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Abstract  

Human sperm motility is complex, involving several behaviours with different functions. The 

sperm ‘selects’ and switches between behaviours by using calcium signalling. For example, 

during the sperm’s transit through the female reproductive tract, it undergoes molecular 

changes (capacitation, which is absolutely necessary for successful fertilisation). This is 

accompanied by the adoption of a whiplash-like behaviour called hyperactivation, which 

enables the sperm to penetrate the oocyte. Many infertile men have sufficient sperm, but their 

sperm have decreased in motility and/or have failed to adopt the appropriate behaviours, and 

so they fail to reach and/or fertilise the oocyte. In order to develop a treatment for these cases, 

it is important to understand the determination and regulation of sperm motility (Alasmari et 

al.,2013; Tamburrino et al.,2014).  

In this project, I investigated the effects on human sperm behaviour of the preparation 

method (conventional density gradient method versus the direct swim up method) and 

manipulation of Ca2+ store mobilisation (5 mM 4-aminopyridine) and CatSper activation 

(3µM progesterone and 2µM prostaglandin E1) and assessed the efficacy of the different 

behaviours for penetration through artificial viscous and viscoelastic environments composed 

of methylcellulose and polyacrylamide.  

Levels of spontaneously-occurring hyperactivated motility were greater in density-gradient 

than swim-up prepared cells (6.25% vs 3.75% p<0.05) but swim-up cells performed better in 

the Kremer penetration test (p<0.005). 4-AP proved a potent inducer of hyperactivated 

motility (p<0.0001) but inhibited penetration into viscous medium (methylcellulose; 

p=0.004) in cells prepared by both methods. Similar results were observed with penetration 

into visco-elastic (polyacrylamide) medium. 2µM prostaglandin E1 failed to stimulate 

hyperactivated motility in SU cells (p>0.05) but slightly increased hyperactivation in density 

gradient cells (p<0.05). Assessment of progesterone-induced [Ca2+]i responses showed that 
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the proportion of responsive cells and the amplitudes of both transient and sustained 

responses were greater in swim-up cells than in density-gradient prepared cells (p<0.05). 

CatSper immunostaining showed greater levels of expression in swim-up cells (p<0.05).       

Keywords: Male Infertility, Regulation of Motility, Computer assisted semen analysis 

(CASA), Kremer’s penetration test, Capacitation, Hyperactivation, CatSper, Conventional 

Density Gradient (DG), Direct Swim-up (SU), 4-Aminopyridine (4-AP), Prostaglandin E1 

(PE1), Progesterone (P4), Methylcellulose, Polyacrylamide.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 Acknowledgments  

I would like to thank my supervisor Dr Stephen Publicover for his valuable advice and 

support without which this thesis would not have been possible. Your valuable guidance 

helped me to gain skills (both research and managerial) that are the biggest assets in 

supporting my future career options.      

I would also like to this opportunity to thank Prof C.L.R. Barratt from Reproductive and 

Developmental Biology, Medical school, Nine wells hospital, University of Dundee – DD1 

9SY for providing his valuable advice with the penetration test.   

Also, I would like to thank Dr Linda Lefievre from Reproductive Biology and Genetics 

group, Division of Medical Sciences – University of Birmingham for giving her valuable 

suggestions. 

I would also like to thank School of Biosciences and School of Medical Sciences – 

University of Birmingham for providing the resources for continuing the project. 

I would personally like to acknowledge research donors for their active participation in 

donating samples for the smooth progress of the research work. 

I would also like to thank my colleagues Joa, Jenny, Cosmos, Elis and Sarah with whom I 

have shared the lab and the office space and had knowledgeable talks with them. I would also 

like to take this opportunity to thank support staff (floor maintenance and IT services) for 

providing up to date information on possible electric shutdowns and suggestions on data 

backup. Also, I would like to thank Ali and all the members on the 8th floor; I had a great 

time with them in sharing some valuable thoughts on career planning.  



5 
 

Last but not least I am incredibly grateful to my grandparents and my parents for supporting 

me throughout my studies and encouraging me in giving the confidence that I can fulfil my 

dreams and successfully move forward in life.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

TABLE OF CONTENTS 

TITLE PAGE……………………………………………………………………………….1 

ABSTRACT………………………………………………………………………………...2-3 

ACKNOWLEDGMENTS….……………………………………………………………...4-5 

TABLE OF CONTENTS…………………………………………………………………6-12 

LIST OF FIGURES……………...……………………………………………………...13-17 

LIST OF TABLES……………...……………………………………...………………….18 

LIST OF ABBREVIATIONS……………...……………………………………...…...19-25  

 

CHAPTER ONE: INTRODUCTION  
 
1.1 The Human reproductive system..............................................................................26-35 

       1.1.1 Anatomy of the Male reproductive system…………………………………….27-30 

               1.1.1.1 Scrotum and Testis………………………………………………….…………….………28 
                
                1.1.1.2 Penis………...…...…………………………………………………….…….……….…28-29 
 
               1.1.1.3 Prostate gland and its secretions………………...………………………….…….……29-30 
                 

       1.1.2 Anatomy of the Female reproductive system………………………………….32-34 

           1.1.2.1 Vagina…………………………………………...…………….……………………………32 
               
            1.1.2.2 Cervix………………………………………………………………….…………………….32-33 
 
           1.1.2.3 Uterus……………………………………………………………...…………………………33-34 
           
          1.1.2.4 Fallopian tubes, Ampulla, Isthmus, Infundibulum and Fimbriae…………………………34 
 
         1.1.2.5 Ovaries…………………………………….………………………………………………….34 
           

1.2 Gametes………….…………………………………………………………………36-45  

1.2.1. The Sperm cell…………………………………………………………………37 



7 
 

  1.2.2 The Sperm’s Architecture………………………………….…………………...39-41  

             1.2.2.1 The Sperm Head………………………………………………………………………...39-40     

               1.2.2.2 The Flagellum………………………………………………………………………...…40-41 

 1.2.3 The Egg cell or Oocyte………………………………….………………………….44               

1.3 The testis and spermatogenesis ……………………………………………………46-50 

1.3.1 Spermatogenesis and Spermiogenesis……………………………………….48-49  

1.4 Post-testicular sperm processing……………………...……………………………51-59 

  1.4.1 Epididymal maturation ………………………………………………………..54-55  

            1.4.1.1 Role of Epididymosomes in Epididymal maturation ………………………………………55 

     1.4.2 Ejaculation……………….……………………………………………………..56-58            

              1.4.2.1 Prostasomes in Semen/Ejaculate ………………………………………….………………57-58  

 

1.5 The Sperm cell’s journey into the Female reproductive tract ………………...60-62
  

1.6 Fertilisation………………………….…………………………………………….63-75 

      1.6.1 Capacitation…………………………………….……………………………63-66 

               1.6.1.1 Fast/early phase of capacitation………………………………………………….……64 

                 1.6.1.2 Slow/Late phase of capacitation……………………………………………………….64-65 

      1.6.2 Hyperactivation………………………………………………………………67-68 

             1.6.2.1 Types of hyperactivated motility………………………………………………….………68  

     1.6.3 Thermotaxis and Chemotaxis.……………………………………………….69-72 

    1.6.4 Acrosome Reaction.……………………………………………….………….73-74 

            1.6.4.1 Zona pellucida and the AR………………………………………………….…………74 
 

1.7 Intracellular calcium signalling tool kit……………………………………………76-85 

           1.7.1 Calcium channels in the PM……….………………………………………77-81 

                   1.7.1.1 Storage operated calcium channels………………………………………….………77-78 

                      1.7.1.2 Canonical transient receptor potential channels…………………………….………78-79 

                  1.7.1.3 Voltage operated calcium channels……………………………………….….………79-80 



8 
 

                 1.7.1.4 CatSper Channel……………………………………….….………………….……….80-81 

          1.7.2 Calcium pumps……….………………………………………….…………81-82   

          

          1.7.3 Mobilisation of Stored calcium through intracellular store channels……84-86 

                    1.7.3.1 Inositol 1,4,5-triphosphate receptors………………………………………….…...83-84 

                        1.7.3.2 Ryanodine receptors………………………………………….…...........................84-85 

1.8 Role of calcium in regulation of motility ……….……………………………….87-90 

 

Aims and Objectives…….…………………………………………………………91-92  

  

 CHAPTER TWO: MATERIALS AND METHODS   
  
2.1 Materials……………………………………………………………………………94-96  

2.1.1 Chemicals…………………………………………………………………94 

2.1.2 Laboratory instruments and consumables……………….………………95-96  

2.2 Donor recruitment…………………………………………………………………96 

2.3 Experimental Work flow…………………………………………………………96-98 
 

2.4 Human sperm preparation …………….………………………………………99-101   

      2.4.1 Direct Swim-up (SU)……………………………………………………….……….…….….......99 

      2.4.2 Density gradient (DG) Centrifugation …………………………………….……….…….…....100-101 

2.5 Assessment of motility by Computer Assisted Semen Analysis (CASA)…….102-103 

2.6 Kremer’s Penetration/Migration Test ……………………………….………...104-106  

2.6.1 Establishment of Artificial Penetration Test…………………………...104-105 
2.6.2 Data Acquisition …………………………………………………..………105 

           2.6.3 DG Data Normalisation...…………....…………………………….………105  



9 
 

2.7 Western Blot/Immunoblot……………………….………………………….........107-109  

2.7.1 Sample preparation…….…………………………….…………………107-108 
2.7.2 SDS-PAGE and Western/Immunoblot setup ….…….…………………108-109 
  

CHAPTER THREE: EFFECT OF SPERM PREPARATION TECHNIQUES (DG 
&SU) ON HUMAN SPERM MOTILITY AND PENETRATION OF ARTIFICIAL 
MUCUS  

3.1 Objective……………………………………………………………………………111  

3.2 Introduction………………………………………………………………………112-115  

3.3 Materials and methods…………………..………………………………………116-117 

                    3.3.1 Materials…………………………...………………………………116 

                   3.3.2 Methods…………………………………………………………….116-117 

                    3.3.2.1 Donor recruitment………………………………………………………………116 

                       3.3.2.2 Sperm cell preparation………………………………………..………………..116-117 

                       3.3.2.3 Computer assisted Semen analysis (CASA)………………………………………117  

                     3.3.2.4 Kremer’s Penetration Test…………………………………….……………………117    

3.4 Results…………………………...……………………………………………...118-132  

3.5 Discussion…………………………………………….…………………………133-135  

 

CHAPTER FOUR: EFFECT OF DIFFERENT BEHAVIOURS ON PENETRATION – 
ARTIFICIAL VISCOUS AND VISCOELASTIC MEDIA (Met/Poly) – DG&SU     

4.1 Objective……………………..……………...…………………………………...137  

4.2 Introduction………………………………………………………………………138-141  

      4.2.1 In Vitro Penetration Test – artificial viscous (methylcellulose) and viscoelastic 
(polyacrylamide) media………………………………………………………………139-141  

              4.2.1.1 Invitro Penetration (Kremer’s) Test …………………………………………………139-140 

             4.2.1.2 Methylcellulose (viscous) – artificial penetration medium (in vitro) ……….…………140 

            4.2.1.3 Polyacrylamide (visco-elastic) – artificial penetration medium (in vitro) ……….…140-141 

         4.2.1.4 Comparison of HCM (Human cervical mucus), methylcellulose and polyacrylamide as human 
sperm penetration media………………………………………………………………… ……….……141 



