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Abstract

The electrical properties of bulk and single-layer molybdenum disulphide and the elec-
trical and magnetic properties of molybdenum disulphide nanoribbons have been inves-
tigated using density functional theory within the first principles’ calculation framework.
Changes in energy band structure observed during the transition from bulk to single-layer
MoS; are linked to atomic orbitals through the use of maximally-localised Wannier func-
tions. Extensive structural optimisation studies have been used to explore the effects of
stress and strain on the electronic properties of both bulk and single-layer MoS,. It has
been found that the electronic structure and in particular, the energy band gap of MoS,
nanoribbons are sensitive to the relaxation of the lattice; and consequently, measurements
of the electronic properties will depend strongly on both the preparation of the sample and
the substrate on which it is deposited. The spin polarised energy band structure and the
charge density were used to determine the magnetic states of zigzag nanoribbons. It has
been found that both ferromagnetic and anti-ferromagnetic states are equally probable in
both passivated and non-passivated zigzag nanoribbons and the calculated result depends
on the initial spin configuration prior to optimisation. A new hydrogen passivation struc-
ture on the edges of MoSs nanoribbons was suggested, which shows zigzag nanoribbons
can also become semiconducting. Finally, the electrical and magnetic properties of a novel
chiral MoS, nanoribbon were modelled, which showed that the chiral MoSs nanoribbons
can exhibit both semiconducting and ferromagnetic behaviour simultaneously; this has

never been previously reported.

Birmingham, United Kingdom Farzad Hayati
May 2015
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“If you can’t explain it simply, you don’t un-
derstand it well enough.”
— Albert Einstein

Chapter 1

Introduction

Since the discovery of electrons in the 1890s by Lorentz, Zeeman and Thomson, scientists
were faced with a big challenge to explain the properties of matter. It was only after the
emerging of the laws of quantum physics in the 1920s that scientists started to explain
the electrical behaviour of the electrons in matter and the first realistic models of the
interacting electrons started to appear. Some of the early techniques, such as the Hartree-
Fock method introduced in the 1920s and 1930s are still in use today. However, the
calculation of the electrical properties and band structure was not significantly improved
until the 1950s when scientists started to calculate more complicated band structures such
as semiconductors.

In the 1960s the new density functional theory (DFT) was introduced by Hohenberg
and Kohn; it claimed all the properties of matter can be derived through the electrons’
charge density. However, this calculation was very limited until the 1990s when the
computation power increased significantly and the modelling of realistic systems with
hundreds of atoms became possible.

Nowadays, the DFT calculation is one of the most popular techniques to describe the
properties of matter. This technique is also called, in the Latin term ab initio' that means
from the beginning or referred to as the first principle. This is because the DF'T technique

relies on very few parameters and calculates all the properties from the basic parameters



of the system.

Although the density functional theory is exact in principle, some approximation has
to be made for realistic calculation of matter. These approximations lead to situations
where the DFT is not successful in describing matter and many different factors have to
be taken into account in such situations. One of these situations is the prediction of the
matter’s build of atoms with partially filled d — orbital® such as metals, semi-metals and
semiconductors.

Among the advances made in electronic devices, one good candidate to be used in
semiconducting components is molybdenum disulphide, which has electrons in the d —
orbital and the approximations used in DFT calculations can lead to a wrong description
of this material if extra care is not taken in the calculation.

This research aims to provide more understanding on the electronic properties of
molybdenum disulphide (MoS;) and answer the disagreement reported in the literature on
the properties of this material using extensive simulations. The obtained electrical prop-
erties in this research are grouped in three categories: (i) bulk MoS, or three-dimensional
(3D) properties; (ii) single-layer MoS, or two-dimensional (2D) properties; and (iii) nano

dimensioned ribbons.

1.1 Motivation and Objectives

The realisation of stable two-dimensional structures such as graphene [2-4] has generated
considerable interest in their properties and applications. This is primarily because of the
easy fabrication of these materials and their extraordinary charge transport and optical
and thermal properties [2,3,5-8]; as well as their diverse applications [8-14]. Many other
inorganic materials analogous to graphene such as silicon carbide (SiC), gallium nitride

(GaN) and manganese oxide (MnO,) have been studied and reported [15-22]. Among

1Oxford English Dictionary [1]: ab ini - tio /ab #nifis/ adverb, adjective (formal or Law) adv.
from the beginning; adj.(attrib.) initial, primary, elementary. ORIGIN Latin.
2The orbital occupation and the shape of each orbit are provided in appendix C and D respectively.



these materials, the transition-metal dichalcogenide® semiconductors such as molybde-
num disulphide (MoS;) and tungsten disulphide (WSs), which are compounds between a
transition-metal and a chalcogen® are particularly of interest due to their layered structure
and interesting electronic properties [23]. Over the past decade the number of research pa-
pers published on graphene has increased more than 120 times®; while not much attention
has been paid to similar materials such as MoS, or WS,.

Although molybdenum disulphide has been discovered for many years now and is
widely used as a dry lubricant, still not much research has been carried out on its electri-
cal properties and its suitability to be used in electronic devices. Graphene is a zero band
gap material and it requires band gap engineering which increases its fabrication com-
plexity and either reduces its mobilities to the level of strained silicon films, or requires
high voltages, which are not desirable [24]. Previously, the mobility of the electrons for
molybdenum disulphide was reported to be between 0.5 and 3 cm? V—!s™! [25]. Recently
a research study showed that single atomic layer molybdenum disulphide at room tem-
perature, has a mobility of at least 200 cm? V™' s™! | similar to the mobility of graphene
nanoribbons [24]. This is almost 2.5 times higher than the highest achieved mobility
using conventional semiconductors; that high achievement belongs to indium antimonide
(InSb) with a mobility of 78 cm? V=1 s™! [26,27]. However, in practice the actual mobility
from band gap engineered graphene is lower at around 10 cm? V~!'s™! [27]. Recently,
several research studies have been reported on the use of MoS, in various areas, such as
photovoltaic cells, photo-catalysts and lithium-ion batteries [28-34]. It can be observed
that single layer MoS,, unlike its bulk form, has a direct band gap [35]. As a result, this
material becomes a very good candidate to be used in electronic devices such as the gate
material of field effect transistors or optical devices, because of its direct band gap; there

is a great research opportunity in this area [36].

3The transition-metal dichalcogenides are further discussed and explained in § 3.

4The transition-metals are elements belonging to the groups 3-12 of the periodic table of elements and
chalcogens are the elements belonging to the group 16 of the periodic table of elements. The periodic
table of elements is presented in appendix C.

5The statistical data is obtained from ISI Web of Science™: The number of articles published under
the topic of ‘Graphene’, in the year 2004 were 162, and in the year 2014 were 19,879.
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In this research, the change in the electronic properties of molybdenum disulphide
in transition from bulk to single-layer and the effect of the structural relaxation on the
band gap and elastic strain that can occur, due to the presence of the substrate, were
investigated. Also, the reason behind the disagreement in the reported results on the
magnetic behaviour of molybdenum disulphide nanoribbons was examined and finally, a
new edge pattern for molybdenum disulphide nanoribbons is suggested; which, to the best

knowledge of the author, has not yet been studied up to the date of submitting this thesis.

1.2 Thesis Overview

This research is presented in six chapters which summarise this study on the electronic
properties of MoSy as bulk, single-layer and nanoribbon.

Chapter 1 gives an overview of the objectives and the motivation for this research and
discusses the layout and structure of this thesis.

Chapter 2 reviews the fundamental theory of the simulations which have been carried
out in this research; this includes density functional theory calculation within the first
principle framework as well as other techniques, such as Wannier functions atomic orbital
decomposition.

Chapter 3 provides a general understanding about the electrical properties of MoS,
by discussing the band structure and the structure and crystallography of the material in
a well-known situation. Then the changes that will occur in the electrical properties of
MoS; when it is presented as a single layer and certain forces i.e. van der Waals between
layers, do not exist will be explored.

Chapter 4 discusses the behaviour and properties of the nanoribbons made from MoS,
the effect of the edges and the exposed atoms on each edge of the nanoribbon on its
electrical properties; and furthermore, the induced magnetic effects due to the introduced
unsymmetrical bonds at the edge are considered.

Chapter 5 presents the effect of the passivated edges of MoSs nanoribbons on magnetic



behaviour and on the band gap of the nanoribbon; various levels of absorption of hydrogen
on the edges will be studied. Finally, the electrical properties of a new edge pattern on
the nanoribbon will be investigated.

Chapter 6 summarises and highlights the achievements in this research and finalises

this thesis by suggesting possible future works.



“As far as the laws of mathematics refer to
reality, they are not certain, and as far as
they are certain, they do not refer to reality.”

— Albert Einstein

Chapter 2

Fundamental Theory

2.1 The History of Band Structure at a Glance

The knowledge of electricity goes back to ancient times; although it was not known as
electricity, but incidents like the ‘shock’ from electric fish are noticeable in the ancient
Egyptian and Romans’ records [37]. It was not until the discovery of electrons in the late
1890s that people started to talk about electronic structure.

Nobel prizes in 1902 and 1906 were awarded to Pieter Zeeman and Sir Joseph John
(J.J.) Thomson respectively for research, which led to a model of the atom as a sphere of
a positively charged substance in which negatively charged electrons were situated.

A few years later in 1911, Ernest Rutherford invalidated J. J. Thomson’s model by
his well-known gold foil experiment and proposed a model for atoms with a small positive
charge in the middle [38]. This proposed model was not in-line with the rules defined by

conventional physics and the stability of the matter was unexplainable.

2.1.1 Quantum Mechanics

To solve the problem of explaining the stability of the matter, Niels Bohr joined Ruther-
ford to work on this issue. In 1913, they produced a new model which was called the

Rutherford-Bohr model and they explained the atom as a positively charged nucleus with
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Figure 2.1: 7" Solvay Conference, Bruxelles (October 1933). Standing (left to right):
Emile Henriot, Francis Perrin, Frédéric Joliot-Curie, Werner Heisenberg, Hendrik An-
thony Kramers, Ernst Stahel, Enrico Fermi, Ernest Walton, Paul Dirac, Peter De-
bye, Nevill Francis Mott, Blas Cabrera y Felipe, George Gamow, Walther Bothe, Patrick
Blackett, M.S. Rosenblum, Jacques Errera, Ed. Bauer, Wolfgang Pauli, Jules-Emile
Verschaffelt, Max Cosyns, E. Herzen, John Douglas Cockcroft, Charles Drummond Ellis,
Rudolf Peierls, Auguste Piccard, Ernest O. Lawrence, Léon Rosenfeld. Seated (left to
right): Erwin Schroédinger, Iréne Joliot-Curie, Niels Henrik David Bohr, Abram
loffe, Marie Curie, Paul Langevin, Owen Willans Richardson, Lord Ernest Ruther-
ford, Théophile de Donder, Maurice de Broglie, Louis de Broglie, Lise Meitner, James
Chadwick [40].

electrons moving in orbit around the nucleus. In their model, Bohr explained the stability
of the atoms with certain ‘energy levels’ that exist for electrons and this was the initial
start of today’s quantum mechanics [39]. Bohr’s work was awarded with a Nobel prize in
1922.

Bohr’s idea inspired other scientists such as de Broglie, Heisenberg and Schrodinger

and their work led to the emergence of the quantum mechanics’ laws in the 1920s.



2.1.2 Band Theory

In 1928 Felix Bloch proposed the theory of conduction in metals. This was a significant
movement towards the understanding of electrons in a periodic potential. Bloch’s theorem
only considered the ground state of a single electron in a fixed periodic potential and it
neglected the interaction between electrons [41]. Soon after, the remarkable work of
researchers like Léon Nicolas Brillouin [41,42] and Sir Alan Herries Wilson [41,43] led
to the definition of the Brillouin zone, the periodic energy—wave vector relation and the
energy-band structure of solids.

In the 1930s the first realistic multi-electron band structure calculations started to
appear. One of the most significant works on the calculation of the electronic structure of
atoms in this period was carried out by Douglas Rayner Hartree [44]; this was the starting
point of most of today’s numerical atomic calculations [45]. Another important work in
this decade was achieved by Vladimir Aleksandrovich Fock and that was the very first

appearance of what is known as the Hartree-Fock method today [45].

2.2 Density Functional Theory (DFT)

The density functional theory in general and its applications are discussed in a tremendous
amount of literature and it is necessary to have limits and be selective about the techniques
and bibliography [46]. A few notable textbooks in this area are the books by Parr and
Yang [47], Dreizler and Gross [48] and Martin [45], as well as the hand-book by Drake [46].

Unlike the Hartree-Fock technique that works directly with the many-body wave
functions, the density functional theory only works with the electron density of the system.
This theory is applicable to the correlated many—body systems and states: any property
of a many body system can be presented as a functional of the density in the ground state
of that system.

The initial equation is the total energy of a many—body system consisting of electrons



and nuclei which is the Hamiltonian of the system; that is [45]

FL2 9 h2 2 1 62 1 Z]ZJ@
B LGS v T . (2.1
Vit 2o Vit IR Ry Z|rl RI| )

|ri _rj| 7

2me

B>

where the symbols corresponding to the nuclei are in capitals, and lower case letters
are used to represent quantities related to electrons. The V? notation is referring to
the Laplace operator (Laplacian) of the correspondent indices. The first two terms of
the Hamiltonian above represent kinetic energy operators of the electrons and nuclei
respectively and the next three terms are the potential energy of the Coulomb interaction
between electron—electron, nucleus—nucleus and electron—nucleus respectively. Term M
is the mass of nuclei and Ry, is the position of the nuclei; while r;; is the position of the

electron.

2.2.1 Schrodinger Equation

In 1926 Erwin Schrodinger introduced his theory of matter waves that was based on the
wave relation described by Louis de Broglie [49]. This was a partial differential equation
that described the system states using wave functions in relation to time [50]. The general

form of the time-dependent non-relativistic Schrodinger equation is

0 N
zhat\I!( t) = HU(r,1), (2.2)

where H and ¥ represent the Hamiltonian and the wave function of the system respec-
tively.

However, it is very difficult to solve this equation without breaking down the wave
function. In 1927 Max Born and Julius Robert Oppenheimer introduced the Born-
Oppenheimer approximation [51] that takes advantage of the large difference between

the mass of the nuclei and electrons in the system; which is more than 1800 times. This



means the nuclei movements are considerably slower than the electrons; which makes it
possible to separate them and considering the speed of the electrons, we can assume that
the nuclei are fixed. This will convert the nuclei to a static external potential acting on

the electrons. Thus, we can write the Hamiltonian equation as

h
2me

R0+ 7 -y

Z

Z#J

+2_Vi(ri = R4), (2.3)

|rz - rj| il
where 7' is the kinetic energy operator; U is the electron-electron interaction; and V is
the external potential which is from the nuclei.

This is the simplified Hamiltonian of the system and does not include nuclei-nuclei
interaction or other potentials such as an external electric field. However, these terms are
not essential to describe the electrons and can be added to the equation for particular
calculations if needed [45].

To predict the stationary states of the system or what is called orbital, we consider the

special case of Equation 2.2 that is known as the time-independent Schrodinger equation

EU(r) = HU(r) (2.4)

and simply means the total energy of the system is the sum of kinetic and potential energy
of that system.
In the non-relativistic context!, the spin has been taken into account as an ad hoc

procedure through defining two components’ wave function [52,53] as

U(r) = . (2.5)

The spin independent operators such as Hamiltonian # will act on both components of

the constructed wave function proportional to the unit matrix I5, whereas the operators

'For more details about spin in relativistic quantum mechanics and many-body systems, one could
refer to Spin in density-functional theory by Jacob and Reiher [54].
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such as electron spin operator § that are expressed in terms of the Pauli matrices [54]
Op = . Oy = , 0, = , (2.6)

will distinguish the two components of the wave function. The electron spin operator § is

defined as
h h

5 — 37=73 (04,04,0.)" (2.7)

that is related to the intrinsic magnetic moment of the electron [52,54-56] described as

fls = ———58 = — B0, (2.8)

where pp is the Bohr magneton.

It is also possible to represent the spin implicitly using different notation that is more
commonly used in quantum chemistry, as it is more convenient for handling many-body
systems [54]. This is achieved by introducing orthogonal spin functions «(s) and f3(s),
which are dependent to the spin variable s [52,55,57]. The spin variable s only takes two
values of j:% and consequently, the spin functions are defined as

a (—i—;) =1 and « <—;> =0, (2.9a)

b(eh) =t n ()0

Thus, the wave function can be constructed as

U(r,s) = V,(r)a(s) + Ws(r)B(s). (2.10)

11



Consequently, each of the two components of the wave function can be given by

v (r, +;) = V,(r), (2.11a)

and

v <r, —;) — Wy(r). (2.11b)

It has to be noted that the spin functions « and § are purely a way to define the two
components of the wave function using the s variable, that in turn acts as a label for each

wave function.

2.2.2 Thomas-Fermi-Dirac Approximation

The initial density functional model was proposed in 1927 by Thomas [58] and Fermi [59]
and is known as the Thomas-Fermi theory. In their model, the electron density n(r), that
is defined as the probability of an electron being present at the location r, was used as a
variable instead of the system wave function and the kinetic energy of the electrons is a
functional of the density. In the original Thomas-Fermi approximation the exchange and
correlation were ignored among the electrons and the model represented the local density

of non-interacting electrons in a homogeneous electron gas? as
1 /
Erp[n] = Ck/n(r)5/3 d’r + / Veat(r)n(r) d°r + 562 // M dr d’r' (2.12)
r—r

where the constant term, Cy, is:

R 53 3\?
= — 2= <) . 2.1
Ci Me m 5 \ 8w (2.13)

Equation 2.12 consists of three terms; the first term indicates the kinetic energy of

the non-interacting electrons in homogeneous electron gas confined in a three-dimensional

2For more details, one could refer to § 20.1 of handbook of atomic, molecular and optical physics [46].
3the d3r symbol is used to denote the volume element in coordinate space [60].
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box. The second term is the nuclei-electron Coulomb interaction where the V,,; is the
potential energy of the electron due to one or more nuclei and is defined as V. (r) =
— > Zi/|r — R;|. The final term is the Hartree potential or Coulomb repulsion between
electrons in three-dimensional space. In 1930, the original Thomas-Fermi model was
extended by Dirac [61] to include the local exchange term which is known as the Thomas-

Fermi-Dirac approximation [62]

Erpp[n] :Ck/n(r)5/3 d3r—1—/V€mt(r)n(r) d’r

2.14)
1 / (
1oe2 // n(r)n(r’) Br d3r’ C’e/n(r)4/3 Br
2 |r — 1|
where (Y is defined in Equation 2.13 and C, is
1 4/3 3 /3\'/3
Ce = 477]'3 (37T2) 62 = Z (7‘() 62. (215)

Although this approximation was not very accurate, it demonstrates the basic idea of using
the density functional. However, Dirac in his paper, suggested that his equation gives a
meaningless result for the outside of the atom [61]. This suggests that this approximation

needs modification for any area in which the density is small.

