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ABSTRACT 

Escherichia coli is one of the most studied model organisms in biology. Even with decades of 

research, there are a substantial number of genes with an as yet unknown function. 

Previously, to determine the link between gene function and phenotype took significant 

experimental effort. However, newer methods are capable of providing large amounts of 

biological data in short timeframes. One such method, transposon insertion sequencing, is a 

powerful research tool, which couples transposon mutagenesis and next generation 

sequencing to identify genes that have important or essential functions. 

Here, three transposon insertion sequencing methods were compared. The 

techniques were adapted from previously published literature. Based on a number of 

metrics one technique was shown to be superior for data generation. This method was 

chosen for application in further transposon-insertion sequencing experiments. 

Subsequently, the optimised method was used to assess which genes were essential for the 

viability of the model organism E. coli K12. The results of this work were compared with the 

literature and other databases of gene essentiality. A high degree of concordance was 

observed between our datasets and those generated previously through other methods. 

Indeed, the method described here was shown to have several benefits over previously used 

approaches. Finally, genes involved with maintenance of the outer membrane were 

identified by using markers for membrane permeability in tandem with the chosen method. 

In keeping with previous literature multiple genes involved with many aspects of the cell 

envelope were reported. Many of the reported genes were shown to be involved with 

metabolic processes related to the biogenesis and maintenance of the cell envelope. 
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1.1 The model organism Escherichia coli 

Throughout the history of scientific endeavour, a significant proportion of research 

effort has focused upon a relatively small number of organisms. These organisms were 

chosen for study for a variety of reasons, including ease of handling, genetic tractability and 

ethical considerations. As the knowledge base increases for a specific organism, this sets off 

a self-fulfilling cycle; as an increased amount of literature becomes available for a given 

organism, the more attractive the organism becomes for other researchers.  

One such example of a model organism is Escherichia coli, which is one of, if not the 

most, widely studied bacterial species in history (Cronan, 2014). E. coli was first discovered 

and reported by Theodore Escherich, a microbiologist who studied the microbial component 

of the infant gut in 1885 (Blount, 2015; Escherich, 1988). Through the course of his research, 

he isolated this fast-growing rod-shaped bacterium that has, through the work of multiple 

scientists years later, become a mainstay of modern science. As testament to its impact, E. 

coli was the organism in which many biochemical pathways were elucidated and the 

fundamental workings of DNA were discovered along with the related processes of 

transcription, translation and replication. In addition to the more academic perspective, E. 

coli has been inextricably linked with industrial and pharmaceutical progress, due to its ease 

of genetic manipulation and metabolic versatility.  

 

1.2 The cell envelope 

In contrast to the wealth of information available today, decades ago the simple 

identification and differentiation of microbes presented a challenge. One early method of 

differentiating microbes centred upon the use of the Gram stain (Bartholomew and Mittwer, 

1952), and this method of classification is still in use today. In practice, a microbial sample is 
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fixed onto a microscope slide, to which a stain or stains are added. Microbes are then 

generally described as either Gram negative or Gram positive. Gram-negative bacteria do 

not take up the deep purple crystal violet stain, whereas Gram-positive bacteria do. 

The simple binary classification of either Gram-negative or Gram-positive bacteria 

belies a complex but fundamental structural difference between the cell envelopes of the 

two groups. Gram positive organisms possess a single membrane surrounded by a thick, 

externally facing layer of peptidoglycan (Lee and Schneewind, 2001). In contrast, Gram 

negative organisms are comprised of two membranes separated by the periplasm, an 

aqueous compartment that contains a layer of peptidoglycan, albeit much thinner than that 

found in Gram-positive bacteria (Silhavy, Kahne and Walker, 2010).  Gram-positive 

organisms are stained much more deeply than Gram-negative bacteria, and this aids in their 

differentiation under a microscope. 

It is important to note the evolutionary significance of the Gram-negative cell 

envelope as an adaptation to increase the chance of survival. The increase in fitness from 

possession of this structure is clearly demonstrated by phylogenetic analysis, which suggests 

the dominance of the dual membrane envelope structure across 17 of 24 bacterial phyla 

(Sutcliffe, 2010). However, this simple binary distinction between Gram-negative and -

positive organisms is not truly representative of the variation in cellular envelope structure. 

This is hinted at by the existence of Gram-variable organisms belonging to members of the 

Actinomyces and Clostridium spp. (Beveridge, 1990). Discussion regarding the usage of these 

terms lies outside the scope of this introduction. 

The Gram-negative cell envelope is a highly complex organelle with a great variety of 

tightly regulated proteins, enzymes and macromolecules (Fig. 1.1). In consideration of the 

whole cell, the envelope is of paramount importance. It is a crucial cellular component which 
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Figure 1.1. The E. coli cell envelope. This figure depicts the Gram negative envelope. 

Phospholipids are shown in blue across both membranes. In the inner membrane (IM), 

SecYEG (purple) transports unfolded protein into the periplasm, where it is bound by 

periplasmic chaperones such as Skp and SurA. These chaperones deliver proteins to the BAM 

complex (BamABCDE) which straddles the outer membrane (OM). The BAM complex 

facilities the insertion of beta barrel outer membrane proteins (OMPs) into the OM. The Lpt 

system (LptABCDEFG in red) is responsible for transporting lipopolysaccharide from the 

cytosol to the outer leafleft of the OM. The Lol pathway (LolABCDE in yellow) traffics OM 

destined lipoproteins across the IM. MsbA is embedded in the IM, and transports 

phospholipids and other molecules across the IM into the periplasm.
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plays multiple important roles. One key role is the maintenance of internal homeostasis. The 

delineation of internal and external environments is fundamental in the very definition of a 

cell, and also the ability to control the influx and efflux of molecules into and out of the cell 

(Krulwich, Sachs and Padan, 2011). Another vital role concerns the protection of the cell 

from potentially damaging stresses. The presence of the envelope physically occludes certain 

molecules from entering into the cell and disrupting metabolism (Ruiz, Kahne and Silhavy, 

2006). Furthermore, the envelope can also serve as a platform for molecular machineries 

that are involved with the active influx or efflux of desired or undesired molecules. This 

allows for a finer grained control of molecule exchange which, for example, is important in 

the ability to react to changes in the environment. With regards to the initiation of 

pathogenesis, the envelope is the point of first contact between host and pathogen (Lee and 

Schneewind, 2001). By necessity, the envelope is the location of protein complexes that are 

required for pathogens to attach to and invade host cells. 

 

1.2.1 Inner membrane. The inner plasma membrane is the direct boundary of the cytosol. It 

is a symmetrical phospholipid bilayer, with the inner layer in contact with the cytosol and 

the outer layer in contact with the aqueous periplasm (Bos, Robert and Tomassen, 2007).  In 

addition to the fundamental role of cellular delineation, this membrane plays host to a 

number of integral proteins that are involved with key cellular processes (Weiner and Li, 

2008; Silhavy, Kahne and Walker, 2010).  

1.2.1.1 Protein translocation. The inner membrane forms a barrier the cell has to 

overcome to transport proteins into the periplasm, the outer membrane and the 

environment. Additionally, the insertion of proteins into a plasma membrane poses a 
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thermodynamic challenge for the cell, in that this process requires energy expenditure. As 

such, E. coli contains three translocation systems that are essential for the insertion of 

proteins into and across the inner membrane. The most commonly utilised of these systems 

is the Sec pathway, which transports unfolded proteins and is minimally comprised of the 

inner membrane SecYEG channel along with the SecA motor protein (Driessen and Nouwen, 

2008). The importance of this transport system is illustrated by its high conservation across 

all three domains of life (Pohlschröder et al., 1997). Sec substrates synthesized in the cytosol 

generally contain an N terminal signal sequence, and are termed preproteins. Preproteins 

are targeted to the Sec apparatus in two ways, either by SecB and the trigger factor (TF) 

protein or by the signal recognition particle (SRP). The route taken is determined by the 

hydrophobicity of the signal sequence in the preprotein (Du Plessis, Nouwen and Driessen, 

2011). The signal sequence is exposed as part of the nascent polypeptide emerging from the 

ribosome, which is competitively recognised by both TF and SRP. Highly hydrophobic signal 

sequences are preferentially bound by SRP, which leads to their co-translational 

translocation. The binding of SRP to the nascent polypeptide slows translational activity, 

which allows SRP to dimerise with FtsY which is associated with SecYEG. This brings the 

ribosome and the Sec apparatus into close proximity. The FtsY/SRP dimerisation stimulates 

the hydrolysis of GTP, leading to the nascent chain being transferred to the Sec apparatus. 

The remaining polypeptide chain then continues to be synthesized, and this elongation 

provides the energy for the cotranslational insertion of the protein. Less hydrophobic signal 

sequences are preferentially bound by TF, which leads to post translation translocation. The 

binding of TF prevents the binding of SRP, in turn allowing the full translation of the 

preprotein. SecB then associates with this full length polypeptide and keeps the preprotein 
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in an unfolded state ready for translocation. Additionally, SecB delivers the unfolded 

preprotein to SecA, an ATP dependent motor protein (Zhou and Xu, 2005). SecB interacts 

with and transfers the preprotein to SecA, which then goes on to interact with SecYEG and 

provide the requisite energy for translocation of the preprotein.  

A second pathway of protein translocation across the inner membrane involves YidC 

(Xie and Dalbey, 2008). YidC directly contacts hydrophobic regions of its substrates, and it is 

thought that YidC uses hydrophobic force to facilitate protein insertion into the inner 

membrane. Interestingly, YidC plays a dual role. It can assist Sec-dependent translocation 

and it can transport substrate proteins across the membrane in a Sec-independent manner. 

However, only a small number of the latter category have been reported (Dalbey et al., 

2014).  

The third method of translocation, the twin arginine transport (Tat) pathway, is 

comprised of at least three proteins (TatABC). The activity of these proteins is coordinated to 

transport fully-folded proteins across the inner membrane (Palmer and Berks, 2012). 

Proteins governed by the Tat system have a characteristic N-terminal signal peptide 

containing a twin-arginine motif, which is recognised by the TatBC complex embedded in the 

inner membrane. Upon the interaction of TatBC and a protein substrate, TatA is then able to 

associate with the protein complex, and the substrate is moved across the membrane into 

the periplasm, at which point the signal peptide is cleaved by a signal peptidase. This process 

is dependent upon energy from the proton motive force.  

1.2.1.2 Energy generation and proton motive force. One such key process concerns 

the production of ATP. The F0F1 ATP synthase catalyses the production of ATP, the universal 

cellular energy currency (Yoshida et al., 2001; Senior, Nadanaciva and Weber, 2002). This 
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multi protein enzyme is embedded within the inner membrane, and harnesses the proton 

motive force to create ATP by channelling the movement of H+ ions from the periplasm into 

the cytoplasm, where they are actively pumped back into the periplasm. ATP synthase has a 

tripartite structure; a rotary motor integrated into the inner membrane (F0) is directly linked 

to a cytoplasmic ‘headpiece’ containing three catalytic sites (F1), with a rotor stalk 

connecting the two functional units (Fig. 1.2). When there are many protons in the 

periplasm, an electrochemical potential gradient is formed, also known as the proton motive 

force. Protons move down this gradient through the F0 subunit. This proton flow induces F0 

rotation, the energy of which is transferred to the F1 subunit via the rotor stalk. This energy 

transmission prompts conformational changes in the F1 catalytic sites, leading to the 

synthesis of ATP from ADP and Pi.  The action of ATP synthase is dependent upon the 

maintenance of the electrochemical gradient of protons between the periplasm and the 

cytoplasm. Protons are actively pumped into the periplasm through the electron transport 

chain (Hosler, Ferguson-Miller and Mills, 2006). Electrons, donated from reduced molecules 

such as NADH and succinate, move sequentially through multiple proteins. Some of these 

proteins are proton pumps, which, upon electron transmission, pump protons from the 

cytoplasm into the periplasm. 

1.2.1.3 Environment sensing and response. Integral inner membrane proteins are 

also linked to sensing and reacting to the environment. Bacteria are capable of assessing 

their immediate environment, for example, in terms of nutrient availability, temperature, 

pH, and toxicity among other environmental conditions (Blair, 1995). This in turn allows for 

organisms to respond specifically to the detected stimuli and to coordinate an appropriate 

response, for example, in the movement towards more nutrient rich areas. Often, such 
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Figure 1.2. ATP Synthase (Berman et al., 2000). ATP synthase is anchored within the inner 

membrane, shown in grey. The F0 rotor is embedded in the membrane, and the rest of the 

complex is in the cytoplasm. The rotor stalk (here labelled as the axle) connects the F0 and F1 

subunits, with F1 containing the catalytic sites where ADP and inorganic phosphate are 

catalysed into ATP.  



[19] 

 

 

sensing and response is coordinated by two component regulatory systems (Bourret and 

Silversmith, 2010; Yamamoto et al., 2005). Two component systems are signal transduction 

cascades that allow for adaptation to external stimuli through the direct regulation of 

specific genes, and E. coli is thought to contain approximately 30 of these systems. One 

example of such a system is the EnvZ/OmpR two component system (Fig. 1.3). EnvZ, a 

dimeric histidine kinase embedded in the inner membrane, senses changes in environmental 

osmolarity (Cai and Inouye, 2002; Feng et al., 2003). OmpR, the DNA binding cognate 

response regulator to EnvZ, is directly controlled through phosphorylation by EnvZ, which in 

turn moderates its transcriptional factor activity on downstream genes.  EnvZ reacts to a 

high osmolarity environment by autophosphorylation, and this phophoryl group is then 

transferred to OmpR. OmpR, upon activation by phosphorylation, subsequently regulates 

the expression of the outer membrane porins OmpC and OmpF. The transcription of OmpC is 

upregulated while OmpF is repressed, which restricts the movement of water and solutes 

out of the cell by virtue of the smaller pore size of OmpC. In low osmolarity, EnvZ does not 

autophosphorylate and this leads to an abundance of OmpF over OmpC, and the increased 

pore size of OmpF leads to the greater inwards movement of water and solutes. 

 

 which then facilitate the inward movement of small hydrophilic molecules.  

 

1.2.2 Periplasm. The outer leaflet of the inner membrane borders the periplasm, an aqueous 

compartment between the inner and outer membranes. The periplasm is a viscous, oxidising 

environment which contains a large number of proteins as well as a peptidoglycan layer 

(Ruiz, Kahne and Silhavy, 2006). 
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1.2.2.1 Peptidoglycan. The peptidoglycan layer (also known as murein) is a 

structurally ordered component of the envelope which acts to maintain cellular shape, 

provide rigidity, and prevent cellular lysis (Silhavy, Kahne and Walker, 2010; Fig. 1.4). The 

layer can be described as a porous, covalently polymerised mesh (Gumbart et al., 2014; 

Vollmer, Blanot and de Pedro, 2008); long, linear glycan strands composed of N-

acetylglucosamine (GlcNac) and N-acetylmuramic acid (MurNac) are cross linked by short 

oligopeptides. As to be expected with such a structure, there are a considerable number of  

tightly regulated enzymes which are responsible for peptidoglycan synthesis, which occurs in 

both the cytoplasm and the periplasm (Vollmer and Bertsche, 2007). The first step in the 

pathway is done in the cytoplasm, where a UDP-MurNac-pentapeptide monomer precursor 

is assembled sequentially through several UDP based precursors and lipid intermediates (van 

Heijenoort, 2001).  This process contains 6 enzymatic steps mediated by MurABCDEF. The 

phospho-MurNac-pentapeptide group of the precursor is then transferred to the inner 

membrane associated carrier undecaprenyl phosphate by MraY, resulting in lipid I. MurG 

then transfers a GlcNac molecule to lipid I, to result in lipid II. MurJ is the flippase that then 

transfers lipid II from the inner leaflet of the inner membrane to the outer leaflet, at which 

point it becomes available for incorporation into the peptidoglycan layer. (Sham et al., 

2014). Several steps in the pathway then occur periplasmically. Lipid II is then polymerised to 

form glycan strands, and this step is catalysed by periplasmic peptidoglycan synthases 

anchored to the inner membrane (Lovering, Safadi and Strynadka, 2012; Derouaux, Sauvage 

and Terrak, 2013; Vollmer and Bertsche, 2008). Specifically, glycosyltransferases catalyse the 

synthesis of the glycan strands, and transpeptidases assemble the peptide cross links 

between the glycan strands (van Heijenoort, 2001). In addition to its synthesis, the
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Figure 1.3. Two component systems. A sensor kinase (SK) in the inner membrane (IM) 

detects a specific environmental change. This leads to autophosphorylation (yellow circle) 

and subsequent transphosphorylation of a cognate response regulator (RR). The RR, now 

active and free in the cytoplasm, goes on to regulate genes involved in the response to the 

initial environmental stimulus. 
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Figure 1.4. Peptidoglycan biosynthesis (Typas et al., 2011). Peptidoglycan is found in the 

periplasm of E. coli, and undergoes multiple enzymatic steps to get there. In the cytoplasm, 

MurABCDEF act sequentially to form a UDP-MurNac-pentapeptide precursor. MraY then 

transfers the phospho-MurNac-pentapeptide group of this precursor to undecaprenyl 

phosphate in the inner membrane, to form lipid I. MurG transfers a GlcNac unit to lipid I to 

form lipid II, which is then flipped to the periplasmic face of the inner membrane by the 

MurJ flippase. Here, lipid II can be incorporated into growing peptidoglycan chains by 

glycosyltransferases. Transpeptidases act to form peptide cross links between glycan chains. 
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breakdown of peptidoglycan is necessary, for example in the adaptation of the cell to 

changing environments and also for the separation of daughter cells after division (Vollmer 

et al., 2008). Peptidoglycan hydrolases act to cleave the bonds both within the glycan 

strands and also within the peptide crosslinks. Different hydrolases exhibit different 

specificities; for example, amidases (including AmiABC) cleave bonds between glycan and 

peptide, whereas endopeptidases cleave bonds within peptide cross links.  

1.2.2.2 Chaperones. Despite the periplasm being devoid of ATP, multiple enzymes 

function to regulate protein folding (Silhavy, Kahne and Walker, 2010; Goemans, Denoncin 

and Collet, 2013). Approximately 20% of all proteins produced in E. coli are destined for the 

cell envelope. However, proteins are only produced in the cytoplasm, meaning the cell must 

have strategies to a) transport proteins to their correct final destination, and b) ensure that 

they are folded to function correctly.  

As previously discussed, unfolded proteins are transported to the periplasm primarily 

through the Sec translocon. To regulate the folding of these proteins, and to help traffic 

them to their correct destination in any part of the envelope, there are an array of protein 

chaperones which directly interact with the unfolded polypeptides. Chaperones also act 

upon misfolded proteins, which can also occur for multiple reasons. These include 

environmental stress (for example heat leading to protein denaturation), protein 

overexpression and genetic mutation (Miot and Betton, 2004). Unfolded and misfolded 

proteins, unless protected by chaperone binding, are then at risk of proteolytic degradation 

or aggregation into inclusion bodies, which subsequently activate stress response pathways 

in the cell.  
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 Outer membrane proteins (OMPs) form a large subset of proteins that are trafficked 

through the envelope, with the outer membrane as their final destination (discussed in more 

detail later in the chapter). Two chaperone folding pathways have been outlined in E. coli 

(Goemans, Denoncin and Collet, 2013). The primary pathway relies upon SurA, a dual 

functioning chaperone and peptidyl prolyl isomerase (PPIase). SurA was first found to be 

essential for survival in the stationary phase of growth (Tormo, Almiron and Kolter, 1990). 

More recent evidence suggests that SurA is in fact the primary chaperone of E. coli, due to 

the fact that the depletion of SurA leads to a marked decrease in the outer membrane 

proteome, in contrast to the lack of effect seen upon depletion of other chaperones 

(Denoncin et al., 2012; Sklar et al., 2007a). The second, lesser chaperone pathway is fulfilled 

by Skp and DegP. Sklar et al. (2007a) found that upon the depletion of Skp and DegP 

individually, there was no change to the density of the outer membrane. Combination 

depletions of SurA/Skp and SurA/DegP, however, resulted in envelope defects. Furthermore, 

apparently no proteins have a preference for Skp/DegP over SurA. Even with this evidence, 

other findings that demonstrate chaperone activity by Skp and DegP have led to this 

pathway being thought of as partially redundant, and as being involved with “rescuing” 

proteins that fall off of the central SurA pathway (Goemans, Denoncin and Collet, 2013). 

Another chaperone, LolA, acts to traffic lipoproteins that are destined for the outer 

membrane (Okuda and Tokuda, 2009). The LolCDE complex moves lipoproteins from the 

cytoplasm to the periplasm, at which point LolA binds. LolA transports the lipoprotein to 

LolB in the outer membrane, which then facilitates the insertion of the lipoprotein. 
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1.2.3 Outer membrane. Beyond the inner membrane and the periplasm is the outer 

membrane, which is in direct contact with the external environment. This lipid bilayer is the 

physical difference between Gram negative and Gram-positive bacteria. This membrane acts 

as a selectively permeably barrier, which simultaneously prevents the entry of damaging 

agents into the cell while allowing the entry of nutrients (Ruiz, Kahne and Silhavy, 2006; Bos, 

Robert and Tommassen, 2007).   

1.2.3.1 Lipopolysaccharide (LPS). In contrast to the inner membrane, the outer 

membrane is asymmetrical (Silhavy, Kahne and Walker, 2010). The periplasmically facing 

inner leaflet is comprised of phospholipid, whereas the environmentally facing outer leaflet 

is primarily composed of lipopolysaccharide (LPS), a glycolipid containing lipid A, a core 

oligosaccharide and an O antigen polysaccharide. LPS is central to the barrier function of the 

outer membrane (Ruiz, Kahne and Silhavy, 2006). In wild type cells the LPS is highly 

compacted, which physically occludes the entry of compounds such as antibiotics or 

detergents (Snyder and McIntosh, 2000). Correspondingly, mutants with defects in LPS 

biogenesis pathways have an increased outer membrane permeability and susceptibility to 

external agents. 

1.2.3.2 Lipoproteins. The outer membrane also hosts its own complement of 

proteins. Generally these proteins are either lipoproteins or integral outer membrane 

proteins (Ruiz, Kahne and Silhavy, 2006). Lipoproteins are those containing both protein and 

lipid regions within their structure, allowing for proteins to be anchored to a plasma 

membrane (Okuda and Tokuda, 2011). On the periplasmic face of the inner membrane, lipid 

modifications are added to the N terminal cysteine residue of a lipoprotein by the 

phospholipid transacylase Lnt. This results in mature lipoprotein that is anchored to the 
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inner membrane. The final destination of lipoproteins can be in either membrane of the 

Gram negative envelope. The transfer of lipoproteins from the inner to the outer membrane 

is mediated by the Localisation of lipoprotein (Lol) transport system (Fig. 1.5). LolA, a 

periplasmically located chaperone, delivers outer membrane destined lipoproteins to LolB, 

another lipoprotein anchored within the inner leaflet of the outer membrane. It is uncertain 

how LolB then acts to insert the lipoprotein into the outer membrane.  

One major function of lipoproteins is to help anchor protein complexes to the envelope. One 

example of this is the peptidoglycan layer, which is anchored within the  periplasm by 

multiple proteins. Most notably, Braun’s lipoprotein (Lpp), the most abundant protein within 

E. coli, has been shown to be important for this anchoring (Vollmer and Bertsche, 2007; 

Cowles et al., 2011). Lpp, in the outer membrane, exists in a free and a bound form; bound 

Lpp is covalently linked to peptidoglycan, whereas free Lpp is not. The ratio between the 

free and bound forms is approximately 2:1. These two forms are spatially separated in the 

envelope, with free Lpp being surface exposed in the outer membrane, in contrast to the 

presence of bound Lpp in the periplasm. Pal is another protein that interacts with the 

peptidoglycan layer (Cascales et al., 2002; Parsons, Lin and Orban, 2006). Pal (peptidoglycan 

associated lipoprotein) forms part of the Tol-Pal complex, an envelope spanning multi 

protein complex which is involved with the constriction of the envelope during cell division 

(Egan and Vollmer, 2013; Gerding et al., 2007). This lipoprotein is anchored to the outer 

membrane, and noncovalently binds to the peptidoglycan, which helps to maintain the 

structure of the peptidoglycan layer.  
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Figure 1.5. Lipoprotein anchoring. Lpp is shown in red and green (Shu et al., 2000). The 

green region represents an N terminal lipid modification which inserts into the outer 

membrane (OM). The polypeptide region of the protein shown in red is in the periplasm, and 

covalently attaches to the peptidoglycan layer (PG) at the C terminal end of the protein. 

These physical interactions act to stabilise the cell envelope. 
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1.2.3.3 Outer membrane proteins (OMPs). In addition to the lipoprotein 

complement, the outer membrane hosts many outer membrane proteins. A key difference 

between the integral proteins of the inner and outer membranes is their structure; whereas 

inner membrane proteins contain α helical transmembrane domains, outer membrane 

proteins (OMPs) contain antiparallel β strands. These antiparallel strands form a 

hydrophobic surface which facilitates the embedding of the OMP by physically spanning the 

OM (Tamm, Hong and Liang, 2004). This allows OMPs to form β barrel structures which are 

embedded within the OM, and it is thought that the folding of the OMPs occurs upon 

insertion into the OM. Such β barrel containing structures can serve as passages of entry into 

the cell, as enzymes and also as adhesins (Ruiz, Kahne and Silhavy, 2006).   

Proteins in the outer membrane are associated with a number of functions. OmpA is 

one of the most abundant OMPs in E. coli, and forms a non-specific pore through which 

small solutes diffuse (Smith et al., 2007; Sugawara and Nikaido, 1992). Other major porins 

include OmpC, OmpF and PhoE (Hancock, 1987). In addition to the channels involved with 

the influx of solutes into the cell, there are dedicated efflux pumps to actively remove toxic 

substrates and prevent damage to the cell (Webber and Piddock, 2003). A wide variety of 

structurally differing substrates are recognised and exported by efflux pumps, including 

detergents, dyes, antibiotics and biocides (Piddock, 2006). In Gram negatives, these pumps 

are envelope spanning multi protein complexes, which form a direct channel between the 

cytosol and the external environment. There are five efflux pump families, each with their 

own substrate specificities and structural composition. One of the most well-known pumps 

in E. coli is the AcrAB-TolC system (Tikhonova and Zgurskaya, 2004; Du et al., 2014; Fig. 1.6). 

TolC forms a channel in the outer membrane, AcrB is a proton-substrate antiporter and AcrA 
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is a periplasmic lipoprotein which physically interacts with AcrB and TolC and bridges the 

two proteins. This efflux pump has multiple substrates, including β-lactams, 

fluoroquinolones, bile salts and detergents (Piddock, 2006). Efflux pumps have profound 

medicinal importance; it is well understood that these systems can confer multidrug 

resistance upon many bacterial strains, and antimicrobial resistance has been recognised as 

an ever growing threat to the clinical treatment of infection (Cole, 2016).  

Another similarity between the inner and outer membranes is the presence of 

dedicated protein machinery to insert proteins into the membranes. The β-barrel assembly 

machinery (BAM) complex is responsible for inserting folded proteins into the outer 

membrane, and is comprised of BamABCDE (Knowles et al., 2009; Hagan, Silhavy and Kahne, 

2011). BamA, an integral β-barrel in the outer membrane, is the core component of the 

complex. As an indication of its importance, it is an essential protein conserved across all 

Gram negatives. In addition to the channel forming barrel, the protein has 5 periplasmic 

POTRA domains which receive substrate proteins to be inserted into the outer membrane.  

The periplasmic chaperone SurA has been shown to directly contact the POTRA1 

domain of BamA where Skp has not, reinforcing the idea of SurA being the primary 

chaperone pathway (Kim, Aulakh and Paetzel, 2012). The POTRA domains are also contacted 

by all four of the other lipoprotein BAM components, including the essential BamD. This 

protein has two domains; the N terminal domain is thought to directly bind to proteins to be 

inserted, while the C terminal is important for maintaining interactions with BamBCE (Misra, 

2012). As such, it is likely to function in the delivery of substrate proteins to BamA. BamBCE 

are non-essential genes, although the biogenesis of outer membrane proteins is negatively 

affected upon their individual deletion (Rigel and Silhavy, 2012).
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Figure 1.6. Schematic of the AcrAB/TolC efflux pump. The three components form a 

complex that spans the envelope of the cell. The movement of ions from the periplasm into 

the cytoplasm through AcrB (due to the proton motive force) provides the energy required 

for substrate efflux (Müller and Pos, 2015). The disruption of any one of these proteins leads 

to the lack of complex formation and the cease of efflux. 
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Evidence suggests that, while BamB is not essential for protein loading onto the BAM 

complex, it is important in making the process efficient (Hagan, Silhavy and Kahne, 2011).   

 

1.2.4 Envelope integrity and permeability. As discussed previously, the outer membrane of 

E. coli is key in protecting the cell from the ingress of toxic agents. The combination of tightly 

packed LPS, the peptidoglycan layer, dual lipid membranes and active efflux together 

comprise an effective barrier to all manner of compounds. Disruption of the biogenesis or 

the maintenance of the outer membrane leads to a suboptimal structure that is less densely 

packed, which in turn weakens the cell by increasing the membrane permeability. There is 

much experimental evidence to support this. BamB, SurA, TolQRAB, Pal, and AmiA are all 

examples of genes that result in increased outer membrane permeability upon deletion (Ruiz 

et al., 2005; Justice et al., 2005; Lazzaroni et al., 1999; Heidrich et al., 2002). One method by 

which deletions are tested for their effects on membrane integrity involves the use of 

molecules that the wild type strain is normally resistant to. This includes many different 

classes of antibiotics, detergents, dyes and other molecules (Nikaido and Vaara, 1985). Upon 

perturbation of the outer membrane, these molecules are able to pass into the cytoplasm of 

the cell and act to stop growth. 

1.2.4.1 Vancomycin. Vancomycin is one antibiotic often used to assess outer 

membrane integrity (Tamae et al., 08; Liu et al., Lazdunski and Shapiro, 1972). Initially 

discovered and purified from Streptomyces orientalis in 1952 (Levine, 2006), vancomycin is 

the archetypal member of the glycopeptide antibiotics (Loll and Axelson, 2000; Pootoolal, 

Neu and Wright, 2002). The structure consists of a covalently linked core of seven amino 

acids, along with glycosylative and other amino acid modifications. Vancomycin’s mode of 
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action is to inhibit the synthesis of peptidoglycan (Fig. 1.7). By associating with the terminal 

D-ala-D-ala residues of the glycan strand subunits, the extension of the glycan strands 

(through transglycosylation) and the crosslinking between strands (through 

transpeptidation) are physically impeded, leading to the cessation of peptidoglycan 

maturation. Because of this mode of action, the outer membrane of E. coli provides a natural 

resistance to vancomycin (Shlaes et al., 1989; Reimer, Stratton and Reller, 1981). The outer 

membrane porins physically occlude the entry of the hydrophilic vancomycin due to the 

large size of the molecule, and the tightly packed LPS layer in the outer leaflet of the outer 

membrane provides another physical barrier. It therefore follows that, with a suboptimally 

maintained outer membrane, vancomycin is able to pass through into the periplasm, where 

it can affect peptidoglycan synthesis and exhibit its bactericidal activity.    