10 
 

4.3 Materials and methods…………………..………………………………………..142-145 

  4.3.1 Materials…………………………...…………………………………………...142 

                       4.3.1.1Materials – Viscous medium……………….………………….……………………142 

                           4.3.1.2Materials – Visco-elastic medium……………….…………….……………………142 

4.3.2 Methods…………………………………………………………………………143-145  

                    4.3.2.1 Donor recruitment…………………………………………………………………143  

                       4.3.2.2 Human sperm preparation……………………………….…………….……...……143 

                       4.3.2.3 Computer assisted Semen analysis (CASA)……………………………….………143-144   

                     4.3.2.4 Kremer’s Penetration Test……………………………….……………………………144 

                    4.3.2.5 Workflow and Control data…………………………………………………………144-145       

4.4 Results……………………………………………………………………………146-187 

             4.4.1 Assessment of human sperm hyperactivated motility by 4-Aminopyridine 

(4AP), Prostaglandin E1 (PE1) and progesterone (P4) agonists by two different sperm 

preparation techniques – DG & SU…………………………………………………146-158 

          4.4.2 Comparative study of penetration into methylcellulose of sperm prepared by 

the two different sperm preparation techniques when stimulated with 4-Aminopyridine 

(4AP), Prostaglandin E1 (PE1) and progesterone (P4) 

…………………………………………………………………………………………159-172 

           4.4.3 Comparative study of penetration behaviour (polyacrylamide) in relation to 

hyperactivated motility when stimulated with 4-Aminopyridine (4AP), Prostaglandin E1 

(PE1) and progesterone (P4) agonists by two different sperm preparation techniques – DG 

& SU………………………………………………………………………………….173-187 

4.5 Discussion…………………………………………………………………………188-190 

        4.5.1 Effects of 4AP, PE1 and P4 on hyperactivated motility in swim-up compared to 

density gradient…………………………………………………………………………189 



11 
 

        4.5.2 Effects of 4AP, PE1 and P4 on penetration in viscous and viscoelastic 

environments…………………………………………………………………………189-190  

 

CHAPTER FIVE: ASSESSMENT OF CAPACITATION USING PROTEIN 
TYROSINE PHOSPHORYLATION – DIRECT SU & DG   

5.1 Objective………………..……………………………………………………………..192  

5.2 Introduction………………………………………………………………………193-194 

      5.2.1 Capacitation………………….…...…….……….……………………………193 

      5.2.2 Role of Protein TyrP in Capacitation ………………………………………..194   

5.3 Materials and methods………………………………………………………….……195 

      5.3.1 Sample preparation…………..…....……………………………………………...195 

      5.3.2 SDS and Western/Immunoblot setup………….…....…………………………...195   

5.4 Results……………………………………………………………………………196-197  

5.4.1 Comparison of Human Sperm Capacitation in both direct SU and DG using 
TyrP…………………………………………………………………………196-197 
 

5.5 Discussion………………………….…………………………………………………198 
  
 

CHAPTER SIX: INTRACELLULAR CALCIUM SIGNALLING [Ca2+] I & 
ASSESSMENT OF CALCIUM CHANNEL [CATSPER] ACTIVITY – DIRECT SU 
AND DG                        

6.1 Objective……………………….……….……………………………………………200  

6.2 Introduction………………………………………………………………………201-203 

6.3 Materials and methods………………………………..…………………………204-208 

       6.3.1 Single cell imaging………………………………………….…………….204-208 

               6.3.1.1 Sample preparation……………………………………………………………………204 

                 6.3.1.2 Experimental Setup……………………………………………………………………204-205 

                6.3.1.3 Image Acquisition and analysis………………………………………………………..206-207  



12 
 

       6.3.2 Immunofluorescence (IF) ………………………………………………….209-212 

               6.3.2.1 Sample preparation – Direct SU and DG………………………………………………209 

                 6.3.2.2 Experimental procedure………………...……………………………………………209-210 

                6.3.2.3 Data Acquisition………………………………………………………………………….210 

               6.3.2.4 Slide layout…………….…………………………………………………………………….211 

              6.3.2.5 IF Experiment Construction ……………………………………………………………….212 

6.4 Results…………………………………………………………………………….213-225  

     6.4.1 Progesterone (P4) induced intracellular calcium response – direct SU and 
DG……………………………………………………………………………………213-220 

   6.4.2 Evaluation of CatSper protein expression using IF……………………….221-225  

 
6.5 Discussion……………………………………………………………………….226-227  

     6.5.1 Intracellular calcium response – direct SU and DG …………………………226 

     6.5.2 Evaluation of CatSper protein expression using IF - direct SU and DG…226-227 

     6.5.3 Potential functional significance………………………………………………227 

 
GENERAL DISCUSSION  

General discussion……………………………………………………………………228-241 

 

REFERENCES  

References…………………………………………………………………………….242-267  

  

APPENDIX  

Appendix I – List of suppliers……………………………………………………….268-270  

Appendix II – Media, Gel and Buffer preparation …………...………….………...271-273 

Appendix III – SDS-PAGE…………...………….…………………………………...274-275 

 

 

 



13 
 

LIST OF FIGURES  

 

CHAPTER-1 

Figure 1    Anatomical image of the male reproductive system……………………………. 31 

Figure 2    Anatomical image of the female reproductive system…………………….……. 35  

Figure 3    Showing the Human Sperm Cell with labelling of different regions…………… 38  

Figure 4   Showing Human Sperm Head and Flagellum…………………………………….42 

Figure 5   Showing Axoneme Structure in Human Sperm…………………………………..43 

Figure 6   Showing the Cumulus–oocyte Complex………………………………………….45 

Figure 7   Anatomy of a Testis & Seminiferous Tubules…………………………………....47 

Figure 8   Showing Sperm Cell Differentiation (Spermatogenesis)………………………....50 

Figure 9   Showing the Human Epididymis…………………………………………………53 

Figure 10 Figure Showing the Ejaculatory Path of Human Sperm in the Male Reproductive 

Tract………………………………………………………………………………………….59 

Figure 11 Showing different fast/early and slow/late phase events associated with sperm 

capacitation………………………..........................................................................................66 

Figure 12 Showing different types of human sperm motility tracks………………………...68 

Figure 13 Human sperm guidance mechanism, showing human sperm response to a 

temperature gradient by thermotaxis…………………………………………………………70 

Figure 14 Showing human sperm chemotaxis……………………………………………….72 

Figure 15 Showing acrosomal exocytosis involved in acrosome reaction in human 

sperm........................................................................................................................................73 

Figure 16 Showing human sperm transit into the female reproductive tract and 

fertilisation…………………………………………………………………………………...75 

Figure 17 Diagrammatic representation of [Ca2+] i signalling toolkit in both (A) Somatic and 

(B) Human sperm cell……………………………………………………………………….86 

Figure 18 Showing the structure of the 4-Aminopyridine/Fampridine……………………...88 

Figure 19 Calcium is responsible for initiating different behaviours in human 

sperm………………………………………………………………………………………....90  



14 
 

 

 

 
 

CHAPTER-2 

Figure 2.0 Showing the experimental design………………………………………..............98 
Figure 2.1 Sperm cell preparation technique – direct swim-up……………………………...99 

Figure 2.2 Sperm cell preparation technique – density gradient centrifugation……………101 

Figure 2.3 Showing different sections of a CASA…………………………………………103 

Figure 2.4 Showing different motility tracks analysed by the CASA……………………...103 

Figure 2.5 Kremer penetration test – viscous/viscoelastic medium……………………….106 

Figure 2.6 Showing the assembly of a sandwich in western blot/immunoblot……………109 

Figure 2.7 Showing silver staining image of a nitrocellulose membrane………………….109 

 

CHAPTER-3 

Figure 3.0 Different types of motility tracks in Human sperm………………….................115  

Figure 3.1 Effect of sperm preparation techniques density gradient centrifugation (DG) and 

direct swim-up (SU) on human sperm motility (HYP7, ALH, VCL, VSL, VAP, LIN & 

STR)……………………………………………………………………………………121-122 

Figure 3.2 Showing the frequency distributions (FD) between direct SU and DG cells using 

the CASA analyser……………………………………………………………………123-124 

Figure 3.3 Effect of sperm preparation techniques density gradient centrifugation (DG) and 

direct swim-up (SU) on penetration of artificial mucus (methylcellulose) (in 

vitro)…………………..........................................................................................................126 

Figure 3.4 Showing the frequency distributions (FD) between direct SU and DG cells in 

kremer’s (In viscous medium) at 0cm using the CASA analyser……………………127-128 

Figure 3.5 Showing the frequency distributions (FD) between direct SU and DG cells in 

kremer’s (In viscous medium) at 1cm using the CASA analyser……………………129-130 

Figure 3.6 Showing the frequency distributions (FD) between direct SU and DG cells in 

kremer’s (In viscous medium) at 2cm using the CASA analyser……………………131-132 

 



15 
 

 

 

CHAPTER-4 

Figure 4.0 Computer assisted sperm analysis…………………...........................................143 

Figure 4.1 4-Aminopyridine is a potent inducer of hyperactivation ………………….......150 

Figure 4.2 Motility characteristics (Lateral Head Displacement, ALH) of human sperm...151 

Figure 4.3 Motility characteristics (Curvilinear Velocity, VCL) of human sperm...............152 

Figure 4.4 Motility characteristics (Straight-Line Velocity, VSL) of human sperm………153 

Figure 4.5 Motility characteristics (Linearity, LIN) of human sperm……………………...154 

Figure 4.6 Showing the frequency distribution (FD) data for the DG cells…………...155-156 

Figure 4.7 Showing the frequency distribution (FD) data for the SU cells…………...157-158 

Figure 4.8 4AP strongly inhibits penetration into the viscous medium (methylcellulose) (in 

vitro) …………………….....................................................................................................160 

Figure 4.9 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the DG cells in 

response to different agonists in an artificial viscous penetration medium (methylcellulose) at 

0cm……………………………………………………………………………………161-162 

Figure 4.10 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the SU cells 

in response to different agonists in an artificial viscous penetration medium (methylcellulose) 

at 0cm…………………………………………………………………………………163-164  

Figure 4.11 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the DG cells 

in response to different agonists in an artificial viscous penetration medium (methylcellulose) 

at 1cm…………………………………………………………………………………165-166 

Figure 4.12 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the SU cells 

in response to different agonists in an artificial viscous penetration medium (methylcellulose) 

at 1cm…………………………………………………………………………………167-168 

Figure 4.13 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the DG cells 

in response to different agonists in an artificial viscous penetration medium (methylcellulose) 

at 2cm…………………………………………………………………………………169-170 

Figure 4.14 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the SU cells 

in response to different agonists in an artificial viscous penetration medium (methylcellulose) 

at 2cm…………………………………………………………………………………171-172 



16 
 

Figure 4.15 4AP strongly inhibits penetration into the viscoelastic medium (polyacrylamide) 

(in vitro) …………………………………………………………………………………175 

Figure 4.16 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the DG cells 

in response to different agonists in an artificial visco-elastic penetration medium 

(polyacrylamide) at 0cm……………………………………………………………176-177 

Figure 4.17 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the SU cells 

in response to different agonists in an artificial visco-elastic penetration medium 

(polyacrylamide) at 0cm……………………………………………………………178-179 

Figure 4.18 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the DG cells 

in response to different agonists in an artificial visco-elastic penetration medium 

(polyacrylamide) at 1cm……………………………………………………………180-181 

Figure 4.19 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the SU cells 

in response to different agonists in an artificial visco-elastic penetration medium 

(polyacrylamide) at 1cm……………………………………………………………182-183 

Figure 4.20 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the DG cells 

in response to different agonists in an artificial visco-elastic penetration medium 

(polyacrylamide) at 2cm……………………………………………………………184-185 

Figure 4.21 Showing the frequency distributions (FD) (VCL, ALH & LIN) for the SU cells 

in response to different agonists in an artificial visco-elastic penetration medium 

(polyacrylamide) at 2cm……………………………………………………………186-187 

 

