of

base-station readings is small, we approximate a Gaussian distribution. We plot both the

CG-5 corrected data and our own corrections of the raw analogue-to-digital converter (ADC)

data values. We can see that they give very similar results. The base-station measurement

standard deviation (σd) on a given day is taken as a base level of data uncertainty, as it is

unreasonable to assume that any of our actual measurement points could possibly be known

with more certainty than our base-station for which we have multiple measurements taken at

di�erent times. Figure 6.5 shows the mid line of gravity measurements with the calculated

base-station standard deviation uncertainty of ±2σd. The raw corrected data and Scintrex

corrected data are the same within the given uncertainty. We can clearly see the gravity

signal due to the two concrete structures. There is some overlap of the signal in-between

the blocks, as the signal does not drop to the background values at the start and end of the

measurement line. The purple line shows the expected gravity signal with mean removed,
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Figure 6.4: Histogram of the base-station measurement residuals. The measurements ap-
proximate to a normal distribution with a standard deviation of 2 × 10−8 ms−2. Both the
Scintrex corrected data and raw corrected data values are shown.

Figure 6.5: Line 5 (see Figure 6.3) of the gravity grid data with mean removed. Uncertainty
±2σd, from Figure 6.4. The purple line shows the expected gravity signal from the concrete
anomalies.

based on our measurement locations and the known density and geometrical properties of

the concrete structures. A regional linear trend was �t and removed from the data-set to
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give the �at background shown.

The measurement grid was taken over multiple days, with point 411 being repeated on each

day to check for consistency. Figure 6.6 shows the residual gravity values with the associated

base-station uncertainty calculated as for Figure 6.4. All measurements of point 411 made on

di�erent days match within the ±2σd uncertainty. Which demonstrates that the methodol-

ogy of using the base-station reading standard deviation for a given survey day as the blanket

measurement uncertainty is reasonable. It also shows that our data taken between days are

comparable and can be combined into a larger, grid data-set. We see that data lines; two,

seven and eight have large uncertainty values using this method. These were days where envi-

ronmental conditions were poor, with gusts of wind causing vibrations of the instrument and

adversely a�ecting tilt. Also, rain causing the ground to become unstable, making levelling

of the instrument di�cult. The di�erence in uncertainty values between the raw corrected

Figure 6.6: Point 411 was repeated on each measurement day in order to check for consistency
between days. Shown are the residual corrected gravity values with two times the base-station
standard deviation (σd) uncertainty. All measurement points agree within the uncertainty
bounds. The size of the uncertainty bounds vary, due to discrepancies in the correction
procedures for raw and Scintrex CG-5 corrected data.

data and the Scintrex corrected data may be caused by the Scintrex using a box car seismic

noise reduction �lter[55]. The exact workings of this process (and many others relating to the
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Scintrex) are not explained in the CG-5 manual, hence the reason we opted to correct the

raw data manually. An alternative characterisation of the survey uncertainty is to combine

all of the base-station corrected values for each survey day into one distribution as shown in

Figure 6.7. This yields a standard deviation value of ∼ 3.7 × 10−8 ms−2. This value gives

an overall survey uncertainty, similar to the blanket uncertainty values that we assumed for

synthetic anomalies investigated in Chapter 5. These uncertainty values match well with

Figure 6.7: A combination of all base-station readings from all survey days. The larger
amount of measurements provides a better approximation to a Gaussian distribution. The
standard deviation is approximately 3.7×10−8 ms−2 for both the raw and Scintrex corrected
data.

other gravity surveys carried out using the Scintrex CG-5 (< 5 µ Gal repeatability)[110].

The CG-5 operation manual gives the uncertainty on a given measurement as the standard

deviation divided by the square root of the measurement duration in seconds[55],

ERR =
STD√
DUR

(6.1)

This could be used as an alternative data uncertainty estimate although it does not account

for complications arising due to frequent movement of the instrument, as the above base-
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station methods do.

6.2 Experimental Results

The �nal correction to our gravity measurement values is to remove any regional linear trend

present in the data-set. Assumed here to be a �at plane so as to avoid �tting any anomalies

present. The gravity values are �t using the MATLAB poly�t (which gives the best �t in a

least-squares sense) function and the resulting �tted function is evaluated at the measure-

ment point positions and subtracted from the gravity data. Figure 6.8 shows the regional

trend that was subtracted from the corrected gravity data. The assumption of a simple �at

regional trend may have to be examined more closely for gravity surveys of larger spatial

extent or surveys that are close to buildings or other sources of potential distortions in the

gravity data. The regional trend across the site was substantial, 30× 10−8 ms−2 over a dis-

Figure 6.8: The regional gravity correction shows a trend of 30× 10−8 ms−2 from NW to SE.

tance of just under ten metres. Without removing this beforehand or accounting for it in the

modelling process the inference algorithm would give erroneous results.

Figure 6.9 shows the 134 �nal gravity values obtained, Figure 6.10 shows the corresponding
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measurement uncertainties, which were taken as the standard deviation of the base-station

readings for a given day as demonstrated in Figure 6.4. We can see that the concrete struc-

tures are visible in the data-set. The uncertainty contour shows di�erent measurement un-

certainty correlating to di�erent measurement days. It is clear that line 5 provided the best

conditions and therefore gave the smallest uncertainty value. Line two and six gave much

larger uncertainty values.

Figure 6.9: Contour plot of the 134 gravity measurements (red dots) taken above the two
concrete structures. The regional linear trend has been removed.

6.3 Inference from Gravity Survey Data

Having obtained the �nal survey data-set, we can input the measurement: coordinates,

gravity values and uncertainty values into the reversible-jump Markov chain Monte Carlo

algorithm. Firstly we assume prior knowledge of the forward model, that of multiple cuboids,

as used for the Nuclear Bunker synthetic data. We then investigate the e�ect of assigning

di�erent measurement uncertainty values, and removing the model uncertainty parameter

from the forward model. Finally we investigate the applicability of the sphere forward model

to the data-set.
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Figure 6.10: Standard deviation uncertainty (derived from base-station measurements) of the
134 gravity measurements (red dots). Linear trends show how the measurement uncertainty
varies between survey days with environmental conditions.

6.3.1 Cuboid Forward Model

The data in Figure 6.9 with uncertainty as in Figure 6.10 was input into the reversible-jump

Markov chain Monte Carlo algorithm using a cuboid forward model. The prior probability

distributions used were the same as used in Section 5.1.1 for the Nuclear Bunker anomaly.

Similarly for the Cauchy proposal distribution widths.

As we are now dealing with actual gravity data, we commit more computational time to the

problem. Twenty �ve independent runs were carried out, each of 200,000 iterations. All of

the runs passed the Geweke convergence test. Let us �rst analyse the combined distribution

of the number of objects, k. Figure 6.11 shows that we have obtained what initially my seem

a somewhat surprising result, one object is favoured over the known value of two. Figure

6.20 shows the spatial distribution of these converged models. The slope of the measurement

points is apparent from the yz and xz viewpoints. It is clear that the one object model

dominates the accepted solutions, however there is evidence of the true solution of two ob-

jects, visible in the xz and yz plots. The main cause of this result is the model uncertainty
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Figure 6.11: Number of objects k, combined from twenty �ve reversible-jump Markov chain
Monte Carlo runs.

Figure 6.12: Combined twenty �ve reversible-jump Markov chain Monte Carlo runs, cuboid
forward model with CG-5 concrete data. Measured anomaly position outlined in red.
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parameter, σm. The one object model is found when the model uncertainty is large, the two

object model is found when the model uncertainty is small. Figure 6.14 shows the histogram

and trace of the model uncertainty parameter, combined from all runs. We see that the

Figure 6.13: Histogram and trace plots of the model uncertainty parameter, σm. Evidence
of a multi-modal posterior distribution.

model uncertainty posterior is dual peaked. Three of the runs converged to a lower model

uncertainty value. The prior probability di�erence of the two converged uncertainty values

is negligible. The prior probability di�erence of two objects compared to one is signi�cantly

larger (due to the total prior being a multiplication of each parameter prior). So it is un-

surprising, upon further analysis, that our algorithm favours the simpler one object solution.

We do not analyse the parameters of this one object model, as we have no comparison with

true model parameters. However, we would expect, as before, for the total mass of the model

object to be close to that of the actual anomalies. Figure 6.14 shows the combined total mass

from all runs. The total mass meets the approximate actual value within the 95% credibility

interval. The one object model appears to approximate more closely the total mass than the

two object model.

Figure 6.16 shows the marginal Bayesian posterior distributions for one run (chosen at ran-

dom) that converged to the one object model. The parameters of the one object model mix

well and have to be included as a possible solution given the data-set and prior information

available. The corresponding histograms for the two object model are shown in Figure

6.18 (for object two as de�ned by Figure 6.3, similar results are obtained for object one).

The parameters de�ning object two all converge to the approximate real world values within
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Figure 6.14: Histogram and trace plots of the combined Bayesian posterior distribution for
the total mass of 25 runs.

the 95% credibility intervals. The key estimates of the marginal posterior distributions are

summarised in Table 6.1 for both objects. We see from the trace plots the same correlation

Object 1
Parameter Unit Actual Value Mean MAP 95% LCI 95% UCI CI Width
x0 m -1.25 -1.31 -1.3 -1.41 -1.22 0.19
y0 m -0.05 -0.06 -0.06 -0.18 0.05 0.23
z0top m -0.12 -0.15 -0.14 -0.26 -0.04 0.22
`x m 1 1.2 1.14 0.86 1.6 0.74
`y m 2.3 2.14 2.1 1.8 2.5 0.77
`z m 1.4 1.96 1.5 0.8 5 4.2
ψ rad 0 0.06 0.1 -0.2 0.33 0.5
∆ρ Mgm−3 2 2.01 2.04 1.8 2.2 0.4

Object 2
Parameter Unit Actual Value Mean MAP 95% LCI 95% UCI CI Width
x0 m 1.25 1.28 1.3 1.2 1.37 0.18
y0 m 0 0.03 0.06 -0.1 0.13 0.22
z0top m -0.19 -0.21 -0.19 -0.3 -0.1 0.22
`x m 1 1.2 1.2 0.87 1.5 0.68
`y m 2.3 2.4 2.4 2.1 2.8 0.72
`z m 1.4 1.6 1.3 0.8 3 2.17
ψ rad 0 -0.1 -0.13 -0.3 0.13 0.43
∆ρ Mgm−3 2 2.01 2 1.8 2.2 0.38

Table 6.1: Summary of key posterior distribution parameters for both objects.

between the object shortest side and depth as seen with the nuclear bunker synthetic data

analysis (see Section 5.1.1). The uncertainty of the `z parameters are the largest of all, the

mixing of this parameter is quite poor relative to the other parameters. This is due to `z
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Figure 6.15: Histogram and trace plots of marginal Bayesian posterior distributions for the
one object model. Parameters x0, y0, z0 and `x are shown (from top to bottom).
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Figure 6.16: Histogram and trace plots of marginal Bayesian posterior distributions for the
one object model. Parameters `y, `z, ψ and ∆ρ are shown (from top to bottom).
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Figure 6.17: Histogram and trace plots of marginal Bayesian posterior distributions for object
two of the two object model. Parameters x0, y0, z0 and `x are shown (from top to bottom).
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Figure 6.18: Histogram and trace plots of marginal Bayesian posterior distributions for object
two of the two object model. Parameters `y, `z, ψ and ∆ρ are shown (from top to bottom).
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having little a�ect on the forward model as its value changes. Looking at the width of the

credibility intervals, displayed in Table 6.1, we can see that the parameters of object two

are generally marginally more tightly de�ned than those of object one. Now we consider the

role of the model uncertainty parameter. The gravity measurements were taken over multiple

days in a variety of environmental conditions. It is not clear that the assignment of one model

uncertainty parameter spanning multiple measurement days is a physically reasonable thing

to do. So, let us proceed to run the reversible-jump Markov chain Monte Carlo algorithm

with the model uncertainty parameter set equal to zero. With σm = 0, we are assuming that

our total uncertainty is contained within the data uncertainty σd. Such an assumption may

not be viable for future high precision quantum gravity instruments, as the total uncertainty

for such an instrument will be dominated by other environmental factors such as anomalous

density variations in the near-surface.

The gravity measurement data was re-run with σm = 0, a total of twenty �ve separate runs

were completed of which �ve runs failed the convergence diagnostic test. When compared to

the twenty �ve runs with σm as a free parameter, of which no runs failed, we see that the

model uncertainty parameter provides greater �exibility for the algorithm to converge to a

solution more quickly than is possible with set measurement uncertainty alone.

Based on the previous runs we would expect all of our converged data-sets to converge to

the two object model. Figure 6.19 shows the number of objects combined from the twenty

converged runs. As expected, we see more complex models favoured by the algorithm now

that the total uncertainty is reduced. The increase for models with nine and ten objects is

due to the tendency of the algorithm to favour complex models initially and over time delete

those that are no longer required to �t the measurement data. The spatial distribution of the

models is shown in Figure 6.20. The algorithm is no longer able to increase the uncertainty

through the σm parameter to permit the single object solution. As a result we converge to the

two object model for every separate run. The posterior distributions of parameters indepen-

dent of k are shown in Figure 6.21. The total mass parameter encompasses the actual value

within the 95% credibility interval. The shift towards larger total mass is possibly due to the
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Figure 6.19: The number of objects k, combined from twenty runs with σm = 0.

Figure 6.20: Combined twenty reversible-jump Markov chain Monte Carlo runs, cuboid for-
ward model with σm = 0.
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combined ambiguity of two objects summing, such that the total mass is inevitably larger

than that found with just one object. We now look at the Bayesian posterior distributions

Figure 6.21: Combined Bayesian posterior distributions of twenty converged runs for the
total mass and gravity o�set parameters (when σm = 0).

for object two of one converged run chosen at random, so that we can compare our analysis

with the previous runs, where σm was a free parameter. Figure 6.23 shows the histograms

and trace plots, along with the actual values and prior probability distributions. Table 6.2

summarises the pertinent estimates from the Bayesian posterior distributions of both objects.

We see that due to the reduced total uncertainty, the credibility interval widths decrease

slightly overall when compared with Table 6.1. We still �nd all of the actual parameter val-

ues within the credibility intervals. Again we see the theme of object two being marginally

more tightly de�ned than object one. This may be due to the asymmetric measurement

uncertainties (see Figure 6.10), some measurement points on the left of the grid have a larger

uncertainty value than the corresponding points on the right side, due to di�erent numbers

of measurements being carried out on di�erent days.
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Figure 6.22: Histogram and trace plots of marginal Bayesian posterior distributions for object
two of the two object model with σm = 0. Parameters x0, y0, z0 and `x are shown (from top
to bottom).
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Figure 6.23: Histogram and trace plots of marginal Bayesian posterior distributions for object
two of the two object model with σm = 0. Parameters `y, `z, ψ and ∆ρ are shown (from top
to bottom).
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Object 1
Parameter Unit Actual Value Mean MAP 95% LCI 95% UCI CI Width
x0 m -1.25 -1.31 -1.32 -1.38 -1.23 0.13
y0 m -0.05 -0.05 -0.04 -0.14 0.03 0.17
z0top m -0.12 -0.15 -0.14 -0.23 -0.06 0.17
`x m 1 1.3 1.22 1 1.6 0.58
`y m 2.3 2.13 2.1 1.84 2.4 0.58
`z m 1.4 1.43 1.36 0.8 2.4 1.6
ψ rad 0 0.08 0.08 -0.14 0.3 0.44
∆ρ M) 2 2.03 2.02 1.84 2.2 0.37

Object 2
Parameter Unit Actual Value Mean MAP 95% LCI 95% UCI CI Width
x0 m 1.25 1.27 1.28 1.2 1.33 0.12
y0 m 0 0.03 0.04 -0.05 0.12 0.16
z0top m -0.19 -0.19 -0.19 -0.27 -0.12 0.15
`x m 1 1.2 1.11 0.93 1.6 0.53
`y m 2.3 2.4 2.4 2.17 2.6 0.47
`z m 1.4 1.48 1.5 0.9 2.5 1.65
ψ rad 0 -0.11 -0.12 -0.3 0.06 0.33
∆ρ Mg 2 2.02 2.02 1.84 2.2 0.36

Table 6.2: Posterior distribution summaries for the two object model with σm = 0.