1.2.4.2 Sodium dodecyl sulphate (SDS). The anionic surfactant sodium dodecyl sulphate 

(SDS) is another molecule used to investigate membrane integrity (Bernstein, Rolfe and 

Onodera, 1972; Lazdunski and Chapiro, 1972). In the laboratory setting, SDS is generally  

used to denature proteins in preparation for polyacrylamide gel electrophoresis. In the same 

manner as with vancomycin, E. coli possesses a natural resistance to SDS, mediated by LPS in 

the outer membrane (Rajagopal, Sudarsan and Nickerson, 2002; Nikaido and Vaara, 1985). 

LPS and SDS are both negatively charged, and this charge repellence counteracts the ability 

of SDS to move across the hydrophobic OM. However, as opposed to completely preventing 

its entry into the cell, the OM is weakly permeable to SDS, but the cell is able to tolerate its 

presence in low quantities. Active efflux (including the AcrAB-TolC pump) works in addition 

to the barrier function of the outer membrane to pump SDS into the environment and to 

keep it out of the cytoplasm (Yu, Aires and Nikaido, 2003).  
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Figure 1.7. Vancomycin and its mechanism of action. Adapted from Pootoolal, Neu and 

Wright (2002). Vancomycin binds to the terminal D-ala-D-ala residues of the glycan strand in 

the periplasm. This physically occludes further extension of the glycan (transglycosylation) 

and the crosslinking of adjacent strands (transpeptidation), which in turn prevents the 

formation of the peptidoglycan layer, which then weakens the structural integrity of the cell.
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1.2.4.3 Industrial application. In addition to the academic virtues of research into 

envelope integrity, a more practical application exists from an industrial perspective. 

Knowledge of the genes involved with these aspects of the envelope may be applied 

towards the goal of recombinant protein production, which is the manipulation of microbes 

to produce specific proteins of greater interest. In previous years, the isolation and 

purification of a particular protein would have required huge amounts of biomass, of which 

only a tiny percentage was actually desirable. Technical development in the production of 

recombinant proteins using bacterial systems has greatly facilitated academic, industrial and 

medical endeavour (Rosano and Ceccarelli, 2014). From a research perspective, the 

relatively simple production of large amounts of protein has meant that biochemical, 

structural and enzymatic studies are far easier and quicker to do. Industrially speaking, 

several avenues of research with societal impact have been enabled through the use of 

microbes, including bioremediation and the production of enzymes for household use 

(Karigar and Rao, 2011; Basketter et al., 2008). Arguably most importantly of all, medical 

advances have been greatly facilitated by using microbes for to produce therapeutic 

treatments. For example, the bacterial production of insulin has obviated the dependence of 

diabetic individuals upon crude porcine pancreatic material, while also enabling the 

modification of insulin for better disease management (Johnson, 1983; Kamionka, 2011).  

E. coli is a commonly used microbiological platform used to manufacture 

recombinant proteins, due to its robust growth, ease of manipulation and well understood 

biological underpinnings (Baneyx, 1999). Generally, protein production systems are designed 

to be wholly contained in the cytoplasm. One downside to this method is that substantial 

processing is required after growth, to isolate the desired protein from the other cellular 
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components. An alternative approach to protein production is to engineer a system in which 

proteins are secreted or “leaked” from the cell (Le and Trotta, 1991; Rinas and Hoffman, 

2004). Due to the desired protein product being extricated from the cytoplasmic 

complement of macromolecules, simpler and more effective purification is facilitated 

(Mergulhao, Summers and Monteiro, 2005). Additionally, for some protein families with 

specific structural features, such as disulphide bridges, the reducing environment of the 

cytoplasm is suboptimal for protein production (de Marco, 2009; Ke and Berkmen, 2014). As 

such, non-cytoplasmically based production strains could be improved by the deletion of 

specific genes involved with envelope homeostasis.  The decrease in envelope integrity 

would physically allow for the easier movement of proteins either into the periplasmic space 

or into the extracellular environment. 

 

1.3 Gene essentiality  

Fundamentally, the existence of each and every organism is dependent upon its 

genetic underpinnings. The genes contained within an organism define the entirety of its 

ability, throughout every aspect of the lifecycle. This includes but is not limited to metabolic 

capacity, reproductive capability, pathogenic strategy and environmental adaptation. 

Microorganisms inhabit a vast range of ecological niches, and organisms necessarily have to 

adapt to conditions to survive. This brings us to the consideration of gene function. For a 

given microbial species, there will be genes absolutely indispensable for survival, and there 

will be genes that are only required for growth under certain conditions, ie conditionally 

essential (Zhang and Lin, 2009; Juhas, Eberl and Glass, 2011).   
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In the discussion of Indispensable genes, hereafter referred to as essential genes, 

care must be taken from a more philosophical perspective. Due to the vast expanse of 

biological complexity, a singular, all-inclusive definition of life is controversial. One 

significantly confounding factor that illustrates this complexity is the existence of unusual 

organisms such as viruses, which contain genetic material but are utterly reliant upon the 

molecular machinery of other organisms. Due to the interplay of an organisms genetic 

complement and its environment, the defining of a gene as essential can be seen as tenuous 

and dependent upon many factors. For example, one gene may appear essential in one 

growth media and inessential in another, due to the presence of a particular metabolite. In 

the literature, essentiality has generally been assessed in either minimal media or LB. In the 

following work growth in LB has been used as a proxy for life, in order to be able to make 

comparisons with previous high quality and well recognised literature. 

Essential genes are interesting for multiple reasons. From an academic perspective, 

knowledge of the minimal genetic requirements for life is of key importance in the very 

definition and classification of life itself (Gustafson et al, 2006). Additionally, knowledge of 

the core genome versus the pan genome of an organism can be of great utility in the 

descriptive and evolutionary comparison of species (Medini et al., 2005). More practically, a 

minimal gene set is central to the concept of the minimal genome, which in turn has the 

potential to impact upon multiple areas of science, most crucially the area of biotechnology 

and the production of societally important macromolecules. Theoretically, microbes can be 

manipulated into miniscule production factories producing potentially any type of 

macromolecule, by inserting the genes necessary for production into the minimal genome of 

an engineered organism. Knowledge of essential genes can also be used in targeted drug 
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development. Due to their importance, essential genes and the pathways they are involved 

with are excellent antimicrobial targets, as exemplified by the penicillin family of drugs 

which specifically interfere with peptidoglycan synthesis. 

 

1.3.1 Research methodologies. Given E. coli‘s position as a model organism, there is much 

research that has gone towards the definition of the essential genes it contains. Historically, 

the effort required to delete even a small part of a gene was substantial. However, the 

publication of a recombination based gene deletion protocol by Datsenko and Wanner 

(2000) greatly facilitated the deletion of genes in E. coli (Fig. 1.8) Briefly, PCR is used to 

amplify an antibiotic resistance gene. The forward and reverse primers used in this reaction 

are designed with homology to the ends of the gene in question. This results in a single 

linear fragment containing the resistance gene, flanked by homology to a particular gene at 

both ends. This fragment is recombined with the native gene through recognition of the 

flanking homologous regions, and successfully recombined cells are then selected for on 

agar plates supplemented with antibiotics. Later, by utilisation of the Datsenko and Wanner 

method, Baba et al. (2006) published a paper detailing the KEIO library, a collection of single 

gene deletions for every non-essential gene in E. coli BW25113. Conversely, the creation of 

this library also led to the first definition of an E. coli essential gene list. There were 303 

genes that could not be successfully deleted, which suggested that they were essential for 

cellular function. This list included new candidate essential genes of unknown function, in 

addition to genes previously shown to be essential. The KEIO library has since become the 

“gold standard” dataset for essential and non-essential genes in E. coli, due to the breadth of 

its scope and the reliability of the deletion method it employed. However, there are flaws in 
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this approach. The technique has no way of identifying whether there are multiple copies of 

a particular gene. Yamamoto et al. (2009) published evidence of several genes that were 

duplicated in the initial construction of the library (Baba et al. 2006). This suggested their 

deletion had a limited effect and they were assigned as non-essential genes. Additionally,  

several of the mutants in the KEIO collection were found to have acquired second-site 

compensatory mutations elsewhere on the chromosome; these mutants alleviated the lethal 

effect of loss of the essential gene suggesting the gene was not essential. Furthermore, this 

method of assessing essentiality is both highly resource and labour intensive, requiring many 

experimental steps and a substantial amount of manual preparation. 

Recombination based gene deletion is not the only method of assessing gene 

essentiality. Another approach that can be taken is to deplete proteins encoded by genes, 

through the use of inducible promoters. In these experiments, a gene of interest is cloned 

onto a plasmid, and the chromosomal copy is deleted. The plasmid borne gene is placed 

under the transcriptional control of an inducible promoter, in turn meaning that the gene is 

only transcribed in the presence of an inducer, for example lactose. The strain is plated on 

growth media containing the inducer. Upon confirmation of growth, the strain is then 

transferred to two sets of media, containing and lacking the inducer respectively. If the 

strain grows on both sets of media, the gene in question is non-essential. This is because the 

strain survives, even when plasmid mediated transcription ceases. If the strain is only viable 

in the media containing the inducer, this shows the gene to be essential. Depletion studies 

such as this can give information of other aspects of the gene in question. For example, 

particular deletions may lead to short or long survival times in media lacking inducer. This is 

informative in relation to the level of the protein encoded by the gene in the cell. 
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Figure 1.8. The Datsenko and Wanner (2000) gene deletion method. A) PCR is used to 

amplify an antibiotic resistance gene. The primers used contain two differing sites of 

homology, in this example on either side of gene B (H1 and H2). B) The amplicon from step 

A) is recombined with the genome. This “flips” out gene B between H1 and H2, and replaces 

it with the antibiotic resistance gene. This process is carried out in a λ red recombinase 

background, with the recombinase performing the essential recombination. C)   The FRT 

sites can be used to excise the resistance gene, leaving a defined genomic “scar” in its place. 
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Gerdes et al. (2003) employed transposon mutagenesis to investigate essentiality. 

Transposons are small, mobile genetic elements that can semi randomly integrate into the 

chromosome, which can in turn lead to the disruption the regulation and expression of 

genes (Reznikoff, 2003; Hamer et al., 2001). Transposition into a coding sequence disrupts 

the subsequent translated protein by the insertion of non-native amino acids, which in turn 

changes the conformation of the protein. If the function of a disrupted protein is essential to 

the cell, then it will cease to grow and divide. If the disrupted protein is not essential to the 

cell, then the cell will continue to grow and multiply, while passing down the disruption 

through successive generations. Gerdes et al. (2003) mutagenized cells with transposons, 

grew the surviving cells and then used a nested PCR approach to map the insertions to their 

location in the genome. This work led to the estimation of 620 essential genes, in contrast to 

the 303 predicted by Baba et al. (2006). The major issue with this approach lies in the 

experimental effort to characterise each and every insertion, and in the number of insertions 

that are needed to fully survey the genome.  

 

1.4. Advances in DNA sequencing and applications.  

The discovery of DNA, and the realisation of its function as the primary data storage 

medium of life, is still only recent in human history. In a relatively short time frame, DNA has 

moved from being a macromolecule of unknown function to a cellular component of 

fundamental importance. DNA has a variable length, double helical chain composed of four 

nucleotides (adenine, thymine, guanine and cytosine) ordered in a specific sequence (Lewis 

et al., 2007). DNA is first transcribed into RNA, another polynucleotide chain similar to DNA. 

RNA strands are then translated into proteins comprised of amino acid subunits. Proteins 
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then go on to fulfil biological functions and, in concert with other cellular components and 

molecules, allow for the existence of life. DNA is the basal container of information; the 

nucleotide sequence subsequently transcribed to RNA is read in groups of three, with each 

triplet combination of the four nucleotides being called a codon. Each codon is recognised by 

specific tRNA molecules, in turn associated with particular amino acids, which are then used 

to build up a peptide chain of a defined sequence. This hierarchy of encoding means that 

knowledge of DNA sequences is crucial to the greater understanding of life. 

 The ability to sequence DNA came some years after definition of its role in heredity. 

Dideoxy DNA sequencing, also known as Sanger sequencing, was the technical development 

which facilitated the beginnings of modern genomics (Heather and Chain, 2016). This 

technique was based upon the use of radioactively or fluorescently labelled dideoxy 

nucleotide analogues in a polymerase chain reaction. These molecules lack the 3′ hydroxyl 

group necessary for chain extension, and in combination with polyacrylamide gel 

electrophoresis (or in later years capillary electrophoresis), the sequence of nucleotides in a 

DNA sequence could be determined. Notably, commercial DNA sequencers using this 

technique were used to produce the first draft of the human genome (Lander et al., 2000). 

 

1.4.1 Next generation sequencing. Technical innovation continued throughout and after the 

era of Sanger sequencing, and a number of “next generation” sequencing methodologies 

were commercialised. Of them all, one particular sequencing platform has come to dominate 

the field, and as such will be the focus from here onwards. This platform, now the Illumina 

sequencing platform, has its roots in the mid-1990s under the name of Solexa (Bentley et al., 

2008; Bio-IT World, 2010; Goodwin, McPherson and McCombie, 2016; Fig. 1.9). The 
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underlying sequencing technique, termed sequencing by synthesis (SBS), was developed in 

Cambridge. In a sequencing machine, single stranded DNA is washed over a flow cell, to 

which small oligonucleotides are covalently attached. The linear ssDNA contains regions 

complementary to the oligonucleotides, allowing the two to bind. These strands are then 

used as seeds to generate ‘clusters’ of DNA containing ~1000 identical linear fragments, 

through bridging amplification. The process of clustering acts to increase the fluorescent 

signal eventually created, to make the imaging of base incorporation easier. Sequencing 

occurs cyclically; first, engineered DNA polymerase and all four fluorescently labelled 

nucleotides are washed over the flowcell. These nucleotides are also reversible terminators, 

in that they contain removable 3′ azidomethyl groups that prevent extension after their 

incorporation into the nascent strand. The clusters are then imaged using laser excitation of 

the fluorophores, enabling identification of the incorporated base. Fluorophores and 3′ 

groups are then excised, allowing for the next cycle of incorporation. As these cycles 

continue, a DNA sequencing read is generated of the ancestral linear ssDNA. As this 

technique has been refined over the years, there have been great improvements in read 

quality, length and number. The earliest iterations of the sequencers resulted in 10-12 bp  

reads, whereas now, with the latest sequencing chemistry, up to 600 bp reads can be 

generated. Furthermore, the newer sequencers can output up to 5 billion paired end reads 

in a single run.  
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Figure 1.9. A simplified depiction of Illumina sequencing by synthesis. Starting from the top 

left of the image, is a flow cell with many covalently attached oligonucleotides. The surface 

of the flow cell is an aqueous environment. ssDNA is washed over the flow cell, which binds 

to the oligonucleotides through complementary sequence. Local bridging amplification is 

used to generate clonal clusters of ssDNA. NTPs are then incorporated into the nascent 

strands. Laser excitation is used to excite a fluorophore attached to the base and is then 

imaged. A 3′ block on the incorporated nucleotide is then removed, and this continues in 

cycles leading to the generation of sequence reads (lower left panel). The bottom right 

image is of an actual flow cell during imaging (Chi, 2008). 
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1.4.2 Transposon insertion sequencing. In microbes, DNA sequence information is often 

used to look for (or confirm) single nucleotide polymorphisms, deletions or rearrangements. 

These are now standard uses of sequencing data, and as such, there is widely available, free 

to use analytical software. However, there are other research aims and approaches that 

have been enabled by the mainstreaming of next generation sequencing. Most relevant to 

this work is the advent of transposon insertion sequencing, in which large scale transposon 

libraries are coupled to next generation sequencing (van Opijnen and Camilli, 2013).  

 Transposons have been a significant driver of genetic diversity in all areas of life 

(Munoz-Lopez and Garcia-Perez, 2010). Generally, they can be described as mobile genetic 

elements that can move throughout a genome via a “cut and paste” mechanism, in that DNA 

is excised from one genomic location and inserted into another (Reznikoff, 2003). 

Transposons are defined by their terminal inverted repeats which flank a linear DNA 

sequence. In scientific application this middle region can be engineered to contain any DNA 

sequence, and is often made to contain antibiotic resistance encoding genes. In nature, this 

middle region generally contains the coding sequence for a transposase, which is the 

machinery that physically inserts the linear transposon into a genome. Two transposase 

molecules recognise and bind to the inverted repeats of the transposon. The two 

transposases then interact with each other to form a synapsis, which causes the middle 

transposon region to loop out. Then, the 3′ strands are nicked by nucleophilic attack which 

requires the presence of magnesium and oxygen. This ultimately leads to the excision of the 

transposon, after which the remaining DNA is rejoined and repaired by the host.  

There are multiple methodologies which can be used for transposon insertion sequencing, 

although all work on the same principle, which is to assess where in the genome the 
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transposons have been inserted. The technique works as follows (Fig. 1.10). First, a high 

density transposon library is created in the organism of interest. To do so, multiple aliquots 

of a single preparation of competent cells are subjected to single rounds of transposition and 

antibiotic selection, followed finally by the pooling of viable mutants. Successfully 

recombined, viable cells are selected by the resistance encoded within the transposon 

sequence. Second, DNA is isolated from the transposon library and prepared in such a 

manner as to allow compatibility with the sequencing platform of choice. This preparation is 

specifically designed to result in the generation of sequence reads that start from within the 

transposon immediately prior to either 5′ or 3′ end, across the transposon/chromosome 

junction and into genomic DNA.  Finally, these sequence reads are processed to remove the 

transposon sequence and leave reads that can be mapped to the reference genome. 

Insertion sites are then calculated alongside a number of other metrics, which allows the 

description of where insertions have occurred with respect to the boundaries of genome 

features. 

Transposon insertion sequencing data can be used in a number of ways. Primarily, it 

is a useful method in the determination of essential genes. Christen et al. (2011) used the 

technique to define the essential genes in Caulobacter crescentus, an important model 

organism in the study of the cell cycle. Another usage of this data is in the assessment of 

genes and their effect on fitness. Langridge et al. (2009), in one of the landmark transposon 

insertion sequencing papers, compared a Salmonella Typhi transposon library before and 

after passage in nutrient broth. There were examples of genes with either a decreased or an 

increased number of reported insertions, allowing their definition as genes either 

advantageous or disadvantageous for growth respectively. Similarly, transposon libraries can



[46] 

 

 

 

Figure 1.10. A simplified depiction of transposon insertion sequencing. (Top panel) 

Transposon mutagenesis can happen at any point along a coding sequence, in either 

orientation. (Middle panel) A wild type coding sequence encodes for a functional protein. A 

disrupted coding sequence produces a truncated, non-functional protein. (Lower panel) 

Reads are generated that read out of the transposon. Alignment of these reads to the 

genome allows for the precise location of the insertion. 
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be grown with and without the presence of environmental pressures and compared, to find 

which genes are related to the condition employed. For example, Phan et al. (2013) used 

human serum as a stress condition with E. coli ST131, a uropathogenic strain of clinical 

importance. From comparing growth with and without serum, they were able to define a 

serum resistome of 56 genes. 

 

1.5 Aims 

Despite all of the previously discussed studies, and the importance of E. coli K12 as a 

laboratory strain and a model organism, there has been no transposon insertion sequencing 

study undertaken in this lineage. Furthermore, the approaches used previously to 

investigate gene essentiality and link genotype to phenotype have well known flaws which 

we are now, due to recent advancements, able to be overcome. Most notably is the fact that 

knock out approaches have missed particular essential genes. As such, the broad aim of this 

work was to develop a complete transposon insertion sequencing methodology that covered 

almost every aspect of the workflow required, from the initial wet lab work, through to the 

preliminary data preparation and finally the requisite interpretation of the results. To enable 

direct comparisons between the insertion sequencing work and the KEIO library, E. coli strain 

BW25113 was the strain used to create the transposon library. 

The work presented in this thesis can be split into three sections. The first aim was to 

adopt and develop a methodology for transposon insertion sequencing with application to E. 

coli BW25113. This work entails the development of both wet lab protocols as well as in 

silico data analysis from the ground up, and is utterly necessary as no protocols or data 

analysis frameworks were available to work from. The second aim was to use the chosen 
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methodology to generate datasets and use them to investigate the essential gene 

complement of BW25113, and compare the results to those of the KEIO study (Baba et al., 

2006). Because the KEIO study is seen as the gold standard for the essential gene set of E. 

coli, it is logical to use as a comparator. The third section aimed to assess which genes are 

important for envelope structure, by using the methodology to compare insertional 

representation of the library before and after growth in the presence of vancomycin and 

SDS. The cell envelope is a crucial structure to the cell, and understanding which of the 

genes underpins it is important for advancements in many areas, most notably antimicrobial 

development. 
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2.1 Bacterial strains and primers.  

An E. coli K12 strain designated BW25113, the parent strain of the KEIO library (Baba 

et al., 2006), was used as the host strain for the mutant library. All primers used in these 

methods are detailed in Table 2.1 below.  

 

2.2 Transposon library creation 

The transposon library used in this work was created by collaborators in Discuva, 

Cambridge.  The library was created based on a method described by Langridge et al. (2009), 

in which transposomes are electroporated into the strain of interest (Fig. 2.1). The linear 

DNA fragment was amplified so as to contain the chloramphenicol resistance cassette from 

pACYC184 (Chang and Cohen, 1978). In this reaction, overhanging primers were used to 

introduce the inverted repeats at the terminal ends required for recognition and binding to 

the transposase (5′-CTGTCTCTTATACACATCTTTGGCGAAAATGAGACGTTG and 5′-

CTGTCTCTTATACACATCTACCGGGTCGAATTTGCTTTCG). Upon electroporation of the 

transposomes into cells, the transposases then act to insert the linear transposon DNA 

sequence into the host cell genome at a random position. Successful mutants were selected 

for on chloramphenicol containing agar plates. Multiple rounds of electroporation and 

selection were done, and the successful mutants were pooled to form the transposon library 

used in the following experiments.  

 

2.3 Two-PCR library preparation method 

Christen et al. (2011) detailed the use of a wholly PCR-based library preparation 

method with a Caulobacter crescentus transposon library. Two sequential PCRs were used to 
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Table 2.1. Primers used in this work.  
 

Primer name Sequence (5′ -> 3′) Description 

TTc-nIx-seq1.1 TCTCTCTTACGTGCCGATCAACGTCTCATTTTCGCCAAA 
Custom sequencing primer required for the 2-

PCR method. 

TTc-nIx-P1 TTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGATCAACGTCTCATTTTCGCCAAA 
The forward primer of the 1st PCR used in the 2-

PCR method. 

TTc-nIx-P2a CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNNNNCGCCA 
One of four reverse primers of the 1st PCR used 

in the 2-PCR method. 

TTc-nIx-P2b CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNNNNCCAGC 
One of four reverse primers of the 1st PCR used 

in the 2-PCR method. 

TTc-nIx-P2c CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNNNNTGATG 
One of four reverse primers of the 1st PCR used 

in the 2-PCR method. 

TTc-nIx-P2d CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNNNNTGCTG 
One of four reverse primers of the 1st PCR used 

in the 2-PCR method. 

TTc-nIx-P3 AATGATACGGCGACCACCGAGATCTCTCTTACGTGCCGATCAACGTCTCATTTTCGCCAAA 
The forward primer of the 2nd PCR used in the 2-

PCR method. 

TTc-nIx-P4 CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 
The forward primer of the 2nd PCR used in the 2-

PCR method. 

TTc-sIx.6.1 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTACGGTCTCATTTTCGC

CAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.7.4 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGCTAGGTCTCATTTTCG

CCAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.8.2 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGCATGCATGTCTCATTTTC

GCCAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.9.2 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTATCGATCGAGTCTCATTTT

CGCCAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 
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TTc-sIx.8.3 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCATGCATGGTCTCATTTTC

GCCAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.9.3 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGATCGATGTCTCATTTT

CGCCAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.6.3 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTACGTAGTCTCATTTTCGC

CAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.7.2 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTAGCTGTCTCATTTTCG

CCAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.8.4 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGCATGCGTCTCATTTTC

GCCAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.9.4 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATCGATCGTCTCATTTT

CGCCAAAGATGTGTA 

A forward primer used in the shearing method, 

or the 2nd PCR of the hybrid method. 

TTc-sIx.P1.F1 TCTTACGTGCCGATCAACGTCTCATTTTCGCC 
The forward primer of the 1st PCR used in the 

hybrid method. 

TTc-sIx.P1.R GATCGGAAGAGCACACGTCTGAACTCCAGTC 
The reverse primer of the 1st PCR used in the 

hybrid method. 
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Figure 2.1. Transposome mediated mutagenesis. (A) A transposome. The linear DNA is 

shown in red, and the dimeric transposase is shown in blue. (B) Electroporation of cells 

allows the movement of transposomes to pass into the cytosol. (C) When inside a cell, the 

transposase inserts its attached DNA fragment into the host genome.  
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generate sequencing ready DNA libraries (Fig. 2.2). The first PCR used a forward primer that 

is complementary to transposon sequence, and amplifies outwards into the flanking 

genomic DNA. Within the amplified sequence an Illumina compatible PE 1.0 sequence was 

engineered into the transposon immediately before the 5′ terminal 2.1end. To complement 

the first primer a semi-arbitrarily random reverse primer is used. This primer is consisted of a 

3′ pentanucleotide sequence, followed by a random 10-bp spacer and then a 5′ Illumina 

PE2.0 adapter sequence. Three variants of the reverse primers included differing 

pentanucleotide sequences, which were designed to bind to the genome every ~300 bp and 

so theoretically complement PCR fragments originating throughout the genome. These 

fragments were then amplified a second time. The forward primer in this reaction contained 

a 3′ PE 1.0 complementary sequence and a 5′ Illumina compatible adapter P5 incorporated 

into the fragments. The reverse primer contained 3′ sequence complementary to the PE 2.0 

sequence previously incorporated into the fragments, and a 5′ Illumina compatible adapter 

P7. 

 

2.3.1 Two PCR method adaptation. The protocol described above was adapted for use with 

our BW25113 transposon library (Fig. 2.2). Broadly the same steps were retained, but with 

changes at several steps. From here, the forward primers in the first PCR are known as P1 

and P2A-D. The second round PCR primers are known as P3 and P4 (forward and reverse 

respectively in each case).  

First, while Christen et al. use bacterial culture to provide the DNA template in the 

first PCR, genomic DNA was used instead. Next, given that the transposon used to create the 

transposon library used did not contain any Illumina-compatible sequence, the forward 
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Figure 2.2. The adapted 2 PCR method used in this work. A transposon (blue) is inserted 

into genomic DNA. In the first PCR, the forward primer (P1) is complementary to the 

transposon, and the reverse primers (P2A-D) are semi arbitrarily random. In the second PCR, 

P3 recognises the transposon and P4 recognises PE 2.0 introduced in the first PCR. The final 

fragment organisation is shown at the bottom of the image. Each sequence read begins with 

18 bases of transposon sequence (shown in dotted black line, with custom sequencing 

primer in dotted blue) 
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primer in the second PCR was designed to be complementary to transposon sequence at the 

3′ end, while still containing the necessary 5′ P5 sequence. Additionally, this change means 

that a custom sequencing primer must be used during the sequencing runs. PE 1.0 is 

complementary to primers included in the sequencing kits, and the binding of these primers 

to PE 1.0 primes a read by allowing nucleotide incorporation by a DNA polymerase. With no 

such sequence between P5 and the transposon sequence, there is nowhere for a polymerase 

to initiate a sequence read. A custom primer, wholly complementary to transposon 

sequence, was designed to be added to the sequencing cartridges to allow read initiation 

during a run (seq 1.1 in Fig. 2.2). Use of this primer results in sequence reads starting 18 

bases before the end of the transposon, followed by genomic DNA. In another change to the 

primer design, Illumina-compatible indexes were introduced into the primers used in the 

second PCR. The indexes were placed in between P5 and the transposon sequence in P3, and 

in between P7 and PE 2.0 in P4. By using indexes, multiple samples can be sequenced 

simultaneously, allowing for greater throughput and utility. To enable the use of the i7 

index, another custom primer (index 1) was added into the sequencing cartridge. Where 

Christen et al. (2013) use 3 variants of the reverse primer in the first PCR, four variants were 

used in this work, corresponding to the four most common pentanucleotides present in the 

BW25113 genome. In contrast to Christen et al. (2013), who perform a gel based size 

selection and clean only after the second PCR, a 1.5x SPRI clean was used after both PCRs. 

 

2.3.2 Two PCR method protocol. An overview is shown in Fig. 2.2. Genomic DNA was 

isolated from the BW25113 transposon library using a Qiagen QIAamp DNA Blood Mini Kit, 

according to the manufacturer’s specifications. All primers were used at 20 μM. This 
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genomic DNA was then used in four separate PCRs, each identical except for the reverse 

primers used. 5 μl of genomic DNA, 1 μl of primer P1, 1 μl of primer P2A/B/C/D, 25 μl of 

MyTaq polymerase (Bioline) and 18 μl of deionised water were used in each reaction. PCRs 

were run on a Mastercycler Pro (Eppendorf) The cycling conditions for these reactions were 

as follows; 94 °C for 3 minutes, 6 cycles of 94 °C for 30 seconds, 42 °C for 30 seconds (with a 

slope of -1 °C per cycle), 72 °C 60 seconds followed by 25 cycles of 94 °C for 30 seconds, 58 

°C for 30 seconds, 72 °C for 60 seconds and then finally followed by 72 °C for 3 minutes. All 

four PCRs were then pooled and cleaned using an Ampure XP SPRI bead based clean up step 

(Beckman Coulter). In this cleanup, a 2:3 ratio of PCR volume to bead volume was used, to 

remove DNA fragments shorter than 150 bp as per the manufacturer’s instructions. From 

the SPRI cleaned pool, 2 μl was taken forward into the second PCR, along with 1 μl of primer 

P3, 1 μl of primer P4, 25 μl of MyTaq polymerase and 21 μl of deionised water. This was 

cycled as follows; 94 °C for 3 minutes, followed by 30 cycles of 94 °C for 30 seconds, 64 °C for 

30 seconds, 72 °C for 60 seconds, and then finally followed by 72 °C for 3 minutes. Another 

SPRI clean was used after this PCR, with the same ratios as previously.  