 

 

CHAPTER-5 

Figure 5.1 Using protein Typr as a marker to evaluate human sperm capacitation…….…197 

 

 

 

 

 



17 
 

CHAPTER-6 

 
Figure 6.1 Showing Calcium mobilisation and Fluo-4 calcium indicator working model...203 

Figure 6.2 Showing the construction of an imaging perfusion chamber...............................205 

Figure 6.3 Showing experimental construction of single cell imaging.................................208 

Figure 6.4 Showing the construction of the IF Experiment..................................................212 

Figure 6.5 Intracellular Calcium response and Oscillations of SU cell……………………214 

Figure 6.6 Intracellular Calcium response and Oscillations of DG cell……………………215 

Figure 6.7 Intracellular calcium signalling in Human sperm………………………………218 

Figure 6.8 Transient (T) and Sustain (S) Intracellular calcium [Ca2+] i responses in DG and 

direct SU cells........................................................................................................................219 

Figure 6.9 Showing [Ca2+] i in direct SU & DG cells............................................................220 

Figure 6.10 Comparison of CatSper 4 protein expression in Human sperm when prepared 

using density gradient method (DG) 

(40/80%)…………………………………………………………………………………….222 

Figure 6.11 Comparison of CatSper 4 protein expression in human sperm when prepared 

using density gradient method (DG) (80%) 

………………………………...…………………………………………………………....223 

Figure 6.12 Comparison of CatSper 4 protein expression in human sperm when prepared 

using direct swim up method 

(SU)………………………………………………………………........................................224 

Figure 6.13 Shows the percentage of cells expressing CatSper 4 in all three different groups 

(40/80%, 80% and direct SU) ……………………………………………………………...225 

Figure 6.14 Different patterns of CatSper 4 protein expression in human sperm………….225 

 

 

 

 



18 
 

LIST OF TABLES 

CHAPTER-1 

Table 1 Showing differences between somatic cells and sex cells…………………….........36 

 Table 2 Showing different maturational changes to Human sperm in the 

Epididymis…………………………………………………………………………………...54 

 Table 3 Showing involvement of epididymosomes in epididymal 

maturation……………………………………………………………………………………55 

 Table 4 Showing different roles of prostasomes in contributing functional competence to 

sperm…………………………………………………………………………………………57 

 

CHAPTER-3 

Table 3.1 Effect of different sperm preparation techniques density gradient (DG) 

centrifugation and direct swim up (SU) on motility 

parameters………………………………………………………………………………….119 

 

CHAPTER-4 

Table 4.1 Comparison of HCM, methylcellulose and polyacrylamide as Human sperm 

penetration media…………………………………………………………………………...141 

Table 4.2 Effect of 4-Aminopyridine, Prostaglandin (PE1) and Progesterone (P4) on motility 

parameters as determined by CASA when cells are prepared by Density gradient (DG)….148 

Table 4.3 Effect of 4-Aminopyridine, Prostaglandin (PE1) and Progesterone (P4) on motility 

parameters as determined by CASA when cells are prepared by Direct swim up (SU)……149 

 

CHAPTER-6 

Table 6.1 Showing slides layout for IF technique………………………………………….211 

Table 6.2 Showing the data of different parameters (S, O, TS, RL, NS & D) obtained from 

the calcium imaging analysis when cells were prepared using both Direct Swim up (SU) and 

density gradient (DG) techniques…………………………………………………………...216   

 

 

 



19 
 

LIST OF ABBREVIATIONS    

 

2APB    2-aminoethoxydiphenylborate   

4AP 4-aminopyridine 

ADP   adenosine diphosphate  

ALH   amplitude of lateral head displacement  

AM acetoxymethyl 

AMP adenosine monophosphate  

AR    acrosome reaction  

ART assisted reproductive technology  

ATP   adenosine triphosphate  

BCF   beat frequency  

BEB blood epididymal barrier  

BSA    bovine serum albumin  

BTB   blood testis barrier  

Ca2+    calcium ions  

[Ca2+] i   intracellular calcium concentration  

[Ca2+] ex   extracellular calcium concentration  

Cav calcium voltage channel 

cADPR   cyclic adenosine diphosphate receptor  

cAMP   cyclic adenosine monophosphate  

CCE   capacitative Ca2+ entry  

CASA   computer aided semen analysis  

CCE    capacitative Ca2+ entry  

CICR calcium induce calcium release  

Cl-  chloride ions  
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CO cumulus oophorus  

CO2    carbon dioxide  

cp centipoise  

CRAC   Ca2+ release activated Ca2+ channels  

DAG diacylglycerol  

ddH2O  double distilled water  

DF decapacitation factors  

DG density gradient   

DMSO   dimethylsulphoxide  

DNA   deoxyribonucleic acid  

DTT   dithiothreitol  

EBSS   earles balanced salt solution  

Emr resting membrane potential 

ER    endoplasmic reticulum  

ES    equatorial segment  

EVs extracellular vesicles  

FD                     frequency distribution   

FF follicular fluid   

FITC fluorescein isothiocyanate  

FSH    follicle stimulating hormone  

 

GnRH   gonadotrophin-releasing hormone  

HA    hyperactivation  

HBS   HEPES buffered saline  

HCO3
-   bicarbonate ions  

[HCO3
-]   bicarbonate ion concentration  

HCl hydrochloric acid 
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HCM human cervical mucus  

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid    

HFEA   human Fertilization and Embryology Authority  

HVA   high voltage activated  

Hz    hertz  

IAM   inner acrosomal membrane  

IBMX 3-isobutyl-1-methylxanthine  

ICRAC    calcium-release-activated calcium current   

ICSI   intracytoplasmic sperm injection  

IgG immunoglobulin  

IF immunofluorescence  

IP3    inositol-1,4,5-triphosphate  

IP3R   inositol-1,4,5-triphosphate receptor  

IUI intrauterine insemination  

IVF    in vitro fertilization  

K+    potassium ions  

KCl    potassium chloride  

kDa    kilo Daltons  

KOH   potassium hydroxide  

 
LH    luteinizing hormone  

LIN    linearity  

LVA   low voltage activated   

min    minutes  

ml    millilitres  

mm    millimetres  

mM    mill molar  
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mOsm   milli Osmole  

mRNA  messenger ribonucleic acid  

mV    millivolts  

N    nucleus  

Na+    sodium ions  

NADH  nicotinamide adenine dinucleotide   

NBC   Na+/ HCO3
- co-transporters  

NaCl sodium chloride  

NCM non capacitated medium  

NCX   Na+-Ca2+ exchanger  

NE    nuclear envelope  

NGS normal goat serum 

nm    nanometre  

nM    nanomolar  

NO    nitric oxide  

NPC   nuclear pore complexes  

OAM  outer acrosomal membrane  
 
ODF outer dense fibers  

 

Orai   CRAC PM Channel  

P prostasomes  

pAB primary antibody 

PAP prostate acid phosphatase  

PAS    post acrosomal sheath  

PBS    phosphate buffered saline  

PDE phosphodiesterase  

PDEI phosphodiesterase inhibitor  

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNicotinamide_adenine_dinucleotide&ei=gWjlUojPEK3b7AbQyYCIBA&usg=AFQjCNFz7BXGIytDMbo3AUTPlfjDy_-AUg&bvm=bv.59930103,d.ZGU
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNicotinamide_adenine_dinucleotide&ei=gWjlUojPEK3b7AbQyYCIBA&usg=AFQjCNFz7BXGIytDMbo3AUTPlfjDy_-AUg&bvm=bv.59930103,d.ZGU
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PE1 prostaglandin E1 

pHi    intracellular pH  

PHN    posterior head/neck  

PIP2 phosphatidylinositol 4,5-bisphosphate 

PKA   protein kinase A  

PKC   protein kinase C  

PKG   protein kinase G   

PM    plasma membrane  

PLC   phospholipase C  

PM    plasma membrane  

PMCA  plasma membrane Ca2+ ATPase  

PSA    prostate specific antigen  

PSCA prostate stem cell antigen 

PT    peri-nuclear theca  

PTK   protein tyrosine kinase  

PVP polyvinylpyrrolidone  

P4 progesterone  

RNA  ribonucleic acid  

RNE   redundant nuclear envelope  

ROI    region of interest  

ROS   reactive oxygen species  

R normalised fluorescence intensity  

Rtot    fluorescence intensity mean  

RT room temperature  

RyR    ryanodine receptor  

sAB    Secondary antibody   

sAC  soluble adenylate cyclase  
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S sustain  
 

SDS-PAGE sodium dodecyl sulphate polyacrylamide gel 
electrophoresis 

sEBSS   supplemented EBSS  

sec    seconds  

S.E.M   standard error of the mean  

Ser/Thr  serine/threonine  

SERCA  sarcoplasmic-endoplasmic Ca2+ ATPase  

sGC soluble guanylyl cyclase  

SKF    SKF-96365  

SOAF sperm borne oocyte activating factors  

SOC   store operated Ca2+ channel  

SOCE   store operated Ca2+ entry  

SPCA   secretory pathway Ca2+ ATPase  

Src    serine kinase  

STIM   stromal interaction molecule  

STR    straightness  

SU swim up  

T transient  

TBS tris buffered saline 

tmAC transmembrane adenyl cyclase  

TPBS trisphosphate buffer saline 

TRPC   transient receptor potential cation channels  

TTBS TBS with tween 20 

TyPr tyrosine protein phosphorylation  

VAP   average path velocity  

VCL   curvilinear velocity  
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Vm membrane potential  

VSL  progressive or straight line velocity  
 

VOCC   voltage-operated Ca2+ channels  

WHO   world health organization  

w/v    weight per volume  

ZP    zona pellucida  

ΔFmean   fluorescence intensity mean  

ΔFmax    maximum fluorescence intensity  

ΔF    fluorescence intensity  

µm    micrometre  

µl microliter  

µM    micromolar   
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1.1 The Human Reproductive System 
 

Sexual reproduction is the process of producing offspring through fusion of germ cells 

(gametes) from male and female individuals. After gamete fusion (fertilisation), the new cell 

contains one set of chromosomes from each parent. Male and female have anatomically 

different reproductive organs (testes and ovaries respectively) that are adapted to produce 

different gametes (sperm from the male testes; oocytes from the female ovaries). In addition 

to producing gametes, male and female reproductive organs may produce hormones which 

regulate reproductive physiology and behaviour. 

1.1.1 Anatomy of the Male Reproductive System  
 

In the human, the two testes are placed externally and supported by the scrotum.  In addition 

to the testes, the male reproductive system includes various ducts (epididymis, ductus 

deferens or vas deferens, ejaculatory duct, and urethra) that store male germ cells and assist 

in their maturation and transport. Associated glands (seminal vesicles, prostate gland and 

bulbourethral glands) nourish, protect and provide additional components of semen. The 

penis enables delivery of the semen, containing the male gametes, into the female tract.  
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1.1.1.1 Scrotum and Testes 
 
The scrotum acts as a support structure for the testes. It consists of loose skin and an 

underlying subcutaneous layer that hangs from the root of the penis. The scrotal septum 

divides the scrotum into two sections, each containing a single testis. The function of the 

scrotum is to the maintain temperature (close to body temperature to suit sperm production) 

of the testes.  

The testicles or testes are paired oval glands that measure about 5cm long and 2.5cm in 

diameter. Each testis weighs about 10-15g. During the seventh month of foetal development, 

the testes develop near the kidneys and begin to move into the scrotum through the 

abdominal wall. The testes are responsible for producing a male reproductive hormone called 

testosterone. This hormone is responsible for the development of masculine features and 

promotes sexual desire. 

The testes contain a series of internal compartments called lobules, each of which contains 

one to three tightly coiled tubules called seminiferous tubules – the site of sperm production. 