2.2.3 Hohenberg-Kohn Theorems

The Second World War (from 1939 to 1945) had a significant impact on theoretical studies
and the focus moved to war work. However, the developments in technology during the
war had a positive impact on research in the 1950s and 1960s [41]. Some, but not all of the
developments included the invention of bipolar transistors, the development of electrical
computers and improvement in experimental techniques.

In 1964, Pierre Hohenberg and Walter Kohn proved two theorems that made the
density functional theory possible [63].

The first theorem states, for an arbitrary number of electrons under influence of an

13



external potential Vi (r), apart from a trivial additive constant, the potential V. (r) is a
unique functional of density n(r) in its ground state [63].

To prove this theorem here, the simple case of ‘non-degenerate ground state’ is used;
however, it is possible to prove the theorem for degenerate ground states as well [64].
This proof is shown by the “Reductio ad absurdum”™ technique by assuming that there is
another ground state and potential that leads to the same density. From the variational
principle we know that there is no other wave function ¥’ that gives a ground state energy
E’ less than the energy of wave function ¥ for same Hamiltonian #; hence, using Dirac’s

bra-ket notation [65] we can write

E < B (U[H|v) < (V|H| V) (2.16)
where
(07| ) = (W |7 W) + (V' |[H - | W), (2.17)
therefore
E<E+ / (Viws(r) = V(1)) n(r) dPr. (2.18)

Similarly, due to the non-degenerate ground state the densities for the Hamiltonians are

identical and Equation 2.16 can be written as

B = <\If, 7:[/

\I/’> < <\I! ’7—2’

v), (2.19)

hence

E < (W[H| )+ (v |[H 7| v) 220
< B+ [(Vilr) = Vi (0)) n(r) .

4This is a Latin phrase meaning reduction to absurdity that is a technique in mathematics.
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Adding Equation 2.18 and 2.20 results in an inconsistency
E+E <E' +E. (2.21)

Therefore, the potential V,,;(r) is a unique functional of density n(r). However, there is
no procedure to calculate this function which is extremely complicated if it even can be
written down at all [46].

The second theorem states that, there can be written a universal functional for
energy E[n(r)], in terms of density n(r), valid for any external potential Vi (r), such
that, for any given V. (r) the global minimum value of the functional is the exact ground
state energy of the system, and the value of density which minimises this functional is the
exact density of the system ground state [45,63].

The proof of this theorem is similar to the first theorem. As all the system properties
such as kinetic and interaction energy are solely determinable by density n(r), therefore

they can be written as a functional of density and evidently the total energy of the system:

/\

E[n(r)] = T[n(r)] + U[n(r)] + V[n(r)
Fln

+/‘/ext

where T[n(r)] and U[n(r)] are the kinetic and the electron-electron interaction energy

(2.22)

respectively. The functional F[n(r)] is a universal functional valid for any number of

particles and any external potential V. (r) [63] that is defined as

Fln(r)] € T[n(r)] + Uln(r)]. (2.23)

For a system with ground state density n(r) related to a specific external potential

15



Vert(r) we can write:

EW] = (U |T+0+V|w)
= (v |H|v) (2.24)
= Eln(r)]

which has the Hamiltonian # for the unique ground state of the system with a wave
function W. Similarly, for another system with a different density n'(r) and inevitably a

different wave function ¥’ we can show:

B[] = (¥

Al o). (2.25)

By the variational principle we know that the new density n’(r) inevitably gives a higher

energy than n(r); hence we can write:

E[W) = (v [f]¥) < (¥

A0 = E[W). (2.26)

Therefore, the energy functional calculated for the ground state density is lower than
the energy functional calculated for any other density. Thus, if the functional F[n(r)]
in Equation 2.23 was known, the ground state energy and density could be found by
minimizing the energy functional with respect to the density. Similar to the first theorem,
this is only valid for a non-degenerate ground state of the system and if there is more
than one wave function for the ground state energy of the system i.e. degenerate ground
state, an alternative definition of the theorem is required. This was established by Mel

Levy [64] and developed more mathematically by Elliot Lieb [66].

2.2.4 Kohn-Sham Ansatz’

The Hohenberg-Kohn theorems only prove the concept of density functional theory and
showed that it is possible to calculate the ground state energy from the density. How-

16



ever, there was not any possible mathematical solution to obtain the density n(r) or the
functional defined in Equation 2.23.

In 1965, the approach presented by Walter Kohn and Lu Jeu Sham, made the den-
sity functional theory mathematically possible [68]. Their approach was to replace the
Hamiltonian many-body problem with another auxiliary non-interacting system that is
easy to solve using mathematical techniques, by assuming that these two systems have an
identical ground state density; and then they proved that these two systems indeed have
identical ground state density. Considering the fact that there is no rule for defining this
simpler auxiliary system in exchange for the actual problem, this is an ansatz which only
paraphrases the problem [45].

This approach converts the non-solvable many-body problem to an independent parti-
cle system that can be solved with an exact mathematical solution. The defined N particle
non-interacting system by Kohn-Sham has a Hamiltonian as:

R N 2

Hst:efZ _

V2 4+ Vog(r;)] 2.27
2| "om, i+ Ve (ri) (2.27)

where V4 is the effective potential on a single particle at r; due to the remaining (N —1)
particles. To solve this Hamiltonian and calculate the ground state for an independent

particle system with N electrons, we can solve the one-electron Schrodinger-like equation

(— U veﬁ<r>) () — eati(r), (2.28)

2m,

for each of the available N molecular orbitals ;(r). The ¢; above is the orbital energy of
the corresponding orbital ¢;(r). The density of the auxiliary system n(r) can be obtained
by [68]
al 2
n(r) =D [vi(r)]". (2.29)
i=1

5Oxford English Dictionary [67]: an - satz /'sensats/ noun (Mathematics) an assumption about the
form of an unknown function which is made in order to facilitate solution of an equation or other problem.
ORIGIN 1940s: from German Ansatz ‘approach, attempt’.
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The kinetic energy Ts of the non-interacting particles is calculated by:

o] 3 [ or (-5

v2> Vi d°r, (2.30)

e

and the Coulomb interaction or the Hartree energy is defined as:

def 159 n(r)n(’) 5 o
EHartree[n(r)] = ie // Wd rd I'I, (231)
where
~9 def 62
4dmeg

Ignoring the nuclei-nuclei interaction, the Kohn-Sham equation is the re-written form of

the Hohenberg-Kohn theorem defined in Equation 2.22 as:
Exs = Ty[n(r)] + Enargree[n(r)] + Exc[n(r)] + /Vext(r)n(r) dr, (2.33)

where the V,,,(r) is the external potential acting on the electrons due to the nuclei. By
comparing Equations 2.22 and 2.33, the universal functional F[n(r)] defined in Equa-

tion 2.23 becomes:
Fln()] = TLn()] + Brtariree[n(v)] + Excln(r)]. (2.34)

Comparing Equation 2.23 with 2.34, the Fy. is the difference between both the internal
interaction and kinetic energies of the assumed non-interacting system and the actual

interacting system; it can be written as:

Excln(v)] = ((Fn®))) - Tn)]) + ((T100)]) = Buariree[n0)]) (2.35)

Using the variational theorem and Equation 2.22, subject to the conservation of the
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number of electrons N, we can write:

5 {F[n(r)] + [ Vealwn(e) d'r — ( [ ntr)ar - N)} 0, (2.36)

where 1 is the Lagrangian multiplier [60] which represents the Fermi energy at absolute

zero and is known as the chemical potential. Solving for u, leads to:

IR
- 5n(r> +‘/;xt( ) (237)

Substituting Equation 2.34 into 2.37 yields:

_ 0T[n(r)]  6Em(n(r)]  dExc[n(r)]
T Tonr) | on(m) | on(r)
_ SLn(r)]

on(r)

+ ‘/ext(r)
(2.38)
+ VHart'ree(r) + VXC(I') + ‘/ezt(r)-

The last three terms on the right-hand side of Equation 2.38 are the effective potential

Ve (r) in Equation 2.28. This is known as the Kohn-Sham potential and is defined as:

Veﬁ(r) d:ef VHartree(r) + VXC(r) + ‘/;$t(r)~ (239)

It is possible to calculate the exact ground state energy and density of the interacting
system using Equations 2.29 and 2.33, if the exact correlation and exchange functional,
Exc were known. This is because all the terms in the equations are the exact and explicit
functional of density. However, in practice, some approximations have to be made to
calculate the Vxc and Exc.

Unlike the Schrédinger equation (2.4), the Kohn—Sham eigenvalues of energy for Equa-
tion 2.28 have no physical meaning and are not representing energies. However, there is
one exception [66] which is the occupied orbitals with the highest eigenvalue, eX° . This

eigenvalue represents the chemical potential 1 and equals to the inverted ionisation en-

ergy [45]. The mathematical meaning of the eigenvalues is known as the Slater—Janak
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theorem [69] within the Kohn-Sham formalism. This theorem states that the eigenvalue
g; is the derivative of the total energy of the system with respect to the occupation of a

state n; [45]:

or OE On(r)

_ 3
~0n; J on(r) On; dr. (2.40)

&

One of the limitations of Kohn-Sham density functional theory is the spin-restriction
problem. Since the single electron Hamiltonian does not consider the spin of the electron,
each energy eigenvalue is two-fold degenerate. This means each orbital can be combined
with an « or 8 spin function [54]. Notably, the orbitals are identical for both « and
electrons and consequently the exact wave function will be spin restricted.

In this situation, each orbital ¢; can either be occupied by both o and [ electrons
(doubly occupied) or either an « or 3 electron (singly occupied). Consequently, for the
ground state, the singly occupied orbitals can only occur once at the highest occupied
molecular orbital. Thus, the singly occupied orbitals can only be occurring more than

once if the highest occupied molecular orbital is degenerate [54,70,71].

2.2.5 Force Theorem

Once the ground state energy was calculated using the density functional theory, it is
possible to calculate other properties of the system such as forces and stresses from the
total energy. This can be carried out using force theorem that is commonly known as
Hellmann-Feynman theorem. This theorem has been formulated separately by Giit-
tiger [72], Pauli [73] and Hellmann [74]. However, in 1939, Feynman [75] explicitly pointed
out that the force on a nucleus is given solely in terms of charge density and it is inde-
pendent of the kinetic energy, exchange and correlation [45].

Consider a system with Hamiltonian H () that is depending on parameter A, if [1)(\))

is an eigenvector of H(\) with corresponding eigenvalue of F()), then

HN) () = EO) [9(A)) ; (2.41)
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with further assumption that |¢)())) is normalised such that

W) = 1, (2.42)

the Hellman-Feynman theorem states that
oF o
— = — . 2.4
Yy 243

In other words the derivative of the total energy with respect to A is equal to the derivative
of the Hamiltonian with respect to A. By associating the A with the nuclear coordinates

R, the forces acting on the atom can be calculated as

oFE

F p—
I~ R,

= Vie(Ry) = (o|VIH (Ry)[th) (2.44)
Using this theorem one could show [45]

F;

or __ / n(r)mfwt(r) gy — OEn (2.45)

T OR; OR; R, ’

which is known as the electrostatic theorem for the forces due to Feynman [45,75, 76].

2.3 Exchange-Correlation Functionals

The key point of the Kohn-Sham ansatz was the separation that they made between
the exchange—correlation energies (E,.) and the rest of the kinetic and internal energies.
However, to use the Kohn—Sham practically, we must know the exchange and correlation
which is yet to be found and may never be found in the form of a mathematical functional.

For a system with a sufficiently slowly varying density n(r) it can be shown that Fxc

can be approximated as a nearly local functional of the density [45,63, 68]:

Excln] = [ n(@)exc(n(r) d'r, (2.46)
21



where ey is the exchange and the correlation energy per electron of a uniform electron
gas having a density of n [68]. This is the very basic and simple approximation that was
originally proposed by Kohn and Sham in their paper and is known as the local density
approximation (LDA). Consequently, the exchange—correlation potential Vxe, which is

the functional derivative of Ex¢ can be written as [45]:

5€XC(7’L(I‘))'

Vie(r) = exc(n(r)) + n(r) on(r)

(2.47)

To date, there are hundreds of approximations for the exchange—correlation functional
and the list is still growing; although they can be categorised into a few categories, based
on the complexity and the technique. This classification was proposed by Perdew [77]
as ‘Jacob’s ladder’ and is illustrated in Figure 2.2. The ladder starts from the Hartree
approximation and goes to the dreaming destination of an exact exchange—correlation
functional. Going up each rung of the ladder, the complexity of the functional technique
increases and the assurance of the answer decreases. Based on the required accuracy and
the specific needs or calculations, different functionals might be used to fulfil requirements
with consideration of computational resources. However, at the present time, only the
first two techniques are guaranteed as safe approximations [77]. These two techniques will
be discussed in sections 2.3.1 and 2.3.2 in detail.

The generalised gradient approximation (GGA) technique, similar to LDA, is a local
approximation but it also considers the gradient of the density Vn(r) at each point.
Moving forward on the ladder, the meta-GGA group is very similar to the GGA category
but it considers the second derivative of the electron density V?n(r) as well. Moving
further up, the hybrid-GGA and hybrid-meta-GGA techniques are mainly a combination
of the previous techniques. For example PBE(O approximation is simply a mixture of the

original PBE® approximation mixed with Hartree Fock exchange energy:

1
BLE™ = LT + S BLF 4 BEPE, (2.48)
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Chemical Accuracy

exact exchange and exact partial correlation
PBEO, B3LYP, ... exact exchange and compatible correlation
V2n(r): TPSS, MO06-L, ... meta-generalised gradient approximation
Vn(r): PBE, BLYP, ... generalised gradient approximation
n(r): Teter93, ZLP, ... local spin density approximation

Hartree world

Figure 2.2: Jacob’s ladder of exchange—correlation functional approximations proposed by
Perdew [77]. The types of approximation are listed on the right-hand side of the ladder
and a few examples of each method are named on the left-hand side of the ladder.

EPBE

where the is the original PBE exchange—correlation functional [78]; and subscript

X and C denote the exchange and correlation energies respectively. The EXf is the

Hartree-Fock exchange functional [79-81] that is defined as:

1 occ. occ.

_—fzz//w |¢< Juy(x') dr Py (2.49)

Similarly, the very popular B3LYP7 approximation is again a weighted mixture of the

first two techniques [82-85]:

EB3LYP LDA + ag ( E)I? ELDA) ( EGG’A ELDA)

ELDA ( EGGA ELDA)

(2.50)

SPBE stands for Perdew, Burke and Ernzerhof approximation. See § 2.3.2 for details.
"B3LYP stands for Becke’s three-parameter, Lee-Yang-Parr approximation.
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where ag, a, and a. are semi-empirical coefficients determined by curve fitting on experi-

mental data with optimal values of 0.20, 0.72 and 0.81 respectively.

2.3.1 Local Density Approximation (LDA)

The local density approximation (LDA) or more generally, the local spin density ap-
proximation (LSDA) is the first, simplest, yet reasonably accurate, exchange—correlation
functional that is still in use today. Kohn and Sham in their paper derived this approxi-
mation for homogeneous electron gas, but it is also applicable to solids; as in this context,
solids can be considered as locally similar to homogeneous electron gas [68].

Starting from Equation 2.46, the exc functional can be divided into exchange and

correlation components:

EEPA ) = [ n(v)es (n(x) d'r

(2.51)
— [ ne)eale)) + e (nlw))

where €™ and ™ correspond to exchange and correlation energies respectively. Now

the exact value of the exchange part of the functional can be estimated using the Dirac

formulation:
ex[n] = —Con(r)/3, (2.52)
where
3 /3 1/3
C, = 1 (W) &, (2.53)

Consequently, the exchange energy ELP4 becomes [86]:

ELPA] = —i <i>1/3 & / n(r)*3 d*r (2.54)

and the effective potential will be:

VEPA(r) = — <3n(r)>1/3 é. (2.55)



This is the same equation as the X« formulation proposed by Slater in 1951 [80] with «
being set to 2/3 [47]:
3 3 1/3
Uxa(T) = —Za (n(r)) &%, (2.56)

In the original equation by Slater, the value of a was set to 1; however, after more
experiments it is now proven that for atoms and molecules, the optimum value for « is
about ~ 0.75 [47,87].

