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ABSTRACT 

There is an increasing body of evidence indicating an important role for the bioactive signalling 

lipid S1P (sphingosine 1-phosphate) in cancer. Sphingosine kinase-1 (SPHK1), one of the 

enzymes responsible for the synthesis of S1P, is reported to be overexpressed in many cancer 

types; in many cases correlating with increased tumour grade and reduced patient survival. 

However, the expression of SPHK1, and how it might contribute to lymphomagenesis, has not 

previously been explored in diffuse large B-cell lymphoma (DLBCL). 

In chapter 3, I show that SPHK1 overexpression in DLBCL correlates with the expression of 

known tumour-angiogenic genes. I also describe the characterisation of human umbilical vein 

endothelial cells (HUVEC) as an in vitro model with which to study the impact of S1P on the 

endothelial cell transcriptome and to explore the extent to which these changes can be 

observed in primary DLBCL. 

In chapter 4, I explore the effects of S1P on the transcription of endothelial cells with a focus 

on genes associated with leukocyte recruitment. I confirm the S1P-induced upregulation of 

chemokines and adhesion molecules in HUVEC and show that SPHK1 expression correlates 

with the expression of stromal cell gene signatures in primary DLBCL.  

Finally, in chapter 5, I show that I can inhibit S1P-induced signalling in HUVEC with 

Sphingomab, a monoclonal antibody against S1P. Additionally, I validate the A20 syngeneic 

model of lymphoma as a relevant system which could be used to study the potential 

therapeutic targeting of SPHK1-S1P signalling in DLBCL.
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CHAPTER ONE 

INTRODUCTION 
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1.1 Diffuse large B cell lymphoma  

1.1.1 Epidemiology 

Non-Hodgkin lymphomas (NHL) are malignant cellular proliferations which arise from normal 

cells at different stages during the process of B cell development. Diffuse large B cell 

lymphoma (DLBCL) is the most common type of NHL accounting for approximately 30% of 

cases (Project, 1997). Men are slightly more susceptible than woman and the most common 

age of diagnosis is in the late 60s, although the disease can occur at any age (Novelli et al., 

2013, Cancer Research UK, 2013). DLBCL is a highly heterogeneous disease both biologically 

and clinically. The disease can be nodal and/or extranodal and is defined by the World Health 

Organisation (WHO) as, “a diffuse proliferation of large B lymphoid cells whose nuclei are 

equal to or exceeding normal macrophage nuclei or more than twice the size of a normal 

lymphocyte” (Swerdlow, 2008).  

The 2016 revision of the WHO classification of lymphoid neoplasms lists a large number of 

distinct DLBCL subentities, due to the presence of distinct clinical and/or molecular features 

or the propensity to affect distinct anatomical sites (Table 1.1) (Swerdlow et al., 2016). 

However, a significant proportion of DLBCL does not fit into these subgroups, which are 

referred to as DLBCL, not otherwise specified (DLBCL-NOS) (Table 1.1) (Swerdlow et al., 2016). 

Many studies have attempted to subdivide DLBCL-NOS based on molecular differences. Unless 

otherwise stated, DLBCL refers to DLBCL-NOS in this thesis. 
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Table 1.1: 2016 WHO classification of DLBCL. (Swerdlow et al., 2016). *=provisional entity 

Diffuse large B-cell lymphoma, not otherwise specified DLBCL-NOS 

 Germinal centre B-cell type 

 Activated B-cell type 

T-cell/histiocyte-rich large B-cell lymphoma 

Primary DLBCL of the central nervous system (CNS) 

Primary cutaneous DLBCL, leg type 

EBV+ DLBCL, NOS 

DLBCL associated with chronic inflammation 

Primary mediastinal (thymic) large B-cell lymphoma 

Intravascular large B-cell lymphoma 

ALK+ large B-cell lymphoma 

Plasmablastic lymphoma 

Primary effusion lymphoma 

HHV8+ DLBCL, NOS* 

High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements 

High-grade B-cell lymphoma, NOS 

B-cell lymphoma, unclassifiable, with feature intermediate between DLBCL and classical Hodgkin 

lymphoma 
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1.1.2 Molecular subgroups of DLBCL 

1.1.2.1 Introduction 

Insights into the molecular biology of DLBCL were initially made possible through the use of 

gene expression microarrays, which provide a global profile of mRNA expression. From this, 

histologically indistinguishable molecular subtypes of DLBCL were identified that originate 

from lymphocytes at different developmental stages and use different oncogenic signalling 

pathways (Alizadeh et al., 2000). Before describing these molecular subgroups of DLBCL, it is 

first important to understand the process of normal B cell development and B cell receptor 

(BCR) signalling. 

1.1.2.2 Normal B-cell development 

B lymphocytes are produced in the bone marrow, and B cell development begins with 

rearrangement of the variable regions of the immunoglobulin (Ig) heavy and light chain genes 

to form a functional BCR. This requires double strand DNA breaks which are mediated by the 

recombination activating genes 1, 2 (RAG1 and RAG2) and resolved through the non-

homologous end joining repair process (Fugmann S, 2000). This process is known as VDJ 

recombination and results in a highly diverse repertoire of Ig genes which encode the BCR of 

each B cell (Dudley et al., 2005). Once the BCR is expressed, the B cells leave the bone marrow 

and circulate through blood and lymphoid tissue as mature, naïve B cells where they can 

encounter antigen. 

Upon binding of antigen to the BCR the naïve B cells migrate to secondary lymphoid organs 

such as lymph nodes, Peyer’s patches, tonsils and spleen (MacLennan, 1994, Klein and Dalla-
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Favera, 2008). First, naive B cells migrate to the T-cell-rich zone of secondary lymphoid organs 

where they become fully activated with the help of CD4+ T cells (MacLennan, 1994). These 

activated B cells move to the primary follicle, a structure made up of B cells within a network 

of follicular dendritic cells (FDCs). The B cells then enter the next stage of differentiation and 

start to rapidly proliferate leading to the development of the germinal centre (GC) (Figure 1.1). 

In addition to B cell expansion, a process called somatic hypermutation (SHM) occurs in the 

GC. SHM involves modification of the Ig variable region through random point mutations and 

the introduction of insertions or deletions producing antibodies with a higher affinity for 

antigen (Goossens et al., 1998, Kocks and Rajewsky, 1989, Gearhart and Bogenhagen, 1983) 

(Figure 1.1). These reactions are mediated by the enzyme, activation-induced cytidine 

deaminase (AID) (Muramatsu et al., 2000). Cells with high affinity for antigen are selected  by 

receiving survival signals from T helper cells and FDCs, whereas those with low affinity or 

deleterious mutations undergo apoptosis (Teng and Papavasiliou, 2007) (Figure 1.1). Surviving 

cells can go through another process known as class switch recombination (CSR), resulting in 

replacement of the IgM constant region with IgG, IgA or IgE. This process involves the 

generation of double strand breaks, deletion of unwanted sequence and the subsequent re-

joining of the remaining gene segments within the heavy chain locus. As the variable region is 

not altered, this process does not affect the affinity of the Ig for antigen, but it can now 

interact with different effector molecules (Dudley et al., 2005). CSR also requires AID which is 

regulated by interferon regulatory factor 4 (IRF4) (Klein et al., 2006). IRF4 is induced by antigen 

receptor engagement and CD40 signalling through activation of the nuclear factor-kappaB 

(NF-κB) pathway leading to IRF4 promotor activation (Shaffer, 2009). 
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Figure 1.1: B cell development in the GC. A naïve B cell encounters antigen and then migrates to 
secondary lymphoid follicles. Following T cell stimulation, the B cells undergo clonal expansion and 
somatic hypermutation within the dark zone of the GC. The B cells then migrate to the light zone where 
they are selected for high affinity of their BCR through interaction with T helper cells and follicular 
dendritic cells, escaping the default apoptosis pathway of GC B cells. Selected GC B cells can then 
undergo class switching before differentiating into memory B cells or plasma cells.  
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Histologically, the GC can be divided into the dark zone made up of proliferating B cells 

undergoing SHM referred to as centroblasts, and a light zone in which negative selection and 

CSR of B cells, known as centrocytes, occurs. GC B cells traffic between the dark and light zones 

undergoing multiple rounds of proliferation and selection (Schwickert et al., 2007).  

Cells that successfully emerge from the GC enter the final stage of B cell differentiation where 

they differentiate either into memory cells which provide a rapid response following 

subsequent antigen encounters, or plasma cells, which secrete antibody (Figure 1.1).  

There are many transcription factors which are involved in establishing the GC phenotype such 

as B-cell lymphoma 6 (BCL6), OCT-binding factor 1 (OBF1), SPIB, BTB domain and CNC homolog 

2 (BACH2) and interferon-regulatory factor 8 (IRF8). Of these, BCL6 has been referred to as 

the master transcriptional regulator of centroblasts as it is involved in the repression of 

multiple cellular processes to allow the hypermutation of centroblasts in the dark zone of the 

GC (Basso and Dalla-Favera, 2010, Basso and Dalla-Favera, 2012) (Figure 1.2A). The down 

regulation of BCL6 is required for GC exit  (Shaffer et al., 2000). Signalling through the BCR 

leads to the downregulation of BCL6 expression via mitogen activated protein kinase (MAPK) 

phosphorylation which targets BCL6 for ubiquitin mediated proteosomal degradation (Niu et 

al., 1998). Signalling through CD40 also results in transcriptional silencing of BCL6 as a result 

of NF-κB mediated induction of IRF4, which represses BCL6 expression by binding to its 

promoter region (Saito et al., 2007). The downregulation of BCL6 derepresses B lymphocyte 

induced maturation protein 1 (BLIMP1) which is required for plasma cell development (Turner 

et al., 1994) (Figure 1.2B)
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Figure 1.2: BCL6 in the GC: (A) BCL6 impairs premature B cell activation and differentiation and 
promotes tolerance of DNA damage in the GC centroblasts. (B) Down regulation of BCL6 is required 
for GC exit and differentiation to plasma cells. BCL6 is downregulated by transcriptional repression 
of BCL6 gene by IRF4 due to CD40 stimulation and post transcriptionally by ubiquitination mediated 
BCL6 degradation following BCR stimulation. BCL6 downregulation releases the gene which encodes 
BLIMP1 (PRDM1) from repression which is required for plasma cell differentiation.  
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The distinct modifications of B cell DNA during B cell development such as SHM and CSR are 

essential for the generation of a normal immune response but they also cause DNA damage 

which can lead to the development of lymphomas. 

1.1.2.3 Normal BCR signalling 

The BCR is a multimeric complex comprised of membrane-bound Ig associated with a 

disulphide linked heterodimer of CD79a and CD79b. BCR stimulation induces activation of 

SRC-family kinase (SFK) which phosphorylates immunoreceptor tyrosine-based activation 

motifs (ITAMs) in the cytoplasmic tails of CD79a and CD79b which leads to the recruitment of 

spleen tyrosine kinase (SYC). The signal is then transduced to early effectors of the signalling 

response such as Bruton’s tyrosine kinase (BTK) and phospholipase C-gamma 2 (PLCγ), through 

the adaptor protein B-cell linker (BLNK) (reviewed in: Packard and Cambier, 2013, Rickert, 

2013). BTK phosphorylates PLCγ2 leading to downstream responses including calcium 

signalling, protein kinase C (PKC), NF-κB and extracellular signal-regulated kinase (ERK) 

activation (Figure 1.3). NF-κB activation is due to PKCβ phosphorylation of caspase 

recruitment domain-containing protein 11 (CARD11), leading to the formation of the CBM 

signalling complex (CARD11, BCL10 and MALT1) (reviewed in: Packard and Cambier, 2013, 

Rickert, 2013) (Figure 1.3). The CBM signalling complex activates NF-κB inhibitor kinase (IKK) 

which leads to the phosphorylation and degradation of inhibitor of NF-κB (IκB). IκB masks the 

nuclear localisation signal of p50-p65 NF-κB transcription factors sequestering them in the 

cytoplasm. Following IκB degradation, p50-p65 NF-κB heterodimers accumulate in the nucleus 

and activate their target genes (Figure 1.3). 
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Figure 1.3: Overview of BCR signalling. Activation of the BCR leads to a signalling cascade which 
results in the activation of the NF-κB, mTOR, ERK and NFAT pathways. Signalling is initiated when a 
SRC-family kinase (SFK) phosphorylates ITAM motifs of the BCR subunits CD79A and CD79B which 
leads to the recruitment and activation of SYK. SYK activates the B cell linker (BLNK) adaptor protein, 
which serves as a scaffold for the Bruton’s tyrosine kinase (BTK) mediated phosphorylation of 

phospholipase Cγ2 (PLCγ2). PLCγ2 in turn promotes the influx of calcium ions (Ca
2+

) and activation 
of NFAT pathway; as well as activation of protein kinase Cβ (PKCβ) which initiates ERK signalling. 
Additionally PKCβ phosphorylates CARD11 causing it to recruit BCL10 and MALT1 into a multiprotein 
‘CBM’ complex that activates the NF-κB inhibitor kinase (IKK). Activated IKK leads to the 
phosphorylation and the degradation of inhibitor of NF-κB (IκB) and the nuclear translocation of 
p50-p65 NF-κB heterodimer. In parallel, PI3K is activated by recruitment to the B-cell co-receptor 
CD19 activating the mTOR pathway. A20 is an NF-κB target gene and a negative regulator of the NF-
κB signal.  
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In parallel, phosphoinositide 3-kinase (PI3K) is activated by recruitment to B cell co-receptor 

CD19 leading to the activation of the mechanistic target of rapamycin (mTOR) pathway. The 

activation of these many signalling pathways leads to B cell growth, proliferation and survival 

(reviewed in: Packard and Cambier, 2013, Rickert, 2013).  

1.1.2.4 Cell of origin molecular subtypes 

SHM is detected in DLBCL which suggests that DLBCL arises from B cells which have been 

through a GC reaction. Two molecularly distinct forms of DLBCL have been identified which 

have gene expression profiles indicative of different stages of B cell development. These are 

the germinal centre B-cell like DLBCL (GCB DLBCL) and the activated B-cell like DLBCL (ABC 

DLBCL) (Alizadeh et al., 2000, Rosenwald et al., 2003, Rosenwald et al., 2002). 

GCB DLBCL 

GCB DLBCLs are believed to be derived from GC B cells, as the genes expressed by this sub 

group, such as CD10, LMO2 and the transcriptional repressor BCL6, are highly expressed in 

normal GC B cells (Alizadeh et al., 2000, Rosenwald et al., 2002).   

Many oncogenic signalling pathways are predominantly expressed by only one DLBCL subtype 

(Figure 1.4). A frequent genetic abnormality detected in GCB DLBCL is the t(14:18) 

translocation which deregulates the expression of the anti-apoptotic gene B-cell lymphoma 2 

(BCL2). This translocation has been detected in approximately 45% of GCB DLBCL tumours but 

not in ABC DLBCL (Rosenwald et al., 2002).  

Mutations exclusively found in GCB DLBCL include those affecting the methyltransferase, 

EZH2, detectable in approximately 20% of cases (Morin et al., 2010). EZH2 is the catalytic 
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subunit of the polycomb repressive complex 2 (PRC2) and mutation leads to a gain of function 

and increased methylation of histone 3, resulting in transcriptional silencing of key regulatory 

genes (Beguelin et al., 2013, Sneeringer et al., 2010). EZH2 is a master regulator of the GCB 

cell phenotype and co-operates with BCL6 to mediate lymphoma development in GCB DLBCL 

(Beguelin et al., 2013, Caganova et al., 2013). 

Ten to fifteen percent of GCB DLBCL harbour deletions in the tumour suppressor gene PTEN 

(phosphate and tensin homologue) and a further 15% show amplification of microRNA cluster 

miR-17-92, which suppresses expression of PTEN (Xiao et al., 2008, Lenz et al., 2008c). The loss 

of PTEN expression was detected by immunohistochemistry (IHC) in 55% of GCB DLBCL cases 

compared to only 14% of non-GCB cases (Pfeifer et al., 2013). PTEN deletion results in 

constitutive activation of the PI3K/AKT/mTOR pathway indicating that deregulation of this 

pathway plays an important role in the progression of this subtype. 

ABC DLBCL 

The gene expression profile of the ABC subtype suggests that this type is derived from B cells 

that are in the process of differentiating into plasma cells, as they express genes 

characteristically expressed in plasma cells, such as the transcription factor XBP1 (X-box 

binding protein 1), the master regulator of Ig secretion (Wright et al., 2003, Shaffer et al., 

2004). However, the full plasma cell differentiation is blocked. Inactivating mutations and 

deletions of PRDM1 (PR domain zinc finger protein 1), the gene which encodes BLIMP1 are 

present in approximately on quarter of ABC DLBCL patients (Tam et al., 2006). Furthermore, 

approximately one quarter of ABC DLBCL patients show BCL6 translocations and 26% show 

gain of SPIB, both of which repress the expression of BLIMP1 (Figure 1.4). 
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Figure 1.4: Molecular subtypes of DLBCL: On the basis of gene expression profiling, DLBCL can be 
divided into two molecular subtypes germinal centre B cell like (GCB DLBCL) and activated B cell like 
(ABC DLBCL).  GCB DLBCL are believed to arise from GC B cells, whereas ABC DLBCL from post GC B 
cells in the process of differentiating in to plasma cells. The main oncogenic pathways are listed.  
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A hallmark of ABC DLBCL is the constitutive activation of the NF-κB pathway, which promotes 

cell survival, proliferation and inhibits apoptosis (Davis et al., 2010). Constitutive NF-κB 

activation is largely due to the constitutive formation of the CBM signalling complex which 

leads to IKK activation and degradation of IκB, as described earlier (Figure 1.3). In ABC DLBCL 

the CBM complex is constitutively activated by a number of mechanisms. Approximately 10% 

of ABC DLBCL patients harbour activating mutations of CARD11, whereas those with wildtype 

CARD11 have a chronic active form of BCR signalling  (Lenz et al., 2008a). Mutations in CD79A 

and CD79B genes have been detected in approximately 20% of ABC DLBCL which result in a 

chronic active BCR signal (Davis et al., 2010). The importance of the constitutive activation of 

BCR signalling in ABC DLBCL with wild type CARD11 is highlighted by the dependence of ABC 

DLBCL cell lines upon the activation of SYC, BTK and PKCβ (Davis et al., 2010). 

Inactivation of the NF-κB negative regulator A20 has been detected in around 30% of cases 

which results in loss of inhibition of NF-κB signalling (Figure 1.3). When A20 was reintroduced 

into cell lines carrying biallelic inactivation of the gene it caused apoptosis and cell growth 

arrest, indicating its role as a tumour suppressor (Compagno et al., 2009). The functional 

importance of the NF-κB pathway in ABC DLBCL was shown by Davis et al. (2001) who revealed 

that interference of the NF-κB signalling pathway, using small interfering molecules, was toxic 

to ABC DLBCL cell lines and but not to GCB DLBCL cell lines.  These data strongly support the 

view that chronic active BCR signalling plays a vital role in the pathogenesis of the ABC subtype 

of DLBCL.  
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Mutations in MYD88 have been detected in >30% of ABC DLBCL tumours resulting in the 

upregulation of the NF-κB and Janus-kinase-signal transducer and activator of transcription 

(JAK-STAT) pathways (Ngo et al., 2011).  

BCL2 overexpression is also detected in ABC DLBCL but by mechanisms distinct from those 

observed in GCB DLBCL, including transcriptional upregulation and gene amplification (Lenz et 

al., 2008c). 

1.1.2.5 Identification of GCB DLBCL and ABC DLBCL subtypes 

Due to the ongoing clinical trials to determine whether DLBCL subtype-specific therapies 

should be incorporated into clinical practice (discussed later; Section 1.1.3.4), the 2016 

revision of the WHO classification of lymphoid neoplasms requires the identification of the 

GCB and ABC subtypes of DLBCL (Swerdlow et al., 2016). IHC algorithms are commonly used 

to subdivide DLBCL into subtypes. The most common is the Hans algorithm which uses CD10, 

BCL6 and IRF4 as markers (Hans et al., 2004) (Figure 1.5). Subgroups defined by IHC algorithms 

do not completely correlate with subgroups defined by gene expression profiling (~87% 

correlation, Hans algorithm), partly due to their oversimplification and the poor 

reproducibility of IHC (Meyer et al., 2011). Nevertheless, IHC algorithms will be considered 

acceptable according to the 2016 revision of the WHO classification of lymphoid neoplasms, 

due to the unavailability of gene expression profiling as a routine clinical test (Swerdlow et al., 

2016). Newer methods based on quantification of RNA transcripts using paraffin-embedded 

tissue has proven to provide concordant results with gene expression profiling and capture 

the prognostic impact of cell-of-origin classification (Scott et al., 2014, Scott et al., 2015).
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Figure 1.5: Hans algorithm for the determination of DLBCL subtypes. It is based on the IHC analysis 
of markers CD10, BCL6 and IRF4 (Hans et al,. 2004) 
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These methods are still not accessible to most laboratories, however, may represent a 

promising alternative to IHC algorithms in the future.  

1.1.2.6 Differences in DLBCL survival 

Overall survival is more favourable in those patients with GCB DLBCL compared to ABC DLBCL 

(3-year progression free survival of ~75% vs 40%, p<0.001, respectively) (Rosenwald et al., 

2002, Rosenwald et al., 2003) (Figure 1.6). 

Although the addition of the anti-CD20 antibody rituximab to standard chemotherapy 

combining cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) has greatly 

improved survival in patients, more than 50% of patients with ABC DLBCL will eventually 

succumb to their disease (Lenz et al., 2008b, Coiffier et al., 2002). 

Lenz and colleagues (2008b) profiled gene expression in pre-treatment whole DLBCL biopsy 

specimens to identify gene expression signatures that correlated with differences in survival 

following treatment. They showed that the expression profiles were derived from CD19 

negative non-malignant cells. These ‘stromal signatures’ were variably present in both GCB 

and ABC DLBCL which suggests that these signatures represent biological features of the 

tumour microenvironment which can be acquired during the pathogenesis of both DLBCL 

subtypes. This highlights that survival after treatment is influenced not only by the molecular 

signature of the tumour cells, but also by the composition of the tumour microenvironment. 
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Figure 1.6: Differences in survival between GCB DLBCL and ABC DLBCL: Kaplan-Meier curves of 
survival rates for patients with a molecular diagnosis of the GCB or ABC DLBCL subtype after R-CHOP 
therapy. Patients with GCB DLBCL have a higher probability of progression free survival and overall 
survival than patients with ABC DLBCL (Reproduced from: Wilson, 2013). 
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1.1.2.7 Role of MYC and BCL2 

MYC oncogene rearrangement is a hallmark of Burkitt lymphoma and can also be identified in 

approximately 5-15% of patients with DLBCL. MYC translocation is frequently associated with 

BCL2 and/or BCL6 translocation, referred to as “double-hit” and “triple-hit” lymphomas, 

respectively. Double-hit and triple-hit lymphomas have a very poor prognosis with a median 

overall survival of less than 12 months (Perry et al., 2014, Johnson et al., 2012). They are 

included in the updated 2016 WHO classification in the new category of, “high-grade B-cell 

lymphoma, with MYC and BCL2 and/or BCL6 rearrangements” (Table 1.1) (Swerdlow et al., 

2016).  

Overexpression of MYC protein can be detected by IHC in 30-50% of DLBCL patients and is 

associated with BCL2 expression in 20-35% of cases (Johnson et al., 2012, Green et al., 2012). 

The majority of these tumours do not carry MYC or BLC2 alterations and are referred to as 

“dual-expressers.” “Dual-expressers” have a significantly poorer outcome than patients who 

express only one or neither protein. MYC and BCL2 overexpression can be detected in both 

GCB and ABC DLBCL, although it is more common in ABC DLBCL and is suggested to contribute 

to its inferior survival (Hu et al., 2013).  