Samples were loaded on the Miseq (Illumina) to aim for an optimal cluster density of 

800 clusters per mm2. Qubit (Thermo Fisher Scientific) was used to quantify the sample 

concentration, and estimate sample loading volumes. Immediately prior to the sequencing 

run, 4 μl of the custom sequencing primer seq 1.1 at 100 μM was added to the 500 cycle V2 

sequencing cartridges. The single read lengths of each run were set to 250 bp. 

 

2.4 Shearing-based library preparation method 
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The two PCR method tested previously relies wholly upon PCR to generate fragments 

for sequencing that contain transposon/chromosome junctions. Another way of creating 

these sequencing libraries includes the use of mechanical shearing through ultrasonication. 

This process has been used in several transposon sequencing publications, notably Phan et 

al. (2013; Fig. 2.3). Genomic DNA is quantified and standardised to a given amount, and then 

subjected to ultrasonication. The next step is to repair the sheared fragments. Sonication 

leaves the DNA with 5′ and 3′ overhangs that are repaired to leave blunt ended, 5′ 

phosphorylated fragments. After repair, the newly formed blunt ends are A tailed at the 3′ 

ends to facilitate the next step of adaptor ligation, in which Illumina read one and two 

sequence-containing adapters are ligated to the A tailed fragments. A PCR step is then used 

to enrich fragments containing transposon/chromosome junctions at the same time as 

introducing the necessary P5 and P7 flow cell binding Illumina sequences. A long forward 

primer is then used to enrich junction containing fragments of a defined structure. From 5′ 

to 3′, the primer consists of the Illumina P5 and read 1 sequences, followed by an in-line 

barcode and 25 bases complementary to the transposon. During the enrichment, the 3′ 

transposon complementary end of the primer binds to the transposon and subsequently 

introduces the prior sequences into the fragments.  

 

2.4.1 Adaptation of the shearing-based method. The method outlined in Phan et al. (2013) 

was adapted for use with our BW25113 library. As with the Christen et al. (2011) method, 

some slight modifications were made. An overview is shown in Fig. 2.3. The previous method 

used a Covaris ultrasonicator to break down genomic DNA. In this work, the Bioruptor 

platform was used. While the two technologies have slight technical differences, the 
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Figure 2.3. The adapted shearing based method used in this work. DNA is first sonicated 

and processed using the NEBnext kit. An enrichment PCR is done to specifically amplify only 

the fragments containing the 3′ end of the transposon (shown in blue). The final fragment 

structure after processing is shown at the bottom of the image.  
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principle of mechanical shearing of the DNA is the same in both.  In the Bioruptor, 

ultrasound waves are pulsed through an ice bath in which the gDNA samples are immersed. 

The propagation of these waves, through cavitation, creates mechanical stresses that break 

apart the DNA into smaller fragments. This process can be tuned to give a reproducible 

range of DNA fragments of a given average length. An average fragment length of between 

200-300 base pairs was targeted. Phan et al. used an Illumina Truseq kit for the next steps of 

end repair, A tailing and adapter ligation. In contrast, an NEB NEBNext Ultra kit was used in 

this work. In this kit, the steps taken are identical, albeit with a slight difference in adapter 

ligation. The adapters included in the NEBNext kit have a hairpin loop structure with a uracil 

at the centre of the loop. An extra step in the kit protocol is to excise the uracil to leave 

linear DNA ligated to the gDNA fragments.  

In the enrichment PCR, two adaptations have been made. First, in the previous 

method the inline barcodes in the forward primers are all the same length. Here, the 

forward primers were designed to have staggered inline barcodes. The purpose of this 

primarily is to increase base diversity during sequencing. Immediately after the inline 

barcode is the expected transposon sequence. While barcodes of a given length can be 

designed to have different sequence, and so have maximal diversity during sequencing, the 

following base calling of the transposon sequence will be identical during the imaging of 

each cluster on the flow cell. This low diversity makes it harder for the sequencer to 

differentiate between clusters and subsequently negatively impacts cluster definition, base 

calling and read quality. The staggering of the inline indexes then leads to the staggering of 

the transposon sequence immediately after, increasing the base diversity at every cycle. This 

theoretically leads to better cluster definition and higher quality base calling. Another 
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adaptation made to the previous method is to improve the multiplexing potential of the 

technique. Previously, the only way to multiplex samples on a single run was by using the 

inline barcodes. Here, Illumina compatible indexes have been introduced into the fragments 

through the enrichment PCR by using NEBNext reverse primers. When used in conjunction 

with the custom enrichment forward primers, the dual indexing of samples is facilitated. This 

is another major benefit to the use of staggered inline barcodes, in that the capacity for 

multiplexing is greater with a wider variety of inline barcode lengths and complexities 

available. 

 

2.4.2 Shearing method protocol. Genomic DNA was isolated from the BW25113 transposon 

library using a Qiagen QIAamp DNA Blood Mini Kit, according to the manufacturer’s 

specifications. Following isolation, the DNA was quantified using the Qubit platform. 1 μg of 

DNA in a volume of 500 μl was then sheared to an average fragment length of 250 bp using 

the Bioruptor sonication device (Diagenode), following the manufacturer’s instructions. 15 

shearing cycles, consisting of 30 seconds on at the low setting, following by 90 seconds off, 

were used. The 500 μl sheared volume of DNA was concentrated down to approximately 

55.5 μl using a Concentrator 5301 (Eppendorf). At this point, the concentrated DNA was 

processed using the NEBnext DNA library preparation kit (New England Biolabs). The steps of 

end repair, 5′ phosphorylation, adapter ligation and USER excision were done following the 

instructions provided. In the following amplification step, custom designed primers were 

used to specifically enrich fragments containing transposon/chromosome junctions. These 

reactions contained 25 μl 2X Hifi polymerase mix (KAPA Biosystems), 2.5 μl of custom 

enrichment forward primer at 10 μM, 2.5 μl of the standard NEBnext Illumina reverse primer 
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and 20 μl of the NEBnext processed DNA. Indexes were present within both primers of this 

reaction, and each sample used a different variant of each primer to give uniquely 

identifiable indexes for each sample. This reaction was temperature cycled for the following; 

98 °C for 48 seconds, followed by 22 cycles of 98 °C for 15 seconds, 60 °C for 30 seconds and 

72 °C for 30 seconds, followed by 72 °C for 1 minute. This reaction was also SPRI cleaned 

using a 2:3 reaction volume to bead ratio. The resulting cleaned DNA was quantified using 

qPCR with a SYBR FAST kit (KAPA), following the manufacturer’s instructions. 

The processed, quantified samples were loaded on the Miseq to aim for an optimal 

cluster density of 800 clusters per mm2. 150 cycle V3 sequencing cartridges were used for 

these sequencing runs.  

 

2.5 Hybrid shearing-based library preparation method 

 In addition to the 2 PCR and shearing methodologies tested, a hybrid of the two was 

also evaluated (Fig. 2.4). This method is centred upon the use of DNA ultrasonication as in 

Phan et al. (2013), but instead of only a single PCR enrichment, two PCRs were used as in  

Christen et al. (2011). The rationale behind this design is that of increased specific 

transposon enrichment. After the ligation of adapters to the repaired, sheared genomic 

DNA, two PCRs are done. In the first of the 2 PCRs, the forward primer is entirely 

complementary to transposon sequence, and the reverse primer is entirely complementary 

to Illumina specific sequence incorporated through the ligation reaction. This is in contrast to 

the 2PCR method, in which semi-arbitrarily random reverse primers are used to complement 

the transposon specific forward primer. This step should raise the number of fragments 

containing transposon/chromosome junctions against the background of fragments that do 
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Figure 2.4. The hybrid based method used in this work. DNA is first sonicated and 

processed using the NEBnext kit. The first PCR uses primers specific to the transposon (blue) 

and Illumina specific sequence introduced through the NEBnext kit. After SPRI cleaning, the 

second PCR introduces more requisite Illumina compatible sequences. The final fragment 

structure is shown at the bottom of the image. 
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not contain them, and so act to improve the effectiveness of the second PCR. The second 

PCR is then the same as the enrichment PCR used in the shearing method previously tested, 

resulting in Illumina-compatible fragments.  

 

2.5.1 Adaptation of the hybrid method. The genomic DNA shearing, end repair, A-tailing, 

adapter ligation and magnetic bead cleaning steps are the same in the hybrid method as in 

the shearing method. One slight change has been made at the shearing stage: whereas 

previously there were 15 cycles, there were 13 in this protocol. This is to try and reduce the 

number of reads lost due to being shorter than the minimum read length of 20. After these 

steps, the first PCR is done. The primers for this reaction were designed to have melting 

temperatures as close together as possible. Additionally, the forward transposon specific 

primer was designed to anneal to the transposon 11 bases upstream of where the 2nd PCR 

forward primer does, thus nesting the second reaction. In the second PCR, the forward and 

reverse primers used previously were used again, meaning that inline indexing was still 

available alongside Illumina indexing. An additional 0.75x SPRI bead cleanup was used 

inbetween the two PCRs.  

 

2.5.2 Hybrid method protocol. The hybrid methodology is identical to the shearing one, up 

until the final steps of library amplification. Immediately after the final step of the NEBnext 

library preparation, the first of two PCRs was done. This reaction contained 25 μl of Hifi 

polymerase, 2.5 μl of TTc-sIx.P1.F1 at 10 μM, 2.5 μl of TTc-sIx.P1.R at 10 μM, 14 μl of 

NEBnext processed sample and 6 μl of deionised water. This reaction was cycled as follows, 

at 98 °C for 48 seconds, followed by 10 cycles of 98 °Cfor 15 seconds, 65 °C for 30 seconds, 
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72 °C for 30 seconds and then followed by 72 °C for 60 seconds. The resulting PCR mixture 

was SPRI cleaned with a 1:0.8 ratio of PCR to beads. The second PCR then consisted of 25 μl 

of Hifi polymerase, 2.5 μl of custom forward enrichment primer at 10 μM (the same primers 

used in the shearing methodology), 2.5 μl of the standard NEBnext Illumina reverse primer, 

15 μl of the SPRI cleaned first PCR sample and 6.5 μl of deionised water. As used previously 

in the shearing method, different primer combinations were used to allow for multiplexing. 

This reaction was cycled with the same temperatures as the first PCR, but for 20 cycles 

instead of 10. A 1:0.8 SPRI clean was repeated on the samples after the second PCR.  

At this point, samples were quantified using the KAPA qPCR kit as per the 

manufacturer’s instructions. Quantified libraries were then loaded on the Miseq to aim for 

an optimal cluster density of 800 clusters per mm2. 150 cycle V3 sequencing cartridges were 

used for these sequencing runs. 

 

2.6 Sequence read analysis 

For the analysis detailed in 2.5, Ubuntu 12.04 was used as the host environment. 

2.6.1 Preliminary read processing. The raw sequencing reads produced in this work, by 

design, contained transposon specific sequence at their beginning. Specifically, these bases 

were from the very 3′ end of the transposon. As such, these reads required processing to 

assess and remove these sequences. Between the three preparatory methods tested, there 

were differences in the structures of the reads generated. Reads from the 2-PCR method had 

18 bp of 5′ transposon sequence.  The shearing method leads to reads with 35 base pairs of 

5′ transposon sequence. The hybrid method leads to 35 base pairs of transposon sequence, 

but with an additional variable length inline index upstream of it. The Fastx barcode splitter 
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and trimmer tools, as part of the Fastx toolkit (Pearson et al., 1997), were used to assess and 

trim the sequences. For the 2-PCR method, reads were only retained for further processing 

with 1 mismatch to the expected sequence of 5′-GATGTGTATAAGAGACAG allowed. For the 

shearing and hybrid methods reads were first filtered by their inline indexes, and no 

mismatches were allowed. Then, the transposon similarity matching was done in two parts. 

For the first 25 bases from the 5′ end, 3 mismatches were allowed, at which point the 25 

bases were trimmed. Then, 1 mismatch was allowed for the remaining 10 bases, prior to 

trimming of the 10 bases.  

 

2.6.2 Primary read processing. Individually, all three sets of reads, from each preparatory 

method, were brought forward from preliminary processing and run through the same set of 

analytical steps in a script. Reads less than 20 bases long were removed using Trimmomatic 

(Bolger, Lohse and Usadel, 2014). Length filtered reads were then aligned to the reference 

sequence for E. coli W3110 (NC_007779), the parent strain of BW25113, which was obtained 

from the NCBI genome repository (Tatusova et al., 2014). The aligner bwa was used, with the 

mem algorithm (0.7.8-r455, Li and Durbin, 2009). Next, the aligned reads were filtered to 

remove any soft clipped reads. The subsequent steps of conversion from sam files to bam 

files, and the requisite sorting and indexing, were done using samtools (0.1.19-44428cd, Li et 

al., 2009). Next, the bedtools suite (Quinlan and Hall, 2010) was used to, from the bam files 

created previously, create bed files and then intersect them against the coding sequence 

boundaries defined in general feature format (.gff) files obtained from NCBI. Custom python 

scripts were then used to ensure that only reads that correctly emanated from within a 

coding sequence were retained, along with multiple other steps of sorting and processing. 
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The metrics reported in each chapter were obtained from all of the files created during this 

analysis.  

 

2.7 Essential gene prediction 

This is done as described in Langridge et al. (2009). Briefly, the distribution of 

insertion indices is bimodal with the mode containing insertion index 0 corresponding to an 

essential model. The cut-off between the two modes is chosen to be the minimum bin in the 

appropriate range of insertion indices, in general between 0 and 0.02. Gamma distributions 

are fitted to each mode in each data set using the R MASS library (R Development Core 

Team, 2016). Log2-likelihood ratios are calculated between the two distributions for each 

gene. We call a gene essential if it has a log2-likelihood ratio of less than -3.6, corresponding 

to the gene being at least 12 times more likely to belong to the essential distribution than 

the non-essential distribution. A gene is deemed non-essential if it has log2-likelihood 

greater than 3.6. 

 

2.8 Differential representation calculation 

DESeq2 was used to detect the differential representation of genes in the insertion 

sequencing datasets, with and without the presence of SDS or vancomycin (Love, Huber and 

Anders, 2014). The numbers of insertion sites in each gene, and also the numbers of reads 

emanating from within each gene, were individually compared between the control and test 

condition datasets. DESeq2 is replicate aware, and so each replicate of the control and test 

datasets were used in the calculation of log2 fold change values (L2FCs) and also adjusted p 

values. Genes with a less than two fold change in either direction, and/or an adjusted p 
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value greater than 0.05, were removed from further analysis. In brief, DESeq2 assesses the 

variability between datasets in addition to the variability between replicates, to be able to 

report differentially represented genes that are more likely to be genuine. To assess the 

differential expression of genes, negative binomial linear models are used. The data used in 

these models are subjected to normalisation to account for differences between datasets. 

Additionally, variance within the replicates is accounted for in the final analysis.   
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CHAPTER 3 

A COMPARISON OF TRANSPOSON SEQUENCING LIBRARY PREPARATION 

METHODS 
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3.1 Introduction 

The fundamental aim of transposon sequencing is to generate sequence reads 

originating from within a transposon insertion and continuing across into adjacent genomic 

DNA. Subsequent processing of these reads then allows the precise inference of where 

insertions are located in the genome. In order to generate a DNA fragment library that is 

ready for sequencing, from the genomic DNA of a bacterial insertion library, two 

requirements must be met. First, fragments must contain transposon/chromosome 

junctions, and secondly, fragments must be compatible with the sequencing technology to 

be employed. To meet these requirements, the preparation of the gDNA must be highly 

specific and suitably designed. 

There is no single methodology to achieve this aim: multiple publications detail 

different library preparation methods (as reviewed by van Opijnen and Camilli, 2013). 

Between them, no one methodology is distinguished in terms of performance, and 

furthermore no method comparisons are available in the literature. As such, it was decided 

to test multiple methodologies and to assess and compare their outputs. The following 

sections compare three library preparation strategies that were tested by applying them to 

an E. coli BW25113 transposon library. 

 

3.2 Results 

3.2.1 A two-PCR based library preparation method. Christen et al. (2011) demonstrated a 

library preparation based upon the use of PCR to generate Illumina-compatible fragments 

spanning transposon/chromosome junctions. Their method was adapted as detailed in 

chapter 2. 
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In order to assess the two-PCR preparation method, the transposon library was 

tested with two types of sample, each with two biological replicates. The first set of samples 

were gDNA derived from the neat transposon library (NTL) without any further growth. To 

produce the second set of samples (LB), 50 ml of LB inoculated with 10 μl of transposon 

library (to a starting OD600 of ~0.05) were grown at 37°C to an OD600 of 1, at which point 

gDNA was extracted. The reason for using two types of sample was to determine whether 

the addition of a growth step results in better representation of insertion sites. It was 

plausible that the neat transposon library might contain non-viable mutants that, while not 

capable of growth under the test conditions, were still present at the point of harvesting. 

The presence of such mutants could lead to insertion sites being erroneously reported in 

essential genes.  

The four genomic DNA samples were processed using the adapted two-PCR method, 

and the resulting libraries were sequenced using the Illumina MiSeq. After sequencing, the 

reads were analysed using the analytical pipeline outlined in the materials and methods 

(Table 3.1). As a general figure, we aimed for approximately 10 million reads per individual 

sample. The numbers of reads obtained varies widely in different studies, from between 7-

11 million reads per sequencing run from Langridge et al. (2009) and over 100 million raw 

reads in Christen et al. (2011). For the NTL replicates, 14 million (NTL1) and 12 million (NTL2) 

raw reads were obtained, respectively. For the LB replicates, 10 million (LB1) and 8.9 million 

(LB2) reads were obtained, respectively. Broadly, across all four samples a relatively small 

proportion of the raw reads could be included in the final dataset. The attrition of reads 

occurred at nearly every individual analytical step. After the first step, in which the similarity 

of the first 18 bases of each read to the expected transposon sequence was tested, between 
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Table 3.1. Dataset metrics from the two-PCR method. 
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~35 and ~59% of reads were filtered out because they did not match the expected 

transposon sequence. After reads passing this filter were trimmed of the transposon 

sequence, they were filtered to ensure a minimum read length of 20 bases. At this point no 

reads were removed from any data set. Then, the reads were mapped to the E. coli W3110 

genome. After mapping, a small percentage of reads were discarded because they did not 

align to the reference genome. This is in line with observations from similar studies, such as 

Langridge et al. (2009). During mapping, the bwa read aligner removes (clips) poor quality 

bases from some reads, to allow the better mapping of the rest of the read. For stringency, 

any clipped reads were removed from the datasets, which reduced the final number of 

mapped reads by more than half in each case. 

Following read processing and mapping, the position of each insertion site on the 

chromosome was determined. In terms of unique insertion sites, the four datasets gave 

broadly similar results. Approximately, 230-300 thousand unique insertions were reported 

across the genome. The majority of these insertions (circa 87%) reside in coding sequences.  

The next step in the analysis was to estimate the number of essential genes. One method to 

predict gene essentiality from transposon sequencing data is to calculate and manipulate 

insertion indexes, as employed by Langridge et al. (2009) and Phan et al. (2013). An insertion 

index is the frequency of unique insertions in a coding sequence normalised for its length. An 

insertion index of 0 indicates that no insertions were found in a coding sequence, and the 

greater the index, the greater the frequency of insertions. Histograms were generated for 

the insertion indexes of each coding sequence. Intervals were created over the range of 

insertion indexes, and the insertion indexes are then separated into each interval (hereafter 

referred to as bin). The bimodal distributions of the histograms correspond to essential and 

non-essential coding sequences, with smaller indexes indicating more likely essentiality. 
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Insertion indexes were calculated for each of the four datasets, and plotted in histograms 

(Fig. 3.1). In both plots, bimodality can be observed. The first peak at an insertion index of 0 

corresponds to the essential coding sequences and, in both LB and NTL plots, contained the 

largest number (between ~170 and ~250) of coding sequences out of all the bins. The 

distribution decreased drastically towards an increased insertion index value. The rightmost 

second mode was less similar between the LB and NTL plots. In the LB datasets, the mode 

for the second distribution is at approximately 0.03, whereas in the NTL datasets the mode 

lies at approximately 0.04 (Fig. 3.1). These second modes are similar in both plots in that 

they tail off to greater insertion indexes less dramatically than the first distribution, although 

this tailing occurs at smaller insertion indexes in the LB plot than in the NTL plot. For both 

types of sample, the replicates were broadly similar. Between the LB replicates, there was a 

slightly higher number of coding sequences with the smallest insertion index in the second 

replicate along with a greater proportion of coding sequences in bins between 0 and ~0.04. 

Past this point, increased bin frequencies were found for the first replicate relative to the 

second replicate. Between the NTL replicates, a similar pattern was observed, with an 

increased representation in the smallest insertion indexes, and additionally between 0 and 

~0.03. Beyond this point, the bins for the second replicate contained more coding 

sequences. 

The reproducibility of the insertion indexes obtained for both replicates was 

assessed. For this purpose, a coefficient of determination (R2) can be calculated. This statistic 

is a measure of how well two datasets correlate with each other, and it is normally used to 

compare how well data fit to a model. In this case, the R2 value was calculated for each of 

the replicated sets of insertion indexes for each sample (Fig. 3.2). The R2 values for the LB 
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Figure 3.1. Histograms of insertion indexes calculated from datasets generated using the 

two-PCR methodology. Insertion indexes greater than 0.15 were omitted. The two panels 

show the insertion indexes for the two replicate samples of the neat transposon library (NTL, 

upper panel) and for the two replicate samples after growth in LB (LB, lower panel). In each 

panel, the first replicates are shown in pink and the second replicates are shown in blue. 

Each vertical bar on the x axis represents a different bin containing insertion indexes of 

equal, defined intervals. The y axis denotes the frequency of each of these bins. 
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Figure 3.2. Insertion index correlation scatterplots for the datasets generated using the 

two-PCR method. For each sample, the insertion indexes calculated for every W3110 coding 

sequence for each replicate were plotted against each other, and a coefficient of 

determination (R2) was calculated. The max R2 value is 1, which would indicate a perfect 

positive correlation.    
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and NTL datasets were 89.7% and 91.3%, respectively. These high values indicate that the 

replicates correlate well with each other in terms of insertion indexes. 

Insertion index histograms can be used to statistically assess gene essentiality. This 

was an approach taken by Langridge et al. (2009) and Phan et al. (2013). Essentiality 

predictions were made as described in the materials and methods. 486 coding sequences 

were predicted to be essential from the combined LB1 and LB2 datasets. 467 essential 

coding sequences were predicted from the combined NTL1 and NTL2 datasets. These 

numbers of predicted essential genes are substantially higher than other estimates; for 

example, the KEIO library originally outlined 303 essential gene candidates (Baba et al., 

2006). Furthermore, this method identified genes as essential that have been proven not to 

be essential e.g. cspBEHI. As such, it was necessary to evaluate other library preparation 

methods to see if other techniques could provide more accurate estimations of essential 

genes. 

 

3.2.2 A shearing based library preparation method. Phan et al. (2013) previously used 

transposon insertion sequencing to predict the serum resistome of E. coli ST131. They used a 

shearing-based library preparation method to create Illumina compatible sequencing 

libraries. The same gDNA samples used for the assessment of the two-PCR method, 

described in the previous section, were used to assess the shearing-based methodology. This 

was adapted as detailed in the materials and methods. Sequencing libraries were prepared 

for two biological replicates of the transposon library after growth in LB and were compared 

with a single sample of the neat transposon library itself. (Table 3.2). As observed in the 

analysis of the two-PCR data, the number of usable reads decreased at each stage of 

processing. However, there were key differences between the two techniques. First, note 
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Table 3.2. Metrics from the shearing method dataset. 
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that due to differences in the primer design, the data from the two methods were not 

processed identically. The first test assessed similarity over the first 25 bases of transposon 

sequence, corresponding to the sequence present in the forward primer of the enrichment 

PCR. The second test was used for the final 10 bases of transposon sequence immediately 

after the previous 25.  There was a large difference in attrition between the two transposon 

similarity tests. The first test resulted in the loss of ~65-80% of the total. The second step 

resulted in only 4.5-9% of the sequences being taken forward to the next processing step. 

This was in stark contrast to the datasets generated by the two-PCR method, in which ~41-

65% of the raw reads were carried through. Additionally, more reads were lost after the 

minimum read length filter in the shearing data than in the two-PCR data. Whereas none 

were lost at this step in the two-PCR data, between ~69 and ~94 thousand reads were too 

short to be carried forward in the shearing data. Only ~3-7% of the raw reads were mapped 

prior to being filtered for clipping. The numbers of unique insertion sites between the three 

datasets are broadly similar. Between ~1.6 and ~2.9 x 105 insertion sites were reported 

across the genome, of which ~86-88% arose in coding sequences. The numbers of unique 

insertions reported for the shearing method datasets were generally lower than those 

reported for the two-PCR datasets. The datasets from both preparation techniques show a 

very similar proportion of insertion sites within coding sequences. There was a clear 

difference in the number of clipped reads generated from both preparatory techniques: 

during processing, more than 75% were clipped and removed in each two-PCR dataset. In 

contrast, only ~3% were removed at the same step in the shearing datasets.  

 Insertion indexes were calculated for the three shearing datasets and plotted in 

histograms (Fig. 3.3). Slightly different insertion index profiles can be seen in the replicate LB 

datasets (lower panel of Fig. 3.3). While bimodality can be observed in each replicate,
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Figure 3.3. Histograms of insertion indexes calculated from datasets generated using the 

shearing methodology. Insertion indexes greater than 0.15 were omitted. The upper panel 

shows the insertion indexes for NTL dataset, and the lower panel shows the two LB1 and LB2 

replicate samples.  
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between the replicates there are differences in each mode. The first peak at an insertion 

index of 0 can be observed in both replicates. There are ~180 coding sequences in the 

leftmost bin for the first replicate and approximately 140 in the second replicate. In the first 

replicate (LB1) the second mode is found at a smaller insertion index (centring at ~0.02 as 

opposed to ~0.04) and contains bins with a greater frequency of coding sequences. These 

differences between the replicates can be explained simply by the numbers of reads for each 

replicate. The second replicate generated over 110,000 more reads than the first. With an 

increasing number of reads in a dataset, there is a greater chance of finding more unique 

insertion sites. This decreases the number of coding sequences without insertions (barring 

essential genes) and increases the insertion indexes of the non-essential coding sequences. 

This corresponds to what is observed in the histogram: fewer coding sequences were 

collected in the leftmost bin of the LB2 dataset, with a greater spread of coding sequences 

across higher insertion indexes in the right mode. 

 Several observations can be made by comparing the LB histograms from the two-PCR 

and shearing methods. First, the two-PCR data do not appear to be as distinctly bimodal as 

in the shearing data. The split between the two modes is much easier to discern in both LB 

replicates of the shearing data. Second, a greater frequency in the leftmost bin of the two-

PCR data can be seen when compared to the shearing data. This is especially important 

when considering the differences in the numbers of reads, with approximately 5 x 105 reads 

in the shearing data and then 1.5 x 106 reads and upwards in the two-PCR datasets. Third, 

the right modes are broadly similar in the data from both methods, centring at an insertion 

index between 0.02 and 0.04. 

Although there is only a single dataset for the NTL sample, the insertion index 

histogram produced is very similar to those produced for the LB samples (upper panel of Fig. 
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3.3). This dataset contained fewer reads (~400,000 reads) than the two LB replicates. In 

keeping with the idea that an increased number of reads will move the right mode towards 

increased insertion indexes, the right mode is closer to that of the first LB replicate than the 

second. In comparison to the NTL histograms from the two-PCR data, the insertion index 

profiles look very similar, with similar coding sequence frequencies in each mode. Again, this 

is notable given the discordance in the numbers of reads in each dataset (between 2.2 and 

2.6 x 106 for the two-PCR datasets and ~400,000 for the shearing dataset). 

 The reproducibility of insertion indexes between each LB replicate was assessed. The 

coefficient of determination was calculated for the replicates and the resulting plot is shown 

in Figure 3.4. The insertion indexes for the coding sequences in each replicate are very 

similar, as shown by the high coefficient of determination (R2 = 0.95). This value is higher 

than those found from the LB and NTL two-PCR datasets. 

The two LB replicate datasets were combined and the number of essential genes was 

predicted. The 374 coding sequences predicted to be essential after this analysis is ~100 less 

than the number predicted from the two-PCR method, but still contained some genes known  

to be non-essential, e.g. aceEF. 

Having considered the high level of read attrition, observed after the second 

transposon similarity testing step, we considered this technique unsuitable for wider use. As 

such, another technique was tested to create sequenceable fragments spanning the 

transposon/chromosome junction. 

 

3.2.3 A hybrid two-PCR/shearing-based library preparation method. Elements of both the 

two-PCR and shearing methods were used in the final preparation method tested. DNA was 

first sheared and then amplified using two PCR enrichment steps. From here onwards this 
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Figure. 3.4. Correlation of LB datasets derived from the shearing method. For each sample, 

the insertion indexes calculated for every W3110 coding sequence for each replicate were 

plotted against each other, and a coefficient of determination (R2) was calculated. The max 

R2 value is 1, which would indicate a perfect positive correlation 

   



[84] 

 

method will be referred to as the hybrid method. Sequencing libraries were prepared for the 

transposon library after growth in LB and the neat transposon library itself, each with two 

biological replicates. The results from sequencing these libraries are shown in Table 3.3. 

Read attrition can be seen at each processing step in each of the four datasets. However, in 

contrast to the previous two-PCR and shearing based methods, a far greater proportion of 

reads were retained after the final step of minimum read length filtering: 74-91% were 

retained at this point, in comparison to 3-7% in the first shearing method and 36-57% in the 

two-PCR method. The key difference between the hybrid method and the previous shearing 

method was in the efficiency of the two step transposon matching. In the shearing method, 

the vast majority of reads (between 91 and 95%) were rejected at the second part of this 

step. Far fewer reads were lost at the same stage in the hybrid method, with between 4% 

and 19% being removed. This is also the case when comparing the hybrid method with the 

two-PCR method, in that more reads were retained after transposon sequence matching. 

After the minimum read length filtering, the proportion of reads retained in the hybrid 

method was increased in comparison to the shearing method but not in comparison with the 

two-PCR method. This is true except for the NTL2 dataset, in which 1% of reads are shorter 

than 20 bases.  

The number of clipped reads generated in the hybrid datasets was assessed. 

Between 2% and 4% were clipped and removed from the datasets. In comparison, the 

shearing method and the two-PCR methods resulted in between 0.1-0.2% and 20-35% 

clipped reads, respectively. Clearly, the two-PCR method is by far the least efficient in this 

regard. Although clipping is more common in the hybrid method, the total proportion lost is 

acceptable in light of inefficiencies in the other methods. The number of unique insertion 

sites was calculated for each of the four hybrid datasets. In the datasets there were between
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Table 3.3. Dataset metrics from the hybrid method 
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4-8 x 105 unique insertion sites across the whole genome, of which ~86% were found in 

coding sequences. The insertion numbers reported were higher than those in the two-PCR 

and shearing methods. However, these numbers are not directly comparable due to the 

differing numbers of reads in each dataset between the 3 preparation methods. However, 

the proportion of insertions that were found in coding sequences was very similar across the 

three methods. 