A similar principle applies to local spin density approximation. Equation 2.51 can be
expanded to take into account the spin with the assumption of having the same density

of opposite spins at all points in the space:

XC

LA 0] = [ n()es (n! (v), nh(x) dx

— [ ) (), nH(0) + e (0 (1), nt ) .

where n'(r) and nt(r) are the collinear opposite spins namely known as spin-up and spin-
down and the difference between these two spins is known as fractional spin polarisation

of the system with n, defined as total density:

n'(r) — n*(r)

) (2.58)

((r) =

In the case of the unpolarised homogeneous electron gas, there will be no exchange energy

between the particles having opposite spin; therefore the total exchange energy will be:

Ex[n',n*] = - (Ex[2n"] + Ex[2n']). (2.59)

DN | —

Hence, by knowing the exchange energy of unpolarised homogeneous gas, we can write

the total energy as:

3 /3\'/?
E)%SDA[HT,TL”L] _ _21/3Z <7T) éQ/nZTL/zg(I') + nj/3(r) d3r. (260)
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In the case of relative polarisation (¢ # 0) Equation 2.60 will become [86]:
P, () = [ exn0), ¢o)] ne(r) d'r (2.61)

where the exchange energy is given by:

3 1/3 .

exlne () = =55 (2) @0l ([L+C@I7 +1-CoN"). (262)
Now replacing the total density n. with r,, which is defined as the radius of a sphere
enclosing a single electron on average (i.e. the average distance between electrons) and is

known as the Wigner—Seitz radius®, yields:

where
3 /9m\'/3 1 &2
ex(re, (= 0) = = (4) o (2.64)
Ex(T’s,C = 1) = 21/36X(r57 C = O)a (265)
and
Q¥ (-2
f(¢) = 2@ 1) (2.66)

Equation 2.63 to 2.66 provide exact analytical solutions for the exchange energy of the
system. There is still no exact analytical solution available for the correlation energy. For
many years no accurate approximate solution was available for the correlation energy, un-

til Gell-Mann and Breuckner introduced their correction [88] in the parametrisation of the

8in the three-dimensional space, for a homogeneous system having N particles enclosed in a finite
volume (2, with the particle density defined as n = %, the Wigner—Seitz radius is defined as %ri = %
3 1/3
m)

agp is the notation for Bohr radius (See Appendix A)

orrsz(
9
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correlation energy previously carried out by Wigner [89], Macke [90] and Pines [91]. How-
ever, Gell-Mann’s and Breuckner’s work was only valid for very high density unpolarised

systems. Their expression (in atomic units'?) was defined as:

2
€c=— (1 =In2)Inrs + C + terms that vanishas rg — 0
T (2.67)
=Alnr, +C+ O(ry), 1

where C'is a constant estimated approximately with a value of 0.158. The Gell-Mann and

Breuckner formulation for A confirmed previous works, but they defined C' as:

2 404N 1
C==(1-m2) {m Lr <9W> ] -+ (1nR>Av} 1o (2.68)
where § = —0.0508 and numerical integration results to a value of —0.551 for (In R) ,, .

This yields to a considerably smaller C' with the value of —0.096 £ 0.002. For a partially

polarised system, similar to the exchange energy defined in Equation 2.63, one could use:

€. (T& C) = € (TS)C = O) + KT&C = 1) - (TS7C = 0)] f((:) (269>

Over the past years, different parametrisation for LSDA were proposed by various re-
searchers and this led to several LSDA functionals. Perdew and Zunger [93] suggested
four different sets of equations for Equation 2.69, for both high and low density systems.
In their parametrisation the correlation energy of a high density (0 < r; < 1) unpolarised

electron gas is described as:

52

"7 (ry, ¢ = 0) = (0.0311In7, — 0.048 + 0.0020r, In s — 0.0116r,) <. (2.70)

c ao

This is in a similar form to Equation 2.67. For fully polarised high density electron gas,

10The atomic units notation used hereafter refers to the Hartree atomic unit (h = e = m, = 1) unless
otherwise indicated.

"This is the Big O mathematical notation (O (f™)) to denote the order of accuracy of a numerical
method. For more details refer to § 20.1 of Advanced Engineering Mathematics (10" ed.) by Erwin
Kreyszig [92].
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they introduced different parameters into the same equation resulting in:

=2
"7 (ry, ¢ = 1) = (0.01555 In 75 — 0.0269 + 0.0007r, In 7y — 0.0048r,) —. (2.71)

C a,o
The two equations presented by Perdew and Zunger for low density (r; > 1) are different
from high density, but these equations meet agreeably at ¢ = 1. Their proposed equation

for low density unpolarised electron gas was:

0.1423 &

PZ

5 (=0) = a ik
e (s 0= 0) = 155505 r 1+ 0.3334r, ay o

Similarly, for a fully polarised low density electron gas, a similar equation with different

coefficients was proposed:

_ 0.0843 &
~ 1+1.3981/r5 + 0.2611r, ag’

e’” (r, ¢ =1) (2.73)

Vosko, Wilk and Nusair proposed rather a different approach [84] to Equation 2.69

which was:
f7(0) (2.74)

The a, and €, are each calculated using:

Ad1 s +Darctan 2
n P By +C arctan ENGE:

(vrs+6)
rs+ By +C| [ ap’

(2.75)

D

+F'In

with the dimensionless parameters listed in Table 2.1; note that (¢2/ag) gives the units of
energy density. Similar approaches to Equation 2.74 were also suggested by Perdew and

Wang [94]; one of the accurate and popular LDA approaches today. Most of the analytical
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solutions to correlation energy to date are mathematical interpolations of values calculated
using the quantum Monte Carlo simulation. However, to the author’s knowledge, there is
still no ‘exact’ analytical solution for correlation energy in LDA functionals.

Despite the simplicity of the LDA approximation, it often estimates the exchange-
correlation energy surprisingly well. Likewise, it usually gives very good results for sys-
tems with slowly varying charge densities [95]. However there are well-known drawbacks
in LDA calculation; such as under-estimation of the energy gap in semiconductor ma-
terials or over-estimation of binding and atomisation energy [77,95]. Furthermore, the
LDA technique does not account for strong correlation energies due to the electrons in
d orbitals in some transition metals. Many papers have pointed out the weakness in
exchange-correlation energy calculation due to the large error in approximation of ex-
change energy [47] and the need for alternative solutions. These weaknesses in LDA
calculations led to the development of more reliable and complex XC functionals, such as

generalised gradient approximations that also take into account the gradient corrections.

2.3.2 Generalised Gradient Approximation (GGA)

As discussed in § 2.3.1, the LDA approximation assumes that the system is homogeneous,

which in most cases is not a realistic assumption. The use of the gradient of density

Table 2.1: The parameters used in Equation 2.75 to calculate exchange energy using
the method proposed by Vosko, Wilk and Nusair. Each column of the table provides
the parameters required to calculate that particular equation. These parameters are
dimensionless constants.

Parameter a(rs) €.(rs, ¢ =0) €(rs, ¢ =1)
A -0.0169 0.0311 0.01555

B 1.1311 3.7274 7.0604

C 13.0045 12.9352 18.0578

D 0.3177 1.2474 3.3767

E 7.1231 6.1520 4.7309

F 0.0004 0.0312 0.1446

G 0.0048 0.1050 0.3250
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|Vn|? was originally suggested by Kohn and Sham in their paper [68] and later on was
implemented by Herman et al. [96]. The technique was known as gradient expansion
approximation (GEA); it was not very successful in improving the LDA technique and
in some cases, it was even worse than LDA. This was mainly due to the large value of
the gradient in reality, which causes the expansion to break down [45]. To overcome this
issue, Perdew introduced a real-space cut-off to the gradient expansion technique [97] that
led to a new accurate density functional for the exchange energy. However, the level of
the complexity added to the functional was too much and made it very difficult to use
the technique for practical applications [98]. One year later, Perdew and Wang modified
and simplified the original complicated functional so that it was possible to use it more
practically in the self-consistent density functional calculations [98]. They named their
simplified functional as ‘Generalised” gradient approximation (GGA) and it was generally

defined as [98]:

ESCAIRT nt] = /n(r)exc (nT,ni,VnT,V,,ﬂ) dr

(2.76)
- / hom ] )((ECC:}A (nﬂnia VnTu vni) d3r7

f¢G4 is a dimensionless enhancement factor.

where the
Similar to the LDA approximation, we can separate the exchange and the correlation
parts of the GGA approximation. For the exchange part of the energy we only have

to consider the spin unpolarised case as we can use the spin scaling relation (Equation

2.59) [45]. Hence we can write:
ESSA[n] = —C, / Y3 £ (s (2.77)

where C., is defined in Equation 2.53; s is the dimensionless ith order reduced density
gradient defined as:

[V'n|
(2]@}7‘)1 n ’
30
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and kp is the radius of the Fermi sphere

. 1/3 1
ke = (37n)" = (QD =. (2.79)

The original enhancement factor proposed by Perdew and Wang in 1986 was defined as:

1+ 0.08645?
o - (L

- + bs + cs?) ; (2.80)

where m = 1/15; b = 14; and ¢ = 0.2. However, several other formulations have been
suggested for the f, enhancement factor over the years. One of the first formulations that
is still in use in the Hybrid XC functions is Becke’s formulation published in 1988 [99];
it was an enhancement to the Xaf technique proposed by Herman et al. [96,100] and is

known as B88 [101]:

cae L+ s ag-sinh™! (s-ap) +a®- 52

GGA-BS8 , 281
* 1+ s-ay-sinh™' (s-a)) (2.81)
2y1/3
where a; = (487%)"'"; a3 = 6 - a1 and
2
ai-p
as = 21/3 . Ce. (282)

The C., is defined in Equation 2.53 and 3 is a parameter obtained using the least—squares
fitting on the empirical data. Becke found this parameter to be 0.0042 in atomic units
(a.u.) [99].

Another popular enhancement factor is the proposed formulation by Perdew and Wang
in 1991 [102,103] that is identical to Becke’s 88 functional with two extra Gaussian and

s terms [104,105]:

14+s-asy- sinh~! (5 . G1) + (a3 +ay - 6—100.52)

GGA-PWO1 d:ef
1+s-ay-sinh™' (s-a;) +as-s?

X

, (2.83)
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where a; = 19 — @5 and

81
4 -6
a7 x 10
a5 = 21/37-6(6' (284)
However, for small values of s, the functional can be simplified [104] to:
10 - s?
GGA-PW91 def 4
¢ =1+ +0(s"). (2.85)

The Perdew and Wang formulation was again refined [106] in 1996 by Perdew, Burke
and Ernzerhof [78,107]; which yielded one of the most popular formulations in recent

studies. This XC functional is known as PBE and is defined as:

R L e et (2.86)

where k = 0.804 and p = 0.21951. The value of x is chosen in such a manner to allow the
maximum local Lieb-Oxford bound [78,107,108] and the value of p is set to recover the
linear response of uniform density; hence the effective gradient coefficient for exchange
cancels that for correlation [106,107].

All these proposed formulations produce very similar values for the small range of s (see
Figure 2.3). Indeed, most of the real systems fall in a range between zero and three [45].
Even so, the big difference at long range values, caused by different formulations, produce
dissimilar XC-energies for van der Waals interactions and dispersion forces [109, 110];
which require significant work and improvement in the future. Figure 2.4 illustrates this
difference in the long range. The majority of the other formulations suggested for fJ<*
fall between PBE and B88 approximations [45].

The calculation of the correlation energy fS9*(s) is not as simple as the exchange
energy to write it as a functional. However, the correlation has much less contribution
to the total energy than the exchange contributes. The magnitude of the correlation

energy is inversely proportional to the density gradient and it will tend to zero as the s

increases [45].
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Figure 2.3: Comparison of the three most popular generalised gradient approximation
(GGA) functional values in the short range with the original Perdew and Wang 1986 for-
mulation. The extended responses of these functions (s > 3) are illustrated in Figure 2.4.

One of the simplest and yet accurate explicit correlation functionals that is in use

today is the PBE correlation functional; which is defined [78,104] as:
ESOAT® [f, ] 2 / n e (ry, ¢) + H (ry, C,1)] dPr, (2.87)

where t is a dimensionless density gradient:

def |Vn|
= 2ok’ (2.88)
Here, ¢ is the spin scaling factor:
1+C2/3+ 1_€2/3
¢=MO=“ R L (2.89)

2
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Figure 2.4: Comparison of the three most popular generalised gradient approximation
(GGA) functional values in the long range. Please refer to Figure 2.3 for the short range
comparison up to the loosely dotted line (s = 3).

and k; is the Thomas—Fermi screening wave number:

Ak
ko = | —Z. (2.90)
en

The H function is the gradient contribution and is defined as:

H= <e2> v¢° x In [1 + By < LA )] ; (2.91)
a gl

0 1+ At?2 + A2t

where 8 ~ 0.066725; v is a weak function of relative spin polarisation { and can be

replaced by its value when ¢ = 0 which yields:

(1-1n2)

1S (2.92)
T
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and

hom -1
A= f X [exp (W) - 1] : (2.93)

Many other quantitative derivations exist for the correlation functional, but they all
rely on experimental data and the parameters are chosen to fit molecular data [45]. The
fact that different XC functionals produce dissimilar results shows a lack of knowledge to
explain the exchange and correlation energies using a universal functional. Although a
functional might produce a correct result for certain materials and molecules it might fail
to describe other materials. The choice of the correct XC functional is very important
based on the type of material and it has to be evaluated in well-known situations before
being used to predict unknown situations.

In general, the GGA technique has advantages over the LDA due to the consideration
of the density gradient. For example, the atomisation energy calculated using the GGA
is on average about four times more accurate than the same calculation made using the
LDA (see appendix B for details). However, neither of these techniques is accurate and
universal. As shown in Figure 2.4, even different descriptions within the same technique
produce various results and can lead to a wrong result if they are chosen without thought

and investigation for their suitability in a particular calculation.

2.4 Pseudo-potentials

Another approximation that is usually done in the DFT calculations is based on the effects
of the other existing atoms on the core electrons, which is negligible. In the context of
condensed matter physics, to solve the Schrodinger equation for a given space aggregated
with atoms, the space can be divided into two distinct regions with considerably different
properties. The first area is the “core region” in the vicinity of the nuclei of the atom
which is occupied with tightly bonded core electrons that do not respond very much to
the presence of any other atom. The remaining area is mainly occupied with the bonding
or valence electrons that are less attracted to the core potential (compared to the core
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electrons) and are more responsive to the neighbouring atoms [111].

The idea of pseudo-potentials was initially introduced by Fermi in 1934 [59]; however,
the pseudo-potential approach, as it is known today, is based on the idea from Phillips
and Kleinman cancellation theorem in 1959 [112]. The main idea of pseudo-potentials
comes from the orthogonalised plane wave (OPW) technique for crystals, introduced by
Conyers Herring in 1940 [113]; which replaces the core electrons with an effective repulsive
potential that acts on the valence electrons. This will significantly decrease the number
of electrons in the system and leads to a faster and less expensive computation. Herring
suggested that wave functions and energy values of an electron in a crystalline structure
can be calculated by solving a characteristic polynomial (secular equation) with valence
wave functions simply be a set of Plane Waves (PW) orthogonal to all of the core wave

functions |¢).) [111]:

OPW(k) = N [|Pw<k>> -3 ) <wCer<k>>] , (2.0

where k is the Bloch wave-vector and N is the Gram—Schmidt normalisation constant
given by [114]:
~1/2
N = [1 — > (| PW) <PW|¢C>] : (2.95)

c
However, as the size of the region over which the PW’s are normalised increases, the
overlap (¢.|PW) decreases. This yields to a unity N as the normalisation size becomes
infinity.

To smooth out the valence states in the core region, first the orthogonal ripples of the
core wave functions are subtracted from the valence states, which leads to the creation of

the smooth pseudo-states |¢,) as:

|1hu) = |dw) + D [the) e (2.96)
Then if the inner product of Equation 2.96 is taken with only one of the core states [¢;),
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this yields:

owing to the orthogonality of the core and valence wave functions (i.e. V¢ : (¢c]1,) = 0).

Equation 2.96 can then be rewritten using the terms on the right-hand side of Equa-

tion 2.97 as:
By substituting the obtained equation into the time-independent Schrodinger equation
(2.4):
7-2 ’¢v> - ZEC |wc> <wc|¢v> =F ’¢v> - EZ ’wc> <wc’¢v> ) (299)
or
H|6o) + D (E = E) [ihe) (el ) = E |6w) (2.100)

The obtained result in Equation 2.100 is satisfying the Schrodinger equation with an

additional non-local energy-dependent potential V., defined as:

core
A~

c

2.5 Projector Augmented Waves (PAW)

Due to the requirement of orthogonality, in the nuclei region that contains non-zero states,
the wave functions contain very sharp features; while further away from nuclei, the only
non-zero states are the valence states and this leads to much smoother wave functions.
To be able to correctly describe the high feature oscillatory behaviour in the core region,
a very dense grid or a large set of plane waves is required. Figure 2.6 illustrates the all
electron wave function for the molybdenum atom.

As described earlier in § 2.4, one solution is use of pseudo-potentials to replace the nu-

clei and core states with an effective smooth potential and solve the Kohn-Sham equation
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Figure 2.5: The comparison between all-electron calculation of the potential and the
equivalent pseudo-potential. The r. denotes the core radius where the value of the pseudo-
potential matches the all-electron potential. Here, the pseudo-potential and the wave func-
tion are showing the 4s orbital of a molybdenum atom with arbitrary unit. The potential
waveforms have been shifted down with respect to the x-axis for better illustration.

solely for the valence electrons. One drawback for this technique is the loss of information
on complete wave functions near the nuclei. In addition, this approximation has to be
tested for reliable results with known realistic systems.

Another approach to this problem is using the augmented plane wave (APW) method.
In this technique, the space around the atom is divided by an augmented sphere centred
at the atom. Inside the sphere the wave functions are treated as atom-like partial waves
and some envelop functions are defined outside the sphere that is known as the bond-
ing region [115]. A more general approach is the projector augmented wave method
(PAW) [116] that was introduced in 1994 by Peter E. Blochl as a generalised approach
that reformulates orthogonalised plane waves (OPW).

In this technique that generalises both the augmented plane wave method and pseudo-
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potential method, to address the problem of describing oscillatory behaviour of wave func-
tions near the nuclei, an auxiliary smooth wave function an> with a linear transformation

T transforms to all electron Kohn-Sham single particle wave function |¢,,) such that

[on) = T |n) - (2.102)

This linear transformation is expected to be unity except inside the augmented sphere
that is atom-centred. Now, expanding each smooth function ‘zﬂn> in partial waves m

within a defined atom-centred sphere, yields!?

i) =S

V) (2.103)
with the corresponding all-electron function
() =T |d) = > e tm) (2.104)
Using Equation 2.103 and 2.104 the complete wave function can be written as
) = [¢n) 2 (I¢m) = [tom)) - (2.105)

To satisfy the linearity requirements of the transformation 7, the coefficients ¢,, have to

be given by a projection in the sphere

em = (Pm|V0) (2.106)

for some sets of projection operators p [45]. Thus, if the projection operators satisfy the
bi-orthogonality condition <ﬁm’1ﬁm,> = Opmms, then the expansion ), ‘$m> <]5m‘z/~1> of the
smooth function ¢ will be equal to itself. Figure 2.7 illustrates molibdenum 4s wave

function 1 and the correspondent smooth wave function ¢ and projection p. Similar

12The subscript n has been omitted for better readability.
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to the pseudo-potentials, there are many possible projectors of ¢ for p being related to
pseudo-potential projection operators, but unlike pseudo-potentials the transformation 7

uses the complete all-electron wave function

T =14 (|tm) = [tm)) |Pm) - (2.107)

For any operator A in the all electron problem, the transformed operator A can be

introduced to operate on the smooth part of the wave function such that
A=TIAT =A+ %n: [Bon) ((Uom| Ao ) = (| Al s )) (B (2.108)
Furthermore, any operator if form of
B =3 lpn) (| Blthn ) (B (2.109)

can be added to the right-hand side of Equation 2.108 without changing the expectation

values!?.