1.1.3 Treatment of DLBCL 

1.1.3.1 Prognostic factors 

The identification of distinct molecular subtypes has not yet been translated into changes to 

clinical practice. The International Prognostic Index (IPI), developed prior to the addition of 

rituximab, remains the primary clinical tool to predict outcome of patients with aggressive 
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NHL (Shipp et al., 1993). This is based on the number of negative prognostic factors present 

at diagnosis which include: 

 Age greater than 60 

 Stage III or IV disease 

 Elevated lactate dehydrogenase (LDH) serum level 

 Eastern Cooperative Oncology Group (ECOG) performance status of 2 or more  

 More than one extranodal site of disease 

One point is assigned for each of these factors and the sum of the points classifies patients 

into one of four risk groups with predicted five-year overall survival rates ranging from 26% to 

73% (Shipp et al., 1993). The IPI has been reassessed in patients treated with rituximab-based 

chemotherapy and has been shown to retain its prognostic usefulness (Ziepert et al., 2010). 

However, the IPI fails to identify high-risk patients, as all prognostic IPI categories have a 

higher than 50% chance of cure following treatment with R-CHOP. More recently, an 

enhanced IPI has been proposed using data from the National Comprehensive Cancer Network 

(NCCN-IPI), which was validated within a cohort of patients treated in British Colombia (Zhou 

et al., 2014). The NCCN-IPI uses the same five variables as the IPI, although the categories of 

age and LDH levels are further refined and the specific sites of extra nodal involvement, such 

as bone marrow, CNS, liver/gastrointestinal tract and lung are identified as negative factors, 

rather than the number of sites. The NCCN-IPI was better able to identify a high-risk group 
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with a 5 year overall survival of 33%; however this represented only 8-14% of patients (Zhou 

et al., 2014).  

1.1.3.2 Front line therapy 

Approximately 75% of DLBCL patients present with advanced stage disease which is defined 

as Ann Arbor stages 3 and 4 or stages 1 and 2 with B-symptoms or bulky disease (> 10 cm). 

The CHOP chemotherapy regimen remains the main treatment modality as more intensive 

combinations did not show additional benefit (Fisher  et al., 1993). The addition of rituximab 

to the CHOP backbone dramatically improved outcomes in patients over 60 years of age 

resulting in a 16% improvement to the 10 year overall survival in the first trial (Coiffier et al., 

2010, Coiffier et al., 2002). As a result of this study and of many additional trials, R-CHOP is 

now established as the standard of care (Habermann et al., 2006, Pfreundschuh et al., 2008, 

Pfreundschuh et al., 2006, Sehn et al., 2005). Consolidative radiation therapy following 

chemotherapy is frequently used in an attempt to eradicate potential residual disease. There 

have been no randomised trials assessing the role of this therapy in DLBCL patients in the 

rituximab era. However, retrospective analyses have indicated a benefit for radiation therapy 

following chemotherapy (Dorth et al., 2012, Phan et al., 2010, Held et al., 2014). 

1.1.3.3 Salvage therapy 

Although the standard therapy for many DLBCL patients is curative, approximately 10-15% of 

patients exhibit refractory disease and an additional 20-25% relapse following an initial 

response (Friedberg, 2011). The clinical approach to relapsed/refractory DLBCL includes high-

dose therapy and autologous stem cell transplantation (HD-ASCT). However, due to co 
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morbidities and advanced age only around half of relapsed/refractory DLBCL patients are 

eligible for this intensive treatment. Of those eligible patients only half are sensitive to salvage 

therapy and receive transplant and of those, only half are cured. It was revealed that <10% of 

patients with primary refractory disease following R-CHOP treated at the British Colombia 

Cancer Agency achieved durable remissions with salvage therapies (Hitz et al., 2015).  As a 

result, only very few patients are cured with secondary therapies. Due to the very low 

response rates seen in the salvage setting and the high proportion of patients ineligible for 

such treatments, novel agents are urgently required.  

1.1.3.4 Novel therapies 

Greater insights into the molecular heterogeneity of DLBCL uncovered by gene expression 

profiling have revealed unique therapeutic targets that have translated into the developments 

of novel agents. 

Therapies targeting NF-KB and BCR signalling 

Due to the constitutive activation of the NF-κB and BCR signalling pathways seen in ABC DLBCL, 

agents targeting these pathways are under evaluation in this subtype. For example, 

bortezomib, which prevents the degradation of IκB, has shown benefit when combined with 

chemotherapy in relapsed patients with ABC subtype (Dunleavy et al., 2009). An ongoing 

clinical trial, REMoDL-B, is evaluating the addition of bortezomib to R-CHOP as front line 

therapy in patients with ABC DLBCL. In a phase 1/2 clinical trial ibrutinib, an inhibitor of BTK, 

induced complete or partial responses in 37% of ABC DLBCL cases versus 5% of those with GCB 

DLBCL (Wilson et al., 2015). A phase 3 clinical trial, PHOENIX, is currently evaluating the 
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addition of ibrutinib to R-CHOP in non-GCB DLBCL. Additionally, idelalisib a selective inhibitor 

of PI3K, has indicated potential in chronic lymphocytic leukaemia (CLL) and indolent NHL, but 

has not been assessed in DLBCL (Gopal  et al., 2014) (Furman  et al., 2014). Although PI3K is 

an important component of the BCR pathway, due to the frequent activation of the PI3K 

pathway observed in GCB DLBCL, this drug may be of potential therapeutic benefit in this 

subtype as well as in ABC DLBCL (Pfeifer et al., 2013). 

BCL2 targeting therapy 

BCL2 is frequently overexpressed in both GCB and ABC DLBCL. This over expression has been 

shown to have a negative impact on the outcome for patients with GCB DLBCL and “dual 

expresser” lymphomas (Johnson et al., 2012, Iqbal et al., 2011). A potent selective inhibitor, 

known as ABT-199, showed responses in 38% of relapsed DLBCL patients in a phase I clinical 

study which has led to combination trials being investigated (Souers et al., 2013, Seymour et 

al., 2013).  

Therapies targeting angiogenesis and the microenvironment 

Due to the importance of the microenvironment in the pathogenesis of DLBCL, therapies that 

target this component are of great interest. One such agent, lenalidomide, has been shown to 

have pleiotropic activities including immunomodulatory, anti-angiogenic as well as direct 

tumour cell effects (reviewed in Kritharis et al., 2015). Lenalidomide treatment was well 

tolerated and demonstrated an overall response rate of 35% in a phase II clinical trial of 

relapsed/refractory aggressive B-cell NHLs (Witzig et al., 2011). It has been shown to be safely 

combined with R-CHOP in many studies and appears to overcome the negative prognostic 
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impact of ABC DLBCL versus GCB DLBCL (in patients treated with R-CHOP, progression free 

survival was 28% versus 64%; p< .001, in non-GCB DLBCL versus GCB DLBCL, respectively. In 

patients treated with R-CHOP plus lenalidomide there was no difference in progression free 

survival in GCB DLBCL versus ABC DLBCL, 60% versus 59%; p=.83) (Nowakowski et al., 2011, 

Vitolo et al., 2014, Nowakowski et al., 2015). As a result, a phase III clinical trial (ROBUST) is 

investigating the effects of lenalidomide plus R-CHOP in untreated patients with ABC DLBCL.  

The results of clinical trials of anti-angiogenic therapies targeting the vascular endothelial 

growth factor (VEGF) signalling pathway have shown limited potential. The VEGF inhibitor, 

bevacizumab, showed only modest clinical activity in patients with relapsed NHL when 

delivered as a single agent or in combination with R-CHOP as first line treatment (Stopeck et 

al., 2009, Ganjoo et al., 2006). A phase III study of bevacizumab combined with R-CHOP in 

DLBCL patients (MAIN trial) was stopped early following a safety and efficacy analysis due to 

increased cardiotoxicity and without prolonging progression free survival (Seymour et al., 

2014). Therefore, agents targeting alternative pathways are required to target angiogenesis 

in lymphoma patients. Alternatively, patients need to be selected for these therapies at 

diagnosis on the basis of an angiogenic phenotype.
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1.2. SPHK1-S1P signalling 

1.2.1 Introduction 

Sphingolipids are one of the basic components of the biological membrane present in all 

eukaryotic cells. Sphingolipid metabolism leads to the formation of polar lipid mediators such 

as sphingosine 1-phosphate (S1P). Originally, S1P was believed to be an intermediate in the 

detoxification of sphingosine following its phosphorylation and degradation. However, S1P 

was later shown to regulate cell growth and suppress programmed cell death (Zhang et al., 

1991, Cuvillier et al., 1996). S1P is now recognised as a potent, bioactive lipid mediator that 

regulates many cellular processes such as cell migration, proliferation and survival in both 

pathological and physiological settings. 

1.2.2 S1P synthesis and release  

S1P levels in cells are controlled by the balance between its formation and degradation. De 

novo synthesis of S1P occurs at the endoplasmic reticulum by condensation of serine and 

palmitate by serine palmitoyltransferase. S1P is also generated via sphingolipid turnover of 

the plasma membrane via the action of  sphingomyelinase which generates the intermediate  

ceramide (Hannun and Obeid, 2008). Ceramide is further metabolised by ceramidase, which 

yields sphingosine. Subsequent production of S1P is via the phosphorylation of sphingosine by 

sphingosine kinases (SPHK1 and SPHK2). S1P is degraded via two separate pathways; it can 

either be dephosphorylated to sphingosine mediated by specific S1P phosphatases (SGPP1 

and SGPP2) or irreversibly degraded to hexadecenal and phosphoethanolamine by S1P lyase 

(SGPL1) (Figure 1.7A).
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Figure 1.7: Sphingolipid metabolism. (A) The pathway of sphingolipid metabolism is shown. (B) S1P 
and ceramide have opposing functions, which makes their balance determine cell fate. This is 
referred to as the ‘sphingolipid rheostat’. 
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Following its production, S1P can be exported out of the cell by adenosine triphosphate (ATP)-

binding cassette multi-drug resistant transporters proteins such as ABCC1 and ABCA1 and the 

more recently identified transporter like protein SPNS2 (Mitra et al., 2006, Sato et al., 2007, 

Hisano et al., 2011). S1P is present in high concentrations in the circulation (between 0.1 – 4 

µM) (Hanel et al., 2007). This S1P originates from different sources, with erythrocytes being 

the main blood cell store of S1P. S1P is also released from activated platelets and the vascular 

endothelium (Pappu et al., 2007, Venkataraman et al., 2008, Yatomi et al., 2001). Although 

S1P concentrations are high in blood and lymph, the concentrations are low in tissue 

interstitial fluids, this gives rise to an S1P gradient. This S1P gradient is essential for 

lymphocyte egress (discussed below; Section 1.2.9.4) (Cyster and Schwab, 2012, Schwab et 

al., 2005). Circulating S1P is bound to chaperone proteins including high density lipoprotein 

and albumin (Murata et al., 2000). 

Extracellular S1P, produced by SPHK1, activates a family of G-protein-coupled receptors 

(GPCRs), a process known as “inside-out” signalling, whereas intracellular S1P, produced by 

SPHK2, acts as a second messenger by directly binding to intracellular protein targets (Spiegel, 

1999, Takabe et al., 2008) (Figure 1.8).  

1.2.3 Sphingolipid rheostat 

S1P enhances growth and survival in diverse cell types (Spiegel and Milstien, 2003). By 

contrast, ceramide and sphingosine are important mediators of stress responses and induce 

apoptosis and cell cycle arrest (Cuvillier et al., 1996, Obeid et al., 1993). Death inducers such 

as tumour-necrosis factor α (TNFα), FAS/FAS ligand, growth factor withdrawal and increased 

levels of DNA damage all increase ceramide production (Ogretmen and Hannun, 2001). 
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Figure 1.8: SPHKs localisation, S1P synthesis and signalling. SPHK1 is located in the cytoplasm and 
forms S1P from sphingosine at the plasma membrane, which can be exported out of the cell by 
specific transporters. Binding to S1P receptors (S1PR 1-5), extracellular S1P can initiate downstream 
signalling pathways in an autocrine or paracrine manner. SPHK2 is localised to the endoplasmic 
reticulum (ER), the mitochondrion and the nucleus. S1P produced in the nucleus and the 
mitochondria have direct intracellular targets which include histone deacetylases (HDACs) in the 
nucleus and prohibitin 2 (PHB2) in the mitochondria.  
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It is well established that ceramide has several targets which mediate its apoptotic function 

such as protein phosphatases 1, 2 (PP1 and PP2), cathepsin D and PKC (Heinrich et al., 2000, 

Wang et al., 2005). 

These opposing roles between ceramide/sphingosine and S1P led to the concept of the 

“sphingolipid rheostat” whereby the dynamic balances between these metabolites can 

determine cell fate (Cuvillier et al., 1996) (Figure 1.7B).  

1.2.4 Sphingosine kinase isoforms 

SPHKs are evolutionary well conserved lipid kinases expressed in humans, mice, yeast and 

plants with homologues in worms and flies. Two mammalian SPHKs have been characterised, 

these are known as SPHK1 (43kDa) and SPHK2 (65kDa). The genes for SPHK1 and SPHK2 are 

located on different chromosomes, SPHK1 is present at 17q25.2 whereas SPHK1 is located at 

19q13.2 (Kohama et al., 1998, Liu et al., 2000a). There are five highly conserved domains 

within SPHKs (C1-C5) with the catalytic domain located within C1-C3 and the ATP-binding site 

for S1P production is situated within the C2 domain (Takabe et al., 2008).  

1.2.5 Localisation and activation of sphingosine kinases 

 SPHK1 and SPHK2 differ in their subcellular localisation, with SPHK1 being mainly cytosolic 

and SPHK2 mainly nuclear thereby creating distinct pools of S1P (Figure 1.8).  

SPHK1 can be activated by multiple signals including GPCRs and tyrosine kinase agonists, 

proinflammatory cytokines, calcium and protein kinase activators, Ig receptors and small 

GTPases (Taha et al., 2006a, Maceyka et al., 2002). Following its activation, SPHK1 translocates 
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to the plasma membrane where it produces S1P from its substrate sphingosine. Additionally, 

this translocation results in localised production of S1P in the vicinity of membrane transport 

proteins and cell surface S1P receptors. SPHK1 translocation to the plasma membrane is 

dependent upon its phosphorylation on Ser225 by ERK1 and ERK2 (Pitson et al., 2003a). This 

dependency was highlighted by the inability of a phosphorylation deficient SPHK1 mutant to 

translocate to the plasma membrane and to increase proliferation and survival when over-

expressed (Pitson et al., 2005). Recent studies have identified a critical role for the calcium-

myristoyl switch protein, calcium and integrin binding protein 1 (CIB1), in the mechanism of 

SPHK1 translocation to the plasma membrane (Jarman et al., 2010). CIB1 interacts with SPHK1 

in a calcium dependent manner at a calmodulin binding site of SPHK1. Following calcium 

binding, CIB1 translocates to the plasma membrane which provides a mechanism for active 

translocation of SPHK1 to this location (Jarman et al., 2010). 

The regulation of SPHK2 is less well defined. SPHK2 is activated by a number of agonists 

including TNFα, interleukin 1β (IL1β) and epidermal growth factor (EGF) (Chun, 2013). 

Although the activating phosphorylation site of SPHK1 is not conserved in SPHK2, studies have 

also suggested that SPHK2 can be activated via its phosphorylation by ERK1 and ERK2, 

although the exact site(s) of phosphorylation are yet to be elucidated (Hait et al., 2007).  

Phosphorylation of SPHK2 also appears to play a role in its subcellular localisation. SPHK2 is 

located mainly in the nucleus or at the endoplasmic reticulum, however upon phosphorylation 

by PKD, SPHK2 is exported from the nucleus to the cytoplasm (Maceyka et al., 2005, Igarashi 

et al., 2003, Ding et al., 2007). 
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Although SPHK1 and SPHK2 produce distinct pools of S1P, SPHK1 and SPHK2 single knockout 

mice develop and reproduce normally. However, the double knockout is embryonically lethal 

due to severely disturbed neurogenesis and angiogenesis (Mizugishi et al., 2005).  

1.2.6 Role of intracellular S1P 

Although there is an abundance of evidence that “inside out” SPHK1 derived S1P signalling 

regulates many cellular processes, much less is known about the functions of intracellular S1P 

produced by SPHK2. Recent reports have demonstrated that intracellular S1P binds to and 

inhibits histone deacetylases (HDAC1 and HDAC2) (Figure 1.8). SPHK2 was also detected at the 

promotors of the transcriptional regulator c-fos and the cyclin dependent kinase inhibitor p21, 

leading to the S1P-mediated regulation of histone acetylation resulting in their enhanced 

transcription (Hait et al., 2009). 

Intracellular S1P also plays a role in TNFα induced activation of NF-κB signalling and is a co-

factor required for the ligase activity of TNF receptor-associated factor 2 (TRAF2) (Alvarez et 

al., 2010). TRAF2 is an adaptor protein that is involved in the ubiquitination of RIP1, a critical 

event in the activation of NF-κB in response to TNFα.  

Intracellular S1P has suggested roles in mitochondrial respiration via binding to prohibitin 2 

(PHB2), a protein which regulates mitochondrial assembly and function. SPHK2 knockout mice 

have reduced mitochondrial respiration due to defective assembly and activity of cytochrome 

oxidase, suggesting that the interaction of S1P with PHB2 is important for these processes 

(Strub et al., 2011).  
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1.2.7 Effects of SPHK2 expression 

There are conflicting reports of SPHK2 functions. Early reports indicated that overexpression 

of SPHK2 causes the suppression of cell growth and cell cycle arrest via inhibition of DNA 

synthesis (Igarashi et al., 2003). Apoptosis following mitochondrial release of cytochrome c 

and activation of caspase 3 has also been shown to follow SPHK2 overexpression (Liu et al., 

2003). These effects were shown to be the result of the SPHK2 Bcl-2 homology 3 (BH3) binding 

domain which sequesters the anti-apoptotic protein BCL2L1 inhibiting its function (Liu et al., 

2003).  

However, other studies suggest pro-survival functions for SPHK2. For example, SPHK2 

knockdown increases the sensitivity of breast and colon cancer cells to doxorubicin- induced 

apoptosis (Sankala et al., 2007). Furthermore, knockdown of SPHK2 in glioblastoma cells 

inhibits their proliferation (Van Brocklyn et al., 2005).  

1.2.8 S1P receptor signalling 

Five high-affinity S1P GPCRs have been described: S1PR1 (EDG1), S1PR2 (EDG5), S1PR3 

(EDG3), S1PR4 (EDG6) and S1PR5 (EDG), encoded by endothelial differentiation genes (EDG). 

Signalling through these receptors, S1P can mediate both paracrine and autocrine signalling 

(Alvarez et al., 2007) (Figure 1.8). S1P receptors are 7 transmembrane proteins that couple to 

a variety of heterotrimeric G proteins. A schematic representation of the binding specificities 

can be seen in (Figure 1.9). 
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Figure 1.9: Downstream signalling pathways of S1P receptors. S1P is a ligand for five receptors 
S1PR1-5. Each S1P receptor is coupled to different G proteins which activate different signalling 
pathways.   
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S1PR1, S1PR2 and S1PR3 are widely expressed in most mammalian tissues, whereas S1PR4 

and S1PR5 are mainly expressed in lymphoid cells and brain, respectively (Brinkmann, 2007, 

Chun et al., 2010).  The response to S1P is governed by the mix of these different receptors on 

the cell surface. 

S1PR1 

S1PR1 was cloned in 1990 when it was discovered that one of the immediate early response 

genes induced during angiogenesis in human umbilical vein endothelial cells (HUVEC)  

encoded a GPCR, and it was named endothelial differentiation gene-1 (EDG1) (Hla and Maciag, 

1990). The ubiquitous expression of S1PR1 is observed in many tissues and cell types (Chun, 

2013). S1PR1 is abundant in endothelial cells but has also been shown to be expressed by 

many other cells including vascular smooth muscle cells, fibroblasts and epithelial cells as well 

as cells of the immune system such as T and B cells, macrophages, dendritic cells and natural 

killer cells (Goetzl et al., 2004, Chun, 2013). Following S1P binding, S1PR1 exclusively couples 

to Gi protein which leads to ERK and PI3K/AKT pathway activation, resulting in prosurvival and 

mitogenic signalling (Figure 1.10). Additionally, S1PR1 signalling leads to the activation of the 

Rho family small GTPase Rac, which is essential for cell migration and lamellipodia formation. 

This results in S1PR1 directed cell migration towards S1P. Moreover, S1PR1 activates 

phospholipase C (PLC) and Ca2+ mobilisation via Gi (Okamoto et al., 1998, Rivera and Chun, 

2008).  
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S1PR2 

S1PR2 was first cloned as a putative GPCR from a rat aortic cDNA library in an attempt to 

explore a novel signalling system in the vasculature (Okazaki et al., 1993). It was later 

identified by many groups as a high affinity S1P receptor (Gonda et al., 1999, Takuwa et al., 

2011). Like S1PR1, S1PR2 is widely expressed. However, unlike S1PR1, S1PR2 couples to 

multiple heterotrimeric G proteins including Gi, Gq and G12/13. Of these, G12/13 coupling to Rho 

activation is the most prominent (Windh et al., 1999, Okamoto et al., 2000, Takuwa, 2002). 

Contrary to the action of S1PR1, S1PR2 exerts an inhibitory effect on Rac, via downstream 

activation of Rho, which results in inhibition of cell migration (Estrada et al., 2008, Takuwa, 

2002) (Figure 1.10). Additionally, S1PR2 mediated Rho activation results in inhibition of AKT 

therefore inhibiting rather than promoting cell proliferation (Sanchez et al., 2005, Schuppel et 

al., 2008) (Figure 1.10). S1PR2 signalling also stimulates PLC and Ca2+ mobilisation through Gq, 

and ERK and PI3K activation via Gi (Takuwa et al., 2001, Takuwa et al., 2002).    

S1PR3 

S1PR3 was isolated as an orphan GPCR gene with a high affinity to S1P. Like S1PR2, S1PR3 

couples to multiple G proteins,  activating PLC and Ca2+ via Gq and ERK, PI3K and Rac via Gi, 

predominantly inducing cell survival, proliferation and migration to S1P (Windh et al., 1999, 

Okamoto et al., 1999) (Figure 1.10). S1PR3 also couples to G12/13 activating Rho, although this 

is to a much lower extent than S1PR2 (Okamoto et al., 2000).  
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S1PR4 

S1PR4 was identified from murine and human dendritic cells as an orphan GPCR and later 

found to a high affinity receptor for S1P (Ishii et al., 2004). S1PR4 couples with Gi and G12/13 

mediating S1P-induced ERK, PLC and Rho activation as well as Ca2+ mobilisation, cytoskeleton 

rearrangement and cell migration (Ishii et al., 2004). In contrast to S1PR1-3, S1PR4 expression 

is restricted to lymphoid tissues indicating a role in regulation of the immune system 

S1PR5 

S1PR5 was isolated as an orphan GPCR from rat pheochromocytoma (PC12) cells and later 

found to be a high affinity S1P receptor (Malek et al., 2001, Glickman et al., 1999). S1PR5 can 

couple with Gi and G12/13 and is highly expressed in white matter and cells of the  

oligodendrocyte lineage in the rat brain, suggesting a potential role in the maturation of 

oligodendrocytes (Terai et al., 2003).     

.
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Figure 1.10: The differential effects of S1P receptor signalling: S1PR1 couples exclusively to Gi to 
activate ERK (MAPK) and PI3K/AKT/Rac pathways resulting in the stimulation of cell proliferation 
and migration. S1PR2 couples to multiple G proteins, especially to G12/13 resulting in Rho 

activation, leading to the inhibition of Rac and cell migration as well as inhibition of cell 

proliferation due to the inhibition of AKT. S1PR3 activates the PLC- Ca
2+ 

pathway via Gq and the 

ERK and PI3K pathways via Gi.  (Reproduced from: Takuwa et al. 2001) 
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1.2.9 Effects of SPHK1 expression 

SPHK1 has been shown to increase cell survival, proliferation and migration. It also promotes 

angiogenesis and lymphocyte migration leading many to define SPHK1 as an oncogene (Pyne 

et al., 2012, Maceyka et al., 2002, Maceyka et al., 2012). Main findings are discussed below. 