Insertion indexes for all four datasets were calculated and plotted in histograms (Fig. 

3.5). Very similar bimodal insertion index profiles can be seen in the two NTL replicates. The 

leftmost peak is again found at an insertion index of 0, and the leftmost bin at this position 

contains ~75 and ~35 coding sequences in either replicate. The right mode centres at 

approximately 0.09 in each replicate, although generally there are higher frequencies across 

most of the mode in the second NTL replicate.  

There were clear differences between the hybrid histograms and the corresponding 

histograms of the two-PCR and shearing datasets. A much increased frequency can be seen 

in the leftmost bin of the two-PCR NTL histogram when compared to the hybrid NTL 

histogram. Additionally, the right mode is much closer to the zero mode in the two-PCR 

histogram. The same observations hold true in the histogram of the single shearing NTL 

dataset: when compared to the hybrid NTL histogram, the leftmost bin contains a greater 

number of coding sequences, and the right mode is much closer to the left.  

There were also differences in the profile between the histograms for the hybrid NTL 

and LB datasets. In the LB histogram the leftmost bin contains ~100 coding sequences. The 

right mode centres at an insertion index of approximately 0.06, which is closer to the left 

mode than that seen in the NTL histogram. The distribution of this right mode is also broader 

than in the NTL histogram. A more clearly defined bimodal distribution can be observed in 
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Figure 3.5. Histograms of insertion indexes calculated from datasets generated using the 

hybrid methodology. Insertion indexes greater than 0.15 were omitted. The upper panel 

shows the two NTL1 and NTL2 replicate sample datasets, and the lower panel shows the two 

LB1 and LB2 replicate sample datasets. 
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the hybrid NTL histogram in comparison to the two-PCR LB histogram, with a greater 

distance between the two modes. When compared to the shearing method LB histogram, 

the right mode of the hybrid LB histogram centres at an increased insertion index. 

Additionally, the leftmost bin contains fewer coding sequences. 

 The reproducibility of the insertion indexes generated from each replicate for both 

NTL and LB samples was tested (Fig. 3.6). The coefficient of determination was calculated to 

be 0.96 and 0.97 for the NTL and LB replicates, respectively. These values indicate that the 

insertion indexes generated in both replicates in each sample are highly reproducible. 

Interestingly, there appears to be a slight skew towards the second replicate in the NTL 

correlation plot, possibly corresponding to the generally higher insertion index frequencies 

seen in the right mode in Figure 3.5. 

The insertion index histograms were used to predict statistically essential genes. 

After merging the two replicates for each sample, and using the same analysis as used with 

the previous datasets, 317 and 356 coding sequences were predicted to be essential in the 

NTL and LB datasets, respectively. These numbers were smaller than reported for the two-

PCR and shearing datasets but are more consistent with reports of gene essentiality from 

other studies. 

 

3.3 Discussion 

 In summary, three preparation techniques to produce transposon sequencing 

libraries have been adapted, applied and assessed using an E. coli BW25113 transposon 

library. The aim of this work was to compare the methods and to assess the data generated 

by each, in order to choose a technique to use in further work. At this point, the shearing 

method will be removed from further discussion. This is due to the huge read attrition seen  
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Figure 3.6 Insertion index correlation scatterplots for the hybrid datasets. For each sample, 

the insertion indexes calculated for every W3110 coding sequence for each replicate were 

plotted against each other, and a coefficient of determination (R2) was calculated. The max 

R2 value is 1, which would indicate a perfect positive correlation.    
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at the second transposon sequence similarity testing step, which removed the vast majority 

of the reads in each dataset. In most other steps the read retention rates were acceptable, 

but as a whole the methodology is considered unusable because it is so inefficient. 

Arguably the most important comparator between the remaining two-PCR and 

hybrid methods is the proportion of reads that were not filtered out through the processing 

steps and that can be subsequently mapped to the W3110 genome. From this perspective, 

the hybrid method outperformed the two-PCR method substantially through an 

accumulation of improved retention at each processing step. 

Another important consideration is in the number of essential genes that were 

predicted from each methodology using the same analytical process. Without accounting for 

the differences in read number between the two-PCR and hybrid datasets, the hybrid 

method appears to be the most promising, in that this method predicted the smallest 

number of essential genes for both the neat library and the library after growth in LB. The 

hybrid data revealed many examples where, over specific genomic areas, insertions could be 

observed which were not identified in the two-PCR datasets (Fig. 3.7). To compare the 

methodologies on an equal level, the program seqtk was used to subsample 3.8 x 106 reads 

randomly from the combined hybrid LB replicate datasets. When this subsampled dataset 

was analysed, 382 coding sequences were predicted to be essential, in comparison to 486 

predicted from the combined two-PCR LB replicate datasets. Taken together these 

differences indicate that the hybrid methodology resulted in higher quality data, in turn 

enhancing the quality of essential gene analyses. 

 There are other considerations to be made alongside the raw data metrics. From a 

practical perspective, the hybrid method is more flexible because of the combination of 

Illumina indexing and the inline indexes. After the preparation of sequencing libraries and 
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Figure 3.7. Differences in insertion representation between the two-PCR and hybrid 

methods. Artemis was used to look at the region containing 3 genes. Insertions can be seen 

across the whole of the fkpB coding sequence in the hybrid datasets. In contrast, none can 

be seen in the two-PCR datasets. The hybrid datasets also have a greater coverage over the 

5′ sequence coding for rihC. 
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during their sequencing, indexing is used to sample multiple libraries simultaneously. Both 

the two-PCR and hybrid methods utilise standard Illumina compatible sequencing, but the 

inline indexes are key. The usage of inline indexes in the hybrid method has two benefits. 

First, they can be easily designed to allow the multiplexing of a great number of samples, 

especially in combination with the standard Illumina indexes. However, perhaps their most 

impactful feature is in the prevention of low diversity issues. This issue, where the sequencer 

cannot properly determine the DNA sequence because of too many areas fluorescing across 

the imaging surface, is unavoidable through the use of the two-PCR method. However, inline 

indexes can be designed to include different numbers of bases. This effectively staggers the 

DNA fragments during sequencing, greatly increasing the diversity. This in turn allows for 

greater productivity, by enabling of sample multiplexing during sequencing. The sequencing 

of multiple samples at once, has the dual effects of increasing data quality and increasing the 

cost effectiveness of each sequencing run. In addition to this, the two-PCR method requires 

two custom sequencing primers to be added to the sequencing cartridge, to allow for the 

second Illumina compatible index read and to prime the sequence reads themselves.  

 In summary, of three tested, the hybrid methodology delivers the greatest amount 

and highest quality data, and so will be used in future transposon sequencing experiments. 



[93] 

 

 

 

 

 

 

 

CHAPTER 4 

ESCHERICHIA COLI BW25113 ESSENTIAL GENE ANALYSIS 

 

 



[94] 

 

4.1 Introduction 

One application of transposon insertion sequencing is in the determination of genes 

that are essential for growth. Essential genes are defined as being absolutely required for 

cell survival (Juhas, Eberl and Glass, 2011). However, this definition can be tempered by 

context dependence (Acevedo-Rocha et al., 2013): some genes may only appear essential 

under certain conditions, and so may not be ultimately essential to the cell.  

During the creation of the transposon library, transposons will insert into the coding 

sequence of essential genes. These insertions physically disrupt the coding sequence, which 

in turn equate to disrupted polypeptides. The disruption of these proteins then leads to loss 

of viability, and a lack of propagation in the culture. At this point, when the transposon 

library is sampled to isolate genomic DNA, insertions within essential genes should not be 

present amongst the other genome wide insertions that do not affect viability.  

The aim of the work presented in this chapter is to elucidate the essential genes of E. 

coli BW25113 through the use of our transposon library. To do so, the transposon insertion 

sequencing data will be compared with the gold standard database of E. coli essential genes, 

the KEIO library (Baba et al., 2006). In the work of Baba et al., precise gene deletions 

(Datsenko and Wanner, 2000) were used to investigate essentiality. There are multiple 

known issues with the creation of deletions in this way, including second site mutations, 

gene duplications, and cross contamination. Theoretically, insertion sequencing should not 

be prone to these issues. Additionally, the transposon library with and without growth will 

be tested, to assess which sample condition provides the best granularity. 

 

4.2 Results 
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4.2.1 Datasets and essential gene prediction. In the previous chapter, the hybrid 

methodology was used to generate four datasets using our BW25113 transposon library: 

two biological replicates each from the neat transposon library (NTL) and from the library 

after growth in LB (LB). These datasets were used as the basis for this chapter. 

For both LB and NTL samples, the raw reads from both biological replicates were 

combined. Insertion indexes were calculated and plotted in histograms (Fig. 4.1). The 

histograms were then used to predict which coding sequences were likely to be essential 

(see materials and methods for the calculation of gene essentiality). The numbers of coding 

sequences predicted to be essential from the combined NTL and LB datasets were 317 and 

356, respectively. These essential gene lists were compared with the essential gene list from 

the KEIO library (Baba et al., 2006). This list, as initially published, contained 303 essential 

gene candidates. Since then 3 candidates have been shown to be spurious open reading 

frames (ORFs) and so were removed from the list, leaving 300 remaining candidates (Zhou 

and Rudd, 2013).  

After correlating the three essential gene lists, there were 404 unique candidate 

essential genes. The Venn diagram in Figure 4.2 shows the overlap of essential genes 

between the three datasets. The largest subset of these genes is the set of 248 genes that 

were reported to be essential in all three datasets. The second largest subset (64) is that of 

essential genes reported in both LB and NTL lists, but not in the KEIO list. The third largest 

subset of 43 genes were reported only in the KEIO essential gene list, and 38 genes were 

uniquely present in the LB essential gene list. The remaining three subsets were small in 

comparison: 6 genes were reported in both the KEIO and LB gene lists; 3 genes were 

reported in both the KEIO and NTL lists and 2 genes were reported in the NTL list alone.
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Figure 4.1 Insertion index histograms for the combined NTL and LB datasets. Insertion 

indexes greater than 0.15 are omitted. These histograms show the combined data from both 

replicates for each of the NTL and LB samples. The insertion indexes for each coding 

sequence are tallied in each bin, with indexes close to zero more likely to be essential. 
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Figure 4.2 Comparison of the KEIO, LB and NTL essential gene lists. This Venn diagram 

shows the overlap of essential genes from the KEIO library (Baba et al., 2006) and predicted 

essential genes from the NTL and LB datasets produced in chapter 3. There are 404 unique 

candidates in total. Out of the 300 essential KEIO genes analysed, 248 (approx. 83%) were 

also reported in both NTL and LB datasets. 
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4.2.2 Manual inspection of essential genes. For the purposes of this chapter, we accept that 

the 248 coding sequences identified at the intersect of all three datasets are truly essential 

(Fig. 4.2). These genes will be the basis of what is termed the core essential gene list. These 

will not be considered further here.  

Each of the remaining 156 coding sequences, which were not consistently reported in 

the 3 datasets, were manually inspected using the Artemis genome browser (Rutherford et 

al., 2000). The coding sequences were assessed for the number of insertion sites, the 

position of the insertions within the coding sequence, and the frequency of insertions. The 

coding sequences were defined as likely or not likely to be essential. The lists were then 

updated accordingly.  

From the manually inspected 156 genes, 60 genes were defined as likely to be non-

essential. This list was split into two sets: 26 genes that were essential in the KEIO dataset 

but not in either LB or NTL datasets, and 34 that were predicted to be essential from the LB 

and NTL datasets but not in the KEIO dataset. In the first set of 26 genes reported to be 

essential in the KEIO dataset, manual inspection revealed insertions throughout these coding 

sequences; multiple examples of these genes are shown in Figure 4.3. This, in addition to the 

presence of insertions after growth in LB, is strong evidence of the non-essentiality of these 

coding sequences. For all but one (yceQ) of these 26 genes, literature evidence supports 

their non-essentiality, with the relevant citations shown in Table 4.1 and section 4.2.3 below. 

Of the 34 coding sequences that were predicted to be essential in the LB and NTL datasets, 

the majority (24) show a pattern in which they are predicted to be essential in the LB dataset 

but not in the NTL dataset. In these 24 (aceE, aceF, cmk, crr, gnsB, guaB, hscA, icd, ihfA, lpcA, 

ptsH, ptsI, rpe, seqA, sucA, tonB, ubiF, yccK, yciS, yddL, ydhR,
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Figure 4.3 Insertions throughout genes previously predicted to be essential. In each of the 

genes shown above (bcsB, yagG, yibJ, yceQ and yqgD), insertions with high read frequencies 

can be seen throughout the coding sequences. This indicates that they are non-essential. 
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Table 4.1. Genes defined as likely to be non-essential after manual inspection.  

Gene Description1 COG number COG category Evidence Datasets2 

aceE 
Pyruvate dehydrogenase, decarboxylase component E1; acetate 

requirement 
2609 C Ito et al., 2005 xxL 

aceF 
Pyruvate dehydrogenase, dihydrolipoamide acetyltransferase E2; acetate 

requirement 
0508 C Ito et al., 2005 xxL 

alsK D-allose kinase 1940 G 
Gerdes and Osterman, 

2008 
Kxx 

bcsB 
Cellulose synthase, regulatory subunit; binds cyclic-di-GMP; periplasmic, 

membrane-anchored 

ENOG410XN

NB 
M 

Gerdes and Osterman, 

2008 
Kxx 

chpS ChpS antitoxin, toxin is ChpB 2336 K 
Gerdes and Osterman, 

2008 
Kxx 

cmk Cytidylate kinase; multicopy suppressor of UMP kinase mutations 0283 F Fricke et al., 1995 xxL 

crr EIIA(Glc), phosphocarrier for glucose PTS transport; negative control of rpoS 2190 G Guo et al., 2015 xxL 

entD 

Enterochelin synthase, component D; EntB(ArCP)/EntF-CoA 

phosphopantetheinyltransferase; facilitates secretion of enterobactin 

peptide; enterobactin biosynthesis 

2977 q 
Coderre and Earhart, 

1984 
Kxx 

ftsE 
Cell division ATP-binding protein; associated with the inner membrane via 

FtsX; null mutant has filamentous growth and requires high salt for viability 
2884 d Leeuw et al., 1999 Kxx 

ftsX 
Integral membrane protein invoved in cell division; binds FtsE to the inner 

membrane 
2177 d Reddy, 2006 Kxx 

gnsB 

Multicopy suppressor of secG(Cs) and fabA6(Ts), Qin prophage; 

overexpression increases unsaturated fatty acid content of phospholipids; 

gnsA paralog 

ENOG410Y8

R8 
s Sugai et al., 2001 xxL 

guaB Inosine-5'-monophosphate (IMP) dehydrogenase 0516 F Kang et al., 2004 xxL 

hscA 
DnaK-like chaperone Hsc66, IscU-specific chaperone HscAB; involved in 

FtsZ-ring formation 
0443 O Jang and Imlay, 2010 xxL 

icd 
Isocitrate dehydrogenase, NADP(+)-specific; e14 attachment site; tellurite 

reductase 
0538 C Okamoto et al., 2014 xxL 

ihfA 
Integration Host Factor (IHF), alpha subunit; host infection, mutant phage 

lambda; site-specific recombination; sequence-specific DNA-binding 
0776 L Gopel et al., 2011 xxL 
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transcriptional activator 

lpcA 
Phosphoheptose isomerase; D-sedoheptulose 7-phosphate isomerase; GDP-

heptose biosynthesis; T-phage resistance 
0279 G 

Brooke and Valvano, 

1996 
xxL 

mazE/c

hpR 
MazE antitoxin, toxin is MazF 2336 K 

Gerdes and Osterman, 

2008 
Kxx 

minD 
Inhibitor of FtsZ ring polymerization; chromosome-membrane tethering 

protein; membrane ATPase that activates MinC 
2894 D 

Gerdes and Osterman, 

2008 
Kxx 

mlaB/y

rbB 

Probable phospholipid ABC transporter, quinolone resistance; peripheral 

membrane protein, cytoplasmic; maintains OM lipid asymmetry; STAS 

subunit 

3113 s 
Malinverni and Silhavy, 

2009  
Kxx 

priB Primosomal protein n; ssDNA-binding protein 2965 L 
Bubunenko, Baker and 

Court, 2007 
xNL 

ptsH 
PTS system histidine phosphocarrier protein HPr; phosphohistidinoprotein-

hexose phosphotransferase 
1925 G 

Gershanovitch et al., 

1977 
xxL 

ptsI 
Phosphoenolpyruvate-protein phosphotransferase; phosphotransferase 

system, enzyme I; E1; PEP-dependent autokinase 
1080 G 

Hernandez-Montalvo et 

al., 2003 
xxL 

rnc RNase III; cleaves double-stranded RNA 571 K 
Bubunenko, Baker and 

Court, 2007 
Kxx 

rpe D-ribulose-5-phosphate 3-epimerase 0036 G Ito et al., 2005 xxL 

rsgA 
Ribosome-stimulated GTPase, 30S subunit assemby; low adundance 

protein; putative RNA binding protein 
1162 s Hase et al., 2009 xNL 

rsmI/yr

aL 
16S rRNA C1402 2'-O-ribose methyltransferase, SAM-dependent 0313 s Dassain et al., 1999 Kxx 

secM Secretion monitor controlling secA expression 
ENOG4111GJ

A 
K 

Rajapandi, Dolan and 

Oliver, 1991 
Kxx 

seqA 

Multi-faceted genome stability factor; negative modulator of initiation of 

replication; replication fork tracking protein required for chromosome 
segregation; chromosome cohesion protein; hemimethylated GATC binding 

protein 

3057 L 
Waldminghaus and 
Skarstad, 2010 

xxL 

sucA 
2-oxoglutarate dehydrogenase, E1 component; yields succinyl-CoA and 

CO(2); also known as alpha-ketoglutarate dehydrogenase 
0567 C Nishio et al., 2013 xxL 

sucB 2-oxoglutarate dehydrogenase, E2 component; dihydrolipoamide 0508 C Kohanski et al., 2007 xNL 
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succinyltransferase; acid-inducible; yields succinyl-CoA and CO(2); also 

known as alpha-ketoglutarate dehydrogenase 

tdcF 
Putative reactive intermediate deaminase, UPF0076 family; trimeric; 

reaction intermediate detoxification 
0251 J 

Gerdes and Osterman, 

2008 
Kxx 

tnaB Tryptophan:H+ symport permease, low affinity 0814 E 
Yanofsky, Horn and 

Gollnick, 1991  
Kxx 

tonB 

Uptake of chelated Fe(2+) and cyanocobalamin; works in conjunction with 

OM receptors; energy transducer; sensitivity to T1, phi80, and colicins; 

forms a complex with ExbB and ExbD 

0810 M Kohanski et al., 2007 xxL 

ubiF 

2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; produces 

2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinol; required for 

ubiquinone synthesis; mutation confers resistance to bleomycin, 

phleomycin and heat 

0654 CH Ito et al., 2005 xxL 

yabQ Pseudogene reconstruction, pentapeptide repeats-containing 
ENOG410XV
6S 

S 
Gerdes and Osterman, 
2008 

Kxx 

yafF Pseudogene, C-terminal fragment, H repeat-associated protein 5433 L 
Gerdes and Osterman, 
2008 

Kxx 

yagG 
Putative sugar symporter, function unknown, CP4-6; putative prophage 

remnant 
2211 g n/a Kxx 

ybbD Pseudogene reconstruction, novel conserved family 1472 G n/a xNL 

yccK 

mnm(5)-s(2)U34-tRNA 2-thiolation step sulfurtransferase; binding partner 
linking TusBCD to MnmA; may transfer sulfur first to MnmA or directly to 

tRNA 

2920 P Ikeuchi et al., 2006 xxL 

yceQ Function unknown 
ENOG410YYP

H 
S n/a Kxx 

yciS DUF1049 family inner membrane protein 3771 S 
Mahalakshmi et al., 

2014 
xxL 

ydaS Putative Cro-like repressor, Rac prophage 2261 S n/a xNL 

yddL Pseudogene, OmpCFN porin family, N-terminal fragment na na n/a xxL 

ydfB Expressed protein, function unknown, Qin prophage 
ENOG4111SF

N 
S 

Gerdes and Osterman, 

2008 
Kxx 

ydfO DUF1398 family protein, Qin prophage 5562 S n/a xNL 
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ydhR Predicted monooxygenase, function unknown; dimeric 
ENOG4111V

BS 
S n/a xxL 

ydiL Putative HTH domain DNA-binding protein; lambda repressor-like protein 
ENOG41120Y

0 
s 

Gerdes and Osterman, 

2008 
Kxx 

yedM Pseudogene reconstruction, IpaH/YopM family 4886 S n/a xNL 

yefM Antitoxin for YoeB toxin; binds YoeB RNase-like domain 2161 D 
Gerdes and Osterman, 

2008 
Kxx 

ygeL 
Pseudogene reconstruction, part of T3SS PAI ETT2 remnant; response 

regulator family 
na na n/a xNx 

ygeM Pseudogene reconstruction, orgB homolog; part of T3SS PAI ETT2 remnant na na n/a xNx 

yhbV U32 peptidase family protein, function unknown, 0826 O Yu et al., 2008 Kxx 

yheM 
2-thiolation step of mnm(5)-s(2)U34-tRNA synthesis; sulfur relay system; 

required for swarming phenotype 
2923 P Ikeuchi et al., 2006 xxL 

yhhQ DUF165 family inner membrane protein 1738 s 
Gerdes and Osterman, 

2008 
Kxx 

yibJ Pseudogene, Rhs family 3209 m 
Gerdes and Osterman, 

2008 
Kxx 

yigP Aerobic ubiquinone synthesis protein, SCP2 family protein 3165 S Aussel et al., 2014 Kxx 

ynfN Cold shock-induced protein, function unknown, Qin prophage 
ENOG410Y03

1 
S n/a xxL 

ypjC Pseudogene reconstruction 1284 s n/a xNL 

yqgD n/a 
ENOG410Y8

M8 
S 

Gerdes and Osterman, 

2008 
Kxx 

zwf Glucose-6-phosphate 1-dehydrogenase 0364 G Sandoval et al., 2011 xxL 
1The descriptions for each gene were obtained from Ecogene (Zhou and Rudd, 2012). The COG categories were obtained from eggNOG 

(Huerta-Cepas et al., 2015). The evidence column refers to papers which provide evidence of non-essentiality 
2K - Essential in KEIO. N - Essential in neat transposon library. L - Essential after growth in LB. 
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yheM, ynfN, zwf), a number of low frequency insertions can be seen. These insertions are 

likely to be a form of background noise in the data, and can be seen in the top row displaying 

the insertions in the NTL dataset with 0 minimum reads per insertion required (as shown 

later in Figure 4.6). These likely spurious low frequency insertion sites act to increase the 

insertion index of the coding sequences and cause them to be predicted as non-essential. In 

contrast, the lack of such background in the LB dataset decreases the insertion index and 

increases the likelihood of being predicted as essential. Eight (priB, rsgA, sucB, ybbD, ydaS, 

ydfO, yedM, ypjC) of the remaining 10 genes were predicted to be essential in both NTL and 

LB datasets, and these generally contain a small number of low frequency insertions. The 

final 2 genes (ygeL and ygeM) were predicted to be essential only in the NTL dataset. It is 

highly unlikely that genes would be essential during the construction of the library and non-

essential afterwards, indeed to be present after growth such insertions would have to be 

present in the original library. Therefore, these genes are predicted to be non-essential after 

growth and their predicted essentiality in the NTL dataset is thought to be anomalous. 

Furthermore, for 24 of the 34 genes, literature evidence can be found supporting their non-

essentiality, shown in Table 4.1 and section 4.2.3. Additionally, the chromosomal position of 

these genes were investigated, and the genes appeared to be spread evenly throughout the 

chromosome.  

After removal of the 60 non-essential genes from the 156 manually inspected, 96 

remain. Twenty six of these genes were added to the core essential gene list after manual 

inspection. Seventeen of the 26 genes were previously predicted to be essential in the KEIO 

library, but were not highlighted in either the NTL or LB dataset. Upon manual inspection, all 

but one of these coding sequences were observed to have one of two specific patterns of 

insertion. Ten of the 17 genes (ftsK, ftsN, grpE, lptC/yrbK, minE, mqsA/ygiT, rne, spoT, 
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waaU/rfaK, yejM) appeared to contain essential regions within their coding sequences (Fig. 

4.4). These are regions in which no transposons are found, in contrast to adjacent regions  

which could be inserted into. These regions are of a variable size in the genes containing 

them. All but one of these regions were found at the 5’ end of the gene. The one example of 

a 3' essential region, in grpE, is shown in Figure 4.4. For each of these genes, the read 

alignments were checked to see in which orientation the transposons had inserted. Four of 

the genes (grpE, lptC/yrbK, minE, mqsA/ygiT) had insertions only in the reverse strand with 

respect to the 5' - 3' direction of the gene, including grpE. The remaining 7 genes had 

insertions in both strands. These findings make sense when considering how transposons 

disrupt genes. For the genes with a 5' essential region, forward and reverse strand insertions 

after the essential region are permissible because the insertion does not affect the 

transcription and translation of the essential region itself. However, it is not understood why 

insertions only occurred in the reverse strand for four of the genes with 5’ essential regions. 

For grpE, which contains a 3' essential region, no insertions can be found in the forward 

strand prior to the essential region because insertion here would affect the transcription and 

translation of the essential region. However, the fact that insertions are permissible at the 5’ 

end of the gene in the reverse strand suggest that there are characteristics of either the 

transposon or the gene that allow these insertions to occur, for example a promoter in the 

transposon facilitating transcription outwards of the transposon. For 6 of the 17 genes 

predicted to be essential in the KEIO dataset but neither NTL or LB dataset, insertions were 

observed in either or both their very 5′ and 3′ ends but not over the majority of the central 

coding sequence. Upon closer inspection, 4 of these (folK, ftsL, psd, rnpA) have insertions in 

the relative reverse strand only, while the remaining 2 (ribB and secF) have insertions in both 

strands. Interestingly, in one of the genes the genes with this pattern of insertion, rnpA, the
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Figure 4.4 Essential gene regions of grpE and ftsK. grpE and ftsK contain 3′ and 5′ essential 

regions respectively. The BAM alignment in the fifth row shows the full read alignments for 

the LB dataset, with zero minimum required reads per insertion site. In this row, reads 

mapping to the forward strand are shown on the top half, and reads aligning to the reverse 

strand are shown on the bottom half. The top half of the fifth row shows the forward strand 

and the bottom half shows the reverse strand. Within the 5’ region of grpE, insertions can 

only be observed in the reverse strand relative to the 5′ - 3′ direction of the coding 

sequence. In ftsK, after the 5′ essential region, insertions can be seen in either strand 

.
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3’ of the coding sequence overlaps with the 5’ of another coding sequence (yidD: Fig. 4.5). 

Insertions can be found throughout the yidD coding sequence, indicating that it is  non-

essential. The insertions found in the 3′ end of rnpA occur exclusively in the overlapping part 

of the coding sequences. This example serves to highlight the importance of manual 

inspection: from the insertion index essentiality prediction rnpA was predicted to be non-

essential, and only after manual inspection could it be said that rnpA is likely essential. In 

other cases, the presence of insertion sites at the 3′ of the coding sequence might indicate 

that it is only the 3′ of the gene that is non-essential for function. The presence of insertions 

at the very 5′ end may suggest an incorrectly labelled translational start site. Alternatively, 

this could be explained by a promoter in the transposon initiating transcription as previously 

described. For the single gene remaining of the 17, cydC, a particular pattern of insertions 

could be observed whereby it appeared only insertions at particular positions were viable 

and the majority of the coding sequences contained no insertions (Fig. 4.6). In cydC, there 

appear to be two clusters in which insertions are relatively frequent. In the NTL data, the 

insertions are of a low frequency which increases after growth. This observation might 

suggest that cydC contains more than one region of essentiality. In total, of the 17 genes 

discussed, supporting evidence of essentiality in the literature could be found for 11 of 

them. For another four genes, no evidence of essentiality in addition to Baba et al. could be 

found. For the remaining two genes, literature was found detailing context dependent 

essentiality, which is discussed further below. 

The remaining 9 of the 26 genes added to the core essential gene list were predicted 

to be essential in the KEIO dataset and also in either the NTL or LB dataset. These genes 

could be grouped by the same patterns of insertion as discussed previously. Three of the 9
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Figure 4.5 Insertions into the 5′ and 3′ regions of ftsH and rnpA. Within the very 5′ of ftsH, a 

small cluster of closely spaced insertions can be seen. The reads aligning to these insertions 

have all mapped to the reverse strand with respect to the 5′ to 3′ direction of the coding 

sequence. Across approximately 10% of the coding sequence at the 3′ end, a larger cluster of 

insertions can be seen. The vast majority of these reads are mapped to the reverse strand, 

with a negligible few mapping to the forward strand. Across rnpA (highlighted in red for 

clarity), every read is mapped to the reverse strand. Insertions can be seen at the 5′ and 3′ 

ends. The coding sequence of rnpA overlaps with that of yidD. Each insertion at the 3′ end of 

rnpA is located within this overlapping section. 
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Figure 4.6 Insertions into cydC and secD. The insertions within the secD and cydC coding 

sequences show a different pattern in comparison to the majority of other coding 

sequences. The insertions appear more tightly grouped at defined regions in the coding 

sequences, as opposed to a more even representation throughout. 
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genes (degS, lptA, mreC) appeared to contain essential regions, and 5 more (csrA, 

ftsH, rseP, tadA, ftsB) had insertions at the very 5’ or 3’ ends. The one remaining gene (secD) 

shared the pattern of insertions discussed previously for cydC, whereby small clusters of 

insertions could be seen, with the majority of the coding sequence uninterrupted. Seven of 

these 9 genes had literature supporting their essentiality. For one other gene (secD) no 

evidence for essentiality other than Baba et al. was found, and for the final gene evidence 

for context dependent essentiality was found.  

The 26 genes discussed in this section were not predicted to be essential from the LB 

and NTL datasets due to the insertions within the non-essential regions. Insertions in these 

regions increase the insertion indexes of the coding sequences, meaning that the statistical 

analysis would predict the coding sequence to be non-essential.  