2.6 GW Approximation

As mentioned previously in § 2.2.4, the eigenvalues of the KS equation have no physical
meaning apart from the highest occupied energy which corresponds to the ionisation
energy [118]. Nevertheless, these values are usually interpreted as one-particle excitation
energy, but there is no theoretical justification for this interpretation [119]. Although these
energies are usually in good agreement with experimental results, there are exceptions
where these values do not match. An example of this disagreement is the underestimation
of the band gap in insulators and semiconductors by 30-100%; this is well-known as the

“band-gap” problem [119]. Thus, an appropriate technique has to be used to calculate

13For further readings one could refer to [116], [45] and [115].
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Figure 2.6: All electron wave functions of molybdenum atom calculated using Atom-
Paw [117]. The r. indicates the cut-off region which separates the core region from the
valence region.

41



—¥(r)
pi(r)
/ N
_| oo

Figure 2.7: All electron wave function, the soft PAW wave function and the PAW projec-
tion for 4s orbital of molybdenum atom calculated using AtomPaw [117]. The r. indicates
the cut-off region which separates the core region from the valence region.
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Figure 2.8: The band gap calculated using local density approximation within density
functional theory [119] and Green’s function approximation [124,125] compared to an
experimentally measured band gap [126].

the excitation energies.

One alternative approach to calculate the one-particle excitation or quasi-particle en-
ergies [120,121] is using Green’s function theory [122,123], also known as the GW ap-
proximation. This name comes from the equation itself that is a product of the Green
function, G and the screened Coulomb interaction, W. Figure 2.8 illustrates the corrected

band gap error using the GW approximation compared to the density functional theory.

2.6.1 Brief History

In fact, the GW approximation is older than the DFT and is primarily based on the
Hartree-Fock approximation, but it also takes screened Coulomb interaction energy into
account. The very first attempts on GW calculation for homogeneous electron gas were
done by Quinn and Ferrell in 1958 [127], followed by DuBois in 1959 [128,129]. However
their techniques were only applicable to the energy states near the Fermi level and small
Wigner—Seitz radius. Yet, the first complete calculation of self-energy was done several

years later by Hedin in 1965 [130]; where in his paper he stated that “there is not much
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new in principle in this paper” [130].

After Hedin’s work, several extensive calculations were made on self-energy of the
electron gas by Rice [131] and Lundqvist [132-134]. However, because of the expensive
computation required by the technique, it was not applied to any real material until
the mid-eighties when Hybertsen and Louie presented their calculations using the GW
approximation on semiconductors [119,124,135,136]. Similar results were also published
by Godby, Sham and Schliiter on the same calculations [125,137-139], with their results
confirming those published by Hybertsen and Louie. These reported results and the good
agreement with the experimental data on the silicon attracted the attention of scientists
who used the GW technique on more complicated systems such as transition metals
and their compounds [140]. In particular, the various GW approximations performed by
Mahan, Sernelius and Frota in the late eighties [141] and early nineties [142] are notable.
This group accomplished an extensive study on electron gas self energy using different
forms of GW approximations and the importance of vertex corrections [143]. Their results

showed a very small difference between the analytical and numerical values [144].

2.6.2 Concepts

The proof and theory behind GW calculation is significantly long and one can find more
details from many quantum theory textbooks such as [145] by Abrikosov et al., [146]
by Mahan or [86] by Sélyom; however, here, the basic idea behind this theory is briefly
described.

Firstly, a solid is considered and an electron is injected into it as illustrated in Fig-
ure 2.9. This procedure can be done by a technique such as inverse photoemission. After
this injection, the solid takes up a state that is not an eigenstate of the system; however,
if it is projected into the quantum numbers, the spectral distribution of the power will
usually show peaks at recognised energies [119]. These induced quasi-particle excitation

energies in the solid can be described by a Schrodinger-like equation with an extra term,
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S, as [119,130]

2
<— 27:;% V?+ VHartree(r)> Yi(r) + / Y (r, 1’5 65) i (x)) d°r’ = g4(r), (2.110)

where ¥ is an energy dependent non-local potential also known as self-energy.
Calculation of ¥ however, is very difficult and it is not straight forward even for
homogeneous electron gas, as it contains the effect of exchange and correlation energies

between the quasi-particles.

Ekzin hw

Figure 2.9: Inverse photo-emission spectroscopy by injecting an electron to the solid

Using Hedin’s approach [130], the self-energy can be expanded as screened Coulomb
interaction and keeping the lowest term only, yields the approximation that is known as
GW [119, 147]:

S (r, 1 w) = QL/e_i‘sw/G(r,r’;w + YW (r, r';w') du', (2.111)

/0

where § is an infinitesimal positive time; G is the one-particle Green’s function'* that in
Lehmann representation is

G(r,r',w) = Zw, (2.112)

7

MFor further details and derivations refer to §3 of [148].
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Figure 2.10: Illustration of the error in band gap calculated using the DFT and the actual
quasi-particle band gap calculated by adding an electron to the solid [139]. This error can
be as big as 100% of the band gap.

with f;(r) or Lehmann amplitudes'® defined as

(NO|Y(r0)|N + 13y, when E; > pu
filr) = (2.113a)

(N — 1i]yp(r0)|NO) , when E; < p,

and F; or the quasi-particle energies defined as

wr | EN+1i — Eno — in'®,  when E; > p
Ey(r) & (2.113b)

ENO — EN,“ + ZT}, when Ez < .

The W is the screened Coulomb interaction defined as:
W (r,r';w) = /e_l(r,r”;w)v(r’ —1"w) d*r”. (2.114)

Here, v is the bare Coulomb interaction and e~! is the inverse dielectric matrix that can

5L ehmann amplitudes are also known as Dyson orbital or quasiparticle wave functions.
164) is an infinitesimally positive number (n = 0%).
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be estimated by a suitable technique such as random phase approximation (RPA) [147,
149-151]. Ideally, the one-particle Green’s function has to be estimated self-consistently
through the Dyson equation [152-154]; however, during 1990s, in nearly all cases, the

non-interaction Green’s function at LDA level was only considered [147].

2.7 Bloch Functions and Wannier Functions

In the previous sections, it was shown that the ground state of a many-body system can
be determined using wave functions of a non-interacting auxiliary system. In the solids
with a crystalline structure however, the electrons will face a periodic potential due to the
nature of crystalline structures that are built of a periodic pattern. The wave functions
in these systems are mainly described in terms of Bloch wave functions or orbitals [155].
The Bloch theorem [156] states that the solution to the Schrodinger equation applied to

a periodic system is in a special form of:

Uni(r) = tn (1) - exp(ik - r), (2.115)

where uy(r) is a periodic function with a periodicity of the crystal translation distance; and
exp(tk-r) is a plane wave that is also known as an envelope function. Here, the k denotes
the crystal wave vector that has a direct relation with crystal momentum with a factor of
reduced Planck’s constant; and n subscription refers to the energy band index. Although
this technique is the main choice for calculating the electronic structure and ground state
in solids, other representations of wave function such as Wannier functions [157,158] (WF)
are also possible and may be considered [155].

The Wannier functions are simply the localised linear combination or superposition of
all the Bloch functions of a given band in the Brillouin zone [159]. This means unlike Bloch
functions that are the eigenstates of the Hamiltonian and localised in energy, the Wannier
functions are not the solutions to the Hamiltonian and are localised in space [155]. These

functions are generally obtained by a set of unitary transformations of the Bloch functions
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Figure 2.11: A set of Bloch functions in real space (the real part only) for an arbitrary
one-dimensional system with p-like orbitals on the left and transformed Wannier functions
of that system on the right. The filled circles are representing the atoms and the dashed
line is the Bloch envelope function of ¢’*. The x and y units are arbitrary [155].

introduced by Gregory Wannier in 1937 [157,158|.

Originally, the Wannier functions were introduced in solid state theory for post pro-
cessing and further characterisation of solids, such as calculation of the effective mass of
electrons. However, the complete calculation of the Wannier functions was not carried out
often [155]. Nonetheless, moving across to computational chemistry, a field with many
overlapping interests, this was totally different and knowledge of localised molecular or-
bitals (LMOs) [160-164] in molecules, which are akin to Wannier functions, was greatly
emphasised to provide an insight into the nature of bondings in the material.

To construct the Wannier functions, we start with superimposing all the Bloch func-

tions for a specific band in the Brillouin zone. Thus, we can write:

chll 3
w(r) = 55 /B i) d'k (2.116)

where (). is the volume of the primitive cell in real space; and BZ denotes the Bril-

louin zone. The multiplicand before integration normalises the integral over the Brillouin
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zone [155,165]. Equation 2.116 has no phase and can be interpreted as the Wannier
function localised in the home unit cell, as illustrated in the top right section of Fig-
ure 2.11. To make Equation 2.116 more general, it can be modified to contain a phase

factor ‘exp(—ik - R)’ within, as:

ch .
[Rn) = (271;13 /BZ exp(—ik - R) ¢ k) &’k (2.117)

so other Wannier functions can be constructed [155,157]. Here, R is a lattice vector in real
space; and |Rn) is the bra-ket notation of the Wannier function w,r which corresponds
to the energy band n and cell R. With the phase factor included in the equation, it
becomes like a Fourier transform and it is possible to translate the |Rn) to |R'n) by the
lattice vector RT & R — R/ in real space [166]. Consequently, the inverse transform can

be written as:

i) = exp(—ik - R) [Rn) . (2.118)

This simply means that the same information provided by the Bloch functions also comes
from Wannier functions and the Wannier functions are localised. Therefore, it is possible
to construct any Bloch wave function on the left-hand side of Figure 2.11 by superimposing
the Wannier functions on the right, if the correct phase is chosen.

The main challenge to construct Wannier functions in realistic calculations is their
non-uniqueness and dealing with degeneracies among the Bloch states, which is very diffi-
cult [167]. These obstacles have been overcome by Marzari, Vanderbilt and Souza [165,167]
by the development of a practical technique for extracting “maximally localized” Wannier

functions from both ‘isolated’” group of bands [165] and ‘entangled’!® bands [167].

ITsolated means group of bands that may become degenerate with one another at certain points in the
Brillouin zone, but separated from all other bands by finite gaps throughout the entire Brillouin zone. A
good example of these bands can be the set of valence bands of an insulator [167].

18 An example of entangled bands is the d bands of a transition-metal that are hybridized with s band
which consecutively is attached to higher bands [167].
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2.8 Summary

In this chapter, the common technique to calculate the band structure of many-body
systems was discussed and the weakness of this technique was highlighted; this was fol-
lowed by a possible solution to resolve this weakness. Density functional theory is the
most common technique used in solid state physics and has been improved significantly
over the past years. In principle this is an exact calculation; however, the solution to
exchange and correlation energies between particles is yet to be found and up to now, still
approximation through various techniques is being used to estimate this value. Although
the results calculated using the DFT are in-line with experimental measurements, this
technique suffers from under-estimation of the minimum band gap in semiconductors and
insulators. One solution to this problem is to use a more appropriate technique such as
GW approximation, to correct this under-estimation of the band gap by expecting very
expensive computation.

Wannier functions are another expansion to the density functional approximation; to
get an insight into the nature of energy bands and can be utilised as informative tools
in band gap engineering to understand the significance of semiconductor atomic bonding
structure in the band gap. However, the proper selection of the Wannier functions is a
big challenge and can be very difficult in the context of solid state physics and crystalline
structures.

In the next chapter the basic electronic properties and band structure of the material
that we have used in this research, which is known as molybdenum disulphide, will be

explored using the techniques covered in this chapter.
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“You can never solve a problem on the level
on which it was created.”
— Albert Einstein

Chapter 3

Molybdenum Disulphide Material

3.1 MoS; Physical Properties

3.1.1 Chemical Family

Molybdenum disulphide is an inorganic mineral known as molybdenite. It is a grey and
silvery crystalline material as shown in Figure 3.1, which belongs to a well-known chemical
group called ‘transition-metal dichalcogenides’ There are about 60 known compounds in
this group with an MX, empirical formula [168,169], where M is a transition metal such
as molybdenum or tungsten and X is a chalcogen such as sulphur or selenium.
Molybdenum disulphide, being very similar to other layered materials such as graphite,
consists of strong covalent bounded S—Mo—S layers stacked on top of each other with
weak Van-der-Waals forces between the layers. The electrical band gap in this material is
indirect and therefore is not a good candidate for photo-luminescence applications [170];
however, it also has a direct band gap. The indirect band gap is from the highest point of
the valence band positioned at the I' point in high symmetry, to the lowest point of the
conductance band placed half way between the I and the K points of high symmetry [169].
The indirect and direct band gap have been experimentally measured to be about 1.29

eV and 1.9 eV respectively [170].
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Figure 3.1: A large sample of MoS,; with an approximate size of 15 x 20 mm [36].

3.1.2 Crystallography

Each ‘S-Mo-S’ layer of molybdenum disulphide is formed of three sub-layers. These sub-
layers make a sandwich with molybdenum atoms in the middle and sulphur atoms on the
top and bottom. Figure 3.2 (a) illustrates this layered structure. Molybdenum disulphide
has polymorphism ability and is a poly-type structured material. Molybdenum disulphide
is known to have three different crystalline structures consisting of 2-hexagonal symmetry
(2H) with 2 sandwich layers in the unit cell, 3-thombohedral symmetry (3R) with three
sandwich layers in the unit cell and 1-tetragonal symmetry (17°) with only one sandwich
layer in the unit cell. The bulk form of MoS; can also have a mixture of both 2H and
3R combined. The sandwich of S—-Mo-S itself can take two different phases; either as a
trigonal prism or octahedral symmetry, as it is shown in Figure 3.2 (b).

The 2H and 3R variation of the MoS, are usually made of a trigonal prism; while the
1T variation can be created by having only one layer of an octahedral phase in a unit cell.
Figure 3.2 (c) illustrates the unit cell for the 2H and 3R variation of MoS,.

The 17-MoS, has a very similar structure to tantalum sulphide (17-T'aS;) and it is
known as cadmium iodide (Cdly) structure which belongs to the crystallography symme-
try group P3ml (D3;) [171]. Although the D3, symmetry group is a trigonal group, the
Bravais lattice is hexagonal [171]. However, 17-MoS, is observed to have certain irregu-
larities that have to be accounted for and one could use a symmetry space group such as

C2/m (C3,) to model the 1T-MoS, structure. The 2H-MoS, belongs to P63/mmc (Dg;,)
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Figure 3.2: Crystalline structure of molybdenum disulphide: (a) the [1120] section of
stacked MoS, sandwich layers; (b) two possible atomic structures of MoS, in three-
dimensions and (c) the [1120] section of the 2H and 3R stacking unit cell. The small
filled circles are representing the molybdenum atoms and medium white circles are sul-
phur atoms.

space and 3R-MoS, belongs to the R3m (C3,) space group [172,173]. However, the two
variations of 17-MoS, and 3R-MoS, are known to have metastable structures [174, 175]
and may change their phase to the more stable 2H-MoS, structure [175,176]. The 1120
sections! of these two structures are visualised in Figure 3.2 (c).

On average, about 80% of molybdenum disulphide occurrences are of the 2H-MoS,
type; while only 3% are 3R-MoS; and the rest are mainly a mixture of these two types [168,
177]. This makes the 2H-MoS,; dominant among other types of MoS, crystals due to the
stability of this structure. Moreover, the 17" variant of MoSs has metallic properties [171,
176] and is not semiconducting; hence the 2H-MoS, atomic structure was chosen for

studying and modelling of the MoS, structure.

11120 is a plane in Miller-Bravais (4 axis) notation which is based on Miller indices [178] but as [h ki ]

where 7 % —(h + k) that is particularly useful for hexagonal and rhombohedral structures. More details
are available in chapter 3 of ref [179].
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Figure 3.3: The unit cell of bulk 2H-MoS; shown with black lines and the compasses on
the side of the illustrations show the direction of the translation vectors a@, b and ¢. The
large purple atoms are molybdenum and the smaller yellow atoms are the sulphur atoms.

3.1.3 Atomic Unit Cell

Molybdenum disulphide has a hexagonal lattice structure with three, six or nine atoms
in the unit cell. This is similar to graphene’s structure; however, MoS, layers are quasi-
two-dimensional as the atoms do not lie on the same plane. Figure 3.3 shows the unit
cell for 2H-MoS,. For the purpose of illustration and visualisation of the atomic data and
the calculated results, a 3D-visualisation software called “Visualisation for Electronic and
STructural Analysis (VESTA)” published by JP-Minerals has been used [180].

The unit cell is defined using six parameters consisting of three translation vectors a, b
and ¢, which are analogous to x, y and z directions in Cartesian and three angles between
these three vectors. The angles are defined as alpha («) between the b and € vectors;
beta () between the @ and ¢ vectors; and gamma () between the @ and b vectors. For
both R3m and P63/mmec structures, the alpha, beta and gamma angles are 90, 90 and
120 degrees respectively. The gamma angle being 120 degrees makes the coordination

more suitable for hexagonal structures. To translate the real space primitive cell into the
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Figure 3.4: The symmetry points of the irreducible wedge of Brillouin zone (a) and the
first Brillouin zone (b) of MoS, [181]

Cartesian coordinates, the transformation matrix

1 0 0
R=1-1/2 V3/2 0|: (3.1)

0 0 1

can be used. Similarly, to transfer the coordinates into the reciprocal space the coordinates

will be multiplied by

V3
TRRVE R
G=RT"=|0 25 o (32)
0 0 1

In the case of R3m the lattice parameters have been measured to be 3.163 angstroms
(A) and 18.37 A for vectors @ and € respectively. Similarly for P6; /mme, these parameters
are @ = 3.161 A and @=12.295 A [172]. In both cases, the length of vector b is the same
as vector @. A more-recently published work suggested another set of numbers which
are (@=3.166 A, #=18.41 A) and (@=3.1602 A, ¢=12.294 A) for R3m and P63/mmec
respectively [168].