1.2.9.1 Expression of SPHK1 in cancer 

In early studies, the overexpression of SPHK1 in NIH3T3 fibroblasts was shown to result in 

neoplastic transformation and the ability to form tumours when allografted into mice (Xia et 

al., 2000). This effect was not observed in NIH3T3 fibroblasts expressing a dominant negative 

kinase dead SPHK1 mutant or in the presence of an SPHK1 inhibitor (Xia et al., 2000). 

Subsequently, numerous studies showed SPHK1 expression is increased in many cancer types; 

in many cases correlating with increased tumour grade and reduced patient survival 

(summarised in Table 1.2). 
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Table 1.2: Increased SPHK1 expression in human tumours and clinical correlation 

Tumour 
Location 

mRNA or 
Protein 

Number of 
Tumour Samples 

Clinical correlation References 

Gastric 

mRNA 
27  undetermined 

(French et al., 
2003) 

4  undetermined 

(Li et al., 2009) 
Protein 175  

Increased expression of SPHK1 
correlates with reduced patient 
survival 

Glioblastoma mRNA 48  
Increased expression of SPHK1 
correlates with reduced patient 
survival 

(Van Brocklyn et 
al., 2005) 

Astrocytoma Protein 243  

Increased expression of SPHK1 
correlates with reduced patient 
survival; expression increases 
with clinical grade 

(Li et al., 2008a) 

Breast mRNA 1269 

Increased expression of SPHK1 
correlated with poor prognosis; 
higher expression in ER negative 
tumours 

(Ruckhaberle et 
al., 2008) 

Colon 

mRNA 35 Undetermined 
(French et al., 
2003) 

Protein 47  

Higher expression of SPHK1 in 
primary cancer with metastases 
than in those without 
metastases 

(Kawamori et al., 
2009) 

Kidney mRNA 20 undetermined 
(French et al., 
2003) 

Lung 

mRNA 21 undetermined 
(French et al., 
2003) 

Protein 25 undetermined 
(Johnson et al., 
2005) 

Non-Hodgkin 
Lymphoma 

mRNA 
44 

Increased expression of SPHK1 
correlates with increased clinical 
grade 

(Bayerl et al., 
2008) Protein 

Ovary mRNA 14 undetermined 
(French et al., 
2003) 

Rectum mRNA 18 undetermined 
(French et al., 
2003) 

Uterus mRNA 42 undetermined 
(French et al., 
2003) 

Pancreas Protein 60 undetermined 
(Guillermet-
Guibert et al., 
2009) 
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Constitutively active mutant Ras has been shown to induce the transcriptional upregulation 

of SPHK1 (Xia et al., 2000). Similarly, v-Src expression has been shown to stabilise SPHK1 mRNA 

leading to increased SPHK1 mRNA levels and protein over expression (Sobue et al., 2008a). 

The degradation of SPHK1 is dependent upon p53, and loss of p53, which is frequently 

observed in human cancers, results in reduced SPHK1 degradation. SPHK1 is also proteolysed 

following genotoxic stress in a p53-dependent manner (Heffernan-Stroud et al., 2012).  

Mice lacking both p53 alleles develop thymic lymphoma and were shown to display elevated 

levels of SPHK1/S1P and decreased levels of ceramide in the thymi. Notably, deletion of SPHK1 

in p53 deficient mice completely abrogated thymic lymphomas and prolonged survival by 30% 

(Heffernan-Stroud et al., 2012). The SPHK1 gene has two hypoxia-inducible factor (HIF) 

responsive elements in its promotor region, through which HIF1α and HIF2α contribute to 

upregulate SPHK1 expression (Anelli et al., 2008, Schwalm et al., 2008).  

1.2.9.2 Contribution of SPHK1-S1P signalling to cancer cell survival and treatment resistance 

SPHK1 overexpression is protective against a diverse range of pro-apoptotic stimuli including 

TNFα, hydrogen peroxide, serum withdrawal, androgen depletion and amyloid β peptide in 

many biological settings (Cuvillier et al., 2010). Knockdown of SPHK1 has been shown to inhibit 

cell proliferation and/or trigger apoptosis in prostate, pancreatic, leukaemic, glioma and 

breast cancer cells (Akao et al., 2006, Pchejetski et al., 2005, Guillermet-Guibert et al., 2009, 

Baran et al., 2007, Kapitonov et al., 2009, Taha et al., 2006b). The mechanism for this function 

is likely to be as a result of enhanced SPHK1 activity reducing the levels of ceramide by driving 

ceramide metabolism towards the synthesis of growth promoting S1P. S1P has also been 

shown to inhibit caspase-dependent apoptosis by blocking cytochrome c release (Cuvillier and 
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Levade, 2001). S1P also increases the expression of the anti-apoptotic proteins BCL2 and 

induced myeloid leukaemia cell differentiation protein (MCL1), while downregulating the pro-

apoptotic proteins, BCL2, associated agonist of cell death (BAD) and BCL2 associated X protein 

(BAX) (Sauer et al., 2005, Li et al., 2008c, Avery et al., 2008).  

Due to these anti-apoptotic effects of S1P signalling, there are many reports that suggest that 

SPHK1 expression contributes to treatment resistance (Pchejetski et al., 2005, Baran et al., 

2007, Sobue et al., 2008b). Many therapies against cancer utilise the apoptotic machinery of 

cells and the generation of ceramide. For example, taxol treatment of prostate cancer cells 

induces ceramide production whereas the inability to produce ceramide is linked to therapy 

resistance (Ogretmen and Hannun, 2001). Increased ceramide production following treatment 

may not be sufficient to push the cells towards apoptosis without also inhibiting S1P 

production as a result of SPHK1 expression. This was shown by the correlation observed 

between SPHK1 expression and resistance to irradiation in prostate cancer cells. In radiation 

resistant cells, SPHK1 activity was not altered following ionising radiation, whereas SPHK1 

activity was greatly reduced in radiosensitive cells (Nava et al., 2000). The relationship 

between SPHK1 expression and resistance to chemotherapy has also been showed in prostate 

cancer cells; using an orthotopic model for prostate cancer, Pchejetski and colleagues (2005) 

demonstrated that animals injected with PC-3 cells overexpressing SPHK1 developed larger 

tumours which were resistant to docetaxel treatment. The increase in ceramide normally 

detected following docetaxel treatment was reduced in those animals implanted with PC-3 

cells overexpressing SPHK1 compared to controls.  
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1.2.9.3 S1P signalling pathways in cancer 

S1P signalling has also been identified as a crucial element involved in the persistent activation 

of STAT3 in tumour cells and the tumour microenvironment (Lee et al., 2010).  Aberrant STAT3 

activation in cancer cells has emerged as a major mechanism for cancer initiation and 

progression. It was shown that S1PR1 was elevated in STAT3 positive tumours and that STAT3 

is a transcriptional regulator of S1PR1 expression.  The enhanced S1PR1 expression activates 

STAT3 and upregulates interleukin-6 (IL6) production, a pro-inflammatory cytokine crucial for 

STAT3 activation. It was shown that silencing S1PR1 in tumour cells or immune cells inhibited 

tumour STAT3 activity, reducing tumour growth and metastasis (Lee et al., 2010). Therefore 

this feed-forward mechanism results in persistent STAT3 activation and is important in 

malignant progression (Lee et al., 2010). In ABC DLBCL, high levels of expression and activation 

of STAT3 have been reported (Ding et al., 2008). Consistent with these findings, it was shown 

that persistent activated STAT3 colocalises with high S1PR1 expression in ABC DLBCL. 

Inhibition of S1PR1 affected the downstream signalling of STAT3 involved in cell survival, 

proliferation and invasion (Liu et al., 2012).  

1.2.9.4 Contribution of SPHK1-S1P signalling to cancer cell invasion and metastasis 

S1P can also regulate cell migration, either negatively or positively, governed by the 

expression of different S1P receptors on the cell surface (Figure 1.10). This phenomenon is 

best demonstrated by the physiological role of S1P in the GC reaction and lymphocyte egress. 

The anti-migratory receptor S1PR2 is highly expressed by GC B cells. S1PR2 expression has 

been shown to be vital for GC B cell positioning and confinement to the GC; best demonstrated 

by S1PR2-deficient mice which display large GC outgrowths which lead to an expansion of the 
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lymph node and a loss of lymphoid architecture (Cattoretti et al., 2009, Green and Cyster, 

2012). 

Lymphocytes exit lymphoid structures into lymphatic vessels, a process known as lymphocyte 

egress. It has been demonstrated that lymphocyte egress is dependent upon the cellular 

expression of the pro-migratory receptor S1PR1 and increased concentrations of S1P in the 

blood and lymph compared to tissue (Cyster, 2005). The immunosuppressive S1P receptor 

agonist, FTY720, leads to lymphopenia in several animal models and in humans (discussed 

below; Section 1.2.10.2) (Chiba et al., 1998, Yagi et al., 2000, Mandala et al., 2002).  

Through these activities, S1P signalling can stimulate the motility of cancer cells via S1PR1 or 

S1PR3; in contrast S1P inhibits cancer cell motility through S1PR2. This is illustrated by the 

S1P-induced migration of gastric tumour cells which exclusively express S1PR3 and the S1P-

induced inhibition of migration of gastric tumour cells which predominantly express S1PR2 

(Yamashita et al., 2006). Additionally S1P signalling can induce migration in many other cancer 

cell types (Pyne and Pyne, 2010, Park et al., 2007).  

There are reports of the altered expression and or/ mutation of the S1P receptors in cancer. 

By two years of age, roughly half of S1PR2-deficient mice develop tumours that may be 

classified as DLBCL (Cattoretti et al., 2009). Furthermore, S1PR2 has been shown to be 

mutated in ~25% of patients with DLBCL (Cattoretti et al., 2009).  

1.2.9.5 Contribution of SPHK1-S1P signalling to tumour angiogenesis 

S1P has been shown to play a major role in vascular functions. In 1999, two papers were 

published which revealed that S1P played a potential role in angiogenesis (English et al., 1999, 
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Lee et al., 1999). It was shown that S1P stimulated DNA synthesis and the chemotactic motility 

of HUVEC in a dose dependent manner. The authors reported the S1P-induced tube formation 

of HUVEC in Matrigel. This observation was confirmed in vivo by a study which showed that 

S1P promotes angiogenesis in a Matrigel plug assay (Lee et al., 1999). S1P has also been shown 

to prevent apoptosis of endothelial cells induced by serum starvation and TNFα (Xia et al., 

1999). The essential role of S1P signalling in vascular development is well demonstrated in 

S1PR1 knockout mice, which display impaired vascular maturation leading to embryonic 

haemorrhage and intrauterine death (Liu et al., 2000b). Additionally, as mentioned earlier, 

mice deficient for SPHK1 and SPHK2 show severe loss of vessel stability also leading to 

embryonic lethality (Mizugishi et al., 2005).  

Tumour angiogenesis is essential for the survival and development of a tumour greater than 

2 mm3 in size (Folkman, 1971). Tumour blood vessels are a key part of the tumour 

microenvironment required for the delivery of nutrients and oxygen and essential for tumour 

growth and metastasis (Folkman, 1971). Tumour angiogenesis is a complex multistep process 

driven by cellular transformation and tumour-associated hypoxia (Tonini et al., 2003). Tumour 

cells secrete a number of pro-angiogenic growth factors including platelet derived growth 

factor (PDGF), VEGF and basic fibroblast growth factor (bFGF), which recruit endothelial cells 

and promote their proliferation and the formation of vessels (Carmeliet and Jain, 2000, Tonini 

et al., 2003). Furthermore, infiltrating stromal cells can also be stimulated to produce growth 

factors that support the angiogenic process (Murdoch et al., 2008). 

As well as developmental angiogenesis, S1P signalling has been shown to play a role in tumour 

angiogenesis. Anelli et al. (2010) showed that S1P secreted from HEK cells and tumour cells 
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overexpressing SPHK1 induced endothelial cell migration and tube formation in a co-culture 

system. S1PR1 expression in vessels has been shown to be upregulated at the sites of tumour 

implantation in a Lewis lung carcinoma xenograft mouse model (Chae et al., 2004). Silencing 

of S1PR1 by repeated local injections of S1PR1 siRNA into established tumours suppressed 

tumour angiogenesis and vascular stabilisation with inhibition of tumour growth (Chae et al., 

2004). Furthermore, it has been shown that targeting the S1P signalling pathway inhibits 

angiogenesis and tumour cell proliferation in vivo, to a greater extent than those observed 

with anti-VEGF antibodies; it has been shown that anti-S1P antibody suppresses VEGF and FGF 

induced angiogenesis in Matrigel plugs in mice, which suggests S1P plays a role in VEGF and 

FGF mediated angiogenesis (Visentin et al., 2006, LaMontagne et al., 2006, Azuma et al., 

2002). These observations indicate that S1PR1 expressed in tumour-associated endothelium 

is crucial for tumour angiogenesis. 

1.2.10 Targeting S1P signalling in cancer 

Due to the aforementioned role of SPHK1-S1P signalling in cancer, much emphasis is now 

placed on the development of compounds that target this signalling pathway for treatment. 

Strategies which have been used to limit the effects of S1P signalling in cancer include 

sequestering released S1P, inhibition of SPHK1 and/or inhibition of specific S1P receptors. 

1.2.10.1 S1P antibodies 

Anti-S1P monoclonal antibody (Sphingomab) sequesters S1P preventing it from binding to its 

receptors. Sphingomab has been shown to have high specificity for S1P and does not cross 

react with other structurally related lipids such as lysophosphatidic acid (LPA) (O'Brien et al., 
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2009). Sphingomab reduced tumour progression in murine xenograft models through 

inhibition of tumour angiogenesis, as shown by reduced microvessel density, and inhibition of 

S1P stimulated release of pro-angiogenic cytokines VEGF, IL6 and interleukin-8 (IL8) (Visentin 

et al., 2006). Sonepcizumab (humanised form of Sphingomab) has completed a Phase I clinical 

trial in cancer patients (ClinicalTrials.gov Identifier: NCT00661414). Sonepcizumab was 

administered as a single agent weekly to patients with refractory advanced solid tumours at 

doses between 1 and 24 mg/kg with the objectives to characterise the safety, tolerability and 

dose-limiting toxicities of the drug. Sonepcizumab was well tolerated across the range of doses 

tested and there were no dose-limiting toxicities observed. Of the 21 patients, 11 had stable 

disease for 2 months or longer, including one patient with an aggressive metastatic melanoma 

showing stable disease for 8 months, one patient with an adenoid cystic tumour treated for 

over 12 months without disease progression and another patient with a carcinoid tumour who 

was still being treated at the date of a report 26 months later (Sabbadini, 2011). 

1.2.10.2 S1P receptor agonists 

Several S1P receptor antagonists are available, in particular against S1PR1 and S1PR3. One 

such compound is the immunosuppressant FTY720 (fingolimod). FTY720 is an analogue of 

sphingosine, which is taken up by cells and phosphorylated by SPHK2 to yield biologically 

active FTY720-phosphate (FTY720-P) (Sanchez et al., 2003). FTY720-P binds to S1P receptors 

S1PR1, 3, 4 and 5. FTY720-P is an S1PR1 receptor agonist and FTY720-P binding induces S1PR1 

internalisation and degradation resulting in prolonged receptor downregulation (Matloubian 

et al., 2004). In this way, lymphocytes are deprived of the signal necessary for their egress 

from secondary lymphoid organs resulting in lymphopenia following FTY720 treatment (Graler 
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and Goetzl, 2004, Matloubian et al., 2004, Cyster, 2005). These effects are advantageous for 

the treatment of autoimmune diseases and FTY720 has been approved by the Food and Drug 

Administration for the treatment of relapsing remitting multiple sclerosis. There have been 

many examples of the use effectiveness of FTY720 in vivo showing inhibition of tumour growth 

and angiogenesis in various mouse tumour models including renal, bladder, prostate, breast, 

hepatocellular carcinoma and melanoma (Ubai et al., 2007, Azuma et al., 2003, Chua et al., 

2005, Azuma et al., 2002, Ho et al., 2005, LaMontagne et al., 2006).  However, FTY720 has not 

been tested in a clinical trial of cancer patients. 

1.2.10.3 Sphingosine kinase inhibitors 

SPHK1 inhibitors might exert their effects not only by the reduction in S1P production but also 

by increasing the levels of pro-apoptotic ceramide and sphingosine. One of the first 

compounds identified as an inhibitor of SPHK activity was DHS (Saphingol). Later it was 

discovered that DMS, a methylated metabolite of sphingosine, was more potent that DHS. As 

a result DMS has been used most widely as a pharmacological inhibitor of sphingosine. 

However, neither DHS nor DMS are considered as specific kinase inhibitors as they inhibit both 

SPHK1 and SPHK2, ceramide kinase, PKC, protein dependent protein kinase, 3-

phosphoinositide-dependent kinase and casein kinase II (reviewed in: Takabe et al., 2008). 

DHS and DMS have both been evaluated in pre-clinical trials in animal models and DMS was 

shown to reduce gastric and lung tumour growth in vivo and decrease lung metastasis of 

melanoma cells (Endo et al., 1991, Okoshi et al., 1991). Although DHS and DMS have shown 

to inhibit tumour growth in vivo, they cause significant haemolysis and hepatotoxicity 

(Kedderis et al., 1995).  



|48 
 

Non-lipid SPHK1 inhibitors (compounds SPHK1 I-V) have also been identified with nanomolar 

potencies, which are non-competitive inhibitors at the ATP binding site of SPHK1. SPHK1-II, 

known as SPHKi, which does not inhibit other kinases, inhibits the proliferation and induces 

apoptosis in various cancer cell lines. Additionally, SPHKi was shown to inhibit tumour growth 

in vivo (French et al., 2003). However, SPHKi has not been tested in clinical trials of patients.  
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1.3 Study aims 

SPHK1 has recently emerged as an important regulator of tumour cell growth, survival, 

metastasis and angiogenesis. These activities of SPHK1 are mainly a consequence of its ability 

to catalyse production of the bioactive signalling lipid, S1P. Importantly, new therapies 

targeting SPHK1-S1P signalling are being developed. This thesis explores the contribution of 

SPHK1-S1P signalling to the pathogenesis of DLBCL, and its potential therapeutic reversal, with 

a focus on tumour angiogenesis. The specific aims are to: 

1. Investigate the expression of SPHK1 in primary DLBCL. Describe the association 

between SPHK1 expression and that of angiogenesis-associated genes in primary 

DLBCL.  

2. Validate an in vitro model which can be used to study the effects of S1P signalling on 

the endothelial cell transcriptome. Use this model to define an S1P-induced 

endothelial cell gene signature and measure the extent to which this signature is 

expressed in primary DLBCL. 

3. Explore the phenotypic effects of the S1P-induced endothelial cell gene signature. 

4. Investigate the potential in vitro inhibition of S1P-induced signalling and gene 

expression in endothelial cells using SPHK1-S1P targeting drugs. 

5. Establish an in vivo model of DLBCL which can be used to study the potential 

therapeutic efficacy of these SPHK1-S1P targeting drugs in vivo. 
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2.1 HUVEC isolation  

Endothelial cells were isolated from umbilical cords which were obtained from the Human 

Biomaterials Resource Centre (HBRC; University of Birmingham) with patient consent and 

ethical approval (No. RG_HBRC_14-180). The HUVEC were isolated using collagenase 

treatment as previously described (Jaffe et al., 1973).  Briefly, the umbilical cords were sprayed 

with 70% ethanol and checked for needle holes. The vein of the umbilical cord was then 

cannulated at each end and phosphate-buffered saline (PBS) was flushed through to remove 

any residual blood. Collagenase (type 2; Sigma-Aldrich Ltd., Gillingham, UK) dissolved in PBS 

(1 mg/ml) was pushed through the vein until it became visible in both ends of the cannula. 

Both cannulae were then securely sealed and the cord was incubated at 37°C for 15 minutes. 

The collagenase solution containing the HUVEC was then removed and the cells were pelleted 

by centrifugation (Eppendorf Centrifuge 5810R) at 200 g for 10 minutes and resuspended in 

culture medium.  

2.2 Cell culture 

2.2.1 Maintenance of cell lines 

All cells were maintained in the growth media detailed in Table 2.1 and incubated at 37 °C in 

a humidified atmosphere containing 5% carbon dioxide (Galaxy R CO2 Incubator; RS Biotech). 

At between 70 and 80% confluency, as determined by visual inspection under a microscope, 

cells were passaged to prevent over growth. For adherent cells, media was aspirated using a 

VACUSAFE aspirator (INTEGRA Biosciences AG) and the cells were washed twice with PBS.
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Table 2.1: Summary of cell lines and the culture media 

Cell line 
name 

Culture 
characteristics 

Cell type Culture Media 

HUVEC Adherent Human 
endothelial 
cell  

M199 (Sigma-Aldrich Ltd., Gillingham, 
UK) supplemented with 5% v/v foetal 
bovine serum (FBS), 5% endothelial cell 
growth supplement (ECGS; Caltag 
Medsystems), 1% v/v glutamine (Gibco, 
Life Technologies Ltd) and 1% v/v 
penicillin/streptomycin (P/S, Gibco, Life 
Technologies Ltd). 

sEnd-1 Adherent Murine 
endothelioma 

DMEM (Gibco, Life Technologies Ltd) 
supplemented with 10% v/v FBS and 1% 
v/v P/S 

HEK293 Adherent Human 
embryonic 
kidney 

DMEM supplemented with 10% v/v FBS 
and 1% v/v P/S 

A20 Suspension Murine B cell 
lymphoma 

RPMI 1640 (Gibco, Life Technologies Ltd) 
supplemented with 10% v/v FBS and 
0.05 mM 2-mercaptoethanol 

L428 Suspension Hodgkin 
lymphoma 
(human) 

RPMI 1640, supplemented with 10% v/v 
FBS and 1% v/v P/S. 

HT Suspension DLBCL 
(human) 

RPMI 1640 supplemented with 10% v/v 
FBS and 1% v/v P/S. 

Karpas 
422 

Suspension DLBCL 
(human) 

RPMI 1640 supplemented with 10% v/v 
FBS and 1% v/v P/S. 

U2932 Suspension DLBCL 
(human) 

RPMI 1640 supplemented with 10% v/v 
FBS and 1% v/v P/S. 

OCILY1 Suspension DLBCL 
(human) 

IMDM (Gibco, Life Technologies Ltd), 
supplemented with 10% v/v FBS and 1% 
v/v P/S.  

OCILY3 Suspension DLBCL 
(human) 

IMDM supplemented with 10% v/v FBS 
and 1% v/v P/S. 

OCILY7 Suspension DLBCL 
(human) 

IMDM supplemented with 10% v/v FBS 
and 1% v/v P/S. 

SUDHL4 Suspension DLBCL 
(human) 

RPMI 1640 supplemented with 10% v/v 
FBS and 1% v/v P/S. 

SUDHL5 Suspension DLBCL 
(human) 

RPMI 1640 supplemented with 10% v/v 
FBS and 1% v/v P/S. 

FARAGE Suspension DLBCL 
(human) 

RPMI 1640 supplemented with 10% v/v 
FBS and 1% v/v P/S. 

THP-1 Suspension Acute 
monocytic 
leukemia  
(human) 

RPMI 1640 supplemented with 10% v/v 
FBS and 1% v/v P/S. 
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Trypsin solution (Gibco, Life Technologies Ltd) was added to the cells and incubated at 37°C 

for 3 minutes to allow the cells to detach from the culture flask. The trypsin was neutralised 

by addition of medium. Both adherent and suspensions cells were pelleted by centrifugation 

at 200 g for 10 minutes and resuspended in fresh culture media to obtain the desired 

concentration. 