After the consideration of these 86 genes out of the 156, the 70 remaining were 

predicted to be essential in the LB and NTL datasets but not in the KEIO dataset. Manual 

inspection of these coding sequences suggested that they are likely to be either essential or 

at least important for growth. Amongst these candidate essential genes, 25 were either 

completely free or almost free of insertions (Fig. 4.7). In a further 42 of the 70 coding 

sequences, insertions could be seen in either or both their very 5′ and 3′ ends but not over 

the majority of the coding sequence. This is the same pattern as seen in 11 of the genes 

manually defined as essential that were also defined as essential in the KEIO data. 

Furthermore, 3 of the 70 coding sequences appear to contain essential regions, another 

pattern observed in the core essential gene list.  

In summary, after the correlation of the KEIO essential gene list and the predicted 

essential gene lists from the LB and NTL datasets, there were 404 essential gene candidates. 

After manual inspection and re-analysis, there are now three lists. The first is the core 
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Figure 4.7 Lack of insertions in genes not reported to be essential from the KEIO library. 

Each of the four rows show the position of insertions (black lines) across particular coding 

sequences (blue boxes with the name shown underneath). Each black line represents only 

the first base of an insertion, and the rest of the aligned read is removed from view. Both 

NTL and LB datasets are shown each with 0 and 7 minimum reads per insertion required 

(MRPI), as indicated along the right. The blue arrows at the bottom indicate the direction of 

the coding sequence 5' to 3'. The vertical black lines in each row show the gene boundaries. 

The coding sequences are not to scale in width. The vertical scale for each row is limited to a 

maximum depth of 80 reads. This information applies to each following figure in the chapter. 

In the NTL 0 MRPI row across trmU, it is possible that the low frequency insertions are noise 

in the data. 
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essential gene list of 274 genes, which contains the certainly essential genes. The second list 

of 70 genes consists of genes that are either essential gene candidates or genes that are 

important for the normal growth of the cell. The third list of 60 genes consists of genes that 

are unlikely to be essential. 

 

4.2.3 Supporting evidence for manually inspected genes. The KEIO essential gene list used 

to compare against the LB and NTL datasets was taken from Baba et al. (2006). An update to 

this paper was published by the same research group (Yamamoto et al., 2009). In this work, 

several genes that were originally listed as non-essential from Baba et al. (2006) were re-

analysed and found to be essential. The strains containing these gene deletions were found 

to contain duplications of the target gene. Duplication of genes in this manner would allow 

an apparently authentic deletion alongside a remaining copy of the wild type gene, when in 

fact the gene would be essential for growth. Twenty five genes were found to contain such 

duplications, and 14 of these were listed as new essential gene candidates. Interestingly, all 

but one of the 14 new candidates were present in the candidate essential gene list of 70 

genes and in each case, the genes were predicted to be essential in both LB and NTL 

datasets. The single gene (polA) not found in the correlated list of 404 genes encodes DNA 

polymerase I. Upon manual inspection, this coding sequence appeared to contain an 

essential region, explaining why this gene was not predicted to be essential in either LB or 

NTL dataset. As such, polA was added to the list of 404 genes to make 405, and subsequently 

added to the core essential gene list now containing 275 genes. 

The remaining 11 of the 25 genes containing duplications were listed as genes with 

uncertain essentiality. Seven of these were found in the original list of 404 genes: 6 were 
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predicted as essential in both LB and NTL datasets (hemE, priB, rplK, rplY, rpsO, rpsU) and the 

single gene remaining (folP) was predicted to be essential from the LB dataset. In this single 

gene, a low frequency of reads likely to be background was present in the NTL data, 

explaining why it was not predicted to be essential in both LB and NTL datasets. After 

manual inspection, one of the 7 genes (priB) had been defined as likely non-essential, due to 

a low frequency of insertion. However, the other 6 genes were retained in the candidate 

essential gene list. The remaining 4 genes (btuB, djlB, tpr, yiaD) were not present in the 

intersected gene list. Each of these 4 coding sequences had a high frequency of insertion in 

both LB and NTL datasets, indicating they are unlikely to be essential. 

In the list of 70 genes defined as likely essential or important for growth, literature 

could be found for 26 genes (crp, cydB, cydD, dnaK, efp, fabH, holD, iscS, iscU, lpd, lpxL, nusB, 

rimM, rluD, rnt, rplA, rpmJ, rpsF, rpsT, rrmJ, ubiE, ubiG, ubiH, ubiX, ybeD, ybeY) which 

disruption of the gene led to a slower growth rate. Notably, this set included genes such as 

crp. The first evidence of the non-essentiality of crp was published in 1975 by Dennis 

Sabourin and John Beckwith. D’Ari et al. (1988) later published evidence of the slower 

growth of a ∆crp mutant in comparison to the wild type. During steady state growth in 

medium supplemented with glucose and cas-amino acids, the wild type strain had a doubling 

time of 27 minutes. However, in the same medium, the ∆crp mutant doubled every 44 

minutes. In addition to crp, genes encoding ribosomal proteins were predicted to be 

essential from the transposon sequencing data. As examples, rplA, rplY, rpsO and rpsT, the 

genes encoding for the ribosomal proteins L1, L25, S15 and S20 respectively, were predicted 

to be essential from both LB and NTL datasets. In unicellular organisms such as E. coli, 

protein synthesis is a rate limiting factor for growth (Paier et al., 2014). Disruption of each of 
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the five example genes above leads to a slower growth rate, likely explaining the low 

insertion representation seen in the LB and NTL datasets. 

There is published evidence of essentiality for two more genes in the candidate 

essential gene list, one of which is yciM. Mahalakshmi et al. (2014) created a strain of E. coli 

in which the chromosomal copy of yciM was replaced with a kanamycin resistance cassette. 

The strain also contained a plasmid containing yciM under the control of an IPTG inducible 

promoter. In the presence of IPTG the strain grew normally in LB and on minimal A agar. In 

the absence of IPTG, the strain grew poorly on LB agar and not at all on minimal A agar. 

Additionally, this strain was shown to lyse after approximately 3 hours of growth and exhibit 

morphological aberrations when grown without IPTG. Another gene for which evidence of 

essentiality can be found is hda. Kato and Katayama (2001) did complementation studies 

which suggested that hda was essential for cell viability. The chromosomal hda coding 

sequence was deleted from an E. coli strain containing a wild type hda copy on a plasmid. P1 

phage transduction was attempted from this strain to strains with or without the hda 

containing plasmid, and transduction only occurred successfully into cells containing the 

plasmid.  

For the remaining 23 of the 70 genes in the candidate essential gene list, no evidence 

for either growth defects or essentiality upon disruption could be found in the literature. As 

such, these genes need further characterisation and experimentation to establish whether 

they are truly essential or important for cellular growth. 

Out of the 60 genes manually inspected and defined as likely non-essential, 26 genes 

were originally reported as essential in the KEIO data. After searching the literature for more 

information on these genes, evidence of non-essentiality was found for all but one of them. 
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This evidence varies from studies with mutants with large genome deletions, transposon 

disruption and gene deletion. An example gene from this list is entD. Coderre and Earhart 

(1989) reported that cells were still viable even when containing an inactivating Tn5 

insertion within the entD coding sequence. Several deletion mutants of entD were also 

viable. Both of these findings suggest that entD is non-essential. There is very little literature 

available for the remaining gene of which there is no evidence of non-essentiality, yceQ. 

Literature evidence of non-essentiality can be found for 24 of the remaining 34 genes 

out of the 60 defined as likely to be non-essential. The remaining 10 genes for which no 

further evidence can be found are all uncharacterised Y genes of unknown function.  

To summarise this analysis, the list of 405 candidate essential genes have been 

finalised into three lists. What will be known as the core essential gene list is shown in Table 

4.1. This list of 290 genes includes the 274 genes from section 4.3, as well as the 14 extra 

essential genes from Yamamoto et al. (2009) and the yciM and hda genes for which 

literature evidence of essentiality was found. Genes that are unlikely to be essential are 

shown in Table 4.1, and genes likely to impact growth are shown in Table 4.2. 

 

4.2.4 Cluster of orthologous groups (COG) analysis. The cluster of orthologous group (COG) 

categories were determined for each gene in the summarised gene lists by using the 

eggNOG database (Huerta-Cepas et al., 2015). The counts for each category were tallied and 

shown in Figure 4.8. COGs are a method of functionally classifying proteins by comparison 

with proteins from multiple phylogenies. A single COG consists of a group of orthologous 

proteins in multiple organisms across multiple phylogenies. Each COG then corresponds to a 

generalised function. As expected for the core essential gene list, the majority of genes were 
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shown to be involved with central cellular processes. Over 50% of genes in this list were 

found in the three categories of translation, envelope maintenance and coenzyme  

metabolism. Genes involved with translation comprised the largest single category, 

containing over a quarter of all genes in the list. This indicates the fundamental importance 

of protein synthesis to the cell. This pattern was the same in the list of genes important for 

growth, the majority of which were related to translation. Otherwise, the genes in this list 

were broadly split over multiple categories. For the list of non-essential genes, the majority 

of genes were in the unknown function category. The rest of the genes were evenly spread 

across categories. 
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Figure 4.8 Distribution of COG categories in the summarised gene lists. Each Cluster of orthologous group (COG) category contains genes with 

a related biological function. Each of the 405 genes were classified and separated into their COG categories (Huerta-Cepas et al., 2015), which 

are shown in the histogram above. 
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Table 4.1. Core essential genes.  

Gene Description COG number 
COG 

category 
Notes 

accA Acetyl-CoA carboxylase, carboxyltransferase alpha subunit 0825 I All 3 datasets 

accB Acetyl-CoA carboxylase, biotin carboxyl carrier protein; BCCP; homodimeric 0511 I All 3 datasets 

accC Acetyl-CoA carboxylase, biotin carboxylase (BC) subunit 0439 I All 3 datasets 

accD Acetyl-CoA carboxylase, carboxyltransferase beta subunit 0777 i All 3 datasets 

acpP Acyl carrier protein ACP 0236 I All 3 datasets 

acpS 
ACP-CoA phosphopantetheinyltransferase; Holo-ACP synthase;  4'-phosphopantetheinyl 

transferase 
0736 I 

All 3 datasets 

adk 
Adenylate kinase; weak nucleoside diphosphate kinase activity; pleiotropic effects on 

glycerol-3-phosphate acyltransferase activity; monomeric 
0563 F 

All 3 datasets 

alaS Alanine--tRNA ligase, autorepressor 0013 J 
Extra copy in 
Yamamoto 

et al., 2009 

argS Arginine--tRNA ligase 0018 J All 3 datasets 

asd Aspartate semialdehyde dehydrogenase 0136 E All 3 datasets 

asnS Asparagine--tRNA ligase 0017 J All 3 datasets 

aspS Aspartate--tRNA ligase 0173 J All 3 datasets 

bamA/yaeT 
Outer membrane protein required for OM biogenesis; in BamABCDE complex; forms pores; 

PORTA repeats 
4775 M 

All 3 datasets 

bamD/yfiO TPR-repeat lipoprotein required for OM biogenesis; in BamABCDE complex 4105 M All 3 datasets 

birA 
Bifunctional biotin protein ligase, biotin operon repressor; biotin-[acetyl-CoA carboxylase] 
holoenzyme synthase; monomeric 

0340 H 
All 3 datasets 

can Carbonic anhydrase, beta class 0288 P All 3 datasets 

cca tRNA nucleotidyltransferase, repairs terminal CCA of tRNAs 0617 J All 3 datasets 

cdsA 
CDP-diglyceride synthase, integral membrane protein with eight transmembrane helices; 

also known as phosphatidate cytidylyltransferase 
0575 I 

All 3 datasets 



[119] 

 

 

coaA Pantothenate kinase 1072 H 
Extra copy in 

Yamamoto 

et al., 2009 

coaD Phosphopantetheine adenylyltransferase 0669 H All 3 datasets 

coaE Dephospho-CoA kinase; final step in CoA synthesis 0237 H 
Extra copy in 
Yamamoto 

et al., 2009 

cohE/ymfK CI-like repressor, e14 prophage 1974 K All 3 datasets 

csrA Global regulator of carbon source metabolism; RNA binding protein 1551 T 3' insertions 

cydA 
Cytochrome d (bd-I) ubiquinol oxidase subunit 1; upregulated in biofilms and microaerobic 

conditions; aerobically repressed by H-NS; anaerobically repressed by FNR 
1271 C 

All 3 datasets 

cydC 
Glutathione/cysteine ABC transporter permease/ATPase; exports glutathione and cysteine 

to the periplasm as required for cytochrome assembly 
4987 V Essential 

regions 

cysS Cysteine--tRNA ligase; binds Zn(II) 0215 J All 3 datasets 

dapA Dihydrodipicolinate synthase 0329 E All 3 datasets 

dapB Dihydrodipicolinate reductase 0289 E All 3 datasets 

dapD 
2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase; mutations suppress growth 

defects of strains lacking superoxide dismutase 
2171 E 

All 3 datasets 

dapE N-succinyl-diaminopimelate desuccinylase, DAP/lysine biosynthesis, contains Zn(2+)/Co(2+) 0624 E 
All 3 datasets 

def Peptide deformylase; N-formylmethionylaminoacyl-tRNA deformylase; PDF 0242 J All 3 datasets 

degS 
Serine protease, degrades periplasmic RseA, activating RpoE; multicopy suppressor of prc; 

periplasmic stress sensor for unfolded or misfolded OMPs 
0265 o 5' essential 

region 

der 
Multicopy suppressor of ftsJ, GTPase, ribosome biogenesis; depleted cells form filaments 

with defective chromosome segregation; Der-YhiI complex 
1160 S 

All 3 datasets 

dfp 
Coenzyme A biosynthesis, bifunctional enzyme; phosphopantothenoylcysteine 

decarboxylase (N) and phosphopantothenoylcysteine synthase (C) 
0452 H 

All 3 datasets 

dicA Transcriptional repressor for dicB, Qin prophage 1396 K All 3 datasets 
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dnaA 
DNA synthesis initiator and global transcription regulator; binds DNA at DnaA boxes, binds 

cardiolipin and other acidic phospholipids, binds ATP 
0593 L 

All 3 datasets 

dnaB 
Replicative DNA helicase; DNA-dependent ATPase involved in DNA synthesis; binds DNA 

contrahelicase termination protein Tus at Ter sites; possibly involved in DNA recombination 
0305 L 

All 3 datasets 

dnaC DNA biosynthesis, helicase DnaB loader; dual ATP/ADP switch protein 0305 L All 3 datasets 

dnaE DNA polymerase III, alpha subunit; suppressor of dnaG-Ts 0587 L All 3 datasets 

dnaG 
Primase for DNA replication; primer synthesis for leading- and lagging-strand synthesis; 

binds Zn(II) 
0358 L 

Extra copy in 

Yamamoto 

et al., 2009 

dnaN 
DNA polymerase III sliding clamp beta subunit; required for high processivity; required for 

regulatory inactivation of DnaA 
0592 L 

All 3 datasets 

dnaX 
DNA polymerase III holoenzyme, tau and gamma ATPase subunits; gamma chain (aa 1-431) is 

main subunit of the clamp loader complex 
2812 L 

All 3 datasets 

dut dUTP pyrophosphatase; dUTPase 0756 F All 3 datasets 

dxr 

1-deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase, NAPDH-dependent; also called 2-

C-methyl-D-erythritol 4-phosphate (MEP) synthase; alternative nonmevalonate (DXP) 

pathway for terpenoid biosynthesis; dimeric 

0743 I 

All 3 datasets 

dxs DXP synthase; DXP is precursor to isoprenoids, thiamine, pyridoxol 1154 H All 3 datasets 

eno Enolase; phosphoprotein; component of RNA degradosome 0148 G All 3 datasets 

era 

Ribosome-associated GTPase essential for growth; also required for a normal adaptation 

response to thermal stress; GTP-dependent autophosphorylating protein kinase activity; 

membrane-associated, 16S rRNA-binding protein; cell cycle arrest 

1159 S 

All 3 datasets 

erpA/yadR Iron-sulfur cluster insertion protein; A-type Fe-S protein; essential for respiratory growth 0316 S All 3 datasets 

fabA 
3R-3-hydroxydecanoyl acyl carrier protein (ACP) dehydratase; also called beta-

hydroxydecanoylthioester dehydrase 
0764 I 

All 3 datasets 

fabB 3-oxoacyl-[acyl-carrier-protein] synthase I; beta-Ketoacyl-ACP synthase I; KAS I; homodimeric 0304 I 
All 3 datasets 
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fabD Malonyl-CoA-acyl carrier protein transacylase 0331 I All 3 datasets 

fabG Beta-ketoacyl-ACP reductase ENOG410XNW1 S All 3 datasets 

fabI Enoyl-ACP reductase, NADH dependent 0623 I All 3 datasets 

fabZ 3R-hydroxymyristoyl acyl carrier protein (ACP) dehydratase 0764 I All 3 datasets 

fbaA Fructose 1,6-bisphosphate aldolase, class II; binds Zn(II); homodimeric 0191 G All 3 datasets 

ffh 
Signal Recognition Particle (SRP) protein, with 4.5S RNA; GTPase involved in co-translational 

protein translocation into and through membranes 
0541 U 

All 3 datasets 

fldA Flavodoxin I 0716 C All 3 datasets 

fmt Methionyl-tRNA formyltransferase 0223 J All 3 datasets 

folA Dihydrofolate reductase; trimethoprim resistance 0262 H All 3 datasets 

folC Dihydrofolate:folylpolyglutamate synthase 0285 H All 3 datasets 

folD Methenyltetrahydrofolate dehydrogenase/cyclohydrolase 0190 H All 3 datasets 

folE GTP cyclohydrolase I 0302 H All 3 datasets 

folK 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase; monomeric 0801 H 3' insertions 

frr 
Ribosome recycling factor (RRF); dissociates ribosomes from mRNA after termination of 

translation; tRNA mimic 
0233 J 

All 3 datasets 

ftsA Cell division and septation protein, specific role unknown; recruited to FtsZ ring 0849 D All 3 datasets 

ftsB Membrane protein required for cell division; septum localization dependent on Ftsl and FtsQ 2919 D 5' and 3' 
insertions 

ftsH 

ATP-dependent membrane protease, complexed with HflCK; regulates lysogeny; mutants are 

defective in cell growth, septum formation and phage lambda development; mutants 

rescued by divalent cations; binds Zn(II); hexameric 

0465 O 

3' insertions 

ftsI Transpetidase, PBP3; penicillin-binding protein 3 involved in septal peptidoglycan synthesis 0768 M 
All 3 datasets 

ftsK DNA translocase at septal ring sorting daughter chromsomes 1674 D 5' essential 

region 

ftsL Cell division and growth, membrane protein 3116 D 5' insertions 
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ftsN Cell division and growth; multicopy suppresses ftsA12 3087 D 5' essential 

region 

ftsQ Divisome assembly protein; cell division and growth of wall at septum 1589 M All 3 datasets 

ftsW Putative lipid II flippase; divisome protein recruiting FtsI; SEDS protein 0772 D All 3 datasets 

ftsY Signal recognition particle (SRP) receptor, GTPase 0552 U All 3 datasets 

ftsZ 
Septal ring GTPase required for cell division and growth; initiation of septation; tubulin-like 

protein 
0206 D 

All 3 datasets 

fusA 
Elongation Factor EF-G; GTPase required for translocation from the A-site to the P-site in the 

ribosome; fusidic acid resistance 
0480 J 

All 3 datasets 

gapA Glyceraldehyde 3-P dehydrogenase A 0057 G All 3 datasets 

glmM 
Phosphoglucosamine mutase; UDP-GlcNAc pathway, peptidoglycan, lipopolysaccharide 

synthesis; mRNA stability effects 
1109 G 

Extra copy in 

Yamamoto 

et al., 2009 

glmS 
Glucosamine-6-phosphate synthase; glucosamine--fructose-6-phosphate aminotransferase; 

C-terminal F6P-binding domain has isomerase activity 
0449 M 

All 3 datasets 

glmU 
Bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-

phosphate uridylyltransferase, hexameric 
1207 M 

All 3 datasets 

glnS Glutamine--tRNA ligase 0008 J All 3 datasets 

gltX Glutamate--tRNA ligase 0008 J All 3 datasets 

glyQ Glycine--tRNA ligase, alpha-subunit 0752 J All 3 datasets 

glyS Glycine--tRNA ligase, beta-subunit 0751 J 
Extra copy in 

Yamamoto 

et al., 2009 

gmk Guanylate kinase 0194 F All 3 datasets 

gpsA sn-Glycerol-3-phosphate dehydrogenase [NAD(P)+] 0240 C All 3 datasets 

groL 
Chaperonin Cpn60; phage morphogenesis; GroESL large subunit GroEL, weak ATPase; binds 

Ap4A 
0459 O 

Extra copy in 

Yamamoto 

et al., 2009 
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groS Chaperonin Cpn10; GroESL small subunit GroES; phage morphogenesis 0234 O All 3 datasets 

grpE 
Nucleotide exchange factor for the DnaKJ chaperone; heat shock protein; mutant survives 

lambda induction; stimulates DnaK and HscC ATPase 
0576 O 3' essential 

region 

gyrA DNA gyrase, subunit A; nalidixic acid resistance; cold shock regulon 0188 L All 3 datasets 

gyrB DNA gyrase, subunit B; novobiocin, coumermycin resistance 0187 L All 3 datasets 

hda Required for regulatory inactivation of DnaA; multicopy suppressor of dnaN(ts) 0593 L 
Kato and 

Katayama, 

2001 

hemA Glutamyl-tRNA reductase, hemin biosynthesis; neomycin sensitivity 0373 h All 3 datasets 

hemB 5-Aminolevulinate dehydratase; also known as porphobilinogen synthase; binds Zn(II) 0113 H All 3 datasets 

hemC Porphobilinogen deaminase; neomycin sensitivity 0181 H All 3 datasets 

hemD Uroporphyrinogen III synthase; neomycin sensitivity 1587 H All 3 datasets 

hemG Protoporphyrinogen oxidase; neomycin sensitivity; flavodoxin-like 4635 H All 3 datasets 

hemH Ferrochelatase 0276 H All 3 datasets 

hemL Glutamate-1-semialdehyde aminomutase 0001 h All 3 datasets 

hisS Histidine--tRNA ligase 0124 J All 3 datasets 

holA 
DNA polymerase III, delta subunit; part of the DnaX clamp loader complex; acts as a wrench 

to open the sliding clamp 
1466 l 

All 3 datasets 

holB 
DNA polymerase III, delta' subunit; part of the DnaX clamp loader complex, the stator 

protein 
0470 L 

All 3 datasets 

ileS Isoleucine--tRNA ligase 0060 J 
Extra copy in 

Yamamoto 
et al., 2009 

infA Translation initiation factor IF-1 0361 J All 3 datasets 

infB Translation initiation factor IF-2 0532 J All 3 datasets 

infC Translation initiation factor IF-3; unusual AUU start codon 0290 J All 3 datasets 

ispA Farnesyl diphosphate synthase, isoprenoid biosynthesis 0142 H All 3 datasets 
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ispB Octaprenyl diphosphate synthase, isoprenoid biosynthesis 0142 H All 3 datasets 

ispD 
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; alternative nonmevalonate (DXP) 

pathway for terpenoid biosynthesis; essential gene 
1211 I 

All 3 datasets 

ispE 
4-diphosphocytidyl-2-C-methylerythritol kinase; isopentenyl phosphate kinase; alternative 

nonmevalonate (DXP) pathway for terpenoid biosynthesis; essential gene 
1947 I 

All 3 datasets 

ispF 
2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECP) synthase; alternative nonmevalonate 

(DXP) pathway for terpenoid biosynthesis; essential gene; trimeric 
0245 I 

All 3 datasets 

ispG 
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase; alternative nonmevalonate (DXP) 

pathway for terpenoid biosynthesis; [4Fe-4S] protein 
0821 I 

All 3 datasets 

ispH 

4-hydroxy-3-methylbut-2-enyl diphosphate reductase; last, branched, step of isopentenyl 

diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) synthesis from 1-hydroxy-2-

methyl-2-(E)-butenyl 4-diphosphate; alternative nonmevalonate (DXP) pathway for terp 

0761 I 

All 3 datasets 

ispU Undecaprenyl pyrophosphate synthase; dimeric 0020 I All 3 datasets 

kdsA 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase; LPS biosynthesis 2877 M All 3 datasets 

kdsB 
3-deoxy-manno-octulosonate cytidylyltransferase; CMP-KDO synthase (CKS); LPS 

biosynthesis 
1212 M 

All 3 datasets 

lepB 
Signal peptidase I; SPI; responsible for type I signal cleavages of periplasmic, OM, some IM, 

and extracellular proteins 
0681 U 

All 3 datasets 

leuS Leucine--tRNA ligase 0495 J All 3 datasets 

lexA Global regulator (repressor) for SOS regulon; dimeric 1974 K All 3 datasets 

lgt Phosphatidylglycerol:prolipoprotein diacylglycerol transferase 0682 M All 3 datasets 

ligA DNA ligase A, NAD(+)-dependent 0272 L All 3 datasets 

lnt Apolipoprotein N-acyltransferase; copper sensitivity 0815 M All 3 datasets 

lolA Periplasmic protein responsible for sorting and transporting lipoproteins to outer membrane 2834 M 
All 3 datasets 

lolB OM lipoprotein required for localization of lipoproteins 3017 M All 3 datasets 

lolC LolA-dependent release of lipoproteins from inner membrane; essential gene 4591 M All 3 datasets 
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lolD LolA-dependent release of lipoproteins from inner membrane; essential gene 1136 V All 3 datasets 

lolE LolA-dependent release of lipoproteins from inner membrane; essential gene 4591 M All 3 datasets 

lptA/yhbN 
LPS export ABC transporter periplasmic binding protein; Lipid A binding protein; LPS export 

and assembly protein 
1934 s 5' essential 

region 

lptB/yhbG LPS export ABC transporter ATPase 1137 S 
Extra copy in 

Yamamoto 
et al., 2009 

lptC/yrbK Periplasmic membrane-anchored LPS-binding protein; LPS export 3117 s 5' essential 

region 

lptD/imp LPS assembly OM complex LptDE, beta-barrel component 1452 M All 3 datasets 

lptE/rlpB LPS assembly OM complex LptDE, LPS-binding lipoprotein component 2980 M All 3 datasets 

lptF/yjgP LPS export ABC transporter permease 0795 S All 3 datasets 

lptG/yjgQ LPS export ABC transporter permease 0795 S All 3 datasets 

lpxA Lipid A synthesis, UDP-N-acetylglucosamine acyltransferase 1043 M All 3 datasets 

lpxB Lipid A disaccharide synthase 0763 M All 3 datasets 

lpxC 
Lipid A synthesis, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; zinc 

metalloamidase; cell envelope and cell separation 
0774 M 

All 3 datasets 

lpxD Lipid A synthesis, UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase 1044 M All 3 datasets 

lpxH Lipid A synthesis, UDP-2,3-diacylglucosamine pyrophosphohydrolase 2908 S All 3 datasets 

lpxK Lipid A 4' kinase 1663 M All 3 datasets 

lspA Prolipoprotein signal peptidase, signal peptidase II; SPII 0597 mu All 3 datasets 

map Methionine aminopeptidase 0024 J All 3 datasets 

metG Methionine--tRNA ligase 0143 J All 3 datasets 

metK 
S-adenosylmethionine synthase; methionine adenosyltransferase; ethionine sensitivity; 

essential gene 
0192 H 

All 3 datasets 

minE 
Blocks MinCD inhibition of FtsZ polymerization at cell center; forms membrane-associated 

coiled arrays in a ring at the cell center 
0851 d 5' essential 

region 
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mqsA/ygiT Antitoxin for MqsR toxin; transcriptional repressor 1396 k 5' essential 

region 

mraY UDP-N-acetylmuramoyl-pentapeptide:undecaprenyl-PO4 phosphatase 0472 M All 3 datasets 

mrdA 
Penicillin-binding protein PBP2; transpeptidase recruited by cognate SEDS protein MrdB; 

mecillinam resistance 
0768 M 

All 3 datasets 

mrdB Affects cell shape, mecillinam sensitivity; recruits cognate transpetidase MrdA; SEDS protein 0772 D 
All 3 datasets 

mreB Cell wall structural actin-like protein in MreBCD complex; mecillinam resistance protein 1077 D All 3 datasets 

mreC Cell division and growth; mecillinam resistance; rod shape-determining protein 1792 M 5' essential 

region 

mreD Mecillinam resistance; rod shape-determining protein 2891 M All 3 datasets 

msbA 

Lipid exporter, fused permease and ATPase components; exports LPS, phospholipids, and 

lipid A to the outer membrane outer leaflet; drug export and resistance; ABC family 

transporter; flippase; biogenesis of outer membrane; lipid-activated ATPase 

1132 V 

All 3 datasets 

mukB Chromosome condensin MukBEF, ATPase and DNA-binding subunit; SMC-related protein 3096 D All 3 datasets 

mukE Chromosome condensin MukBEF, MukE localization factor 3095 D All 3 datasets 

mukF Chromosome condensin MukBEF, kleisin-like subunit, binds calcium 3006 D All 3 datasets 

murA UDP-N-acetylglucosamine enoylpyruvyl transferase; fosfomycin resistance 0766 m All 3 datasets 

murB UDP-N-acetylenolpyruvoylglucosamine reductase, FAD-binding 0812 m All 3 datasets 

murC UDP-N-acetylmuramate:L-alanine ligase; L-alanine adding enzyme 0773 m All 3 datasets 

murD D-glutamic acid adding enzyme; UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase 0771 m All 3 datasets 

murE 
meso-diaminopimelate adding enzyme; UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-

diaminopimelate ligase 
0769 m 

All 3 datasets 

murF 
D-alanyl:D-alanine adding enzyme; UDP-N-acetylmuramoyl-tripeptide:D-alanyl-D-alanine 

ligase 
0770 M 

All 3 datasets 

murG 

N-acetylglucosaminyl transferase; UDP-N-acetylglucosamine:N-acetylmuramyl-

(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase; murein 

synthesis peripheral membrane protein interacting with cardiolipin 

0707 M 

All 3 datasets 
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murI Glutamate racemase, D-glutamate synthesis 0796 M All 3 datasets 

murJ/mviN Putative lipid II flippase; required for murein synthesis 0728 S All 3 datasets 

nadD Nicotinate mononucleotide adenylyltransferase, NAD(P) biosynthesis 1057 H All 3 datasets 

nadE NAD synthase, ammonia dependent 0171 H All 3 datasets 

nadK/yfjB ATP-NAD kinase 0061 G All 3 datasets 

nrdA 
Ribonucleoside-diphosphate reductase 1, alpha subunit; class Ia aerobic ribonucleotide 

reductase; B1 protein, R1 subunit 
0209 F 

All 3 datasets 

nrdB 
Ribonucleoside-diphosphate reductase 1, beta subunit; class Ia aerobic ribonucleotide 

reductase; B2 protein, R2 subunit 
0208 f 

All 3 datasets 

nusA Transcription termination/antitermination L factor; mutant survives lambda induction 0195 K All 3 datasets 

nusG Stabilizes phage lambda protein N-NusA-RNAP antitermination complex 0250 K All 3 datasets 

obgE 

DNA-binding GTPase involved in cell partioning and DNA repair; involved in ribosome 

assembly; GTP-bound form associates with 50S ribosomal subunits; ribosome-associated 

