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Abstract

Electroencephalography (EEG) is the prevalent technique for monitoring brain func-
tion. It employs a set of electrodes on the scalp to measure the electrical activity of the
brain. EEG is mainly used by researchers to study the brain’s responses to a specific stim-
ulus - the event-related potentials (ERPs). Different types of unwanted signals, which are
known as artefacts, usually mix with the EEG at any point during the recording process.
As the amplitudes of the EEG and ERPs are very small (in the order of microvolts), they
can be buried in the artefacts which have very high amplitudes in the order of millivolts.
Therefore, contamination of EEG activity by the artefacts can degrade the quality of the
EEG recording and may cause error in EEG/ERP signal interpretation.

Several EEG artefact removal methods already exist in the literature and these previ-
ous studies have concentrated on manual or automatic detection of either one or, of a few
types of EEG artefacts. Among the proposed methods, Independent Component Analysis
(ICA) based techniques are commonly applied to successfully detect the artefacts.

Different types of ICA algorithms have been developed, which aim to estimate the
individual sources of a linearly mixed signal. However, the estimation criterion differs
across various ICA algorithms, which may deliver different results. Additionally, the
estimated sources are not labelled by the ICA algorithms. Therefore, a criterion to select
the proper ICA algorithm, with the aim of source separation and a method to label
different types of artefacts, to clean the EEG signal for extracting the ERP information
is required.

This thesis therefore contributes to the systematic comparison of commonly applied
ICA algorithms, to be employed for automatically detecting and removing various types of
artefacts mixed with EEG and furthermore to improve the extraction of ERP information.
In this context, the thesis tackles three major problems, namely: (i) the problem of

selecting the optimum data preparation steps, applied prior to ICA and the ICA algorithm



variant for better source separation; (ii) the state of the art-of-the-art method for the
detection of only a few types of commonly occurring artefacts, during EEG recording;
(iii) weak performance of the conventional ERP classification methods.

To deal with these problems, a literature review was carried out associated to each step.
A wide range of signal processing was performed in MATLAB, which is computationally
fast and easy to implement with the EEGLAB plug-in, to analyse the EEG data. The
proposed methods were evaluated using EEG data collected from ten healthy subjects.

The first body of work outlined in this thesis proposes a pipeline to select an ICA
algorithm variant that is most suitable for separating the artefactual sources from the
EEG mixture. The criteria to compare different ICA algorithms are selected based on the
independence and physiological plausibility of the components. Also, 24 pre-processing
conditions are proposed by combining 5 commonly used data pre-processing steps. The
results highlight the importance of selecting the data pre-processing condition, before ICA
decomposition, rather than a type of ICA algorithm itself.

The proposed signal processing chain is the first of its kind and offers the possibility
of selecting a data preparation condition based on the output of ICA algorithms’ decom-
position that may be employed in different EEG studies. In this thesis, a pre-processing
condition and an ICA algorithm variant are selected based on their suitability for sepa-
ration of the desired artefacts from non-artefact sources.

The optimum data preparation condition and ICA algorithm variant are consequently
adapted for employing in an automated ICA-based EEG artefact removal method. A
set of temporal, spatial and frequential features are proposed to automatically detect the
commonly occurring EEG artefacts. The proposed artefact removal method compares
favourably with the state-of-the-art ADJUST method [1] and detected five types of EEG
artefacts successfully, with the balanced accuracy above 95%.

The proposed method is further improved by detecting one of the prominent EEG
artefacts, blink, by means of combining the epoch-based and regression-based Sparse

Component Analysis (SCA) methods. Simulated data is used to evaluate and compare



the proposed method with a recent study [2]. The result demonstrates an almost 2%
improvement in terms of residual variance.

Finally, the ERP classification rate is improved by proposing an ICA-based method
which does not require any artefact removal. The proposed method outperforms the recur-
sive backward channel elimination method which is used to select a number of channels,
including higher ERP information, from the artefact-free data; and compares favourably
with the state-of-the-art xDAWN [3] for ERP classification. Using the proposed method,
a rejection of the artefacts that may contain EEG information is no longer required; hence

more ERP information is extracted.



To Imam Muhammad ibn Ali al-Baqir (PBUH)
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“Knowledge and science are the cof-
fers and caches to the treasures of
Perfection; and the only access to

them is to ask and question.”

Imam Ali al-Rida (PBUH)

INTRODUCTION

The recording of the brain’s electrical potentials or Electroencephalography (EEG), as it
is known in a scientific context, is widely used by clinicians, neurologists and researchers in
monitoring and evaluating the brain’s function; and for diagnosis and treatment of mental
issues and brain disorders [4,5]. The term Electroencephalography refers to the recording
of the brain’s activity through a set of electrodes which are placed on the scalp [6]. The
neurons’ firing creates a flow of current in the brain which causes a voltage fluctuation
that can be measured - the EEG potential. If the corresponding activities in the brain
are happening in response to a stimulus (sensory, motor or cognitive), the measured EEG
potential is called the event-related potential (ERP). A subject’s brain in different states

of consciousness (sleeping, waking, etc.) can generate EEG signals that seemingly vary in



characteristics such as amplitude and frequency [7].

A common ERP paradigm is the flashing checkerboard used in clinical applications
to measure the visual cortex response [8]. Extracting the ERP responses buried in the
EEG data is a crucial task in the analysis of brain information. In addition to the
clinical application, there is an increased interest in employing EEG-ERP paradigms to
understand brain function and develop brain control interfaces in the field of Human-
Computer Interaction (HCI) and assistive technologies [9,10]. Impeding in this interest is
the fact that EEG recordings are attenuated and contaminated by unwanted artefactual
electrical signals originating from physiological and non-physiological sources [11]. To
avoid misinterpretation of EEG data or the brain’s responses to different stimuli, it is
desirable to improve the signal-to-noise ratio (SNR) of EEG data by removing the EEG
artefacts. Usually, the non-physiological artefacts are removed using linear filtering, or
data preparation steps performed according to the specific experimental data. However,
it is not possible to effectively remove physiological artefacts by simple filtering as the
frequency bands of the recorded EEG signal and the artefacts overlap.

Different approaches have been proposed to reject or reduce physiological artefacts
in EEG signals. The earliest approaches rejected artefacts by simply discarding tempo-
ral segments of multichannel EEG contaminated by artefacts [12,13] resulting in a great
amount of information loss. More recently, artefact reduction methods have been adopted
to reduce EEG information loss. Independent Component Analysis (ICA) is one popular
and successful EEG artefact reduction method which belongs to the Blind Source Separa-
tion (BSS) technique [14]. ICA assumes that EEG is a multivariate signal of independent
cerebral and non-cerebral sources whose distributions do not follow the Gaussian distri-
bution. An ICA decomposition via an estimated un-mixing matrix creates Independent
Components (ICs), each representing a source signal. By removing the ICs identified as
artefactual sources and recombining the remaining ICs by inverting the un-mixing ma-
trix, the cleaned EEG signal is reconstructed, potentially improving ERP classification

accuracy.



There are various ICA algorithms which estimate the ICs in different ways. One
active topic of the research is to systematically compare the performance of different
ICA algorithms in source separation and select the best performing algorithm. However,
assessing the effect of different data preparation steps (e.g. segmenting the continuous
data prior to ICA) on the performance of the ICA decompositions has not received a great
deal of attention. Although all the ICA algorithms potentially separate brain sources
from artefactual sources, they do not provide information about labelling the ICs. Thus,
labelling the artefactual sources is essential prior to artefact removal. Another active
topic of research is to automatically label the artefactual sources to be removed from the
data; in order to increase the SNR of EEG data or ERP detection reliability [12,15]. This
thesis, therefore, is mainly interested in extracting more ERP information reliably, by
investigating the optimum signal pre-processing chain and ICA algorithm variant to be

employed for the automatic detection of EEG artefacts.

1.1 Aims and Scope of the Thesis

The ultimate goal of this research is to effectively use ICA for EEG signal processing. In

order to reach this goal, the following steps have to be taken:

e Evaluating the effect of data pre-processing steps on the performance of ICA algo-

rithms.

e Assessing the source separation of different ICA algorithms which employ different

metrics to estimate independent components.
e Effective use of source separation of ICA to increase the SNR of the signal.

Based on the aims of the thesis, first the performance of different ICA algorithms based
on the independence and physiological plausibility of the estimated sources are systemat-
ically compared. Furthermore, the influence of different data pre-processing steps, prior

to ICA decomposition, on the performance of ICA algorithms are evaluated and assessed.
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Therefore, the optimum type of ICA algorithm with respect to the type of the given
pre-processed data and the decomposition quality can be selected for source separation.

Secondly, an ICA-based method is proposed to automatically detect the common EEG
artefacts, namely: blink, saccade, muscle, heartbeat and focal, reliably. The accuracy of
ERP classification calculated from the cleaned data by removing the artefacts using the
proposed method is then evaluated. Methods for removing one of the prominent artefacts
in EEG data, blink, are improved by proposing two approaches which preserve more ERP
information that are buried in the EEG signal and reduce the amount of data loss with the
aim of improving ERP classification rate. The thesis also further improved the accuracy of
ERP classification by proposing the automatic ICA-based method which does not require
any artefact removal.