We brie�y discuss a �nal set of reversible-jump Markov chain Monte Carlo runs, where a

blanket measurement uncertainty given by the collection of all base-station readings (see

Figure 6.7) is used. A data uncertainty, σd = 3.7× 10−8 ms−2 was found using this method,

we apply this to all of our measurement points. Again we set the model uncertainty, σm = 0.

The algorithm was run twenty �ve times, with only one run failing to converge. Figure 6.24

shows the object number k, combined for all converged models and �gure ?? shows the cor-

responding spatial distribution. We see that the number of model objects k, is more evenly

split, slightly in favour of two objects.

We have a situation where, when we de�ne our data uncertainty separately for di�erent

measurement days, we have convergence to a complex (k = 2) model solution. The mean

data uncertainty value for this case is 3.46 × 10−8 ms−2. Which is essentially the same as

the blanket data uncertainty of 3.7× 10−8 ms−2, which produces a more even split between

the models with k = 1 and k = 2. The reason for this discrepancy change is that our most

important measurement points (points with lowest data uncertainty) are e�ectively given
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Figure 6.24: The number of objects k, combined from twenty four runs with σm = 0.

Figure 6.25: Combined twenty four rj-McMC runs, cuboid forward model with uniform
measurement uncertainty.
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the same weight in the inference process when using a blanket data uncertainty. Looking at

Figure 6.10 it is clear that measurement line 5 (the central line parallel to the x axis) gives

by far our lowest data uncertainty at, 2 × 10−8 ms−2. Without this low data uncertainty

for arguably the most important measurement line (peak signal) our reversible-jump Markov

chain Monte Carlo outputs become more ambiguous with regard to the number of model

objects.

6.3.2 The Prior E�ect

As previously mentioned, an often cited weakness of the Bayesian formulation of inference

problems is that of sensitivity to seemingly arbitrary (or subjective) prior probability dis-

tributions. From the Bayesian perspective, sensitivity to prior distributions is simply an

indication that the data do not contain su�cient information to increase our knowledge of

a given parameter. In Chapter 5 and in the examples given in this chapter, we suggested

prior distributions for the model parameters with some rationale to justify our choices. Other

authors may, and indeed inevitably will, come to di�erent conclusions regarding what are to

be deemed reasonable prior probability distributions for a given gravity survey. The possible

set of priors that may be chosen is in�nite, so we focus on some of the more likely assignments

that could be made.

The last example analysed, that of the concrete block experiment, with a blanket measure-

ment uncertainty of 3.7×10−8 ms−2 will be re-analysed here using di�erent prior distributions

for comparison. This data-set was chosen for comparison as there was some ambiguity in the

convergence between models with k = 1 and k = 2 for multiple runs (see Figure 6.24). So

changing the prior distributions may have an e�ect on the relative frequencies of converging

to each model; which will not be noticeable for the individual runs. We ignore the extreme

case of choosing priors such that the actual parameter values are not contained within the

model space, limiting ourselves to prior distributions that could be justi�ably used.

Firstly we consider the case where we use the same distributions as previously given for

the cuboid model, but we tweak the hyper-parameters slightly of certain distributions. The
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model parameters: zo, `x, `y and `z have their priors altered from Gamma distributions with

shape parameter a = 2 and scale parameter b = 1 to shape parameter a = 2 and scale param-

eter b = 2. We know from Section 3.1.2 that this change shifts the peak of the probability

distribution from one to two. This is a very slight change that we are making to the prior

distribution, we would hope that such a minimal change might have little e�ect on the output

of multiple runs. We expect that there may be a bias imparted (relative to the previous prior

probability distributions) in favour of the k = 1 model. This is due to the fact that we will on

average be generating deeper and larger cuboids for each birth proposal and we can imagine

that larger and deeper cuboids will have a higher chance to eventually converge to the larger

cuboid, corresponding to the k = 1 model.

We run the reversible-jump Markov chain Monte Carlo algorithm with the altered prior prob-

ability distributions for twenty �ve separate chains. Figure 6.25 shows the number of model

objects of the combined twenty four runs that were deemed to have converged, passing the

Geweke diagnostic. The expectation of a slight change in convergence between the k = 1

Figure 6.26: The number of objects k, combined from twenty four runs. With σm = 0 and
altered prior probability distributions.

and k = 2 models was underestimated. All of the runs, except three, converged to the one

120



CHAPTER 6. WHERE ARE THE CONCRETE BLOCKS?

object model. As compared with the previous set of runs, for which nine runs converged to

the one object model. This result is troubling for the reversible-jump algorithm, at least for

it's applicability to this particular data-set. We can examine the survey data more closely in

an attempt to explain the extreme change in inference outputs caused by a slight change in

the prior probability distributions.

The data-set we have collected is an atypical gravity survey in many respects. The instrument

was positioned directly on top of the gravity anomalies, giving a more highly peaked signal

than we may expect from an anomaly buried underground, such as the bunker and pipeline

anomalies discussed in Chapter 5. Obviously measuring directly on top of the anomalies

about which we wish to infer information is not a realistic survey scenario. Also, the posi-

tioning of the two anomalies with their centroids aligned in the y-axis and o�set by a small

distance in the x-axis such that the gravity signals overlap, is again atypical for real world

applications. We were also using the blanket measurement uncertainty for this comparison,

which as we argued previously adversely e�ects the data-set due to the uncertainty of mea-

surement line �ve increasing by a factor of two. As a result our data-set is less informative,

and less able to `combat' the change in the prior probability distributions.

It is usually the case in the geophysical literature that prior probability distributions are set

as uniform for each model parameter, de�ned by some predetermined bounds[82][81]. There

are a number of advantages to using uniform prior distributions. They are trivial to com-

pute, taking up minimal computational resources in comparison to the Gamma and Gaussian

distributions. They are also easy to visualise. If we say that we have used a uniform prior

distribution between zero and �ve, this is more intuitive than saying that we have used a

Gamma distribution with scale parameter two and shape parameter one.

In some cases it may also be advantageous to de�ne uniform priors for certain parameters.

As discussed earlier for the cylinder model (see Section 5.2.1); a uniform prior limiting an

object centroid to be within the measurement grid can be advantageous in certain situations,

such as the semi-in�nite anomaly problem. There are always trade-o�s regarding prior distri-

bution choice (and choice of model), and de�ning the centroid to be within the measurement

121



CHAPTER 6. WHERE ARE THE CONCRETE BLOCKS?

grid trades a certain amount of �exibility o�ered by the Gaussian prior distribution, used for

the x0 and y0 parameters throughout the research.

To provide another comparative analysis, we assign uniform prior distributions to our model

parameters as shown in Table 6.3 The prior distributions for the density parameter ∆ρ and

Uniform
Parameter Unit Lower Bound Upper Bound
x0 m min(x) max(x)
y0 m min(y) max(y)
z0 m -10 0
`x m 0 max(x)
`y m 0 max(y)
`z m 0 max(max(x), max(y))
ψ deg -10 190

Table 6.3: List of uniform prior distributions used for all model parameters.

o�set parameter η are kept the same as before (both Gaussian distributions). The x0 and y0

prior bounds are set as per the measurement grid bounds. The object depth is set at a max-

imum of ten metres as we do not expect to be able to resolve anomalies at a depth greater

than this. The `x and `y length parameters of the cuboid have their maximum prior bounds

set based on the half-length of the measurement grid. As the measurement grid is o�set so

that our zero point is the central point, we simply take the maximum measurement position

values for the x and y axes respectively. The `z parameter is de�ned between zero and the

maximum of the xy measurement length. For an actual survey, the lower bounds could be

raised from zero, as evidently we do not expect to be able to resolve objects that have such

small volumes as allowed by these prior distributions.

Using the prior distributions set as above, twenty �ve runs of the reversible-jump Markov

chain Monte Carlo algorithm were completed of which two runs failed convergence. Before we

analyse the results, it is worthwhile considering the key di�erences of the prior distributions

used here to those used initially Figure 6.26 shows the di�erence between the `x parame-

ter prior distributions. Assigning the uniform distribution cuts o� the higher values that

were possible when using the Gamma distribution. This will result in birth steps generating

objects from the uniform distribution that are smaller in volume than some of those that
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Figure 6.27: The relative proportion of converged model objects using uniform priors.

are drawn from the Gamma distribution. We should now expect an increase of convergence

towards the two object model, as the objects generated from the prior are more likely to be

close in terms of volume to the two actual anomalies. Also, setting the prior distributions

in this way makes the maximum length of an anomaly in the survey around 3.5 m which is

smaller than the longest side length of the one object anomaly cuboid. Again, twenty �ve

runs of the reversible-jump Markov chain Monte Carlo algorithm were undertaken. Figure

6.27 shows the converged number of model objects. As expected we only see the two object

model in the outputs, as the increased prior information has prevented the algorithm from

converging to the one object model.

We analyse the data-set again with uniform priors, this time with the cuboid length upper

bounds set equal to their respective axis length (`x = max(x)−min(x)), e�ectively doubling

the previous values. Here we are stating that our measurement grid could contain objects up

to but no larger than our measurement grid area. This would leave no space for background

gravity data collection, which should ideally be obtained in a gravity survey. Again, depend-

ing on the survey scenario, this may or may not be a reasonable assignment. The rest of the

prior distributions are kept the same. From the strong convergence seen previously with the
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Figure 6.28: The number of objects k, combined from twenty three runs. With σm = 0 and
altered prior probability distributions.

constrained uniform priors, we expect a deviation towards models favouring the one object

forward model, as we will on average generate objects of a greater spatial extent. Figure

6.28 shows the number of model parameters k for twenty �ve runs of which four failed to

converge. The twenty one runs gave an approximately even distribution between the one and

two object models.

We have seen that, although the prior distributions do not have an a�ect on individual model

parameters (except for density), they have a strong indirect e�ect through the reversible-jump

birth update. However, this should be mitigated as the uncertainty associated with the mea-

surement points decreases.

6.3.3 Sphere Forward Model

We can also apply our sphere forward model to the measurement data. We begin again with

the case of data uncertainty as per �gure 6.10, with the model uncertainty as an unknown

parameter to be found. The prior and proposal distributions used were the same as those

given in Section 5.1.2. We remember that for the cuboid model, the output of the algorithm
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Figure 6.29: The relative proportion of converged model objects using larger uniform priors
for the `x and `y parameters.

for this data uncertainty scenario was favourable towards a k = 1 model. We carried out 25

separate runs of the reversible-jump Markov chain Monte Carlo algorithm of which all were

deemed to have converged. Figure 6.29 shows the number of objects k for all converged runs.

Due to the discrete nature (it only has radius with no length parameter) of the sphere forward

model the runs converge to k = 2 every time. However, as the measurements were taken so

close to the anomalies, the sphere approximation is not accurate. The three-dimensional spa-

tial plot shown in Figure 6.30 con�rms this. The total mass of the two objects combined for

all runs is given in Figure 6.31, along with plots of the gravity o�set and model uncertainty.

The marginal posterior distribution of the total mass does not �t the known value within the

credibility interval. This is not surprising as the sphere model is not a good approximation

to the very near surface concrete anomalies.

We made twenty �ve more runs, each of 200,000 iterations, with σm = 0. As with the cuboid

model we expect that the algorithm will provide a more complex model with which to de-

scribe the data, now that we assume a model uncertainty of zero. Ten of the runs failed the

convergence diagnostics indicating, as we saw previously that the model uncertainty param-
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Figure 6.30: The number of objects k, for the sphere forward model. Combined from 25
runs.

Figure 6.31: Spatial distribution of twenty �ve combined reversible-jump Markov chain Monte
Carlo runs for the sphere forward model.
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Figure 6.32: Histogram and trace of total mass and model uncertainty for 25 combined runs.

eter provides �exibility which aids convergence. The number of model objects k is shown in

Figure 6.32 with the corresponding three-dimensional spatial plot shown in Figure 6.33. The

parameters that are independent of the number of model objects are shown in Figure 6.34.

As we expect, the complexity of the model is increased due to the smaller total uncertainty.

Object two is more well de�ned by the gravity data than object one, as we saw with the

cuboid model. The total mass of the models is closer to the actual value, but still not within

the 95% credibility intervals.

6.3.4 The Prior E�ect

The sensitivity to prior distributions was demonstrated with the cuboid model in Section

6.3.2. We perform a similar analysis here for the sphere model. We proceed as with the anal-

ysis in the previous section, keeping the data uncertainty the same and setting the model

uncertainty parameter σm = 0. This set-up was chosen as there was the most ambiguity in

127



CHAPTER 6. WHERE ARE THE CONCRETE BLOCKS?

Figure 6.33: The number of objects k, for the sphere forward model. Combined from 15
coverged runs.

Figure 6.34: Spatial distribution of twenty �ve combined reversible-jump Markov chain Monte
Carlo runs, sphere forward model with σm = 0.
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Figure 6.35: Combined Bayesian posterior distributions for the total mass and o�set.

the model object number k.

From here we alter the prior distributions only slightly, as we did with the cuboid model.

Focusing on the depth and radius parameters only, we increase their respective Gamma dis-

tribution scale parameters from 1 and 0.5 to 2 and 1 respectively. As a result, the reversible-

jump Markov chain Monte Carlo birth update will propose on average model objects that

are larger in volume and deeper than before. We would then expect a shift towards the k = 2

model, if the sphere model is sensitive to the prior distributions in a similar way to the cuboid

model.

Twenty �ve runs of the reversible-jump Markov chain Monte Carlo algorithm were made,

with twenty two deemed to have converged, a much higher rate of convergence than was

found for the smaller prior distributions. Figure 6.35 shows the number of model parame-

ters for the combined converged runs. As expected, a shift towards the two sphere model

was made relative to Figure 6.32, due to on average producing larger spheres through the

reversible-jump birth update.
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Figure 6.36: The relative proportion of converged model objects using altered sphere param-
eter prior distributions.