The correct P63/mme structure contains 4 twofold and 2 fourfold positions into which
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Table 3.1: Special symmetry points of the irreducible wedge of the first Brillouin zone of
MoSs quoted in reduced coordinates.

Point a b ¢ Point a b ¢

r 0 0 0 A 0 0 1/2
M 1/2 0 0 L 1/2 0 1/2
K 1/3 1/3 0 H 1/3 1/3 1/2

Mo and S atoms can be translated and arranged; but in the literature, several known
crystallography reference books such as [182-185] contain a wrong translation that will
cause incorrect inter-atomic distances [168] and extra care has to be taken in the creation
of the unit cell and translation of the atoms. With the correct translation, the unit cell
can be made by one of each of the Mo and S atoms positioned at (1/3, 2/3, 1/4) and
(1/3,2/3, 5/8) respectively [186]. These coordinates are presented as reduced-coordinates
which are relative to the translation vectors of the unit cell in each direction and more
convenient to use.

The first Brillouin zone [156] of the 2H-MoS, is hexagonal and is illustrated in Fig-
ure 3.4 [181] along with the irreducible wedge of the Brillouin zone and its symmetry
points. These symmetry points are named conventionally and the reduced coordinates of

these points are tabulated in Table 3.1 [187].

3.1.4 Stability

Molybdenum disulphide compound is chemically inactive and in the absence of other el-
ements i.e. in the vacuum, remains stable up to 1100 degrees Celsius (°C) [24] and can
endure a temperature of 1203 °C before breaking into molybdenum sulphide (Mo,Ss) [188].
However, with the presence of oxygen, MoS, is thermally stable only up to 315 °C before
oxidisation [189]; it will then break into molybdenum trioxide (MoO3). Most solvents are
unable to dissolve the MoS, apart from very strong oxidising reagents such as nitrohy-

drochloric acid? that can oxidise and dissolve the MoS, crystals [190,191].

Znitrohydrochloric acid is also known as Aqua Regina (Latin, =royal water) and is obtained by 1:3
mixture of nitric acid and hydrochloric acid (HNO3+3HCI).
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Most of the layered materials that can be used as a lubricant are required to absorb
vapour molecules to weaken the Van-der-Waals force between their layers [192,193]; while
MoS, does not require this absorption. Molybdenum disulphide has a very small friction
coefficient of 0.1 [194] and has a unique interlayer interaction compared to other layered

materials, as the Van-der-Waals force between the layers is exceptionally small [195-198].

3.1.5 Usage and Fabrication

Molybdenum disulphide is widely used as a ‘dry’ lubricant and in particular in the anode
of lithium-ion batteries [199]. The lubrication property of MoS, is unique and it has
always been considered for extreme conditions like vacuum environments and spacecraft
applications [196, 198].

Molybdenum disulphide is also a strong candidate for photovoltaic and photo-catalytic
applications due to the strong absorption in the solar spectrum region [200]. Recent studies
show that molybdenum disulphide nano-films (single planar atomic layer) have a different
electronic band structure and luminescence properties compared to bulk MoS, [35,200].
Depending on the size and the type of atoms on the edge of the produced film, this
material can shows magnetic behaviours and a different energy band gap [200,201].

The MoS, crystals can be either extracted from molybdenite ore deposit or be synthe-
sised artificially. One method to grow MoS, crystals is using chemical vapour transport
technique where a mixture of molybdenum, sulphur and a halogen is annealed at a high
temperature for several days [202-204]. Different halogens such as iodine and chlorine
can be used to create 2H and 3R crystals of MoSy respectively [191]. Other synthesis
techniques used are direct sulphidisation of molybdenum atoms [190,205], or using an in-
termediate step by creating a metastable molybdenum compound and transforming of the
created compound into MoSs crystals under high pressure and high temperature [206-209].

The weakly coupled layers of molybdenum disulphide can be separated to create a
thin film on single layered MoS, by micro-exfoliation on a quartz, silicon or silicon dioxide

SiOq substrate [35]. Using chemical and electrochemical techniques [210], it is possible
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to produce a variety of nano structured MoS, which have very interesting properties and

potential applications in electronic devices.

3.2 MoSs Simulation Tools

Up to now, there are more than 80 implementations of the first principle calculations avail-
able under various terms of use and licences. Among these implementations,a few of them
have become more popular due to the ease of use or the implemented features. Vienna
Ab-initio Simulation Package (VASP) [211-214], Spanish Initiative for Electronic Simu-
lations with Thousands of Atoms (SIESTA) [215], Spartan by Wavefunction Inc. [216],
Quantum ESPRESSO [217] and CASTEP [218] are a few of these implementations. How-
ever, many of these software packages are available commercially and the details of the
implementation and techniques may not be accessible. A list of these software packages
with their features and abilities is available in [219]. Table 3.2 provides the accuracy of
some of these codes compared to all-electron calculations.

The presented results in this research have been obtained through the code name
ABINIT [220-223], a common project of the Université Catholique de Louvain, Corning
Incorporated, and other contributors®, developed under the terms of the GNU General
Public License (GPL) Version 3 of Free Software Foundation, Incorporation. This code is
mainly implemented using FORTRAN90 language and is provided as a source code.

Apart from being open source and having access to the source code, one of the ad-
vantages of ABINIT compared to the other available codes, is the modular format of the
application?, with each module being developed and tested separately [227-241].

The ABINIT code used in this research was the released version 6.6 (7*® February 2011)

and was compiled using Intel Fortran Compiler (ifort) version 13.0 using Intel Mathematics

3Four other institutions have significantly contributed to the ABINIT effort: the Université de
Liege, the Commissariat a I'Energie Atomique, Mitsubishi Chemical Corp. and the Ecole Polytechnique
Palaiseau.

4Code name CASTEP is also modular and is available under a free of charge license to all UK academic
research group [218].
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Table 3.2: The accuracy of some of the popular DF'T codes compared to all-electron calcu-
lation. Here, the A.,, is the average error with respect to all-electron methods expressed
in mili-electron volts per atom. This calculation was carried out by Lejaeghere et al. [224]
and for a breakdown of these values one could refer to their original publication [224].

Code Name Method Year A
ABINIT JTHO1 2013 1.1
ABINIT JTHO02 2014 0.6
CASTEP vab 1998 65
CASTEP OTFG7 2013 2.5
CASTEP OTFG9 2015 0.7
GPAW [225,226) GPAWO6 2010 36
GPAW GPAW09 2012 1.6
Quantum ESPRESSO PSlib031 2013 1.7
Quantum ESPRESSO PSlib100 2013 1.0
vasp VASP2007 2007 ¢ 20
VASP VASP2012 2012 0.8
VASP VASPGW2015 2015 0.6

Kernel Library (MKL) version 11.0 on an Intel Xeon processor cluster (HPC) running Red
Hat Enterprise Linux (RHEL6). The reliability of the compiled code was evaluated using
more than 500 benchmarked tests in well- known situations.

The norm-conserving pseudo-potentials used in the calculations were Troullier-Martins
[242] types and are generated using thi98PP [231,243] code as well as semi-core Hartwigsen-
Goedecker-Hutter (HGH) [244] and ONCV pseudo-potentials [245]. In the case of PAW
pseudo-potentials generated using AtomPaw [117] were used and the results have been
tested [246] using a Murnaghan equation of state [247] and Morse potential [248].

For the calculation of the Wannier functions, the maximally-localised Wannier func-
tions (MLWEs) technique proposed by Marzari and Vanderbilt [155,165,167,249] imple-
mented as Wannier90 [250] code has been used.

For the visualisation of the atomic structures, calculation results and volumetric three-
dimensional data, the Visualisation for Electronic and STructural Analysis (VESTA) [180]

application by JP-Minerals has been used. Other post processing techniques such as the
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calculation of the effective mass or projected density of states (DOS) was implemented by

the author using C++, Python and MATLAB.

3.3 MoS; as Bulk

Although many DFT implementations are available to use and the number of people
using these modelling tools is considerably increasing, it has to be kept in mind that
these implementations do not necessarily produce correct answers and many factors have
to be taken into account to perform a realistic simulation. Using these tools without
considering all the factors that are usually set as “default” can cause the computer to

behave as “Garbage in, Garbage out” [251] and the model does not explain the system

properly.

3.3.1 Convergence Study

The unit cell of the bulk 2H-MoS, was initially defined using parameters obtained from
[172] which are listed in Table 3.3. After creation of the unit cell, two important parame-
ters have to be studied; the number of sampling k£ points in the reciprocal space and the
kinetic energy cut-off value that controls the number of plane waves at a given point.
The reciprocal k-meshing was done using the Monkhorst-Pack method [252] as illus-
trated in Figure 3.5, with an initial value of 1 x 1 x 1 (i.e. single k point) located at I’
and increased to reach the convergence. The used convergence criterion was the variation
in total energy of the unit cell between each iteration; while the other parameters were
kept constant. The total energy of 2H-MoS; is calculated using Teter Pade parametriza-
tion [253] of the local density approximation with Hartwigsen-Goedecker-Hutter (HGH)
pseudo-potentials [244] and tabulated in Table E.1 of Appendix E. The calculation of
total energy was considered as converged after having an energy variation smaller than 1
pHartree for two consequence iterations. The converged k-mesh was 20 x 20 x 3 with an

error of about 0.5 puHartree (15 peV).
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Figure 3.5: Meshing the reciprocal lattice using the Monkhorst-Pack method with the
mesh starting from origin (left) and shifted mesh along b; and by by 1/2 (right). The
irreducible wedge of the Brillouin zone is shown in blue and the grid points are marked
with green circles.

Subsequently, using the obtained meshing parameters, the value of the kinetic energy
cut-off had to be converged. Similar to the k-mesh analysis, using the same convergence
criteria, the value of the kinetic energy cut-off is increased while the other parameters
are kept constant. The results obtained from this analysis are tabulated in Table E.2 in
Appendix E. The suitable cut-off energy, obtained from the convergence study, was chosen
to be 50 Hartree which provides an accuracy in the order of 1 mHartree (~25 meV). The
k-mesh and kinetic energy cut-off convergence curves are illustrated in Figure 3.6.

Using the obtained values, the original unit cell which was created from the experi-
mental measurements was then relaxed to minimise the tension on the atoms and obtain
a more realistic and natural structure. This was done by: (1) modifying the unit cell

Table 3.3: The parameter required to create the initial unit cell of 2H-MoS, taken from
experimental measurements [172].

Parameter Type Value

a length 3.161 A

b length 3.161 A

¢ length 12.295 A

« angle 90 °

6] angle 90 °

~ angle 120 °
Space group symmetry P63/mmc
Mo atom coordinate (1/3,2/3,1/4)
S atom coordinate (1/3,2/3,5/8)
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Figure 3.6: The convergence curves for the number of k sampling points in reciprocal
space (blue) and the kinetic energy cut-off (red).
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lattice vector lengths to optimise the unit cell while taking into account the symmetry
of the system; and (2) moving the ions (atoms) to reduce the effective forces acting on
them i.e. reducing the stress. This was carried out using a very popular minimisation
technique [254] invented by Broyden, Fletcher, Goldfarb and Shanno which is known as
the BFGS technique, named after these inventors. The technique used has been modified
to take into account both the total energy and the energy gradients [255]. The relax-
ation result obtained from this technique was compared with another popular molecular
dynamics algorithm known as the Verlet algorithm [256]; however, the convergence speed
and efficiency of the result obtained using the modified BFGS technique outperformed
the same results obtained using the Verlet technique.

The residual stress after optimisation of the unit cell was reduced 15 times compared to
the initial stress tensor (See Table E.3 in Appendix E). Both the Teter Pade parametriza-
tion [253] of the local density approximation (LDA) and the Perdew-Burke-Ernzerh (PBE)
generalised gradient approximation (GGA) [78] of the exchange and correlation functional
were employed in the calculations and the optimised unit cell parameters are tabulated
in Table 3.4. These values are obtained using semi-core pseudo-potential to obtain an
accurate physical description of the material [257]. The optimal structure was defined
as having a maximum force smaller than 10~7 Hartree/Bohr (~ 5 x 1075 ¢V/A) on each
atom.

The optimised 2H-MoS, structures obtained from both the LDA and GGA were in
Table 3.4: Comparison between parameters obtained using theoretical calculation with

semi-core pseudo-potential and experimentally measured values of lattice parameters of

bulk MOSQ (2H—MOSQ)

Measure LDA GGA Experiment

a(A) 3.19 3.21 3.16 [169,258,259], 3.20 [260]
¢ (A) 12.42 12.48 12.29 [258], 12.58 [259]

05 rio-s(") 82.3 80.3 81.3 [169]

dyro—s (A) 2.45 2.42 2.41 [169]

ds_s (A) 3.22 3.13 3.19 [169]
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good agreement with the experimentally measured values, but as the LDA result was
describing the material more accurately, this was used in subsequent calculations.

Using the optimised unit cell obtained from the relaxation study in the previous stage,
the ground state energies and the excited states (band structure) were calculated using
both the TP-LDA and PBE-GGA exchange and correlation functional. Likewise, both
plane wave and projector augmented wave (PAW) methods were employed in the calcu-
lations.

A convergence study similar to the plane wave has been carried out for the cases
where the PAW technique was used to obtain the optimal kinetic energy cut-off value.
The obtained value that was used in the calculations was 20 Hartree. However, for the
fine FFT grid the cut-off energy was set to 70 Hartree.

The convergence of the calculation was defined as the residual of potential V' (r) being
smaller than 1 x 1072, The residual of potential was calculated on each iteration of the
self-consistent field (SCF) calculation by subtracting the calculated potential from the
input potential. The calculated potential is obtained from the charge density that itself
is calculated using eigenfunctions of the input potential. The final value of the residual of

potential is calculated by summing the square values of residual over all the FFT points.

3.3.2 Band Structure

Lattice parameters @ (= l;) and ¢ were initially set to 3.17 A and 12.32 A, [186] respectively
and these subsequently relaxed to 3.19 A and 12.42 A with LDA and 3.21 A and 12.48 A
with GGA. The energy band structure calculated using LDA is shown in Figure 3.7 with
the corresponding density of states. An indirect energy band gap of 0.93 €V is observed
between the K-point and the I' points; although a second conduction band minimum
(CBM) occurs at half way between I" and K points at an energy level only ~0.05 eV
above that at the K point. This can be seen in Figure 3.8. Likewise, the lowest conduction
band and highest valence band are illustrated in Figure 3.9 and 3.10 respectively. The
LDA+PAW calculation gives a similar result but with a band gap of 0.88 eV between
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the minima located half way between the I" and the K points and the maxima at the
I point. These results are in-line with those reported in the literature [261,262]. Both
these methods result in an optical band gap of 1.55 eV. The band structures calculated
using different methods are presented in section F.1 of Appendix F. The band structure
calculated using the augmented plain wave (APW) by Mattheiss [263] is also provided in
Figure F.9 in Appendix F for comparison purposes.

The electron effective mass is important from the point of view of charge transport
and this was found to be 0.66 my and 0.49 mg for the conduction band minima located
halfway between the I' and the K points (— I'), and the K point (— I') respectively,
where mg is the free electron mass.

From the relaxation study, it was found that the very small structural change due to
the relaxation has a noticeable effect on the band gap, particularly on the conduction
band minima located at the K point. This will be discussed in more depth in § 3.6.

It was also observed that the bulk MoS, does not have a net magnetic moment and

does not show any magnetic behaviour.

3.3.3 GW Correction

It is well known that the DFT calculation underestimates the band gap and a more
accurate calculation, such as Heyd-Scuseria-Ernzerhof (HSE) [264] or GW is required to
obtain a more realistic result. Recently Ataca and Ciraci [262] reported a band gap of
0.72 eV using LDA and 0.85 eV using GGA, both corrected using GW to be 1.44 and 1.28
eV for bulk MoS, respectively. The experimentally measured band gap for bulk MoS, is
found to be 1.23 and 1.29 eV using two different methods. [258,265]

To obtain an accurate energy band gap the GW correction [130] technique used. This
was done using ‘one-shot” GW correction that is also known as GoyW, which means calcu-
lating both the screening Coulomb potential, W, and the Green’s function, G, only once
with no iteration. This is shown schematically in Figure 3.11.

The GW calculation technique used was based on a self-consistent quasi-particle
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Figure 3.7: The calculated band gap of 2H-MoS, along the symmetry points of the ir-
reducible wedge of the first Brillouin zone using LDA technique. The second I' point is
located in the next Brillouin zone with the reduced coordinates of (1,0,0). The corre-
sponding Density of States (DOS) is on the right with arbitrary unit. The energy axis is
set to zero at the Fermi energy.
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Figure 3.8: The calculated band gap of 2H-MoS,; along the symmetry points of the
irreducible wedge of the first Brillouin zone using LDA technique showing the indirect
energy band gap (AE;) and the direct band gap (AE,). The second I' point is located
in the next Brillouin zone with the reduced coordinates of (1,0,0). The corresponding
Density of States (DOS) is on the right with arbitrary unit. The energy axis is set to zero
at the Fermi energy.
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Figure 3.9: The three-dimensional visualisation of the energy band corresponding to the
lowest conduction band of 2H-MoS, in the first Brillouin zone.
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Figure 3.10: The three-dimensional visualisation of the energy band corresponding to the
highest valence band of 2H-MoS; in the first Brillouin zone.
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Figure 3.11: One-shot GW correction calculation steps, starting from Kohn-Sham states
on the top left-hand side to calculate the independent-particle susceptibility (x°) through
random phase approximation (RPA) and consequently inverse dielectric matrix (¢71) and
then the self-energy (3) matrix at the given k-points.
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method proposed by Faleev et al. [266] using a plasmon-pole model proposed by Godby-
Needs [267] for the frequency dependence of the dielectric matrix.