At this location there occurs a complex process involving mitosis, meiosis of spermatogonia 

(precursor to the sperm cell) and further differentiation into mature sperm (spermiogenesis). 

Altogether, this differentiation is referred as spermatogenesis. For the anatomy of the testes 

and sperm cell differentiation in the seminiferous tubules, please see sections 1.3 and 1.4.  

 

1.1.1.2 Penis 
 

The main function of the penis is to act as a passageway for the ejaculation of seminal fluid 

and also to excrete urine. The penis contains different sections, such as the root, body and 

glans (head), and the urethra runs through the middle (Tortora, 2011).  

The body of the penis is composed of corpus cavernosum – the tissue running along the 

sides of the penis (blood fills this tissue to cause an erection) – and corpus spongiosum – a 
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spongy tissue running along the front position of the penis and ending at the head of the 

penis. The urethra (spongy urethra) runs through corpus spongiosum to carry urine out of the 

body and, during erection, the corpus spongiosum is filled with blood.  

The end section of the corpus spongiosum, which is slightly enlarged, is called the head or 

glans of the penis. In the glans, the urethra forms an opening called the external urethral 

orifice. In uncircumcised men, the glans is covered by the foreskin, or prepuce. The root 

consists of the blub – a posterior continuation of the base of the corpus spongiosum that aids 

in ejaculation – and crus (resembling a leg) – two separate and tapered portions of the corpus 

cavernosum – supports the weight of penis.         

The male urethra carries urine from the bladder, passing through the prostate gland, deep 

muscles of the perineum and finally through the penis, a distance of about 20cm. The urethra 

also discharges seminal fluid (containing sperm).  

 

 

1.1.1.3 Prostate Gland and its secretions 
 

The prostate is about the size of a walnut and is located between the urinary bladder and the 

penis. The prostate gland secretes a thick white fluid (prostatic fluid) that mixes with the 

sperm produced in the testes) to make semen, or seminal fluid. Prostatic fluid accounts for 

30% of seminal volume (the rest being 5% sperm cells, 60% fluid from seminal vesicles and 

secretions from the bulbourethral (or Cowper's) glands. Prostatic fluid contains high 

concentrations of citric acid, zinc and prostate specific enzymes, such as a prostate-specific 

antigen (PSA) and prostate acid phosphatase (PAP) (Veveris-Lowe et al., 2007, Graddis et 

al., 2011, Aalberts et al., 2014). Prostatic fluid is highly beneficial for fertility (Aalberts et al., 

2014).  
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Prostasomes are extracellular vesicles (EVs) that originate from the prostate epithelium 

(Brody et al., 1983, Ronquist and Brody, 1985, Aalberts et al., 2014). Prostasomes contain 

Ca2+, cholesterol and other small molecules (Kravets et al., 2000). They were first reported in 

prostatic secretions in the 1970s (Ronquist, 1977, Ronquist et al., 1978b, Ronquist et al., 

1978a, Aalberts et al., 2014) and are about 150-200nm in diameter (Arienti et al., 1997). 

Prostasomes extracted from human semen contain prostate-specific proteins such as PAP, 

PSA, prostate stem cell antigen (PSCA) and prostate–specific transglutaminase. These 

proteins (PAP, PSA & PSCA) were referenced as biomarkers for prostate cancer study (Cho 

et al., 2010, Bjartell et al., 2011, Graddis et al., 2011, Zhao et al., 2012, Aalberts et al., 2014).    

The enzyme aminopeptidase N (Arienti et al., 1997, Aalberts et al., 2014) is transferred to 

sperm cells by prostasomes. In human sperm the presence of aminopeptidase N was shown to 

regulate sperm cell motility (Subirán et al., 2008). Other than prostasomes, aminopeptidase N 

is also present in seminal fluid, sperm neck and sperm tail (Subirán et al., 2008, Aalberts et 

al., 2014). Prostasomes are involved in different physiological roles, such as protecting the 

sperm from the acid environment of the vagina, delaying the acrosome reaction (AR) and 

helping to dilute the sperm ejaculate (Kravets et al., 2000).  

Considering prostasomes’ biological significance, they might be useful in developing new 

contraceptive agents and improving invitro fertilisation (IVF) techniques, and further 

understanding of prostasomes might help us to treat male subfertility (Kravets et al., 2000).  

Prostate-specific antigen (PSA) is a 33kDa glycoprotein that liquefies semen coagulum 

(Tosoian and Loeb, 2010, Aalberts et al., 2014). PSA is detectable in human seminal fluid, 

and elevated expression of PSA was observed in men with prostate cancer (Papsidero et al., 

1980, Kuriyama et al., 1980, Tosoian and Loeb, 2010). PSA is used as an effective biomarker 

in prostate cancer screening (Papsidero et al., 1980, Catalona  et al., 1991, Tosoian and Loeb, 

2010, Shah and Zhou, 2016).        
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1.1.2 Anatomy of the Female Reproductive System 
 

The female reproductive system consists of two ovaries (female gonads), paired fallopian 

tubes or oviducts (ducts) made up of the isthmus, ampulla and infundibulum, and the uterus, 

cervix and vagina. Bartholin’s gland (located near the opening of the vagina) lubricates the 

vagina by secreting mucus. The ovaries secrete progesterone and oestrogen (which are 

hormones necessary for ovulation and menstruation).  

1.1.2.1 Vagina 
 
The vagina (See fig. 2) is a tubular structure that accommodates the penis during coitus. It is 

a long (10cm) fibromuscular canal lined with a soft and elastic mucous membrane that 

extends from the lower section of the uterus (cervix) to the exterior of the body. The vagina 

also serves as a channel for the menstrual process (shedding of thickened uterus lining), and 

the gateway for childbirth. The vagina’s environment is acidic (pH ≤ 5), which protects 

against infections caused by pathogenic microbes (Suarez and Pacey, 2006). To protect sperm 

from the acidic environment, the semen is deposited at the cervix so that it will not spend a 

long period in the vagina (Sobrero and MacLeod, 1962, Suarez and Pacey, 2006).    

1.1.2.2 Cervix 
 
The cervix (See fig. 2) is located in the lower section of the uterus. It acts as a channel 

between the vagina and the uterus. The structure of cervix has two sections: the ectocervix 

and the endocervix (or endocervical canal). The opening in the middle of the ectocervix is 

called the external orifice (or os). Through this orifice, the cervix (lower section of the uterus) 

communicates with the vagina. The internal orifice (or os) is the passage between the cervix 

and the uterus. The cervix produces a secretory fluid called cervical mucus. Cervical mucus is 

composed of water, glycoproteins, lipids, enzymes and inorganic salts. Females secrete 20-

60ml of cervical mucus every day (Tortora, 2011). The consistency of the cervical mucus 
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changes throughout the menstrual cycle. When approaching ovulation, the mucus is sticky in 

nature and white in appearance. At/near the time of ovulation cervical mucus is clearer, less 

viscous and more alkaline (pH 8.5), creating a friendlier environment that protects sperm 

from phagocytes and the environments of the vagina and uterus. It also provides energy for 

the sperm. After ovulation, the mucus again becomes sticky and more viscous and physically 

impedes sperm penetration. These variations in the mucus during the menstrual cycle are 

such that sperm migration occurs primarily during the time of ovulation (Morales et al., 1993, 

Suarez and Pacey, 2006). The physiological status of the cervix (Barratt and Cooke, 1991, De 

Jonge, 2005, Chakroun-Feki et al., 2009) and cervical mucus may also play a role in sperm 

maturation (capacitation), a series of functional changes (e.g. remodelling of plasma 

membrane) that gives sperm their fertilising potential before they fuse with the oocyte (Baldi 

et al., 2000, Chakroun-Feki et al., 2009) (For capacitation, please see section 1.7.1).  

1.1.2.3 Uterus 
 

The uterus (See fig. 2) is located between the urinary bladder and rectum. It is connected to 

the Fallopian (uterine) tubes and the vagina (via the cervix) and sperm deposited in the 

vagina must transit the uterus to reach the Fallopian tubes. The uterus is responsible for 

nourishing and protecting the foetus until birth. It also acts as a source of menstrual flow 

when there is no implantation. The inside of the body of the uterus is called the uterine 

cavity.  

This uterine cavity (See fig. 2) is formed by the lateral walls of the uterus. The uterine walls 

consist of three layers of tissue: endometrium, myometrium, and perimetrium. The 

perimetrium is the outer layer of tissue around the uterus; posteriorly it forms a division 

between the uterus and urinary bladder. The middle layer is the myometrium and contains 

smooth muscle fibres to push out the foetus from the uterus. The inner layer of tissue is the 
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endometrium. It is the region where implantation takes place. If implantation does not occur, 

then the endometrium will shed and be discharged (menstruation).  

 

1.1.2.4 Fallopian Tubes, Ampulla, Isthmus, Infundibulum and Fimbriae 
  
There are two Fallopian (uterine) tubes or oviducts, which extend from the ovary to the 

uterus. At the junction with the uterus is the isthmus (see fig. 2) a short, narrow, thick walled 

portion of the Fallopian tube (Tortora, 2011).  At the distal end of each Fallopian tube, there 

is a funnel-shaped portion called the infundibulum (see fig. 2). It is close to the ovary and 

ends in a group of a finger-like structure called fimbriae (see fig. 2), one of which is attached 

to the ovary (Tortora, 2011). Ovulated oocytes enter the Fallopian tube and fertilisation occur 

at the ampulla, the widest and longest section of the Fallopian tube (see fig. 2) (Tortora, 

2011). The Fallopian tube thus provides a route for the sperm to reach the egg, the 

fertilisation site and the vessel that carries the fertilised egg to the uterus.  

 

1.1.2.5 Ovaries  
 

The ovaries are the female gonads. They are present on both sides of the uterus in the pelvic 

cavity and are attached to the uterus by ligaments which hold them in position. The ovaries 

produce female gametes (eggs) that are fertilised to produce an embryo. They secrete female 

sex hormones (progesterone and oestrogen), inhibin and relaxin that control the female 

reproductive cycle (Tortora, 2011).       
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1.2 Gametes  

Gametes are sex cells, and are different from the body (somatic) cells (see Table 1). Male 

gametes are the sperm, and the female gametes are the eggs or oocytes. They are haploid, 

containing one set of genetic information. Fusion of male and female gametes (fertilisation) 

restores the diploid state and initiates the development of an embryo.  

Table 1. Showing differences between somatic cell and sex cells. Table showing difference in
characteristics that existsbetweensomaticandsexcells.
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1.2.1 The Sperm Cell  
 
The mammalian sperm is composed of a sperm head and flagellum or tail covered by a single 

continuous plasma membrane (also called as plasmalemma). In rodents, the sperm head is 

hook-shaped (falciform) and lacks a sperm centrosome and centriole. In contrast to this, the 

sperm of hoofed mammals (ungulates – e.g. cattle, goat, horse, etc.) has a spatula shaped 

head with a reduced form of centrosome with a single proximal centriole (Fawcett, 1975, 

Sutovsky and Manandhar, 2006). The normal human spermatozoon has an oval head shape 

with a distinct acrosomal region covering 40-70% of the anterior sperm head and a head 

length and width of 4-5µm x 2.5-3.5µm. The tail is approximately 45µm long (Eliasson, 

1971, Mortimer and Menkveld, 2001) and is joined to the head by the mitochondrial 

midpiece, which is normally <1µm in width and approximately 1.5 times the head length. A 

cytoplasmic droplet (containing residual cytoplasm) may be attached at the midpiece, but if 

this is >30% the size of the normal head, it is considered as abnormal. (Eliasson, 1971, 

Mortimer and Menkveld, 2001).  
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1.2.2 The Sperm’s Architecture  
 

The whole structure of the sperm is divided into two different sections: The Head and Tail, 

or Flagellum.  