2.2.2 Cryopreservation of cells 

Cells were pelleted by centrifugation at 200 g for 5 minutes and resuspended in chilled 

freezing solution (90% v/v FBS (PAA the cell culture company, Somerset, UK), 10% v/v dimethyl 

sulphoxide (DMSO; Sigma-Aldrich Ltd., Gillingham, UK)).  Cells were transferred to 

cryopreservation tubes (Nunc® Cryo Tubes; Sigma-Aldrich Ltd., Gillingham, UK) and cooled 

overnight to -80°C in a cryo container (Nalgene® Mr. Frosty; Sigma-Aldrich Ltd., Gillingham, 

UK). Cells were transferred to the vapour phase of a -180°C liquid nitrogen freezer for storage.  

2.3 Preparation of S1P 

S1P (Sigma-Aldrich Ltd., Gillingham, UK) was dissolved by addition of methanol:water 95:5 to 

a final concentration of 0.5 mg/ml. The mixture was heated in a water bath at 65C for 10 

minutes and then briefly placed in an ultrasonic water bath. A 125 µM working solution was 

made by transferring 50 µl dissolved S1P to a glass vessel (Supelco; Sigma-Aldrich Ltd., 

Gillingham, UK) and the methanol:water solution allowed to evaporate. Low retention pipette 

tips (Plastibrand; Sigma-Aldrich Ltd., Gillingham, UK) were used to pipette S1P. To dissolve the 

S1P, 520 µl of 4 mg/ml fatty acid free bovine serum albumin (BSA; Sigma-Aldrich Ltd., 
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Gillingham, UK) in water was added at 37C and incubated for 30 minutes on a roller. S1P-BSA 

aliquots were stored at -20C for a maximum of 3 months.  

2.4 HUVEC stimulations 

HUVEC were grown in normal growth conditions on 6 well dishes (Corning, Sigma-Aldrich Ltd., 

Gillingham, UK) until they reached confluence. Sixteen hours prior to S1P stimulation, HUVEC 

were washed twice with PBS and media changed to M199 supplemented with 5% v/v FBS and 

1% v/v P/S, to deplete the HUVEC of ECGS. S1P was heated to 37C and then pipetted directly 

into the HUVEC media of the 6 well dish.  

Sphingomab and isotype control antibody (both LPath Inc., CA, USA) treatments were used at 

a concentration of 150 µg/ml per µM of S1P  (O'Brien et al., 2009) unless otherwise stated, 

and were  added to the medium at the same time as S1P. 

For FTY720 treatment experiments, HUVEC were treated with FTY720 (Sigma-Aldrich Ltd., 

Gillingham, UK) for 1 hour prior to S1P treatments. 

2.5 Transfection of HEK293 cells 

HEK293 cells were grown on 9 mm multi-spot coated microscope slides (Hendley-Essex, Essex, 

UK) overnight to 70% confluency. The cells were then washed with Opti-MEM (Thermo Fisher 

Scientific Inc., Waltham, MA, USA) before 70 μl of Opti-MEM was pipetted onto each spot of 

cells. A transfection reaction mix was made up of: 100 μl Opti-MEM, 2 μl lipofectamine reagent 

(Thermo Fisher Scientific Inc, Waltham, MA, USA) and 1 μg plasmid DNA (pcDNA3.1, 

pcDNA3.1-S1PR1, pcDNA3.1-S1PR2 or pcDNA3.1-S1PR3) kindly provided by Dr Ian Paterson 



|55 
 

(University of Malaya, Kuala Lumpur), and incubated for 15 minutes. Ten μl of transfection 

reaction mix was pipetted into the 70 μl of Opti-MEM on the HEK293 cells, incubated for 4 

hours and then replaced with normal culture media. Twenty four hours later, the HEK293 cells 

were washed and fixed by submerging the microscope slide in PBS for 2 minutes followed by 

10% formal-saline solution (Genta Medical, York, UK) for 10 minutes. The HEK293 cells were 

air-dried and the slides stored at -20˚C until required.  

2.6 RNA analysis 

2.6.1 RNA extraction 

Total RNA was isolated using the QIAGEN RNeasy kits (QIAGEN Ltd., Manchester, UK) 

according to the manufacturer’s protocol. Briefly, cells were lysed in RLT buffer and 

homogenized by vigorous vortexing. Samples were then mixed 1:1 v/v with 70% ethanol and 

loaded on RNeasy spin columns. The column was centrifuged at 8000 g and washed with kit 

buffers. The columns were incubated for 15 minutes with DNase solution (RNase-Free DNase 

Set; QIAGEN Ltd., Manchester, UK) at room temperature to degrade contaminating DNA in 

the samples. This was followed by several wash steps. Finally, the RNA was eluted by addition 

of nuclease-free water (Promega UK Ltd., Hampshire, UK) to the membrane. The RNA 

concentration of the samples was measured on a NanoDrop ND-1000 spectrophotometer 

(Thermo Fisher Scientific Inc, Waltham, MA, USA) and the RNA stored at -80°C.  

2.6.2 Preparation of cDNA 

Complementary DNA (cDNA) was synthesised from 500 ng of total RNA extracted from 

samples. Five hundred ng of RNA was added to 4 μl of qScript cDNA SuperMix (Quanta 
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Biosciences, MA, USA) and the volume was made up to 20 μl using nuclease free water in a 

sterile thin walled 0.2 ml PCR tube. The reaction mix was incubated in a Veriti Thermal Cycler 

(Applied Biosystems; Life Technologies Ltd, Paisley, UK) with the following protocol: 5 minutes 

at 25°C followed by 30 minutes at 42°C and then five minutes at 85°C. cDNA was stored at -

20°C until required. 

2.6.3 Quantitative real time polymerase chain reaction (qPCR) 

All qPCR assays were performed using the ABI Prism 7700 sequence detection system (Applied 

Biosystems; Life Technologies Ltd, Paisley, UK). The qPCR reaction was set up as a multiplex 

reaction in a 20 μl volume of an optical 96 well reaction plate and covered with optical 

adhesive film (both Applied Biosystems; Life Technologies Ltd, Paisley, UK). Each reaction 

contained 5 μl of diluted cDNA (1:10 with nuclease-free water), 10 μl of FastStart Universal 

Probe Master Mix (Roche Diagnostics Limited), 1 μl of 20x primer/probe of gene of interest, 1 

μl of 20x primer/probe endogenous control (Taqman, Applied Biosystems; Life Technologies 

Ltd, Paisley, UK) and 3 μl of nuclease free water. The primers and probes used are listed in 

Table 2.2. All reactions were run in triplicate and a water only (cDNA free) control was run for 

each primer-probe gene of interest. The samples were amplified using the standard relative 

quantification method using the following thermal-cycling conditions: enzyme activation at 

50C for 2 minutes, denaturation at 95C for 10 minutes followed by 40 cycles of amplification, 

at 95C for 15 s and extension at 60C for 1 minute.
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Table 2.2: List of Taqman primer/probe qPCR assays 

Gene Species Assay ID 

ICAM1 Mouse Mm00516023_m1 

SELE Mouse Mm00441278_m1 

CXCL1 Mouse Mm04207460_m1 

GAPDH Mouse Mm99999915_g1 

ANGPTL4 Human Hs01101127_m1 

CCL2 Human Hs00234140_m1 

CCL7 Human Hs00171147_m1 

CXCL1 Human Hs00236937_m1 

CXCL3 Human Hs00171061_m1 

CXCL8 Human Hs00174103_m1 

CXCL12 Human Hs03676656_mH 

ICAM1 Human Hs00164932_m1 

SELE Human Hs00174057_m1 

SPHK1 Human Hs01116530_g1 

VCAM1 Human Hs01003372_m1 

GAPDH Human 4310884E 

 

 

2.6.4 qPCR data analysis 

The delta-delta (ΔΔ) Ct method was used to quantify the relative levels of gene transcripts as 

previously reported (Livak and Schmittgen, 2001). Using amplification plots of fluorescent 

intensities generated by the ABI Prism 7700 sequence detection system, the threshold cycle 

(Ct) value was determined for each signal. Target gene values were normalised against an 

endogenous control (e.g. GAPDH) i.e. target Ct – endogenous control Ct.  The resultant value 

was then expressed relative to an appropriate reference sample which was assigned an 

arbitrary value of 1.  
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2.6.5 RNA sequencing (RNAseq)  

RNAseq was performed on 4 biological replicate pairs of HUVEC treated with S1P or vehicle 

control. Quality control check (RNA integrity number >7), library construction and sequencing 

was performed by BGI Tech Solutions (Hong Kong). RNA was hybridised to Illumina HiSeq 2000 

platform and data obtained using 10 M clean reads. Data were analysed in-house (see Section 

2.10). 

2.7 Protein analysis 

2.7.1 Western blotting 

Protein Extraction 

Suspension cells were pelleted by centrifugation at 200 g for five minutes. Cell pellets were 

washed in cold PBS and pelleted again in 1.5 ml eppendorfs prior to lysis. The medium of 

adherent cells was aspirated and the cells washed directly on the culture vessel with cold PBS 

prior to lysis. RIPA lysis buffer (140 mM NaCl, 10 mM Tris-HCl pH8, 1 mM EDTA, 1% Triton X-

100, 0.1% SDS, 0.1% Sodium deoxycholate (deoxycholic acid)) supplemented with 1 mM of 

activated sodium vanadate and 4% v/v protease inhibitor (cOmplete Tablets, EDTA-free; 

Roche Diagnostics Limited, UK) was added to the eppendorfs (suspension cells) or directly to 

the culture vessel (adherent cells) and left on ice for 30 minutes. The lysates were centrifuged 

in 1.5 ml eppendorfs at full speed at 4C for 15 minutes in a Heraeus Pico 17 Microcentrifuge 

(Thermo Fisher Scientific Inc, Waltham, MA, USA.). The protein supernatant was transferred 

to a new 1.5 ml eppendorf and stored at -20C until required.   
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Determination of Protein Concentration 

Protein concentration of samples was quantified using the Bio-Rad Protein Assay (Bio-Rad 

Laboratories Ltd., Hemel Hempstead, UK). Five standards of different concentrations of BSA 

(Sigma-Aldrich Ltd., Gillingham, UK): 0.1, 0.2, 0.3, 0.4 and 0.5 mg/ml were used. Each sample 

was diluted 1:10 with sterile distilled water. Ten µl of each standard and sample were plated 

in duplicate in a 96 well plate. Bio-Rad Protein Assay Reagent was diluted 1:5 in distilled water 

and 200 μl pipetted into each well. Absorbance was read on a Bio-Rad 680 microplate reader 

at 595 nm. The standards were used to plot a calibration curve from which the protein content 

of the samples was calculated. 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

10% SDS-PAGE gels were made as per Lab FAQs booklet (Roche Diagnostics Limited, UK). Gels 

were submerged in Tris-Glycine-SDS PAGE Buffer (Geneflow Ltd., Litchfield, UK) in a Mini 

Trans-Blot Cell tank (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK).  Typically, 30 µg of 

protein lysates were mixed 1:4 v/v with 4x Laemmli sample buffer (Bio-Rad Laboratories Ltd., 

Hemel Hempstead, UK) and boiled at 95 C for 5 minutes to denature proteins. Samples were 

loaded into the wells of the pre made gel along with Spectra Multicolor Broad Range Protein 

ladder (Thermo Fisher Scientific Inc, Waltham, MA, USA). Proteins were separated at 130 V 

for 1.5-2 hours depending on the size of the protein of interest.  

Transfer of protein 

Proteins were transferred from the gel to a polyvinylidene fluoride (PVDF) membrane using 

the ready-to-use Trans-Blot Turbo Mini PVDF Transfer Packs (Bio-Rad Laboratories Ltd., Hemel 
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Hempstead, UK) set up in Trans-Blot Turbo Transfer System (Bio-Rad Laboratories Ltd., Hemel 

Hempstead, UK). Proteins were transferred using the built in program of 1.3A, 25V for 7 

minutes.  

 

Immunoblotting 

Non-specific protein binding was blocked by incubating the membrane for 1 hour at room 

temperature on a shaker in 5% dried milk dissolved in Tris buffered saline-0.1 % Tween-20 

(TBST). Membranes were incubated with primary antibodies diluted to the appropriate 

concentrations (Table 2.3) in 5% w/v BSA/TBST on a rocker overnight at 4C. The following 

day, membranes were washed 3 times, each for a total of 10 minutes, on a shaker in TBST 

prior to incubation for 1 hour in the appropriate HRP-conjugated secondary IgG antibodies 

Table 2.3: List of antibodies used  

Antibody Species Application Company Dilution 

SPHK1 Rabbit Western blotting Cell signalling 1:1000 

Phospho-SPHK1 (Ser-225) Rabbit Western blotting ECM bioscience 1:1000 

PARP Rabbit Western blotting Cell signalling 1:1000 

ERK Rabbit Western blotting Cell signalling 1:1000 

Phospho-ERK (Thr202/Tyr204) Rabbit Western blotting Cell signalling 1:1000 

SPHK1 Rabbit IHC Cell signalling 1:100 

S1PR1 (H-60) Rabbit IHC Santa cruz 1:600 

S1PR2 Rabbit IHC Sigma-Aldrich 1:200 

S1PR3 Rabbit IHC MyBioSource 1:600 

CD15 (C3D-1) Mouse IHC Dako 1:400 

CD68 (PG-M1) Mouse IHC Dako 1:200 

CD31 Rabbit IHC Abcam 1:200 

CD45-Pacific Blue (2D1) Mouse Flow cytometry Ebioscience 1:100 

CD144-APC (16B1) Mouse Flow cytometry Ebioscience 1:100 

CD31-PE (WM-59) Mouse Flow cytometry Ebioscience 1:100 
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(Dako UK Ltd., Cambridgeshire, UK) which were diluted 1:1000 in 5% w/v milk/TBST. The 

membranes were washed again 3 times, each for a total of 10 minutes, on a shaker in TBST. 

Proteins were visualised using Bio-Rad Clarity Western enhanced chemiluminescence (ECL) 

(Bio-Rad Laboratories Ltd., Hemel Hempstead, UK). Membranes were incubated with ECL 

mixture for 1 minute and then the excess liquid was drained off. The membrane was placed 

inside a plastic covering and developed on the ChemiDoc MP (Bio-Rad Laboratories Ltd., 

Hemel Hempstead, UK). Densitometry analysis was performed using ChemiDoc software.  

Following the detection of the protein of interest, membranes were washed 3 times, each for 

a total of 10 minutes, in TBST and then re-probed for β-tubulin-HRP (Abcam, Cambridge, UK) 

diluted 1:1000 in 5% w/v milk/TBST for 1 hour at room temperature. Membrane was 

developed as described. 

2.7.2 Immunohistochemistry (IHC) 

Preparation of cells grown on microscope slides 

HUVEC were grown on multi-spot coated microscope slides and then washed and fixed by 

submerging the slide in PBS for 2 minutes and 10% formal-saline solution for 10 minutes. 

Slides were then air-dried and stored at -20˚C until required.  

Prepared slides of fixed HUVEC/HEK293 cells were thawed and then rinsed in running tap 

water for five minutes. The endogenous peroxidase activity was blocked by placing the slides 

in 0.3% hydrogen peroxidase (Sigma-Aldrich Ltd., Gillingham, UK) for 15 minutes. 
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Preparation of tissue sections 

Paraffin-embedded blocks of DLBCL patient biopsy samples and reactive tonsil were obtained 

from the Queen Elizabeth Hospital, Birmingham, UK, with full ethical approval (No. RG_08-

103). Paraffin embedded blocks of mouse tissue samples were processed by the Royal 

Orthopaedic Hospital (University of Birmingham). Sections were cut to a thickness of 4 µm 

onto X-tra Adhesive micro slides (Surgipath Europe, Peterborough, UK). The sections were de-

waxed by immersing the slides in Histoclear (National Diagnostics, Hessel, UK) for 10 minutes 

and then rehydrated by immersing in 100% ethanol for 5 minutes (Sigma-Aldrich Ltd., 

Gillingham, UK) followed by tap water for a further 5 minutes. The endogenous peroxidase 

activity was blocked by placing the slides in 0.3% hydrogen peroxidase (Sigma-Aldrich Ltd., 

Gillingham, UK) for 15 minutes. 

Antigen Retrieval 

One litre of citrate buffer containing: 1.26 g sodium citrate, 0.25 g citric acid, 800 ml distilled 

water, pH adjusted to pH 6.0 with 0.1 M sodium hydroxide, was boiled in a glass beaker for 10 

minutes on full power in a microwave prior to immersing the slides. The beaker containing the 

slides was then heated for 10 minutes at moderate power and then 10 minutes at low power. 

The buffer was then allowed to cool (approximately 30 minutes) before the slides were 

removed and rinsed in running tap water.  
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Detection of antigen  

Following antigen retrieval, slides were placed in a metal microscope slide staining tray 

(Richardsons of Leicester Ltd., Leicester, UK) and washed with PBS-Tween-20 (0.1%) (PBST) for 

5 minutes.   

For human sections and fixed HUVEC/HEK293 cells: to reduce non-specific 

background staining, samples were blocked using 5X casein blocking solution (Vector 

Laboratories Ltd., Peterborough, UK) and incubated with diluted primary antibody in PBST 

overnight at 4C (Table 2.3). Samples were washed with PBST for 5 minutes and incubated 

with DAKO Envision secondary antibody (Dako UK Ltd., Cambridgeshire, UK) for 30 minutes at 

room temperature. Samples were washed again with PBST for 5 minutes. Samples were 

incubated with diaminobenzidine (DAB) (Vector laboratories Ltd,. Peterborough, UK) which is 

converted to an insoluble brown product by the antigen-bound peroxidases allowing for 

visualisation of antigens bound to antibody. 

For mouse sections: For CD15 and CD68 antibodies the M.O.M (mouse on mouse) 

detection kit (Vector laboratories Ltd,. Peterborough, UK) was used according to the 

manufacturer’s protocol to reduce endogenous mouse Ig staining. For the SPHK1 and CD31 

antibodies, the same process was carried out as the staining for human sections (above) but 

with incubation with anti-rabbit HRP-conjugated secondary IgG antibody diluted 1:200 in PBST 

(Dako UK. Ltd).  

All sections were rinsed with distilled water and then counterstained with Mayer’s 

haematoxylin (Sigma-Aldrich Ltd., Gillingham, UK) for 60 s and then rinsed again under running 
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warm tap water for 2 minutes. Stained sections were dehydrated by immersion in 100% 

ethanol for 5 minutes followed by Histoclear for 10 minutes and mounted with cover slips 

using DPX mounting medium (Sigma-Aldrich Ltd., Gillingham, UK) for microscopic 

examination. Slides were assessed by Dr Maha Ibrahim (University of Birmingham). 

2.7.3 Flow cytometry 

For flow cytometry, adherent cells were detached from the culture vessel by incubation with 

StemPro Accutase Cell Dissociation Reagent (Gibco, Life Technologies Ltd, Paisley, UK). Cells 

were counted and 1 x 106 cells pipetted into flow cytometry tubes for each stain required. 

Additionally, a tube of compensation beads (BD Biosciences, USA) was used for each antibody 

stain, each containing one drop of the relevant anti-species Ig and negative control.  Cells and 

compensation beads were washed with 1% v/v FBS/PBS and then pelleted by centrifugation 

at 200 g for 5 minutes. The pellets were resuspended in 100 μl of 1% v/v FBS/PBS with 

antibody at the appropriate concentration (Table 2.3) and incubated at 4C for 15 minutes in 

the dark. Following this, cells and compensation beads were washed in 1% v/v FBS/PBS and 

then fixed by resuspension in 200 µl of 1% paraformaldehyde. Cells were analysed using a BD 

LSR II Cell Analyzer (BD Biosciences, USA) and the data were analysed using Flowjo software 

(TreeStar Inc.). 

2.7.4 Enzyme-linked immunosorbent assay (ELISA)  

The production of chemokines by HUVEC was measured using a commercially available ELISA 

kit (DuoSet ELISA Development Systems; R&D Systems, Bio-Techne Ltd. Abingdon, UK.). For 

this assay, HUVEC were grown in normal growth conditions on 6 well dishes until they reached 
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confluency. The HUVEC were washed twice with PBS and culture media changed to M199 

supplemented with 5% v/v FBS and 1% v/v P/S, to deplete the HUVEC of ECGS for 16 hours. 

The culture media was then changed for fresh M199 supplemented with 5% v/v FBS and 1% 

v/v P/S 1 hour prior to the treatment with S1P. S1P or vehicle control was then added directly 

to the medium which served as a 0 hours time point. HUVEC which received two S1P 

stimulations received the second S1P treatment at 6 hours. At 12 hours, the conditioned 

medium was collected and stored at -20C until required. The ELISA was performed in 

accordance with the manufacturer’s protocol and absorbance read at 450 nm.  A calibration 

curve was calculated from the standards supplied in the kit using an online tool 

(www.elisaanalysis.com), which was then used to calculate the concentrations of the 

chemokines in the samples. 

2.8 Migration assay 

A transwell (Corning, Sigma-Aldrich Ltd., Gillingham, UK) was prepared by the addition of 600 

μl of RPMI-1640 supplemented with 1% v/v FCS and chemokine (CXCL1 or MCP1; PeproTech, 

USA) or vehicle at the relevant concentration to the lower wells of a 24 well plate. 1 x 105 THP-

1 cells or human CD14+ monocytes (provided by Tracey Perry) in 100 μl of RPMI-1640 

supplemented with 1% v/v FCS were transferred into the transwell inserts (porse size 3 

microns; Corning, Sigma-Aldrich Ltd., Gillingham, UK). Each treatment was run in triplicate. 

After 4 hours, transwell inserts were removed and all cells in the bottom wells pelleted and 

resuspended in 200 ul of 1% v/v FBS/PBS. Cells in each sample were counted on a BD LSR II 

Cell Analyzer for 60 s. 

 

file:///C:/Users/lauren/Dropbox/Lauren%20(Me%20only)/Thesis/MAterials%20and%20Methods/www.elisaanalysis.com
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2.9 A20 syngeneic mouse model 

A20 cells were injected at 3 x 106 cells/mouse intravenously into 6-9 week old female BALB/c 

mice ( , USA) (carried out by ) (Home office 

ethical approval, project no. PPL70_8280). At day 28, mice were killed by cervical dislocation 

and the spleens and livers were collected in RPMI-1640 (carried out by  

). A portion of liver and spleen was fixed in 10% formalin. Histology services at 

the Royal Orthopaedic Hospital, University of Birmingham, embedded the samples in paraffin 

wax and provided haematoxylin and eosin (H&E) stained sections. H&E sections were analysed 

by pathologist Dr Maha Ibrahim (University of Birmingham).  

2.10 Statistical and bio-informatic analysis 

Statistical analysis of data was performed using Graphpad Prism 7 software.  

The reanalysis of published RNAseq data was performed by Dr Robert Hollows (University of 

Birmingham). The data for 32 ABC DLBCL and 54 GCB DLBCL were downloaded from the 

controlled access area of NIH database of genotypes and phenotypes (dbGap; 

http://www.ncbi.nlm.nih.gov/gap) using accession code phs000532.v5.p2 (Morin et al., 

2013). The data for 4 GC B cell samples were downloaded from the Gene Expression Omnibus 

(GEO; http://www.ncbi.nlm.nih.gov/geo/) (accession GSE45982). The data for all samples 

were aligned to the hg19 human genome using Rsubread aligner (Liao et al., 2013) and 

assigned to individual genes using the featureCounts function. Read counts were then 

normalized between samples and converted to counts-per-million (CPM) reads for each gene 

using the edgeR package  in R (Robinson et al., 2010). 

http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/geo/
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The analysis of the S1P-treated HUVEC RNAseq data was performed by Dr Wenbin Wei 

(University of Birmingham). The same methodology was used as above to generate CPM 

values. Differentially expressed genes were identified using edgeR with p<0.05 and read CPM 

>1 in at least half of the sample list. 

The reanalysis of microarray data was performed by Dr Wenbin Wei (University of 

Birmingham). The data for 11 DLBCL and 10 GC B cell samples was downloaded from the GEO 

(accession GSE12453) (Brune et al., 2008) and analysed using the MAS5 algorithm of the 

Affymetrix Expression Console to generate expression levels for each probe set (GCOS Signal). 