This study has raised the following research questions:

e Is there any difference between the performance of various ICA algorithms?

e What is the influence of different data pre-processing steps on the performance of

ICA algorithms?

e What is the optimum type of ICA algorithm for source separation with respect to

the type of the given pre-processed data?

e How can ICA be used to remove all the common EEG artefacts reliably and how is

it compared to the existing state-of-the-art ADJUST method?

e Given the blink as the most prominent artefact in EEG data, how can it be effectively

removed from the EEG while ERP information within EEG is preserved?

e How can ICA be effectively employed to enhance ERP classification?



1.2 Major Contributions

The research introduced in this thesis provides original contributions to EEG signal pro-
cessing to enhance ERP classification rate and to improve the SNR of EEG data via the

optimised use of ICA. The major contributions can be summarised as follows:

e Providing a pipeline to effectively select the pre-processing steps and ICA algorithm

variant for optimum source separability;

— systematic evaluation of the ICA algorithms for source separation based on the

independence and physiological plausibility of the recovered sources;

— assessment of the effect of all common pre-processing steps (24 different con-
ditions) on the performance of the most commonly used ICA algorithms (via

960 different ICA decompositions).

e Proposal of a fully automated artefact IC removal method to detect and remove the
common artefacts that occur in normal EEG recordings, including: blink, saccade,

electrocardiogram (ECG), muscle and focal artefacts;

— proposing a set of spatial, temporal and frequential features to discriminate

different artefact ICs, based on the characteristics of different artefacts;

— proposing a two-layered artefact classification algorithm, for labelling artefact

ICs and artefact segments within different 1Cs;

— building a ground truth by labelling more than 640 ICA decompositions by

two individual experts.

e Improvement of ICA-based blink artefact removal, by proposing a Sparse Compo-
nent Analysis (SCA) based method to detect and regress out the impact of the blink
artefacts within the blink ICs and keeping the EEG information within those blink

ICs intact.



e Improvement of the ERP response classification via using ERP response sources as a
new representation of EEG data and extracting ERP features from the automatically

detected ERP sources;

— proposing a set of spatial, temporal and frequential features to discriminate
sources including ERP responses ( task-related ICs) from all other activity

sources;

— proposing a fully automated ERP response IC labelling method.

The statistical analysis of the results plays an important role in research studies and
helps researchers to make inferences about the data and evaluate the certainty or uncer-
tainty of the methods. The absence of statistical analysis does not guarantee the validity
and reliability of the research findings; as the interpretation of the findings and the ob-
tained relationships of the results may not be correct or meaningful and could be simply
chance occurrences. Thus, the full reliability of the findings depend upon a robust sta-
tistical assessment of the methods. Therefore, in order to ensure the reliability of the
proposed methods and obtained results, the Analysis of Variance statistical test, which
is one the most commonly used tests in statistics, is applied to all of the findings of this
research.

This thesis is organised in seven chapters. Following this chapter, the necessary back-
ground is provided in Chapter 2 and the main contributions of the research are presented
in Chapter 3 to Chapter 6, followed by the conclusion in Chapter 7. Each chapter is
started by an introduction section which includes the related existing works and litera-
ture review followed by a discussion of their shortcomings. Subsequently, the proposed
methods are introduced and the obtained results are discussed. The chapters end with
an overview section which concludes and summarises the associated chapter. Figure 1.1
illustrates a block diagram of the thesis structure. A summary of the information provided

in each chapter is given below:
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Figure 1.1: Block diagram of the thesis structure.

1.3 Thesis Structure

Chapter 2 - Background

In this chapter, the background required to understand the EEG concept is provided.
It begins with a brief historical background of EEG; the anatomy and physiology of the
brain; the process of EEG generation and the basic concepts of EEG recording. Then, the
common and conventional EEG pre-processing steps are given followed by an introduction
of the different types of EEG artefacts. Furthermore, the conventional EEG artefact
removal methods are generally discussed and the most recent and commonly used method,
ICA, which is employed in this thesis is explained in more details. Next, ICA principles,
the commonly used ICA algorithms and the application of ICA to EEG are outlined.

Finally, this chapter ends with a discussion on the application of EEG.



Chapter 3 - Systematic Comparison of ICA Algorithms

This chapter provides the pipeline for selecting the optimum ICA algorithm with the aim
of removing artefacts from the EEG data. The effect of different data preparation and pre-
processing on the performance of ICA algorithms is assessed. Based on the assessment, the
optimum pre-ICA processing chain and ICA algorithm variant is introduced and employed

for the rest of this research to detect and remove artefacts from EEG data.

Chapter 4 - Automatic ICA-Based EEG Artefact Removal

In this chapter, an automatic EEG artefact removal method, based on ICA, is proposed to
remove several types of EEG artefacts as a post-ICA processing step. The EEG datasets
are decomposed into independent components by ICA. For each type of artefact, a joint
set of temporal, spatial and frequential features representing artefact characteristics is
extracted. Then, the desired artefacts are detected and removed, based on a two-layered
artefact classification algorithm.

An ERP classification method is employed to evaluate the cleaned reconstructed data,
after detecting and removing artefacts by the proposed method and the existing state-of-

the-art ADJUST method [1] relative to the ground truth and raw data.

Chapter 5 - Enhanced Blink Artefact Removal via Sparse Com-

ponent Analysis

In this chapter, the blink artefact is considered as an important and most contributed
artefact to EEG data, and two methods are developed to further improve the proposed
blink artefact removal method in Chapter 4. Both methods are based on detecting the
segments of blink IC in which the blink occurred, to either reject or eliminate the effect
of blinking. The first method removes the effect of blink by setting the ample point of
the blink segments to zero. In the second method, the effect of blink is eliminated by

regressing out the blink peak in the blink segments. Real and simulated data are used to
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evaluate the performance of the proposed methods; and also to compare these methods

to the recently developed method, DEFL [2].

Chapter 6 - ICA-Based Event-Related Potential Classification

In this chapter, the ERP classification rate is improved by means of two methods. First,
the recursive backward channel elimination method is applied to the cleaned EEG in order
to select the optimum set of channels that provide the highest ERP classification rate.
Furthermore, the result is compared to the ERP classification rate obtained in Chapter
4, where the ERP channels were selected by a human-based method.

Second, an automated ICA-based Event-Related Potential classification method is
proposed in which the ERP is not classified from EEG channels. This way, instead of
the conventional use of ICA to detect and remove artefactual sources to obtain cleaned
data, the ERP is merely calculated from the task-related sources. The task-related 1Cs
are automatically detected by extracting a set of features based on the visual stimulation
paradigm in this experiment. The result of ERP classification from task-related 1Cs
is compared to the state-of-the-art xDAWN algorithm [3], which has been reported to

enhance ERP classification.

Chapter 7 - Conclusion

In the final chapter of this dissertation, a summary of the results and achievements in the

thesis are provided, along with the conclusion and future trends of the work.

1.4 List of Publications

The list of publications of the author is as follows:

e Zakeri Z, Assecondi S, Bagshaw AP, Arvanitis TN. Influence of signal preprocessing

on ICA-based EEG decomposition. In XIII Mediterranean Conference on Medical



and Biological Engineering and Computing 2014 (pp. 734-737). Springer Interna-

tional Publishing.

e Zakeri Z, Samadi MR, Cooke N, Jancovic P. Automatic ERP classification in EEG
recordings from task-related independent components. In 2016 IEEE-EMBS Inter-
national Conference on Biomedical and Health Informatics (BHI) 2016 Feb 24 (pp.
288-291). IEEE.

e Haji Samadi MR, Zakeri Z, Cooke N. VOG-enhanced ICA for removing blink and
eye-movement artefacts from EEG. In 2016 IEEE-EMBS International Conference

on Biomedical and Health Informatics (BHI) 2016 Feb 24 (pp. 603-606). IEEE.

e Zakeri Z, Cooke N, Jancovic P. An Effective ICA-Based Processing Chain For Au-
tomatic Artefact Removal In EEG. In: International Journal of Psychophysiology

[under revision].

1.5 Summary

This chapter provides a brief introduction to this research, its aims and scopes and its
contributions, including a brief summary of each chapter of the thesis, followed by the list

of publications of the author.
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“Teach others your knowledge and
learn knowledge of others so you will
bring your knowledge to perfection
and learn something which you do

not know.”

Imam Hassan ibn Ali (PBUH)

BACKGROUND

2.1 EEG Historical Background

The discovery of the potential of EEG goes back to 1877 as a result of research con-
ducted by the physician Richard Caton (1842-1926) on the exposed brains of rabbits and
monkeys [16]. However, it was not until 1912 that the first measurements and demonstra-
tion of electrical activity were performed by Vladimir Pravdich-Neminsky in the brain of
dogs [17]. Eight years later, in 1920, the German neuropsychiatrist Hans Berger (1873-
1941) revealed the first recordings of the electrical activities of a human’s brain and re-
ported the results on photographic paper. He used the German word ’electroenkephalogram’

to name these recordings; a term which later was altered to electroencephalogram or
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EEG. He also realised that recorded brain signals vary with the individual’s state of
consciousness from relaxation to alertness [18].