SpoT ppGpp-degradation stimulator 

0536 s 

All 3 datasets 

orn 
3' to 5' oligoribonuclease; mutants accumulate oligoribonucleotides that are 2-5 residues 

long 
1949 A 

All 3 datasets 

parC 
Topoisomerase IV, subunit A, ATP-dependent, type II; chromosome decatenase; relaxes both 

positive and negative supercoils; DNA unknotting activity; heterotetrameric 
0188 L 

Extra copy in 

Yamamoto 

et al., 2009 

parE 

Topoisomerase IV, subunit B, ATP-dependent, type II; chromosome decatenase; relaxes 
positive supercoils much faster than negative supercoils; DNA unknotting activity; 

heterotetrameric 

0187 l 

All 3 datasets 

pgk Phosphoglycerate kinase 0126 g All 3 datasets 

pgsA Phosphatidylglycerophosphate synthase 0558 i All 3 datasets 

pheS Phenylalanine--tRNA ligase, alpha-subunit 0016 J All 3 datasets 

pheT Phenylalanine--tRNA ligase, beta-subunit 0072 j All 3 datasets 

plsB Glycerol-3-phosphate acyltransferase 2937 i All 3 datasets 

plsC 1-Acyl-n-glycerol-3-phosphate acyltransferase; affects partitioning 0204 I All 3 datasets 
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polA 
DNA polymerase I; required for plasmid replication; translesion synthesis; synthetic lethal 

with ygdG 
0258 L Yamamoto 

et al., 2009 

ppa Inorganic pyrophosphatase; binds Zn(II); homohexameric, dimer of trimers 0221 C All 3 datasets 

prfA Peptide chain release factor 1, RF-1; translation termination factor recognizes UAG and UAA. 0216 j 
All 3 datasets 

prfB 
Peptide chain release factor 2, RF-2; translation termination factor recognizes UGA and UAA; 

slightly defective allele 
1186 J 

Extra copy in 

Yamamoto 
et al., 2009 

prmC Release factor (RF1, RF2) glutamine methyltransferase 2890 J All 3 datasets 

proS Proline--tRNA ligase 0442 J All 3 datasets 

prsA/prs Phosphoribosylpyrophosphate synthase 0462 F All 3 datasets 

psd Phosphatidylserine decarboxylase, phospholipid biosynthesis 0688 I 3' insertions 

pssA Phosphatidylserine synthase 1183 I All 3 datasets 

pth Peptidyl-tRNA hydrolase; required for phage lambda growth 0193 J All 3 datasets 

purB Adenylosuccinate lyase, purine synthesis 0015 f All 3 datasets 

pyrG CTP synthase; CtpS 0504 F All 3 datasets 

pyrH Uridylate kinase; hexameric 0528 F All 3 datasets 

racR Rac prophage repressor ENOG41126JH K All 3 datasets 

rho 
Transcription termination factor Rho; hexameric; RNA-dependent ATPase; ATP-dependent 

RNA helicase; bicyclomycin target 
1158 K 

Extra copy in 
Yamamoto 

et al., 2009 

ribA GTP cyclohydrolase II, riboflavin biosynthesis 0807 H All 3 datasets 

ribB 
3,4-dihydroxy-2-butanone 4-phosphate synthase; riboflavin biosynthesis; acid-inducible; 

homodimeric 
0108 h 

3' insertions 

ribC Riboflavin synthase; homotrimer; associated with RibE 60-mer 0307 H All 3 datasets 

ribD 
Bifunctional enzyme for second and third steps in riboflavin biosynthesis; 2,5-diamino-6-

ribosylamino-4(3H)-pyrimidinone 5'-phosphate deaminase; ribosyl reductase 
1985 H 

All 3 datasets 
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ribE 
Lumazine (6,7-dimethyl-8-ribityllumazine) synthase; 60-mer capsid; penultimate step in the 

biosynthesis of riboflavin; binds RibC homotrimer 
0307 H 

All 3 datasets 

ribF Riboflavin kinase and FAD synthase 0196 H All 3 datasets 

rne RNase E; component of RNA degradosome; mRNA turnover; 5S and 16S RNA maturation 1530 J 5' essential 

region 

rnpA RNase P, C5 protein component; involved in tRNA and 4.5S RNA-processing 0594 J 5' and 3' 
insertions 

rplB 50S ribosomal subunit protein L2; binds Zn(II) 0090 J All 3 datasets 

rplC 50S ribosomal subunit protein L3 0087 J All 3 datasets 

rplD 50S ribosomal subunit protein L4; erythromycin sensitivity 0088 J All 3 datasets 

rplE 50S ribosomal subunit protein L5; 5S rRNA-binding 0094 J All 3 datasets 

rplF 50S ribosomal subunit protein L6; gentamicin sensitivity 0097 J All 3 datasets 

rplJ 50S ribosomal subunit protein L10; streptomycin resistance 0244 J All 3 datasets 

rplL 50S ribosomal subunit protein L7/L12 0222 J All 3 datasets 

rplM 50S ribosomal subunit protein L13; binds Zn(II) 0102 J All 3 datasets 

rplN 50S ribosomal subunit protein L14 0093 J All 3 datasets 

rplO 50S ribosomal subunit protein L15 0200 J All 3 datasets 

rplP 50S ribosomal subunit protein L16 0197 J All 3 datasets 

rplQ 50S ribosomal subunit protein L17 0203 J All 3 datasets 

rplR 50S ribosomal subunit protein L18; 5S rRNA-binding 0256 J All 3 datasets 

rplS 50S ribosomal subunit protein L19 0335 J All 3 datasets 

rplT 50S ribosomal subunit protein L20 0292 J All 3 datasets 

rplU 50S ribosomal subunit protein L21 0261 J All 3 datasets 

rplV 50S ribosomal subunit protein L22; erythromycin sensitivity 0091 J All 3 datasets 

rplW 50S ribosomal subunit protein L23 0089 J All 3 datasets 

rplX 50S ribosomal subunit protein L24 0198 J All 3 datasets 

rpmA 50S ribosomal subunit protein L27 0211 J All 3 datasets 
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rpmB 50S ribosomal subunit protein L28 0227 J All 3 datasets 

rpmC 50S ribosomal subunit protein L29 0255 J All 3 datasets 

rpmD 50S ribosomal subunit protein L30 1841 J All 3 datasets 

rpmH 50S ribosomal subunit protein L34 0230 J All 3 datasets 

rpoA RNA polymerase, alpha subunit; binds Zn(II) 0202 K All 3 datasets 

rpoB RNA polymerase, beta subunit; binds Zn(II) 0085 K All 3 datasets 

rpoC RNA polymerase, beta' subunit; binds Zn(II) 0086 K All 3 datasets 

rpoD RNA polymerase subunit, sigma 70, initiates transcription; housekeeping sigma 0568 K 
Extra copy in 

Yamamoto 

et al., 2009 

rpoE 
RNA polymerase sigma E factor; role in extracytoplasmic, high temperature and oxidative 

stress responses; sigma 24 initiation factor 
1595 K 

All 3 datasets 

rpoH RNA polymerase subunit, sigma 32, heat shock transcription 0568 K All 3 datasets 

rpsA 
30S ribosomal subunit protein S1; subunit of RNA phage Q beta replicase; binds and 

stimulates RNAP 
0539 J 

All 3 datasets 

rpsB 30S ribosomal subunit protein S2; binds Zn(II) 0052 J All 3 datasets 

rpsC 30S ribosomal subunit protein S3 0092 J All 3 datasets 

rpsD 30S ribosomal subunit protein S4; NusA-like antitermination factor 0522 J All 3 datasets 

rpsE 30S ribosomal subunit protein S5 0098 J All 3 datasets 

rpsG 30S ribosomal subunit protein S7, mutated stop codon 0049 J All 3 datasets 

rpsH 30S ribosomal subunit protein S8 0096 J All 3 datasets 

rpsI 30S ribosomal subunit protein S9 0103 J All 3 datasets 

rpsJ 30S ribosomal subunit protein S10 0051 J All 3 datasets 

rpsK 30S ribosomal subunit protein S11 0100 J All 3 datasets 

rpsL 30S ribosomal subunit protein S12; RNA chaperone 0048 J All 3 datasets 

rpsM 30S ribosomal subunit protein S13 0099 J All 3 datasets 

rpsN 30S ribosomal subunit protein S14 0199 J All 3 datasets 
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rpsP 30S ribosomal subunit protein S16; endonuclease 0228 J All 3 datasets 

rpsQ 30S ribosomal subunit protein S17 0186 J All 3 datasets 

rpsR 30S ribosomal subunit protein S18 0238 J All 3 datasets 

rpsS 30S ribosomal subunit protein S19 0185 J All 3 datasets 

rseP/yaeL 
Inner membrane zinc RIP metalloprotease; activates RpoE by degrading RseA; multicopy 

rpoE suppresses rseP mutation 
0750 M 

5' insertions 

secA 
Preprotein translocase secAYEG receptor/ATPase subunit; autogenous translational 

repressor; ATP-dependent helicase activity on secMA mRNA; homodimeric/monomeric 
0653 u 

All 3 datasets 

secD 
SecDFyajC inner membrane secretion protein complex subunit; assists the SecYEG translocon 

to interact with SecA and export proteins 
0342 u 

  

secE 
SecYEG inner membrane translocon core subunit; preprotein translocase secAYEG subunit; 

core translocon secYE subunit 
0690 U 

All 3 datasets 

secF 
SecDFyajC inner membrane secretion protein complex subunit; assists the SecYE core 

translocon to interact with SecA and export proteins 
0341 U 3' essential 

region 

secY 
SecYEG inner membrane translocon core subunit; preprotein translocase secAYEG subunit; 

core translocon secYE subunit 
0201 u 

All 3 datasets 

serS Serine--tRNA ligase; serine hydroxamate resistance 0172 J All 3 datasets 

spoT 
ppGpp 3'-pyrophosphohydrolase and ppGpp synthase II; guanosine-3',5'-bis(diphosphate) 3'-

pyrophosphohydrolase 
0317 KT 5' essential 

region 

ssb Single-stranded DNA-binding protein; alkali-inducible; homotetramer 0629 l All 3 datasets 

suhB 
Inositol-1-monophosphatase; mutation suppresses TS growth phenotype of rpoH15, 

dnaB121, and secY24; suhB mutations confers CS growth 
0483 G 

All 3 datasets 

tadA 
A34-tRNA adenosine deaminase; point mutation confers resistance to HokC(Gef)-mediated 

cell killing; essential gene; homodimeric 
0590 FJ 

5' insertions 

thiL Thiamine monophosphate kinase, involved in thiamine salvage 0611 h All 3 datasets 

thrS Threonine--tRNA ligase, autogenously regulated; binds Zn(II) 0441 j All 3 datasets 

tilS 
tRNA(Ile) lysidine (L34) synthase, ATP-dependent; solely responsible for tRNA(Ile) lysidine 34 

(L34) formation 
0037 d 

All 3 datasets 



[132] 

 

 

tmk Thymidylate kinase 0125 f All 3 datasets 

topA Topoisomerase I; omega protein 0550 l All 3 datasets 

trmD tRNA m(1)G37 methyltransferase, SAM-dependent 0336 j All 3 datasets 

trpS Tryptophan--tRNA ligase 0180 j All 3 datasets 

tsaB/yeaZ 
tRNA(NNU) t(6)A37 threonylcarbamoyladenosine modification; binding partner and protease 

for TsaD 
1214 O 

All 3 datasets 

tsaC/yrdC 
tRNA(NNU) t(6)A37 threonylcarbamoyladenosine modification; threonine-dependent ADP-

forming ATPase 
0009 J 

All 3 datasets 

tsaD/ygjD tRNA(NNU) t(6)A37 threonylcarbamoyladenosine modification; glycation binding protein 0533 o All 3 datasets 

tsaE/yjeE tRNA(NNU) t(6)A37 threonylcarbamoyladenosine modification; ADP binding protein 0802 S All 3 datasets 

tsf 
Translation elongation factor EF-Ts; exchanges GDP for GTP in EF-Tu-GDP complex; binds 

Zn(II); subunit of RNA phage Q beta replicase 
0264 J 

All 3 datasets 

tyrS Tyrosine--tRNA ligase 0162 J All 3 datasets 

ubiA 4-Hydroxybenzoate polyprenyltransferase 0382 H All 3 datasets 

ubiB 
Regulator of octaprenylphenol hydroxylation, ubiquinone synthesis; regulator of 2'-N-

acetyltransferase; putative ABC1 family protein kinase 
0661 S 

All 3 datasets 

ubiD 
3-octaprenyl-4-hydroxybenzoate carboxylyase; ubiquinone biosynthesis, third step; UbiX 

isozyme 
0043 H 

All 3 datasets 

valS Valine--tRNA ligase 0525 J All 3 datasets 

waaA/kdtA 3-deoxy-D-manno-octulosonate(Kdo)-lipid A transferase 1519 M All 3 datasets 

waaU/rfaK 
Adds terminal GlcNac side branch to the lipopolysaccharide core prior to attachment of the 

O antigen; not the same as Salmonella rfaK 
0859 M 5' essential 

region 

wzyE 

Wzy protein involved in ECA polysaccharide chain elongation; involved in polymerization of 

the UDP-linked ECA trisaccharide repeat unit of cyclic enterobacterial common antigen 

ECA(CYC) 

ENOG410XT3V M 

All 3 datasets 

yciM 

LPS regulatory protein; putative modulator of LpxC proteolysis; EnvC-interacting protein; N-

terminally anchored cytoplasmic protein; rubredoxin-type redox-sensitive iron center; TPR-

repeats-containing protein 

2956 g Mahalakshm

i et al., 2014 
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yejM 
Essential inner membrane DUF3413 domain protein; lipid A defect; membrane permeability 

defect 
3083 S 5' essential 

region 

yidC 

Membrane protein insertase; inner membrane protein integration factor; binds TM regions 

of nascent IMPs; required for Sec-independent IMP integration; associated with the Sec 

translocase 

0706 U 

All 3 datasets 

yihA GTP-binding protein required for normal cell division; predicted GTPase; also binds GDP 0218 S All 3 datasets 

yqgF Putative anti-termination factor for Rho-dependent terminators 0816 L All 3 datasets 

yrfF Putative RcsCDB-response attenuator; inner membrane protein 
ENOG410XNR
W 

s 
All 3 datasets 

zipA FtsZ stabilizer; septal ring structural protein for cell division and growth 3115 D all 3 datasets 

1 Gene descriptions obtained from Ecogene (Zhou and Rudd, 2012). The COG categories were obtained from eggNOG (Huerta-Cepas et al., 2015). 
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Table 4.2. Genes defined as likely important for growth.  

Gene  Description1 COG number COG category Evidence Datasets2 

crp 
cAMP-activated global transcription factor; mediator of catabolite 

repression; CRP; CAP 
0664 T 

Perrenoud and Sauer, 

2005: D'Ari et al., 1988 
xL 

cydB 

Cytochrome d (bd-I) ubiquinol oxidase subunit 2; upregulated in 

biofilms and microaerobic conditions; aerobically repressed by H-NS; 

anaerobically repressed by FNR 

1294 C Mempin et al., 2013 NL 

cydD 
Glutathione/cysteine ABC transporter permease/ATPase; exports 

cysteine to periplasm as required for cytochrome assembly 
4988 V 

Pittman et al., 2002: 

Sezonov, Joselau-Petit 

and D'Ari, 2007 

xL 

dcd 
dCTP deaminase; deoxycytidine triphosphate deaminase; mutants 

suppress lethal dut mutants 
0717 F n/a NL 

dnaK 
Hsp70 molecular chaperone, heat-inducible; bichaperone with ClpB 

for protein disaggregation 
0443 o Bukau and Walker, 1989 xL 

dnaT Primasomal protein i ENOG410ZNDQ L n/a NL 

efp Polyproline-specific translation elongation factor EF-P 0231 j Yanagisawa et al., 2010 xL 

fabH Beta-ketoacyl-ACP synthase III; KAS III; monomer 0332 I Yao et al., 2012 NL 

folB Dihydroneopterin aldolase 1539 H n/a NL 

folP Dihydropteroate synthase 0294 H n/a xL 

glyA Serine hydroxymethyltransferase; binds Zn(II) 0112 E n/a NL 

guaA GMP synthase 0518 F n/a NL 

hemE Uroporphyrinogen decarboxylase 0407 H n/a NL 

hipB 
Antitoxin of HipAB TA pair; transcriptional repressor of the hipBA 
operon; role in persister formation 

1396 k n/a NL 

holD DNA polymerase, psi subunit, clamp loader complex subunit 3050 L Duigou et al., 2014 NL 

iscS 

Cysteine desulfurase, PLP-dependent; used in synthesis of Fe-S 

clusters and 4-thiouridine; ThiI transpersulfidase; TusA 

transpersulfidase; YnjE transpersulfidase; MoaD transpersulfidase; 

pyridoxal phosphate cofactor linked to Lys206 

1104 E Lauhon, 2002 NL 
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iscU Iron-sulfur cluster assembly scaffold protein 0822 C 
Barras, Loiseau and Py, 

2005 
NL 

lipA Lipoyl synthase, iron-sulfur protein; SAM-dependent chemistry 0320 H n/a NL 

lpd 

Dihydrolipoyl dehydrogenase, NADH-dependent; E3 component of 

pyruvate and 2-oxoglutarate dehydrogenases complexes; glycine 

cleavage system L protein; dihydrolipoamide dehydrogenase; binds 

Zn(II) 

1249 C Takeuchi et al., 2014 NL 

lpxL 

Lipid A synthesis, KDO2-lipid IVA lauroyl-ACP acyltransferase; not 

under heat shock regulation; membrane protein affecting cell 
division, growth, and high-temperature survival 

1560 m 
Vorachek-Warren et al., 
2002 

NL 

lysS Lysine--tRNA ligase, constitutive 1190 j n/a NL 

nusB 
Transcription termination/antitermination factor; mutant survives 

lambda induction 
0781 K Quan et al., 2005 xL 

pdxH 
Pyridoxine/pyridoxamine phosphate (PNP/PMP) oxidase; isoniazid 

resistance 
0259 h n/a NL 

relB 

Antitoxin for RelE, Qin prophage; transcriptional repressor of relB 

operon; mutants have a delayed relaxed regulation of RNA synthesis 

and slow recovery from starvation 

3077 L n/a NL 

rimM 
Ribosome maturation factor; 30S subunit maturation factor; S19 

binding protein 
0806 J Hase et al., 2013 NL 

rluD 

23S rRNA pseudouridine(1911,1915,1917) synthase; mutation 

suppresses ftsH(Ts) mutants; null mutants grow very poorly in K-12 

only 

0564 J Schaub and Hayes, 2011 NL 

rnt 
RNase T; exoribonuclease T; structured DNA DNase; RNA processing; 

DNA repair 
0847 L Hsiao et al., 2014 NL 

rplA 50S ribosomal subunit protein L1 0081 J Takeuchi et al., 2014 NL 

rplK 50S ribosomal subunit protein L11; kasugamycin sensitivity 0080 J n/a NL 

rplY 50S ribosomal subunit protein L25; 5S rRNA-binding 1825 J 
Aseev, Bylinkina and 
Boni, 2015 

NL 

rpmF 50S ribosomal subunit protein L32 0333 J n/a NL 

rpmI 50S ribosomal subunit protein A (L35) 0291 J n/a NL 
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rpmJ 50S ribosomal subunit protein X (L36) 0257 j Ikegami et al., 2005 xL 

rpsF 30S ribosomal subunit protein S6; suppressor of dnaG-Ts 0360 J Hase et al., 2013 NL 

rpsO 30S ribosomal subunit protein S15 0184 J Bubunenko et al., 2006 NL 

rpsT 30S ribosomal subunit protein S20 0268 J 
Bubunenko, Baker and 
Court, 2007 

NL 

rpsU 30S ribosomal subunit protein S21 0828 J n/a NL 

rrmJ 

23S rRNA U2552 2'-O-ribose methyltransferase, SAM-dependent; 

involved in cell division and growth; heat inducible; suppressed by 

cloned ObgE and Der 

0293 J Hase et al., 2013 xL 

thyA 
Thymidylate synthase; aminopterin, trimethoprim resistance; 

homodimer 
0207 F n/a NL 

trmU 
tRNA(Gln,Lys,Glu) U34 2-thiouridylase; first step in mnm(5)-s(2)U34-

tRNA synthesis; TusE binding partner; antisuppressor 
0482 J n/a NL 

ubiE 

Ubiquinone/menaquinone biosynthesis methyltransferase; SAM-

dependent; (1) Ubiqinone synthesis, 2-octaprenyl-6-methoxy-1,4-

benzoquinone methyltransferase; (2) Menaquinone synthesis, 2-

demethylmenaquinone (DMK) methyltransferase 

2226 H Takeuchi et al., 2014 xL 

ubiG 

SAM:OMHMB methyltransferase; Reactions: 2-octaprenyl-6-

hydroxylphenol to 2-octaprenyl-6-methoxyphenol; 2-octaprenyl-3-

methyl-5-hydroxy-6-methoxy-1,4-benzoquinone to ubiquinone 8 

2227 H Takeuchi et al., 2014 NL 

ubiH 
2-octaprenyl-6-methoxyphenol hydroxylase; produces 2-octaprenyl-

6-methoxy-1,4-benzoquinone 
0654 CH Takeuchi et al., 2014 xL 

ubiX 3-octaprenyl-4-hydroxybenzoate carboxylyase; UbiD isozyme 0163 H Takeuchi et al., 2014 NL 

ybeD 
UPF0250 family protein; required for swarming and phage lambda 
growth 

2921 s Takeuchi et al., 2014 xL 

ybeY 

ssRNA-specific endoribonuclease; co-endoribonuclease working with 
RNase R in 16S rRNA 3' end maturation and quality control; rRNA 

transcription antitermination factor 

0319 S Takeuchi et al., 2014 NL 

ydaE Metallothionein, function unknown, Rac prophage ENOG410Z75V S n/a NL 

ydcD Putative immunity protein for RhsE 0864 K n/a NL 
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yddK Pseudogene, frameshifted, leucine-rich protein 4886 s n/a NL 

ygeF Pseudogene reconstruction, part of T3SS PAI ETT2 remnant n/a n/a n/a NL 

ygjM Antitoxin for HigB toxin 5499 k n/a xL 

ykiB n/a n/a n/a n/a NL 

ymfE Predicted membrane protein, function unknown, e14 prophage ENOG410Y9BP S n/a NL 

ymgB Connector protein for RcsB regulation of biofilm and acid-resistance ENOG410Y1T2 s n/a xL 

yncH IPR020099 family protein required for swarming, function unknown n/a n/a n/a NL 
1 Gene descriptions obtained from Ecogene (Zhou and Rudd, 2012). The COG categories were obtained from eggNOG (Huerta-Cepas et al., 2015). The evidence 

column refers to papers which provide evidence of essentiality. 
2N - Essential in neat transposon library. L - Essential after growth in LB.  
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Table 4.3. Genes defined as likely non-essential after manual inspection.  

Gene  Description1 COG number COG category Evidence Datasets2 

aceE 
Pyruvate dehydrogenase, decarboxylase component E1; acetate 

requirement 
2609 C Ito et al., 2005 xxL 

aceF 
Pyruvate dehydrogenase, dihydrolipoamide acetyltransferase E2; 

acetate requirement 
0508 C Ito et al., 2005 xxL 

alsK D-allose kinase 1940 G 
Gerdes and Osterman, 

2008 
Kxx 

bcsB 
Cellulose synthase, regulatory subunit; binds cyclic-di-GMP; 

periplasmic, membrane-anchored 
ENOG410XNNB M 

Gerdes and Osterman, 

2008 
Kxx 

chpS ChpS antitoxin, toxin is ChpB 2336 K 
Gerdes and Osterman, 

2008 
Kxx 

cmk Cytidylate kinase; multicopy suppressor of UMP kinase mutations 0283 F Fricke et al., 1995 xxL 

crr 
EIIA(Glc), phosphocarrier for glucose PTS transport; negative 

control of rpoS 
2190 G Guo et al., 2015 xxL 

entD 

Enterochelin synthase, component D; EntB(ArCP)/EntF-CoA 

phosphopantetheinyltransferase; facilitates secretion of 

enterobactin peptide; enterobactin biosynthesis 

2977 q 
Coderre and Earhart, 

1984 
Kxx 

ftsE 

Cell division ATP-binding protein; associated with the inner 

membrane via FtsX; null mutant has filamentous growth and 

requires high salt for viability 

2884 d Leeuw et al., 1999 Kxx 

ftsX 
Integral membrane protein invoved in cell division; binds FtsE to 

the inner membrane 
2177 d Reddy, 2006 Kxx 

gnsB 

Multicopy suppressor of secG(Cs) and fabA6(Ts), Qin prophage; 

overexpression increases unsaturated fatty acid content of 

phospholipids; gnsA paralog 

ENOG410Y8R8 s Sugai et al., 2001 xxL 

guaB Inosine-5'-monophosphate (IMP) dehydrogenase 0516 F Kang et al., 2004 xxL 

hscA 
DnaK-like chaperone Hsc66, IscU-specific chaperone HscAB; 

involved in FtsZ-ring formation 
0443 O Jang and Imlay, 2010 xxL 

icd 
Isocitrate dehydrogenase, NADP(+)-specific; e14 attachment site; 

tellurite reductase 
0538 C Okamoto et al., 2014 xxL 

ihfA Integration Host Factor (IHF), alpha subunit; host infection, 0776 L Gopel et al., 2011 xxL 
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mutant phage lambda; site-specific recombination; sequence-

specific DNA-binding transcriptional activator 

lpcA 
Phosphoheptose isomerase; D-sedoheptulose 7-phosphate 

isomerase; GDP-heptose biosynthesis; T-phage resistance 
0279 G 

Brooke and Valvano, 

1996 
xxL 

mazE/chpR MazE antitoxin, toxin is MazF 2336 K 
Gerdes and Osterman, 

2008 
Kxx 

minD 
Inhibitor of FtsZ ring polymerization; chromosome-membrane 

tethering protein; membrane ATPase that activates MinC 
2894 D 

Gerdes and Osterman, 

2008 
Kxx 

mlaB/yrbB 

Probable phospholipid ABC transporter, quinolone resistance; 

peripheral membrane protein, cytoplasmic; maintains OM lipid 

asymmetry; STAS subunit 

3113 s 
Malinverni and Silhavy, 

2009  
Kxx 

priB Primosomal protein n; ssDNA-binding protein 2965 L 
Bubunenko, Baker and 

Court, 2007 
xNL 

ptsH 
PTS system histidine phosphocarrier protein HPr; 

phosphohistidinoprotein-hexose phosphotransferase 
1925 G 

Gershanovitch et al., 

1977 
xxL 

ptsI 

Phosphoenolpyruvate-protein phosphotransferase; 

phosphotransferase system, enzyme I; E1; PEP-dependent 
autokinase 

1080 G 
Hernandez-Montalvo 

et al., 2003 
xxL 

rnc RNase III; cleaves double-stranded RNA 571 K 
Bubunenko, Baker and 
Court, 2007 

Kxx 

rpe D-ribulose-5-phosphate 3-epimerase 0036 G Ito et al., 2005 xxL 

rsgA 
Ribosome-stimulated GTPase, 30S subunit assemby; low 
adundance protein; putative RNA binding protein 

1162 s Hase et al., 2009 xNL 

rsmI/yraL 16S rRNA C1402 2'-O-ribose methyltransferase, SAM-dependent 0313 s Dassain et al., 1999 Kxx 

secM Secretion monitor controlling secA expression ENOG4111GJA K 
Rajapandi, Dolan and 

Oliver, 1991 
Kxx 

seqA 

Multi-faceted genome stability factor; negative modulator of 
initiation of replication; replication fork tracking protein required 

for chromosome segregation; chromosome cohesion protein; 

hemimethylated GATC binding protein 

3057 L 
Waldminghaus and 

Skarstad, 2010 
xxL 

sucA 
2-oxoglutarate dehydrogenase, E1 component; yields succinyl-

CoA and CO(2); also known as alpha-ketoglutarate dehydrogenase 
0567 C Nishio et al., 2013 xxL 
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sucB 

2-oxoglutarate dehydrogenase, E2 component; dihydrolipoamide 

succinyltransferase; acid-inducible; yields succinyl-CoA and CO(2); 

also known as alpha-ketoglutarate dehydrogenase 

0508 C Kohanski et al., 2007 xNL 

tdcF 
Putative reactive intermediate deaminase, UPF0076 family; 

trimeric; reaction intermediate detoxification 
0251 J 

Gerdes and Osterman, 

2008 
Kxx 

tnaB Tryptophan:H+ symport permease, low affinity 0814 E 
Yanofsky, Horn and 

Gollnick, 1991  
Kxx 

tonB 

Uptake of chelated Fe(2+) and cyanocobalamin; works in 

conjunction with OM receptors; energy transducer; sensitivity to 

T1, phi80, and colicins; forms a complex with ExbB and ExbD 

0810 M Kohanski et al., 2007 xxL 

ubiF 

2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase; 

produces 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-

benzoquinol; required for ubiquinone synthesis; mutation confers 
resistance to bleomycin, phleomycin and heat 

0654 CH Ito et al., 2005 xxL 

yabQ Pseudogene reconstruction, pentapeptide repeats-containing ENOG410XV6S S 
Gerdes and Osterman, 

2008 
Kxx 

yafF Pseudogene, C-terminal fragment, H repeat-associated protein 5433 L 
Gerdes and Osterman, 

2008 
Kxx 

yagG 
Putative sugar symporter, function unknown, CP4-6; putative 

prophage remnant 
2211 g n/a Kxx 

ybbD Pseudogene reconstruction, novel conserved family 1472 G n/a xNL 

yccK 

mnm(5)-s(2)U34-tRNA 2-thiolation step sulfurtransferase; binding 

partner linking TusBCD to MnmA; may transfer sulfur first to 

MnmA or directly to tRNA 

2920 P Ikeuchi et al., 2006 xxL 

yceQ Function unknown ENOG410YYPH S n/a Kxx 

yciS DUF1049 family inner membrane protein 3771 S 
Mahalakshmi et al., 

2014 
xxL 

ydaS Putative Cro-like repressor, Rac prophage 2261 S n/a xNL 

yddL Pseudogene, OmpCFN porin family, N-terminal fragment na na n/a xxL 

ydfB Expressed protein, function unknown, Qin prophage ENOG4111SFN S 
Gerdes and Osterman, 

2008 
Kxx 

ydfO DUF1398 family protein, Qin prophage 5562 S n/a xNL 
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ydhR Predicted monooxygenase, function unknown; dimeric ENOG4111VBS S n/a xxL 

ydiL 
Putative HTH domain DNA-binding protein; lambda repressor-like 

protein 
ENOG41120Y0 s 

Gerdes and Osterman, 

2008 
Kxx 

yedM Pseudogene reconstruction, IpaH/YopM family 4886 S n/a xNL 

yefM Antitoxin for YoeB toxin; binds YoeB RNase-like domain 2161 D 
Gerdes and Osterman, 

2008 
Kxx 

ygeL 
Pseudogene reconstruction, part of T3SS PAI ETT2 remnant; 

response regulator family 
na na n/a xNx 

ygeM 
Pseudogene reconstruction, orgB homolog; part of T3SS PAI ETT2 

remnant 
na na n/a xNx 

yhbV U32 peptidase family protein, function unknown, 0826 O Yu et al., 2008 Kxx 

yheM 
2-thiolation step of mnm(5)-s(2)U34-tRNA synthesis; sulfur relay 

system; required for swarming phenotype 
2923 P Ikeuchi et al., 2006 xxL 

yhhQ DUF165 family inner membrane protein 1738 s 
Gerdes and Osterman, 

2008 
Kxx 

yibJ Pseudogene, Rhs family 3209 m 
Gerdes and Osterman, 

2008 
Kxx 

yigP Aerobic ubiquinone synthesis protein, SCP2 family protein 3165 S Aussel et al., 2014 Kxx 

ynfN Cold shock-induced protein, function unknown, Qin prophage ENOG410Y031 S n/a xxL 

ypjC Pseudogene reconstruction 1284 s n/a xNL 

yqgD n/a ENOG410Y8M8 S 
Gerdes and Osterman, 

2008 
Kxx 

zwf Glucose-6-phosphate 1-dehydrogenase 0364 G Sandoval et al., 2011 xxL 
1 Gene descriptions obtained from Ecogene (Zhou and Rudd, 2012) 
2 K - Essential in KEIO. N - Essential in neat transposon library. L - Essential after growth in LB.  
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4.3 Discussion 

Through a combination of transposon sequencing data, statistical analysis, manual 

inspection and literature searching, a thorough assessment of the essential genes of E. coli 

BW25113 has been made. After processing of the essential gene lists, a set of 290 core 

essential genes was generated, of which 248 genes were reported from Baba et al. (2006). 