The MAS5 TGT was set to 100.
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CHAPTER THREE 

INVESTIGATING THE EFFECTS OF SPHK1 

OVEREXPRESSION IN DLBCL AND DEFINING AN S1P 

GENE SIGNATURE PRESENT IN PRIMARY TUMOURS 
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3.1 Abstract 

S1P is a small bioactive lipid, which through cellular signalling can induce many biological 

effects such as growth, survival and differentiation (Pyne and Pyne, 2000). In particular S1P 

has been shown to regulate vascular functions and angiogenesis. SPHK1, the main enzyme 

responsible for producing S1P, has been described as an oncogene and shown to be 

overexpressed in many cancers including NHL (Bayerl et al., 2008, Xia et al., 2000). However, 

our understanding of the contribution of SPHK1-S1P signalling to the pathogenesis of DLBCL, 

including its potential role in angiogenesis, remains unexplored.  

In this chapter I show that SPHK1 is overexpressed in DLBCL and that SPHK1 expression 

correlates with the expression of known tumour-associated angiogenic genes. I also describe 

here the characterisation of HUVEC as a model which can be used to define an S1P-associated 

gene signature in primary DLBCL.
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3.2 Results 

3.2.1 SPHK1 is overexpressed in primary DLBCL and DLBCL cell lines 

I first studied the expression of SPHK1 protein in tumour biopsy sections from 39 DLBCL 

patients. These samples were obtained from the Human Bioresource Resource Centre and the 

diagnosis of DLBCL was independently confirmed by three pathologists prior to analysis. To 

detect SPHK1 protein, I performed IHC. One case was excluded due to tissue being extensively 

crushed. Of the remaining 38 cases I observed SPHK1 staining in the tumour cells of 36/38 

cases (Figure 3.1A). In one of the two negative cases, I observed staining in the squamous 

epithelium which served as an internal positive control. The other negative case was excluded 

due to the lack of an internal positive control (Appendix 1). As a consistent internal positive 

control was not present in all cases, I was unable to accurately assess the level of protein and 

determine whether SPHK1 was overexpressed. To overcome this I used available gene 

expression datasets to determine the level of SPHK1 mRNA in DLBCL cases compared to 

normal germinal centre B (GC B) cells (Brune et al., 2008, Morin et al., 2011). First, the 

reanalysis of a published RNAseq dataset showed a statistically significant increase in SPHK1 

expression in both ABC DLBCL (n=32) and GCB DLBCL (n=54) compared to normal GC B cell 

samples (n=4) (p<0.0001, for both comparisons) (Figure 3.1B). Furthermore, the reanalysis of 

a published microarray dataset also revealed a statistically significant increase in SPHK1 

expression when 11 primary DLBCL samples (subtypes unknown) were compared to 10 GC B 

cell samples (p=0.002) (Figure 3.1C)
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Figure 3.1: SPHK1 expression in primary DLBCL. (A) Representative IHC stains for SPHK1 expression. 
SPHK1 is expressed in normal GC cells of a tonsil (top left). SPHK1 negative DLBCL case 1/37 (top 
right). Two representative SPHK1 positive DLBCL cases from 36/37 (bottom panel). GC = germinal 
centre, MZ = mantle zone. (B) The reanalysis of RNAseq data shows a statistically significant increase 
in SPHK1 expression in 32 cases of ABC DLBCL and 54 cases of GCB DLBCL compared to 4 normal 
GCB cell samples. (C) Reanalysis of a published microarray dataset shows a statistically significant 
increase in SPHK1 expression in 11 primary DLBCL samples compared to 10 GC B cell samples. 
Students T-test. 
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Next, I compared the expression of SPHK1 mRNA in 9 DLBCL cell lines with that in CD10+ GC B 

cells isolated from three donors (provided by Dr Vrzalikova). SPHK1 expression was detected 

in all cell lines and, with the exception of SUDHL4, expression was the same or higher than in 

all three GC B cell samples (Figure 3.2A). Activation of SPHK1 and translocation to the plasma 

membrane where its substrate resides is mediated by phosphorylation at Serine 225 (Pitson 

et al., 2003b). Previous studies from our lab, (Abdullah et al; unpublished), have shown that 

available phospho-specific SPHK1 antibodies do not work in IHC. To ascertain the 

phosphorylation of SPHK1 in DLBCL cells I performed immunoblotting of the available DLBCL 

cell lines (Figure 3.2B). Consistent with the results of the qPCR analysis, I observed expression 

of SPHK1 in all cell lines. I detected phosphorylated SPHK1 in all cell lines, confirming the 

presence of the activated form of SPHK1. 

3.2.2 SPHK1 expression is associated with angiogenic functions in primary DLBCL  

Next, I identified a subset of genes that were co-expressed with SPHK1 in primary DLBCL using 

data provided by Dr Reuben Tooze (University of Leeds) in which a meta-analysis of ten 

different DLBCL gene expression datasets, including more than 2000 cases of whole tumour 

primary DLBCL, had been performed. Within each of the ten gene expression datasets, the 

Spearman’s rank correlation was calculated for the expression of SPHK1 against all other genes 

individually (n=20,121). The resultant p values and correlations for each gene from all datasets 

were merged by taking the median values (Care et al., 2015). I identified 2236 genes that were 

significantly positively correlated, and 1658 genes that were significantly negatively 

correlated, with SPHK1 expression in primary DLBCL (p<0.05). Importantly, this gene signature 

included genes expressed from cells within the tumour microenvironment as well as the 
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tumour cells as it was generated using data from whole tumour biopsies. Using an online gene 

functional classification tool, DAVID (https://david.ncifcrf.gov/) (Dennis et al., 2003),  I 

performed gene ontology analysis of the genes correlated with SPHK1 expression. This 

analysis identified a significant enrichment of vasculature related ontology terms in the 

significantly positively correlated gene set (Figure 3.3).   

https://david.ncifcrf.gov/
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Figure 3.2: SPHK1 expression in DLBCL cell lines. (A) qPCR analysis for the expression of SPHK1 in 
DLBCL cell lines (dark grey bars) and GC B cell samples (light grey bars). Data are presented as  

2
-ΔΔCT 

and relative to one GCB sample. (B) Immunblotting analysis of DLBCL cell lines for 
phosphorylated and total SPHK1 (pSPHK1, tSPHK1, respectively). β-tubulin is a loading control. *= 
EBV+ cell line. 
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Figure 3.3: SPHK1 expression is associated with angiogenic functions in primary DLBCL. Gene 
ontology (GO) analysis of genes positively associated with the expression of SPHK1 in primary DLBCL 
ordered by p value. Analysis reveals GO terms associated with blood vessel function (red arrows). 
Dark grey bars represent the observed percentage of upregulated genes in a particular GO category. 
Light grey bars represent the expected percentage of  upregulated genes in a particular GO category. 
P value of each term was determined using Fisher’s exact test. 
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To provide further confirmation that angiogenesis related genes were enriched in the set of 

genes co-expressed with SPHK1 in DLBCL, I took advantage of the availability of a published 

‘tumour vascular gene signature.’ This tumour vascular signature was generated from an 

integrative meta-analysis of more than 1000 primary human cancers and is comprised of 

genes the expression of which jointly correlates with that of many angiogenic genes or 

endothelial cell specific genes (Masiero et al., 2013). Using only genes present on both 

platforms (n= 17851; Table 3.1), I compared the genes significantly correlated with SPHK1 

expression in primary DLBCL to this tumour vascular gene signature (Table 3.2). This analysis 

revealed that genes positively correlated with SPHK1 expression in primary DLBCL were 

significantly enriched for tumour vasculature signature genes (chi-square=560.18, odds 

ratio=7.9, p<0.0001; Table 3.3; Figure 3.4), whereas genes negatively correlated with SPHK1 

in primary DLBCL were significantly depleted for tumour vascular signature genes (chi-

square=14.42, odds ratio=0.37, p<0.0001; Table 3.3; Figure 3.4). Taken together, these results 

suggest that the overexpression of SPHK1, which would be expected to lead to the increased 

production of extracellular S1P, could promote angiogenesis in DLBCL.  
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Table 3.1: Number of genes positively and negatively correlated with SPHK1 expression in primary 

DLBCL and present in the tumour vascular signature including those used in the enrichment 

analyses. 

 

 
Total 

Number 
Number of genes used in enrichment analysis (present 

on both DLBCL-SPHK1 correlated genes dataset and 

tumour vascular signature genes dataset n=17851) 
Genes positively correlated with 

SPHK1 expression in primary DLBCL 2236 2150 

Genes negatively correlated with 

SPHK1 expression in primary DLBCL 1658 1517 

Tumour vascular signature genes 471 471 

 

Table 3.2: Numbers of genes in the tumour vascular signature that were also found to be either 
positively or negatively correlated with the expression of SPHK1 in primary DLBCL 
 

  
Tumour Vascular Signature Genes 

(n=471) 
Genes positively correlated with SPHK1 expression in primary 

DLBCL (n=2150) 235 
Genes negatively correlated with SPHK1 expression in primary 

DLBCL (n=1517) 16 

 

Table 3.3: Chi-square test of the overlap between genes correlated with the expression of SPHK1 

in primary DLBCL and those present in the tumour vascular signature 

 
Observed 

(O) 
Expected 

(E) O-E Chi 

square 
Odds 

Ratio P-Value 
Tumour vascular signature genes 

and genes positively correlated 

with SPHK1 expression in primary 

DLBCL 
235 56.73 178.27 560.18 7.9 <0.0001 

Tumour vascular signature genes 

and genes negatively correlated 

with SPHK1 expression in primary 

DLBCL 
16 40.03 -24.03 14.42 0.37 <0.0001 
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Figure 3.4: Genes co-expressed with SPHK1 in primary DLBCL are enriched for tumour vascular 
signature genes. Venn diagrams showing the overlap between genes positively or negatively correlated 
with SPHK1 in primary DLBCL (dark grey and blue circles respectively) with tumour vascular signature 
genes (light grey circles). Genes positively correlated with the expression of SPHK1 in primary DLBCL 
were significantly enriched for tumour vascular signature genes (chi square=560.18, odds ratio=7.6, 
p<0.0001). Genes negatively correlated with SPHK1 expression in primary DLBCL were significantly 
depleted for tumour vascular signature genes (chi-square=14.42, odds ratio=0.3, p<0.0001,) OR= odds 
ratio. 
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3.2.3 Establishing HUVEC as a model system to study the effects of S1P on DLBCL-associated 

endothelial cells 

To further explore the potential impact of S1P on angiogenesis in DLBCL, I wanted to establish 

an in vitro model which would allow me to more directly study the impact of S1P signalling on 

the transcription of endothelial cells and, in turn, the extent to which this transcriptome could 

be observed in SPHK1 overexpressing DLBCL. To do this I used HUVEC, which are primary cells 

derived from the endothelium of veins from the umbilical cord that are extensively used as an 

in vitro endothelial cell model. 

In this section I describe the isolation and characterisation of HUVEC, including the expression 

of S1P receptors, and show that this model is a useful one with which to study S1P activated 

signalling and resulting expression of angiogenesis-associated genes. 

1. Identification and characterisation of HUVEC 

HUVEC were isolated from the umbilical cords of four donors using collagenase treatment. As 

expected the cells were homogenous in morphology and exhibited a cobblestone growth 

pattern typical of endothelial cells (Figure 3.5A). Flow cytometry showed that over 97% of 

isolated cells were positive for CD31 and CD144, which are established biomarkers of 

endothelial cells, and negative for the leukocyte common antigen, CD45, indicating high purity 

without contamination from peripheral blood cells (Figure 3.5B).
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Side Scatter 

Figure 3.5: Purity of isolated HUVEC. (A) Representative image of cultured HUVEC showing cobblestone 
morphology typical of endothelial cells. (B) Isolated HUVEC samples were analysed by flow cytometry for 
expression of CD31, CD144 and CD45 in comparison to unstained cells (solid grey peak) to assess purity. Cells 
were gated by forward scatter and side scatter (top panel) to include all cells in the analysis. All four HUVEC 
samples were >97% positive for the endothelial markers CD31 and CD144 and negative for the leukocyte 
common antigen CD45. 
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2. S1P receptor expression in HUVEC is representative of that observed in DLBCL-associated 

endothelial cells 

I next wanted to characterise the expression of the three major S1P receptors S1PR1, S1PR2 

and S1PR3 in the tumour-associated endothelial cells of primary DLBCL and to ascertain if 

HUVEC recapitulate this expression profile. I first confirmed the specificity of the antibodies I 

was using by showing strong staining of S1PR1, S1PR2 and S1PR3 in plasmid transfected 

HEK293 cells but not in empty vector control transfected HEK293 cells (Figure 3.6). IHC with 

these antibodies revealed that the tumour-associated endothelial cells expressed S1PR1 in all 

cases of DLBCL (n=36). In contrast, S1PR2 was absent in endothelial cells in 35 cases, despite 

the strong expression of S1PR2 in red blood cells. Of the 36 cases stained for S1PR3, 17 cases 

were excluded due to the lack of an internal positive control (tumour cell positivity or 

squamous epithelial cell positivity). Of the remaining 19 cases S1PR3 was not expressed in the 

tumour-associated endothelial cells (Figure 3.7; Appendix 1).  

I next characterised the expression of S1P receptors in isolated HUVEC. Figure 3.8 shows that 

S1PR1 was highly expressed whereas S1PR2 and S1PR3 protein was not detectable in HUVEC. 

Mantle zone, germinal centres and squamous epithelium of tonsil were used as positive 

controls (Figure 3.8).    

Taken together, these results show that HUVEC are a suitable model in which to study the S1P 

signalling of DLBCL-associated endothelial cells. 
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Figure 3.6: Validation of the specificity of S1P receptor antibodies. HEK293 cells were 
transfected with vector only control or S1P receptor expression plasmid. Receptor expression 
plasmid transfected cells shows strong specific staining compared to empty vector control 
transfected cells. 
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Figure 3.7: DLBCL-associated endothelial cells express S1PR1 but not S1PR2 or S1PR3. 
Representative IHC images of staining for S1PR1, S1PR2 and S1PR3 in DLBCL, endothelial cells were 
positive for S1PR1, but negative for S1PR2 and S1PR3 (black arrows). Bottom left shows S1PR3 
positive tumour cells.  
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Figure 3.8: HUVEC express S1PR1, but not S1PR2 or S1PR3. S1P receptor expression was 
characterised by IHC. Tonsil was used as a positive control and showed S1PR1 expression in the 
mantle zone (MZ), S1PR2 expression in the germinal centre (GC) and S1PR3 expression in the 
squamous epithelium (SE). 
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3. S1P activates signalling pathways and the transcription of angiogenic genes in HUVEC 

The cell culture medium of HUVEC contains commercially available endothelial cell growth 

supplement which contains angiogenic growth factors such as VEGF and FGF. As these growth 

factors could decrease the sensitivity of any signalling effects from S1P treatment, I first 

studied the effects of the removal of these growth factors from the cell culture medium. One 

possible outcome could be increased apoptosis. To study the effects of removal of these 

growth factors on cell survival I performed immunoblotting against poly ADP-ribose 

polymerase (PARP) as PARP cleavage by caspases is a marker of apoptosis. As a positive 

control, I used cells which had been serum starved for 24 hours. As expected I detected 

cleaved PARP (89kDa) in these cells (Figure 3.9). However, I did not detect cleaved PARP 

following the removal of growth factors from the media of HUVEC (Figure 3.9). 

As the activation of ERK has been shown to be important for angiogenic functions in HUVEC 

induced by factors such as VEGF, I also studied the effects of growth factor removal on ERK 

activation (Rousseau, 1997). Removal of growth factors reduced the levels of phosphorylated 

ERK (pERK) (Figure 3.10).  

Based on the results of these experiments I chose to deplete the HUVEC of endothelial cell 

growth supplement for 16 hours prior to S1P stimulation so as to increase the sensitivity of 

any observed S1P signalling effects.
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Figure 3.9: Detection of PARP in HUVEC following growth factor depletion. HUVEC were cultured 
in media either in the absence or presence of endothelial growth supplement (growth factors) and 
harvested at the indicated time points. Immunoblotting revealed no detectable PARP cleavage 
(89kDa) in cells cultured in media containing or not containing growth factor supplements at all time 
points. β-tubulin confirmed equal loading of samples. Data shown are representative of three 
independent experiments from three different HUVEC donors. 
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Figure 3.10: Detection of ERK in HUVEC following growth factor depletion. HUVEC were cultured 
in media either in the absence or presence of endothelial growth supplement (growth factors) and 
harvested at the indicated time points. Immunoblotting revealed higher levels of pERK in cells grown 
in media containing growth factor supplement compared to those grown in media without growth 
factor supplement. β-tubulin confirmed equal loading of samples. Data shown are representative of 
two independent experiments from two different HUVEC donors. 
  



|88 
 

Next, I investigated ERK activation following the treatment of HUVEC with S1P. I performed 

immunoblotting against pERK on HUVEC treated with various concentrations of S1P for 5 

minutes. S1P activated ERK at all concentrations reaching a maximum at 0.5 µM (Figure 3.11). 

For all subsequent stimulations I treated cells with 0.5 µM S1P. 

Having shown that S1P activates ERK signalling in HUVEC, I next explored whether this is 

associated with changes in gene transcription in these cells. I chose three known target genes 

of S1P in endothelial cells, ICAM1, CXCL8 which encodes IL8, and SELE which encodes E-

Selectin (Lin et al., 2006, Shimamura et al., 2004). I showed using qPCR that the expression of 

all three genes was upregulated in HUVEC from four different donors following treatment with 

S1P for 4 hours (Figure 3.12).
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Figure 3.11:  S1P treated HUVEC activate ERK in a dose dependent manner.  HUVEC were treated 
with S1P at the indicated concentrations and harvested at 5 minutes. Immunoblotting revealed the 
dose dependent activation of ERK by S1P shown by increased levels of pERK compared to control. 
β-tubulin confirmed equal loading of samples. Data shown are representative of four independent 
experiments from four different HUVEC donors.  
  



|90 
 

 

 

 

 

 

 

Figure 3.12:  Upregulation of known S1P target genes in HUVEC. qPCR analysis shows the 
upregulation of ICAM1 (A), SELE (B) and CXCL8 (C) in HUVEC treated with S1P (dark grey bars) relative 
to untreated cells (light grey bars).  Shown are the results from four separate donors (HUVEC 1-4). 

Samples were analysed in triplicate and are presented as 2
-ΔΔCT 

values in comparison to 
corresponding control.  
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3.2.4 Optimisation of conditions and time point to study global gene expression changes in 

S1P treated HUVEC 

S1P-mediated signalling pathway activation is transient in HUVEC 

Having shown that HUVEC can be used to study the effects of S1P on the transcription of 

endothelial cells, I next wanted to optimise the conditions under which I could study global 

gene expression.  The activation of ERK by S1P was further examined by treating HUVEC with 

S1P for various times. Fig 3.13 shows that the initial and rapid induction of ERK 

phosphorylation by S1P is transient, reaching a maximum at 5 minutes and declining back to 

basal levels from 1 hour.   

Upregulation of S1P target genes following S1P treatment is transient 

To choose an appropriate time point to study the global gene expression in S1P treated 

HUVEC, I performed a time course on S1P treated HUVEC using the expression of three S1P 

target genes, ICAM1, CXCL8 and SELE, as a read out. qPCR showed that the S1P-mediated 

upregulation of these genes is transient, with highest upregulation observed at 3h for CXCL8 

and 4h for ICAM1 and SELE (Figure 3.14).



|92 
 

 

 

 

 

 

 

 

Figure 3.13:  Activation of ERK is rapid and transient following S1P treatment of HUVEC. 
HUVEC were treated with S1P for the indicated time periods. Immunoblotting revealed that the 
activation of ERK by S1P is rapid, reaching maximum levels at 5 minutes and declining back to 
basal levels by 1 hour.  β-tubulin confirmed equal loading of sample. Data shown are 
representative of four independent experiments from four different HUVEC donors.  
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Figure 3.14: Time course of S1P target genes in HUVEC. qPCR analysis for the expression of CXCL8 
(A), ICAM1 (B) and SELE (C) in HUVEC treated with S1P at indicated time points (light grey bars) 
relative to vehicle treated cells (dark grey bars). Analysis reveals the transient upregulation of genes 
reaches maximum expression levels for CXCL8 at 3 hours and ICAM1 and SELE at 4 hours. Samples 

were analysed in triplicate and are presented as 2
-ΔΔCT  

values in comparison to corresponding 
control.  
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3.2.5 Identification of S1P target genes in HUVEC 

I chose 4h as the optimum time point for a global gene expression analysis following S1P 

treatment of HUVEC. The upregulation of ICAM1, CXCL8 and SELE was confirmed in HUVEC 

from four different donors by qPCR prior to RNA sequencing analysis performed by BGI Tech 

Solutions (Hong Kong) (Figure 3.15). Following quality control checks, RNA was hybridised to 

Illumina Hiseq 2000 platform and data obtained using 10M reads per sample.  

RNAseq data were mapped to 25,702 Entrez genes using criteria set out in the Materials and 

Methods (Section 2.10). Differentially expressed genes were identified using edgeR with p < 

0.05 and read CPM > 1 in at least half of the samples. I found that S1P treatment of HUVEC 

was followed by the upregulation of 116 genes and the downregulation of 126 genes 

(Appendix 2). 

3.2.6 Validation of S1P target genes identified in HUVEC 

The RNAseq analysis identified the upregulation of ICAM1 and SELE, two genes I had 

previously shown to be upregulated by S1P (Figure 3.15). However, CXCL8 was not identified 

as an S1P target gene by RNAseq analysis. Fig 3.16 shows that RNAseq analysis revealed the 

upregulation of CXCL8 in 2 out of the 4 pairs of samples. As this gene has previously been 

identified as an S1P endothelial cell target gene and as I confirmed the upregulation of IL8 

protein in HUVEC following S1P treatment (shown later; Figure 4.11) I chose to include CXCL8 

in all subsequent analyses. 

I used qPCR to validate the upregulation of three additional genes identified by RNAseq 

analysis which encode proteins of varying functions. These included the genes for SPHK1 itself, 
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the transmembrane adhesion molecule vascular cell adhesion protein-1 (VCAM1), the 

secreted chemokine C-C Motif ligand 2 (CCL2) and the glycosylated secreted protein 

angiopoietin-like 4 (ANGPTL4) (Figure 3.17). 
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Figure 3.15: Validation of the upregulation of S1P target genes in HUVEC used for RNAseq analysis. 
qPCR analysis confirms the upregulation ICAM1 (A), SELE (B) and CXCL8 (C) in HUVECs treated with 
S1P for 4h (dark grey bars) relative to untreated cells (light grey bars) from four different donors 

(HUVEC 1-4). Samples were analysed in triplicate and are presented as 2
-ΔΔCT  

values in comparison to 
corresponding control.  
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Figure 3.16: The RNAseq CPM values for CXCL8 in the four HUVEC control and S1P treated samples. 
The CPM values from the RNAseq analysis in four HUVEC samples treated with S1P (dark grey bars) 
and corresponding vehicle treated control (light grey bars). This shows that CXCL8 was detected as 
upregulated in two out of the four pairs of HUVEC. 
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Figure 3.17: Validation of genes upregulated in HUVEC by S1P treatment identified by RNAseq 
analysis. qPCR was used to measure the relative quantity of CCL2 (A), SPHK1 (B), VCAM1 (C) and 
ANGPTL4 (D) in HUVECs treated with S1P for 4h (dark grey bars) relative to untreated cells (light 
grey bars) from four different donors (HUVEC 1-4). Samples were analysed in triplicate and are 

presented as 2
-ΔΔCT  

values in comparison to corresponding control.  
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3.2.7 The S1P-endothelial cell gene signature is enriched in primary DLBCL 

The genes differentially regulated in HUVEC following S1P stimulation constitute a potential 

S1P signalling endothelial cell signature. To determine if this signature is detectable in primary 

DLBCL, I used those genes that I previously showed to be correlated with SPHK1 expression in 

primary DLBCL (Section 3.2.2). Using only genes present on both platforms (Table 3.4), I 

compared the genes that were significantly correlated with SPHK1 expression in primary 

DLBCL with the genes regulated by S1P in HUVEC (Table 3.5). This analysis revealed that genes 

positively correlated with the expression of SPHK1 in primary DLBCL were significantly 

enriched for genes upregulated, but not genes downregulated, by S1P in HUVEC (chi-

square=52.78, odds ratio =4.55, p<0.0001; chi-square=0.51, odds ratio =0.78, p=0.48; 

respectively. Table 3.6; Figure 3.18). It also revealed that genes negatively correlated with the 

expression of SPHK1 in primary DLBCL were significantly enriched for genes downregulated, 

but not genes upregulated, by S1P in HUVEC (chi-square=15.27, odds ratio =2.58, p<0.0001; 

chi-square=0.59, odds ratio =0.71, p=0.44; respectively. Table 3.6; Figure 3.18). These results 

provide strong evidence that an S1P-endothelial cell gene signature is present in SPHK1 

expressing primary DLBCL.
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Table 3.4.Number of genes positively and negatively correlated with SPHK1 expression in primary 

DLBCL and genes upregulated and downregulated by S1P in HUVEC including those used in the 

enrichment analyses. 