In 1935, Gibbs et al. described the characteristic form of spike waves, which started
the field of clinical electroencephalography [19]. Subsequently, in 1936, Gibbs and Jasper
reported the interictal spikes as the focal signature of epilepsy [20,21]. After World
War 11, the researchers tended to develop different methods of detection, purification and
classification of brain signals that enabled them to diagnose abnormal signals. In the
1950s, English physician William Grey Walter developed EEG topography that allowed
for the mapping of electrical activity across the surface of the brain; this topography was
used in psychiatry until the 1980s. From 1990 to 2000, different techniques such as Blind
Source Separations (BSS) [22-27] and Independent Component Analysis ICA [28-30] were
developed to process EEG signals .

Presently, ERP is widely used in cognitive neuroscience research. Since over the ensu-
ing decades, EEG has proved to be useful in both scientific and clinical applications [7].
Furthermore, the processing and analysing of the EEG signals for a better understanding
and interpretation of these signals has also gained importance. As the recorded EEG data
on the scalp is usually contaminated by various artefacts, which are typically comparable
with or of higher amplitudes than the desired brain signal [11], EEG interpretation may
be impaired by the presence of these artefacts [31], resulting in misdiagnosis in patients
in clinical applications. Therefore, in order to maintain clean and clinically meaningful
cerebral activity, improving the EEG signal-to-noise ratio (SNR) via artefact removal is
in demand.

In this chapter, a short introduction of the physical anatomy of the human brain and
the underlying mechanism of EEG signal generation are given. Additionally, the basics of
EEG measurement and pre-processing and application of EEG signals are discussed. The
chapter concludes with introducing the common EEG artefacts and methods employed to

remove their effects from EEG recordings.
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Figure 2.1: Anatomical division of the brain in to four brain lobes of frontal, parietal,
occipital and temporal. The central sulcus, which separates the frontal and parietal lobes,
and the spinal cord, are also shown. The figure is adopted from [32]

2.2 Anatomy and Physiology of the Brain

To gain a better understanding of how an EEG signal is generated, it is important to
realise the neuronal functions of the brain as well as the underlying mechanism of the
EEG.

The Nervous System (NS) is composed of nerve cells (neurons) and glial cells (neu-
roglia) that control and respond to the interaction between the human body and its
external environment [11]. The NS has two major divisions: the Central Nerve System
(CNS) and the Peripheral Nerve System (PNS). The CNS comprises the brain and spinal
cord and controls most functions of the body by receiving information from the PNS and
processing and sending it back. The human brain is the most important organ in the
CNS, which anatomically is divided into different regions, known as the frontal, parietal,
occipital and temporal lobes and the central sulcus (Figure 2.1) [11]. Each lobe performs
a specific function. The frontal lobe is associated with skills of planning and decision
making, control of movement and mood. The parietal lobe is involved in processing the
somatic information derived from external stimuli, namely perception of stimuli. The
occipital lobe is responsible for the perception and elaboration of visual stimuli (visual
processing). The temporal lobe deals with hearing and, through its deep structures (amyg-

daloid nuclei and hippocampus), with learning, memory and emotion (i.e. the perception
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Axon terminal
Dendrite

Figure 2.2: Schematic structure of a neuron. The figure is adopted from [11]

and recognition of auditory stimuli, memory, and speech). The centralsulcus separates
the parietal lobe from the frontal lobe.
The brain consists of billions of neurons connected to each other. The neurons’ struc-

ture and behaviour are described below.

2.2.1 Neuronal Activity

Neurons are the core components of the nervous system in charge of receiving and trans-
mitting electrochemical nerve impulses. In response to physical and chemical stimuli,
neurons perform their specialised tasks of conducting electrochemical signals and releas-
ing chemicals that govern different body processes. Neurons’ activities and nutrition are
supported by glial cells. Neurons exist in a variety of shapes and sizes with specialised
characteristics that enable them to transmit nerve impulses. They can be categorised by
function as [33]: sensory neurons, motor neurons, communication neurons and computa-
tion neurons. However, they share the same structure comprising dendrites, the cell body
(Soma) and azxon, as shown in Figure 2.2. A neuron usually has just one single axon but
can have several dendrites. Dendrites are the branching fibres extended from the soma
responsible for carrying the received signals from other nerve cells towards their corre-
sponding soma. The soma is the central part of the neuron that contains the nucleus of the
cell (Figure 2.2) and is responsible for metabolic reactions of the neuron. It processes the

incoming signals from the dendrites and decides whether a signal has to be transmitted

14



to the axon. In this case, a neuron is said to fire the signals in the form of electrochemical
impulses called action potential or spikes that propagates along the axon [7,11]. The
axon is a slender projection of a neuron that conducts the signals away from the soma to
other neurons, muscles and glands via the axon’s terminal. The transmission of impulses
from one neuron to another happens through an interface called a synapse. A synapse
is a physiological connection between the axon’s terminal of a presynaptic neuron and
dendrites of the postsynaptic neuron, forming a cleft. Small rounded swellings at the
axon terminal release chemicals called neurotransmitters which ease the transmission of
impulses through the synapse. As a result, nerve impulses are sent from the axon of one
neuron to dendrites of another through synaptic junctions and the received signals by the

dendrites are transmitted to the soma and carried away via the axon.

2.2.2 Action Potentials

Different concentrations of the ions and cations between two opposite sides of a neuron,
known as intra-cellular and extra-cellular environments, result in a potential difference of
about —70 mV to —80 mV across the membrane of the neuron at the rest state, known
as the resting potential [11]. The concentration of sodium (Na™) and chloride (CI™)
ions are higher in the extra-cellular compared to the intra-cellular and the concentrations
of potassium (K7T) ions are more in the intra-cellular; as a result of which the intra-
cellular and extra-cellular gain negative and positive voltages, respectively. In the case
of activation of a neuron by an action potential, the neurotransmitter will be released
at the synaptic side of the presynaptic neuron [11]. On the other side of the synapsis,
the postsynaptic neuron has many receptors on its membrane which are sensitive to the
neurotransmitter. The released neurotransmitter in contact with the receptors changes the
permeability of the membrane for charged ions and allows the potential of the postsynaptic
neuron at rest to change.

Neurotransmitters can affect the postsynaptic membrane in two ways: excitatory or

inhibitory. In the excitatory effect, the ion channels on the membrane are open and allow
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Figure 2.3: Changes of the membrane potential in a neuron, from [34].

the positively charged Na™t ions to flow across the neuron. As a result, the potential of
the intra-cellular becomes more positive than the extra-cellular. This is called depolar-
isation of the intra-cellular site or Excitatory-Post-Synaptic-Potential (EPSP) [11]. In
consequence, the potential difference between extra- and intra-cellular is increased and
reaches to about —40 mV (Figure 2.3). If the depolarisation is large enough to hit a given
threshold (about 15 mV higher than the resting potential), the action potential is gen-
erated within the soma that stimulates all points along the axon to constitute the nerve
impulse. In other words, the action potential moves rapidly along the axon and transmits
the nerve impulse from one neuron to the next through the synapse. Therefore, for a
very short time, the cross membrane potential difference is reversed (the intra-cellular
is positive while the extra-cellular is negative). If neurotransmitters have an inhibitory
effect, the ion channels are open and allow the positively charged K ions to flow out to
the extra-cellular site and carry a positive charge out of the postsynaptic neuron. This
results in the repolarisation of the membrane; so that again the intra-cellular and extra-
cellular potentials become negative and positive, respectively and the membrane resumes
its previous polarisation (Figure 2.3). This effect is known as Inhibitory-Post-Synaptic-
Potential (IPSP) and results in hyperpolarisation of the intra-cellular site such that the
intra-cellular potential becomes more negative than the extra-cellular, until eventually the

cross-membrane potential overshoots to nearly —90 mV [11]. After the sodium-potassium
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exchange and the membrane overshooting, the membrane returns to its normal resting
potential. For the next few milliseconds after an action potential, the membrane cannot
be stimulated and undergo another action potential. This brief period of time is called
the refractory period of the membrane [11]. There are many synapses from different
presynaptic neurons in contact with one postsynaptic neuron. So, all the EPSP and IPSP
signals are summed up in the soma and the action potential is generated when a net de-
polarisation of the intra-cellular site at the soma reaches a certain threshold. The neuron
fires, the action potential is generated and propagates along the axon, it arrives at the end
of a presynaptic neuron and causes the release of the neurotransmitter into the synaptic

cleft to reach the dendrites of the postsynaptic neuron.

2.3 EEG Generation

As mentioned previously, Electroencephalography (EEG) is the measurement of the elec-
trical activity of the brain using electrodes placed on the scalp. The electrical activity of
neurons comes from action potentials and Post-Synaptic-Potentials (PSPs). Action po-
tentials are a rapid series of discrete voltage spikes that travel down from the beginning of
the axon at the soma to the axon terminals where neurotransmitters are released. PSPs,
on the other hand, are voltages that are restricted to the soma and dendrites and do not
flow through the axon. They occur when neurotransmitters are in contact with receptors
on the membrane of the postsynaptic neuron and the cross-membrane potential changes
by the exchange of intra- and extra-cellular ions. However, although the amplitude of
PSPs is smaller than action potentials, it is more likely that EEG recording reflects PSPs
rather than action potentials due to their longer duration which makes it possible to de-
tect and measure the integrated PSPs of neighbouring neurons on the scalp, unlike the
action potentials.