1.2.2.1 The sperm head 
 

The sperm head, which contains the male nucleus, is divided into two regions the acrosome 

(bounded posteriorly by the equatorial segment (ES)) and the post acrosomal region. The 

acrosome is composed of inner and outer acrosomal membranes, the inner membrane 

overlying the anterior part of the nucleus. The narrow space between these membranes holds 

the dense acrosomal matrix. The post acrosomal region extends from the posterior end of the 

ES to the posterior ring. The ES carries receptor molecules that are involved in sperm-

oolemma binding. The post acrosomal sheath (PAS) of the perinuclear theca (PT) contains a 

complex of sperm-borne, oocyte-activating factors (SOAF) (Sutovsky et al., 2003, Toshimori 

and Ito, 2003) that are dispersed across the ooplasm to trigger the signalling pathways that 

lead to oocyte activation and initiation of zygotic development (Sutovsky and Manandhar, 

2002).            

The sperm’s nucleus contains highly condensed DNA. Histones of the sperm nucleus are 

replaced by protamines, in which the positively charged guanidinium group of arginine binds 

electrostatically to the negatively charged phosphate groups in DNA (Biegeleisen, 2006). 

Protamines are essential for sperm head condensation and DNA stabilisation. This 

compaction provides the shape suitable for sperm motility and migration through the egg’s 

vestments (Brewer et al., 2002, Dadoune, 2003). The nucleus is surrounded by a nuclear 

envelope, which accumulates behind the nucleus (at the sperm neck) during nuclear 

condensation, forming the redundant nuclear envelope (RNE).  Some nuclear pore complexes 

remain in the RNE and are observed at the base of the nucleus (Ho and Suarez, 2003). The 
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perinuclear theca (PT) forms a cytoskeletal shell that encapsulates and protects the sperm’s 

nucleus. 

1.2.2.2 The flagellum 

  
The sperm’s tail or flagellum provides the motility that is required for the sperm to navigate 

the female reproductive tract. The axoneme, containing the motor proteins that provide 

movement runs centrally throughout the length of the flagellum and is surrounded by 9 outer 

dense fibres (see below; fig. 3).  

Four sections are recognised within the structure of the he flagellum: the connecting piece, 

the mid piece, the principal piece and the end piece (Mortimer, 1997).  The connecting piece 

(see fig. 3) is a short linking segment between the flagellum and head. The connecting piece 

contains the proximal centriole, which acts as the origin of the pair of central microtubules of 

the axoneme. The mid piece (see fig. 3) contains a mitochondrial sheath in the form of a 

helix wrapped around the axoneme (see below) which generates the energy that is required 

for sperm motility.  

The principal piece is separated from the mid piece by an annulus or Jensen’s ring, a ring of 

dense material found distal to the mitochondrial organelle. The principal piece is covered by 

a fibrous sheath composed of two longitudinal columns which surround the centrally 

positioned axoneme (see below). A fibrous sheath may act as a scaffold to sequester and 

immobilise important signalling molecules such as protein kinases that are required for the 

process of sperm capacitation and hyperactivation before fertilization (Eddy et al., 2003). The 

last piece of the flagellum, the end piece, contains only the motor proteins of the axoneme 

surrounded by a plasma membrane (Turner, 2006).  
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Sperm motility is provided by the axoneme, composed of two central microtubules which are 

connected by linkages (Pedersen, 1970) surrounded by nine microtubule doublets (in a 9+2 

arrangement). Two central microtubules are surrounded by a central sheath composed of the 

spiral of two fibres. As explained by (Fawcett, 1965) and (Mortimer, 1997), each microtubule 

doublet consists of A and B subunits. Subunit A is attached to the “C” shaped  B subunit. A 

multisubunit ATPase complex was formed when the dynein arms were attached to the A-

subunit. This multisubunit ATPase complex converts chemical energy into the kinematic 

energy. This transfer of energy causes a sliding between the adjacent microtubule doublet 

further potentiating an axonemal bending thereby initiating a tail movement. Nexin link (an 

elastic element that regulate the shear forces when doublet sliding happens) between A and B 

subunit helps in connecting the adjacent microtubule. Outer dense fibres (ODFs) extend to 

almost 60% of the length of the principal piece of the flagellum, with two short fibers (3 and 

8; 6µm), three medium length fibres (2, 4 and 7; 17-21µm) and four long fibres (5, 6 and 9; 

31-32µm and fibre 1; 35µm).  
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1.2.3 The Egg Cell or Oocyte 
 
Oocytes are the largest cells in the human body. They are non–motile and navigate the 

reproductive tract on currents created by ciliary activity and smooth muscle contractions. 

Upon ovulation, a mature oocyte is surrounded by several layers including the zona pellucida 

(ZP), corona radiata and cumulus layer which together comprise the oocyte-cumulus 

complex. The ZP in humans consists of four proteins (ZP1, ZP2, ZP3 and ZP4) (Petit et al., 

2014, Louros et al., 2016). In contrast to human, only three ZP proteins are present in mouse 

zona (ZP1, ZP2 and ZP3) (Wassarman, 1995a, Conner et al., 2005, Goudet et al., 2008, Petit et 

al., 2014). Sperm must be able to recognise and bind to the glycoproteins of the ZP and in 

order to penetrate and successfully fuse with the oocyte. This interaction is species-specific, 

and sperm does not bind to the ZP of another species (e.g. when the sperm is from a human 

and the oocyte is from a mouse).  

 

The ZP is surrounded by the cumulus oophorus (CO), a hyaluronan-rich extracellular matrix. 

The innermost layer of the cumulus oophorus is the corona radiata, which is directly adjacent 

to the ZP. The cumulus cells may attract sperm through chemotaxis (Eisenbach, 1999a) that 

alters sperm movement (Eisenbach, 1999b). Only a small fraction (10%) of mammalian 

sperm show chemotaxis, which is believed to occur only in capacitated (matured) sperm cells 

(refer to capacitation section) (Eisenbach, 1999a). Different constituents of follicular fluid 

(FF), such as heparin, progesterone (P4) and atrial natriuretic peptide have been proposed to 

act as chemoattractants (Eisenbach, 1999b). 
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1.3 The testis and spermatogenesis    
 

The testis is the site of sperm production. It is divided into a series of internal compartments 

called lobules which are separated by septa. Each of the lobules contains one to three tightly 

coiled seminiferous tubules. These coiled tubules have a central lumen and an external 

basement membrane and contain two types of cells: sperm-forming cells (spermatogenic 

cells); and Sertoli cells or supporting cells (Jégou, 1992).   

Sertoli cells, which are embedded among the spermatogenic cells in the tubules, extend from 

the basement membrane to the lumen of the tubule and support germ cell growth, division 

and maturation. Sertoli cells are joined to one another by tight junctions (Jégou, 1992, 

Griswold, 1995, Griswold, 1998), forming the impermeable blood-testis barrier (BTB). 

Substances must pass through the Sertoli cells before they reach the germ cells and the tubule 

lumen. The BTB ensures the separation of sperm-forming cells from the blood, thereby 

protecting developing sperm cells from an immune response against the sperm cells’ surface 

antigens. Sertoli cell-secreted proteins include proteases that are necessary for tissue 

remodelling during spermiation (Griswold, 1998).  

In addition to their role in sperm production, Sertoli cells control the release of mature sperm 

into the seminiferous tubules and produce fluid for sperm transport, including bioactive 

peptides and nutrients. Sertoli cells also secrete the hormone inhibin, part of the hormonal 

feedback loop that controls spermatogenesis, and regulate the effects of testosterone and 

follicle stimulating hormone (FSH) (Griswold, 1995). In the interstitial spaces between 

adjacent seminiferous tubules, there are clusters of cells called interstitial endocrinocytes 

(Leydig cells). Leydig cells are stimulated by luteinizing hormone (LH) and, in response, 
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they secrete testosterone, which is responsible for the development of masculine 

characteristics.  

  

A B Key: -

1. Vas deferens
2. Head of the epididymis
3. Body of the epididymis 
4. Efferent ducts
5. Rete testis 
6. Mediastinum testis 
7. Seminiferous tubules 
8. Tail of the epididymis 
9. Tunica albuginea 
10. Septum
11. Lobules  
12. Interstitial space 
13. Leydig cells
14. Basement membrane 
15. Seminiferous tubules
16. Lumen of the seminiferous 

tubules
17. Spermatid (n)
18. Sperm cell (n)

Figure 7. Anatomy of a Testis & Seminiferous Tubules. A Showing anatomy of testis with
different sections (1 to 11 in key). B Showing the cross section of a seminiferous tubule with the
lumen containing sperm cells that evolved from spermatids containing a haploid (n=23) number
of chromosomes. Figure B also shows the interstitial space containing Leydig cells and a
basement membrane. Diagram A adopted from smart draw source (www.smartdraw.com) and
modified.
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Mammalian gametogenesis involves meiotic division meiosis to form mature, haploid sex 

cells. The cell division (oogenesis and spermatogenesis) in these gametes occurs at different 

times during development and achieves different end points. In females, oogenesis 

commences in the foetus before birth (Griswold, 2016) in order to produce a finite number of 

oocytes that can be used periodically during the defined reproductive lifetime. At birth 1 

million or more ovarian follicles are present in the ovaries but this reduces to between 10,000 

to 100,000 follicles at age 30, 1,000 to 10,000 at age 40 and finally, during the arrest of the 

menstrual cycle (menopause) the number of ovarian follicles declines to less than 1,000 

(Virant-Klun, 2015). In males, this process of reduction division (2n to n) doesn’t commence 

until postnatal life at the onset of puberty. The main goal of gametogenesis in males is to 

produce millions of sperm cells, and any misregulation in reduction division could lead to 

infertility and germ cell cancers (Feng et al., 2014). In humans, the daily sperm production 

per testis is about 45 million (JOHNSON et al., 1980, Griswold, 2016), which means ~1,000 

sperm are produced per second (Griswold, 2016).  

 

1.3.1 Spermatogenesis and Spermiogenesis   
 

The process that involves mitosis, meiosis and further differentiation of spermatids to mature 

sperm (spermiogenesis) is referred to as spermatogenesis (de Kretser et al., 1998). The three 

key stages in spermatogenesis (spermatogonia, spermatocytes and spermatids) occur in order, 

with undifferentiated diploid cells adjacent to the basement membrane and mature gametes 

adjacent to the lumen of the tubule (fig. 8). The spermatogonial population of the mammalian 

testis arises from primordial germ cells which migrate into the developing testis during foetal 

life; later they transform into gonocytes (spermatogonia) which are surrounded by immature 

Sertoli cells.     
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The spermatogonial cells undergo two different processes (i) Some spermatogonial cells 

remain at the basement membrane and this cell that stay at the basement membrane won’t 

participate in the cell division. (ii) The other set of spermatogonial cells move away from the 

basement membrane and participate in the cell division (mitosis) containing a diploid number 

(2n) of chromosomes (2n=46). The newly divided cells are called as the primary 

spermatocytes. Primary spermatocytes participate in further cell division (meiosis) containing 

a haploid (n) number of chromosomes (n=23). These newly divided spermatocytes are called 

as secondary spermatocytes.  

Spermatids were formed as a result of further differentiation of secondary spermatocytes. 

These cells (spermatids) are haploid (n) cells, and four haploid cells were formed at the end 

of cells division. The end stage of spermatogenesis is called spermiogenesis where it involves 

the changeover of each spermatid into elongated spermatids (where it acquires both acrosome 

and flagellum) and finally developed into a sperm cell (spermatozoa). 