 

 Total Number 
Number of genes used in enrichment analysis 

(present on both DLBCL-SPHK1 correlated genes 

dataset and S1P regulated HUVEC genes dataset 

n=17446) 
Genes positively correlated with 

SPHK1 expression in primary DLBCL 2236 2145 

Genes negatively correlated with 

SPHK1 expression in primary DLBCL 1658 1537 

Genes upregulated by S1P in HUVEC 117 93 
Genes downregulated by S1P in 

HUVEC 126 111 

 

Table 3.5. Number of genes upregulated or downregulated by S1P in HUVEC that were also found 
to be either positively or negatively correlated with the expression of SPHK1 in primary DLBCL. 
 

  

Genes up regulated in 
HUVECs treated with 

S1P (n=93) 

Genes down regulated in 
HUVECs treated with S1P 

(n=111) 
Genes positively correlated with SPHK1 
expression in primary DLBCL (n=2145) 36 11 

Genes negatively  correlated with SPHK1 
expression in primary DLBCL (n=1537) 6 22 
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Table 3.6: Chi-square test of the overlap between genes correlated with the expression of SPHK1 

in primary DLBCL and those genes either upregulated or downregulated by S1P in HUVEC 

 

 
Observed 

(O) 
Expected 

(E) O-E Chi 

square 
Odds 

Ratio P-Value 
Genes positively correlated with 

SPHK1 expression in primary 

DLBCL and upregulated in S1P 

treated HUVEC 
36 11.43 24.57 52.78 4.55 p < 0.0001 

Genes negatively correlated 

with SPHK1 expression in 

primary DLBCL and upregulated 

in S1P treated HUVEC 
6 8.19 -2.19 0.59 0.71 0.442 

Genes positively correlated with 

SPHK1 expression in primary 

DLBCL and downregulated in 

S1P treated HUVEC 
11 13.65 -2.65 0.51 0.78 0.475 

Genes negatively correlated 

with SPHK1 expression in 

primary DLBCL and 

downregulated in S1P treated 

HUVEC 

22 9.78 12.22 15.27 2.58 p < 0.0001 
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Figure 3.18: The S1P-endothelial cell gene signature is present in primary DLBCL. Venn diagrams 
showing the overlap between genes positively or negatively correlated with SPHK1 in primary DLBCL 
(dark grey and blue circles respectively) with those genes upregulated or downregulated in S1P treated 
HUVEC (light grey and red circles respectively). Genes positively correlated with the expression of SPHK1 
in primary DLBCL were significantly enriched for genes upregulated, but not genes downregulated, by 
S1P in HUVEC (chi-square=52.78, odds ratio =4.55, p<0.0001; chi-square=0.51, odds ratio =0.78, p=0.48, 
respectively). It also revealed that genes negatively correlated with the expression of SPHK1 in primary 
DLBCL were significantly enriched for genes downregulated, but not genes upregulated, by S1P in HUVEC 
(chi-square=15.27, odds ratio =2.58, p<0.0001; chi-square=0.59, odds ratio =0.71, p=0.44). OR= odds 
ratio. 
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3.3 Discussion 

Most of the oncogenic effects of SPHK1 are a consequence of its ability to produce the 

bioactive signalling lipid S1P (Pyne, 2012, Pyne and Pyne, 2010, Maceyka et al., 2012). SPHK1 

is overexpressed in many cancer types such as kidney, lung, ovarian and pancreatic, and 

associated with an inferior survival in gastric, brain and breast cancer (French et al., 2003, 

Johnson et al., 2005, Guillermet-Guibert et al., 2009, Li et al., 2009, Van Brocklyn et al., 2005, 

Li et al., 2008b, Ruckhaberle et al., 2008). A previous study has documented the 

overexpression of SPHK1 in NHL. In this chapter I provide evidence that SPHK1 is 

overexpressed in the most common subtype of NHL, DLBCL (Bayerl et al., 2008). This was 

based on a reanalysis of two gene expression datasets which showed high levels of SPHK1 

mRNA in DLBCL compared with GC B cells. Although SPHK1 IHC showed strong staining in 

DLBCL tumour cells I could not reliably quantify this due to the lack of an internal positive 

control. Quantification of SPHK1 expression in tumour cells of DLBCL sections will require an 

alternative assay such as RNAscope, an RNA in-situ hybridisation technology (Wang et al., 

2012). At this time it is not technically feasible to measure S1P in tissue sections. Furthermore, 

the phospho-specific SPHK1 antibody used here is not specific in IHC. Therefore, I could only 

show that SPHK1 was constitutively phosphorylated in DLBCL lines.   

I showed that SPHK1 expression is associated with the expression of angiogenic genes in 

primary DLBCL. This could be important because overall survival has been shown to be 

significantly poorer for those DLBCL patients with tumours displaying high blood vessel density 

compared to those with low blood vessel density (54% versus 78%, respectively, p=0.004) 
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(Cardesa-Salzmann et al., 2011). For this reason SPHK1-S1P signalling could be a novel anti-

angiogenic target in DLBCL. 

As a first step to investigate the contribution of SPHK1 to DLBCL angiogenesis I used HUVEC to 

define an S1P-endothelial cell gene signature. Having shown that HUVEC recapitulated the S1P 

receptor expression observed in DLBCL-associated endothelial cells I then optimised 

conditions which enabled me to reliably activate ERK and downstream transcription.  

I showed that many of the transcriptional changes induced by the treatment of HUVEC with 

S1P were evident in SPHK1 expressing tumours, suggesting that S1P signalling is likely to be 

involved in DLBCL angiogenesis. This could be important because two studies have shown no 

association between microvessel density and VEGF expression in DLBCL (Gratzinger et al., 

2008, Jorgensen et al., 2007). This suggests that another pathway independent of VEGF 

signalling, potentially the SPHK1-S1P pathway, is driving blood vessel growth in these tumours. 

Further studies are required to determine if SPHK1 expression is associated with microvessel 

density in primary DLBCL. 

Although HUVEC proved useful in defining an S1P-endothelial cell gene signature, it should be 

noted that the S1P targets were defined following a single S1P stimulation which resulted in 

rapid and transient transcriptional changes. This almost certainly cannot completely 

recapitulate the in vivo steady state in which tumour-associated endothelial cells are likely to 

be chronically stimulated by S1P.   

The observation that the S1P-endothelial cell gene signature was significantly associated with 

SPHK1 expression in primary tumours was based on the analysis of gene expression datasets 
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generated from whole tumour biopsies. Therefore, any correlations observed cannot be 

attributed with certainty to a given cell type. Equally, this method may not be sensitive enough 

to determine genes expressed by the tumour endothelial cells, as the endothelial cells make 

up a low percentage of the total cell count in tumour biopsies. Therefore, the total gene 

expression level of any given gene in endothelial cells may be affected by its expression in 

other cell types. This problem could be overcome by gene expression analysis of endothelial 

cells isolated from primary DLBCL samples. 
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CHAPTER FOUR 

AN INVESTIGATION OF THE PHENOTYPIC EFFECTS OF 

THE S1P-ENDOTHELIAL CELL GENE SIGNATURE
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4.1 Abstract 

In the previous chapter I showed that genes co-expressed with SPHK1 in primary DLBCL are 

significantly enriched for angiogenic genes. Furthermore, I showed that S1P induces a gene 

expression programme in endothelial cells which is present in primary tumours. I hypothesise 

that in addition to increasing tumour angiogenesis, S1P might also induce other phenotypic 

effects on endothelial cells to promote tumour progression. 

In this chapter I explore the impact of S1P on the transcription of other genes in endothelial 

cells, including those not directly associated with angiogenesis.
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4.2 Results 

4.2.1 Gene ontology analysis reveals that the S1P-endothelial cell gene signature is enriched 

for angiogenic, anti-apoptotic and leukocyte extravasation and migration functions 

To explore the broader phenotypic effects of S1P signalling on endothelial cells, I initially 

performed a gene ontology analysis of the genes upregulated by S1P in HUVEC using an online 

functional classification tool, DAVID (https://david.ncifcrf.gov/) (Dennis et al., 2003). The 

significantly enriched gene ontology terms were grouped into functional categories and 

revealed a significant enrichment in angiogenic, anti-apoptotic, leukocyte extravasation and 

leukocyte chemotaxis functions (Figure 4.1).   

4.2.2 Genes upregulated by S1P in endothelial cells are involved in the recruitment of 

monocytes and granulocytes 

As the recruitment of stromal cells to the tumour microenvironment is increasingly recognised 

to play an important role in tumour progression, I chose to focus on the potential contribution 

of S1P-induced changes in the endothelial transcriptome to leukocyte recruitment (Lenz et al., 

2008b). 

The now firmly established process of leukocyte recruitment involves two main steps which 

have been extensively reviewed (reviewed in: Nourshargh and Alon, 2014, Hordijk, 2016, 

Vestweber, 2015, Muller, 2013). As part of the migration process, circulating leukocytes must 

first adhere to the endothelium. This association involves the expression of endothelial cell 

adhesion molecules. Secondly, the leukocytes are directed by chemoattractant gradients, 

https://david.ncifcrf.gov/
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such as chemokines, to migrate across the endothelium (a process referred to as leukocyte 

extravasation) and into the tissue.  

I interrogated the S1P regulated genes in HUVEC for chemokines and adhesion molecules. This 

gave me 7 chemokines and 3 adhesion molecules (Table 4.1). I validated the upregulation of 

several of the chemokine genes in HUVEC following S1P treatment by qPCR. In addition to 

those previously validated (CXCL8 Figure 3.15; CCL2 Figure 3.17) I confirmed the upregulation 

of CCL7, CXCL1, CXCL3 and CXCL12 mRNA (Figure 4.2). The adhesion molecule genes involved 

in leukocyte extravasation ICAM1, SELE and VCAM1 had previously been validated (ICAM1 and 

SELE Figure 3.15; VCAM1 Figure 3.17). 

To further investigate the cell types that may be recruited by the chemokines and adhesion 

molecules regulated by S1P in HUVEC, I performed a PubMed search, 

(http://www.ncbi.nlm.nih.gov/pubmed), to identify the primary chemotactic/adhesion 

functions (Table 4.1). This literature search revealed that the chemokines and adhesion 

molecules regulated by S1P in HUVEC are primarily involved in the recruitment of monocytes 

and granulocytes.  

http://www.ncbi.nlm.nih.gov/pubmed
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Figure 4.1: Gene ontology analysis of S1P target genes in HUVEC. GO analysis of genes upregulated by 
S1P in HUVEC revealed enrichment of genes with anti-apoptosis, leukocyte extravasation, angiogenesis 
and cell migration/chemotaxis functions. Dark grey bars represent the observed percentage of 
upregulated genes in a particular GO category, and light grey bars represent the expected percentage 
of upregulated genes in a particular GO category. P value of each term was determined using Fisher’s 
exact test. 
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Table 4.1: A summary of the chemokines and endothelial cell adhesion molecules upregulated by S1P  

  
 Official 

Gene 
Symbol 

Official Gene 
Name 

Other Gene Names Primary Target 
Cell(s) 

Reported 
endothelial 
cell S1P 
target gene? 
(Yes/No) 

Significantly 
co-
expressed 
with SPHK1? 
(Yes/No)  
(p-value) 

C
h

e
m

o
ki

n
e

s 

CCL2 C-C motif 
chemokine 
ligand 2 

Monocyte 
chemotactic 
protein 1 (MCP-1) 

Monocytes 
(reviewed in: 
Deshmane et al., 
2009) 

Yes (Lin et 
al., 2007) 

No p= 0.23 

CCL7 C-C motif 
chemokine 
ligand 7 

Monocyte 
chemotactic 
protein 3 (MCP-3) 

Monocytes (Van 
Damme et al., 1992) 

No Yes p= 0.03 

CX3CL1 C-X3-C motif 
chemokine 
ligand 1 

Fractalkine Soluble: Monocytes, 
T Cells (Bazan et al., 
1997) 
 
Endothelial Cell 
Bound: Leukocyte 
Adhesion (Bazan et 
al., 1997) 

No No p= 0.054 

CXCL1 C-X-C motif 
chemokine 
ligand 1 

GRO1 oncogene, 
Neutrophil 
activating protein-1 
(NAP-3) 

Neutrophils (Moser 
et al., 1990) 

No Yes p= 0.027 

CXCL3 C-X-C motif 
chemokine 
ligand 3 

GRO3 oncogene, 
macrophage 
inflammatory 
protein-2-
beta (MIP2b) 

Granulocytes 
(Geiser et al., 1993) 

No No p= 0.076 

CXCL8 C-X-C motif 
chemokine 
ligand 8 

Interleukin8 (IL8) Granulocytes 
(Harada et al., 1994) 

Yes (Lin et 
al., 2007) 

Yes p= 0.005 

CXCL12 C-X-C motif 
chemokine 
ligand 12 

Stromal cell derived 
factor 1 (SDF1) 

Lymphocytes, 
endothelial 
progenitor cells: 
(Burger and Kipps, 
2006) 

No No p= 0.061 

A
d

h
e

si
o

n
 M

o
le

cu
le

s 

ICAM1 intercellular 
adhesion 
molecule 1 

CD54 Leukocytes 
(reviewed in: 
Etzioni, 1996) 

Yes 
(Shimamura 
et al., 2004) 

Yes p= 0.001 

SELE Selectin E E-selectin, CD62 Leukocytes 
(reviewed in:  
Etzioni, 1996) 

Yes (Xia et 
al., 1998) 

Yes p= 
0.0008 

VCAM1 vascular cell 
adhesion 
molecule 1 

CD106 lymphocytes, 
monocytes, 
eosinophils and 
basophils (reveiwed 
in: Etzioni, 1996) 

Yes (Xia et 
al., 1998) 

No p=0.177 
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Figure 4.2: Upregulation of chemokines by S1P treated HUVEC. qPCR analysis confirms the 

upregulation of CCL7 (A), CXCL1 (B), CXCL3 (C) and CXCL12 (D) in HUVEC treated with S1P for 4 hours 
(dark grey bars) relative to untreated cells (light grey bars) from four different donors (HUVEC 1-4). 

Samples were analysed in triplicate and are presented as 2
-ΔΔCT  

values in comparison to 
corresponding control.  
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4.2.3 Genes co-expressed with SPHK1 in primary DLBCL are enriched for a granulocyte and 

a tumour macrophage gene signature. 

Following tissue recruitment, monocytes are polarised by the local environment and 

differentiate into macrophages, a process controlled by many tissue specific factors (Richards 

et al., 2013, Gordon and Taylor, 2005). Before investigating if S1P-induced changes on the 

endothelial transcriptome are involved in the recruitment of monocytes and granulocytes, I 

first wanted to confirm that macrophages and granulocytes were present in the 

microenvironment of the SPHK1-expressing DLBCL I had identified earlier (Section 3.2.1). To 

do this, macrophages and granulocytes were counted in 4 hpf (high power fields) and 10 hpf, 

respectively (performed by pathologist Dr Maha Ibrahim) using CD68 and CD15 as markers 

(Reid et al., 2011, Wada et al., 2012). Cells within vessels or necrotic areas were excluded. The 

average number of cells per hpf is shown in Table 4.2. Representative IHC stains are shown in 

Figure 4.3. I detected both macrophages and granulocytes in all tumours (mean: 157.6, 8.9; 

median 177.3, 4.9; range 48.3-298.3, 0.8-212.1, respectively). There was no correlation 

between the numbers of macrophages and granulocytes in these tumours (Figure 4.4).
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Table 4.2: Average CD15 and CD68 counts from primary 
DLBCL cases. NA = not available 

 
DLBCL case 

number  
Average CD15 
Count (10 hpf) 

Average CD68 
Count (4 hpf) 

102 5.6 162.3 

196 4.3 NA 

204 0.8 NA 

95 4.1 118.5 

112 2.3 288.0 

134 6.9 175.8 

150 4.5 250.0 

154 4.9 48.3 

155 3.0 177.3 

159 4.0 125.0 

160 212.1 226.0 

161 8.1 250.3 

162 8.6 208.0 

166 11.2 186.8 

175 31.2 242.3 

176 3.0 240.8 

177 7.7 266.8 

189 7.0 132.8 

190 12.3 279.8 

191 1.0 114.3 

195 3.4 104.5 

197 9.4 208.5 

198 8.7 94.0 

200 5.8 176.0 

203 NA 298.3 

207 15.5 192.8 

208 1.5 183.3 

209 3.9 NA 

211 14.4 121.8 

212 41.5 122.0 

213 1.7 184.5 

214 16.1 131.8 

215 2.2 163.5 

220 1.7 99.0 

227 4.3 175.3 

231 3.2 237.5 

199 NA 125.3 

182 NA 201.8 
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Figure 4.3: Frequency of CD15+ granulocytes and CD68+ macrophages in DLBCL. DLBCL cases 
were stained for CD15 and CD68 by IHC. The average number of cells per high power field for 
CD15 and CD68 for each case is shown (A and C, respectively). Representative IHC stains from 
two cases for both CD15 and CD68 are shown (B and D, respectively). 
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Figure 4.4: Correlation between average CD15 and CD68 counts in primary DLBCL. This 
analysis reveals that there was no significant correlation between average CD15 and CD68 
counts. Pearson correlation, r=0.14, p=0.43.   
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As explained in Section 3.2.1, I could not accurately quantify the level of SPHK1 expression in 

these cases. However, to explore whether the presence of macrophages and granulocytes in 

the microenvironment of primary DLBCL is associated with the expression of SPHK1, I 

compared the genes significantly correlated with the expression of SPHK1 in primary DLBCL 

with published cell type specific gene signatures. I used a published tumour macrophage gene 

signature generated using a 3D network-based approach from a DLBCL gene expression 

dataset and shown to be conserved across multiple unrelated human cancer types (Doig et 

al., 2013). Using only genes present on both platforms, n= 17850 (Table 4.3), I compared the 

genes significantly correlated with SPHK1 expression with the tumour macrophage gene 

signature (Table 4.4). This analysis revealed that genes positively correlated with SPHK1 in 

primary DLBCL were significantly enriched for macrophage signature genes (chi-

square=264.66, odds ratio=9.99, p<0.0001; Table 4.5; Figure 4.5), whereas genes negatively 

correlated with SPHK1 in primary DLBCL were significantly depleted for macrophage signature 

genes (chi-square= 13.42, odds ratio=0, p=0.0002; Table 4.5; Figure 4.5). 

To confirm this observation, I used the re-analysis of a published RNAseq data set to show a 

significant positive correlation in the expression of SPHK1 and CD68 in primary DLBCL samples 

(n=86) (Figure 4.6). 
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Table 4.3. Number of genes positively and negatively correlated with SPHK1 expression in primary 

DLBCL, and present in the macrophage gene signature, including those used in the enrichment 

analyses. 

 

 
Total 

Number 
Number of genes used in enrichment analysis (present 

on both DLBCL-SPHK1 correlated genes dataset and 

macrophage signature dataset n=17850) 
Genes positively correlated with 

SPHK1 expression in primary DLBCL 2236 2150 

Genes negatively correlated with 

SPHK1 expression in primary DLBCL 1658 1517 

Macrophage gene signature 162 158 

 

Table 4.4. Number of genes in the macrophage signature that were also found to be either 

positively or negatively correlated with the expression of SPHK1 in primary DLBCL. 

 

 Macrophage gene signature (n=158) 

Genes positively correlated with SPHK1 expression in 

primary DLBCL (n=2150) 90 

Genes negatively  correlated with SPHK1 expression 

in primary DLBCL (n=1517) 0 

 

Table 4.5: Chi-square test of the overlap between genes correlated with the expression of SPHK1 

in primary DLBCL and those present in the macrophage gene signature. 

 

 
Observed 

(O) 
Expected 

(E) O-E Chi square Odds 

Ratio P-Value 

Macrophage gene signature 

and genes positively 

correlated with SPHK1 

expression in primary DLBCL 
90 19.03 70.97 264.66 9.99 <0.0001 

Macrophage gene signature 

and genes negatively 

correlated with SPHK1 

expression in primary DLBCL 
0 13.43 -13.43 13.42 0 0.0002 
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Figure 4.5: A macrophage gene signature is enriched in genes positively correlated with SPHK1 
expression in primary DLBCL. Venn diagrams showing the overlap between genes positively and 
negatively correlated with SPHK1 expression in primary DLBCL (dark grey and blue circles 
respectively) with a macrophage gene signature (light grey circles). Genes positively correlated with 
the expression of SPHK1 in primary DLBCL were significantly enriched for macrophage signature 
genes (chi-square=264.66, odds ratio =9.99, p<0.0001).  Genes negatively correlated with SPHK1 
expression in primary DLBCL were significantly depleted for macrophage signature genes (chi-
square=13.42, odds ratio =0.00, p=0.0002).  



|120 
 

 

 

 

 

 

 

 

 

Figure 4.6: SPHK1 expression is correlated with the expression of CD68 in primary DLBCL. The 
reanalysis of RNAseq data shows a statistically significant correlation between SPHK1 expression 
and CD68 expression in 86 cases of primary DLBCL. Pearson correlation, r=0.60, p<0.0001. 
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Next I used a published granulocyte gene signature generated from cDNA microarray analysis 

of purified subpopulations of peripheral blood cells (Palmer et al., 2006). Using only genes 

present on both platforms, n=10042 (Table 4.6), I compared the genes significantly correlated 

with SPHK1 expression with the genes present in the granulocyte gene signature (Table 4.7). 

This analysis revealed that genes positively correlated with SPHK1 in primary DLBCL were 

significantly enriched for the granulocyte signature genes (chi-square=49.02, odds ratio =2.6, 

p<0.0001; Table 4.8; Figure 4.7), whereas the genes negatively correlated with SPHK1 in 

primary DLBCL were significantly depleted for the granulocyte signature genes (chi-

square=12.02, odds ratio=3.3, p=0.0005; Table 4.8; Figure 4.7)  

To confirm this observation, I used the re-analysis of a published RNAseq data set to show a 

significant positive correlation in the expression of SPHK1 and CD15 in primary DLBCL samples 

(n=86) (Figure 4.8). 
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Table 4.6. Number of genes positively and negatively correlated with SPHK1 expression in primary 

DLBCL and present in the granulocyte gene signature including those used in the enrichment 

analyses. 

 

 
Total 

Number 
Number of genes used in enrichment analysis (present 

on both DLBCL-SPHK1 correlated genes dataset and 

granulocyte gene signature dataset n=10042) 
Genes positively correlated with 

SPHK1 expression in primary DLBCL 2236 1543 

Genes negatively correlated with 

SPHK1 expression in primary DLBCL 1658 1028 

Granulocyte gene signature 304 293 

 

Table 4.7. Number of genes in the granulocyte signature that were also found to be either 

positively or negatively correlated with the expression of SPHK1 in primary DLBCL. 

 

 Granulocyte gene signature (n=293) 

Genes positively correlated with SPHK1 expression 

in primary DLBCL (n=1543) 92 

Genes negatively  correlated with SPHK1 

expression in primary DLBCL (n=1028) 11 

 

Table 4.8: Chi-square test of the overlap between genes correlated with the expression of SPHK1 

in primary DLBCL and those present in the granulocyte gene signature. 