Pyramidal neurons are special types of neurons that are suggested to be the main

generators of EEG. These types of neurons have a triangular (pyramidal) shaped soma,
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a single axon and long parallel dendrites (called apical dendrites) which are oriented
orthogonally to the cortex [35]. The neighbouring pyramidal neurons in the cerebral cortex
have parallel dendrite trees and orthogonal direction to the surface. Pyramidal neurons
are polarised at the resting state, in the same way that was mentioned in section 2.2.1.
By receiving an action potential at the axon terminals, the excitatory neurotransmitter
is released in the cleft. The neurotransmitter in contact with apical dendrites causes a
current flow into the neuron, due to the flow of positive ions in the cell membrane which
depolarised the membrane potential at the soma. Consequently, by the outward flow of the
positive ions, another current flows out of the membrane to keep the equilibrium, which
makes the neuron a tiny dipole [7]. This current produces an electric field that extends to
the scalp. The electric potentials generated by a single neuron is too small to be picked
up by the electrodes on the scalp or they can be cancelled out by electrical activity of
neighbouring neurons with opposite polarity. If thousands or millions of neurons in one or
more cortical patches with similar synaptic stimuli (excitatory or inhibitory) align in the
same direction and fire together, they can generate a measurable potential, of the order
of uV, at the scalp [7]. A group of simultaneously active pyramidal neurons in a small
patch of the cortex that produces potentials can be modelled as an equivalent dipole on

macroscopic level [36].

2.4 EEG Recording

To record an EEG signal, a set of electrodes are placed over the scalp with the aid of a
conductive gel in order to boost the scalp conductivity and to enhance the contact between
the electrodes and the skin [37]; how many electrodes to use and where exactly to place
them depends on the application. However, it is essential for any protocol to be viably
reproducible in different laboratories to allow the comparison of results and also over time
in the case of long-term monitoring studies. To make this possible, the 10—20 system

has been introduced by Jasper et al. [38]. The 10—20 refers to the distance between
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Figure 2.4: The 10-20 international electrode placement; a) and b) represent the three
dimensional view of of the electrode placement on the scalp.

the electrodes as 10% or 20% of the distance between given anatomical landmarks. The
electrodes are labelled by the initial of their corresponding lobe and their position is then
labelled by an increasing odd (left) or even (right) number (Figure 2.4). The American
EEG society has introduced an extended setup [11]. Some applications may use extra
electrodes or only a subset of them.

As the potential is a differential quantity where its value in each point has to be mea-
sured with reference to another point, the same principle is used in EEG recordings; that
is the potential difference needs to be measured between each electrode and a reference
point. Therefore, EEG or potential difference measurements are not valid unless a ref-
erence point (electrode) is defined. A reference point can be assigned per electrode or it
can be commonly assigned for all electrodes [37,39]. The former is called bipolarmontage
which represents measuring the potential difference between an adjacent pair of electrodes
at each channel (a pair of electrodes usually make up a channel).

In the latter, each channel represents the potential difference between a certain elec-
trode on the scalp and the assigned reference electrode (referential montag). The reference
electrode is usually placed at a different position to the recording electrodes, like ear lobes.

Also the reference can be the average of all the recording electrodes’ signals (average ref-

19



erence montage). Furthermore, each channel can represent the difference between an
electrode and a weighted average of the surrounding electrodes (Laplacian montage) [39].

The EEG is measured by placing electrodes on the scalp (non-invasive EEG) or on
the cortex (invasive EEG) [7]. In the case of invasive EEG, because the microelectrodes
are placed directly on the cortex and so are closer to the brain compared to the scalp
electrodes, the amplitude of the signal is higher than scalp EEG and as a result, the
signal is less contaminated by artefacts [40]. In non-invasive EEG, the electrical field
produced by synchronous active pyramidal neurons are varied by their passage to the
scalp and mixed linearly on the scalp [5]. The cerebral fluid, skull and the skin constitute
a conductive medium. As mentioned previously, EEG sources inside the brain which
generate potentials, can be considered as an equivalent dipole. When a dipole is placed
inside the homogeneous conductive medium with infinite extent, the current flow in the
medium and the generated potential measured at each point is proportional to the inverse
of the squared distance between the dipole and the point of measurement. If the medium
is inhomogeneous, in addition to the inverse square of the distance, a factor related to the
conductivity of different materials will also be considered. The head conductive volume
has different biological tissues with different conductivity [11]. The produced current by
a dipole is conducted through the head volume among different brain tissues towards
measurement sensors. Due to the variations in conductivity of brain tissues, the potential
field will be distorted and attenuated. When the potential field reaches the scalp surface,
the dispersion of the field occurs and they spread all over the head volume surface because
of the lower conductivity of the scalp in comparison to other brain tissues. Therefore,
the recorded far-field potentials that are conveyed by volume conduction to the scalp
electrodes are relatively smooth and is mixed linearly at the recording site. This is called
non-invasive EEG, which measures the mixed and smoother far-field potentials by using
electrodes placed on the scalp [7,41]. Each channel (a recoding electrode and the reference)
is connected to a differential amplifier (Figure 2.5); since the EEG signals have very weak

amplitude, in the order of microvolts (uV's) and need to be amplified. Therefore, the
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Figure 2.5: A differential amplifier of the EEG recording connected to each channel.

measured continuous analogue signal of each channel is then amplified and high-pass
filtered (to reduce noise) through an analogue filter. The continuous analogue signal is
then digitised and converted into a series of discrete samples by means of an analogue-
to-digital converter to be stored in a computer for further analysis. The digitisation
consists of sampling and quantization of the signal. The channels of the analogue signal
are sampled at a fixed time interval (sampling interval) such that the sampling frequency
must be at least twice the maximum frequency present in the signal to fulfil the Nyquist
sampling theorem [42]. The sampling frequency determines the temporal resolution of the
EEG and the voltage resolution is determined by the quantization step.

Once the data have been recorded, they are generally pre-processed in order to reduce
the effect of artefacts and increase the signal to noise ratio without losing information [43].
Several steps are usually applied to the raw EEG, for further processing of the data, but the
application of a particular method depends on the kind of data that is being processed,
how noisy it is and what techniques will be used in the subsequent processing stages.
Nonetheless, digital filtering and re-sampling of the recorded signal are two common initial
stages in EEG data pre-processing.

The EEG signal is usually recorded at a high sampling rate (e.g. up to 20kHz for
different research applications) which increases the required memory for storage in and
decreases the speed of evaluation and computation. Therefore, the measured EEG is
down-sampled to smaller frequencies to reduce the computational and storage costs. It

is important to mention that it is essential to down-sample the data after filtering with
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regards to the Nyquist sampling theorem.

Digital filtering is another stage in EEG data pre-processing to extract signals within
a predefined frequency band of interest. Applying a filter to the data presupposes that the
information carried by signals will be mostly preserved, to the benefit of attenuating other
frequency components which are not desired. Normally EEG data is band-pass filtered
to reduce the slow drifts and high frequency artefacts. It is also common to use a 50H z
or 60H z notch filter to eliminate power line interference. Filtering is widely carried out
by using Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) linear filters
[44]. IIR filters are usually more computationally efficient than FIR filters, but with the
inconvenience of introducing non-linear frequency-dependent phase delays and hence some
non-equal delays in the temporal domain at all frequencies; which is unacceptable for EEG
signal analysis where timing and phase measurements are crucial. FIR filters delay signals
in the time domain equally at all frequencies, which can be conveniently compensated for
by applying the filter twice: once forward and once backward on the EEG time series [45];
which results in a zero-phase shift.

Electrical signals in the EEG that are originated from a non-cerebral origin are called
artefacts. After the above pre-processing steps, removing the well-defined artefacts, such
as eye movements and muscle activity, is often desired in EEG signal processing [19,
128]. At many points during the recording of the EEG data, the signal is likely to be
contaminated by artefacts typically with the same amplitude as the desired brain signal
or higher [11]. Artefacts are undesirable signals that may affect the signal of interest
which can lead to misinterpretation of EEG analysis. It is, therefore, important to be
able to identify common artefacts before interpreting the recorded signals. Artefacts can
be divided into two categories [39,46]: physiological and non-physiological. Physiological
artefacts are generated by sources inside the subject itself, like those generated by eye
movement (i.e. blink and saccade artefacts) and muscle movement. Non-physiological
artefacts originate from sources outside the human body, which is the case in instrumen-

tation artefacts. While transferring from the scalp electrodes to the recording device,
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the EEG signal can be corrupted by the strong fields of alternating current (AC) power
supplies. A significant rise in the impedance of an active electrode between the ground
of the amplifier and the electrode causes the ground to act as an active electrode; which
consequently produces the 50 Hz (in Europe) or 60 Hz (in the USA) mains artefact [11].
Moreover, electrode and equipment-related artefacts such as impedance change due to
electrode displacement and may also compromise the quality of the data. In Chapter 4,
the common artefacts in EEG data are discussed in detail; the intention is to detect and
remove these from the data.