Sertoli cells remove the excess cytoplasm, and the sperm cells are now released from their 

connections to the Sertoli cells; a process called spermiation. After the completion of 

spermiation, the sperm enter the lumen of the seminiferous tubules.    
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1.4  Post-testicular sperm processing  
 
After entering the lumen of the seminiferous tubules (see fig. 7B), fluid secretions of the 

Sertoli cells push the sperm towards the short ducts of the testes. These short ducts lead to the 

rete testis, which is responsible for carrying the sperm from the seminiferous tubules into a 

series of coiled efferent ducts, or vasa efferentia. The vasa efferentia act as a bridge that 

connects the rete testis and the long, highly convoluted tube  called the epididymis (Turner, 

2008).  

The epididymis has several functions, such as transporting, concentrating and storing the 

sperm (Turner, 2008). Apart from this, it also acts as the site of sperm cell  maturation 

(Brooks, 1983, Turner, 2008). Anatomically, the epididymis is divided into three different 

segments: the initial segment or caput (the head of the epididymis, which also contains the 

end sections of the vasa efferentia), the middle segment or corpus (the body of the 

epididymis) and the terminal segment or cauda (the tail of epididymis) (See fig. 9).    

The caput and the vasa efferentia are responsible for fluid absorption, absorbing 90% of the 

fluid that carries the sperm. This is important because accumulation of fluid can eventually 

increase pressure inside the caput. If the fluid is not absorbed in time, that could affect the 

seminiferous tubules, which may eventually stop spermatogenesis (Turner, 2008, Johnson, 

2012).  

At this stage, the sperm is less concentrated and fluid absorption continues in the epididymis, 

which increases the concentration, and from here onwards, the sperm move to later segments 

(the corpus and cauda) through epididymal tubule contractions. At this stage, the sperm are 

incapable of movement and don’t have reproductive competence (Johnson, 2012). They start 

to mature as they reach the mid corpus of the epididymis (Bedford, 1994).  
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At the corpus of the epididymis, the apical borders of the epididymal epithelial cells show 

cell-cell tight junctions containing a number of cell adhesion molecules. These cell adhesion 

molecules impose the blood-epididymal barrier (BEB), which is a specialised immune-

privileged microenvironment that separates the sperm from other body cells (Hinton, 1985, 

Turner, 2008). Sperm at the mid corpus epididymis can undergo maturation (capacitation) 

process in the female reproductive tract that helps sperm to acquire the potential ability to 

fertilise oocytes and forward pattern of swimming. In mid corpus epididymis they do not 

swim actively in vivo, the activeness in motility was observed after they release from male 

reproductive tract. (Bedford, 1994, Johnson, 2012).   

The last segment or cauda of the epididymis stores the mature sperm which have active 

motility. Along with active sperm population unexpectedly there also exists a population of 

high proportion of immotile cells (Yeung et al., 1993, Bedford, 1994). 

From the epididymis, the sperm moves into the vas deferens (or ductus deferens) which is 

about 45cm long. The vas deferens starts at the posterior border (border of the tail (cauda)) of 

the epididymis (see fig. 9), moves through the spermatic cord and enters the pelvic cavity, 

where it loops over the ureter and passes over the posterior end of the urinary bladder (see 

fig. 1). It transports sperm from the epididymis towards the urethra by peristaltic muscular 

contractions. Other than sperm transport, it also stores sperm just like the epididymis (cauda 

region), and any stored sperm that has not been ejaculated is reabsorbed.      
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1.4.1 Epididymal Maturation 
  
In the epididymis, sperm undergo biochemical, morphological and functional (motility) 

changes. This whole process is called maturation. This process is crucial for human sperm to 

acquire reproductive competence (Johnson, 2012). The table below shows different 

maturational changes of sperm in the human epididymis.   

  

Type of change Details Reference

Morphology Immature sperm showing acorn-shaped heads due to epididymal 

dysfunction. % of sperm with normal heads increases with maturation.

(Ludwig and Frick, 1987) (Yeung, 2006)

Sperm modelling Completion of sperm modelling: nuclear condensation, acrosomal shape 

gets completed. Squeezing in cytoplasmic droplet.

(Johnson, 2012)

Concentration Head of epididymis (caput & vasa efferentia) containing 50x10^6/ml in 

fluid. At the distal duct (cauda) concentration increases to 50x10^8/ml, 

with densely packed sperm observed in ejaculate.

(Johnson, 2012)

Motility Sperm obtained from caput/efferent ducts of epididymis are weakly 

motile. An increase in motility is observed as they pass through the 

corpus & cauda of the epididymis.

Progressive velocity (VSL) and linearity (LIN) is higher at corpus and 

cauda.

(Yeung et al., 1993) (Cooper, 2002) (Yeung, 2006)

Sperm–Zona binding Difference in binding capacity. Caput-derived sperm are unable to bind 

to zona. Cauda derived sperm can bind to zona.

(Cooper, 2002) (Yeung, 2006)

Sperm vitellus binding and fusion Mature human epididymal sperm (possibly at the cauda) show increase 

in ability to penetrate eggs. This suggesting increase of %AR (acrosome 

reacted) sperm is a sign of maturation.

(Cooper, 2002)

Fertilisation (F) and Pregnancy rates (PR) F & PR are observed to be higher the longer the length of the 

epididymis the sperm have encountered

(Cooper, 2002) (Yeung, 2006)

Table 2: Showing Different Maturational Changes to Human Sperm in the Epididymis.
Sperm cells were detached from the sperm supporting cells (Sertoli cells) and the fluid secretions from the Sertoli cells
push the sperm towards the rete testis, and from here the sperm are carried through the epididymis. In the epididymis,
human sperm undergo a process called maturation, where they acquire reproductive competency and swim progressively.
These maturational changes are accompanied by changes in morphology, sperm modelling, concentration, motility, an
increase in binding capacity between sperm and zona, an increase in %AR (acrosome-reacted sperm), an ability to
penetrate eggs and an increase in fertilisation (F) and pregnancy rates (PR).
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1.4.1.1 Role of Epididymosomes in Epididymal Maturation 
 

As the sperm leave the testis and arrive in the epididymis, they are in a state of limited 

functional capabilities and are not reproductively competent. To achieve reproductive 

competency, they need to undergo the maturation process. Epididymosomes are thought to 

play an important role in further sperm maturation in the epididymis. These are microvesicles 

(~0.1 to 1µm in diameter) (Cornwall, 2009, Aalberts et al., 2014) and are thought to be shed 

from the epididymal plasma membrane. They transfer some specific epididymal membrane 

proteins to the sperm’s cell surface.    

 

 

 

Protein Role in epididymal maturation Reference

P34H Enables sperm cells to bind to the zona pellucida. (L gar  et al.,     )

Disintegrin and Metalloproteinase 7 (ADAM 7 or 

GP83)

Proposed to play role in sperm–oocyte interaction (Sun et al., 2000; Oh et al., 2009)

Enzymes involved in polyol pathway

Aldose reductase (reduces glucose to sorbitol)

Sorbitol dehydrogenase (oxidises sorbitol to 

fructose, an energy source for sperm )

Role in sperm cell motility (Frenette et al., 2006)

Table 3: Table showing involvement of epididymosomes in epididymal maturation. Epididymosomes are
microvesicles that are shed from epididymal plasma membrane and play important role in epididymal maturation.
They (epididymosomes) transfer epididymal membrane proteins (P34H , GP83 & ADAM 7) and enzymes like
aldose reductase and Sorbitol dehydrogenase (synthesized by epididymal epithelium) to sperm cell surface which
helps sperm to undergo maturation in male reproductive tract that enhance reproductive competency.
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1.4.2 Ejaculation 
 
After the sperm leave the vas deferens, they enter into the ejaculatory duct, which is about 

2cm long, and is the union of the seminal vesicle duct and the ampulla of the vas deferens. 

This ejaculatory duct is located just above to the base of the prostate gland, and terminates at 

the prostatic urethra. The prostatic secretions from the prostate gland also move to the 

prostatic urethra.  

The seminal ducts secrete an alkaline, viscous fluid containing prostaglandins, fructose and 

clotting proteins. The alkaline nature of this fluid helps it to neutralize the vagina’s acidic 

environment and so protects the sperm. It also contributes to neutralizing the acidic 

environment in the male’s urethra. Prostaglandins contribute to sperm motility, and clotting 

proteins help to coagulate semen after ejaculation.  

This secretion (seminal vesicles) constitutes the majority of semen. Secretions from the 

prostate gland also decrease the bacterial content in the semen, and it contains PSA that 

usually breaks down clotting proteins in the seminal vesicles. The bulbourethral glands 

secrete fluid into the urethra that neutralizes acids from the urine and also lubricates (fluid 

rich in muco proteins) the urethral lining at the end of the penis and avoids sperm damage 

upon ejaculation.  

Semen is made up of fluid secretions from the seminal vesicles (60%), secretions from the 

prostate gland (30%), bulbourethral secretions and sperm cells (5%) (Owen and Katz, 2005). 

The pH of semen is alkaline (7.2-7.7), secretions from the prostate gland give semen a milky 

appearance, and secretions from seminal vesicles and bulbourethral makes the sperm sticky 

in nature.  
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Prostasomes role Functional importance Reference

Sperm transit in female tract Sperm fusion with prostasomes (P) 
protects sperm from the vagina’s acidic 

environment.

(Arienti et al., 1997; Arienti et al., 1999; 
Kravets et al., 2000)

Low pH (P) ensure that the low pH has a limited 
effect on sperm motility. 

(Arienti et al., 1999; Kravets et al., 2000)

Enzyme transfer Enzymes (aminopeptidase N, and 
dipeptidyl peptidase) may modify the 

composition and biological properties of 
sperm membranes. They probably playing 

role in sperm maturation.

(Arienti et al., 1997a; Arienti et al., 1997b; 
Kravets et al., 2000)

AR (Acrosome reaction) delay (P) are rich in cholesterol which inhibits 
the sperm’s response to progesterone. They 
increase plasma membrane fluidity, thereby 

delaying AR.

(Arienti et al., 1998; Carlini et al., 1997; 
Kravets et al., 2000)

Immune modulation Seminal fluid acts as an 
immunosuppressive agent and protects 

sperm against immune responses 
encountered in the female tract.

(Kelly, 1995; Kravets et al., 2000)

Prostate specific antigen (PSA) Breaks down the clotting proteins and 
liquefies the semen.

(Lilja and Laurell, 1984; Kravets et al., 
2000)

Clinical Applications –
Oligoasthenozoospermic (OAT) (lower 

motile conc) condition

(P) are shown to reactivate motility in OAT 
condition. Motility is further enhanced by 

adding glucose in the presence of 
magnesium ions.

(Fabiani et al., 1995; Kravets et al., 2000)

Prostate cancer diagnosis PSA is used as a biomarker for prostate 
cancer screening.

(Papsidero et al., 1980; Catalona et al., 
1991; Tosoian and Loeb, 2010; Shah and 

Zhou, 2016)

Table 4: Table Showing Different Roles of Prostasomes in Contributing Functional Competence to
Sperm. Prostasomes are extracellular vesicles that originate from the prostate epithelium. The table shows the
different roles of prostasomes in providing functional competency to sperm. Apart from their role in achieving
sperm functional competence they also have clinical applications (reactivating motility in OAT condition and as
a biomarker (PSA) to screen for prostate cancer).

1.4.2.1 Prostasomes in Semen/Ejaculate   
 
Prostasomes (P) are extracellular vesicles (EVs) that originate from the prostate epithelium 

(see Section 1.1.1.2.1). The table below shows the role of prostasomes in providing 

functional competence (Kravets et al., 2000, Aalberts et al., 2014) to sperm through their 

presence in seminal fluid. These functional attributes are of great importance in providing 

sperm with the capability to successfully transit the female reproductive tract and 

successfully fertilise the oocyte.  
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The penis acts as a passageway for the ejaculation of seminal fluid and excretion of urine. 