Summary

In this chapter we outlined the experimental procedure used to carry out a small scale

gravity survey consisting of 134 measurements using the Scintrex CG-5 gravimeter. The

determination of the survey uncertainty was a non-trivial task, due to unknown in�uence

of moving the instrument between measurement points. Approximations of the uncertainty

were made using the distributions of base-station readings. The data-set collected matched

the expected model of the anomalies (for which the density and volume were known) within

the calculated measurement uncertainty. Demonstrating a potential method of comparing

gravity instruments in a survey environment.

The reversible-jump Markov chain Monte Carlo algorithm was applied to the measurement

data with various realisations of the data uncertainty. As with the synthetic data examples,

we saw how the algorithm favours the simplest solution to a given data-set, converging mostly

to k = 1 when inferring the model uncertainty parameter σm for the cuboid forward model.

With the measurement uncertainties as per Figure 6.10 and the model uncertainty set to

zero, the reversible-jump Markov chain Monte Carlo algorithm always converged to k = 2.
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For these two model objects, the individual marginal posterior distributions found the known

parameter values within the credibility intervals. The mid line (line 5, from Figures 6.5 and

6.3) of the data-set was shown to be by far the most important, due to it's low measurement

uncertainty value. When the algorithm was run with a blanket measurement uncertainty of

3.7× 10−8 ms−2 (from Figure 6.7) the algorithm converged to a distribution of one and two

object models.

The sphere model was also applied to the data-set and due to the discrete nature of the

model, two objects were always favoured. Again, models with a larger number of objects

were favoured when the model uncertainty was set equal to zero.

A comparative analysis into the impact that the prior distributions have on the convergence

to models of di�erent complexity was made. The general rule being that prior distributions

that allow for large volume objects will bias the convergence towards the largest, and often

the simplest model with which to �t the data-set. It is thought that the e�ects of altering

the prior probability distributions will be minimised when faced with a less atypical data-set,

where objects are not usually identical in mass and symmetrically positioned. Any e�ect

due to the prior distribution should be further minimised as the measurement uncertainty

decreases with the future use of quantum gravity instruments.
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Chapter 7

Conclusions and further work

This research concerned the question of inference of near-surface structure from terrestrial

gravity and gravity gradient data. Given a set of experimental measurements and appro-

priate prior knowledge, what information can we infer about any gravity anomalies present?

Such questions arise in civil engineering applications when searching for, often complex in

shape, anomalies of interest such as pipelines, mine-shafts and tunnels. These applications

require information to be inferred about the anomaly structural extent and depth but also

of importance is the overall uncertainty associated with the inference process outputs. Only

with knowledge of this uncertainty can quali�ed decisions be made from the inference pro-

cess.

A bespoke reversible-jump Markov chain Monte Carlo algorithm was developed in MATLAB

(see Appendix C) to address the gravity inference problem. The Bayesian inference algorithm

explores the model space and returns an ensemble of models that �t the data with a high

likelihood, given any prior information we may have. The ensemble of models are draws from

the Bayesian posterior distribution, which contains all of the information available for our

inference problem. Once we have obtained this distribution, we calculated summary statistics

for individual model parameters, such as the posterior mean, maximum and 95% credibility

intervals. These statistics allowed us to produce outputs which would make intuitive sense

to an end user concerned with the probability of �nding an anomaly at a given location.

Three main forward models were the focus of the research; that of the �nite horizontal cylin-

der (representing pipeline anomalies), that of the cuboid (representing tunnel systems) and
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that of the sphere representing ignorance of the model required. These were chosen for their

direct application to anomalies of interest. The work was focussed on simple anomalies that

can be described in terms of multiples of the cylinder or parallelepiped geometries. For this

reason it was deemed necessary to allow the algorithm the freedom to explore models con-

sisting of a changeable number of parameters, through the `birth' and `death' moves of the

reversible-jump framework (as discussed in Section 3.2.2). The research was carried out with

future quantum atom interferometer gravity gradiometer instruments in mind, although with-

out any actual datasets to analyse. The quantum instrument, whose workings were brie�y

described in Section 2.3.2 will allow the cancellation of environmental noise which could

increase the measurement accuracy by an order of magnitude for near-surface anomalies.

Where appropriate throughout the thesis, comparisons of synthetic data between the current

generation of spring based gravity instruments and the future quantum gradiometer were

made. As soon as a quantum gradiometer is available for �eld measurements, comparisons

can be made with datasets taken during this research.

The problem of ambiguity inherent in all potential �eld data taken at the surface could only

be addressed by introducing suitable prior information. Bayes' theorem provided a natural

method of doing this via the parameter prior probability distributions. Here, the density

contrast parameter was assumed known to some level of uncertainty, information represented

by a Gaussian prior distribution. This, combined with the varying level of prior information

provided by the choice of forward model, combine to limit the model space to physically

plausible regions. Although we are accounting for the uncertainty in the average ground

density contrast, we assumed that the spatial variation in the near-surface ground density

is negligible. It is acknowledged that this may not be the case in reality. The extent of soil

density variation in the near-surface is a potential area for further study and may be one of

the limiting factors for inference from high accuracy measurements made by a future quan-

tum atom interferometer gravity gradiometer due to the ampli�cation of short wavelength

(near-surface) anomalies.

The Bayesian reversible-jump Markov chain Monte Carlo algorithm was demonstrated to
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work well with noisy synthetic data in a range of anomaly scenarios. Chapter 4 discussed

the algorithm workings in detail. Much experimentation with various Markov chain Monte

Carlo schemes was conducted to arrive at the algorithm described here; as we required an

algorithm that could perform well for di�erent forward models, ensuring reasonable mixing

and convergence whilst keeping computational time as short as possible.

The simple example of a single buried void was investigated in Section 5.1, the geometry and

dimensions of which were the same as the nuclear bunker anomaly explained in Appendix

A.2. The data were generated using knowledge obtained from the site, and from the one line

of gravity data we managed to obtain. A Gaussian noise with σ = 3× 10−8 ms−2 was added

to the synthetic data. This value represents an uncertainty that we might expect from a

typical small scale gravity survey carried out with the Scintrex CG-5.

Firstly, the reversible-jump Markov chain Monte Carlo algorithm was run using the cuboid

forward model with a maximum of k = 10 model objects. Combining ten runs, we were able

to show convergence to the simplest forward model to explain the data with k = 1. As the

cuboid forward model uses eight parameters, a total of ten parameters were used including

the model error and o�set to describe the gravity data. Convergence of the separate runs

was determined by the Geweke diagnostic (as outlined in Section 4.1.4). The converged

marginal parameter posterior distributions were displayed in trace and histogram form. A

more intuitive representation of the spatial information contained in the marginal posterior

distributions was given by three dimensional plots of one hundred posterior models, each

of equal transparency. Such plots give a sense of the positional uncertainty of model ob-

jects relative to measurement points, with darker regions corresponding to higher posterior

probability areas. These plots, or a more robust form of, could be used to convey pertinent

information to end users, perhaps through augmented reality applications. We explored the

correlation between the cuboid model parameters. It was found that the shortest side length

and the height were highly correlated. The gravity data are least sensitive to the height of

the anomaly, and the smallest side length is less well de�ned by the data than the longer

length.
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We also approached the problem from a position of decreased prior information by using the

sphere model. With the same uniform prior over the number of model parameters k, ten

runs of the reversible-jump Markov chain Monte Carlo algorithm converged to two objects

with which to describe the data. As the sphere model contains �ve parameters per object the

total number of parameters for the converged model was twelve, compared to the ten used

by the single cuboid model. We observed correlation of parameters between the two objects,

namely the x centroid coordinates for this example. The sphere depths matched the known

depth of the cuboid anomaly within the credibility intervals, showing that useful information

can be obtained from the inference algorithm when using a simpler forward model.

It was recognised that the key output that could be deduced from the separate marginal dis-

tributions was the total mass of the anomaly. This combination of density and volume of all

model objects allows comparison of models of di�ering type and complexity. This, combined

with the three dimensional spatial plots, sidesteps the label switching issue associated with

reversible-jump Markov chain Monte Carlo. The total mass of the two object sphere model

was shown to approximate the actual mass of the anomaly more accurately than the one

object cuboid model, although the latter was still found within the credibility intervals.

A comparison with the corresponding gravity gradient data for this buried void anomaly was

made. The synthetic data was generated as outlined in Section 2.2.3, with an added Gaus-

sian noise of 0.5× 10−8 s−2. A value deemed reasonable for initial surveys with a �eld robust

atom interferometer gradiometer instrument. Due to the increased signal-to-noise ratio of

the gravity gradient data the marginal posterior probability distributions had smaller credi-

bility intervals for the cuboid model, relative to inference from the gravity data. Again, the

simplest k = 1 number of objects was found. When using the sphere model with the gravity

gradient data, we saw an increase from k = 2 for the gravity data to k = 3. This result shows

the natural parsimony of the Bayesian reversible-jump Markov chain Monte Carlo algorithm,

which �nds the simplest model with which to �t the data within the total uncertainty. A

consequence of the natural parsimony is the ability to obtain depth information without the

need for arbitrary regularisation associated with other methods.
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In Section 5.2 we analysed a more structurally complex `dogleg' pipeline anomaly with the

reversible-jump Markov chain Monte Carlo algorithm. The anomaly was representative of a

gas pipeline, which can have diameters of around 1.2 metres. The data consisted of two cylin-

der segments, which were rotated at an angle of 45 degrees. One of the segments was fully

contained within the measurement grid, the other was semi-in�nite. Semi-in�nite anomalies

may be the general case for small scale �eld gravity surveys where the extent of the measure-

ment grid is generally limited. The data were generated using the cylinder forward model

(Section 2.2.2), with a Gaussian uncertainty added as for the single void anomaly. Assuming

knowledge of the cylinder forward model �rst, the reversible-jump Markov chain Monte Carlo

algorithm was run for ten separate chains. The simplest solution of two cylinders was found

with close �ts of the cylinder depth and radius to the known values. Each cylinder uses seven

separate parameters, giving a total of sixteen parameters used to �t the data. As with the

sphere model the two separate cylinder object parameters were correlated, with the position

of the vertex being a source of ambiguity. The issues raised by the semi-in�nite nature of the

anomaly were discussed. The in�nite degeneracy of the cylinder length and centroid posi-

tion caused problems when combining the total mass posterior distribution between separate

runs. Di�erent runs converged to di�erent values of cylinder length, making interpretation

of the total mass di�cult.

The sphere model was also applied to this problem. Ten runs of the algorithm showed a

preference for four objects (k = 4) to explain the data. Four spheres gives a total of twenty

two model parameters. The problems raised by the semi-in�nite anomaly are handled well

by the sphere model and the total mass converges to the same value for separate runs. The

trade o� is decreased knowledge of the spatial extent of the anomaly as well as the depth

being less well resolved.

Synthetic gravity gradient data was generated and �t using the sphere model, where we found

a preference for k = 8 model objects due to the increased signal-to-noise ratio. With forty

two parameters now describing the model, the number of iterations had to be increased in

order to obtain satisfactory convergence.
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The synthetic data generated for the two anomaly scenarios was idealised; regularly spaced

measurements taken on a �at plane, only corrupted by Gaussian uncertainty with an equal

standard deviation for each measurement point. In Chapter 6 the experimental process in-

volved in the acquisition of real world gravity data using the Scintrex CG-5 was described.

The outcome of the survey conducted over multiple days, was a dataset that was irregularly

spaced, with variable data uncertainties between measurement points.

The anomaly was constructed above ground, where we set-up two stacks of concrete blocks

of known dimensions and density. As we measured about 1.5 m above the ground, we limited

the possible e�ect of soil noise variation and other complications. We applied the standard

gravity corrections outlined in Sections 2.4 and 6.1.2. The data uncertainty was determined

by the spread of the base station values taken on a given survey day. The data set obtained

matched that predicted by synthetic data well, within the data uncertainty. Indicating a

potential method of comparing gravity survey instruments, or testing operator competency.

The data was input into the reversible-jump Markov chain Monte Carlo algorithm. Various

measurement uncertainty values were used, along with setting the model uncertainty param-

eter equal to zero. The outcome of the various di�erent runs was a similar to what we might

have expected based on our initial synthetic investigations.

The total uncertainty was found to be crucial in determining the number of model objects k.

When inferring the extra model uncertainty parameter, we saw a preference for one cuboid

object to �t the dataset, the simplest model within the large total uncertainty. When setting

this value to zero, we saw a clear preference for models with k = 2.

The model uncertainty parameter gives advantages and disadvantages to the inference algo-

rithm. It was consistently seen that multiple runs with the parameter tended to meet the

convergence diagnostics more readily than equivalent runs where it was set equal to zero.

However, it also makes it easier for the algorithm to give what is perhaps an over-simpli�ed

model, by simply increasing the model uncertainty to higher values. Whether this parameter

is even appropriate to apply to a measurement survey taken over multiple days is a reason-

able question to consider. Perhaps it should be seen as a useful descriptive hyper-parameter
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which has no real physical meaning, akin to the number of objects k. More stringent prior

constraints on the model error could be enforced, but it is di�cult to see a situation where

such constraints could be justi�ed, especially for gravity surveys.

The sphere model was also applied to the real world data, but it's appropriateness for this

dataset was limited by the very shallow anomalies. With the model uncertainty as an un-

known parameter, the sphere model converged to k = 2, due to the discrete nature of the

sphere. However, the total mass estimate was very poor when compared with the approxi-

mate known value. When setting the model uncertainty to zero, we found a preference for

two, three or four anomalies. Giving a closer, but still incorrect, estimate of the total mass.

The prior e�ect was investigated for the cuboid and sphere models as applied to the real

world data. It was found that even small changes made to the prior distributions could cause

a large change in the model complexity to which the algorithm converged. This was due to a

combination of the atypical data obtained in the concrete block experiment (identical anoma-

lies aligned symmetrically) and the large uncertainty of the gravity data. Data with lower

uncertainty should reduce this problem, although the extent to which it will be a signi�cant

problem for real underground anomalies is unknown. This problem could be tackled with

more complex reversible-jump updates. Split-merge moves[114] could be used to try to aid

transitions between one large object and two small objects (and vice versa). A split would

be accomplished by splitting a large object and creating two smaller objects with parameters

related to the initial object (maintaining position and volume would increase the probability

of acceptance). And a merge would merge two nearby objects into one larger object, whose

parameters are similarly related to the two initial objects.

The general applicability of the reversible-jump Markov chain Monte Carlo algorithm was

shown by �tting a range of synthetic anomalies using di�erent forward models. The algorithm

in its current form could feasibly be used for initial interpretation of a coarse preliminary

gravity survey of a site. With inference using the sphere model showing areas of interest

which may require further measurements and investigation. To become a reasonable tool

for practical inference the computational e�ciency of the algorithm needs to be increased to
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allow on site inference as data is collected. Currently it takes around twenty minutes for a

run of 200,000 iterations, this can rise substantially for models with many objects which may

require even more iterations to reach convergence (as seen in Section 5.2.3). The room for

improvement of the computation time is signi�cant if the algorithm is migrated to a lower

level coding language.

Linked to the algorithm e�ciency, other problems associated with the reversible-jump Markov

chain Monte Carlo algorithm need to be addressed in future work. Due to the very small

acceptance ratio for the birth and death moves, we essentially waste half of the iterations

attempting an update that in all likelihood will fail. A possible solution to this would be to

implement the reversible-jump Markov chain Monte Carlo algorithm, and when the model

object number k reaches a stationary value, convert the algorithm to the standard Markov

chain Monte Carlo to complete the run, thus avoiding the problem of wasted iterations.