In addition to the above common pre-processing steps, there are a few more pre-
processing stages such as segmenting the data into epochs and removing the baseline,

which are discussed in Chapter 3.

2.5 EEG Artefact Removal

Artefacts can be handled by either avoidance, rejection or removal. To avoid artefacts, in
many studies the subjects are instructed to suppress limb movement, eye movement and
blinking. However, artefact occurrence is inevitable because movements and blinks can
be involuntary, especially in children and elderly people [47,48]. Several techniques have
been proposed to remove artefacts from EEG recording to improve the signal-to-noise
ratio(SNR). One of the basic approaches is the epoch-based method in which the whole
temporal segments of EEG contaminated by artefacts are rejected. However this way, a
large amount of useful cerebral information in the EEG is also discarded, especially when
the artefacts occur frequently [12,13].

To prevent losing whole EEG segments when removing artefacts, methods which re-
move them while preserving the underlying neural activity, are employed. Regression-
based methods emerged in the time [49,50] and frequency domains [51,52] and are the
most common type of artefact removal methods in EEG studies. They require additional

reference noise channels (e.g. Electrooculography-EOG) so that the activity measured at
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a reference channel is subtracted from the EEG channels. However, regression methods
cannot be used to remove all artefact types. The fact is that a reliable reference channel
for a specific type cannot always be realised due to the artefact source being spatially
dispersed, e.g. power line noise and muscle movement. Another weakness of regression
methods is that bidirectional contamination of brain signal and artefact sources, the same
as removing whole temporal segments, will risk the removal of relevant neural informa-
tion [53,54].

An alternative successful artefact removal method is based on blind source separation
(BSS) techniques that can recover the source signals from a mixture of multichannel EEG
recordings. The process of estimating the source signals is without prior knowledge of
the sources and their mixing process. As a result, the estimated sources may correspond
to artefact or cerebral activities. Once the source signals associated to the artefact are
detected and removed, the cleaned EEG data can be obtained.

Recently, methods based on the concept of BSS, have been widely employed in order
to separate neural activity from different artefacts in spontaneous EEG data [37,55-57].

The rest of this thesis concentrates on the BSS method and its principles. Among dif-
ferent BSS algorithms, the most widely used and effective algorithm, Independent Com-
ponent Analysis (ICA) is described, with the aim of comparison (covered in Chapter 3)
followed by the application of ICA to EEG.

2.6 Blind Source Separation

BSS was first initiated in 1982 from a discussion between neuroscientists Bernard Ans,
Jeanny Herault and Christian Jutten with Jean-Pierre Roll about modelling the biological
problem of motion decoding in muscle contraction [58] to separate sources correspond-
ing to the angular position and velocity of a moving joint. In 1986 Jutten and Herault
presented an algorithm to separate two mixed independent source signals based on neu-

ral networks [22,59] (using the search method). In 1994, Comon formulated BSS and
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introduced a BSS algorithm, Independent Component Analysis (ICA), based on min-
imisation of mutual information between the sources [60]. A year after, in 1995, Bell
and Sejnowski proposed the Infomax ICA based on a maximum entropy approach [23].
This algorithm was further refined by Amari and his colleagues using the natural gradi-
ent [61,62]. The originally proposed algorithm by Bell and Sejnowski (1995) was only able
to separate super-Gaussian sources. To overcome this limitation, Lee et al. [63] developed
the Extended-Infomax algorithm which was able to simultaneously separate both sub-
and super-Gaussian sources.

A few years later, Hyvirinen and Oja presented the fixed-point or FastICA algo-
rithm [64], which has contributed to the application of ICA to large-scale problems due to
its computational efficiency. Another recent algorithm has been proposed by Palmer et al.
and is called the Adaptive Mixture of Independent Component Analysers (AMICA) [65],
which is based on the modelling of each source component as a sum of extended Gaussians.

Up to now, a large number of ICA algorithms have been proposed which cover research
areas such as EEG, speech and digital image processing [14]. However, in this thesis only

the EEG signal and the application of ICA to EEG signal processing are considered.

2.6.1 Blind Source Separation Principles

Blind Source Separation (BSS) is a statistical approach to recover and estimate the source
signals (components) from a set of observations. It assumes that the mixture signal
is generated by uncorrelated sources. The BSS method has been developed for a so-
called ’cocktail party problem’ in which individual speech is found from mixtures recorded
simultaneously by several microphones located at different positions in a room. The term
blind refers to the fact that in the BBS approach very little is known about the nature
of the source signals and the mixing process. In the concept of an EEG signal, a single
scalp electrode records a mixture of signals from different sources in the brain when the
individual sources of the mixed signal are desired [66]. The individual source signals can

be obtained by the BSS approach in such a way that BSS tries to estimate the optimal
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set of uncorrelated brain sources that best represent the measured signal, while little is
known about their mixing process. BSS appears to be suitable for artefact rejection in
which a subset of sources that generates artefacts is likely to be removed and the EEG is

reconstructed by the remaining sources. A BSS model can be formulated as follows:

X(t)=AxS(t) (2.1)

Where X (t) represents the observed mixed data matrix (m x n); the EEG data matrix
time course, with m and n equal to the number of sensors and sample points, respectively;
A is the unknown mixing matrix of the dimension m x m; S(t) represents a m X n matrix
of the time series of sources. Since the A and S(t) are unknown, an assumption on the
number of sources has been made, in addition to the un-correlation of the sources. The
number of sources are considered to be known in such a way that it should not be more
than the number of sensors. It can be equal or less than the number of scalp sensors. If it
is assumed to be more than the number of sensors, the signal sources are under-determined
and cannot be estimated by BSS due to the imperfect knowledge about sources and the
mixing process [67,68].

In order to estimate sources, the un-mixing matrix, W = A~! has to be estimated to

recover the time series of sources in such a way that:

S(t) =W x X(t) (2.2)

The un-mixing matrix W is also known as a topography matrix in which the columns
represent the contribution of each source to the EEG data. When the estimated sources
are recovered, the unwanted (i.e. noise) sources can be removed and the clean EEG data,
XA(t), can then be reconstructed by backprojecting the remaining set of sources. This can

be done by using the new mixing matrix A which is obtained by setting the columns of
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the corresponding unwanted sources in matrix A to zero:

X(t) = A x S(t) (2.3)

Several BSS algorithms have been developed which employ different assumptions to
estimate the un-mixing matrix W and sources S(¢). In this research, one of the most

widely used BBS-based algorithms, ICA, is selected and its principles are described next.

2.6.2 Independent Component Analysis

ICA is a BSS technique that employs higher order statistics to estimate the constitutive
source signals of linearly mixed signals. The estimated sources by ICA are assumed to
be statistically independent; which do not provide any information about each other [14].
Statistically, independent sources are uncorrelated; however, the reverse statement is not
necessarily correct. For example, if X is a continuous random variable uniformly dis-
tributed on [—1,1] (i.e. X ~ U(—1,1)) and Y = X?, then X and Y are uncorrelated;
however, they are not independent, as a particular value of Y can be produced by only
one or two values of X. In EEG context, ICA assumes that the reading at each elec-
trode is a linear mixture of independent physiological activities (independent sources);
and it attempts to estimate the original sources corresponding to different physiological
processes.

Prior to applying ICA to decompose EEG data, the ICA principles and assump-
tions [69], regarding the nature and characteristics of the EEG signal, are discussed in the
following section:

Linear representation - ICA assumes that the observed data is generated from a linear
combination of a number of independent sources. In the context of the EEG signal, the
potential fields are linearly mixed on the scalp by the head conductive volume (section 2.4).

Instantaneous miring model - The time delays that may occur in the mixing of the

sources of the mixed signal are neglected by ICA. This is often called an instantaneous
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mixing model. In EEG recording, there is a delay between the transmissions of the
generated signal from the sources to the measurement sites on the scalp (i.e. electrode lo-
cations). The EEG electrodes are relatively close to each other and the propagation speed
are relatively high compared to the signal frequency and sampling frequency. Therefore,
it can be assumed that the source signals are measured at the same time as they have
been emitted from the sources, which is called instantaneous EEG recording [11].

Spatial stationarity - The estimated sources by ICA are assumed to have spatially
stationary location. This assumption is plausible for constitutive sources of EEG data,
as the EEG sources are assumed to be generated from independent activities of neurons
in a small number of spatially stationary brain networks (spatially-fixed cortical patches)
which fire together and generate EEG potential [7].

Independence - The original sources should be statistically independent to be able to
be estimated by ICA, which means that the sources do not contain any information about
cach other. Based on the Central Limit Theorem (CLT) [70], the distribution of the
linear summation of a large enough number of independent random variables approaches
a Gaussian distribution. The ICA method can be seen as the reverse process of the CLT
with the assumption of independence and non-Gaussianity of the sources [60]. Aligned
with this theorem, since the number of neurons is very large, the mean of all the EEG
activity sources also tends to have Gaussian distribution. Neurons work like independent
oscillators and can generate oscillatory potentials. These potentials are added together
and can be detected and measured by electrodes on the scalp. The EEG signal is a mixture
of both brain and non-brain sources. The EEG non-brain sources have non-Gaussian
distribution; most of the non-brain sources have super-Gaussian distribution (i.e. blink
and ECG sources) [71] and the main sub-Gaussian source in EEG is the 50 Hz power
line signal [72]. The sources associated to the response of the stimuli and the epileptic
spikes can be extracted by ICA due to their spiky activation pattern and non-Gaussian
distribution. Thus, this assumption is plausible for EEG data to separate artefactual

sources from the mixed EEG signal. Therefore, if S(t) from equation 2.1 is assumed to
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be a set of independent sources, the observed mixed signal X(t) will be more Gaussian
than each source from S(t), by the CLT. A single independent source is a linear mixture
of X(t) given by the weights in the un-mixing matrix W. The process of finding the un-
mixing matrix W is an optimisation process that maximizes the non-Gaussianity (with
minimal Gaussian properties) of independent sources S, such that sources are maximally
independent [73].