Upon sexual stimulation, semen is released from the urethra to the exterior. The fast reflex 

action upon ejaculation is controlled by a lumbar portion of the spinal cord. The smooth 

muscle urethral sphincter located beneath the bulbourethral glands closes, preventing 

semen from entering the urinary bladder and urine from being expelled upon ejaculation. 

After ejaculation, the sperm in the seminal plasma enters the female reproductive tract. The 

sperm’s journey into the female reproductive tract is explained in Section 1.5   
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1.5  The Sperm Cells’ Journey into the Female Reproductive Tract 
 

In humans, the seminal fluid (containing sperm) is deposited in the female anterior vagina in 

contrast to other species like pigs, where the seminal fluid is deposited directly in the uterine 

cavity, bypassing the vagina altogether (Hunter, 1981, Stephen, 1986). As the vagina is 

exposed to the exterior environment, it is prone to infections. Therefore, to combat infections, 

the vaginal environment is acidic in nature, pH ≤ 5 (Suarez and Pacey, 2006), which acts as 

an antimicrobial for many disease-causing pathogens. This acidic environment is maintained 

by the production of lactic acid by anaerobic lactobacilli present in vaginal epithelial cells 

feeding on glycogen (Boskey et al., 2001, Suarez and Pacey, 2006).  

Before entering the cervix, sperm must navigate through the vagina’s acidic environment. 

Seminal fluid has a pH of 7.2-7.8 (Johnson, 2012) and, when it enters the vagina, it 

neutralises the acidic pH (it increases pH from ≤ 5 to 7.2 (Suarez and Pacey, 2006) within 8 

sec of seminal fluid entry), helping the sperm to survive.  

Within minutes of entering the vagina, the sperm enters the mucus-filled cervical canal 

(Suarez and Pacey, 2006), which lies deep within the vagina (Suarez, 2010). The nature of 

the mucus in the cervix will change depending on where the female is in her menstrual cycle. 

After ovulation, the cervical mucus becomes sticky and hostile, which physically impedes 

sperm penetration. This sticky mucus depends on the secretion of different hormones 

(estrogen and progesterone).  

A high amount of estrogen production during mid menstrual cycle ensures the mucus is less 

viscous and greater in quantity (an increase of water content leads to hydrated mucus). Unlike 

estrogen, progesterone ensures the mucus is stickier and decreased in water content (Davajan 

and Nakamura, 1973) (Suarez and Pacey, 2006).   
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Here, the cervical mucus selectively filters out sperm cells which are abnormal in 

morphology and have weak motility. Sperm cells with an abnormal shape swim at a slower 

pace in mucus, even if they have a normal flagellum, which is explained by them 

encountering greater resistance from the mucus. Sperm in cervical mucus moves primarily 

through the spaces/gaps between mucus micelles and sperm progression depends upon the 

size of these spaces (Chretien, 1989). The size of these gaps are smaller than the size of 

sperm head, and therefore the sperm has to push its way through the mucus during its transit 

through the female reproductive tract (Chretien et al., 1975, Katz and Berger, 1979, Poon and 

McCoshen, 1985).  

Apart from the cervix’s sticky nature, it also mounts an immune response as the sperm passes 

through the vagina and enters the cervix, in the form of leukocytes, particularly neutrophils 

and macrophages (Pandya and Cohen, 1985, Suarez and Pacey, 2006). Neutrophils migrate 

through the mucus layers of the human cervix (Parkhurst and Saltzman, 1994).  

Only sperm with normal morphology, and which is highly motile can resist the leukocytic 

defences (phagocytosis), and all other sperm and microbial pathogens are unable to migrate 

through the cervical mucus. From the cervix, the sperm moves to the uterus. Smooth muscle 

contractions in the uterine wall help transport the sperm through the uterus to the uterotubal 

junctions, which form the gateway to the oviducts.  

In humans, the uterotubal junction is an average of 1.2cm in length (Suarez, 2010). Once the 

sperm passes through the uterotubal junction, they are held in a sperm storage reservoir at the 

isthmus where they encounter high mucus containing narrow lumen (Eisenbach, 1999b), 

which slows down their forward progression and they (the sperm) bind strongly to the 

oviductal epithelium. In order to successfully transit through the female reproductive tract 

and fertilise the oocyte, the sperm undergo a maturation process known as capacitation (see 

Section 1.6).  
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When ovulation is completed, a change in sperm motility behaviour is observed: 

hyperactivated motility (for hyperactivation please see sections 1.6 and 1.8) associated with 

asymmetrical flagellar beat (Suarez et al., 1991). Only sperm which has shown functional 

competence (that have undergone capacitation) can successfully detach from the oviductal 

epithelium and move away from the isthmus–ampulla junction and successfully penetrate 

through the cumulus oophorus, bind to the ZP (Yoshida et al., 2008) and undergo acrosome 

reaction (AR) and finally fertilise the oocyte.   

A diagrammatic representation of the sperm cells journey into the female reproductive tract 

along with the fertilisation was shown at the end of section 1.6.   

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

1.6  Fertilisation 

Fertilisation is the process by which a spermatozoon successfully fuses with an oocyte. For a 

sperm cell to attain fertilisation capacity, it must undergo capacitation, a maturation process 

that occurs in the female reproductive tract. Capacitation and associated events 

(hyperactivation (HA), thermotaxis, chemotaxis and the acrosome reaction (AR)) are 

required for the sperm successfully to participate in fertilisation.   

1.6.1 Capacitation 
 

Austin and Chang first demonstrated the requirement for sperm maturation at the beginning 

of the 1950s. They showed that sperm must remain in the female reproductive tract for a 

period of time of time before acquiring fertilising capability. This phenomenon is known as 

capacitation (Austin, 1951, Chang, 1951b, Austin, 1952). Later Yanagimachi performed an 

assessment to study the fertilising capacity of human sperm (Yanagimachi et al., 1976).  

The physiological changes that are observed during capacitation in the female reproductive 

tract (or under in vitro conditions in a medium containing Ca2+, bicarbonate (HCO3
-) and 

bovine serum albumin (BSA)) involve a number of sequential and parallel process. Some of 

these processes take place as soon as the sperm is ejaculated (called the fast/early phase of 

capacitation) but other processes occur over a longer period of time and are classified as the 

slow/late phase of capacitation (Visconti et al., 2002, Bedu-Addo et al., 2005).  

These capacitation events include cholesterol efflux, an increase in plasma membrane 

fluidity, increase in [Ca2+]i, an increase in intracellular pH (pHi), enhanced activity of soluble 

adenylate cyclase (sAC) and elevated levels of cyclic adenosine monophosphate (cAMP), 

increased activity of protein kinase A (PKA), increased phosphorylation of serine/threonine 

and tyrosine residues and plasma membrane hyperpolarisation (Tash and Means, 1983, 

Leclerc et al., 1996b, Cross, 1998, Visconti and Kopf, 1998, Osheroff et al., 1999b, LefiÈVre 
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et al., 2002, Visconti et al., 2002, O'Flaherty et al., 2004, Moseley et al., 2005, Bedu-Addo et 

al., 2005, Visconti, 2009, Battistone et al., 2013).  

1.6.1.1 Fast/early phase of capacitation 

As the sperm leaves the epididymis and comes into contact with seminal fluid, a vigorous 

movement of the flagellum (motility activation) starts immediately because of the presence of 

HCO3
- and Ca2+ in the seminal fluid. HCO3

- and Ca2+ are essential for the increase in sperm 

motility (Rojas et al., 1992, Osheroff et al., 1999a, De Vries et al., 2003, Jaiswal and Conti, 

2003, Luconi et al., 2005, Visconti, 2009).  

During fast/early phase capacitation HCO3
- is transported across the plasma membrane (PM) 

using Na+/HCO3
- (bicarbonate) co-transporters (NBC). NBC is referred to as “electrogenic” 

(1 Na+: at least 2 HCO3
-) (Jentsch et al., 1984, Romero, 2001). HCO3

-  entry into the cell is 

associated with an increase in intracellular pH and stimulates an increase in cyclic adenosine 

monophosphate (cAMP) (reaches maximum within ~60sec) through the activation of atypical 

soluble adenylyl cyclase (sAC) (Visconti, 2009). cAMP, in turn, activates PKA that 

phosphorylates amino acid (serine/threonine) residues on target proteins in the flagellum. 

PKA-dependent phosphorylation begins within ~90sec of HCO3
- activation, leading to an 

increase in beat frequency and motility activation and contributing to numerous signalling 

processes in the sperm (Xie et al., 2006, Visconti, 2009). 

 

1.6.1.2 Slow/late phase of capacitation 
 

As in fast/early phase capacitation,  Ca2+, HCO3
- and activation of sAC with a consequent 

increase in [cAMP] and PKA activation, are essential contributors (Visconti, 2009, Bailey, 

2010). Slow/late phase capacitation involves cholesterol efflux from the PM, which can be 
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achieved in vitro by the addition of BSA or β-cyclodextrins to the capacitation media 

(Salicioni et al., 2007, Visconti, 2009). Cholesterol removal from the PM activates PKA 

phosphorylation of amino acid (serine/threonine) residues, which further causes an increase 

in protein tyrosine phosphorylation (TyPr). It is well documented that TyPr is downstream 

from the PKA pathway, and the increase in TyPr also depends on the presence of BSA, 

HCO3
- and Ca2+ (Salicioni et al., 2007, Visconti, 2009). The absence of any one of these 

constituent’s failure of the slow/late phase of capacitation. Diagrammatic representation of 

both fast/early and slow/late phase capacitation events is shown in Figure 11 A & B. 

In sperm of mice, cows and horses, population measurements of resting membrane potential 

(Emr) of non-capacitated sperm lie between -35 and -45mV, but after capacitation the Emr 

was observed to be -65mV (Espinosa and Darszon, 1995, Zeng et al., 1995, Muñoz-Garay et 

al., 2001, Demarco et al., 2003, Hernández-González et al., 2006, Santi et al., 2010, De La 

Vega-Beltran et al., 2012, López-González et al., 2014).  In mouse sperm changes in K+,  

Na+, and Cl- permeability are believed to contribute to this PM hyperpolarisation, thereby 

increasing cholesterol efflux and membrane fluidity for lipid raft reassembly (Cross, 1998, 

Xie et al., 2006, Cross, 2004).  

Measurements of Em of non-capacitated human sperm populations are around -40mV 

(Linares-Hernández et al., 1998, López-González et al., 2014) which increased to about -

58mV in capacitated cells (Patrat et al., 2002, López-González et al., 2014). Both Slo1 and 

Slo3 K+ channels may contribute to capacitation-associated hyperpolarisation of human 

sperm whereas only Slo3 channels are implicated in the hyperpolarisation in mouse sperm 

(López-González et al., 2014).    
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1.6.2 Hyperactivation  
 

Hyperactivation (HA) is a whiplash-like form of sperm motility (behaviour) (de Lamirande 

and Gagnon, 1993)  that is necessary for fertilisation and is considered an important marker 

for capacitation. (Ho and Suarez, 2001) observed that bovine sperm showing hyperactivated 

motility have an asymmetrical beating with deeper bends and, in in vitro conditions, they 

appear to be swimming vigorously in circles.   It has been characterised in human sperm and 

is characterised and assessed by it kinematic characteristics (VCL, ALH and LIN) recorded 

by computer-assisted semen analysis (CASA, see below) (Mortimer and Mortimer, 1990, 

Burkman, 1984, Mortimer et al., 1997, Aitken et al., 1985). HA was first described by 

Yanagimachi when he stated that movement of hamster spermatozoa was extremely active 

after they had completed capacitation (YANAGIMACHI, 1970). Human sperm samples with 

good fertilisation rates in vitro show significant changes in HA during capacitation; whereas 

those samples demonstrate poor hyperactivation are associated with poor fertilisation rates, 

therefore hyperactivation is critical for fertilisation (Coddington et al., 1991, Pilikian et al., 

1991, Quill et al., 2003, Suarez, 2008, Singh and Rajender, 2015, Alasmari et al., 2013a).  