These were included without any further manual inspection. After manual inspection, 26 

genes were found to contain specific patterns of insertions which explained their lack of 

predicted essentiality from the transposon sequencing data. These genes, when added to 

the core essential list, brought the number of genes in the list to 274, 94% of the total list. 

This congruence between the essential gene candidates from this work and that of Baba et 

al. (2006), in addition to the categorisation of these genes as being largely involved with 

central cellular processes would suggest that these genes are highly likely to be truly 

essential to the cell. One of the genes not previously found to be essential, yciM, was only 

recently shown to be essential by Mahalakshmi et al. (2014). This example demonstrates the 

capability of transposon sequencing. 

In addition to the investigation of essentiality, another benefit of transposon 

sequencing is in the depth of information provided. Due to the base pair precision with 

which insertions are defined, interesting and potentially previously unknown information 

can be learned about particular genes. Most notable from our data is the visualisation of 

apparently essential regions within single genes. Such regions would not have been visible 

from the knockout strategy used by Baba et al. (2006), in which deletions were made across 

the majority of the coding sequences. The same can be said for the examples of insertions 

into 5′ and 3′ regions seen in the LB and NTL datasets. Essential gene regions have been 

observed in previous work: in Salmonella enterica serovars Typhimurium and Typhi, Canals 
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et al (2012) noted that yejM and ftsN contained regions that could not be inserted into. 

Upon closer inspection, the region of yejM in which insertion does not occur overlaps 

entirely with a transmembrane region (Fig. 4.9). Although further work would be required to 

prove a conclusive link between these findings, it is highly likely that the lack of insertional 

representation across the transmembrane domain is a biologically relevant finding. 

There are also disadvantages in the use of transposon sequencing for essential gene analysis. 

Possibly the greatest issue with analysing transposon sequencing data is the intensive, in 

depth analysis required to end up with essential gene lists. More specifically, manual 

inspection is essential even after the statistical gene prediction, due to the properties of the 

data. Without manual inspection, the core essential gene list would have been incomplete. 

The most obvious example of this is polA: without manual inspection, this gene would not 

have been revealed as essential. As of yet, no experimental tool or process is available for 

the assessment of essential gene regions, which would go some way in automating parts of 

the manual inspection. While manual inspection is laborious and time consuming, it is 

undoubtedly important. An example of this lies in yejM. This gene was  found to be essential 

in this work after manual inspection, and in other work (Canals et al., 2012). Without manual 

inspection, this gene would have been classed as non-essential. Interestingly, yejM is also 

found in E. coli ST131, studied by Phan et al (2013). In their study, no manual inspection is 

undertaken after statistical prediction of gene essentiality, and as a result yejM was 

classified as non-essential. Even though, in this work, it is only a relatively small number of 

genes that apparently possess essential regions, or even insertions within only their very 5' 

and/or 3' ends, this specific example serves to illustrate the importance of more in depth 

investigation. 
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Figure 4.9 The overlap of an essential gene region with the transmembrane domain of 

yejM.  The details of the transmembrane domain were obtained from Uniprot (The Uniprot 

Consortium, 2014). Over the 5′ region of yejM no insertions can be seen. This whole region 

maps to the transmembrane domain of the gene. 
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A subset of 31 of the 405 candidate genes were initially predicted to be essential 

from the LB and NTL datasets, whereas upon manual inspection they were defined as 

unlikely to be as such. This is only a small proportion of the total coding sequences of the 

genome (31/4213). This means that while transposon sequencing is a vastly effective tool for 

essential gene scanning, in that the vast majority of the coding sequences were found to be 

non-essential, it is not perfect. Given the position of E. coli as a model organism, literature 

was available to support non-essentiality for the majority of these genes. However, in non-

model organisms, there may not be such a wealth of literature available. 

One reason for using the NTL and LB samples was to test whether there was any 

selection imparted by growing the library in LB. This would appear to be true from looking at 

the number of genes predicted to be essential from each condition: 317 and 356 genes were 

predicted to be essential from the NTL and LB datasets, respectively. The increased number 

of genes predicted to be essential after growth would suggest that the growth had imparted 

a selection on the transposon library.  

One final point of discussion lies with the usage of the term “essential”. The essential 

gene analyses conducted here are specific to E. coli during aerobic growth at 37 °C. While 

some genes might be important for cellular growth under any growth condition, others 

might only appear to be essential under specific environmental conditions. However, given 

that the samples tested here are of the transposon library without an extensive amount of 

growth, it can be assumed that the core essential gene list outlined is representative of 

genes required for growth even in rich media. 
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CHAPTER 5 

ESCHERICHIA COLI BW25113 CONDITIONAL GENE ANALYSIS IN RESPONSE TO 

MARKERS FOR OUTER MEMBRANE PERMEABILITY 
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5.1 Introduction 

The physical delineation of the cell is a defining feature of life itself. E. coli is a Gram-

negative organism, meaning that it has a cell envelope consisting of an inner and an outer 

lipid membrane (Silhavy, Kahne and Walker, 2010). These are separated by an aqueous 

compartment called the periplasm which contains the peptidoglycan cell wall. The outer 

membrane is essential for the viability of E. coli, demonstrating its importance.  

Cell envelopes exist in a spectrum of integrity. Optimally maintained envelopes 

prevent nearly all but the controlled movement of molecules from the environment into the 

cell, preventing the influx of molecules that would not normally enter the cell. The presence 

of an envelope also allows the control over efflux of molecules out of the cytoplasm. 

Mutations or insults that completely compromise the integrity of the OM are lethal. 

However, there are many proteins, which are non-essential under standard laboratory 

growth, that contribute to OM homeostasis. Mutants lacking these proteins possess cell 

envelopes that are more permeable which allows molecules larger than the diffusion limit to 

enter the cell. Mutants exhibiting envelope defects can be selected through the use of 

markers such as the glycoside antibiotic vancomycin and the anionic surfactant sodium 

dodecyl sulphate (SDS: Nikaido, 2003; Lazdunski and Shapiro, 1972). Normally, Gram-

negative cell envelopes repel both molecules, by the physical occlusion of the sizeable 

vancomycin and by the charge based repellance of SDS. Mutants which give rise to disrupted 

membranes allow ingress of these molecules into the cell where they slow or prohibit 

growth. 

Much is already known about the genetic determinants of cell envelope function and 

maintenance. Multiple experimental strategies have been used to identify these genes 

(Tamae et al., 2008; Liu et al., 2010; Nichols et al., 2011). However, there are inconsistencies 
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between these studies. The aim of the work in this chapter was to use TRADIS to provide a 

global picture of which nonessential genes in E. coli are responsible for cell envelope 

homeostasis.  

 

5.2 Results 

 

5.2.1 Sample Datasets. To produce the conditional samples, 10 μl of transposon library was 

added into 50 ml of LB (to a starting OD600 of ~0.05) containing either 4.8% SDS or 100 µg/ml 

vancomycin; samples derived from these experiments are designated S4.8 and V100 

respectively.  Genomic DNA was extracted after the samples were grown to an OD600 of 1, 

and processed using the hybrid methodology as defined in the materials and methods (see 

Chapter 2). For both conditions there were two biological replicates. Metrics of these 

datasets are shown in Table 5.1. 

For each dataset, insertion indexes were calculated. The reproducibility of the 

insertion indexes between the replicates was assessed for each condition (Fig. 5.1). For the 

S4.8 and V100 datasets respectively, R2 values of 0.96 and 0.97 were reported, indicating 

that the insertion indexes of each replicate in each sample were highly correlated.  

The raw reads from both replicates in each sample were then combined and re-analysed as 

in the materials and methods. Insertion indexes were calculated and plotted in histograms 

(Figure 5.2). The bimodal profiles are similar, especially in the right mode. The leftmost bin 

contains a slightly lower frequency in the V100 profile.  

 

5.2.2 Differential Representation Analysis. After growing the transposon library in the 

presence of a selective condition, it is expected that some transposon mutants will become 
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Table 5.1. Dataset metrics for the S4.8 and V100 datasets. 
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Figure 5.1. Insertion index correlation scatterplots for the biological replicates of the S4.8 

and V100 samples. For each sample, the insertion indexes calculated for every W3110 

coding sequence for each replicate were plotted against each other, and a coefficient of 

determination (R2) was calculated. The max R2 value is 1, which would indicate a perfect 

positive correlation.    
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Figure 5.2. Insertion index histograms for the combined S4.8 and V100 datasets. Distinct 

bimodality can be seen in both plots. Both histograms display clearly bimodal distributions as 

seen in the previous chapters. 
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under represented if the mutated genes are required for growth under the selection 

pressure. The opposite is also expected, that some mutants will become over represented, 

where loss of the gene allows increased fitness for growth under the selective pressure. 

Thus, non-essential genes responsible for cell envelope maintenance will become 

underrepresented upon inactivation, and non-essential genes whose inactivation leads to 

increased resistance to the vancomycin and/or SDS will become overrepresented. As a 

preliminary measure, a visual inspection was undertaken for a small number of genes known 

to be affected by growth under these selective pressures (Fig. 5.3). Thus, inserts in yejM 

were underrepresented after growth in the presence of vancomycin and SDS, whereas 

inserts in galU, rfaG and rfaP were underrepresented only in the presence of SDS.  

Whilst visual inspection confirmed that the underlying experimental approach was 

sound, statistical rigour was required to be able to properly analyse and compare the 

datasets. To discern the differentially represented genes from the test and control datasets, 

the program DESeq2 was used (Love, Huber and Anders, 2014). DESeq2 is more commonly 

used for the analysis of RNA-seq data. However, the data produced by RNA-seq and 

transposon sequencing are fundamentally identical, given that it can be reduced to the 

numbers of reads aligned across coding sequences.  Additionally, DESeq2 has previously 

been used for analysing transposon sequencing data (Christiansen et al., 2014). The output 

of DESeq2 gives a log2 fold change (L2FC) value and an adjusted p value for each coding 

sequence. L2FC values can be either positive, indicating a representational increase in the 

test condition, or negative, indicating a representational decrease in the test condition.  

When discussing RNA-Seq experiments, genes are normally assessed in terms of their 

differential expression. While transposon sequencing data is fundamentally identical to RNA-

Seq data, differential expression is not a technically accurate term to use.  
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Figure 5.3. Insertion profiles for genes known to be involved with response to vancomycin 

and SDS. yejM mutants are not able to grow in the presence of vancomycin or SDS. rssB 

mutants are advantaged in the presence of SDS, but grow no differently in vancomycin. galU 

mutants are advantaged in the presence of vancomycin, but disadvantaged in SDS. 

Compared to wild type, rfaG and rfaP mutants grow better in vancomycin and worse in SDS. 
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From here, onwards the data will be discussed in terms of the differential representation of 

insertions in coding sequences with and without the presence of SDS or vancomycin.  

Here, DESeq2 was used to determine the coding sequences which were differentially 

represented between the control and test condition datasets. For each comparison (growth 

in LB vs. growth in LB supplemented with SDS or vancomycin), two separate analyses were 

made. First the numbers of unique insertion points were compared with control populations. 

Second, the numbers of reads aligned to a particular gene were compared with control 

populations. The resulting lists were then filtered by their L2FC and adjusted p values. Thus, 

genes with positive or negative L2FC values < +1 or > -1 were removed from the list, meaning 

that only genes with at least a 2-fold change (in either direction) as a result of treatment 

were retained. Any genes with a p value of greater than 0.05 were removed, meaning that 

there was a false discovery rate of less than or equal to 5% in the remaining genes. The two 

lists for each comparison were then merged into one, and subsequently split into positive 

and negative log2 fold changes. 

 

5.2.3 Genes differentially represented after growth in the presence of SDS. After filtering 

the gene lists, 45 genes were differentially represented after growth in LB with 4.8% SDS 

(Table 5.2). Strikingly only one of these genes (rssB) had a positive L2FC value, and so was 

overrepresented in the test dataset. The rssB gene encodes for a response regulator which 

governs the σS subunit (also known as RpoS) of RNA polymerase (Muffler et al., 1996: Pratt 

and Silhavy, 1996). Through direct and specific binding to RpoS, RssB facilitates the 

proteolytic degradation of RpoS by presentation to the proteolytic ClpXP machinery (Becker, 

Klauck and Hengge-Aronis., 1999: Zhou et al., 2001). Additionally, RssB negatively regulates 

RpoS levels by modulating polyadenylation and mRNA stability of the 
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Table 5.2. Differentially represented genes after treatment with SDS.  

Gene Description1 +/- represented 

pal Lipoprotein associated with peptidoglycan; involved in maintaining cell membrane integrity - 

tolA 
Tolerance to group A colicins, single-stranded filamentous DNA phage; required for OM integrity; membrane protein; 

bacteriocin tolerant 
- 

plpa/yraP OM lipoprotein, function unknown, mutant is SDS-sensitive - 

surA Periplasmic OM porin chaperone, has PPIase activity; required for stationary-phase survival - 

yfgL 
Beta-propeller lipoprotein in OM biogenesis BamABCDE complex; WD40/PQQ repeats; mutant has pleiotropic envelope 
defects; required for swarming phenotype 

- 

yrbE Probable phospholipid ABC transporter permease; MlaFEDB phospholipid ABC transporter; maintains OM lipid asymmetry - 

atpA ATP synthase subunit alpha, membrane-bound, F1 sector - 

atpD ATP synthase subunit beta, membrane-bound, F1 sector - 

atpG ATP synthase subunit gamma, membrane-bound, F1 sector - 

amiA N-acetylmuramyl-L-alanine amidase, periplasmic; role in septal cleavage during cell division; activated by EnvC - 

amiC 
N-acetylmuramyl-L-alanine amidase, periplasmic; recruited to the septal ring by FtsN during cell division; overexpression 

causes lysis; activated by NlpD 
- 

envC/yibP Activator of AmiB,C murein hydrolases, septal ring factor - 

nlpD Activator of AmiC murein hydrolase activity, lipoprotein - 

crl 
Pseudogene, sigma factor-binding protein; stimulates RNAP holoenzyme formation; stimulates RpoS activity during 

stationary phase; mutants display rpoS mutant phenocopy; mutant does not have reduced amount of RpoS protein 
- 

dksA 
RNAP-binding protein modulating ppGpp and iNTP regulation; reduces open complex half-life on rRNA promoters; 

removes transcriptional roadblocks to replication 
- 

fadR 
Repressor/activator for fatty acid metabolism regulon; fatty acid-responsive transcription factor; fabAB, iclR activator 

(regulates aceBAK, glyoxylate shunt); fad repressor; homodimeric 
- 

fepD Ferrienterobactin ABC transporter permease - 

greA Transcript cleavage factor - 

hfq 
Global regulator of sRNA function; host factor for RNA phage Q beta replication; HF-I; DNA- and RNA-binding protein; RNA 

chaperone; binds ATP and RNAP 
- 

nhaA 
Na+/H+ antiporter 1, strongly pH-dependent; helps regulate intracellular pH and extrude lithium; nhaA_P1 activated by 

NhaR, repressed by H-NS and stimulated by Na(+) 
- 

oxyR Oxidative and nitrosative stress transcriptional regulator - 
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qseC 
Quorum sensing two-component sensor kinase; cognate to QseB response regulator; regulates flagella synthesis and 

motilty by activating transcription of flhDC; responds to AI-3 and 
- 

rbsR Regulatory gene for rbs operon - 

yhdP DUF3971-AsmA2 domains protein - 

yraO DnaA-binding protein; involved in the timing of the initiation of DNA replication; dnaA(Cs) suppressor; homodimer - 

dacA D-alanine D-alanine carboxypeptidase PBP5, cell morphology; penicillin-binding protein 5; beta-lactamase activity - 

galU Glucose-1-P uridylyltransferase; also called UDP-glucose pyrophosphorylase - 

mrcA 
Murein polymerase, PBP1A; bifunctional murein transglycosylase and transpeptidase; penicillin-binding protein 1A; 

dimeric 
- 

pgm Phosphoglucomutase - 

rfaD ADP-L-glycero-D-manno-heptose-6-epimerase; heat-inducible, LPS; allows high-temperature growth - 

rfaE 
Heptose 7-P kinase/heptose 1-P adenyltransferase; LPS core prescursor synthesis: bifunctional enzyme involved in both D-

glycero-D-manno-heptose-1-phosphate and ADP-D-glycero-D-manno-heptose synthesis 
- 

rfaF ADP-heptose:LPS heptosyltransferase II - 

rfaG UDP-glucose:(heptosyl)LPS alpha-1,3-glucosyltransferase; LPS core biosynthesis protein; glucosyltransferase I - 

rfaH 
Transcription antitermination factor, LPS biosynthesis genes; negatively controls expression and surface presentation of 
Ag43 (Flu), reducing adhesion and biofilm; also regulates F-factor sex pilus and hemolysin genes 

- 

rfaP Lipopolysaccharide kinase; LPS core biosynthesis; phosphorylation of core - 

rfe UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-P transferase; ECA and O-antigen synthesis, tunicamycin sensitivity - 

yraM OM lipoprotein stimulator of MrcA transpeptidase - 

acrA AcrAB-TolC multidrug efflux pump; additionally dye, detergent, solvent resistance; membrane-fusion lipoprotein - 

acrB AcrAB-TolC multidrug efflux pump; additionally dye, detergent and solvent resistance; RND-type transporter - 

tolC 
Outer membrane factor (OMF) of tripartite efflux pumps; channel-tunnel spanning the outer membrane and periplasm; 

trimeric; ColE1 tolerance 
- 

rpoS RNA polymerase subunit, stress and stationary phase sigma S; sigma 38 - 

tatA Protein translocase, Sec-independent; mediates export of folded and ligand-bound proteins - 

tatC Protein translocase, Sec-independent; mediates export of folded and ligand-bound proteins - 

yejM Essential inner membrane DUF3413 domain protein; lipid A defect; membrane permeability defect - 

rssB 
Response regulator binding RpoS to initiate proteolysis by ClpXP; required for the PcnB-degradosome interaction during 

stationary phase; major cognate sensor kinase is ArcB 
+ 

1Gene descriptions obtained from Ecogene (Zhou and Rudd, 2012) 
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Table 5.3. Differentially represented genes after treatment with vancomycin.  

Gene  Description +/- represented 

asmA 
Suppressor of OmpF assembly mutants; inner membrane-anchored periplasmic protein; putative outer membrane protein 

assembly factor; required for swarming phenotype 
- 

aspA L-aspartate ammonia-lyase; L-aspartase - 

astE Succinylglutamate desuccinylase, arginine catabolism - 

envC/yibP Activator of AmiB,C murein hydrolases, septal ring factor - 

greA Transcript cleavage factor - 

oxyR Oxidative and nitrosative stress transcriptional regulator - 

rfe UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-P transferase; ECA and O-antigen synthesis, tunicamycin sensitivity - 

smpA Lipoprotein stabilizer of BamABCDE OM biogenesis complex - 

sucA 
2-oxoglutarate dehydrogenase, E1 component; yields succinyl-CoA and CO(2); also known as alpha-ketoglutarate 

dehydrogenase 
- 

tatC Protein translocase, Sec-independent; mediates export of folded and ligand-bound proteins - 

yejM Essential inner membrane DUF3413 domain protein; lipid A defect; membrane permeability defect - 

yfgC Periplasmic metalloprotease and chaperone; outer membrane protein maintenance and assembly - 

yfgL 
Beta-propeller lipoprotein in OM biogenesis BamABCDE complex; WD40/PQQ repeats; mutant has pleiotropic envelope 

defects; required for swarming phenotype 
- 

yhdP DUF3971-AsmA2 domains protein - 

yhjK Cyclic-di-GMP phosphodiesterase associated with cellulose production; dual domain protein; defective cyclase domain - 

envZ Osmosensor histidine protein kinase/phosphatase; regulates production of outer membrane proteins; dimeric + 

ompR Response regulator for osmoregulation; regulates production of outer membrane proteins + 

nlpI Lipoprotein involved in osmotic sensitivity and filamentation + 

ompC Outer membrane porin C + 

rseA Anti-RpoE sigma factor, spans inner membrane + 

mdoH 
OPG biosynthetic UDP-glucose beta-1,2 glycosyltransferase; transmembrane, ACP-dependent; nutrient-dependent cell size 

regulator; FtsZ assembly antagonist 
+ 

prc Periplasmic carboxy-terminal protease with specificity for non-polar C-termini + 

yhcB DUF1043 family inner membrane-anchored protein; biofilm-related + 

wzzE 
Enterobacterial common antigen ECA chain length determination; also involved in cyclic enterobacterial common antigen 

ECA(CYC) synthesis 
+ 
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yhiO Universal stress protein B, confers ethanol resistance in stationary phase; sigma S-regulated gene divergent from uspA + 

ycbC Envelope biogenesis factor; DUF218 superfamily protein + 

dacA D-alanine D-alanine carboxypeptidase PBP5, cell morphology; penicillin-binding protein 5; beta-lactamase activity + 

ldcA 
Murein tetrapeptide carboxypeptidase; LD-carboxypeptidase A; cytoplasmic protease that cleaves the terminal D-alanine 

from cytoplasmic muropeptides 
+ 

fbp Fructose-1,6-bisphosphatase; allosteric: inhibited by AMP + 

galU Glucose-1-P uridylyltransferase; also called UDP-glucose pyrophosphorylase + 

pgm Phosphoglucomutase + 

rfaG UDP-glucose:(heptosyl)LPS alpha-1,3-glucosyltransferase; LPS core biosynthesis protein; glucosyltransferase I + 

rfaH 
Transcription antitermination factor, LPS biosynthesis genes; negatively controls expression and surface presentation of 

Ag43 (Flu), reducing adhesion and biofilm; also regulates F-factor sex pilus and hemolysin genes 
+ 

rfaP Lipopolysaccharide kinase; LPS core biosynthesis; phosphorylation of core + 

rfaQ Glycosyltransferase needed for heptose region of LPS core + 

clpP Proteolytic subunit of ClpXP and ClpAP ATP-dependent proteases; protease Ti + 

chpR MazE antitoxin, toxin is MazF + 

ihfB 
Integration Host Factor (IHF), beta subunit; host infection, mutant phage lambda; site-specific recombination; sequence-

specific DNA-binding transcriptional activator 
+ 

mtlR Mannitol operon repressor + 

ytfK DUF1107 family protein + 

hfq 
Global regulator of sRNA function; host factor for RNA phage Q beta replication; HF-I; DNA- and RNA-binding protein; RNA 

chaperone; binds ATP and RNAP 
+ 

1Gene descriptions obtained from Ecogene (Zhou and Rudd, 2012) 
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RpoS transcript (Carabetta et al., 2009). In E. coli, RpoS is the central regulator of the general 

stress response (Battesti, Madjalani and Gottesman, 2011). Levels of RpoS are very low 

during exponential growth and during optimal growth conditions, due to RssB and many 

other regulatory factors. On approach to stationary phase, or in response to adverse 

environmental conditions, RpoS levels increase and allow the cell to alter the expression of 

genes and pathways linked to resistance towards a number of stresses. The transposon 

sequencing data indicates that inactivation of rssB leads to increased fitness (Fig. 5.4). This is 

logical according to what is known: the inactivation of rssB would lead to constitutively 

increased levels of RpoS in the cell, meaning that the general stress response would be 

mounted throughout every stage of growth. Indeed, a 10-fold increase in RpoS was observed 

during the exponential growth of an rssB mutant (Muffler et al, 1996). In the presence of 

SDS, the activation of the general stress response is likely to lead to increased fitness, and 

this would serve to explain the increased representation observed here. In keeping with 

these findings, previous work has shown that rssB mutants are more resistant to osmotic 

stress, oxidative stress and heat stress (Fontaine et al., 2008). Given the mechanics of how 

RssB is involved with RpoS regulation, it would be expected to see rpoS in the list of 

negatively represented genes. This was exactly the case. The disruption of rpoS meant that 

the general stress response could not be mounted, and so these cells were more susceptible 

to SDS.  

All three components of the RND family AcrAB-TolC multidrug efflux system were 

present in the negatively represented gene list. This tripartite protein complex forms a pump 

that spans the whole of the cell envelope, forming a channel between the cytoplasm of a cell 

and its external environment (Symmons et al., 2009). This machinery is recognised as being 

the main multidrug resistance mechanism within E. coli, and a wide variety of 
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Figure 5.4. Schematic showing the RssB regulation of RpoS. (Upper panel) Wild type RssB 

binds to RpoS and facilitates its proteolysis by the ClpXP machinery. This leads to low levels 

of RpoS, meaning RNA polymerase partners mainly with the housekeeping σ70. Upon 

disruption of RssB, RpoS is not degraded by ClpXP leading to its accumulation. It then binds 

to RNA polymerase and begins the regulation of the RpoS mediated stress response regulon. 

This graphic doesn’t take into account the post transcriptional regulation of rpoS expression 

by RssB. (Lower panel) After growth in 4.8% SDS, there is increased insertional 

representation throughout rssB. The opposite is true for rpoS, which shows a decreased 

representation after growth in SDS. 
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substrates are recognised and pumped out by this system, including antibiotics, dyes and 

detergents (Elkins and Nikaido, 2002: Ma et al., 1995). When any of the three components 

are absent the complex cannot be formed and the cell becomes hypersusceptible to toxic 

compounds. SDS is a known substrate of the system (Nikaido, 1998). When the activity of 

the efflux pump is compromised SDS cannot be pumped out of the cytosol. This leads to 

accumulation of SDS within the cell, subsequent adverse effects on the cell and results in cell 

lysis. As such, the finding that acrA, acrB and tolC are negatively represented in the library 

exposed to SDS is consistent with previous observations.  

Examination of the data revealed that TolA and Pal, two components of the Tol-Pal 

cell envelope complex, are also negatively represented. The Tol-Pal system consists of five 

proteins (TolBRAQ and Pal) which interact to form a complex that spans the envelope 

(Gerding et al., 2007). While the precise function of this system is unknown, it has been 

implicated with maintenance of the outer membrane and the control of envelope 

constriction during division. Mutations in the Tol-Pal genes lead to a variety of phenotypic 

effects including increased outer membrane vesiculation (Bernadac et al., 1998),  sensitivity 

to antibacterial agents (Lazzaroni et al., 1999) and the leakage of periplasmic proteins 

(Cascales et al., 2002). Disruption of tolA and pal in the transposon library is likely to disrupt 

the formation of the Tol-Pal complex, in turn weakening the envelope, allowing SDS to move 

into the cytoplasm and weakening the efforts of any functional efflux pumps. Interestingly, 

the tolBRQ genes that make up the remainder of the system all had negative L2FC values. 

However, they were not included in the negatively represented gene list as the L2FC values 

did not pass the threshold for inclusion. 

Two peptidoglycan hydrolases, amiA and amiC, are negatively represented after 

growth in SDS. These genes encode N-acetylmuramyl-L-alanine amidases (Vollmer et al., 
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2008). These amidases, along with a third (amiB), cleave crosslinks in the periplasmic 

peptidoglycan layer. Individual deletion of the three amidases resulted in long chains of 

unseparated cells, and in a strain with all three amidases deleted this effect was multiplied 

(Heidrich et al., 2001). Additionally, cells containing these deletions had uncleaved septa. 

The presence of uncleaved septa and the chaining of cells indicates that in cells lacking 

amidase activity, while the formation of the septum is unimpeded, it is specifically the 

cleavage of the septum that is affected. AmiA and AmiC were both found to be localised to 

the periplasm, after being trafficked through the Tat system (van Heijenoort, 2011). 

Furthermore, AmiC was found to be specifically localised to the septal ring during cell 

division in contrast to AmiA, which was diffused among the periplasm. Another finding was 

that amidase lacking chain forming mutants had impaired outer membrane integrity 

(Heidrich et al., 2002). Cells containing amidase deletions became sensitive to several agents 

that normally do not affect growth, including vancomycin and the detergent Triton X-100. 

Interestingly, although Heidrich et al. (2002) find that amiB is involved with septal cleavage 

and that amiABC have overlapping roles, in this work amiB is not negatively represented. In 

contrast to amiA and amiC, amiB had a positive L2FC value, although below the threshold 

set. This might suggest that amiB is functionally divergent from the other amidases. 