There are several ICA algorithms developed to estimate the optimised un-mixing ma-
trix W, which employ different metrics to quantify the non-Gaussianity of the ICs.

The estimated source signals could be associated with either cerebral or artefactual
activities. Despite source separation, ICA does not label the estimated sources. Usually,
the estimated sources by ICA are labelled manually by visual inspection. Once the sources
are labelled, the artefact-free EEG can be reconstructed by removing the artefactual

sources from the data.

ICA Algorithms

In the previous section, it was highlighted that different ICA algorithms employ different
criteria to maximise the non-Gaussianity of ICs. Nevertheless, two initial steps of centring
and whitening (or sphering) are usually taken to simplify the ICA algorithms before
estimating the un-mixing matrix W.

Centring: the mean of the observed signal X is subtracted from the signal itself. So
the observed signal has zero mean by the centring process.

Whitening: whitening is a simple and standard procedure to reduce the complexity of
the ICA problem by a linear change of the coordinate of the mixed data. Then applying
ICA only means “rotating” this representation back to the original axis space. Thus one
can say that whitening solves half of the problem of ICA. From a mathematical point of
view, whitening is a linear transformation in which the components of the measured data
X become uncorrelated and their variances are equal to one (unity). It can be obtained

by linear transformation of data X by linearly multiplying it with a matrix V', so that the
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new vector z is obtained which is the whitened data:

z2=VX (2.4)

Such a transformation may be estimated by Principle Component Analysis (PCA); the
covariance matrix of the observed data is formed by taking the covariance between every
point of the measured data X. The Eigen decomposition is performed. Therefore, the
whitening matrix can be obtained in such a way that it transforms the covariance matrix
into an identity matrix and the whitened data is achieved.

After the above two steps, the uncorrelated data with zero mean and unit variance un-
dergoes further transformation by different ICA to estimate the sources as independently
as possible.

All ICA algorithms are based on the same fundamental approach to find an un-mixing
matrix W in such a way that the non-Gaussianity of sources S(t) is maximised resulting in
maximising the independence of S(t). The process of finding W is an optimisation process
to maximise the non-Gaussianity of the estimated sources. However, different criteria have
been employed by different types of ICA algorithms to estimate sources as independently
as possible [11]. The most commonly used ICA algorithms namely: AMICA, Infomax,
Extended-Infomax and FastICA are considered in this research and are explained below.

The FastICA algorithm was introduced by A. Hyvarinen in 1999 [64]; it provides a
fast iterative algorithm. It is based on the CLT and attempts to separate underlying
sources from the given measurement set based on maximising their non-Gaussianity as
a measure of statistical independence. FastICA uses this fact by building up a weight
matrix column-by-column, where each column maximizes the non-Gaussianity of the cor-
responding component.

Non-Gaussianity can be measured by kurtosis or negentropy [74]. Kurtosis measures
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the peakedness of a distribution. It can be calculated by:

kurt(y) = E{y'} — 3E{y’}? (2:5)

where, E{...} is the expectation operator. When y is normalised, its variance is equal
to one, F{y?} = 1; so, the kurtosis (kurt(y)) is simplified to E{y*} — 3. (For a variable
y with unit variance, kurt(y) = E{y*} — 3, which is simply a normalised version of the
fourth moment E{y*}.)

If the kurtosis is zero the distribution is Gaussian. The distribution of all non-Gaussian
variables have non-zero kurtosis; if it is positive, the distribution is super-Gaussian which
is spikier than a Gaussian distribution and if it is negative, the distribution is sub-Gaussian
which is flatter than Gaussian. Therefore, in ICA the absolute value or square of kurtosis
can be used as a measure of non-Gaussianity. However, kurtosis is sensitive to the outliers
in the dataset and is more influenced by values in the tails of the distribution, than in the
centre of the distribution, which may be erroneous or irrelevant observations. Therefore
it is not a robust measure of non-Gaussianity [75].

Negentropy (differential entropy) measures the distance from the Gaussian distribu-
tion. An important property of a Gaussian distribution is that it has maximum entropy
among all distributions with the same variance. Therefore, non-Gaussian distributions
have less entropy than Gaussian distribution and the more distance from Gaussianity
yields more non-Gaussianity. Negentropy is defined as the difference between the entropy

of a Gaussian random variable ygqussi and the entropy of y:

‘](y) = H(ygaussi) - H(y) (26)

where J is the differential entropy (negentropy) and H is the entropy of a distribution,
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which is given by

H(y) = = [ Fy)log(f(y))dy (2.7)

where f(y) is the density function of y. Negentropy is almost always greater than zero
and is zero only if the signal is Gaussian. Because Gaussian random variables have the
largest entropy, H among all random variables with the same variance [76], maximizing
J(y) leads to the separation of independent source signals.

The problem in using negentropy is that it is computationally difficult to calculate
and requires estimation of the probability density function of the sources (f(y)). Several
entropy approximations are introduced in the literature, which are beyond the scope of
this research. In [77-79], there is an exhaustive list of entropy approximations in detail.

Infomazx was developed by Bell and Sejnowski [23] to estimate the independent sources
with super-Gaussian distributions [63], using the information-maximization principle.
This ICA algorithm identifies the un-mixing matrix W in such a way that the joint
entropy of the estimated sources is maximised; so that the mutual information among
the sources is minimised, resulting in maximally independent and non-Gaussian sources.
Mutual information measures the dependence of variables. It tells how much informa-
tion a variable gives about the other. Mutual information is explored in more depth in
Chapter 3 section 3.3.1.

Mutual information can also be thought of as a reduction in uncertainty about a vari-
able. A high level of mutual information specifies a large reduction in uncertainty; while
a low level of mutual information specifies a small reduction. Zero mutual information
means the variables are independent. Mutual information is defined in terms of entropy
which is a measure of uncertainty. The minimisation of entropy equals minimising the mu-
tual information. Since non-Gaussians have less entropy than Gaussians, minimising the
entropy, which results in minimising the mutual information, is equivalent to minimizing

Gaussianity.
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Extended-Infomaz is an extension of the Infomax ICA algorithm that brings the abil-
ity of estimating sources with sub-Gaussian distributions to Infomax. It preserves the
Infomax architecture, while considering both sub- and super-Gaussian distributions to
estimate sources. Therefore, it may be slower than the original Infomax algorithm, which
does not consider sources with sub-Gaussian distribution [80].

The AMICA algorithm was proposed by Palmer et al. [81]; that uses a generalised
Gaussian scale mixture model [80, 82, 83] to flexibly model the density of each source
signal as a sum of sub- or super-Gaussians. In order to estimate the independent sources,
the non-Gaussianity of the sources is maximised by maximising the likelihood of the
data; which is equivalent to mutual information minimisation used in the Infomax ICA
algorithm [84]. This algorithm segments the data in an unsupervised manner by using
an expectation maximisation (EM) algorithm [85,86]. An EM algorithm is a statistical
estimation to model the density of data based on maximisation of likelihood [84]. It
has an adaptive approach in which the models in the mixture compete with each other
to fit the data. This allows modelling of non-stationarity in the source structure by
allowing different models to account for different time periods [65]. Similar to Extended-
Infomax, AMICA is also able to estimate sources with both sub- and super-Gaussian

distributions [87].

2.6.3 Application of ICA to EEG

ICA can be applied to EEG data to reveal the information associated to the brain activities
which are hidden in the observed mixture of the EEG signal. In this manner, EEG can
be decomposed into artefact and non-artefact sources. The artefact sources can then be
detected either manually [88-91] or automatically [1,92] and removed from the data. Thus,
the cleaned and artefact-free EEG can be reconstructed by backprojecting the remaining
non-artefact sources [12,93-97].

Another application of ICA to EEG concerns feature extraction [75], where the inde-

pendent components estimated by ICA are used as a new representation of the data, from
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which the meaningful features can be extracted from their time series and power spec-
tra. ICA has been successfully employed to extract features for detection of Alzheimer’s

disease [98], epilepsy seizures [99] and epileptic spikes [100].

2.7 EEG Applications

EEG provides high temporal resolution in the range of milliseconds and low spatial reso-
lution of a few centimetres, depending on the number of electrodes [11,46]. As the EEG
can provide a non-invasive measure of the brain activity with high temporal resolution, it
has been widely used in different areas such as clinical and scientific research.