Two frequencies, w=0 and a purely imaginary frequency from the peak in the electron
energy-loss spectroscopy (EELS) spectrum of 2H-MoS, obtained from [268] were used for
the plasmon-pole model. The latter had a corresponding energy of 23 eV°.

After the convergence study on the number of k-points, number of energy bands and
the cut-off energy, a 12 x 12 x 1 k-mesh with 1/2 shift in the ¢ direction was chosen. This
means there were 38 k-points in the irreducible wedge of the Brillouin Zone, together
with 12 symmetry operations and time-reversal symmetry yielding 288 points in the full
Brillouin Zone, with 250 energy bands and an energy cut-off of 20 Hartree (~544 eV).

The corrected band gap of 2H-MoS, was found to be 1.18 eV using LDA eigenfunctions
(LDA+GoWj) and 1.29 eV using GGA eigenfunctions, (GGA+GyW,), both in excellent
agreement with the experimentally measured band gap of 2H-MoS,. Figure 3.12 shows
the corrected band gap of 2H-MoS, using GoWj.

SEnergy can be converted to the frequency using f = E/h where f is the frequency; E is the energy
in Joules and A& is the plank’s constant.
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Figure 3.12: The corrected band gap of 2H-MoS, using PBE-GGA and one-shot GW
approximation technique. The actual calculated points are marked with red dots.
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Figure 3.13: The unit cell of single layer molybdenum disulphide

3.4 MoS;, as a Single Layer

Single-layer MoS,, unlike its bulk form, has a direct band gap located at the K-point in
the Brillouin zone [35]. This suggests that in addition to the intra-layer interactions, the
interlayer interactions also contribute to the band gap of MoSs. In this section, the energy
band structure and the properties of single-layer MoSy will be investigated.

To construct the single-layer MoS,, the same unit cell as the bulk MoS, has been used
and it was modified to contain only one MoSs molecule inside i.e. 3 atoms. Furthermore,
the length of the & vector was increased to produce at least 20 A distance between the
layers. This is shown in Figure 3.13.

The new unit cell has only one set of MoS, atoms inside and therefore only one
hexagonal symmetry which is referred to as single-layer MoSs or 1H-MoS,. The symmetry
class and the crystallography space group of the new unit cell has to be changed to account
for the discontinuity introduced along the ¢ axis. The crystallography group used to

describe the unit cell symmetry was P6m2 (D3,) space group.

3.4.1 Convergence and Band Structure

A similar analysis to that described above in § 3.3.1 for bulk MoS,; was undertaken on

1H-MoSs. The obtained kinetic energy cut-off value was similar to the 2H-MoS, with a
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value of 50 Hartree for LDA and GGA while 20 Hartree was chosen for the LDA+PAW
and GGA+PAW cases. The energy cut-off value for the fine FFT grid was again set to 70
Hartree. However, the number of k-points used was a Monkhorst-Pack grid of 20 x 20 x 1
with a 1/2 shift along the ¢ axis.

Starting with structural optimisation the lattice vector @ was relaxed to 3.20 A with
LDA and 3.19 A with GGA. This was done with semi-core pseudo-potentials similar to
the bulk MoS, as described in § 3.3.1. Other calculated parameters are tabulated in
Table 3.5. Again, the band structure was calculated with four different methods: LDA,
LDA+PAW, GGA, GGA+PAW and was corrected using GW approximation. Figure 3.14
visualises the band structure of 1H-MoS, calculated using the LDA technique. The band
structures calculated using different methods are presented in section F.1 of Appendix F.

By comparison with the experiment, the band gap for 1H-MoS, is underestimated
by all methods. The closest calculated band gap to the experimentally measured band
gap was obtained by LDA calculation without using the PAW technique. This was 1.73
eV which is underestimating the band gap by 0.17 eV compared to the experimentally
measured band gap of 1.9 eV. The GGA resulted in a very similar band gap with a value
of 1.71 eV. Using the PAW technique caused both the LDA and GGA techniques to predict
a smaller band gap with values of 1.69 eV and 1.68 eV respectively.

The calculated effective mass (K— I") of electrons and holes in 1H-MoS, at the con-
duction band minima and at the valence band maxima, are found to be 0.55 my and
Table 3.5: Comparison between parameters obtained using theoretical calculation using

semi-core pseudo-potentials and experimentally measured values of lattice parameters of
1H -MOSQ.

Measure LDA GGA Experiment
a(A) 3.20 3.19 3.20 [260]
¢ (A) 24.89 24.80

Os_nro—s(°) 82.0 81.1

drro—s (A) 2.45 2.492

ds_s (A) 3.21 3.15
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Figure 3.14: The band structure of 1H-MoS, calculated using LDA technique along the
irreducible wedge of the Brillouin zone with the corresponding electron density of states

(DOS) on the right-hand side.
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0.63 mg, respectively; both values are lower than in bulk MoS,.

3.4.2 GW Correction

The same parameters as with the bulk MoS, were used to calculate the band gap correction
using GW approximation. The GW correction was applied on the band gap calculated
using both LDA+PAW and PBE-GGA+PAW.

Apart from GW calculation, hybridisation of DET calculation with Hartree-Fock (e.g.
techniques such as B3LYP method [269] as explained in § 2.3) is expected to provide a
better band gap prediction compared to DFT on its own; although it was reported by
Heda et al. [261] that B3LYP overestimates the band gap of 1H-MoS, by about 0.5 eV.

After correcting the band gap using GoW it is found that the band gap of 1H-MoS, is
overestimated by almost ~1 eV. Therefore, other GW correction techniques such as GWg
were explored; which iterates G while W is kept fixed from the initial calculation; and
GW, which similar to GW|, iterates G, while W is calculated iteratively as well.

Using these techniques, after three iterations, the band gap was reduced to the value of
2.57 eV, which is about 0.6 eV more than the experimentally measured band gap. Ataca
and Ciraci [262] also reported that GW overestimates the band gap.

The discrepancy between the experimental and theoretical results for the case of single
layer MoS,; may be due to the nature of the material studied. The measurement of the
energy band gap was made by Mak et. al. [170] on MoS, layers deposited on oxide-covered
silicon substrates prepared with arrays of 1.0 and 1.5 pm circular holes (wells); whereas
this theoretical analysis here assumes the structure is optimally relaxed. However, this

may only account for some of the difference in the band gap.

3.5 MoS; Orbital Decomposition

Calculation of maximally-localised Wannier functions (MLWFs) and disentanglement of

hybridised bands was performed using Wannier90 code [250]. This software requires ho-
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mogeneous k-point grid so a homogeneous Monkhorst-pack k-point grid of 12 x 12 x 3
for bulk MoSs and 12 x 12 x 2 for the single-layer MoS, has been used. In total 32 ML-
WFs were calculated for bulk MoS; and 17 MLWFs for the single-layer MoS,. The initial
knowledge about the orbitals used to calculate the MLWFs are based on tight binding
and LCAO interpretation of the MoS, band structure by Matthiss [263] and the MoS,
orbital scheme by Fleischauer et al. [270].

The Wannier90 is able to project onto functions with s, p, d (see Table D.1 and D.2 in
Appendix D) and f symmetry, plus the hybrids sp, sp?, sp3, sp*d, sp3d?® localised functions
associated with a site and an angular momentum state [250]°. The band projections used
for the bulk and single-layer MoS, are tabulated in Tables 3.6 and 3.7 respectively.

The MLWFs analysis of 1H-MoS, indicates that the molybdenum 4d.., 4d,, and
4d,>_,» orbitals are associated with the energy bands in the region of the band gap as
observed with 2H-MoS,. The energy bands in the vicinity of the Fermi energy for both
2H and 1H-MoS, are mainly due to the 4d orbital of molybdenum atoms with a smaller
contribution (less than 20%) from the 3p orbitals of sulphur atoms.

It has been found that in addition to the intra-layer hybridisation, the interlayer
interaction affects the d,» orbital and causes a significant change, moving from 2H-MoS,
to 1H-MoS,. This leads to the change of band gap from indirect to direct. This can be
seen visually by comparing the contour lines in Figures 3.15 and 3.16. Forming a single
layer of MoSy removes interlayer coupling and leads to a dramatic loss of energy in the
valence band maxima located at the I' point which results in a direct band gap at the K
point.

Projected density of states (PDOS), obtained from MLWFs (Figure 3.17), show that
the lower energy bands (-15 to -12 €V) are mainly associated with the s orbital of sulphur

atoms. The energy region immediately below the Fermi energy (-7 to 0 €V) is associated

with the hybridised molybdenum d and sulphur p states [261,271]. Once more, the group

SFor further details on projection and disentanglement done using Wannier90 refer to maximally-
localised Wannier functions projection technique by Marzari and Vanderbilt [165] and MLWFs for entan-
gled energy bands by Marzari, Vanderbilt and Souza [167] and the wannier90 implementation [250].
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Table 3.6: The orbital projections used for 2H-MoS,. The [, m, and r represent the

azimuthal quantum number, magnetic quantum number and radial nodes respectively.

Reduced Coordinates l m, r Description
(2/3,1/3,0.1247257) 0 1 2 S1 3s (2 radial nodes)
(2/3,1/3,0.3752743) 0 1 2 S2 3s (2 radial nodes)
(2/3,1/3,0.6247257) 0 1 2 S3 3s (2 radial nodes)
(2/3,1/3,0.8752743) 0 1 2 S4 3s (2 radial nodes)
(2/3,1/3,0.1247257) I 1 S13pz (1 radial nodes)
(2/3,1/3,0.1247257) 1 2 1 S1 3pz (1 radial nodes)
(2/3,1/3,0.1247257) 1 3 1 S1 3py (1 radial nodes)
(2/3,1/3,0.3752743) 1 1 S23p. (1radial nodes)
(2/3,1/3,0.3752743) 1 2 1 S2 3p, (1 radial nodes)
(2/3,1/3,0.3752743) 1 3 1 S2 3p, (1 radial nodes)
(2/3,1/3,0.6247257) 1 1 S33p. (1radial nodes)
(2/3,1/3,0.6247257) 1 2 1 S3 3p, (1 radial nodes)
(2/3,1/3,0.6247257) 1 3 1 S3 3p, (1 radial nodes)
(2/3,1/3,0.8752743) I I S43p. (1 radial nodes)
(2/3,1/3,0.8752743) 1 2 1 S4 3p, (1 radial nodes)
(2/3,1/3,0.8752743) 1 3 1 S4 3p, (1 radial nodes)
CO(1/3,2/3,1/4) o 1 4 Mol 5s (4 radial nodes)
(2/3,1/3,3/4) 0 1 4 Mo2 5s (4 radial nodes)
CO(1/3,2/3,1/4) 1 2 Mol 4p. (2 radial nodes)
(1/3,2/3,1/4) 1 2 2 Mol 4p, (2 radial nodes)
(1/3,2/3,1/4) 1 3 2 Mol 4p, (2 radial nodes)
s R Mo3 i, (2 radial nodes)
(2/3,1/3,3/4) 1 2 2 Mo2 4p, (2 radial nodes)
(2/3,1/3,3/4) 1 3 2 Mo2 4p, (2 radial nodes)
CO(1/3,2/3,1/4) 2 1 4 Mol 4d.: (4 radial nodes)
(1/3,2/3,1/4) 2 2 4 Mol 4d,, (4 radial nodes)
(1/3,2/3,1/4) 2 3 4 Mol 4d,, (4 radial nodes)
(1/3,2/3,1/4) 2 4 4 Mol 4d,>_,2 (4 radial nodes)
(1/3,2/3,1/4) 2 5 4 Mol 4d,, (4 radial nodes)
C(2/3,1/3,3/4) 2 1 I Mo2 4d.: (1 radial nodes)
(2/3,1/3,3/4) 2 2 1 Mo2 4d,, (1 radial nodes)
(2/3,1/3,3/4) 2 3 1 Mo2 4d,, (1 radial nodes)
(2/3,1/3,3/4) 2 4 1 Mo2 4d,2_,2 (1 radial nodes)
(2/3,1/3,3/4) 2 5 1 Mo2 4d,, (1 radial nodes)
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Table 3.7: The orbital projections used for 1H-MoSs;. The [, m, and r represent the
azimuthal quantum number, magnetic quantum number and radial nodes respectively.
The I, m, and r specify the angular part (O, (¢,¢)) and the radial part (R,.(r)) of the
projection functions (see Table D.1 and D.2 in Appendix D)

Reduced Coordinates l m, r Description
(2/3,1/3,0.4355438) 0 1 2 S1 3s (2 radial nodes)
(2/3,1/3,0.5644562) 0 1 2 S2 3s (2 radial nodes)
(2/3,1/3,0.4355438) I I S13p. (1 radial nodes)
(2/3,1/3,0.4355438) 1 2 1 S1 3p, (1 radial nodes)
(2/3,1/3,0.4355438) 1 3 1 S1 3p, (1 radial nodes)
(2/3,1/3,0.5644562) I T 1 S13p. (1radial nodes)
(2/3,1/3,0.5644562) 1 2 1 S1 3p, (1 radial nodes)
(2/3,1/3,0.5644562) 1 3 1 S1 3p, (1 radial nodes)
Ry AT R e Mol bs (4 radial nodes)
CO(1/3,2/3,1/2) 1 2 Mol 4p. (2 radial nodes)
(1/3,2/3,1/2) 1 2 2 Mol 4p, (2 radial nodes)
(1/3,2/3,1/2) 1 3 2 Mol 4p, (2 radial nodes)
C(1/3,2/3,1/2) 2 1 I Mol 4d.: (1 radial nodes)
(1/3,2/3,1/2) 2 2 1 Mol 4d,, (1 radial nodes)
(1/3,2/3,1/2) 2 3 1 Mol 4d,, (1 radial nodes)
(1/3,2/3,1/2) 2 4 1 Mol 4d,2_,2 (1 radial nodes)
(1/3,2/3,1/2) 2 5 1 Mol 4d,, (1 radial nodes)
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Figure 3.15: Molybdenum 4d,> projected MLWF cross-section and contour lines along
(1,1,0) lattice plane for bulk MoSs (2H-MoSs).
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Figure 3.16: Molybdenum 4d.> projected MLWEF' cross-section and contour lines along
(1,1,0) lattice plane for single-layer MoSs (1H-MoSs).
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of bands above the Fermi energy (up to about 11 eV) is associated with the molybdenum
d and sulphur p orbitals with a small contribution of molybdenum s and p orbitals and
the sulphur s orbital. Around the Fermi energy and the band gap, in the region -0.5 to 0
eV and 1 to 1.5 eV, the band gap is due to molybdenum 4d,, and 4d,>_, orbitals bonding
with sulphur 3p, and 3p, orbitals and anti-bonding molybdenum 4d.. and sulphur 3p,
and 3p, orbitals [272]. More detailed graphs are presented in section F.3 of Appendix F.

The results of the MLWFs imply that the band gap occurring in 2H-MoS, results
mainly from intra-layer hybridisation between d.» and d,,, d,2_,2 sub-bands, as suggested
by Mattheiss [263].

The valence band maxima located at K is associated with the molybdenum 4d,, and
4d,>_,» orbitals and the sulphur 3p, and 3p, orbitals and these are not greatly influenced
by the intra-layer interactions; while the molybdenum 4d.> and sulphur 3p, orbitals are
more affected by inter-layer coupling. As a result, the band gap at the K point differs only
by 0.1-0.2 eV between 2H-MoS,; and 1 H-MoS,. The valence band maxima, located at the
I" point, is associated with the 4d.2 orbital and its energy in 1H-MoS, is 1 eV lower than in
2H-MoS,. An alternative perspective of this change in band structure has been provided
by Mak et al. [170]. They attribute the indirect-direct-gap crossover to the relatively
strong effects of quantum confinement on the indirect gap conduction and valence band
edge, as the out of plane effective mass of electrons and holes is light compared to the
corresponding mass for the direct band gap at the K point.

The projected density of states (PDOS) for 1H-MoS, yields similar results to 2H-
MoS;,. The largest contribution naturally comes from the molybdenum 4d.», 4d,, and
4d,>_,2 orbitals and sulphur p orbitals; while the molybdenum 4d,,. and 4d,, orbitals are
found to make only a small contribution (Figure 3.18). More detailed graphs are presented

in section F.3 of Appendix F.
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Figure 3.17: (a) Projected band structure of 2H-MoS, obtained using MLWFs. The size
of markers reflects the relative contribution of the projection on the energy bands. (b)
and (c) are the corresponding projected density of states also computed using MLWFs.
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Figure 3.18: (a) Projected band structure of 1H-MoSs obtained using MLWFs. The size
of markers reflects the relative contribution of the projection on the energy bands. (b)
and (c) are the corresponding projected density of states also computed using MLWFs.
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3.6 MoSs Relaxation and Elastic Strain Effect

The 2H-MoSy and 1H-MoS, respond similarly to biaxial compressive and tensile strain.
However, due to the difference in their band structure, their properties change differently.
In Figure 3.19 the band structure is calculated for both relaxed and strained 2H-MoS,
obtained using GGA+PAW with a limited degree of freedom and restricted BFGS relax-
ation to preserve the induced strain. The tensile and compressive strain is usually studied
for a wide range (i.e. 15-20%) while the effect of small strain is neglected.

Even a small strain significantly affects the energy of the conduction band minima at
K and can lead to a change in minimum from halfway between I' and K to K. The MoS,
structure is capable of enduring 20% strain before starting to deform [273]. However,
here, the calculated strain is in a range of 2% which can be imposed to the MoS, when
deposited on a substrate. As found with 2H-MoS,, a significant change in the energy
band gap of 1H-MoS,; was observed when strained, as shown in Figure 3.20. Only a small
strain on 1H-MoS, is required to change the band gap from direct to indirect.

Figure 3.21 summarises the effect of strain on the band gap of 2H-MoS, and 1H-MoS.
As it can be seen in the figure, the direct band gap of 1H-MoSs can change to indirect
when the amount of strain exceeds 3.20 A. These results are in-line with the strain study
on MoS, published by Scalise et al. [274]; however, their work reports on large induced
compressive and tensile strain (2-15%), while this work is looking into small strain (0-2%)
that can be imposed on MoS, during fabrication.