It may have been noted that the algorithm varies the average ground density in the forward

model, when we have already assumed an average ground density for the Bouger correction

of our measurement data (as detailed in Section 2.4.2). The Bouger corrections used for

the concrete block data were minimal as the CG-5 sensor was far from the ground and the

relative height di�erence between the minimum and maximum measurement height was only

approximately 0.25 m. For a complete treatment the Bouger correction should be incorpo-

rated into the forward model of the algorithm to accurately represent the change of density

on the individual measurement values.

Future work should be focussed around the application of the inference algorithm to real

world data of underground anomalies taken using both the Scintrex CG-5 and the quan-

tum atom interferometer gradiometer (attempts were made in this research to obtain such

datasets, outlined in Appendix A, which were unsuccessful). With a two dimensional mea-

surement grid over a known buried anomaly, we will be able to assess how well the available

prior information on ground density can �t the measurement data. We should also be able

to investigate the extent to which the simple shape forward models can cope with issue of

spatially correlated soil density variations. The forward models may have to be made more
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complex, to incorporate an average density parameter that is a function of the object cen-

troid position in the subsurface. With the hope of further improving the inference outputs,

other geophysical data-sets such as ground penetrating radar, magnetometry and borehole

logs could be incorporated into the current inference algorithm via the parameter prior distri-

butions or through a 'joint-inversion' approach which infers model parameters from multiple

geophysical data-sets simultaneously[115][109].
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CG-5 Field Data

During the research project there were multiple �eld trials carried out using the Scintrex

CG-5 that were unsuccessful or incomplete. It may be of use to describe these experiments

brie�y in order that they may be repeated in the future with a quantum instrument, or

indeed with the Scintrex CG-5. All of the experiments listed lend themselves to the Bayesian

inference process outlined in this research.

A.1 University Utility Tunnels

An early measurement campaign was undertaken above utility tunnels at the University of

Birmingham. Figure A.1 shows the top of the tunnels during their installation. We can see

that they are reasonably close to the surface (less than 2 m) and they are approximately 2 m

wide. We know from University plans that they are also approximately 2 m deep to the centre.

The tunnels are encased in reinforced concrete about half a metre thick. An experiment with

multiple Scintrex CG-5's was carried out, �gure A.2 shows the three instruments measuring

beneath bespoke `wind-shields' (upturned recycling bins to the trained eye). Unfortunately,

due to insu�cient quality controls, the data obtained (see Figure A.3) was unusable for

inference purposes. The instrument tilt was too high, as the instruments were not given

enough time to settle on the tripod before initialising a measurement. There appears to be

some linear feature in the dataset, of the order of the expected signal given the anomaly
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Figure A.1: Photograph of the utility tunnels during their installation. Photograph c/o
David Chapman.

Figure A.2: Three Scintrex CG-5 instruments protected from wind noise by shielding.

information. This could be a promising survey site with which to test new instruments.

A.2 Broadway Tower Nuclear Bunker

A measurement campaign was conducted at the Broadway tower nuclear bunker in Worces-

tershire, UK. We were able to measure the location, depth and dimensions of the bunker,
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Figure A.3: Plot of gravity data obtained at the University of Birmingham utility tunnels.
Poor quality control adherence rendered the dataset unusable.

allowing us to accurately model the expected gravity signal, given an assumption on the

ground density. The centroid of the anomaly was approximately 2.5 m below the surface,

with dimensions of 5.5×2.25×2.25 m. Figure A.4 shows the site, a 10 m line of gravity mea-

surements was taken bisecting the anomaly running parallel with the shortest side. Figure

A.5 shows the dataset obtained along with various models �t to the data with the known

dimensions of the anomaly. The gravity signal obtained was larger than expected when mod-

elling with a soil density contrast of −2000 kgm−3. This result may have a bearing on the

detection of near surface man made anomalies with the gravity method. It is believed that

the construction method used to build the bunker (`cut and cover') leaves the soil around

the anomaly with a lower density than the surrounding undisturbed soil. As such there is

a `halo' of low density soil around and above the anomaly. More investigation is required

to assess the validity of this theory, involving the analysis of suitable soil samples to see if

the density variation is a reality. In �gure A.5, the purple line shows the expected gravity

signal due to a single cuboid void with an average ground density of 2000 kgm−3. The yellow

and orange lines are models of increasing density, the density may lie somewhere between
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Figure A.4: Picture of the fenced o� nuclear bunker site at Broadway tower. A line of gravity
data was taken in a line parallel with the centre of the picture.

Figure A.5: Scintrex CG-5 dataset obtained over the nuclear bunker anomaly. The yellow
line represents a model accounting only for the known anomaly. The orange model represents
the known anomaly plus a `halo' of low density soil.
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−2500 kgm−3 and −3000 kgm−3. The green line represents a model with an outer halo, ex-

tending past the anomaly half a meter in the x and y directions and to the surface in the z

direction. Given the addition of gravity anomalies it is possible to model the density of the

actual void as −2200 kgm−3 and the halo as −300 kgm−3. This halo model is illustrated in

�gure A.6. Borehole records obtained from the British Geological Survey (BGS) website [68]

Figure A.6: `Halo' model for the Broadway Tower nuclear bunker anomaly. The known
anomaly is modelled with a density of −2200 kgm−3. The halo is modelled 0.5 m larger in
the x and y directions, extending up to ground level in the z direction, with a density of
−300 kgm−3. Giving an e�ective anomaly density of −2500 kgm−3. The green line in Figure
A.5 shows the gravity signal.

(BGS ID: 309546 : BGS Reference: SP13NW16), show that the near surface is composed of

limestone with only 0.3 m of top soil at the nearby borehole site. If this holds for our site,

the density could be anywhere within the reasonable range for limestone, 1930−2900 kgm−3

with an average of 2550 kgm−3[43]. Further support for this comes from another BGS on-

line tool[116] which gives the site a soil thickness rating of `shallow'. Meaning that; `A thin

soil pro�le is likely. Digging the Parent Material beneath the soil will be extremely di�cult
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at a depth of 0.5 m (or possibly less)'. More measurements would be required to obtain a

grid su�cient for parameter estimation using the reversible-jump Markov chain Monte Carlo

algorithm, without having to make simplifying assumptions to force the model to become

two dimensional. It may be feasible to alter the Bayesian algorithm to search for the density

Figure A.7: Soil depth at the Broadway Tower nuclear bunker site (black oval).

values given our prior information of the anomaly location to best �nd the value of the halo

density. However a 2D grid of gravity data would be required to make robust conclusions.

Section 5.1 uses the dimensions of this anomaly to demonstrate the Bayesian algorithm for

a simple void, ignoring the speculated halo e�ect and taking the average ground density as

−2700 kgm−3.

A.3 Woodhenge Ditch

The Woodhenge National trust site in Durrington has been extensively explored with various

near-surface geophysics techniques. It is located near the famous Stonehenge site, Figure

A.8 shows the proximity. Ground penetrating radar scans revealed a previously unknown

ditch, cut into the chalk bedrock. Time-slices are shown in Figure A.9. This particular
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Figure A.8: Location of measurements (red marker) taken at Durrington walls (marked). A
few kilometres away from Stonehenge.

GPR survey was unable to determine the depth of the anomaly. Previous experience of such

(a) GPR time-slice 0.25 m depth. (image c/o
Eamonn Baldwin)

(b) GPR time-slice 2.5 m depth. (image c/o Ea-
monn Baldwin)

Figure A.9: GPR time-slice of Woodhenge ditch. Approximate gravity station locations are
shown in pink. Gravity data is shown in �gure A.10

anomalies suggests that the depth of the ditch is approximately 5 − 6 m. Taking a line of

gravity measurements across the anomaly we obtained the dataset shown in Figure A.10.
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The purple �t represents an estimated model of a cuboid, making use of the GPR data and

Figure A.10: Gravity data obtained using the Scintrex CG-5. Purple model represents a
reasonable estimate of the anomaly.

past experience. The density di�erence between chalk and top-soil was taken as −300 kgm−3,

the width of the anomaly as 14 m with depth 5 m. The cuboid model is an approximation

to what is clearly a ditch with sloping banks. Time constraints meant that further data lines

could not be obtained, this site could be the focus of future surveys. A more detailed forward

model may need to be implemented in order to model the sloped sides of the ditch.
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Sphere Model Approximation

Here we equate the volume of a chain of spheres to that of a cylinder, comparing the gravity

signals to show that the sphere model provides a good approximation to the cylinder model

at distances greater than the diameter. Figure B.1 shows the model of multiple spheres inside

a cylinder.

Figure B.1: Equating the volume of multiple spheres to that of a cylinder segment.

We equate the volume of a sphere and cylinder of length equal to the distance d. So,

4
3
πr3 = πr2d → d = 4

3
r. Using this result, a chain of spheres can approximate a cylin-

der anomaly. This result may be useful for developing forward models of realistic pipelines,

that are inevitably not perfectly cylindrical but su�er from bends and kinks.

When using this approximation to �t a cylinder as in Section 5.2.2, the model was essentially

�nding the maximum distance between spheres d such that the model meets the measure-

ment data within the given uncertainty. Figure B.2 shows contours of a buried cylinder and

buried spheres at the same depth (5 m). The cylinder has a radius R = 0.6. The spheres are

separated by a distance of 3.2 m. The radius of the spheres increases to make up the volume
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de�cit, a value R = 0.97 gives a good approximation of the cylinder data.

Figure B.2: Comparison of models of a cylinder and the approximation with multiple spheres.

The approximation becomes less accurate with increasing distance d and as the depth of the

anomaly approaches the measurement plane (z = 0).
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Appendix C

MATLAB Code
The code was in a constant state of �ux with analysis of various di�erent datasets. It is
simple to switch between inference from gravity and gravity gradient data, likewise for the
three forward model types. Shown here are the main functions used for inference from gravity
data using a cuboid model.

Main body of code where the user de�ned parameters are set. The chosen dataset is loaded.