 

 
Observed 

(O) 
Expected 

(E) O-E Chi 

square 
Odds 

Ratio P-Value 
Granulocyte gene signature 

and genes positively 

correlated with SPHK1 

expression in primary DLBCL 
92 45.02 46.98 49.02 2.59 <0.0001 

Granulocyte gene signature 

and genes negatively 

Correlated with SPHK1 

expression in primary DLBCL 
11 29.99 -18.99 12.02 0.33 0.0005 
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Figure 4.7: A granulocyte gene signature is enriched in genes positively correlated with SPHK1 
expression in primary DLBCL. Venn diagrams showing the overlap between genes positively or 
negatively correlated with SPHK1 expression in primary DLBCL (dark grey and blue circles 
respectively) with a granulocyte gene signature (light grey circles). Genes positively correlated with 
the expression of SPHK1 in primary DLBCL were significantly enriched for granulocyte signature 
genes (chi-square=49.02, odds ratio =2.59, p<0.0001).  Genes negatively correlated with SPHK1 
expression in primary DLBCL were significantly depleted for the granulocyte signature genes (chi-
square=12.02, odds ratio =0.33, p=0.0005).  
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Figure 4.8: SPHK1 expression is correlated with the expression of CD15 in primary DLBCL. The 
reanalysis of RNAseq data shows a statistically significant correlation between SPHK1 expression 
and CD15 expression in 86 cases of primary DLBCL. Pearson correlation, r=0.34, p=0.001. 
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4.2.4 Investigating the S1P-induced chemotactic functions of endothelial cells in vitro 

The validation of chemokine secretion from HUVEC following treatment with S1P  

Having shown that S1P upregulates chemokines in HUVEC and that SPHK1 expression is 

enriched for macrophage and granulocyte gene signatures in primary DLBCL, I next explored 

the possibility that the chemokines upregulated by S1P in HUVEC recruit these cell types.   

For these set of experiments, I chose to focus on the chemokines which I showed to be 

positively correlated with SPHK1 expression in DLBCL. They included, CCL7, CXCL1 and CXCL8 

(Table 4.1). In the first instance I set out to confirm the upregulation and release of these 

chemokines from endothelial cells following S1P treatment. In vivo endothelial cells are 

exposed to S1P continually and having reflected on the S1P stimulation experiments (shown 

in Section 3.2.4) and the transient nature of the signal, I thought it might be possible to adjust 

the experimental conditions to better reflect what is seen in vivo. Two possible reasons for 

the transient nature of the ERK signal observed in vitro are that, S1PR1 surface expression is 

decreased following S1P exposure or alternatively that S1P is degraded in the cell media.  

I first investigated whether the transient ERK signal was due to loss of sensitivity to S1P by re-

challenging HUVEC with a second dose of S1P at 6 hours or 12 hours following the first. This 

analysis showed that those cells receiving a second stimulation activated ERK to the same level 

as control cells which had not received an initial stimulation (Figure 4.9), suggesting that cells 

remain sensitive to S1P after an initial stimulation 6 hours earlier. 
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Figure 4.9:  S1P treated HUVEC remain sensitive to restimulation with S1P. HUVEC were 
restimulated with S1P at 6 hours or 12 hours following an initial stimulation (A and B, respectively). 
Top panels show S1P stimulation times (red arrows) and the protein harvest times (green arrows) 
for each of the immunoblot samples, numbered by lane.  Immunoblotting revealed that cells 
receiving a second dose of S1P (lanes 4) activate ERK to the same level as cells which received no 
prior stimulation (lanes 1 and 2). β-tubulin confirmed equal loading of sample. Data shown are 
representative of three independent experiments from three different HUVEC donors. *=double 
dose S1P. 
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I next investigated if S1P in the cell medium is degraded overtime. I took conditioned media 

from HUVEC that had been treated with S1P for different times and used this to treat 

unstimulated HUVEC. I found that the medium of S1P treated HUVEC conditioned for > 8 hours 

was no longer capable of activating ERK (Figure 4.10). These data indicate that S1P is degraded 

in media overtime. In vitro re-stimulation of HUVEC requires fresh S1P.  

 I used an ELISA to measure CCL7, CXCL1 and IL8 in the conditioned media from S1P treated 

HUVEC. For these experiments, in addition to depleting the HUVEC of growth factors for 16 

hours prior to S1P stimulation, the medium was replaced again 1 hour prior to the initial S1P 

stimulation. I treated the HUVEC with one or two doses of S1P for up to 12h; the latter to 

potentially better mimic the effects seen in vivo. I chose the second dose time point of 6 hours, 

as I previously showed that HUVEC can re-activate ERK following a second stimulation 6h after 

the first (Figure 4.9). The conditioned medium was harvested 12 hours after the first S1P 

stimulation and subjected to ELISA analysis. Figure 4.11 shows that compared to controls, S1P 

induced a dose dependent increase in CXCL1 and IL8 levels in the cell supernatants. CCL7 levels 

were lower than the assay range standards and could therefore not be quantified.  
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Figure 4.10: S1P is degraded in culture overtime. Media from S1P and control treated HUVEC 
was conditioned for the indicated time periods. Unstimulated HUVEC were treated with the 
conditioned media for 5 minutes. Immunoblotting revealed that media conditioned from S1P 
treated HUVEC for > 8 h was no longer capable of activating ERK. β-tubulin confirmed equal 
loading of samples. Data shown are representative of two independent experiments from two 
different HUVEC donors. 
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Figure 4.11: ELISA analysis for the production of chemokines by S1P treated HUVEC. An ELISA was 
used to measure the levels of IL8 (A) and CXCL1 (B) in the conditioned media of HUVEC treated with 
S1P for 12 hours. Cells were either untreated (control) or treated with 1 dose of S1P at 0 hours or 2 
doses of S1P at 0h and 6h (1x S1P, 2x S1P, respectively). Analysis reveals the dose dependent 
upregulation of IL8 and CXCL1. Data are represented as mean ±SEM of three separate experiments. 
Students T-test. *p<0.05, **p<0.01. 
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Validation of monocyte migration to CXCL1: a chemokine secreted from HUVEC following 

treatment with S1P and co-expressed with SPHK1 in primary DLBCL  

CXCL1 and IL8, the two validated chemokines that I showed were upregulated by S1P in HUVEC 

and which were co-expressed with SPHK1 in primary DLBCL, are thought to act predominantly 

on neutrophils (Table 4.1). Therefore I chose to focus my studies on the recruitment of 

monocytes. IL8 has already been reported to recruit monocytes (Gerszten et al., 1999), 

therefore, I chose to investigate the ability of CXCL1 to recruit monocytes. 

To do this, I first wanted to establish an assay to measure the migration of monocytes to 

CXCL1. To do this I used the THP-1 human monocytic cell line which is derived from an acute 

monocytic leukaemia patient and is the most widely used monocyte cell line model. I exposed 

THP-1 cells to 50 ng/ml MCP1, one of the key chemokines that regulates migration of 

monocytes, in a transwell assay for 4 hours. Figure 4.12A shows a significant increase in THP-

1 cell migration to MCP-1 compared to controls, confirming that my migration assay works.  

Having optimised the THP-1 cell migration assay, I then tested the effects of CXCL1 on THP-1 

cell migration using the same conditions. This assay revealed a significant and dose dependent 

increase in THP-1 cell migration to CXCL1 (Figure 4.12B).    

Finally, I wanted to explore the effects of CXCL1 on the migration of primary human CD14+ 

monocytes as they are more representative of what is found in vivo. To do this I used CD14+ 

cells isolated from human peripheral blood (provided by Tracey Perry). Figure 4.13 shows that 

there was a significant increase in primary human CD14+ monocyte migration to MCP-1, 

however I observed no increase in primary human CD14+ monocytes to CXCL1 at 25 ng/ml or 
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50 ng/ml. Although this experiment indicates that primary human CD14+ monocyte migration 

do not migrate to CXCL1, repeated experiments from multiple donors would have to be 

performed for firm conclusions to be drawn, as donor variations in chemokine receptor 

expression have previously been described (Gerszten et al., 1999).  
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Figure 4.12: Increased migration of THP-1 cells to MCP1 and CXCL1. (A) THP-1 cells were exposed 
to 50 ng/ml MCP1 in a transwell assay. After 4 hours, the cells that had migrated through the 
membrane were counted using a flow cytometer from triplicate wells. Analysis revealed a 
significant increase in THP-1 cell migration in the presence of MCP1 compared to controls. (B) THP-
1 cells were exposed to CXCL1 at the indicated concentration in a transwell assay. After 4 hours, 
the cells that had migrated through the membrane were counted using a flow cytometer from 
triplicate wells. Representative data are from one of four independent experiments. Analysis 
revealed the dose dependent migration of THP-1 cells to CXCL1. Student’s T-test; ***p<0.001, 
****p<0.0001. 
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Figure 4.13: Increased migration of human CD14+ monocytes to MCP1, but not CXCL1. Purified 
human CD14+ monocytes from blood were exposed to CXCL1 and MCP1 in a transwell assay at the 
indicated concentrations. After 4 hours, cells that had migrated through the membrane were 
counted using a flow cytometer from triplicate wells. Analysis reveals a significant increase in CD14+ 
monocyte migration in the presence of MCP1 and no difference in the presence of CXCL1.  Student’s 
T-test; ***p<0.001, n=1. 
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4.4 Discussion 

In this chapter I showed that genes upregulated by S1P in HUVEC are involved in the process 

of leukocyte recruitment. These genes include adhesion molecules and chemokines. In 

support of this finding, I showed that SPHK1 expression is correlated with the expression of a 

tumour macrophage gene signature and a granulocyte gene signature in primary DLBCL.  

Macrophages, which differentiate from monocytes, are the main cell type in the tumour 

microenvironment of DLBCL (Scott and Gascoyne, 2014). Tumour-associated macrophages 

(TAMs), most commonly macrophages of the M2 phenotype, can enhance tumour cell 

proliferation and invasion, increase angiogenesis, and inhibit the T cell-mediated anti-tumour 

immune response thereby promoting tumour progression (Qian and Pollard, 2010). Two 

studies have reported that high numbers of M2 macrophages (defined as CD68+CD163+ cells), 

but not M1 macrophages are associated with an adverse outcome in R-CHOP treated patients 

(Wada et al., 2012, Marchesi et al., 2015).  

Granulocytes have also been shown to be present in the DLBCL microenvironment and in one 

study were shown to express the B cell survival factor, APRIL (A Proliferating Inducing Ligand). 

In this study high expression of APRIL was associated with decreased overall patient survival 

(Schwaller et al., 2007). However, this study did not report the numbers of tumour infiltrating 

CD15+ cells. I observed very low numbers of infiltrating CD15+ cells in the microenvironment 

of DLBCL in the majority of cases, with an average of <10 cells per hpf. Even small numbers of 

cells producing soluble growth factors could be sufficient to promote DLBCL growth, but it 

would be of interest to determine if the numbers of infiltrating cells of the granulocytic lineage 

correlate with DLBCL survival. 
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It is not possible to determine from these analyses whether SPHK1 expression is responsible 

for the recruitment of monocytes/macrophages or granulocytes. Although the enrichment of 

macrophage and granulocyte gene signatures in the genes co-expressed with SPHK1 could be 

explained by other mechanisms, for example, the induction of SPHK1 expression on tumour 

cells by TAMs, two reports show that SPHK1-S1P signalling is responsible for macrophage 

recruitment in vivo. One of these studies showed that the inhibition of S1P signalling, by the 

S1P monoclonal antibody, Sphingomab, significantly reduced macrophage infiltration as well 

as neovascularisation in mice with oxygen induced ischemic retinopathy (Xie et al., 2009). In 

the second study, the numbers of macrophages were reduced in the livers and lungs of a 

mouse model of graft-versus-host disease (GVHD) in animals treated with an S1PR1 receptor-

selective antagonist CYM-5442, which induces S1PR1 internalisation, phosphorylation, and 

ubiquitination (Cheng et al., 2015). An in vivo model of DLBCL will be required to determine 

whether SPHK1 expression contributes to stromal cell recruitment in DLBCL. 

A previous study has shown that the expression of MCP1 and IL8 are upregulated following 

the treatment of HUVEC with S1P and that monocytes migrate towards conditioned media 

from S1P treated HUVEC (Lin et al., 2007). I have shown that S1P induces multiple chemokines 

in HUVEC, some of which may not be relevant to primary tumours. For this reason I focussed 

my initial experiments on those chemokines, IL8, CXCL1 and CCL7, upregulated by S1P in 

HUVEC and co-expressed with SPHK1 in primary DLBCL.  

Although I observed the upregulation of CCL7 mRNA following S1P treatment, a finding which 

is supported by the previous observation that CCL7 mRNA is downregulated in HUVEC treated 

with an S1PR1 inhibitor (CYM-5442) (Cheng et al., 2015), I could not detect CCL7 in the 
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conditioned media of S1P treated HUVEC. At the present time it is not clear if this is due to 

the low sensitivity of the ELISA kit used (standards gave low signal) or to post 

transcriptional/translational regulation of CCL7 expression. 

Although I was able to confirm the increased production of IL8 by HUVEC following S1P 

treatments, this chemokine has been shown to contribute to neutrophil and monocyte 

recruitment and I did not investigate its effects any further (Gerszten et al., 1999). I chose to 

focus on CXCL1 which is known to be involved in neutrophil, but not macrophage, recruitment. 

I optimised a migration assay using the THP-1 monocyte cell line and used this to show that 

CXCL1 promoted the migration of THP-1 cells. However, in one experiment I was unable to 

detect any change in migration of purified CD14+ monocytes to CXCL1. It has previously been 

shown that monocytes isolated from different donors vary in their migratory response to IL8 

an observation that might be explained by different levels of IL8 receptors, C-X-C motif 

chemokine receptor 1 and 2 (CXCR1 and CXCR2), on primary monocytes (Gerszten et al., 

1999). CXCR2 is the CXCL1 receptor. It remains to be seen if the failure of primary monocytes 

to migrate to CXCL1 in my experiment was due to low/absent expression of CXCR2 in these 

cells. Although my experiments mainly focused on migration it should be noted that both IL8 

and CXCL1 can also support monocyte arrest and firm adhesion onto endothelium under flow 

conditions (Smith et al., 2005, Gerszten et al., 1999). 

Tumour cells expressing chemokine receptors could be directed to the endothelial cell derived 

chemokines promoting intravasation of tumour cells from the primary site into the blood 

stream for dissemination and contributing to cancer metastasis. Adhesion molecules 

expressed on endothelial cells can facilitate the binding of tumour cells to the vasculature 
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(reviewed in: Kobayashi et al., 2007), for example E-selectin has been shown to regulate 

adhesion of a variety of cancer cell types, including lymphoma (Yoneda et al., 1994). In support 

of these studies, it has been shown that treatment with an SPHK1 inhibitor reduced 

metastases of a murine model of breast cancer to lymph nodes and lungs (Nagahashi et al., 

2012). Therefore, the S1P-induced upregulation of endothelial cell adhesion molecules and 

chemokines may contribute to DLBCL spread as well as leukocyte recruitment. 

In addition to angiogenesis and leukocyte recruitment, genes upregulated in HUVEC by S1P 

were also enriched for anti-apoptotic functions, these included BCL2 related protein A1 

(BCL2A1). The anti-apoptotic effects of S1P in endothelial cells has previously been described. 

For example, it has been shown that S1P protects HUVEC from serum starvation (Hisano et al., 

1999, Kwon et al., 2001). 
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CHAPTER FIVE 

POTENTIAL THERAPEUTIC INHIBITION OF S1P-INDUCED 

ANGIOGENESIS AND STROMAL CELL RECRUITMENT IN 

DLBCL
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5.1 Abstract 

One third of patients with DLBCL have refractory disease or will relapse after current therapies 

and will eventually succumb to their disease. This highlights the necessity for the development 

of novel targeted therapies to treat DLBCL patients. In the preceding chapters I have shown 

that genes co-expressed with SPHK1 in primary DLBCL tumours are enriched for angiogenic 

gene signatures. In vitro I have provided evidence that in addition to the upregulation of 

angiogenic genes, the treatment of endothelial cells with S1P can mediate the increased 

secretion of chemokines known to be involved in monocyte and granulocyte migration. This 

is supported by the observation that macrophage and granulocyte gene signatures are 

enriched in genes co-expressed with SPHK1 in primary DLBCL. 

Therefore, inhibiting S1P signalling could not only target angiogenesis but also reduce stromal 

cell recruitment. To date, targeting S1P signalling has not been explored to treat angiogenesis 

in patients with primary DLBCL. In this part of the work I set out to test the ability of two 

available S1P signalling targeting drugs, Sphingomab and FTY720, to inhibit S1P-mediated 

angiogenesis and stromal cell recruitment. Sphingomab is an anti-S1P monoclonal antibody 

which sequesters S1P, preventing it from binding to its receptors. FTY720 is an analogue of 

sphingosine which binds to S1PR1, 3, 4 and 5. FTY720 binding induces S1PR1 internalisation 

and degradation resulting in prolonged receptor downregulation (Matloubian et al., 2004).   

 Here I first explore, using these inhibitors, the potential inhibition of S1P-induced activation 

of signalling pathways and gene expression changes in endothelial cells in vitro before 

validating a relevant murine model in which to test the potential therapeutic effects of S1P 

inhibition.
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5.2 Results 

5.2.1 Inhibition of S1P-induced ERK activation in HUVEC by Sphingomab and FTY720 

To test Sphingomab and FTY720 for their potential to inhibit S1P-mediated angiogenesis and 

stromal cell recruitment in DLBCL I first explored the ability of these drugs to inhibit S1P-

induced activation of ERK in HUVEC. To do this I treated HUVEC with Sphingomab at a range 

of concentrations. These experiments showed that Sphingomab blocked S1P-induced ERK 

activation in HUVEC at both 40 μg/ml and 75 μg/ml (Figure 5.1A). Importantly, the S1P-

induced ERK activation in HUVEC did occur in the presence of the same concentration of an 

isotype control antibody (Figure 5.1B). For all subsequent treatments I chose a concentration 

of 75 μg/ml of Sphingomab in the presence of 0.5 μM S1P to ensure efficient inhibition of S1P-

induced signalling. This concentration is similar to those previously used by other studies 

(O'Brien et al., 2009).  

Next, I explored the potential of FTY720 to inhibit the S1P-induced activation of ERK in HUVEC. 

I treated HUVEC with a range of concentrations of FTY720 for 1 hour prior to treatment with 

S1P. Figure 5.2 shows that 10 μM FTY720 blocked the S1P-induced activation of ERK. 
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Figure 5.1: Sphingomab inhibits S1P-induced ERK activation in HUVEC. (A) HUVEC were stimulated 
with S1P in the presence of increasing concentrations of Sphingomab (SmAb) and harvested at 5 
minutes. Immunoblotting revealed that compared to controls, Sphingomab blocked 0.5 μM S1P-
induced ERK activation in a dose dependent manner with total reversal of ERK activation in the 
presence of 40 ug/ml and 75 ug/ml of Sphingomab. β-tubulin confirmed equal loading of samples. 
(B) HUVEC were stimulated with S1P in the presence of 75 ug/ml Sphingomab (SmAb) or isotype 
control antibody (CmAb) and harvested at 5 minutes. Immunblotting revealed that the S1P-induced 
ERK activation was completely inhibited with Sphingomab but not with the isotype control 
antibody.  β-tubulin confirmed equal loading of samples. Data shown are representative of three 
independent experiments from three different HUVEC donors.       
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Figure 5.2: FTY720 inhibits S1P-induced ERK activation in HUVEC. HUVEC were pre-treated 
with increasing concentrations of FTY720 for 1 hour and then harvested following treatment 
with S1P for 5 minutes. Immunoblotting revealed that compared to control, FTY720 blocked 
S1P-induced ERK activation in a dose dependent manner with complete inhibition of ERK 
activation in the presence of 10 μM FTY720. 10 μM FTY720 treatment alone had no effect on 
ERK activation compared to control. β-tubulin confirmed equal loading of samples. Data shown 
are representative of three independent experiments from three different HUVEC donors.       
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5.2.2 Inhibition of S1P-induced gene upregulation in HUVEC 

Having shown that both Sphingomab and FTY720 can block the S1P-induced activation of ERK 

in HUVEC, I next wanted to explore if these drugs could also block the induction of S1P-induced 

gene expression in HUVEC. I performed qPCR on HUVEC treated with S1P for 4 hours in the 

presence of Sphingomab, FTY720 or controls. Figure 5.3 shows that Sphingomab inhibited the 

S1P-induced upregulation of ICAM1, SELE, CXCL1, and CXCL8 mRNA whereas the isotype 

control antibody did not. However, FTY720 treatment resulted in the upregulation of these 

genes (Figure 5.4). In subsequent experiments I focussed only on Sphingomab.  

5.2.3 Inhibition of S1P-induced chemokine release from HUVEC 

I next studied if the S1P-induced release of CXCL1 and IL8 from HUVEC could be inhibited in 

the presence of Sphingomab. Cells were treated with two doses of S1P in the presence of 

either Sphingomab or isotype control antibody. Conditioned media was harvested after 12 

hours and subjected to ELISA analysis.  Figure 5.5 shows that in the presence of Sphingomab 

the S1P-induced increase in CXCL1 and IL8 levels from HUVEC was inhibited.  By contrast, the 

isotype control antibody had no effect on the level of these chemokines following S1P 

treatment. 
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Figure 5.3: Sphingomab blocks the S1P-induced upregulation of adhesion molecules and 
chemokines in HUVEC. HUVEC were treated with S1P in the presence of Sphingomab (S mAb) or 
isotype control antibody (C mAb) for 4 hours. qPCR analysis shows that the S1P-induced 
upregulation of adhesion molecule genes ICAM1 (A) and SELE (B); and chemokine genes CXCL1 (C) 
and CXCL8 (D) was inhibited in the presence of Sphingomab, whereas isotype control antibody had 
no effect. Data shown are representative of three independent experiments from three different 

HUVEC donors. Samples were analysed in triplicate and are presented as 2
-ΔΔCT  

values in comparison 
to corresponding control.  
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Figure 5.4:  FTY720 induces the upregulation of adhesion molecules and chemokines in HUVEC. 
HUVEC were pre-treated with FTY720 (FTY) for 1 hour prior to S1P treatment for an additional four 
hours. qPCR analysis shows that FTY720 treatment alone induced upregulation of ICAM1 (A), SELE 
(B), CXCL1 (C) and CXCL8 (D). Data shown are representative of three independent experiments from 

three different HUVEC donors. Samples were analysed in triplicate and are presented as 2
-ΔΔCT  

values 
in comparison to corresponding control.  



|146 
 

 

 

 

 

Figure 5.5: Sphingomab inhibits the S1P-induced increase in chemokine levels in HUVEC. An ELISA 
was used to measure the levels of CXCL1 (A) and IL8 (B) in the conditioned media of HUVEC treated 
with S1P in the presence of Sphingomab (S mAb) or isotype control antibody (C mAb) for 12 hours. 
Analysis reveals the inhibition of S1P-induced increase in CXCL1 and IL8 levels in the presence of 
Sphingomab, but not in the presence of isotype control antibody. Data are represented as mean 
±SEM of four separate experiments. Students T-test.*** p<0.001. n/s = not significant.  
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5.2.4 In vitro studies for the validation of A20 BALB/c syngeneic model of DLBCL to test the 

potential therapeutic effects of SPHK1-S1P signalling targeting drugs 

A20 Cell Line Expresses SPHK1 

I chose to validate the A20 mouse model of lymphoma, in which immunocompetent BALB/c 

mice are injected with the A20 syngeneic B lymphoma cell line, to study the therapeutic effects 

of Sphingomab. This model has previously been used to study the microenvironment of DLBCL 

including the preclinical in vivo evaluation of immunotherapy against lymphoma (Briones et 

al., 2002, Siegel et al., 2003, Chaise et al., 2007, Serafini et al., 2008, Elpek et al., 2007). In the 

first instance I studied the expression of SPHK1 and its phosphorylation in the A20 cell line 

grown in vitro using immunoblotting. This suggests that A20 cells produce S1P like DLBCL 

primary tumours and is therefore a relevant cell model to study SPHK1-S1P signalling targeting 

drugs (Figure 5.6). 