The energy levels at the symmetry points of the Brillouin zone for the highest valence
band and the lowest conduction band is tabulated in Table E.4 (2H-MoS,) and Table E.5
(1H-MoSs) of Appendix E.
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Figure 3.19: Band structure of 2H-MoS, showing the effect of biaxial elastic strain on
the band gap of bulk MoS, calculated using GGA+PAW; (a) calculated with a lattice
vector of @=3.13 A (compressive strain); (b) calculated with @=3.21 A (relaxed); and (c)
calculated with @=3.27 A (tensile strained).
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Figure 3.20: Band structure of 1H-MoS, showing the effect of biaxial elastic strain on the
band gap of single layer MoS, calculated using GGA+PAW; (a) calculated with a lattice
vector of @=3.13 A (compressive strain); (b) calculated with @=3.19 A (relaxed); and (c)
calculated with @=3.27 A (tensile strained).
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Figure 3.21: Variation of band gap calculated using DFT-GGA in bulk (2H) and single-
layer (1H) MoSs due to biaxial elastic strain. More details are available in Table E.4
(2H-MoS,) and Table E.5 (1H-MoS,) of Appendix E.
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Table 3.8: Band gap calculated for bulk and single layer MoS, using different correlation
functions compared with previously published experimentally measured results.

i LDA GGA .
Material Experiment
PW PAW GW PW PAW GW
2H-MoS, 0.87 0.88 1.18 0.94 0.93 1.29 1.2 [265], 1.3 [258]

1H-MoS, 1.73 1.69 2.57 1.71 1.68 2.59 1.9 [170]

3.7 Summary

In this chapter, the energy band structure of 1H-MoS, (single-layer) and 2H-MoS, (bulk)
has been calculated using density functional theory and the results obtained with different
methodologies were compared. The obtained results were in-line with published results
from experimentally measured values in the literature; which confirms the reliability of
the model and the techniques that were used. Table 3.8 summarises these values. Using
similar techniques (LDA and GGA), the reported values in the literature, have more
errors (compared to experimental values) than the values reported in this research. For
the purpose of comparison with the other values reported in the literature, Table 3.9
provides some of the reported values.

The relationship between the atomic orbitals, energy band structure and band gap
has been investigated using maximally-localised Wannier functions and the change in the
band gap occurring when moving from bulk to 2-dimensional was studied. This change
is mainly due to the decrease in energy of molybdenum 4d,» orbital when the coupling
between the layers of MoSs is not present.

Extensive structural optimisation calculations have been used to show the effects of
stress and strain on the energy band gap in both bulk and single-layer MoS,. It was
observed that the very small variations in the structural properties that can be imposed
by external factors such as a substrate lattice can significantly affect the band structure
of MoSs.

In the next chapter, using the established model from this chapter, discontinuity on
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the edges will be introduced to the model and the effect of loose atoms on the edges will

be studied.
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“A theory can be proved by experiment; but
no path leads from experiment to the birth of
a theory.”

— Albert Einstein

Chapter 4

Molybdenum Disulphide

Nanoribbons

In the previous chapter the properties of both bulk and single-layer MoS, were calculated
with periodic boundaries and no unsymmetrical atomic bond condition. However, in
reality, there will be some asymmetric bonds on the edge of the sample and the free
electrons and holes which are not participating in the atomic bonds on the edges will alter
the electronic properties of the material. This is particularly important from a device
and transport point of view, when nanoribbons are produced from the bulk form of MoS,
material.

It is well established that the electronic properties and the band gap of two-dimensional
materials can be altered and controlled by the edge pattern and the width of the produced
nanoribbon from the two-dimensional materials [279-285].

The pattern of the atoms on the edge of the nanoribbon can be classified into two
main categories of armchair and zigzag, as illustrated in Figure 4.1. However, it is also
possible to cut the edges with any angle between these two categories which will lead to
the creation of a nanoribbon known as having a chiral edge.

It is possible to obtain the MoSs nanoribbons directly by cutting through single layer

MoS; [286]. In the case of the armchair nanoribbon, it can have two types of edges based
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Figure 4.1: The armchair (left) and zigzag (right) edge patterns of MoSs nanoribbons.
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on the number of atoms along the width of the produced nanoribbon. If the number of
atoms along the width is even, the nanoribbon will have the same number of honeycomb
cells along its length. However, an odd number of atoms along the width will result
in an uneven number of honeycomb cells along the length of the nanoribbon. In both
cases, the edge will have an equal number of sulphur and molybdenum atoms. The zigzag
nanoribbon however, will always have one edge terminated by sulphur atoms and the

other edge with molybdenum atoms.

4.1 Armchair Nanoribbons

To produce the MoS, armchair nanoribbon, a super cell was created from the modelled
1H-MoS, in the previous chapter, by translation of the coordinates to the Cartesian
coordinates using Equation 3.1. Then a cubic cell was created with a 15 A space along
the y and z axes to emulate the vacuum. This means the unit cell’s alpha, beta and
gamma angles were all set to 90 degrees.

The crystallography space group that was used for the symmetry was the simple P1
space group. Figure 4.2 shows the unit cell used to model the MoS, armchair nanorib-
bon. By comparing the various techniques that were used in the previous chapter, it
can be seen that the GGA+PAW technique produced the most realistic results compared
to the experimental results; therefore, it was chosen for the modelling of the armchair
nanoribbon.

After the convergence study, the one-dimensional Brillouin zone was sampled using
16 x 1 x 1 k-points. The energy cut-off value was chosen to be 25 Hartree with a 70
Hartree cut-off for the fine FFT grid.

The band diagram of the relaxed structure was modelled under both spin un-polarised
and spin polarised conditions. It was observed that the armchair nanoribbon, regardless
of the nanoribbon width, is semiconducting and does not show any magnetic behaviour

and the net magnetic charge of the nanoribbon is always zero. Figure 4.3 shows the band
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Figure 4.2: The super cell used to model MoS, armchair nanoribbons. Here a nanoribbon
with eight atoms on the width is shown. The large purple atoms represent the molybde-
num atoms and the smaller yellow atoms are sulphur atoms. The super cell is periodic
along the b axis and discontinued along the a and ¢ axes.
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Figure 4.3: The band structure and density of states of a bare edge MoS, armchair
nanoribbon with twelve atoms on the width of the nanoribbon.

gap of an armchair nanoribbon with twelve atoms along the width of the nanoribbon.
Similarly Figure 4.4 shows the band structure of the same nanoribbon calculated over
a unit cell twice as big (along the length of the nanoribbon) compared to the one used
to calculate Figure 4.3. No edge reconstruction was observed during the relaxation and
molecular dynamics performed on the 1x or 2x unit-cell.

The band gap of the MoS; armchair nanoribbon is direct and located at I" point. The
study of the variation of the band gap in relation to the width of the nanoribbon has

revealed that the band gap in the MoSy; armchair nanoribbon is more affected by the
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Figure 4.4: The band structure of an MoS,; armchair nanoribbon with twelve atoms
on the width of the nanoribbon calculated using two unit cells along the length of the
nanoribbon.
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edge symmetry, based on having an even or odd number of atoms along the width of the
nanoribbon, rather than the width of the nanoribbon itself. However, by increasing the
width of the nanoribbon this behaviour starts to vanish. This behaviour is displayed in
Figure 4.5 for different nanoribbon widths. A similar result has also been reported by
Ataca et al. [200], Li et al. [287] and Wang et al. [288].

As seen in Figure 4.5, the value of the band gap in a MoS, nanoribbon is considerably
smaller than the single-layer MoS, and the trend in the band gap towards a single-layer
band gap is insignificant. One explanation for this difference could be based on Ataca
and Ciraci’s [262] work on defects (vacancy) in single-layer MoSs. They have shown
that a vacancy in single-layer MoS, will lead to the change of band gap and electrical
properties of single-layer MoSs due to the dangling (unsymmetrical) bonds around the
induced vacancy. This is very similar to the unsymmetrical bonds at the edges of the
nanoribbon. Similar work to Ataca and Ciraci’s [262] work was also carried out by Hong
et al. [289).

The investigation of wave functions and the density revealed that most of the contri-
bution towards the band gap and the energy bands near the band gap are from the atoms
on the edge of the nanoribbon. Figure 4.6 shows the charge of a nanoribbon with twelve
atoms along the width of the nanoribbon with the iso-surface level set to 0.25. Similarly,
Figure 4.7 shows the same results but with a different iso-surface level (0.15) for better
visualization of density near the sulphur atom. A dipole like potential at the molybdenum
atoms on the edges is visible in Figure 4.6 that is mainly due to the unsymmetrical bound

on the edges.

4.2 Zigzag Nanoribbons

The procedure to create the MoS, zigzag nanoribbon super cell was very similar to the
steps that were taken in the previous section to model the MoS; armchair nanoribbon.

However, the super cell is periodic along the x axis, as shown in Figure 4.8. After the
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Figure 4.5: The band gap of an MoS, armchair nanoribbon calculated using the

GGA+PAW technique for different widths of nanoribbons. The effect of change in the
edge symmetry between even and odd number of atoms along the width of the nanoribbon

is clearly visible on the graph.

97



Figure 4.6: The density of electrons on the bare edge MoS,; armchair nanoribbon. The
iso-surface level is set to 0.25 and the colouring of the iso-surface is based on the total
Kohn-Sham potential. The super cell is periodic along the b axis and discontinued along
the a and c axes.
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Figure 4.7: The density of electrons on the bare edge MoS,; armchair nanoribbon. The
iso-surface level is set to 0.15 and the colouring of the iso-surface is based on the total
Kohn-Sham potential. The super cell is periodic along the b axis and discontinued along
the a and c axes.
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convergence study, the same number of k£ sampling points (16 x 1 x 1) and cut off energy
(25 and 70 Hartree) have been used for the MoSs zigzag nanoribbon. Figure 4.9 shows
the band structure and density of states (DOS) of a zigzag nanoribbon with ten atoms
along the width of the nanoribbon in a ferromagnetic state and Figure 4.10 is showing the
same nanoribbon in an anti-ferromagnetic state. In both cases the ground state energy of
the nanoribbon was -1862.697675 Hartree (-50686.5814 eV).

Recent calculations of the electrical and magnetic properties of MoS; nanoribbons
have shown considerable disparities. As it has been reported in the literature, MoSs
zigzag nanoribbons, regardless of the width or edge state (bare edges or passivated edges
using hydrogen atoms) are metallic and magnetic. However, the reported magnetic and

metallic types are inconsistent [200,201,287].

4.2.1 Spin Polarisation and Magnetic Properties

Unlike MoS, armchair nanoribbons, the MoS, zigzag nanoribbons have collinear mag-
netic properties and exhibit both ferromagnetic and anti-ferromagnetic behaviour. This
behaviour is mainly due to dangling and unsymmetrical bonds on the edges of the nanorib-
bon, with loose electrons and holes which do not participate in the bonding.

The results obtained based on the used model, suggests that in MoS, zigzag nanorib-
bons, the spin polarised ground state is energetically more favourable than the spin un-
polarised ground state with an energy difference of at least 43meV (1.59mHa) per super-
cell. Table E.6 in Appendix E provides the ground state energy of each nanoribbon for
comparisons. Surprisingly, both the ferromagnetic and anti-ferromagnetic ground states
of zigzag nanoribbons have identical energy and are equally probable.

The molybdenum edge of zigzag nanoribbons is always ferromagnetic, having either
spin up or down. However, the magnetic alignment on the sulphur edge of the nanoribbon
is anti-ferromagnetic. Depending on the initial spin direction on the molybdenum atoms
on the sulphur side of the nanoribbon, whether it is aligned-parallel to the other edge or

opposite-parallel, the net magnetic dipole moment of the nanoribbon can become either
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Figure 4.8: The super cell used to model MoS, zigzag nanoribbons. Here a nanoribbon
with sixteen atoms on the width is shown. The large purple atoms represent the molyb-
denum atoms and the smaller yellow atoms are sulphur atoms. The super cell is periodic
along the a axis and discontinued along the b and ¢ axes.
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Figure 4.9: The spin polarised band structure and density of states (DOS) of MoS, zigzag
nanoribbon with ten atoms along the width of the nanoribbon in a ferromagnetic state
with a total magnetization of 0.932up per super-cell. The solid lines represent the spin
up and the dashed lines are the spin down energy bands.
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Figure 4.10: The spin polarised band structure and density of states (DOS) of MoS, zigzag
nanoribbon with ten atoms along the width of the nanoribbon in an anti-ferromagnetic
state with a total magnetization of 0.002up per super-cell. The solid lines represent the
spin up and the dashed lines are the spin down energy bands.
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Figure 4.11: The different magnetic moments on the edge of an MoS, zigzag nanoribbon
with 16 atoms along the width of the nanoribbon. The top two (a and b) illustrations
show the nanoribbon in a ferromagnetic state and the bottom two (c and d) illustrations
are the same nanoribbon in an anti-ferromagnetic state.

104



Figure 4.12: The atom resolved Hirshfeld charge calculated for an MoS, zigzag nanoribbon
with 16 atoms along the width. On the left the nanoribbon is in the anti-ferromagnetic
state and the same nanoribbon in a ferromagnetic state is presented on the right. The
partial charges quoted on the figure are scaled up by a factor of 102 for better readability.
The quoted negative zeros mean a very small negative charge.
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ferromagnetic or anti-ferromagnetic. If the induced magnetic moments on the sulphur
atoms, due to the neighbouring molybdenum atoms at the sulphur edge and molybde-
num atoms on the other edge, show the same aligned-parallel spin, the nanoribbon will
become ferromagnetic; while the sulphur atoms can have the opposite spin relative to the
molybdenum atoms on the other side. Having opposite spin will cause the nanoribbon to
become quasi anti-ferromagnetic with a very small magnetic dipole moment of less than
0.05 Bohr magneton (up) across the super-cell. Figure 4.11 illustrates this behaviour of
zigzag MoS, nanoribbons. For a better illustration of this effect, the Hirshfeld charge [290]
of each atom is presented next to the atoms in Figure 4.12. The complete list of Hirshfeld
charges of each atom for various types of zigzag nanoribbons are tabulated in section F.2
of Appendix F.

The calculation on the magnetic moment of a MoS, zigzag nanoribbon was done several
times with a complete set of random initial spin states on each occasion and in all cases
the total energy converged to the same value; while the nanoribbon had two different
magnetic moments (anti-ferro- and ferromagnetic). This result strongly suggests that the
significant variety of magnetic moments reported in zigzag nanoribbons [200,201,287] is

due to this spin initialisation.

4.3 Summary

In this chapter, the electrical properties of the nanoribbons built from 1H-MoS, with
either armchair or zigzag edges were investigated using PBE GGA+PAW approximation
of the DFT calculation. It was shown that unlike graphene, the band gap in MoS,
armchair nanoribbons is not significantly affected by the width of the nanoribbon. It
was also noted that the MoS; armchair nanoribbons are always semiconducting; while
the MoS, zigzag nanoribbons are always metallic and magnetic. During the atomic force
relaxation and molecular dynamics studies, no obvious edge reconstruction was observed

in 1x or 2x super-cell and reconstruction in the edges of zigzag and armchair nanoribbons
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is not reported in the literature. However, during the preparation of this thesis, Cui et
al. [291] reported on the possibility of the edge reconstruction in sulphur edges of zigzag
nanoribbon using 2x super-cell.

The intensive modelling and spin simulation on the MoS, zigzag nanoribbons suggested
that this material can take both ferromagnetic and anti-ferromagnetic states with equal
probability and this can be the reason behind the various magnetic behaviours reported
on the MoS, zigzag nanoribbons in the literature.

In the next chapter, various types of absorption of the atoms on the edges of both
MoS, zigzag and armchair nanoribbons will be investigated and the effect of passivated

edges on the electronic properties of this material will be explored.
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“No amount of experimentation can ever
prove me right; a single experiment can prove
me wrong.”

— Albert Einstein

Chapter 5

Molybdenum Disulphide Nanoribbon

Edges

In the previous chapters it was shown that after introducing edges on the MoS, material,
the appearance of the loose atoms on these edges will alter the electrical properties of the
material. It is a common practice to add extra atoms on the edges of material to create

bonds with loose atoms and ‘passivate’ the active states on the edges.

5.1 Edge Passivation

The passivation of the edges is usually carried out using hydrogen atoms [201,292-294];
however, the usage of other atoms is also possible [295,296]. This technique is expected
to increase the stability of the material and naturalise the edges [286].

To passivate the edges on MoS, armchair nanoribbons using hydrogen atoms, the super
cell was modified to contain one and two hydrogen atoms per sulphur and molybdenum
atom inside the super cell respectively. The hydrogen atoms were initially located at a
distance equal to the summation of the covalent radii of each edge atom and the hydrogen
from Table 5.1 with an angle of 128 ° relative to other participating atoms in that bond
[296]. However, in the case of molybdenum atoms, the two hydrogen atoms added to the

molybdenum were placed with an angle of 59 ° [296] (H-Mo-H bond angle).
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Table 5.1: The covalent radii values of used atoms to create passivated nanoribbon
obtained from [297].

Atomic number Atom (symbol) Covalent radii (A)
1 hydrogen (H) 0.31
16 sulphur (S) 1.05
42 molybdenum (Mo) 1.54

Table 5.2: The obtained parameters for hydrogen bonds on the edges of MoS, zigzag and
armchair nanoribbons after moving the ions and relaxing the structures.

Armchair Zigzag

Measure

left side right side sulphur side molybdenum side
dyrorr (A) 1.718 1.718 — 1.749
ds_g (A) 1.358 1.358 1.393 —
On—1rio-s (°) 89+1, 136£1 89+1, 136£1 — 85+3, 13242
On_s—no (°) 97.0£0.3 97.0£0.3 101.0£1 —
On_ro—nm (°) 69.60 69.61 — 70.56

The new super cell for the passivated armchair nanoribbon was created with four
hydrogen atoms on each edge (two on the molybdenum atom and one on each sulphur
atom) leading to a total of eight hydrogen atoms per super cell; while in the case of the
zigzag nanoribbon, each edge was naturalised using two hydrogen atoms with a total of
four hydrogen atoms per super cell. This procedure is the same regardless of the width
of the nanoribbon. For both armchair and zigzag nanoribbons, the distance between the
hydrogen and molybdenum atoms was set to 1.85 A and a value of 1.36 A was used for
the distance between the hydrogen and sulphur atoms.