1 %% Bayesian In f e r en c e from Gravity and Gravity Gradient Data
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
3 % created by Anthony Rodgers 2015
4 % i f you wish to use or pub l i sh t h i s code p l ea s e contact the author
5 % adr328@gmail . com , +447799018559
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
7 %% Import datase t
8 load ( ' concrete_l ine_quadrat ic_reasonableqc_12sd_15arcsec_5re j_delout l iers_ . . .
9 consistency_combined ' )
10 f ina l_table_data = final_table_data_combined ;
11 l a b e l s = f ina l_table_data ( : , 1 ) ;
12 x_coords = f ina l_table_data ( : , 2 ) ;
13 y_coords = f ina l_table_data ( : , 3 ) ;
14 z_coords = f ina l_table_data ( : , 4 ) ;
15 % Sc in t r ex data
16 g rav i ty = ( f ina l_table_data ( : , 1 7 ) − mean( f ina l_table_data ( : , 1 7 ) ) ) .*10^−8;
17 % Sc in t r ex BS e r r o r
18 er ror_sensor = ( f ina l_table_data ( : , 1 3 ) ) ;
19 min_height = min ( z_coords ) ;
20 z_coords = z_coords − min_height ;
21 [ x_coords , y_coords , z_coords ] = coord inate_rotat ion (0 , 0 , . . .
22 deg2rad (−27) , x_coords , y_coords , z_coords ) ;
23 % Subtract data mean
24 grav i ty = grav i ty − mean( g rav i ty ) ;
25 no_datapoints = s i z e ( grav i ty , 1 ) ;
26 %% Set MCMC Parameters
27 save_name = ' final_concrete_data_SPHERE_infererror_ ' ;
28 density_mean = 2 ;
29 density_std = 0 . 1 ;
30 density_prop_scal ing = 1 ;
31 mcmc_iterations = 200000; % Number o f i t e r a t i o n s performed−
32 grav i ty_der iva t i v e = 1 ; % 1 f o r gz 2 f o r gzz
33 % 1 f o r cy l i nd e r 2 f o r p a r a l l e l e p i p e d 3 f o r spheres
34 forward_model_type = 3 ;
35 i n f e r_e r r o r = 1 ;
36 adaptive_mcmc = 1 ;
37 % Decrease , inc r ea s e , lower bound , upper bound
38 adaptive_mcmc_params = [ 0 . 9 , 1 . 1 , 0 . 1 , 0 . 4 ] ;
39 % Number o f i t e r a t i o n s be f o r e adapt ive MCMC update
40 adaptive_mcmc_counter = 1000;
41 sim_anneal = 1 ;
42 % Use Laplace l i k e l i h o o d in s t ead o f Gaussian
43 l ap l a c e_ l i k e l i h o od = 0 ;
44 % Heavy t a i l e d proposa l d i s t r i b u t i o n
45 cauchy_prop = 1 ;
46 % Subtract mean from McMC forward model
47 subtract_mean = 1 ;
48 % 1 in x or 1 in x−1 chance o f a RJ update
49 mh_upper_rand = 2 ;
50 % Star t value and constant value
51 s imulated_anneal ing = [ 1000000 , 0 . 9 9999 ] ;
52 % Factor o f data d i scarded
53 burn_in_discard_percent = 0 . 2 5 ;
54 no_min_objects = 1 ;
55 i f forward_model_type == 3
56 no_max_objects = 10 ; % Max number o f a l lowed ob j e c t s f o r TDMCMC
57 e l s e
58 no_max_objects = 10 ;
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59 end
60 proposa l_sca l ing = 0 . 5 ;
61 a i_separat ion = 0 . 5 ; % Distance between atom clouds
62 no_chains = [ 1 5 , 2 5 ] ;
63 suspect_convergence_l imit = 3 ;
64
65 %% Set t ing p r i o r and proposa l s
66 x_min = min( x_coords ) ;
67 x_max = max( x_coords ) ;
68 y_min = min( y_coords ) ;
69 y_max = max( y_coords ) ;
70 x_size = x_max − x_min ;
71 y_size = y_max − y_min ;
72 max_size = max ( [ x_size , y_size ] ) ;
73 min_size = min ( [ x_size , y_size ] ) ;
74 min_size_capped_depth = min ( [ min_size , 1 0 ] ) ;
75 min_size_capped_zlength = min ( [ min_size , 5 ] ) ;
76 total_min = min ( [ x_min , y_min ] ) ;
77 total_max = max ( [ x_max,y_max ] ) ;
78 i f g rav i ty_der iva t i ve == 1
79 blanket_proposa l_sca l ing = 0 . 1 ;
80 e l s e
81 blanket_proposa l_sca l ing = 0 . 1 ;
82 end
83 %% Proposa l s
84 c l e a r proposal_std p r i o r_d i s t r i bu t i o n s
85 i f forward_model_type == 2
86 % Para l l e l e p i p ed
87 param_block_1 = [ 1 , 2 , 7 ] ; % Pos i t i on params
88 param_block_2 = [ 3 , 4 , 5 , 6 , 8 ] ; % Volume dens i ty depth
89 proposal_std ( : , 1 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
90 proposal_std ( : , 2 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
91 proposal_std ( : , 3 ) = 1 .* blanket_proposa l_sca l ing ;
92 proposal_std ( : , 4 ) = 1 .* blanket_proposa l_sca l ing ;
93 proposal_std ( : , 5 ) = 1 .* blanket_proposa l_sca l ing ;
94 proposal_std ( : , 6 ) = 1 .* blanket_proposa l_sca l ing ;
95 proposal_std ( : , 7 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
96 i f g rav i ty_der iva t i v e == 1
97 proposal_std ( : , 8 ) = 1 .* blanket_proposa l_sca l ing *density_prop_scal ing ;
98 e l s e i f g rav i ty_der iva t i v e == 2
99 proposal_std ( : , 8 ) = 1 .* blanket_proposa l_sca l ing *density_prop_scal ing ;
100 end
101 i f subtract_mean == 1
102 i f g rav i ty_der iva t i v e == 1
103 proposa l_std_of f se t = 0 . 5 . * blanket_proposa l_sca l ing ;
104 proposal_std_error = 0 . 5 . * blanket_proposa l_sca l ing ;
105 e l s e i f g rav i ty_der iva t i ve == 2
106 proposa l_std_of f se t = 0 . 0 5 .* blanket_proposa l_sca l ing ;
107 proposal_std_error = 0 . 0 5 .* blanket_proposa l_sca l ing ;
108 end
109 e l s e i f subtract_mean == 0
110 i f g rav i ty_der iva t i v e == 1
111 proposa l_std_of f se t = 0 . 5 . * blanket_proposa l_sca l ing ;
112 proposal_std_error = 0 . 5 . * blanket_proposa l_sca l ing ;
113 e l s e i f g rav i ty_der iva t i ve == 2
114 proposa l_std_of f se t = 0 . 0 5 .* blanket_proposa l_sca l ing ;
115 proposal_std_error = 0 . 0 5 .* blanket_proposa l_sca l ing ;
116 end
117 end
118 % Pr i o r s
119 p r i o r_d i s t r i bu t i o n s (1 ) = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' ,x_max) ;
120 p r i o r_d i s t r i bu t i o n s (2 ) = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' ,y_max) ;
121 p r i o r_d i s t r i bu t i o n s (3 ) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 1 ) ;
122 p r i o r_d i s t r i bu t i o n s (4 ) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 1 ) ;
123 p r i o r_d i s t r i bu t i o n s (5 ) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 1 ) ;
124 p r i o r_d i s t r i bu t i o n s (6 ) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 1 ) ;
125 p r i o r_d i s t r i bu t i o n s (7 ) = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , 0 . 2 5 ) ;
126 i f i n f e r_e r r o r == 1
127 pr i o r_d i s t r i bu t i on_er ro r = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' . . .
128 ,mean( er ror_sensor ) ) ;
129 e l s e
130 p r i o r_d i s t r i bu t i on_er ro r = makedist ( 'Normal ' , 'mu ' , 0 , . . .
131 ' sigma ' , 0 ) ;
132 end
133 p r i o r_d i s t r i bu t i o n s (8 ) = makedist ( 'Normal ' , 'mu ' , density_mean , . . .
134 ' sigma ' , dens ity_std ) ;
135 i f subtract_mean == 1
136 p r i o r_d i s t r i bu t i on_o f f s e t = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , . . .
137 mean( er ror_sensor ) ) ;
138 e l s e
139 p r i o r_d i s t r i bu t i on_o f f s e t = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , . . .
140 ( (max( g rav i ty ) − min( g rav i ty ) ) /2) .*10^8) ;
141 end
142 e l s e i f forward_model_type == 1
143 % Cyl inder
144 param_block_1 = [ 1 , 2 , 6 ] ;
145 param_block_2 = [ 3 , 4 , 5 , 7 ] ;
146 proposal_std ( : , 1 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
147 proposal_std ( : , 2 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
148 proposal_std ( : , 3 ) = 1 .* blanket_proposa l_sca l ing ;
149 proposal_std ( : , 4 ) = 1 .* blanket_proposa l_sca l ing ;
150 proposal_std ( : , 5 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
151 proposal_std ( : , 6 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
152 i f g rav i ty_der iva t i v e == 1
153 proposal_std ( : , 7 ) = 1 .* blanket_proposa l_sca l ing *density_prop_scal ing ;
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154 e l s e i f g rav i ty_der iva t i v e == 2
155 proposal_std ( : , 7 ) = 1 .* blanket_proposa l_sca l ing *density_prop_scal ing ;
156 end
157 i f g rav i ty_der iva t i v e == 1
158 proposa l_std_of f se t = 0 . 5 . * blanket_proposa l_sca l ing ;
159 proposal_std_error = 0 . 5 . * blanket_proposa l_sca l ing ;
160 e l s e i f g rav i ty_der iva t i v e == 2
161 proposa l_std_of f se t = 0 . 0 5 .* blanket_proposa l_sca l ing ;
162 proposal_std_error = 0 . 0 5 .* blanket_proposa l_sca l ing ;
163 end
164 % Pr i o r s
165 p r i o r_d i s t r i bu t i o n s (1) = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' ,x_max) ;
166 p r i o r_d i s t r i bu t i o n s (2) = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' ,y_max) ;
167 p r i o r_d i s t r i bu t i o n s (3) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 1 ) ; % Depth
168 p r i o r_d i s t r i bu t i o n s (6) = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , 0 . 2 5 ) ; % Rotation
169 i f i n f e r_e r r o r == 1
170 pr i o r_d i s t r i bu t i on_er ro r = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' ,mean( er ror_sensor ) ) ;
171 e l s e
172 p r i o r_d i s t r i bu t i on_er ro r = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , 0 ) ;
173 end
174 p r i o r_d i s t r i bu t i o n s (4) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 4 ) ; % Length
175 p r i o r_d i s t r i bu t i o n s (5) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 0 . 5 ) ; % Radius
176 p r i o r_d i s t r i bu t i o n s (7) = makedist ( 'Normal ' , 'mu ' , density_mean , ' sigma ' , . . .
177 density_std ) ; % Density
178 i f subtract_mean == 1
179 p r i o r_d i s t r i bu t i on_o f f s e t = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , . . .
180 mean( er ror_sensor ) ) ;
181 e l s e
182 p r i o r_d i s t r i bu t i on_o f f s e t = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , . . .
183 ( (max( g rav i ty ) − min( g rav i ty ) ) /2) .*10^8) ;
184 end
185 e l s e i f forward_model_type == 3
186 % Sphere
187 param_block_1 = [ 1 , 2 ] ;
188 param_block_2 = [ 3 , 4 , 5 ] ;
189 proposal_std ( : , 1 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
190 proposal_std ( : , 2 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
191 proposal_std ( : , 3 ) = 1 .* blanket_proposa l_sca l ing ;
192 proposal_std ( : , 4 ) = 0 . 5 . * blanket_proposa l_sca l ing ;
193 i f g rav i ty_der iva t i v e == 1
194 proposal_std ( : , 5 ) = 1 .* blanket_proposa l_sca l ing *density_prop_scal ing ;
195 e l s e i f g rav i ty_der iva t i ve == 2
196 proposal_std ( : , 5 ) = 1 .* blanket_proposa l_sca l ing *density_prop_scal ing ;
197 end
198 i f g rav i ty_der iva t i v e == 1
199 proposa l_std_of f se t = 0 . 5 . * blanket_proposa l_sca l ing ;
200 proposal_std_error = 0 . 5 . * blanket_proposa l_sca l ing ;
201 e l s e i f g rav i ty_der iva t i ve == 2
202 proposa l_std_of f se t = 0 . 0 5 .* blanket_proposa l_sca l ing ;
203 proposal_std_error = 0 . 0 5 .* blanket_proposa l_sca l ing ;
204 end
205 % Pr i o r s
206 p r i o r_d i s t r i bu t i o n s (1) = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' ,x_max) ;
207 p r i o r_d i s t r i bu t i o n s (2) = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' ,y_max) ;
208 p r i o r_d i s t r i bu t i o n s (3) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 1 ) ; % Depth
209 i f i n f e r_e r r o r == 1
210 pr i o r_d i s t r i bu t i on_er ro r = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' ,mean( er ror_sensor ) ) ;
211 e l s e
212 p r i o r_d i s t r i bu t i on_er ro r = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , 0 ) ;
213 end
214 p r i o r_d i s t r i bu t i o n s (4) = makedist ( 'Gamma ' , ' a ' , 2 , 'b ' , 0 . 5 ) ; % Radius
215 p r i o r_d i s t r i bu t i o n s (5) = makedist ( 'Normal ' , 'mu ' , density_mean , ' sigma ' , . . .
216 density_std ) ; % Density
217 i f subtract_mean == 1
218 p r i o r_d i s t r i bu t i on_o f f s e t = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , . . .
219 mean( er ror_sensor ) ) ;
220 e l s e
221 p r i o r_d i s t r i bu t i on_o f f s e t = makedist ( 'Normal ' , 'mu ' , 0 , ' sigma ' , . . .
222 ( (max( g rav i ty ) − min( g rav i ty ) ) /2) .*10^8) ;
223 end
224 end
225
226 %% MCMC Process
227 f o r no_chain = no_chains (1 ) : no_chains (2 )
228 t i c
229 [ a l l_log_pr ior , a l l_ log_l ike l i hood , al l_log_alpha , accepted_log_prior , . . .
230 accepted_log_l ike l ihood , accepted_log_alpha , output_objects , output_objects_block , . . .
231 output_error , output_of fset , output_objects_padded , output_objects_converged , . . .
232 output_objects_block_converged , output_error_converged , output_offset_converged , . . .
233 output_objects_padded_converged , output_no_objects , no_objects_output_converged , . . .
234 output_data_dimension , output_data_dimension_converged ] . . .
235 = mcmc_process ( grav i ty , error_sensor , . . .
236 proposal_std , proposal_std_error , proposa l_std_of f set , . . .
237 p r i o r_d i s t r i bu t i on s , p r i o r_d i s t r ibut i on_er ro r , p r i o r_d i s t r i bu t i on_o f f s e t , . . .
238 no_max_objects , no_min_objects , param_block_1 , param_block_2 , . . .
239 x_coords , y_coords , z_coords , mcmc_iterations , s imulated_anneal ing , . . .
240 grav i ty_der ivat ive , a i_separat ion , forward_model_type , in f e r_er ro r , . . .
241 adaptive_mcmc_counter , adaptive_mcmc , sim_anneal , burn_in_discard_percent , . . .
242 l ap l a c e_ l i k e l i hood , subtract_mean , mh_upper_rand , adaptive_mcmc_params , . . .
243 cauchy_prop , proposa l_sca l ing ) ;
244 output_time_elapsed = toc /(60*60) ;
245 d i sp ( no_chain )
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Function that carries out the reversible-jump Markov chain Monte Carlo inference.