S1P activates ERK in mouse endothelial cells 

For the next set of experiments I wanted to determine if S1P can also activate signalling in 

mouse endothelial cells. I was unable to successfully propagate mouse BALB/c endothelial 

cells in culture so I chose an extensively used murine endothelial cell line, sEnd-1 (Williams et 

al., 1989). I treated sEnd-1 cells with increasing concentrations of S1P and performed 

immunoblotting against pERK. Figure 5.7 reveals that sEnd-1 cells had a high basal level of 

pERK, attributed to the expression of polyoma middle T antigen, which mimics an activated 

growth receptor and activates many downstream signalling pathways (Schaffhausen and 

Roberts, 2009). A modest increase in pERK was detected by immunoblotting in those cells 
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treated with S1P. Due to this I performed densitometry to confirm the activation of ERK in 

those cells treated with S1P compared to control.  

S1P upregulates expression of adhesion molecules and chemokines in mouse endothelial 

cells 

Having shown that S1P activates ERK in mouse endothelial cells, I next wanted to determine 

if S1P can also upregulate adhesion molecules and chemokines in these cells. Mice do not 

express CXCL8, and CXCL1 is widely accepted as the functional homologue of CXCL8 in the 

mouse. I performed qPCR for ICAM1, SELE and CXCL1 on sEnd-1 cells treated with S1P for 4 

hours. Figure 5.8 shows that the expression of all three genes was upregulated following S1P 

treatment.
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Figure 5.6: A20 cells express SPHK1. Immunoblotting confirmed the expression of SPHK1 and its 
phosphorylation in the A20 cell line grown in vitro. β-tubulin confirmed equal loading of sample. 
Data shown are representative of three independent experiments  
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Figure 5.7: S1P activates ERK in sEnd-1 cells. sEnd-1 cells were treated with S1P at the indicated 
concentrations and harvested at 5 minutes. Immunoblotting reveals the S1P-induced activation of 
ERK compared to control cells. β-tubulin confirmed equal loading of sample. Data shown are 
representative of three independent experiments. Densitometry analysis of pERK expression is 
shown (bottom). Results were normalised by setting the densitometry of control cells to 1.0. Data 
shown are mean ±SEM of three separate experiments. Students T-test. *p<0.05, **p<0.01. 
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Figure 5.8: S1P treatment of sEnd-1 cells is followed by the upregulation of ICAM1, SELE and 
CXCL1. sEnd-1 cells were treated with S1P at the indicated concentrations for 4 hours and subjected 
to qPCR analysis. This analysis reveals the upregulation of murine ICAM1 (A), SELE (B) and CXCL1 (C) 

genes. Samples were analysed in triplicate and are presented as 2
-ΔΔCT  

values in comparison to 
corresponding control.  
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5.2.5 In vivo studies for the validation of A20 BALB/c syngeneic model of DLBCL to test the 

potential therapeutic effects of SPHK1-S1P signalling targeting drugs 

A pilot study was performed to study the growth kinetics and engraftment of A20 cells injected 

intravenously into two BALB/c mice. A20 engrafted mice were culled at a humane endpoint 

(day 28). Post mortem revealed that animals had enlarged spleens and livers indicating 

engraftment of tumours in these organs (Figure 5.9A). Tumour load was measured by weight 

of engrafted organs compared to organs from control animals (Figure 5.9B). H&E staining 

confirmed the engraftment of tumour cells in the spleens and livers which revealed multiple 

foci of rounded aggregates of tumour cells distributed throughout both organs (Figure 5.9C).  

IHC was performed on sections from the A20 engrafted livers and spleens. A20 engrafted 

tumour cells were positive for SPHK1 in both the spleen and liver (Figure 5.8). Additionally 

tumours contained CD31+ endothelial cells, CD15+ granulocytes and CD68+ macrophages 

(Figure 5.10).



|153 
 

 

 

 

 

Figure 5.9. A20 lymphoma cell infiltration of mouse spleen and liver following intravenous 
injection. Two BALB/c mice were injected intravenously with A20 tumour cells (A20 IV-1 and A20 
IV-2) and sacrificed after 28 days. Post mortem revealed enlarged spleens and livers in the A20 IV 
animals compared to corresponding organs from a control mouse (A, left and right panels, 
respectively). Spleen and liver weights of A20 IV animals was increased compared to control (B, left 
and right panels, respectively). H&E IHC sections confirmed the engraftment of A20 tumour cells 
(black arrows) in the spleen and liver (C, left and right panels, respectively).  
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Figure 5.10: A20 tumours express SPHK1 and recruit stromal cell components in vivo. IHC analysis of 
sections from A20 engrafted spleen and liver (left and right panels, respectively) revealed A20 tumour 
cell expression of SPHK1, infiltration of tumour cells with endothelial cells (H&E black arrows and CD31), 
granulocytes (CD15) and macrophages (CD68).  
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5.3 Discussion 

In this chapter I have shown that I can inhibit S1P-induced gene expression in HUVEC. I also 

demonstrated that the A20 syngeneic B-cell lymphoma mouse model can be used to study the 

therapeutic targeting of SPHK1-S1P signalling.  

Sphingomab, a monoclonal antibody against S1P, blocked the S1P-induced activation of ERK, 

the upregulation of S1P targets and chemokine release in HUVEC. This supports in vivo studies 

which have shown that in the presence of Sphinomab, microvessel density was reduced in 

lung and ovarian tumour mouse models (Visentin et al., 2006). Previous studies have also 

shown that Sphingomab can significantly reduce macrophage infiltration and vascularisation 

in mice with oxygen induced ischemic retinopathy (Xie et al., 2009). Taken together, these 

observations could support the future testing of Sphingomab in preclinical models of DLBCL. 

In contrast, treatment of HUVEC with FTY720 induced the upregulation of S1P target genes. 

FTY720 is an S1P receptor agonist, however these effects are followed by the prolonged 

downregulation of S1PR1 from the cell surface. It is possible that the upregulation of S1P 

target genes which I observed reflects the initial agonistic function of FTY720. It would be 

important to explore the effects of FTY720 on S1P-mediated upregulation of genes at a time 

point later than 4 hours. The inhibitory effects of FTY720 on S1P-mediated angiogenesis has 

been demonstrated in melanoma, lung and hepatocellular carcinoma mouse xenograft 

models, which showed reduction in blood vessel density following treatment with FTY720 

(Schmid et al., 2005, LaMontagne et al., 2006, Ho et al., 2005).  
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The potential therapeutic effects of S1P signalling inhibitors on tumour angiogenesis and 

stromal cell recruitment have not been explored in a preclinical model of DLBCL. I have shown 

here that the A20 syngeneic model of DLBCL could be used to assess the efficacy of SPHK1-

S1P targeting compounds in vivo. Furthermore I have shown using the sEnd-1 cell line that S1P 

can induce adhesion molecules and chemokines expression in mouse endothelial cells, albeit 

to a lesser extent than I observed in HUVEC. At the time of writing, experiments are underway 

to investigate if the S1P neutralising antibody, Sphingomab, can inhibit S1P target gene 

expression in the endothelial cells of A20 tumours. Furthermore it is important to note that 

differences exist in chemokine expression between the human and mouse. For example, IL8 

is expressed in humans but not in the mouse.  

A20 tumours displayed evidence of recruitment of macrophages, granulocytes and 

endothelial cells, further confirming the utility of this model to explore the effects of S1P on 

these stromal cells. To identify macrophages and granulocytes I used well established 

antibodies to detect CD68 and CD15 directed against human proteins. In preliminary 

experiments I showed that mouse cells with a morphology characteristic of macrophages and 

granulocytes were strongly stained with the anti-human CD68 and CD15, respectively.  In 

future studies I plan to use reagents directed against mouse markers, for example, F4/80 

which is expressed on most tissue macrophages in the mouse. Future work could also include 

the identification of the M1 and M2 phenotype of macrophages to assess the potential 

changes in the ratio of these macrophage types following treatment with SPHK-S1P targeting 

agents. Furthermore, the characterisation of the granulocytic cells infiltrating the tumour 

could be performed such as the identification of neutrophils by expression of Ly6G. 
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The multiplexed IHC technology analysed on multiplex biomarker imaging systems, such as 

the OPAL staining analysed on the Vectra quantitative imaging system (both; PerkinElmer Inc. 

Seer Green, United Kingdom), could be considered. In addition to a more sensitive and 

accurate analysis of the infiltrating stromal cells, this would allow for multiplex staining, which 

could include F4/80 and MHC class II staining to identify M1 macrophages and F4/80 and 

CD206 and/or CD163 to identify M2 macrophages.
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CHAPTER SIX 

CONCLUSIONS AND FUTURE PERSPECTIVES
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DLBCL is a highly heterogeneous disease both molecularly and clinically. However, most 

patients are treated with the R-CHOP regimen. Although the addition of rituximab to CHOP 

saw great improvements in the survival of DLBCL patients, one-third of patients still relapse 

or have refractory disease and 5 year overall survival is only 60% (HMRN, 2016). Novel 

therapies that target components of the tumour microenvironment are being developed that 

might provide better, less toxic treatments. 

 In this thesis I have focussed on the potential contribution of S1P signalling to the phenotype 

of the tumour microenvironment. My data show that expression of SPHK1, the major enzyme 

that produces S1P, is associated with the expression of angiogenic genes in DLBCL. 

Furthermore, my studies also showed that many of the transcriptional changes induced by the 

treatment of endothelial cells with S1P in vitro were evident in SPHK1-expressing tumours, 

suggesting that tumour-derived S1P is likely to be involved in tumour angiogenesis in DLBCL.  

Clinical trials of angiogenesis inhibitors have so far produced disappointing results. However 

this may have been because some tumours show less evidence of an angiogenic phenotype 

and therefore might be less susceptible to anti-angiogenic drugs. Alternatively, the angiogenic 

phenotype may be driven by another signalling pathway to VEGF, such as SPHK1-S1P. 

Stratification of patients up front before therapy should be considered before anti-angiogenic 

treatments. In this regard it is noteworthy that a phase two clinical trials of Sphingomab in 

renal cell carcinoma patients was terminated as the overall median time to progression was 

less than two months in 39 patients. However, this clinical trial did not stratify patients to 

identify which would benefit from Sphingomab treatment. Seven patients were progression 
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free for at least six months and three of which were for over 20 months. Six patients still 

received treatment at the date of the report (PRnewswire, 2015) 

To identify patients who might benefit from SPHK1-S1P signalling targeting therapies, future 

studies could identify or develop useful biomarkers which would enable stratification of 

patients. Considerations could be to identify those patients with tumours which express high 

levels of SPHK1 and/or tumours with high microvessel density, both of which could be 

identified from tumour biopsies. Another possibility could be the development of a test to 

identify whether serum S1P levels are a useful biomarker. Furthermore, with the ever 

advancing technology in the field of diagnostics,  the presence of an S1P signalling expression 

profile, determined by gene expression profiling of patient samples, could be used to identify 

those patients which would potentially benefit from SPHK1-S1P signalling targeting agents. 

As well as having direct effects on the expression of angiogenesis-associated genes in 

endothelial cells, my data also point to important contributions of S1P-induced endothelial 

cell-derived chemokines, to the pathogenesis of DLBCL. My preliminary studies and the work 

of other groups suggest that the induction of these chemokines by S1P is likely to be important 

for endothelial cell mediated recruitment of stromal cells including monocytes/macrophages 

and granulocytes, to DLBCL. These cell types are known to contribute to tumour cell survival 

and immune escape (Qian and Pollard, 2010, Schwaller et al., 2007).  

I was able to block S1P-induced ERK activation and gene expression changes in HUVEC, 

suggesting that drugs such as Sphingomab might reverse S1P-induced tumour angiogenesis 

and endothelial cell mediated stromal cell recruitment. In addition to Sphingomab, further 

work could also include FTY720. FTY720, which has also been shown to be an effective agent 
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in many types of cancer in animal models, is already being used clinically for the treatment of 

multiple sclerosis (Brinkmann et al., 2010, Kappos et al., 2006). Focussing on an agent which 

is already FDA approved, could mean getting FTY720 into DLBCL treatment regimens faster.   

Pre-clinical studies on the feasibility of using SPHK1-S1P targeting compounds to treat DLBCL 

are necessary before clinical trials can be considered. I have shown that the A20 syngeneic 

model of DLBCL would seem to be a relevant model with which to assess the efficacy of SPHK1-

S1P targeting compounds in vivo. It would be especially desirable to study the effects of 

inhibiting SPHK-S1P signalling using either humanised mouse models with human B cell 

lymphoma cells implanted, or patient derived xenografts (PDX) models. PDX models, which 

are based on the transfer of primary tumours directly from the patient into an 

immunodeficient mouse, are reported to maintain more similarities to the parental tumour 

such as histology and gene expression profiling (Siolas and Hannon, 2013).  

Although some way off a clinical trial, it is worth considering where in the care pathway drugs 

that target SPHK1-S1P signalling might be positioned. It seems likely that in the first instance 

they will be tested in patients treated unsuccessfully with front-line and salvage therapies. If 

successful in this scenario then trials with and without these new drugs in combination with 

R-CHOP could be considered. 
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APPENDICES 

Appendix 1: SPHK1 and S1P receptor IHC staining results of primary DLBCL cases 

+ = positive, - = negative, NA = not available, yellow shading = no internal positive control. 

Case 
Number  

SPHK1 
Tumour 

expression 

S1PR1 
Endothelial 

cell 
expression 

S1PR2 
Endothelial 

cell 
expression 

S1PR3 
Endothelial 

cell 
expression 

95 +  +  -   - 

102  -  +  -   -  

112 +  +  -   - 

134 +  +  -   - 

138 CRUSHED CRUSHED  CRUSHED   CRUSHED 

150 +  +  -   - 

154 +  +  -   -  

155 +  +  -   - 

159 +  +  -   - 

160 +  +  -   -  

161 +  +  -   -  

162 +  +  -   - 

166 +  +  -   -  

175 +  +  -   - 

176 +  +  -   -  

177 +  +  -   - 

182 +  +  -  NA 

189 +  +  -   - 

190 +  +  -   - 

191 +  +  -   - 

195 +  + NA  - 

196 -  +  -   - 

197 + NA  -   -  

198 +  +  -   - 

199 + NA  -  NA 

200 +  +  -  - 

203 +  + NA  -  

204 +  +  -   - 

207 +  +  -   - 

208 +  +  -   -  

209 +  +  -   -  

211 +  +  -   -  

212 +  +  -   -  

213 +  +  -   -  

214 +  + NA  -  

215 +  +  -   -  

220 +  +  -   -  

227 +  +  -   - 

231 +  +  -  -  
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Appendix 2: Genes regulated by S1P in HUVEC 

Genes downregulated by S1P in HUVEC Genes upregulated by S1P in HUVEC 

Gene Symbol Fold Change P-Value Gene Symbol Fold Change P-Value 

NELL2 -3.18 0.010 CSF2 3.39 1.87E-07 

ZNF888 -2.80 0.000 BCL2A1 3.37 7.38E-05 

CSNK1E -2.70 0.000 CSF3 3.34 3.66E-07 

CMPK2 -2.65 0.039 NBPF25P 3.00 0.026 

NEU3 -2.54 0.030 CCL7 2.80 0.001 

TBC1D3P1-DHX40P1 -2.45 0.028 TRAF1 2.48 0.000 

GPRASP1 -2.42 0.001 MORN3 2.43 0.002 

LOC441155 -2.39 0.046 COL1A1 2.29 0.001 

CEP170P1 -2.36 0.037 KCNN2 2.22 0.027 

FLRT3 -2.28 0.001 CX3CL1 2.20 0.002 

CCNE2 -2.20 0.003 PXN-AS1 2.18 0.004 

ZNF808 -2.19 0.003 CXCL3 2.14 0.000 

PLCL1 -2.17 0.027 MRS2P2 2.14 0.002 

CRYBG3 -2.15 0.030 SELE 2.08 0.002 

MKRN9P -2.08 0.014 CYSRT1 2.03 0.042 

HIST2H2BE -2.06 0.004 PTPN7 2.00 0.003 

SERPINI1 -2.05 0.016 PWARSN 1.99 0.003 

ULBP3 -1.96 0.040 LOC100506076 1.96 0.009 

CEP152 -1.96 0.000 S100A3 1.96 0.031 

GALNT15 -1.94 0.021 RRAD 1.94 0.001 

ZNF680 -1.92 0.013 CCNI2 1.93 0.016 

DOCK3 -1.92 0.049 C19orf18 1.93 0.022 

FOXF1 -1.92 0.028 ZP3 1.91 0.020 

FAM156A -1.92 0.028 LTB 1.89 0.026 

NHS -1.89 0.034 POU2F2 1.83 0.008 

FSTL5 -1.87 0.001 CD83 1.82 0.006 

MANEA -1.87 0.002 BIRC3 1.81 0.001 

ZNF488 -1.87 0.017 VSIG2 1.80 0.007 

ZNF549 -1.84 0.047 UFSP1 1.79 0.035 

CNTN1 -1.83 0.022 RASSF8-AS1 1.78 0.033 

CYP26B1 -1.83 0.011 VCAM1 1.77 0.022 

RAB43 -1.83 0.017 PDE8B 1.77 0.022 

DNAJB4 -1.78 0.043 MIR17HG 1.76 0.012 

PYGO1 -1.78 0.022 LOC101929709 1.75 0.007 

RFXAP -1.77 0.002 EIF4EBP3 1.75 0.035 

E2F8 -1.77 0.021 ANKHD1-EIF4EBP3 1.74 0.012 

SENP7 -1.77 0.044 LOC100128398 1.74 0.012 

SATB2 -1.76 0.042 LOC286437 1.73 0.037 

PFKFB2 -1.76 0.045 MEI1 1.73 0.025 
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HSPA4L -1.75 0.014 MT1X 1.72 0.023 

CYB5R4 -1.74 0.007 LOC101926963 1.72 0.007 

PKNOX2 -1.72 0.017 MYEOV 1.71 0.028 

ZNF92 -1.71 0.011 LOC100131564 1.71 0.007 

PCGF6 -1.71 0.027 PSORS1C1 1.70 0.026 

DDX60 -1.70 0.023 ADM2 1.70 0.027 

CMTR2 -1.69 0.034 ANG 1.68 0.010 

KIAA1109 -1.69 0.002 HIST1H2BD 1.67 0.015 

FREM3 -1.69 0.048 RND1 1.67 0.008 

IGFBP5 -1.68 0.022 TNFAIP2 1.65 0.001 

RECQL -1.68 0.029 PRSS53 1.64 0.009 

APC -1.65 0.001 CXCL12 1.64 0.041 

UPRT -1.64 0.005 RELB 1.64 0.002 

RNFT1 -1.64 0.033 MYADM 1.64 0.001 

TSPAN12 -1.62 0.022 MFI2-AS1 1.63 0.017 

UBE2V1 -1.61 0.043 RNF207 1.63 0.043 

GRAMD1C -1.61 0.032 TFPT 1.62 0.046 

SESN3 -1.60 0.023 KANSL1-AS1 1.60 0.028 

USP53 -1.60 0.014 ARL17A 1.59 0.047 

CFAP44 -1.59 0.013 SPHK1 1.59 0.013 

CEP128 -1.59 0.010 PPM1J 1.59 0.025 

C1orf226 -1.58 0.023 ICOSLG 1.58 0.004 

CHML -1.58 0.017 ANKRD18B 1.58 0.021 

ARHGAP28 -1.58 0.009 LOC102724434 1.57 0.038 

REV3L -1.58 0.028 ICAM1 1.57 0.005 

WNK3 -1.58 0.044 SPOCD1 1.57 0.011 

TEF -1.58 0.027 ISG20 1.56 0.036 

LOC727896 -1.57 0.029 LRP2BP 1.56 0.019 

KIF14 -1.57 0.019 ZBED3 1.56 0.010 

ZBTB41 -1.56 0.032 C11orf80 1.55 0.014 

SNX16 -1.55 0.021 DNAH5 1.55 0.044 

ZSCAN31 -1.55 0.050 IFI27L1 1.54 0.028 

TFEC -1.54 0.019 PET100 1.54 0.024 

CNTRL -1.54 0.013 C8orf76 1.54 0.048 

ZNF644 -1.54 0.029 C2CD4B 1.53 0.020 

PDIK1L -1.54 0.037 LINC00152 1.53 0.037 

EGR1 -1.53 0.030 PIN1P1 1.53 0.042 

FAM117B -1.53 0.029 PRNCR1 1.51 0.011 

ZNF112 -1.52 0.017 C11orf91 1.50 0.034 

ZNF765 -1.52 0.023 DNPH1 1.50 0.049 

ZNF215 -1.52 0.041 MAP1B 1.49 0.033 

ETNK1 -1.51 0.022 SDC4 1.49 0.002 

XRN1 -1.51 0.047 STAG3L1 1.49 0.039 

ZNF678 -1.51 0.034 GATA2-AS1 1.48 0.017 
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ZDHHC17 -1.50 0.044 CASC10 1.48 0.031 

INCA1 -1.50 0.049 NFKB2 1.48 0.009 

RNF182 -1.50 0.046 POLR2J3 1.48 0.049 

USP32P1 -1.50 0.050 DHRS4L2 1.48 0.044 

MIS18BP1 -1.49 0.026 FTH1P3 1.48 0.039 

GJA5 -1.49 0.049 MSX1 1.47 0.043 

AHCTF1P1 -1.48 0.031 TRIM47 1.46 0.015 

TMEM79 -1.48 0.047 SOX4 1.43 0.035 

SEMA6A -1.47 0.032 CCL2 1.43 0.011 

TBK1 -1.47 0.008 DAPK3 1.43 0.031 

LACTB2 -1.47 0.038 UPP1 1.43 0.045 

ZNF100 -1.47 0.045 MIR155HG 1.42 0.042 

USP45 -1.47 0.043 FGGY 1.41 0.037 

ZNF117 -1.47 0.041 LINC-PINT 1.41 0.036 

TTK -1.46 0.014 CEBPD 1.40 0.027 

CDKN2C -1.46 0.018 ANGPTL4 1.40 0.025 

NRROS -1.45 0.016 HLX 1.40 0.033 

ZCCHC11 -1.45 0.029 C10orf54 1.39 0.026 

TOP1P1 -1.45 0.043 GFPT2 1.39 0.031 

KIAA1551 -1.45 0.028 RASAL3 1.39 0.050 

TRMT1L -1.45 0.027 FSTL3 1.38 0.032 

HLTF -1.44 0.035 PDGFA 1.38 0.019 

MAF -1.44 0.039 MED18 1.37 0.043 

DLL4 -1.44 0.029 PLAUR 1.37 0.022 

EVI2B -1.43 0.049 TMEM217 1.37 0.025 

DNAJB14 -1.43 0.031 KLF6 1.35 0.023 

RANBP2 -1.43 0.025 PHF20 1.35 0.023 

FERMT1 -1.43 0.042 RSPO3 1.33 0.035 

IFT80 -1.43 0.040 COL27A1 1.33 0.038 

ATG4C -1.42 0.044 ITSN2 1.32 0.038 

GMFB -1.42 0.022 CALD1 1.30 0.037 

DDX26B -1.41 0.042 CXCL1 1.30 0.041 

TBC1D31 -1.41 0.045 RUNX1T1 1.30 0.018 

FAR1 -1.41 0.016    

TTC37 -1.41 0.028    

LRRC40 -1.40 0.039    

BRWD3 -1.40 0.033    

USO1 -1.40 0.037    

MPHOSPH9 -1.39 0.032    

SMCHD1 -1.39 0.043    

MSH2 -1.38 0.031    

STAG2 -1.38 0.030    

CRY2 -1.35 0.034    
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