After moving the ions and optimising the forces and energies, in the case of the MoS,
armchair nanoribbon, the distance between the hydrogen atoms and molybdenum atoms
was reduced to 1.71 A; while the distance between the hydrogen atoms and sulphur atoms
converged to a value of 1.35 A. Similarly, for the zigzag nanoribbon the bond lengths of
Mo-H and S-H were changed to 1.75 A and 1.39 A respectively. Table 5.2 summarises
the hydrogen bonding details after convergence and the converged super cell for armchair

and zigzag nanoribbons are illustrated in Figures 5.1 and 5.2 respectively.
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Figure 5.1: The super cell of the molybdenum disulphide armchair nanoribbon with
passivated edges using hydrogen atoms (repeated 3 times along a axis).
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Figure 5.2: The super cell of the molybdenum disulphide zigzag nanoribbon with passi-
vated edges using hydrogen atoms (repeated 4.5 times along a axis).
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Previously, the calculation of Botello-Mendez et al. [201] showed that the MoSy arm-
chair nanoribbons are only semiconducting if the edges are passivated with hydrogen
atoms; while the results reported by Ataca et al. [200] disagree. However to the best of
the author’s knowledge, Botello-Mendez’s work [201] is the only reported magnetic be-
haviour for armchair nanoribbons. One difference in Botello-Mendez’s work compared to
other published works is the use of a rhombohedral super cell instead of the usual cubic
super cell. However, using a similar rhombohedral unit cell did not produce the same
result and it was similar to the cubic unit cell. Additionally, they only considered 6 va-
lence electrons for the molybdenum, while other works including this research considered
semi-core pseudo-potential for molybdenum. Ataca et al. [200] showed that the passiva-
tion of the edges on armchair nanoribbons increases the band gap; the result from the
calculation carried out in this work favours the results of Ataca et al. However, the results
obtained for the MoS, zigzag nanoribbons are in-line with the results of Botello-Mendez
et al. [201] and differ from those of Ataca et al. [200]. Table 5.3 and 5.4 summarize some of
the reported types and magnetic values for armchair and zigzag nanoribbons. Figure 5.3
shows the band structure of an edge passivated MoS, armchair nanoribbon with twelve
atoms on the width of the nanoribbon; and Figures 5.4 and 5.5 show the corresponding

charge density with two different iso-surfaces.

5.2 MoS;, Zigzag Nanoribbons

The magnetic behaviour of the zigzag nanoribbons was further explored by modelling
possible partial passivation of the edges of the nanoribbon for a better insight into their
behaviour. The simulations’ results showed that passivating the edges with two (on ei-
ther molybdenum or sulphur side) or four hydrogen atoms does not change the state of
the nanoribbon from metallic to semiconducting. However, in the case of two and four
hydrogen passivated edges, when the zigzag nanoribbon is showing anti-ferromagnetic be-

haviour, it will become semi-metallic with only energy bands corresponding to one of the
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Figure 5.3: The band structure of an edge passivated MoSy armchair nanoribbon with
twelve atoms on the width of the nanoribbon and eight hydrogen atoms on the edges (four

on each side).
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Figure 5.4: The density of electrons on the hydrogen passivated edge MoS, armchair
nanoribbon. The iso-surface level is set to 0.25 and the colouring of the iso-surface is
based on the total Kohn-Sham potential.
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Figure 5.5: The density of electrons on the hydrogen passivated edge MoS, armchair
nanoribbon. The iso-surface level is set to 0.15 and the colouring of the iso-surface is
based on the total Kohn-Sham potential.
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Table 5.4: Some of the reported magnetic values for zigzag nanoribbon in the literature.
Here, AF is the energy difference between spin polarised and spin unpolished ground
state.

Author Parameters Width
AFE (meV) M (ug) drro—s (A)
Botello-Mendez [201] -200 0.400 2.40-2.47 n=>5
Li [287] -29.88 0.733 2.39-2.41 n=>os
Li [287] -32.30 0.751 2.39-2.41 n=>6
Li [287] -35.62 0.769 2.39-2.41 n==y§
Ataca [200] — 2.000 2.42-2.56* n=>6
Pan [286] — 0.25/0.76" 2.39 —

@ only the armchair nanoribbon bond lengths were reported.
b per edge. Edge 1: S:0.38, Mo:-0.13; edge 2: S:0, Mo:0.76

spins (spin down) passing through the Fermi level and the energy bands corresponding
to the other spin (spin up), result in a band gap of about 0.5 eV. This behaviour makes
the MoS, nanoribbon a potential candidate for spintronics. Figure 5.6 shows the anti-
ferromagnetic band structure of different hydrogen passivated zigzag nanoribbons. The
bands passing through the Fermi energy are mainly from the edge atoms as shown in
Figure 5.7 and 5.8.

The results reported by Li et al. [287] suggested that hydrogen saturated MoS, zigzag
nanoribbons have a smaller magnetic moment compared to a bare nanoribbon; while the
simulation in this thesis shows that hydrogen saturation of the edges will increase the
magnetic moment by hydrogen atoms taking aligned-parallel spin with respect to the
edge atoms (i.e. spin in the same direction of the other edge atoms).

For example, as shown in Table 5.5, a zigzag nanoribbon with n=8 has a magnetic
moment of 1.117up while passivating the edges with two or four hydrogen atoms will
increase the magnetic moment to 1.298up and 1.433u 5 respectively.

Similar to this work, Ataca et al. [200] also showed that 4-H absorption (2H on each
side) will increase the total magnetic moment. However, they have proposed few different

hydrogen absorptions on the edges that are different from the suggestions in this work.
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Figure 5.6: Anti-ferromagnetic band structure of zigzag nanoribbon (n==8) with: (a) bare
edges; (b) 2H on sulphur edge; (¢) 2H on molybdenum edge; and (d) 4H on both edges (2
on each side) of the nanoribbon. The spin down and the spin up are represented by solid
and dotted lines respectively; and the Fermi energy is set to 0 eV.
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Figure 5.7: The band structure of zigzag MoSy nanoribbon (n=8) with four hydrogen
passivation (two on each edge) in ferromagnetic state on the left with the corresponding
charge density iso-surfaces of states near the Fermi energy on the right. The spin down
and the spin up are represented by solid and dotted lines respectively; and the Fermi
energy is set to 0 eV. The nanoribbon is periodic along a axis.
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Figure 5.8: The band structure of zigzag MoSs nanoribbon (n==8) with four hydrogen pas-
sivation (two on each edge) in anti-ferromagnetic state on the left with the corresponding
charge density iso-surfaces of states near the Fermi energy on the right. The spin down
and the spin up are represented by solid and dotted lines respectively; and the Fermi
energy is set to 0 eV. The nanoribbon is periodic along a axis.
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5.3 Extra H Absorption at Zigzag Nanoribbon Edges

An exhaustive literature search on previous published works about the MoSs and other
zigzag nanoribbon edge passivations shows that the passivations are mainly done using
the conventional one hydrogen per each free valence electron [200,201, 286,294, 298-300].
However, the results of Cristol et al. [301,302] on the hydrogen absorption on the edge
of MoS, suggested several different possible absorptions. Several other types of MoS,
passivation using sulphur [286,295,303], oxygen [303,304], amidogen N H, [288] or hydroxyl
OH [288] have also been reported in the literature. It has also been reported that the
transition metals (i.e. molybdenum) at the edges have the ability to change their vacancy
from 4+ to 5+ [303].

Using the suggested structures by Cristol et al. [301,302] and molecular dynamics force
relaxation by moving ions, three new types of edge saturations were created by adding
five and six hydrogen atoms on the edges of MoS, zigzag nanoribbons, as illustrated in
Figure 5.9.

The 5-hydrogen saturation occurs when the molybdenum atom absorbs one extra hy-
drogen atom on either edge of the nanoribbon, when the nanoribbon is already saturated
with four hydrogen atoms. These extra absorptions were named as type I and II cor-
responding to the absorption on the sulphur and molybdenum edges of the nanoribbon
respectively. The 6-hydrogen saturation happens when molybdenum atoms on both edges
of the nanoribbon absorb one extra hydrogen atom, compared to the 4-hydrogen sat-
urated structure. These extra absorptions occur with an increment to the super cell
pressure, which increases the total pressure to about 1 Giga-Pascal (GPa), equal to
6.24 x 1073 eV /A%, However, after moving the ions and relaxing the structure, this pres-
sure drops below 0.3 GPa (1.87 x 10~ ¢V /A?) with x, y and z components of stress tensor
equal to —4.72 x 1075, 2.33 x 107° and —9.32 x 107% Hartree/Bohr~ respectively. The
formation energies of these nanoribbons suggest that they will be stable (Table 5.5), how-

ever in practice the partial pressure required to produce these highly hydrogenated edge
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Figure 5.9: Absorption of five and six hydrogen atoms on the edge of MoS, zigzag
nanoribbons.

would be very high'.

After calculation of the spin polarised band structure of both type I and II 5H sat-
uration with different spin initialisation on the edge atoms, both types were found to
be semi-metallic with only energy bands corresponding to one spin passing through the

Fermi energy (Figure 5.10 (e) and 5.10 (f)). However, 6H saturation results in a non-

ICristol, Paul and Payen have done extensive research on hydrogen and sulphur absorption on the
edges of MoS, and the required hydrogen partial pressure. Refer to [301] and [302] for more details.
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Figure 5.10: Ferromagnetic band structure of MoS, zigzag nanoribbon (n==8) with: (a)
bare edge; (b) 2H on sulphur edge; (¢) 2H on molybdenum edge; (d) 4H on edges (2 on
each side); (e) 5H type I and (f) 5H type II saturation. The spin down and the spin up
are represented by solid and dotted lines respectively; and the Fermi energy is set to 0 eV.
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Figure 5.11: The band structure and the density of the states of MoS, zigzag nanoribbon
passivated with six hydrogen atoms on its edges.
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Table 5.5: Variation in magnetic moment and energy of a zigzag nanoribbon per unit
cell (n=8); AE, represents the difference between spin polarised and spin non-polarised
nanoribbons; and AFEj,,.. represents the bond energy calculated using spin polarised bare
edge nanoribbons and each passivated nanoribbon using Egystem — (Ebare + (1/2Em, X ng)).
The value in the parenthesis is calculated using the previous stable system instead of bare
system. e.g. Eyg—(Eopy + 12Ey, X 2), where Ep, = —31.92342 €V calculated using same
parameters as the nanoribbon.

Edge type AE, (meV) oY M (p5) INTY AFEpe (meV)
Bare -52.4 1.1177 0.0569 —

OH (S edge) 972 1.2980 0.0734 92.2

oH (Mo edge) 1432 1.2898 0.0166 54.0

4H -101.3 1.4332 0.0391 -328.7 (-236.4)
5H (type I) 141 0.5858 - -329.7 (-1.0)

5H (type 1) -76.9 0.7732 - -367.2 (-38.5)
6H - - - -385.8 (-18.6)

magnetic and semiconducting nanoribbon with a fundamental indirect band gap of about
0.1 eV and optical (direct) band gap of 0.2 eV located at the gamma (I') point. Figure
5.11 shows the energy band diagram corresponding to this structure. This suggests that
different types of saturation on the edges of zigzag nanoribbons can possibly lead to the

transformation of zigzag nanoribbons from metallic to semiconducting.

5.4 Chiral Nanoribbons

As mentioned in the previous chapter, if the nanoribbon edges are cut along any angle
other than zigzag or armchair, the edge will be called chiral, which is usually a combination
of partial zigzag and armchair patterns. As it can be seen in Figure 5.12; cutting along
the a axis or any multiple of 60 degrees from this axis (0, 60, 120, ...) will result in a
zigzag edge; whereas cutting at 30 degrees angle to the a axis or any multiple of 60 degrees
from it (30, 90, 150, ...) will result in an armchair edge. However, if the nanoribbon is
cut at any other angle apart from these angles it will produce a hybrid edge. This is
illustrated in Figure 5.12 with a green arrow. The angle of this arrow is about 11 degrees
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with respect to a and cutting along this angle will result in a combination of zigzag and
armchair.

In theory, this hybrid edge is expected to have an electrical property consisting of
both zigzag nanoribbons and armchair nanoribbons. The zigzag nanoribbon is metallic
and magnetic, while the armchair nanoribbon is semiconducting and non-magnetic. Thus,
the resultant nanoribbon has to be semiconducting due to the discontinuity of the zigzag
edges and presence of armchair pattern and magnetic as well due to existence of zigzag
pattern on the edges.

Although the electrical properties of nanoribbons with chiral edges have been studied
for other two-dimensional materials such as graphene nanoribbons [7,8,305], to the au-
thor’s knowledge there have been no such studies reported on the MoSs nanoribbons with
chiral edges.

Due to the nature of the MoS, nanoribbons and the very high contribution of the edges
to the band gap, it is expected that MoS, chiral nanoribbons will have different magnetic
and electronic properties compared to zigzag and armchair nanoribbons. For this reason,
a chiral MoS, nanoribbon with a deviation vector of (3,2) atoms was chosen, which will
produce a chiral nanoribbon with 23.41 ° deviation from being zigzag or equivalently 6.59 °
deviation from being armchair, as illustrated in Figure 5.13.

A similar convergence procedure to the previous chapters was carried out on the super
cell using PBE-GGA with PAW and a kinetic cut-off energy of 30 Hartree was chosen
with 80 Hartree cut-off energy for the fine FF'T grid. The one-dimensional Brillouin zone
was sampled using 18 x 1 x 1 k-points. The edge atoms were initialised with random spins
and the calculation of the ground state was repeated several times.

The result obtained on the modelled chiral nanoribbon was very interesting as it
showed both magnetic and semiconducting behaviour. This behaviour classifies the nanorib-
bon into the magnetic semiconductors group which is of interest in the field of spintronics.
Having both magnetic and semiconducting properties provides the possibility of control-

ling the band gap of the material by changing the spin polarisation of that material.
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Figure 5.12: Possible edge patterns in MoS;. The black rhombus is the unit cell and
the red vectors with 30-degree separation show the directions to cut zigzag and armchair
edges. The blue lines show the zigzag pattern and the orange lines show the armchair
patterns. The green vector is 10.89 degrees deviated with respect to the a axis. Cutting
along the green vector will result in a combination of zigzag and armchair that is called
the chiral edge.
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Figure 5.13: The super cell used to model the chiral nanoribbon with 96 atoms in the
cell (Mo32Se4). The cell is periodic along the a the axis and discontinuous along the b and
c axes.
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This behaviour can be explained by having a combination of both zigzag and armchair
patterns along the edge of the nanoribbon. The armchair section of the nanoribbon con-
tributes to the band gap of the nanoribbon; while the existence of the zigzag pattern in
the vicinity causes the nanoribbon to have magnetic behaviours. Figure 5.14 shows the
calculated spin polarised band gap of this MoSs chiral nanoribbon. The calculated band
structure of the modelled MoS, chiral nanoribbon was showing an indirect band gap of
0.1 eV, similar to the zigzag nanoribbon passivated with six hydrogen atoms and a total
magnetic moment of 0.036 Bohr magneton (up) was calculated for the nanoribbon. The
calculated spin polarised charge density of the nanoribbon is visualised in Figure 5.15.
The molybdenum atoms on the lower edge of the nanoribbon have a significant positive
charge of about 0.574 and on the upper edge of the nanoribbon the molybdenum charge
is reaching -0.310. However, the charge on any of the sulphur atoms on the edge does
not exceed -0.032. The complete list of atom-resolved spin density and Hirshfeld charge

is tabulated in Tables F.12 to F.14 in Appendix F.

5.5 Conclusion

In this chapter, the effect of passivation of the edges of MoS,; nanoribbons has been
investigated and possible hydrogen passivations of the edges have been modelled. The
magnetic properties of zigzag nanoribbons have also been studied and the relationship
between the initial spin condition and net magnetic moment of the nanoribbon has been
investigated; this leads to zigzag nanoribbons becoming both ferromagnetic and anti-
ferromagnetic.

An intensive study on the hydrogen passivation of the edges of zigzag nanoribbons
has been carried out; which suggests that zigzag nanoribbons can become semiconducting
as well. It was also shown that the zigzag edges of the MoS,; nanoribbon are capable of
absorbing up to three hydrogen atoms on each side. However, the conditions for which

such a highly hydrogenated edge would be stable are difficult to obtain experimentally,
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Figure 5.14: The band structure of the MoS, nanoribbon with chiral edges showing both
magnetic properties and a semiconducting band gap.
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Figure 5.15: The band structure of MoS,; nanoribbon with chiral edges showing zigzag
and semiconducting type densities on the edges. The iso-surface value was calculated at
0.001 which was obtained using d (iso) = (|p|) +n x o (|p|); where (|p|) is the average of
density; o (|p|) is standard deviation of density; and n is an arbitrary scaling factor [306].
The teal colour represents positive density and the olive green colour is used for negative
density.
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and involve a large hydrogen partial pressure.

Finally, the electrical and magnetic properties of a novel chiral MoS; nanoribbon
were modelled, which has shown that the chiral MoS; nanoribbons can exhibit both
semiconducting and magnetic moment simultaneously; this has never been reported before

and is of interest to the field of spintronics.
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“Success is not final, failure is not fatal: it is
the courage to continue that counts.”
— Winston Churchill

Chapter 6

Conclusion and Future Work

6.1 Summary

In this thesis the electrical properties of molybdenum disulphide materials were investi-
gated from the first principles’ calculations. Initially the basic properties of the material
such as the crystalline structure and the stability and fabrication techniques to produce
this material, were explored and were followed by the calculation of the basic electrical
properties of the bulk form of this material.

Although the first principles’ calculation relies on a very few basic parameters of the
material, the calculation itself requires a significant amount of adjustments. Extra care
has to be taken to model materials such as molybdenum disulphide with partially filled d
orbitals. In this research, the calculation parameters were fully considered using various
convergence studies and the produced results were evaluated in well-known situations.
The obtained results in these known situations were fully in-line with published results
from experimenta