1 func t i on [ a l l_log_pr ior , a l l_ log_l ike l i hood , al l_log_alpha , accepted_log_prior , . . .
2 accepted_log_l ike l ihood , accepted_log_alpha , mcmc_output_total . . .
3 ,mcmc_output_block_total , output_error_total , output_of f set_tota l , . . .
4 mcmc_output_padded , mcmc_output_converged , mcmc_output_block_converged . . .
5 , output_error_converged , output_offset_converged , mcmc_output_padded_converged , . . .
6 no_objects_output , no_objects_output_converged , data_dimension , data_dimension_converged ] . . .
7 = mcmc_process ( gravity_data , error_sensor , . . .
8 proposal_std_unknowns , proposal_std_error , proposa l_std_of f set , . . .
9 p r i o r_d i s t r i bu t i on s , p r i o r_d i s t r ibut i on_er ro r , p r i o r_d i s t r i bu t i on_o f f s e t , . . .
10 no_max_objects , no_min_objects , param_block_1 , param_block_2 , . . .
11 x_coords , y_coords , z_coords , mcmc_iterations , s imulated_anneal ing , . . .
12 grav i ty_der ivat ive , a i_separat ion , forward_model_type , in f e r_er ro r , . . .
13 adaptive_mcmc_counter , adaptive_mcmc , sim_anneal , . . .
14 burn_in_discard_percent , l ap lace , subtract_mean , . . .
15 mh_upper_rand , adaptive_mcmc_params , cauchy_prop , proposa l_sca l ing )
16 %% Def in ing output parameters
17 % Randomising the i n i t i a l number o f ob j e c t s
18 no_object_params = s i z e ( p r i o r_d i s t r i bu t i on s , 2 ) ;
19 no_objects = randi ( [ no_min_objects , no_max_objects ] ) ;
20 % Accepted i t e r a t i o n count
21 accept_count_object = ze ro s (1 , no_max_objects ) ;
22 accept_count_object_block = ze ro s ( no_max_objects , 2 ) ;
23 accept_count_all_object_params = 0 ;
24 accept_count_offset_params = 0 ;
25 accept_count_error_params = 0 ;
26 accept_count_rj_birth = 0 ;
27 accept_count_rj_death = 0 ;
28 % I t e r a t i o n count
29 i te rat ion_count_object = ze ro s (1 , no_max_objects ) ;
30 iteration_count_object_parameter_block = ze ro s ( no_max_objects , 2 ) ;
31 iterat ion_count_all_object_params = 0 ;
32 iterat ion_count_offset_params = 0 ;
33 iteration_count_error_params = 0 ;
34 i terat ion_count_rj_birth = 0 ;
35 iterat ion_count_rj_death = 0 ;
36 % Count number o f ob j e c t s at each i t e r a t i o n
37 no_objects_output = ze ro s (1 , no_max_objects ) ;
38 no_objects_output_converged = ze ro s (1 , no_max_objects ) ;
39 % r j mcmc parameters
40 mcmc_output_total = c e l l (1 , no_object_params*no_max_objects ) ;
41 mcmc_output_converged = c e l l (1 , no_object_params*no_max_objects ) ;
42 mcmc_output_padded = c e l l (1 , no_object_params*no_max_objects ) ;
43 mcmc_output_padded_converged = c e l l (1 , no_object_params*no_max_objects ) ;
44 mcmc_output_block_total = c e l l (1 , no_object_params*no_max_objects ) ;
45 mcmc_output_block_converged = c e l l (1 , no_object_params*no_max_objects ) ;
46 % Global parameters
47 output_error_total = ze ro s (1 , 1 ) ;
48 output_of f se t_tota l = ze ro s (1 , 1 ) ;
49 output_error_converged = ze ro s (1 , 1 ) ;
50 output_offset_converged = ze ro s (1 , 1 ) ;
51 % Like l ihood and p r i o r
52 accepted_log_l ike l ihood = ze ro s (1 , 1 ) ;
53 accepted_log_prior = ze ro s (1 , 1 ) ;
54 accepted_log_alpha = ze ro s (1 , 1 ) ;
55 a l l_ l og_ l i k e l i hood = ze ro s (1 , 1 ) ;
56 a l l_ log_pr io r = ze ro s (1 , 1 ) ;
57 al l_log_alpha = ze ro s (1 , 1 ) ;
58 % Simulated annea l ing parameters
59 i f sim_anneal == 1
60 t = simulated_anneal ing (1) ;
61 C = simulated_anneal ing (2) ;
62 e l s e
63 t = 0 ;
64 end
65 % Adaptive MCMC parameters
66 adaptive_dec = adaptive_mcmc_params (1) ;
67 adaptive_inc = adaptive_mcmc_params (2) ;
68 adaptive_lower_bound = adaptive_mcmc_params (3) ;
69 adaptive_upper_bound = adaptive_mcmc_params (4) ;
70 % Dimension parameter
71 data_dimension = ze ro s (1 , 1 ) ;
72 data_dimension_converged = ze ro s (1 , 1 ) ;
73 %% Randomly s e l e c t a s t a r t i n g point f o r the i n f e r e n c e proce s s
74 % Randomising the i n i t i a l ob j e c t parameters
75 unknowns = ze ro s ( no_objects , no_object_params ) ;
76 p r i o r = ze ro s ( no_objects , no_object_params ) ;
77 f o r i = 1 : no_objects
78 f o r j = 1 : no_object_params
79 unknowns ( i , j ) = random( p r i o r_d i s t r i bu t i o n s ( j ) ) ;
80 p r i o r ( i , j ) = pdf ( p r i o r_d i s t r i bu t i o n s ( j ) , unknowns ( i , j ) ) ;
81 end
82 end
83 % Make depth negat ive
84 unknowns ( : , 3 ) = −unknowns ( : , 3 ) ;
85 o f f s e t = random( p r i o r_d i s t r i bu t i on_o f f s e t ) ;
86 p r i o r_o f f s e t = pdf ( p r i o r_d i s t r i bu t i on_o f f s e t , o f f s e t ) ;
87 i f i n f e r_e r r o r == 1
88 e r r o r = random( pr i o r_d i s t r i bu t i on_er ro r ) ;
89 pr i o r_er ro r = pdf ( p r i o r_d i s t r ibut i on_er ro r , e r r o r ) ;
90 e l s e
91 e r r o r = 0 ;
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92 pr io r_er ro r = 1 ;
93 end
94 log_pr ior = log ( prod ( prod ( p r i o r ) ) .* p r i o r_o f f s e t .* pr io r_er ro r ) ;
95 % I n i t i a l i s e proposa l std va lues
96 default_proposal_std = proposal_std_unknowns ( 1 , : ) ;
97 proposal_std_unknowns = repmat ( default_proposal_std , s i z e ( unknowns , 1 ) ,1 ) ;
98 % Ca lcu la t ing i n i t i a l forward model
99 i f g rav i ty_der iva t i ve == 1
100 i f forward_model_type == 1
101 forward_model = cylinder_model_gz ( x_coords , y_coords , z_coords , unknowns ) ;
102 e l s e i f forward_model_type == 2
103 forward_model = cuboid_model_gz ( x_coords , y_coords , z_coords , unknowns ) ;
104 e l s e i f forward_model_type == 3
105 forward_model = sphere_model_gz ( x_coords , y_coords , z_coords , unknowns ) ;
106 end
107 e l s e i f g rav i ty_der iva t i v e == 2
108 i f forward_model_type == 1
109 forward_model = cylinder_model_gzz ( x_coords , y_coords , z_coords , unknowns , . . .
110 a i_separat ion ) ;
111 e l s e i f forward_model_type == 2
112 forward_model = cuboid_model_gzz ( x_coords , y_coords , z_coords , unknowns , . . .
113 a i_separat ion ) ;
114 e l s e i f forward_model_type == 3
115 forward_model = sphere_model_gzz ( x_coords , y_coords , z_coords , unknowns , . . .
116 a i_separat ion ) ;
117 end
118 end
119 % Subtract the model mean as grav data i s a r b i t r a r i l y s ca l ed
120 i f subtract_mean == 1
121 forward_model = ( forward_model − mean( forward_model ) ) + o f f s e t .*10^−8;
122 e l s e
123 forward_model = forward_model + o f f s e t .*10^−8;
124 end
125 % Calcu la t ing i n i t i a l l i k e l i h o o d
126 i f l a p l a c e == 1
127 l og_ l i k e l i hood = log_laplace_model ( gravity_data , forward_model , error_sensor , . . .
128 er ror , g rav i ty_der iva t i v e ) ;
129 e l s e i f l a p l a c e == 0
130 l og_ l i k e l i hood = log_gaussian_model ( gravity_data , forward_model , e r ror_sensor . . .
131 , e r ror , g rav i ty_der iva t i ve ) ;
132 end
133
134 f o r k = 1 : mcmc_iterations
135 %% Set t ing s imulated annea l ing temperature
136 i f sim_anneal == 1
137 % Simple exponent ia l s imulated annea l ing schedu le
138 t = t *(C^k) ;
139 i f t < 0.001
140 % Set t = 0 when to i s c l o s e to 0
141 t = 0 ;
142 end
143 e l s e
144 end
145 %% Display pe r t i n en t outputs and adapt ive mcmc
146 i f k > 0 && k < mcmc_iterations*burn_in_discard_percent && . . .
147 rem(k , adaptive_mcmc_counter ) == 0
148 % Display va lues o f i n t e r e s t
149 accept_ratio_all_object_params = accept_count_all_object_params . / . . .
150 ( iteration_count_all_object_params ) ;
151 accept_ratio_offset_params = accept_count_offset_params . / . . .
152 ( iterat ion_count_offset_params ) ;
153 accept_ratio_error_params = accept_count_error_params . / . . .
154 ( iteration_count_error_params ) ;
155 accept_rat io_object_block = accept_count_object_block . . .
156 / iteration_count_object_parameter_block ;
157 accept_rat io_object = ( accept_count_object ) . / ( i t e rat ion_count_object ) ;
158 d i sp ( ' proposa l_sca l ing : ' ) , d i sp ( proposa l_sca l ing ) ;
159 d i sp ( ' proposa l std : ' ) , d i sp ( proposal_std_unknowns ) ;
160 d i sp ( ' proposa l std o f f s e t : ' ) , d i sp ( proposa l_std_of f se t ) ;
161 i f i n f e r_e r r o r == 1
162 disp ( ' proposa l std e r r o r : ' ) , d i sp ( proposal_std_error ) ;
163 e l s e
164 end
165 disp ( ' accept_rat io_object_tota l : ' ) , d i sp ( accept_ratio_all_object_params )
166 di sp ( ' accept_ratio_offset_param : ' ) , d i sp ( accept_ratio_offset_params )
167 di sp ( ' accept_ratio_error_param : ' ) , d i sp ( accept_ratio_error_params )
168 di sp ( ' accept_rat io_object : ' ) , d i sp ( accept_rat io_object )
169 di sp ( ' accept_rat io_object_block : ' ) , d i sp ( accept_rat io_object_block )
170 i f adaptive_mcmc == 1
171 %% Adaptive proposa l d i s t r i b u t i o n f o r ob j e c t param blocks update
172 f o r i = 1 : s i z e ( unknowns , 1 )
173 i f accept_rat io_object_block ( i , 1 ) < adaptive_lower_bound
174 proposal_std_unknowns ( i , param_block_1 ) = . . .
175 proposal_std_unknowns ( i , param_block_1 ) .* adaptive_dec ;
176 e l s e i f accept_rat io_object_block ( i , 1 ) > adaptive_upper_bound
177 proposal_std_unknowns ( i , param_block_1 ) = . . .
178 proposal_std_unknowns ( i , param_block_1 ) .* adaptive_inc ;
179 end
180 i f accept_rat io_object_block ( i , 2 ) < adaptive_lower_bound
181 proposal_std_unknowns ( i , param_block_2 ) = . . .
182 proposal_std_unknowns ( i , param_block_2 ) .* adaptive_dec ;
183 e l s e i f accept_rat io_object_block ( i , 2 ) > adaptive_upper_bound
184 proposal_std_unknowns ( i , param_block_2 ) = . . .
185 proposal_std_unknowns ( i , param_block_2 ) .* adaptive_inc ;
186 end
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187 end
188 %% Adaptive proposa l d i s t r i b u t i o n f o r a l l ob j e c t update
189 i f accept_ratio_all_object_params < adaptive_lower_bound
190 proposa l_sca l ing = proposa l_sca l ing .* adaptive_dec ;
191 proposa l_std_of f se t = proposa l_std_of f se t .* adaptive_dec ;
192 i f i n f e r_e r r o r == 1
193 proposal_std_error = proposal_std_error .* adaptive_dec ;
194 e l s e
195 end
196 e l s e i f accept_ratio_all_object_params > adaptive_upper_bound
197 proposa l_sca l ing = proposa l_sca l ing .* adaptive_inc ;
198 proposa l_std_of f se t = proposa l_std_of f se t .* adaptive_inc ;
199 i f i n f e r_e r r o r == 1
200 proposal_std_error = proposal_std_error .* adaptive_inc ;
201 e l s e
202 end
203 end
204 end
205 %% Reset acceptance percentages
206 accept_count_object_block = ze ro s ( no_max_objects , 2 ) ;
207 accept_count_object = ze ro s (1 , no_max_objects ) ;
208 accept_count_all_object_params = 0 ;
209 accept_count_offset_params = 0 ;
210 accept_count_rj_birth = 0 ;
211 accept_count_rj_death = 0 ;
212 %% Reset i t e r a t i o n count
213 iteration_count_object_parameter_block = ze ro s ( no_max_objects , 2 ) ;
214 i te rat ion_count_object = ze ro s (1 , no_max_objects ) ;
215 iterat ion_count_al l_object_params = 0 ;
216 iterat ion_count_offset_params = 0 ;
217 i terat ion_count_rj_birth = 0 ;
218 iterat ion_count_rj_death = 0 ;
219
220 di sp ( 'unknowns : ' ) , d i sp ( unknowns ) ;
221 d i sp ( ' o f f s e t : ' ) , d i sp ( o f f s e t ) ;
222 d i sp ( ' e r r o r : ' ) , d i sp ( e r r o r ) ;
223 i f t > 0
224 disp ( ' s imulated annea l ing ' )
225 end
226 di sp ( 'Burn−in Period ' )
227 di sp (k )
228 e l s e i f k > mcmc_iterations*burn_in_discard_percent && . . .
229 rem(k , adaptive_mcmc_counter ) == 0
230 i f i n f e r_e r r o r == 1
231 disp ( ' e r r o r : ' ) , d i sp ( e r r o r )
232 end
233 di sp ( ' o f f s e t : ' ) , d i sp ( o f f s e t )
234 di sp ( 'unknowns : ' ) , d i sp ( unknowns ) ;
235 d i sp ( ' proposed unknowns : ' ) , d i sp ( proposed_unknowns ) ;
236 d i sp (k )
237 end
238 % Only MH moves al lowed i f rjmcmc ' o f f '

239 random_number = randi (100) ;
240 i f ( no_max_objects − no_min_objects ) == 0
241 move_type = 2 ;
242 e l s e
243 i f random_number <= 50
244 move_type = 1 ;
245 e l s e i f random_number >= 51
246 move_type = 2 ;
247 end
248 end
249 %% r e v e r s i b l e jump moves
250 i f move_type == 1
251 % Se l e c t b i r th /death move
252 b_d = randi (2 ) ;
253 i f b_d == 1
254 % Birth move
255 i terat ion_count_rj_birth = iterat ion_count_rj_birth + 1 ;
256 i f s i z e ( unknowns , 1 ) < no_max_objects
257 f o r j = 1 : no_object_params
258 random_proposed_unknowns (1 , j ) = random( p r i o r_d i s t r i bu t i on s ( j ) ) ;
259 end
260 random_proposed_unknowns (1 ,3 ) = −random_proposed_unknowns (1 ,3 ) ;
261 proposed_unknowns = [ unknowns ; random_proposed_unknowns ] ;
262 e l s e
263 cont inue
264 end
265 e l s e i f b_d == 2
266 % Death move
267 iterat ion_count_rj_death = iterat ion_count_rj_death + 1 ;
268 i f s i z e ( unknowns , 1 ) > no_min_objects
269 de l_object = randi ( s i z e ( unknowns , 1 ) ) ;
270 i f de l_object == 1

271 proposed_unknowns = unknowns (2:end , : ) ;
272 e l s e i f de l_object == s i z e ( unknowns , 1 )

273 proposed_unknowns = unknowns (1:end−1 ,:) ;
274 e l s e
275 proposed_unknowns = [ unknowns ( 1 : del_object −1 , :) ; . . .
276 unknowns ( de l_object+1:end , : ) ] ;
277 end
278 e l s e
279 cont inue
280 end
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281 end
282 %% r e v e r s i b l e jump moves save
283 % Calcu la t ing new forward model
284 i f g rav i ty_der iva t i ve == 1
285 i f forward_model_type == 1
286 proposed_forward_model = cylinder_model_gz ( x_coords , y_coords , . . .
287 z_coords , proposed_unknowns ) ;
288 e l s e i f forward_model_type == 2
289 proposed_forward_model = cuboid_model_gz ( x_coords , y_coords , . . .
290 z_coords , proposed_unknowns ) ;
291 e l s e i f forward_model_type == 3
292 proposed_forward_model = sphere_model_gz ( x_coords , y_coords , . . .
293 z_coords , proposed_unknowns ) ;
294 end
295 e l s e i f g rav i ty_der iva t i ve == 2
296 i f forward_model_type == 1
297 proposed_forward_model = cylinder_model_gzz ( x_coords , y_coords , . . .
298 z_coords , proposed_unknowns , a i_separat ion ) ;
299 e l s e i f forward_model_type == 2
300 proposed_forward_model = cuboid_model_gzz ( x_coords , y_coords , . . .
301 z_coords , proposed_unknowns , a i_separat ion ) ;
302 e l s e i f forward_model_type == 3
303 proposed_forward_model = sphere_model_gzz ( x_coords , y_coords , . . .
304 z_coords , proposed_unknowns , a i_separat ion ) ;
305 end
306 e l s e i f g rav i ty_der iva t i ve == 3
307 end
308 % Subtract the mean and add the o f f s e t value
309 i f subtract_mean == 1
310 proposed_forward_model = ( proposed_forward_model − . . .
311 mean( proposed_forward_model ) ) + o f f s e t .*10^−8;
312 e l s e
313 proposed_forward_model = proposed_forward_model + o f f s e t .*10^−8;
314 end
315 % Calcu la te the p r i o r va lues
316 f o r i = 1 : s i z e ( proposed_unknowns , 1 )
317 f o r j = 1 : no_object_params
318 i f j == 3 && proposed_unknowns ( i , j ) > 0
319 proposed_prior ( i , j ) = 0 ;
320 e l s e i f j == 3
321 proposed_prior ( i , j ) = pdf ( p r i o r_d i s t r i bu t i o n s ( j ) , . . .
322 abs ( proposed_unknowns ( i , j ) ) ) ;
323 e l s e
324 proposed_prior ( i , j ) = pdf ( p r i o r_d i s t r i bu t i o n s ( j ) , . . .
325 proposed_unknowns ( i , j ) ) ;
326 end
327 end
328 end
329 proposed_log_prior = log ( prod ( prod ( proposed_prior ) ) .* p r i o r_o f f s e t .* pr io r_er ro r ) ;
330 % Ca lcu la t ing the proposed l i k e l i h o o d
331 i f l a p l a c e == 1
332 proposed_log_l ike l ihood = log_laplace_model ( gravity_data , . . .
333 proposed_forward_model , error_sensor , e r ror , g rav i ty_der iva t i v e ) ;
334 e l s e i f l a p l a c e == 0
335 proposed_log_l ike l ihood = log_gaussian_model ( gravity_data . . .
336 , proposed_forward_model , error_sensor , e r ror , g rav i ty_der iva t i ve ) ;
337 end
338 % Calcu la te r a t i o o f cur rent and prev ious p o s t e r i o r d i s t r i b u t i o n s
339 log_alpha = ( ( proposed_log_l ike l ihood + proposed_log_prior ) − . . .
340 ( l o g_ l i k e l i hood + log_pr ior ) ) ;
341 log_alpha = log_alpha /(1 + t ) ;
342 random_no = log ( rand (1) ) ;
343 % Save l i k e l i h o od , p r i o r and alpha va lues
344 a l l_ l og_ l i k e l i hood = [ a l l_ l og_ l i k e l i hood ; proposed_log_l ike l ihood ] ;
345 a l l_ log_pr io r = [ a l l_ log_pr io r ; proposed_log_prior ] ;
346 al l_log_alpha = [ al l_log_alpha ; log_alpha ] ;
347 % Save and update a l l params
348 i f ( log_alpha > random_no) && ( i s i n f ( log_alpha ) == 0) && . . .
349 ( i snan ( log_alpha ) == 0)
350 % Birth /death move
351 i f move_type == 1
352 i f b_d == 1
353 % The proposa l d i s t r i b u t i o n needs to f o l l ow ob j e c t changes
354 proposal_std_unknowns = [ proposal_std_unknowns ; . . .
355 ones (1 , s i z e ( proposal_std_unknowns , 2 ) ) . . .
356 .* proposal_std_unknowns ( 1 , : ) ] ;
357 accept_count_rj_birth = accept_count_rj_birth + 1 ;
358 e l s e i f b_d == 2
359 % The proposa l d i s t r i b u t i o n needs to f o l l ow ob j e c t changes
360 i f de l_object == 1 %&& s i z e ( proposed_unknowns , 1 ) > 1