EEG waves have been extensively studied and analysed in recent years as a way of
understanding brain activities and also as an objective approach to recording brain stim-
ulation. EEG signals are composed of different oscillations, named rhythms [37]. The
identification of specific rhythms or features in the EEG is a way to quantitatively di-
agnose brain disorders. In healthy subjects, brain activity in specific frequency bands is
related to the state of consciousness or sleep. These frequency bands are called delta (9),
theta (0), alpha («), beta () and gamma (vy) -bands respectively. The d-band (0.5-4 Hz)
is associated with deep sleep; the #-band (4-7.5 Hz) appears during the transition from
consciousness to drowsiness and it is related to the level of arousal; the a-band (7.5-13
Hz), mainly visible in the occipital region, indicates a relaxed state of awareness with-
out attention; the S-band (13-26 Hz) is a waking rhythm associated with attention and
concentration; the v-band (above 26 Hz) contributes to some brain diseases as well as to
event-related synchronization. These rhythms are illustrated in Figure 2.6. Variations in
the main EEG rhythms or abnormal patterns may be related to diseases, such as epilepsy
or mental disorders.

Analysis of the evoked brain response to a specific stimulus is a common application
of EEG which is known as Event-Related Potential (ERP) analysis. ERPs represent the

electrical activity of the brain specifically associated to a given external stimulus. They are
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Figure 2.6: TIllustration of the brain rhythms: delta (§), theta (), alpha («), beta (5)
and gamma (), from [101].

commonly used in psychological or neurological sciences to probe cognitive functions [102].
A typical ERP experiment is shown in Figure 2.7.

In an ERP experiment, a subject is presented with stimuli that are related to the
cognitive function of interest and the subject’s EEG is recorded (Figure 2.7 (a)). A single
response is called a trial (Figure 2.7 (b)). The amplitude of ERPs (10 x V) is much smaller
than EEG recordings (100 p V). This activity is extracted from the EEG by synchronous
averaging of single trials, triggered by the stimulus time. In this manner, background
stochastic activity is averaged out while the event-related component is highlighted. The
number of trials to be averaged depends on the original signal-to-noise ratio of the data and
the ERP component of interest. However, it can be proved that the factor of improvement
of the signal-to-noise ratio is equal to the square root of the number of trials over which

averaging has happened. The single trials are obtained by segmenting the EEG around
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Figure 2.7: A typical ERP experiment; a) One channel EEG data recorded during the
presentation of the stimulus (s); b) Segmenting the EEG data into epochs based on
stimulus onset; ¢) Averaging the data epochs to obtain the averaged ERP.

the stimulus time, in a time window that depends on the process under investigation.
The resulting average usually contains peaks and troughs, commonly called components,
with respect to a baseline, i.e. brain electrical activity at rest (Figure 2.7 (c)). The trials

are usually plotted with a negative voltage upward, by convention. The peaks are named
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by a letter, N (negative) or P (positive), according to their polarity and a number that
indicates a precise latency, in milliseconds, or the component’s ordinal position. Due to
the correspondence between a peak and a specific stage of the cognitive processes arisen
by the stimulus, amplitude and latency of these peaks (i.e. the time interval between
the stimulus onset and the peak) may provide convenient measures for tracking practical
neuronal mechanisms. The absence of some peaks or significant changes in amplitude
and latency with respect to a normal population may depict particular brain pathology or
dysfunction. The ERPs, averaged separately for each condition present in the experiment,

are then compared and tested for significant differences.

2.8 Summary

In this chapter the basic concepts of EEG generation and brain electrical activity were
discussed, followed by the application of EEG data. Different artefact types can affect
the quality of EEG data and make it difficult to be interpreted and analysed. Various
methods, either artefact rejection or artefact removal methods, exist to remove artefacts
from EEG data. The most recent successful EEG artefact removal method is the BSS-
based method, ICA, which unlike artefact rejection methods can remove the artefacts while
preserving the underlying neural activity. In this thesis, ICA algorithms are considered

to be employed for EEG artefact removal; they are described in the following chapter.
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“Seek Knowledge and adorn it with

forbearance and dignity.”

Imam Ja'far al-Sadiq (PBUH)

SYSTEMATIC COMPARISON OF ICA
ALGORITHMS

3.1 Introduction

ICA has been widely used for the analysis of EEG data and separating the brain and non-
brain sources (commonly known as artefacts) from the EEG mixture [14,23,103,104]. ICA
estimates the independent components (ICs) by maximising their non-Gaussianity [73,105,
106]. Various ICA algorithms employ different metrics to quantify the non-Gaussianity of
the ICs resulting in components that may differ across algorithms [11,104]. Consequently,

the systematic evaluation of the ICA algorithm variants to find the best performing al-
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gorithm for source separation, is an active topic of research. Some ICA algorithms have
been compared based on the independence of estimated ICs in ocular artefact removal from
EEG [107]. The performance of ICA algorithms in separating and removing different types
of artefact such as EOG and ECG from EEG data has also been evaluated [96, 108, 109].
Delorme et al. [110] assessed the ability of ICA algorithms in separating the stereotyped
artefact sources from brain sources using higher order statistics.

Mavennila et al. [111] compared the quality of source separation based on the non-
Gaussianity of estimated sources and the percentage of variance accounted for in the data
among four ICA algorithms, along with their computational demands.

The effect of removing the linear trend of data epochs on the reliability of the estimated
sources by ICA is also assessed by Groppe et al. [112]. Furthermore, the independence
and physiological plausibility of the estimated sources by several types of ICA algorithms
have recently been evaluated by Delorme et al. [104]. Korats et al. [113] compared the
performance of ICA algorithms in terms of using different initialisation steps (whitening
and sphering) of the ICs estimation and different lengths of data undergoing ICA decom-
position. The performance of two ICA algorithms in effective EOG artefact separation
and removal has also been compared by Kusumandari et al. [96].

However, the effect of various pre-processing steps on the output of different ICA
algorithms has not yet received a great deal of attention [114]. As the initial step after
recording the raw EEG data is to pre-process and prepare it for further analysis, it is
crucial to select the data pre-processing chain and apply it to the raw data prior to ICA
decomposition (pre-ICA processing).

In this chapter, the decomposition results of the most commonly applied ICA algo-
rithms, namely AMICA, Extended-Infomax, Infomax and FastICA are compared. These
ICA algorithms are most aligned with the purpose of this research which is separating
artefactual components, such as eye artefacts, from EEG activities. Also, the effect of sev-
eral pre-processing steps prior to ICA on the ICA source separation quality is assessed. In

total, 24 EEG data pre-processing conditions have been examined and the independence
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Figure 3.1: Experimental design of the visual stimulation.

and physiological plausibility of the recovered components have been assessed. The pro-
cessing times of the best performing algorithm across different pre-processing conditions
were also evaluated. Finally, the optimum pre-ICA processing chain and ICA algorithm

variant for better source separation is reported.

3.2 Materials and Method

3.2.1 Data Acquisition and Pre-processing

EEG data recordings were obtained from ten healthy subjects who attended to a visual
stimuli paradigm. As illustrated in Figure 3.1, each trial was started with a presentation
of either high contrast (distinct) or low contrast (blurred) checkerboard (¢ = 0). After
500 ms (¢t = 500ms), the checkerboard was phase-reversed and was presented for another
500 ms. Usually, the repeated stimulus presentation on the fixed time intervals may lead
to a decrease in the amplitude of subjects’ brain responses recorded in the EEG - an
effect known as habituation [115]. In order to avoid habituation, the inter-trial interval
was randomised between 1.5 — 2.5 s (mean 2 s). During each recording session, 100
high contrast (S1) and 100 low contrast (S2) stimuli were presented randomly over an
approximate duration of 10 minutes. Each of 10 subjects attended at one session, resulted
in collecting a total of 2000 trials (10 subjects x 200 trials). Subjects were asked to avoid
moving their eyes and body as much as possible.

The data was collected using 64 channels (connected to a BrainAmp MR-Plus Am-
plifier, BrainProducts, Gilching, Germany) with current limiting safety resistors of 5k(?2

at the amplifier input and in each electrode. The EEG cap including 62 scalp electrodes
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following the standard 10 — 20 system [38] was used along with one EOG and one ECG
electrodes, which were attached below the left eye and 2 ¢m below the left collarbone,
respectively. The datasets were recorded at sampling rate of 5 kHz and the impedance at
all recording electrodes was less than 20kf2 [116].

It could be beneficial if there was the possibility of collecting different EEG datasets
with more complex paradigms for the aim of this research. However, due to the lack of
resources, we had to employ the described EEG dataset which is collected at the school of
Psychology and shared with the Electronics department at the university of Birmingham.

As an initial pre-processing step, raw EEG data was first band-pass filtered at 0.016 —
100H z [117]. The value of the low cut-off frequency of the filter is the same as the low cut-
off frequency of the high-pass filter (0.016 Hz) in the AC amplifier of the EEG equipment
which filters out the DC components and non-neural potential (i.e. skin potentials) [118].
Thus, as the data was kept intact at this stage, the same low cut-off as the AC am-
plifier was chosen. Generally, EEG signals are not extended beyond 100H z in normal
EEG-analysis [119]. Therefore, the high cut-off frequency of 100H z was selected for the
band-pass filter. In the next step, the EEG data was down-sampled to 250H z to reduce
computational and storage cost. The sampling frequency of 250H z was selected in order
to fulfil the Nyquist theorem and to ensure the sampling rate is at least twice the highest
frequency component [46, 120].