AmiA and AmiC are transported into the periplasm by the Tat system (Ize et al., 

2003). All three components of the Tat system, tatABC, were negatively represented after 

growth in SDS. However, only tatA and tatC were retained past the L2FC and p value 

thresholds. Both of these components are integral to the inner membrane, forming the 

translocation machinery (Robinson et al., 2011). Tat mutants have been previously shown to 

be sensitive to SDS (Ize et al., 2003). In E. coli, there is experimental evidence for 27 Tat 

system substrates, of which AmiA and AmiC are two (Palmer and Berks, 2012). Interestingly, 
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in the remaining 25 proteins there were no significant positive or negative L2 fold changes. 

This suggests that the inclusion of tatA and tatC in the negatively represented list is solely 

due to their involvement with the transport of AmiA and AmiC.  

Two more genes that localise to the septal ring apparatus were also negatively 

represented; envC and nlpD. These two proteins were previously found to localise to the 

division site and to be required for the separation of daughter cells after division (Uehara, 

Dinh and Bernhardt, 2009). Furthermore, EnvC directly activates AmiA and AmiB, and that 

NlpD directly activates AmiC (Uehara et al., 2010). EnvC and NlpD did not appear to have 

catalytic activity when incubated with high concentrations of peptidoglycan in vitro. This is in 

contrast to other work in which EnvC was shown to have peptidoglycan hydrolytic activity 

(Bernhardt and de Boer, 2004). Presumably the disruption of envC and nlpD leads to SDS 

sensitivity in the same manner as observed for disruptions of amiA and amiC.  

Continuing with the theme of peptidoglycan structure, the negatively represented 

dacA (also known as penicillin binding protein 5) encodes a carboxypeptidase involved with 

the final stages of peptidoglycan biogenesis (Ghosh, Chowdhury and Nelson, 2008).  In other 

work, the deletion of penicillin binding proteins (PBPs) including dacA was found to lead to 

morphological aberration (Nelson and Young, 2000).  Additionally, deletion of dacA was 

found to increase susceptibility to beta lactam antibiotics (Sarkar, Chowdhury and Ghosh, 

2010). Another PBP, mrcA (PBP1A), was negatively represented. mrcA encodes a bifunctional 

enzyme that has transglycosylation and transpeptidation activities (Born, Breukink and 

Vollmer, 2005). Additionally, the activator of mrcA, lpoA, is also negatively represented. 

LpoA is an outer membrane lipoprotein that directly binds to MrcA and stimulates its 

transpeptidase activity (Typas et al., 2010). Without the activities of LpoA/MrcA, the 
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peptidoglycan layer will not fully mature and in turn is likely to be weaker, which might 

explain the apparent sensitivity to SDS.   

E. coli are naturally resistant to a multitude of hydrophobic agents, and this 

resistance is mediated by lipopolysaccharide (LPS) present in the outer leaflet of the outer 

membrane (Nikaido and Vaara, 1985). Eight genes involved with LPS biosynthesis were 

negatively represented (Fig. 5.5); rfaDEFGHP, galU and pgm. rfaE encodes a bifunctional 

enzyme involved with two steps of the synthesis of the LPS core precursor ADP-d-glycero-d-

manno-heptose (Valvano et al., 2000), and rfaD encodes an epimerase that catalyses the last 

step in the pathway (Kneidinger et al., 2002). Two other genes encode proteins that catalyse 

steps in the synthesis of this precursor, lpcA and gmhB, also had negative L2FC values, 

although they did not meet the required threshold. lpcA encodes a D-sedoheptulose 7-

phosphate isomerase, and gmhB encodes a heptose bisphosphatase phosphatase. rfaFGP 

are all involved in the synthesis of the lipid A core (Yethon and Whitfield, 2000: Gronow, 

Brabetz and Brade, 2000: Roncero and Casadaban, 1992). The remaining rfa gene, rfaH, is a 

transcriptional anti terminator that is required for the expression of multiple LPS 

biosynthetic genes, including rfaGP (Bailey, Hughes and Koronakis, 1996; Pradel and 

Schnaitman, 1991). The formation of lipid A core also relies on the incorporation of UDP-α-d-

glucose at 3 steps in the biosynthetic pathway. Two enzymes in the UDP-α-d-glucose 

biosynthetic pathway, pgm and galU, are negatively represented. pgm mutants were found 

to be sensitive to SDS by Phan et al. (2013). Taken together, mutations in these genes lead to 

a lack of mature LPS, which in turn leads to susceptibility to hydrophobic agents (Nikaido and 

Vaara, 1985). 

In addition to LPS, the enterobacterial common antigen is also present on the cell 

surface (Kajimura, Rahman and Rick, 2005). The negatively represented gene rfe is an 
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Figure 5.5. Negatively represented genes in the LPS biosynthetic pathway after growth in 

SDS. Pathway information obtained from Ecocyc (Karp et al., 2013). Panels A and B show the 

synthetic pathway information for two requisite precursors to lipid A core biosynthesis. Each 

precursor is labelled, with green stars representing UDP-α-D-glucose and purple stars 

representing ADP-L-glycero-beta-D-manno-heptose. In panel C, the stars indicate where the 

precursors are used in the synthesis of lipid A. In all three panels, red exclamation marks 

denote genes that are significantly negatively represented past the thresholds set after 

growth in SDS. Gene names in italics are the reference names used in this chapter. For every 

gene in this figure without an exclamation mark, a negative L2FC value was reported, 

although the genes did not pass the thresholds set for fold change and significance. 
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enzyme that catalyses the transfer of N-acetylglucosamine-1-phosphate to undecaprenyl 

phosphate, and the resulting precursor is then used in the synthesis of the enterobacterial 

common antigen and LPS O antigens (Rush, Dick and Waechter, 1997). There is little 

literature available relating ECA with resistance to external agents. However, Ramos-Morales 

et al. (2003) found that mutation of wecD and wecA in Salmonella enterica serovar 

Typhimurium, two genes involved with the synthesis of ECA, resulted in increased sensitivity 

to deoxycholate suggesting a compromised cell envelope.  

One component of the β barrel assembly machinery (BAM) complex, bamB/yfgL, was 

negatively represented. The BAM complex is a collection of proteins that function to fold 

and insert outer membrane proteins (OMPs) into the outer membrane (Knowles et al., 

2009). These OMPs play key roles in multidrug resistance, virulence and in the maintenance 

of the envelope. Specifically, work published by Ruiz et al. (2005) and Wu et al. (2005) 

implicated yfgL/bamB with the maintenance of the outer membrane. Confusingly, the other 

components of the BAM complex (smpA/bamE and nlpB/bamC) do not have significantly 

variable L2FC values after growth in SDS. Regarding bamC, this is in contrast to findings 

reported by Sklar et al. (2007b). Regarding bamE, this is in contrast to Knowles et al. (2011).   

The periplasmic chaperone surA was also found to be negatively represented. Along 

with skp and degP, surA interacts with proteins translocated across the inner membrane by 

the Sec apparatus and assists in their folding and delivery to the BAM complex (Sklar et al., 

2007a). surA deletion mutants were previously found to be sensitive to a variety of 

detergents, antibiotics and dyes (Justice et al., 2005). In contrast to surA, the were no 

significant differences in the number or frequency of transposon insertions in the skp and 

degP genes when data from the SDS treated library was compared with data derived from 

the control experiment. 
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Interestingly, one of the negatively represented genes, yejM, was discussed in 

chapter 4. yejM encodes an essential cardiolipin binding protein (De Lay and Cronan, 2008; 

Dalebroux et al., 2015). However, this gene has a nonessential 3’ region. The presence of a 

non-essential region in yejM explains how it can be negatively represented after growth in 

SDS; there are fewer insertions in the non-essential region after growth in SDS. Given that 

the non-essential region has been implicated with resistance to SDS, it may be the case that 

the essential and non-essential regions of YejM have different functions. 

A further three negatively represented genes, atpADG, encode components of ATP 

synthase F1 complex. The likely explanation of this finding is that ATP is required for efflux of 

SDS, and so disruption of these genes leads to less energy in the form of ATP, and in turn 

increased susceptibility to the molecule. The other components of ATP synthase, atpBCEFH, 

were also negatively represented, but not past the required significance thresholds.  

For the remaining 12 negatively represented genes, no obvious or immediate 

explanation can be given for their involvement with resistance to SDS. As such, these genes 

might represent as of yet unknown genetic links to the maintenance of the outer membrane.  

 

5.2.4 Genes differentially represented after growth in the presence of vancomycin. 

Following the filtering criteria outlined earlier, 41 genes were differentially represented after 

growth in vancomycin (Table 5.3). Of these, 15 were negatively represented. in contrast to 

the majority of the genes negatively represented after growth in SDS. Eight of the 15 were 

also found to be negatively represented after growth in SDS, including yibP/envC, greA, oxyR, 

rfe, tatC, yejM, yfgL/bamB and yhdP. Earlier, it was concluded that the negative 

representation of tatC was likely due to its involvement with the transport of amiA and 

amiC. After growth in vancomycin amiA, amiC and tatB are negatively represented, but fall 
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short of the p value and L2FC filtering thresholds. The representation of other substrates for 

the Tat secretion system does not different significantly after growth in the presence of 

vancomycin. This, in addition to the negative representation of envC, suggests the previous 

conclusion is likely to apply here. Supporting evidence in the literature was found and 

discussed for rfe, bamB and yejM, but no obvious explanation could be provided for the 

identification of greA, oxyR and yhdP in these screens. Supporting literature can be found for 

some of the remaining 7 genes of the 15 negatively represented genes. asmA, which 

localises to the inner membrane, has been loosely implicated with envelope-associated 

function (Deng and Misra, 1996). bamE, which forms part of the beta barrel assembly 

machinery (BAM) complex, is also located in the outer membrane (Sklar et al., 2007b). Upon 

deletion of bamE, cells show slight defects in membrane permeability and susceptibility to 

antibiotics including vancomycin (Rigel et al., 2012; Browning et al., 2013). Additionally, 

bamA is more susceptible to protease treatment in cells with no bamE, indicating a more 

permeable membrane. The coding sequence for the periplasmic protein BepA is also 

negatively represented. Deletion of this coding sequence has been implicated with increased 

susceptibility to multiple antibiotics including vancomycin (Tamae et al., 2008; Girgis et al., 

2009). For the remaining negatively represented genes aspA, astE, sucA and yhjK, no obvious 

link to the outer membrane can be found. 

In addition to the 15 genes negatively represented, 26 genes were positively 

represented, that is to say that the insertion frequency of these genes was increased after 

growth in vancomycin. Some of these 26 genes, pgm, galU and rfaGHP, had previously been 

shown to be negatively represented after growth in SDS. In addition to these genes, rfaQ 

was also positively represented These genes are all involved with the formation of LPS 

present in the outer membrane. Their positive representation after growth in vancomycin is 
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completely at odds with their negative representation after growth in SDS, when considering 

that SDS and vancomycin are both indicators of cell envelope defects. However, this finding 

may be explained by charge. SDS is negatively charged, and vancomycin contains both 

negatively and positively charged residues. The disruption of pgm, galU and rfaGHPQ would 

ultimately lead to less phosphorylation of the lipid A core, in turning making it more 

positively charged. In the presence of SDS, such a charge change would act to facilitate the 

entry of the negatively charged SDS, meaning disruption of these genes would increase 

susceptibility to SDS. In the presence of vancomycin, the charge change might act to repel 

the entry of the zwitterionic vancomycin, leading to greater fitness in relation to other cells 

in the culture without these disruptions. Even though this is conjecture, the fact that this 

grouping of genes with a related function was shown to be positively represented is a strong 

indicator of biological significance. 

A further 4 genes from the list of 26 are linked to peptidoglycan synthesis, including 

dacA, fbp, ldcA and elyC. dacA was identified as a negatively represented gene after growth 

in SDS, and has been discussed previously. As well as opposing the negative representation 

of dacA in our SDS dataset, the positive representation of dacA in this dataset directly 

conflicts with previous literature. Zeevi et al. (2013) reported that, in Listeria 

monocytogenes, the upregulation of dacA reduced susceptibility to vancomycin. 

Additionally, Turner et al. (2013) observed the increased labelling of ΔdacA E. coli with 

fluorescent vancomycin, due to an increased number of D-ala motifs caused by the lack of 

dacA. This would suggest that the inactivation of dacA would make cells more susceptible to 

vancomycin. As is the case with dacA, the positive representation of fbp after growth in 

vancomycin conflicts with experimental evidence.  Saito et al. (2014), working with 

Staphylococcus aureus, reported that vancomycin resistance was in line with the 
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upregulation of fbp. ldcA encodes a carboxypeptidase which is involved with the recycling of 

peptidoglycan (Templin, Ursinus and Holtje, 1999). elyC is an inner membrane associated 

protein that has been linked to peptidoglycan synthesis and maintenance of the cell 

envelope (Paradis-Bleau et al., 2014). Given that opposing evidence can be found for two of 

the positively represented genes linked to peptidoglycan, further work is necessary to 

confirm whether or not these findings are erroneous. One potential explanation may be 

that, by disrupting genes involved with peptidoglycan synthesis, the amount of 

peptidoglycan available for vancomycin to bind to is reduced. 

Several genes relating to osmolarity are positively represented: envZ, ompR, nlpI, prc, 

ompC, rseA and opgH. EnvZ and OmpR form a two component system that responds to 

changes in osmolarity (Cai and Inouye, 2002; Yamamoto et al., 2005). EnvZ senses osmolarity 

and phosphorylates the response regulator OmpR. In turn, OmpR alters the expression of 

multiple genes including ompF and ompC, resulting in the abundance of OmpC in high 

osmolarity and the abundance of OmpF in low osmolarity. Interestingly, ompF is also 

positively represented after growth in vancomycin, but below the L2FC threshold imposed in 

this study. OmpC is a transmembrane osmoporin in the outer membrane which allows the 

movement of nutrients across the cell envelope (Nikaido, 2003; Maeda et al., 1991). The 

positive representation of these genes, that together comprise a regulatory pathway, is 

highly indicative of biological significance. The disruption of these porins would lead to 

decreased movement of water and solutes out of the cell, which would provide a growth 

advantage in conditions of high osmolarity. Given that OmpC is downstream of EnvZ and 

OmpR in the activation pathway, it is likely that the presence of envZ and ompR in the 

positively represented list of genes is solely due to their role in positively regulating 

expression of porins. These findings also suggest that native OmpC predisposes the cell to 
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vancomycin susceptibility, which is support by findings reported by Tran et al. (2014).  nlpI is 

a predicted outer membrane bound lipoprotein (Wilson, Kajander and Regan, 2005; O’hara 

et al., 1999). In vivo, NlpI acts as an adaptor protein to facilitate the degradation of the 

peptidoglycan endopeptidase MepS by the protease Prc, which is also in the positively 

represented gene list (Singh et al., 2015). However, other research demonstrates that the 

inactivation of nlpI leads to the overproduction of outer membrane vesicles, a phenotype 

which has been linked to increased fitness under stress conditions (McBroom and Kuehn, 

2007). rseA encodes an anti-sigma factor that inhibits σE (Missiakas et al., 1997). The binding 

of RseA to σE physically prevents it from regulating genes involved with multiple 

environmental changes, one of which is osmolarity (Bianchi and Baneyx, 1999). The 

inactivation of rseA would lead to the constitutive activation of σE, which in turn is likely to 

lead to the regulation of genes that reduce cellular susceptibility to vancomycin. opgH is a 

glycosyltransferase that is embedded in the inner membrane (Bohin, 2000; Bontemps-Gallo 

and Lacroix, 2015). This enzyme catalyses a key step in the formation of multiple 

osmoregulated periplasmic glucans (OPGs). These molecules have been linked to several 

functions, including envelope structure and maintenance, virulence and pathogenicity. It has 

been previously shown that the inactivation of opgH leads to the increased expression of 

colanic acid, which might lead to increased vancomycin resistance (Ebel et al., 1997). 

Of the ten remaining positively represented genes, 3 are predicted to be associated 

with the cell envelope. yhcB encodes a protein associated with the inner membrane 

(Stenberg et al., 2005). Little is known about the function of yhcB, although it has previously 

been found to be synthetically lethal with rodZ (Li, Hamamoto and Kitakawa, 2012). uspB is a 

protein predicted to be membrane associated (Farewell, Kvint and Nystrom, 1998). In this 

work, uspB was implicated with ethanol resistance in stationary phase, although there is 
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very little other experimental evidence of function. The last of the 3 genes, wzzE, encodes a 

protein located in the periplasm that regulates the polysaccharide chain length of the 

enterobacterial common antigen (Barr, Klena and Rick, 1999).   

For the remaining 6 positively represented genes, there is no obvious evidence to 

explain their presence in this list. clpP encodes a serine protease which is a part of multiple 

protease complexes (Alexopoulos, Guarne and Ortega, 2012). mazE encodes an anti-toxin to 

MazF, which exhibits ribonuclease activity and in turn leads to global translation inhibition 

(Zhang et al., 2003). ihfB is one of the two subunits of the integration host factor, which is a 

transcriptional regulator (Goosen and van de Putte, 1995). mtlR encodes the mannitol 

repressor, which regulates the mtlA and mtlD mannitol utilisation genes (Figge, Ramseier 

and Saier Jr, 1994). Very little literature is available for ytfK, although it has been previously 

implicated as part of the phosphate regulon (Yoshida et al., 2011). hfq encodes an RNA 

binding protein that has been implicated in global gene regulation (Sobrero and Valverde, 

2012). 

 

5.2.5 Comparison with other studies. Through the use of the KEIO library, Tamae et al. 

(2008) investigated the susceptibility of E. coli to multiple classes of antibiotics, including 

vancomycin. Thirty one genes were reported to increase susceptibility to vancomycin upon 

deletion, and these genes were compared with the genes reported to be involved with 

vancomycin resistance from this work.  For seventeen of these 31 genes, log2 fold changes of 

less than 0.3 in either positive or negative direction were reported, translating to less than a 

1.23 fold change in representation. Seven genes had negative L2FC values of over 0.3 but 

below the previously chosen threshold of 1, and 6 genes had negative L2FC values over 1, 

and were present in the gene lists discussed previously. Intriguingly there is a single example 
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of a gene, namely envZ, in which Tamae et al. (2008) reported sensitivity to vancomycin in 

contrast to this work, in which a positive L2FC value was reported beyond the set threshold. 

As such, 18 of the 31 genes could be said to be incongruent with the findings reported here, 

while the remaining 13 are reported similarly in both datasets. Liu et al. (2010) similarly 

investigated the effects of vancomycin on the KEIO collection, and subsequently published a 

list of 52 genes that led to vancomycin sensitivity upon deletion. In the same manner as 

above, the log2-fold changes from the dataset generated here were collected for each of the 

52 vancomycin sensitive genes reported by Liu et al. (2010). Using the same thresholds as 

set to compare against Tamae et al. (2008), 34 genes had log 2 fold changes of less than 0.3 

in either direction, 12 genes had negative L2FC values between 0.3 and 1, and 5 genes had 

negative L2FC values of over 1. Additionally, envZ was reported to negatively impact growth, 

in contrast to the positive L2FC reported from this work.  

From both comparisons of Tamae et al. (2008) and Liu et al. (2010), the majority of 

genes shown to be important for vancomycin resistance in these papers were not reported 

to be substantially affected after growth in vancomycin in this work. One key consideration 

is a difference in experimental design. In both studies the KEIO collection was grown in 

microtitre plates containing LB, followed by plating onto LB agar containing vancomycin. The 

plating of mutants on agar containing different concentrations of antibiotics allowed for the 

calculation of minimum inhibitory concentrations, which were then used to define genes 

linked to antibiotic sensitivity.  In the hybrid transposon sequencing method adopted in this 

work, no growth on solid media is required. As such, the findings discussed are not directly 

comparable. Furthermore, when in the microtitre plates only a growth period of 3-4 hours is 

referred to, as opposed to the defined growth permitted through the transposon sequencing 

method used here. As such, it could be argued that the more rigorous application of the 
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transposon sequencing experiments would have resulted in more robust results than those 

of Liu et al. and Tamae et al. Finally, considering that the same experimental techniques and 

antibiotic concentrations are used in Liu et al. and Tamae et al., there is incongruence in the 

genes reported from either study. Out of the 52 genes reported by Liu et al., and the 31 

genes reported from Tamae et al., only 16 are present in each, with 15 genes being found 

exclusively in the Tamae et al. list of genes and 36 genes being reported exclusively by Liu et 

al. Arguably, this disparity casts doubt on the veracity of these findings.  

As a comparator for the genes resulting from the SDS dataset, fitness scores 

calculated by Nichols et al. (2010) were used. The experimental design employed by Nichols 

et al. is similar to that of Tamae et al. and Liu et al., in that the KEIO library was used. In 

contrast, however, the cultures were grown in a 1536 well format on solid LB agar plates, 

from which colony size was digitally measured and used to create fitness scores from 

comparing LB plates with and without antibiotic or chemical. Across the 45 differentially 

represented genes from the SDS dataset, the range of fitness scores varies from -23.29 to 

1.58, with negative values indicating impacted growth rate in the presence of antibiotic and 

positive values indicating an increased growth rate. Out of the 44 negatively represented 

genes, 35 genes have negative fitness scores, 6 have positive scores and for 3 genes no score 

was available. Of the 35 genes with negative fitness scores, approximately two thirds have 

scores between 0 and -4, where the remaining genes have scores spread between 

approximately -5 and -23. Interestingly, these genes with the lowest negative fitness scores 

include the rfa and acr genes, for which there is much corroborating evidence in the 

literature. In consideration of the 6 genes with positive fitness scores, they are spread from 

approximately 0.12 to 1.59, which indicates that these genes do not lead to appreciably 

different growth rates in the presence of SDS, especially in light of the negative fitness 
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scores reported previously. For the single gene that was positively represented in the 

transposon sequencing data, rssB, Nichols et al. give a fitness score of ~0.59. Again, this 

fitness score is not strong evidence of a change in fitness.  

It is important to keep in mind that because of the techniques used in these studies 

the data are not precisely comparable with the data generated in this study. Additionally, 

there is a key difference in the usage of fitness scores and log2-fold changes, which are not 

directly comparable metrics. Furthermore, for the fitness scores reported by Nichols et al. no 

statistical likelihood values were available, in contrast to the analysis undertaken in this 

work. Another key difference between the use of transposon sequencing versus traditional 

knockout libraries is that the positive growth effects of disrupted genes are quantifiable, 

where this was not possible from Tamae et al. and Liu et al. Even so, when considering that 

there was an overlap of reported genes whose involvement with resistance to SDS is well 

understood, the utility of both techniques have been shown. 

 

5.3 Discussion 

The hybrid transposon sequencing method from chapter 3 has been used in this work 

to investigate which genes are involved with resistance to vancomycin and SDS. Of the genes 

that passed the thresholds chosen for significance and fold change, literature supporting 

their involvement in resistance to these chemicals could be found for them, and many of the 

genes are known to be involved in related cellular functions, such as envelope maintenance. 

One potentially glaring omission from this chapter is the lack of additional wet lab 

experimentation to confirm these findings; none of the candidate genes that were positively 

or negatively represented were singularly deleted and then tested to confirm any change in 

growth rate. It could be argued that with a new technique such as transposon sequencing 
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such confirmation is of the utmost importance. However, given that many genes empirically 

proven to be involved with resistance have been shown to be differentially represented is 

strong evidence that at least some of the findings here are robust and meaningful. The 

problem is more likely to lie with genes for which no literature evidence could be found. 

Further experimentation is crucial to fully assess these genes. 

Another point of consideration in this work is with regard to the choice of thresholds 

used for significance and fold change. As is well known among researchers using RNAseq as 

an experimental technique, a gene with a L2FC of 1 is arguably just as interesting as a gene 

with a L2FC of 0.99. Even with this criticism, the use of thresholds is justifiable when 

considering the number of genes that may result from such a study. It makes sense to target 

the search for genes that are maximally affected by the growth conditions used. Over time, 

as the analysis of such data becomes more commonplace there may be other methods 

developed which make better use of and allow for wider consideration of the data. 
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CHAPTER 6 

GENERAL DISCUSSION 
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The work presented here has demonstrated the testing and comparison of three 

transposon insertion sequencing methodologies, and the application of the chosen 

technique in the assessment of genes and their phenotypic relevance to envelope 

homeostasis. Discussion will be presented in the context of each chapter below. This work 

represents the establishment of an investigatory technique in a working laboratory, from the 

very beginnings of growth experimentation, through to the raw data generation and 

subsequent end result of data analysis. It is expected that this work will form a seed from 

which further work will grow, with varied experimental aims and outcomes.  

The ultimate aim of the work in chapter 3 was to select an insertion sequencing 

technique with which to do follow on studies. To date, despite 7 years of insertion 

sequencing publications (using Langridge et al. (2009) as a benchmark), there are no 

literature references that specifically compare insertion sequencing methodologies. As such, 

the work presented in this chapter is uniquely informative of methodological differences, 

given that the same transposon library was used throughout. 

Although the hybrid methodology was chosen for further use, this is by no means the 

“best” insertion sequencing technique available; merely, the best of the three tested. It is 

expected that, in time, there will be protocol changes and entirely different approaches that 

will surpass this method in every metric. Improvements are likely to occur in every aspect of 

the technique. For example, in the library preparation steps, there is much potential for 

refinement and optimisation of the current protocol, and even the adoption of different 

experimental techniques (for example, different ways to quantify and size select sequencing 

libraries). In the sequencing steps, there may, for example, be improvements enabled by the 

recent advances in nanopore sequencing by companies such as Oxford Nanopore 

Technologies. Analytically, there are a number of approaches that can be taken in the 
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assessment of gene essentiality and gene fitness, and it is certain that there will be new 

approaches that will provide better statistically predictive capabilities. 

Chapter 4 details the use of the hybrid insertion sequencing technique to predict the 

essential genes of E. coli, and to compare the list generated with the literature and 

specifically the findings from the KEIO library. The use of insertion sequencing in this way is a 

definitive strength of the technique, and is arguably more efficient and informative in 

comparison to the previously used approach of creating single deletion libraries. The most 

striking demonstration of this is in the presence of genes with essential regions. Single 

deletion libraries may correctly assess a particular gene as essential due to the lack of 

derivable knock out strain, but insertion sequencing also has the potential to illuminate 

exactly which regions of a gene are indeed essential. The work presented here also identified 

essential genes that were missed in the first iteration of the KEIO library work, and only 

corrected upon further investigation. This shows the robustness and sensitivity that insertion 

sequencing can achieve. 

As ever, there are caveats. In contrast to single deletion libraries, the data analysis is 

much more intensive. Where deletions can be confirmed via PCR and partially assessed via 

growth on an agar plate, insertion sequencing data must be heavily processed and 

manipulated. Although such bioinformatic analysis is becoming ever more widespread, it still 

poses an obstacle for researchers in its execution and interpretation. Furthermore, in this 

work not all of the analysis was totally objective. Indeed, laborious manual inspection was 

used to look at candidate essential genes in greater detail. However, it is almost certain that 

newer software packages and programs will be released that can at the very least undertake 

aspects of the analysis done here, along with the potential to perform as yet unused 

analyses. Additionally, there is much consideration required when discussing genes in terms 
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of essentiality. The interpretation of insertion sequencing data is wholly based upon factors 

such as the “age” of a culture at the point of DNA sampling. For example, if there was a 

particular gene that, while not ultimately essential for growth, was important for the rapidity 

of cell growth, this gene may be erroneously predicted to be essential based on when the 

culture was sample after initial transposon library creation.  This suggests that more 

established lab techniques such as single gene deletions will still be required in future, as a 

confirmatory practice. Here lies another issue with the work presented, in that no further 

wet lab confirmation of essential gene candidates was undertaken. However, given that a 

wealth of literature was present to support the assertions made, this is not considered to be 

an issue. 

The aim of chapter 5 was to use the hybrid sequencing technique to define genes 

important for the maintenance of the cell envelope. The linking of gene functionality with 

environmental conditions is another incredibly useful application of insertion sequencing, 

especially when considering that, in a single experiment, a whole genome is assessed in 

response to a particular condition. In addition to the volume of data that can be gleaned 

from such experiments, insertion sequencing was demonstrated to show not only the 

negative impacts of gene disruption, but also positive effects on growth fitness. This extra 

layer of contextual information provided is in contrast to previously adopted single gene 

deletion approaches, where only the lack of growth was the central metric of assessment. 

This in turn allows for the deeper understanding of underlying genetic networks and the 

greater integration of functional knowledge. More broadly speaking, insertion sequencing 

should be applicable to any selective pressure or growth condition in any organism that is 

tolerant of insertions. This in turn suggests the application of this technique in multiple 
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areas, for example, in the search for the next generation of antimicrobial molecules, or in 

the search for new as yet unknown genes that perform societally useful functions.  

Perhaps the most difficult issue to resolve when discussing this work is in the 

assessment of representation with and without selective pressure. Here, the approach used 

was to calculate and compare fold-change differences in representation for each gene. This 

is the same approach used in RNA-seq and other sequencing based techniques. The 

statistical cut-offs used here were also taken from standard RNA-seq protocols. However, 

the selection of these thresholds could be said to lead to the dismissal of biologically 

relevant information. For example, consider two genes with log2 fold changes of 0.99 and 1. 

The two are both likely to be important or represent at the least interesting results, but the 

0.01 difference in log2 fold change would mean that only one gene would actually be taken 

forward. This issue lies with any technique that utilises statistical analysis, and will continue 

to do so. It is almost certain that other more powerful and applicable statistical 

methodologies exist, and it would be wise to test them to find the strongest. When 

considering the changing of the current analytical pipeline, it would also be beneficial to try 

and incorporate more features, for example in the automatic outlining of genes containing 

essential genomic regions. This would greatly reduce the manual labour required in analysis. 

Another key concern is that for all the examples of differentially represented genes, none 

have been confirmed through knock outs or complementation studies. This would be the 

next logical step in terms of practical work. Additionally, it would be beneficial to test the 

hybrid methodology in application to a different insertion library in E. coli, or to a library in a 

completely different organism. Ideally it would be beneficial to validate the technique for 

use with multiple transposons used to make insertion libraries. The next two discussion 

points regarding this work relate to more practical concerns. The analysis made looked only 
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at the coding sequences within the genome, with no attention paid to any other genomic 

feature. Given the genome wide insertion of transposons, there may be other genomic 

features relating to envelope integrity that have simply been glossed over. While it is 

certainly possible for this to be done, it would require more analytical steps to be coded for 

and incorporated into the scripts. This leads to the second practical concern, in the 

assessment of the differentially represented genes reported by the analysis. Here, a 

literature search was undertaken for each and every gene passing the thresholds set in the 

analysis. This was time consuming and laborious, and the utility of the technique would be 

greatly improved if future software could be designed to automate this process. As a more 

distant future goal, the generation of a matrix with data concerning each gene in a multitude 

of growth conditions would be fantastic. This data would be highly informative across many 

fields of study, and could become a cornerstone reference for many researchers. 
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