361 proposal_std_unknowns = proposal_std_unknowns (2:end , : ) ;
362 e l s e i f de l_object == s i z e ( proposal_std_unknowns , 1 )

363 proposal_std_unknowns = proposal_std_unknowns (1:end−1 ,:) ;
364 e l s e
365 proposal_std_unknowns = [ . . .
366 proposal_std_unknowns ( 1 : del_object −1 , :) ; . . .
367 proposal_std_unknowns ( de l_object+1:end , : ) ] ;
368 end
369 accept_count_rj_death = accept_count_rj_death + 1 ;
370 end
371 end
372 % Set accept changes
373 unknowns = proposed_unknowns ;
374 log_pr ior = proposed_log_prior ;
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375 l og_ l i k e l i h ood = proposed_log_l ike l ihood ;
376 % Save number o f ob j e c t s
377 no_objects_output (1 , s i z e ( unknowns , 1 ) ) = . . .
378 no_objects_output (1 , s i z e ( unknowns , 1 ) ) + 1 ;
379 data_dimension = [ data_dimension ; s i z e ( unknowns , 1 ) ] ;
380 i f k > mcmc_iterations*burn_in_discard_percent
381 data_dimension_converged = [ data_dimension_converged ; . . .
382 s i z e ( unknowns , 1 ) ] ;
383 no_objects_output_converged (1 , s i z e ( unknowns , 1 ) ) = . . .
384 no_objects_output_converged (1 , s i z e ( unknowns , 1 ) ) + 1 ;
385 end
386 % Save a l l parameters
387 f o r i = 1 : no_object_params
388 f o r j = 1 : s i z e ( unknowns , 1 )
389 mcmc_output_total {1 , i +( j *no_object_params − . . .
390 no_object_params ) } = [ mcmc_output_total { . . .
391 1 , i +( j *no_object_params−no_object_params ) } ; . . .
392 proposed_unknowns ( j , i ) ] ;
393 i f k > mcmc_iterations*burn_in_discard_percent
394 mcmc_output_converged {1 , i +( j *no_object_params . . .
395 −no_object_params ) } = [ mcmc_output_converged { . . .
396 1 , i +( j *no_object_params−no_object_params ) } ; . . .
397 proposed_unknowns ( j , i ) ] ;
398 end
399 end
400 end
401 unknowns_padded_save = [ reshape (unknowns ' , 1 , no_object_params * . . .
402 s i z e ( unknowns , 1 ) ) , z e ro s (1 , s i z e (mcmc_output_total , 2 ) − . . .
403 s i z e ( reshape (unknowns , 1 , no_object_params* s i z e ( unknowns , 1 ) ) ,2 ) ) ] ;
404 unknowns_padded = padarray ( unknowns_padded_save , [ 0 , no_object_params * . . .
405 no_max_objects−s i z e ( unknowns_padded_save , 2 ) ] ) ;
406 f o r i = 1 : no_object_params*no_max_objects
407 mcmc_output_padded{1 , i } = [ mcmc_output_padded{1 , i } ; . . .
408 unknowns_padded (1 , i ) ] ;
409 i f k > mcmc_iterations*burn_in_discard_percent
410 mcmc_output_padded_converged {1 , i } = . . .
411 [ mcmc_output_padded_converged {1 , i } ; unknowns_padded (1 , i ) ] ;
412 end
413 end
414 % Save key va lues
415 accepted_log_l ike l ihood = [ accepted_log_l ike l ihood ; l o g_ l i k e l i h ood ] ;
416 accepted_log_prior = [ accepted_log_prior ; log_pr ior ] ;
417 accepted_log_alpha = [ accepted_log_alpha ; log_alpha ] ;
418 e l s e
419
420 end
421 end
422 %% Regular MH move
423 i f move_type == 2
424 random_number = randi (100) ;
425 i f random_number < 50
426 mh_move_type = 1 ; % S ing l e ob j e c t block update
427 e l s e i f random_number >= 50 && random_number <= 100
428 mh_move_type = 2 ; % Al l ob j e c t update
429 e l s e i f random_number > 100
430 mh_move_type = 3 ; % Global params
431 end
432 proposed_unknowns = unknowns ;
433 % Update one ob j e c t parameter block
434 i f mh_move_type == 1
435 rand_object = randi ( s i z e ( unknowns , 1 ) ) ;
436 % Set r e l a t i v e chance to sample depth volume and dens i ty . .
437 skew_rand_parameter_block = randi (2 ) ;
438 i f skew_rand_parameter_block == 1
439 rand_parameter_block = 1 ;
440 e l s e i f skew_rand_parameter_block > 1 ;
441 rand_parameter_block = 2 ;
442 end
443 i te rat ion_count_object (1 , rand_object ) = . . .
444 i te rat ion_count_object (1 , rand_object ) + 1 ;
445 iteration_count_object_parameter_block ( . . .
446 rand_object , rand_parameter_block ) = . . .
447 iteration_count_object_parameter_block ( rand_object , . . .
448 rand_parameter_block ) + 1 ;
449 i f cauchy_prop == 1
450 i f rand_parameter_block == 1
451 f o r i = param_block_1
452 new_param = trnd (1) .* proposal_std_unknowns ( rand_object , i ) ;
453 proposed_unknowns ( rand_object , i ) = . . .
454 proposed_unknowns ( rand_object , i ) . . .
455 + new_param ;
456 end
457 e l s e i f rand_parameter_block == 2
458 f o r i = param_block_2
459 new_param = trnd (1) .* proposal_std_unknowns ( rand_object , i ) ;
460 proposed_unknowns ( rand_object , i ) = . . .
461 proposed_unknowns ( rand_object , i ) . . .
462 + new_param ;
463 end
464 end
465 e l s e
466 i f rand_parameter_block == 1
467 f o r i = param_block_1
468 new_param = normrnd ( ze ro s ( s i z e ( i , 2 ) ) , . . .
469 proposal_std_unknowns ( rand_object , i ) ) ;
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470 proposed_unknowns ( rand_object , i ) = . . .
471 proposed_unknowns ( rand_object , i ) . . .
472 + new_param ;
473 end
474 e l s e i f rand_parameter_block == 2
475 f o r i = param_block_2
476 new_param = normrnd ( ze ro s ( s i z e ( i , 2 ) ) , . . .
477 proposal_std_unknowns ( rand_object , i ) ) ;
478 proposed_unknowns ( rand_object , i ) = . . .
479 proposed_unknowns ( rand_object , i ) . . .
480 + new_param ;
481 end
482 end
483 end
484 proposed_of f se t = o f f s e t ;
485 proposed_error = e r r o r ;
486 e l s e i f mh_move_type == 2
487 %% Update a l l parameters at once
488 iterat ion_count_al l_object_params = iterat ion_count_al l_object_params . . .
489 + 1 ;
490 i f cauchy_prop == 1
491 f o r i = 1 : no_object_params
492 f o r j = 1 : s i z e ( unknowns , 1 )
493 new_param = trnd (1) .* proposal_std_unknowns ( j , i ) . . .
494 .* proposa l_sca l ing ;
495 proposed_unknowns ( j , i ) = proposed_unknowns ( j , i ) . . .
496 + new_param ;
497 end
498 end
499 e l s e
500 proposed_unknowns = normrnd (unknowns , proposal_std_unknowns . * . . .
501 proposa l_sca l ing , [ s i z e ( unknowns , 1 ) , no_object_params ] ) ;
502 end
503 i f cauchy_prop == 1
504 proposed_of f se t = o f f s e t + trnd (1) .* proposa l_std_of f se t ;
505 e l s e
506 proposed_of f se t = normrnd ( o f f s e t , proposa l_std_of f se t ) ;
507 end
508 i f i n f e r_e r r o r == 1
509 i f cauchy_prop == 1
510 proposed_error = e r r o r + trnd (1) .* proposal_std_error ;
511 e l s e
512 proposed_error = normrnd ( er ror , proposal_std_error ) ;
513 end
514 e l s e
515 proposed_error = e r r o r ;
516 end
517 e l s e i f mh_move_type == 3
518 %% Update g l oba l parameters only
519 proposed_unknowns = unknowns ;
520 i f i n f e r_e r r o r == 1
521 e_o = randi (2 ) ;
522 e l s e
523 e_o = 1 ;
524 end
525 i f e_o == 1
526 % Proposed o f f s e t
527 i f cauchy_prop == 1
528 proposed_of f se t = o f f s e t + trnd (1) .* proposa l_std_of f se t ;
529 e l s e
530 proposed_of f se t = normrnd ( o f f s e t , proposa l_std_of f se t ) ;
531 end
532 proposed_error = e r r o r ;
533 iterat ion_count_offset_params = iterat ion_count_offset_params + 1 ;
534 e l s e i f e_o == 2
535 % Proposed e r r o r
536 i f i n f e r_e r r o r == 1
537 i f cauchy_prop == 1
538 proposed_error = e r r o r + trnd (1) .* proposal_std_error ;
539 e l s e
540 proposed_error = normrnd ( er ror , proposal_std_error ) ;
541 end
542 e l s e
543 proposed_error = e r r o r ;
544 end
545 proposed_of f se t = o f f s e t ;
546 iteration_count_error_params = iteration_count_error_params + 1 ;
547 end
548
549 end
550 % Calcu la te forward model
551 i f g rav i ty_der iva t i ve == 1
552 i f forward_model_type == 1
553 proposed_forward_model = cylinder_model_gz ( x_coords , y_coords , . . .
554 z_coords , proposed_unknowns ) ;
555 e l s e i f forward_model_type == 2
556 proposed_forward_model = cuboid_model_gz ( x_coords , y_coords , . . .
557 z_coords , proposed_unknowns ) ;
558 e l s e i f forward_model_type == 3
559 proposed_forward_model = sphere_model_gz ( x_coords , y_coords , . . .
560 z_coords , proposed_unknowns ) ;
561 end
562 e l s e i f g rav i ty_der iva t i ve == 2
563 i f forward_model_type == 1
564 proposed_forward_model = cylinder_model_gzz ( x_coords , y_coords , . . .
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565 z_coords , proposed_unknowns , a i_separat ion ) ;
566 e l s e i f forward_model_type == 2
567 proposed_forward_model = cuboid_model_gzz ( x_coords , y_coords , . . .
568 z_coords , proposed_unknowns , a i_separat ion ) ;
569 e l s e i f forward_model_type == 3
570 proposed_forward_model = sphere_model_gzz ( x_coords , y_coords , . . .
571 z_coords , proposed_unknowns , a i_separat ion ) ;
572 end
573 end
574 % Remove mean from model and add o f f s e t
575 i f subtract_mean == 1
576 proposed_forward_model = ( proposed_forward_model − . . .
577 mean( proposed_forward_model ) ) + proposed_of f se t .*10^−8;
578 e l s e
579 proposed_forward_model = proposed_forward_model + . . .
580 proposed_of f se t .*10^−8;
581 end
582 % Calcu la te p r i o r
583 f o r i = 1 : s i z e ( proposed_unknowns , 1 )
584 f o r j = 1 : no_object_params
585 i f j == 3 && proposed_unknowns ( i , j ) > 0
586 proposed_prior ( i , j ) = 0 ;
587 e l s e i f j == 3
588 proposed_prior ( i , j ) = pdf ( p r i o r_d i s t r i bu t i on s ( j ) , . . .
589 abs ( proposed_unknowns ( i , j ) ) ) ;
590 e l s e
591 proposed_prior ( i , j ) = pdf ( p r i o r_d i s t r i bu t i on s ( j ) , . . .
592 proposed_unknowns ( i , j ) ) ;
593 end
594 end
595 end
596 proposed_pr ior_of f se t = pdf ( p r i o r_d i s t r i bu t i on_o f f s e t , proposed_of f se t ) ;
597 proposed_prior_error = pdf ( p r i o r_d i s t r ibut i on_er ro r , proposed_error ) ;
598 i f i snan ( proposed_prior_error )
599 proposed_prior_error = 1 ;
600 end
601 proposed_log_prior = log ( prod ( prod ( proposed_prior ) ) . * . . .
602 proposed_pr ior_of f se t .* proposed_prior_error ) ;
603 % Calcu la te l i k e l i h o o d value
604 i f l a p l a c e == 1
605 proposed_log_l ike l ihood = log_laplace_model ( gravity_data , . . .
606 proposed_forward_model , error_sensor , proposed_error , g rav i ty_der iva t i v e ) ;
607 e l s e i f l a p l a c e == 0
608 proposed_log_l ike l ihood = log_gaussian_model ( gravity_data , . . .
609 proposed_forward_model , error_sensor , proposed_error , g rav i ty_der iva t i v e ) ;
610 end
611 %% Calcu la te r a t i o o f cur rent and prev ious p o s t e r i o r d i s t r i b u t i o n s
612 log_alpha = ( ( proposed_log_l ike l ihood + proposed_log_prior ) − . . .
613 ( l o g_ l i k e l i h ood + log_pr ior ) ) ;
614 log_alpha = log_alpha /(1 + t ) ;
615 random_no = log ( rand (1) ) ;
616 % Save l i k e l i h o o d p r i o r and alpha va lues
617 a l l_ l og_ l i k e l i hood = [ a l l_ l og_ l i k e l i hood ; proposed_log_l ike l ihood ] ;
618 a l l_ log_pr io r = [ a l l_ log_pr io r ; proposed_log_prior ] ;
619 al l_log_alpha = [ al l_log_alpha ; log_alpha ] ;
620 % Save and update params
621 i f ( log_alpha > random_no) && ( i s i n f ( log_alpha ) == 0) &&...
622 ( i snan ( log_alpha ) == 0)
623 % Set new va lues
624 unknowns = proposed_unknowns ;
625 e r r o r = proposed_error ;
626 o f f s e t = proposed_of f se t ;
627 p r i o r_o f f s e t = proposed_pr ior_of f se t ;
628 pr i o r_er ro r = proposed_prior_error ;
629 log_pr ior = proposed_log_prior ;
630 l og_ l i k e l i h ood = proposed_log_l ike l ihood ;
631 % Save dimension parameters
632 no_objects_output (1 , s i z e ( unknowns , 1 ) ) = . . .
633 no_objects_output (1 , s i z e ( unknowns , 1 ) ) + 1 ;
634 data_dimension = [ data_dimension ; s i z e ( unknowns , 1 ) ] ;
635 i f k > mcmc_iterations*burn_in_discard_percent
636 no_objects_output_converged (1 , s i z e ( unknowns , 1 ) ) = . . .
637 no_objects_output_converged (1 , s i z e ( unknowns , 1 ) ) + 1 ;
638 data_dimension_converged = . . .
639 [ data_dimension_converged ; s i z e ( unknowns , 1 ) ] ;
640 end
641 % Save data f o r each proposa l type
642 i f mh_move_type == 1
643 % Inc r ea s e accepted number
644 accept_count_object_block ( rand_object , rand_parameter_block ) = . . .
645 accept_count_object_block ( rand_object , rand_parameter_block ) + 1 ;
646 accept_count_object (1 , rand_object ) = . . .
647 accept_count_object (1 , rand_object ) + 1 ;
648 % Save parameter block only
649 i f rand_parameter_block == 1
650 param_block_save = param_block_1 ;
651 e l s e i f rand_parameter_block == 2
652 param_block_save = param_block_2 ;
653 end
654 f o r i = param_block_save
655 mcmc_output_block_total { 1 , . . .
656 i+(rand_object*no_object_params−no_object_params ) } = . . .
657 [ mcmc_output_total {1 , i +(rand_object * . . .
658 no_object_params−no_object_params ) } ; . . .
659 proposed_unknowns ( rand_object , i ) ] ;
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660 i f k > mcmc_iterations*burn_in_discard_percent
661 mcmc_output_block_converged { 1 , . . .
662 i+(rand_object*no_object_params−no_object_params ) } = . . .
663 [ mcmc_output_converged {1 , i +(rand_object . . .
664 *no_object_params−no_object_params ) } . . .
665 ; proposed_unknowns ( rand_object , i ) ] ;
666 end
667 end
668 % Save a l l parameters
669 f o r i = 1 : no_object_params
670 f o r j = 1 : s i z e ( unknowns , 1 )
671 mcmc_output_total {1 , i +( j * . . .
672 no_object_params−no_object_params ) } = . . .
673 [ mcmc_output_total {1 , i +( j * . . .
674 no_object_params−no_object_params ) } ; . . .
675 proposed_unknowns ( j , i ) ] ;
676 i f k > mcmc_iterations*burn_in_discard_percent
677 mcmc_output_converged {1 , i + . . .
678 ( j *no_object_params−no_object_params ) } = . . .
679 [ mcmc_output_converged {1 , i + . . .
680 ( j *no_object_params−no_object_params ) } ; . . .
681 proposed_unknowns ( j , i ) ] ;
682 end
683 end
684 end
685 % Save padded with ze ro s
686 unknowns_padded_save = [ reshape (unknowns ' , 1 , . . .
687 no_object_params* s i z e ( unknowns , 1 ) ) , z e ro s (1 , s i z e (mcmc_output_total , 2 ) − . . .
688 s i z e ( reshape (unknowns , 1 , no_object_params* s i z e ( unknowns , 1 ) ) ,2 ) ) ] ;
689 unknowns_padded = padarray ( unknowns_padded_save , [ 0 , no_object_params * . . .
690 no_max_objects−s i z e ( unknowns_padded_save , 2 ) ] ) ;
691 f o r i = 1 : no_object_params*no_max_objects
692 mcmc_output_padded{1 , i } = [ mcmc_output_padded{1 , i } ; . . .
693 unknowns_padded (1 , i ) ] ;
694 i f k > mcmc_iterations*burn_in_discard_percent
695 mcmc_output_padded_converged {1 , i } = . . .
696 [ mcmc_output_padded_converged {1 , i } ; . . .
697 unknowns_padded (1 , i ) ] ;
698 end
699 end
700 e l s e i f mh_move_type == 2
701 % Inc r ea s e accept number
702 accept_count_all_object_params = accept_count_all_object_params + 1 ;
703 % Save a l l parameters
704 f o r i = 1 : no_object_params
705 f o r j = 1 : s i z e ( unknowns , 1 )
706 mcmc_output_total {1 , i +( j *no_object_params − . . .
707 no_object_params ) } = . . .
708 [ mcmc_output_total {1 , i +( j *no_object_params − . . .
709 no_object_params ) } ; . . .
710 proposed_unknowns ( j , i ) ] ;
711 i f k > mcmc_iterations*burn_in_discard_percent
712 mcmc_output_converged {1 , i +( j *no_object_params − . . .
713 no_object_params ) } = . . .
714 [ mcmc_output_converged {1 , i +( j *no_object_params − . . .
715 no_object_params ) } ; . . .
716 proposed_unknowns ( j , i ) ] ;
717 end
718 end
719 end
720 % Save padded with ze ro s
721 unknowns_padded_save = [ reshape (unknowns ' , 1 , . . .
722 no_object_params* s i z e ( unknowns , 1 ) ) , . . .
723 ze ro s (1 , s i z e (mcmc_output_total , 2 )−s i z e ( reshape (unknowns , 1 , . . .
724 no_object_params* s i z e ( unknowns , 1 ) ) ,2 ) ) ] ;
725 unknowns_padded = padarray ( unknowns_padded_save , . . .
726 [ 0 , no_object_params*no_max_objects−s i z e ( unknowns_padded_save , 2 ) ] ) ;
727 f o r i = 1 : no_object_params*no_max_objects
728 mcmc_output_padded{1 , i } = [ mcmc_output_padded{1 , i } ; . . .
729 unknowns_padded (1 , i ) ] ;
730 i f k > mcmc_iterations*burn_in_discard_percent
731 mcmc_output_padded_converged {1 , i } = . . .
732 [ mcmc_output_padded_converged {1 , i } ; unknowns_padded (1 , i ) ] ;
733 end
734 end
735 % Save o f f s e t
736 output_of f se t_tota l = [ output_of f se t_tota l ; o f f s e t ] ;
737 i f k > mcmc_iterations*burn_in_discard_percent
738 output_offset_converged = [ output_offset_converged ; o f f s e t ] ;
739 end
740 % Save e r r o r
741 accept_count_error_params = accept_count_error_params + 1 ;
742 i f i n f e r_e r r o r == 1
743 output_error_total = [ output_error_total ; e r r o r ] ;
744 i f k > mcmc_iterations*burn_in_discard_percent
745 output_error_converged = [ output_error_converged ; e r r o r ] ;
746 end
747 e l s e
748 e r r o r = 0 ;
749 end
750 e l s e i f mh_move_type == 3
751 % Inc r ea s e accept number
752 i f e_o == 1
753 accept_count_offset_params = accept_count_offset_params + 1 ;
754 % Save o f f s e t
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755 output_of f se t_tota l = [ output_of f se t_tota l ; o f f s e t ] ;
756 i f k > mcmc_iterations*burn_in_discard_percent
757 output_offset_converged = [ output_offset_converged ; o f f s e t ] ;
758 end
759 e l s e i f e_o == 2
760 % Save e r r o r
761 accept_count_error_params = accept_count_error_params + 1 ;
762 i f i n f e r_e r r o r == 1
763 output_error_total = [ output_error_total ; e r r o r ] ;
764 i f k > mcmc_iterations*burn_in_discard_percent
765 output_error_converged = [ output_error_converged ; e r r o r ] ;
766 end
767 e l s e
768 e r r o r = 0 ;
769 end
770 end
771 end
772 % Save key va lues
773 accepted_log_l ike l ihood = [ accepted_log_l ike l ihood ; l o g_ l i k e l i h ood ] ;
774 accepted_log_prior = [ accepted_log_prior ; log_pr ior ] ;
775 accepted_log_alpha = [ accepted_log_alpha ; log_alpha ] ;
776 e l s e
777 end
778 e l s e
779 end
780 c l e a r p r i o r proposed_prior
781 end
782 end