The beginning and end parts of the data that do not include any stimuli are removed.
If electrodes are periodically noisy, it is not necessary to exclude them. This type of noise
can originate from the gross movements of the subjects’ body during EEG recording,
which can bury the low amplitude signals of interest. Thus, the fragments of data which
contain substantial noise with high frequency and high amplitude waves are intended to be
deleted [1,104]. This is done by segmenting the data into 500 ms windows and removing
the fragments in which at least one of the channels exceeds the identified threshold £200
1V

Before entering ICA decomposition, the pre-processed data undergo further processing
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steps, which are a combination of the following [114]:

e ExG: the non-EEG channels (ECG and EOG) are included (withExzG) or excluded

(w/o ExG) from further analysis;

e FILTER: the EEG data are further band-pass filtered at 0.16 — 40Hz (Filtered
(40HzBandwidth)) or no additional filter is applied (Not Filtered (100Hz Band-
width));

e SEGMENTATION: the EEG data is segmented (Epoched) into epochs (100ms be-
fore and 900ms after stimulus onset) or continuous data is used (Continuous) for

ICA decomposition;

e EPOCH MEAN REMOVAL: in the case of epoched data, the mean values across
the epoch are removed (Mean Removal) or not removed (No Mean Removal) before
ICA decomposition. Based on the study performed by Groppe et al. [112], removing
the epoch mean leads to more reliable sources, thus, it is recommended rather than

removing the pre-stimulus baseline.

e BAD-CHANNEL REMOVAL: the bad-channels are removed from the data (Bad-

Channels Removal) or not removed (No Bad-Channels Removal).

More discussion on each of these pre-processing steps is provided in the following sections.

Continuous and epoched EEG data

EEG data is collected continuously and can be analysed and processed as either continuous
(Figure 3.2) or epoched data (Figure 3.3). Segmenting the signal into time-locked epochs
to the stimulus onset is desired in studying the brain response to the presentation of a
specific stimulus type [7]. Also, it has been reported that segmentation can divide the
non-stationary EEG signal into pseudo-stationary segments [37,121,122].

A signal is non-stationary if the statistical characteristics of it change over time (in

other words, if the signal is time-variant). Due to the fact that the state of the brain
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Figure 3.2: A sample of continuous EEG data; red lines depict the stimulus; S1 onset in
the data.
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Figure 3.3: A sample of epoched EEG data based on stimulus onset S1.

varies over time, such as changes in the physiological state (e.g. different stages of sleep)
or pathological changes (e.g. epileptic seizures), the multichannel EEG signals can also be
considered as non-stationary. Since the scalp electrodes measure the mixed signal coming
from different neurons, each transmits a signal with different intensity. Also, a single
non-stationary source can make the whole mixed signal appear non-stationary even if the
rest of the sources are stationary [123]. However, the EEG signal can be assumed to be

stationary only within short intervals of time. This assumption holds during a normal
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brain condition in which the subject is in a particular state [124].

Therefore, EEG signal segmentation into epochs is suggested as a pre-processing step
that can improve the non-stationarity of the EEG signal and reduce the noise [125-128|,
while resulting in some data sample points loss. The process of selecting specific time
intervals of EEG data time-locked to the stimulus and discarding all other samples is
called epoching (segmenting). Normally, the time interval of the epochs starts from tens
of milliseconds before and hundreds of milliseconds after stimulus onset, respectively. The
pre-stimulus and post-stimulus intervals are selected in such a way that the baseline (i.e.
resting) EEG and the brain response to the stimulus are captured, respectively.

In contrast, the continuous EEG data could be of interest, rather than the epoched
data, in order to prevent information loss, especially in clinical environments and for
monitoring epileptic seizures [129-134].

In this research, the effect of both continuous and epoched EEG data on the ICA
decomposition are analysed. The epoched data is obtained by segmenting the continuous

EEG data from 100ms before to 900ms after stimulus onset.

Baseline Correction

In the case of the epoched data, there could be baseline level differences between the
data epochs. The presence of the baseline (DC) level differences in the data could lead
to misinterpretation in EEG data analysis. Baseline correction is another option in the
pre-processing steps which removes the DC component due to overall voltage offset from
the waveform in each epoch. Therefore, it would be beneficial to have a time interval
where there is no obvious stimulus-related brain activity (pre-stimulus interval); and any
shifts from the baseline can be assumed as artefact contamination in the data. There are

two major baseline correction methods for each epoch in every EEG channel:

e subtracting the mean signal over pre-stimulus interval, from the signal at all time

points [135, 136].
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Figure 3.4: Not filtered EEG data (left) versus band-pass filtered EEG data with high
cut-off frequency of 40Hz (right).

e subtracting the mean signal over the whole epoch interval, from the signal at all

time points.

The latter method is used in this study for baseline correction, since Groppe et al. [112]
demonstrated that removing the whole epoch mean rather than the pre-stimulus mean,
before ICA decomposition, leads to less data discontinuity. Thus it considerably improves
the reliability of ICA decomposition by blocking the generation of high amplitude and
high frequency noise. The effect of both baseline corrected epoched data and no-baseline

corrected epoched data on the ICA decomposition is evaluated.

Filtering

Normally EEG data is band-pass filtered to reduce the slow drifts and high frequency
artefacts (Figure 3.4). Commonly, the EEG activities below 40Hz are used in clinical
applications and EEG/ERP studies [1,92,137,138]. Additionally, in order to analyse the
brain function during mental and motor activities, a high cut-off frequency up to 100H z

is used for EEG band-pass filtering [139-142]. In this experiment, two band-pass filters
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Figure 3.5: A sample of potential distribution of an EEG bad channel and a fitted normal
distribution. The kurtosis value of the bad channel is also provided with respect to the
kurtosis of normal distribution which is zero.

of 100 order Hamming-window based linear-phase FIR filters with a passband frequency

of 0.16H 2 to 40H z and 100H z are used for filtering out the undesired frequencies.

Bad channel removal

Multi-channel EEG data often have some channels known as bad-channels (i.e. channels
with low SNR). Bad-channels can result from a poor connection between electrodes and
the scalp and usually are characterised with: higher variability than other channels in time
and a stronger deviation from a Gaussian distribution (Figure 3.5). They can be identified
by the outlying values of their statistics (e.g. kurtosis) relative to the normal distribution.
Since the EEG mixtures typically have near zero kurtosis values [143], the electrodes at
which the resulting potential values exceed a pre-defined value (e.g. kurtosis value more
than 5 [144-147]) are considered as bad channels (Figure 3.6) and are removed from the
data. Although the kurtosis is known to be sensitive to outliers, bad-channel removal is
done on EEG channels (not ECG and EOG channels) after slight cleaning of the data by
removing the gross movements. Therefore, the effect of outliers on the kurtosis can be
reduced.

Several researchers recommend removing bad-channels prior to ICA [143, 148-151],
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Figure 3.6: Marked bad channels in the EEG data whose kurtosis value exceeds the
threshold.

because ICA decomposition might be biased by bad-channels leading to a reduction in
degrees of freedom assigned to decomposition of other source signals such as cerebral
activities. However, ICA can be applied to EEG data without bad-channel removal to
separate brain and non-brain sources [12,104,152,153]. In this study, both cases in which

bad channels are excluded and included for ICA decomposition are considered.

Excluding EOG and ECG

Some studies suggest that heart rate variability and eye movements have a relationship
with cognition [154-157]. Therefore, in some EEG recording setups, extra EOG and ECG
channels are available parallel to the EEG in order to measure the electrical potentials
produced by eye movements and heartbeats, respectively. However, EOG and ECG chan-
nels are not always included in ICA decomposition along with EEG scalp channels. Some

researchers state that including the EOG and ECG channels for ICA decomposition is
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not necessary for isolating the eye and heartbeat activities due to their independence
from the brain activities [158-161]. In contrast, EOG and ECG channels are suggested
to be included in the ICA decomposition to improve the identification and separation of
eye-related and ECG artefacts due to the extra information provided by these additional
channels [162-167]. Thus, both the inclusion and exclusion of EOG and ECG channels in
ICA decomposition will be assessed.

The combination of the above 5 pre-processing steps resulted in a total of 24 different
pre-processing categories (conditions). The hierarchy in Figure 3.8 (a) illustrates the
obtained pre-processing conditions. Each condition was individually applied to the data
of a single subject described in section 3.2.1 and resulted in 240 different pre-processed
datasets (i.e. 10 subjects x 24 conditions). Consequently, the four ICA algorithms were
applied to all 240 pre-processed datasets. In the first 12 pre-processing conditions, where
the bad channels are not removed, each dataset was decomposed into either 62 or 64
independent components by ICA depending on the existence or non-existence of the EOG
and ECG channels in the data. However, using the pre-processing conditions of C'13 to
C24, the datasets were decomposed into fewer independent components compared to the
first 12 pre-processing conditions as the number of channels are reduced by removing the
bad channels from the data. In total, 37284 independent components were obtained by

applying the four pre-selected ICA algorithms to all 240 pre-processed datasets.

3.3 ICA Performance Evaluation

ICA algorithm variants