Function to calculate the cuboid Uz forward model.

1 func t i on [ gz_f ina l ] = cuboid_model_gz (x , y , z , unknowns )
2 %% INPUT: x , y , z measurement coord inate vec to r s
3 % unknowns [ x centro id , y centro id , z top , . . .
4 % x length , y length , z length , . . .
5 % z rot , dens i ty ]
6 % OUTPUT: gz vector
7 % Mult ip le ob j e c t s are c a l cu l a t ed at once
8 % Defined in RH coord inate system , −z i s in to s o i l .
9 % e . g . unknowns [0 ,0 ,−1 ,2 ,2 ,2 ,0 ,−2] ;
10 % Gives anomaly 2m deep to c en t ro id .
11 c en t ro id = [ unknowns ( : , 1 ) , unknowns ( : , 2 ) , unknowns ( : , 3 ) ] ;
12 l = [ unknowns ( : , 4 ) , unknowns ( : , 5 ) , unknowns ( : , 6 ) ] ;
13 c en t ro id ( : , 3 ) = cent ro id ( : , 3 ) − l ( : , 3 ) . / 2 ;
14 p s i = unknowns ( : , 7 ) ;
15 dens i ty = unknowns ( : , 8 ) ;
16 G = 6.67384*10^−11;
17 no_anomalies = s i z e ( ps i , 1 ) ;
18 %% Def ine cuboid v e r t i c e s
19 const = G.* dens i ty .*1000 ;
20 gz_total = ze ro s ( s i z e (x , 1 ) , no_anomalies ) ;
21 %% Def ine p o s i t i v e / negat ive sum con t r i bu t i on s
22 pos_neg = [−1 ,−1 ,−1;. . .
23 −1 ,1 ,−1; . . .
24 1 ,−1 ,−1; . . .
25 1 , 1 , −1 ; . . .
26 −1 ,−1 ,1 ; . . .
27 −1 , 1 , 1 ; . . .
28 1 , −1 , 1 ; . . .
29 1 , 1 , 1 ; . . .
30 ] ;
31 %% Sh i f t coords r e l a t i v e to ob j e c t
32 f o r i = 1 : no_anomalies
33 %% Making coord inate cent r e the same as ob j e c t cent r e
34 x_trans = x − c en t ro id ( i , 1 ) ;
35 y_trans = y − c en t ro id ( i , 2 ) ;
36 z_trans = z − c en t ro id ( i , 3 ) ;
37 %% Rotating the coord inate system r e l a t i v e to ob j e c t
38 x_rot = ( x_trans .* cos ( p s i ( i ) ) − y_trans .* s i n ( p s i ( i ) ) ) + cent ro id ( i , 1 ) ;
39 y_rot = ( x_trans .* s i n ( p s i ( i ) ) + y_trans .* cos ( p s i ( i ) ) ) + cent ro id ( i , 2 ) ;
40 z_rot = z_trans + cent ro id ( i , 3 ) ;
41 %% Def ine cuboid bounds/ v e r t i c e s
42 x_1 = cent ro id ( i , 1 ) − l ( i , 1 ) /2 ;
43 y_1 = cent ro id ( i , 2 ) − l ( i , 2 ) /2 ;
44 z_1 = cent ro id ( i , 3 ) − l ( i , 3 ) /2 ;
45 x_2 = cent ro id ( i , 1 ) + l ( i , 1 ) /2 ;
46 y_2 = cent ro id ( i , 2 ) + l ( i , 2 ) /2 ;
47 z_2 = cent ro id ( i , 3 ) + l ( i , 3 ) /2 ;
48 v e r t i c e s = [ x_1 , y_1 , z_1 ; . . .
49 x_1 , y_2 , z_1 ; . . .
50 x_2 , y_1 , z_1 ; . . .
51 x_2 , y_2 , z_1 ; . . .
52 x_1 , y_1 , z_2 ; . . .
53 x_1 , y_2 , z_2 ; . . .
54 x_2 , y_1 , z_2 ; . . .
55 x_2 , y_2 , z_2 ; . . .
56 ] ;
57 %% Calcu la te g rav i ty con t r i bu t i on from cuboid
58 gz = ze ro s ( s i z e (x , 1 ) ,8 , no_anomalies ) ;
59 f o r m = 1 : s i z e ( v e r t i c e s )
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60 x_dash = x_rot − v e r t i c e s (m, 1 ) ;
61 y_dash = y_rot − v e r t i c e s (m, 2 ) ;
62 z_dash = z_rot − v e r t i c e s (m, 3 ) ;
63 r = sq r t ( x_dash .^2 + y_dash .^2 + z_dash .^2) ;
64 gz ( : , i ,m) = prod ( pos_neg (m, : ) ,2 ) . * ( ( x_dash .* l og ( r + y_dash ) + . . .
65 y_dash .* l og ( r + x_dash ) − . . .
66 z_dash .* atan ( ( x_dash .* y_dash ) . / ( r .* z_dash ) ) ) ) ;
67 end
68 gz_total ( : , i ) = const ( i ) .* sum( gz ( : , i , : ) , 3 ) ;
69 end
70 gz_f ina l = sum( gz_total , 2 ) ;
71
72 end

Function to calculate the likelihood value.

1 func t i on [ log_gauss ian ] = log_gaussian_model ( data , model_data , sensor_error . . .
2 , other_error , g rav i ty_der iva t i ve )
3 i f g rav i ty_der iva t i ve == 1
4 sensor_error = sensor_error .*10^−8;
5 other_error = other_error .*10^−8;
6 e l s e i f g rav i ty_der iva t i v e == 2
7 sensor_error = sensor_error .*10^−8;
8 other_error = other_error .*10^−8;
9 end
10 data = data ( : ) ;
11 model_data = model_data ( : ) ;
12 sensor_error = sensor_error ( : ) ;
13 other_error = other_error ( : ) ;
14 theta = ( data − model_data ) ;
15 % Calcu la te l ead ing d iagona l o f the covar iance matrix
16 covar iance = sensor_error .^2 + other_error .^2 ;
17 log_det_covariance_matrix = sum( log ( covar iance ) ) ;
18 log_const = s i z e ( data , 1 ) * l og (2* pi ) ;
19 %% Calcu la t i on o f l og o f exponent ia l term
20 inverse_covar iancematr ix = 1 . / ( covar iance ) ;
21 log_gauss ian = −0.5*(sum( theta .* inverse_covar iancematr ix .* theta ) ) . . .
22 − 0 . 5* ( log_det_covariance_matrix + log_const ) ;
23 % log_gauss ian = log (mvnpdf (model_data , data , diag ( covar iance ) ) ) ;
24 end
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