Motility characteristics of hyperactivated sperm differ in a number of ways from those of 

sperm showing activated motility and CASA is used to assess these characteristics in a 

population of sperm. When analysing using CASA, human sperm showing curvilinear 

velocity (VCL) ≥  50µ m/s, linearity (LIN) <50%, increased amplitude of lateral head 

displacement (ALH) ≥7µm (Mortimer, 2000b) are considered as hyperactivated.  
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1.6.2.1 Types of hyperactivated motility 
 

(i) Hyperactivated Non-Progressive Motility 

In this type of human sperm motility, the flagellum beats highly asymmetrically, particularly 

in the proximal section, resulting in continuous tumbling or turning so that the cell fails to 

progress. CASA measurements from the cells show a high VCL and ALH but very low LIN 

and VSL. Such hyperactivated motility is considered as an essential process for sperm to 

detach from the oviductal epithelium, successfully penetrate the ZP and fuse with an oocyte. 

Regulation of hyperactivated motility is shown in figure18. 

(ii) Hyperactivated Progressive or Transitional Motility 

In this type of motility, the flagellum bends strongly (particularly in the proximal region), but 

beating is less asymmetric such that the sperm head follows a highly tortuous but progressive 

path (fig 12).  

 

A B

Figure 12: Showing different types of human sperm motility tracks. Image showing motility tracks of
A Hyperactivated-progressive and B Hyperactivated non-progressive (green) human sperm. The tracks
were analysed by the CASA. Sperm cell with (VCL) = 150µm/s, linearity (LIN) <50%, increased
amplitude of lateral head displacement (ALH) =7µm (Mortimer, 2000) are considered as hyperactivated.
When motility characteristics (VCL, ALH and LIN) were assessed along with progressive or straight line
velocity (VSL), human sperm cell showing hyperactivated non-progressive motility (B) with a high VCL
and ALH but very low LIN and VSL. In the case of hyperactivated progressive motility (A) show low
VCL, ALH but high LIN and VSL (Compare to B).
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1.6.3 Thermotaxis and Chemotaxis 
In mammals, there may be guidance mechanisms that help sperm to reach the oocyte in the 

fallopian tube. (Eisenbach and Giojalas, 2006). Thermotaxis refers to sperm movement 

directed by a temperature gradient (Bahat and Eisenbach, 2006). Under in vivo conditions, 

sperm movement was observed from a cooler sperm reservoir (Isthmus of the fallopian 

tube, 31°C) to the warmer sperm fertilisation site (Ampulla of the fallopian tube, 37°C) 

(fig 13). Thermotaxis is believed to be a long-range guidance mechanism, which means it is 

probably generated at the time of ovulation and enables sperm to travel a distance of 3-5cm in 

humans (from the isthmus to the oocyte at the fertilisation site) (Harper, 1982, Tur-Kaspa, 

1992). Human sperm are reported to sense temperature differences as small as 0.5°C, or 

maybe even less (Bahat et al., 2003, Bahat and Eisenbach, 2006).  

The thermotaxis response in human sperm is thought to be operated by phospholipase C 

(PLC) and inositol triphosphate receptor (IP3R) calcium channel (Bahat and Eisenbach, 

2010). PLC hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol (IP3) and 

diacylglycerol (DAG). The released IP3 binds to theIP3R located in the internal calcium store 

to release stored calcium, which finally increases intracellular calcium. As the calcium in the 

store gets depleted this activates the store-operated channel (SOC) that pumps in extracellular 

calcium to refill the store (a mechanism known as store-operated calcium entry) (Dutta, 2000, 

Bahat and Eisenbach, 2010). 
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Unlike thermotaxis, in chemotaxis only capacitated sperm cells respond to a concentration 

gradient of a chemoattractant (Eisenbach, 1999b, Eisenbach, 1999a, Eisenbach and 

Giojalas, 2006). As explained in above the section (section 1.6.2) hyperactivated sperm 

motility shows an asymmetrical flagellar beat pattern which causes a change of direction, and 

as chemotaxis is a response to a chemical gradient induced by a chemoattractant, the sperm 

may use hyperactivation to achieve chemotaxis. Chemotactically dominated hyperactivated 

motility might show a reduced flagellar beat response sufficient to cause turning and direct 

sperm towards the source of the attractant. 

In humans, follicular fluid (FF) (Ralt et al., 1991, Ralt et al., 1994, Cohen-Dayag et al., 1995, 

Wang et al., 2001) and cumulus oophorous (CO) (Sun et al., 2005, Tamba et al., 2008) attract 

sperm. The active agent in FF is progesterone (P4) (Wang et al., 2001, Chang and Suarez, 

2010), and CO cells secrete P4 (Oren-Benaroya et al., 2008, Chang and Suarez, 2010) to 

produce a gradient that which  may act as a chemoattractant in guiding sperm towards the 

oocyte. In mammals, P4 induces sperm chemotaxis at very low (picomolar) concentrations 

(Teves et al., 2006, Teves et al., 2009) and is the only chemoattractant that is secreted by the 

CO (Guidobaldi et al., 2008, Teves et al., 2009). 

On the basis of pharmacological manipulation a very complex mechanism has been proposed 

for the chemotactic response to progesterone, involving activation of tmAC (transmembrane 

adenyl cyclase)-cAMP-PKA pathway followed by TyrP at equatorial segment and flagellum, 

calcium mobilisation through IP3R and SOC and finally activation of soluble guanylyl 

cyclase (sGC)-cAMP-protein kinase G (PKG) (Teves et al., 2009).  
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Figure 14: Figure showing human sperm chemotaxis. 1. Showing progesterone (P4) secreted by both cumulus cells and
follicular fluid (FF). 2. P4 acts as a chemoattractant and induce a chemical gradient that guides sperm towards oocyte.
3.Change in capacitated human sperm motility behaviour from intense hyperactivated motility to motility with a reduced
flagellar beat in response to the chemical gradient induced by chemoattractant (P4). 4. Showing non-capacitated human
sperm not responding to the chemical gradient induced by chemoattractant (P4). FF – Follicular fluid, P4 –
Progesterone, PVS – Perivitelline space and ZP – Zona pellucida.
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1.6.4 Acrosome Reaction 

The acrosome reaction (AR) is a capacitation-dependent exocytotic process (Abou-Haila and 

Tulsiani, 2000, Patrat et al., 2000, Breitbart, 2002) that is required for fertilisation. Only 

acrosome-reacted sperm can pass through zona pellucida (ZP), bind to the oocyte’s PM and 

finally fuse with the oocyte. Various enzymes are involved in the sperm’s penetration through 

the oocyte envelope. They are mainly hydrolytic (hyaluronidase) and proteolytic (acrosin) 

enzymes (Harper et al., 2008). The PM of the anterior region of the sperm’s head fuses with 

the outer acrosomal membrane (OAM) which leads to membrane vesiculation and the 

exposure of the inner acrosomal membrane (IAM). The AR may have induced by the ZP, 

which acts as a ligand for the various sperm PM receptors (Cross et al., 1988, Patrat et al., 

2000, Gupta et al., 2009) necessary for fertilisation. Binding of the sperm to the ZP induces 

an increase in intracellular calcium [Ca2+]I that initiates sperm AR at the ZP’s surface 

(Darszon et al., 2011). Under in vitro conditions, this exocytosis process is induced by the 

sperm’s exposure to progesterone (P4) (Turner et al., 1994, DasGupta et al., 1994, Patrat et 

al., 2000). Calcium channels specific to sperm cell signalling (CatSper) are involved in P4-

induced AR (Tamburrino et al., 2014). 

Outer Acrosomal membrane (OAM)

Inner Acrosomal membrane (IAM)

1 2 3 4 5

Plasma membrane (PM) Acrosome

Acrosome 
Intact Sperm

Initial permeation 
Of OAM

Acrosome 
reacted Sperm

Breakdown
Of OAM

Release of 
acrosomal
contents

Figure 15: showing acrosomal exocytosis involved in acrosome reaction in human sperm. 1. Showing an intact outer acrosomal membrane
(OAM), looking like a cap-like structure, and the sperm’s plasma membrane. This is under normal conditions. 2. Showing initial permeation of
OAM when sperm cells were exposed to AR-inducing stimulus. 3. Showing breakdown of OAM 4. Release and exposure of acrosomal contents
(acrosin, hyaluronidase and calcium) into the immediate vicinity 5. Resulting in an acrosome-reacted sperm capable of binding to the zona
pellucida (Harper et al., 2008).
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1.6.4.1 Zona pellucida and the AR 
 

After penetrating the cumulus oophorous the sperm comes into contact with the ZP, that 

surrounds the oocyte in all vertebrates (Conner et al., 2005). Sperm-ZP binding is a highly 

species-specific process (Petit et al., 2014). This means that human sperm can’t recognise 

mouse oocyte because they are unable to recognise the ZP’s glycoproteins. Other than being 

species-specific, the ZP also protects the oocyte and prevents the occurrence of polyspermy 

(Conner et al., 2005). In the mouse, the ZP contains three glycoproteins: ZP1, ZP2 and ZP3 

(Wassarman, 1995b, Lefièvre et al., 2004, Wassarman, 2008, Litscher et al., 2009). ZP3 acts 

as a sperm receptor and induces the AR. ZP2 acts as secondary sperm receptor in sperm-

oocyte binding (Rankin and Dean, 1996, Rankin et al., 1996). In contrast to the mouse, in 

humans there are four ZP glycoproteins: ZP1, ZP2, ZP3 and ZP4 (Lefièvre et al., 2004, Gupta 

et al., 2009, Gupta and Bhandari, 2011, Gupta, 2015). ZP1, ZP3 and ZP4 induce the AR, and 

all four ZP glycoproteins are involved in sperm-oocyte binding. ZP2 plays an important role 

in avoiding polyspermy (Gupta, 2015). In both mouse and human sperm induction of the AR 

is associated with biphasic (combination of transient and sustained) calcium influx, but it was 

best characterised in the mouse (Bailey and Storey, 1994, Shirakawa and Miyazaki, 1999, 

Patrat et al., 2000). In acrosome-intact mouse sperm, the zona receptor present on the outer 

acrosomal membrane binds to ZP3 (oocyte) which results in an opening of T-Type voltage-

operated calcium channel (VOCC) and a transient influx of calcium (last ~50sec) (Arnoult et 

al., 1996, O'Toole et al., 2000) followed by a slower sustained calcium [Ca2+]i elevation. 

Prolonged ZP3 interaction maintains this sustained calcium response. Sperm binding with ZP3 

leads to activation of phospholipase Cγ1 (PLCγ1), resulting in hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) and resulting in the production of inositol 

triphosphate (IP3). This, in turn, binds to IP3R (IP3R channel gets activated) and mobilises 

calcium from the acrosome (Roldan and Shi, 2007).  
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Figure 16: Showing human sperm transit in to female reproductive tract and Fertilization. Figure A Showing sperm journey in to female reproductive
tract. 1. After coitus sperm journey begins in to female reproductive tract. 2.The first point of entry is vagina. The environment (pH) in vaginal is acidic and as
sperm in seminal fluid enters vagina it (seminal fluid) neutralises acidic environment protecting sperm from harsh vaginal environment. 3. After vagina sperm
moves in to cervix mucus where they begin fast/early phase capacitation. At this stage activation of sperm motility was observed. 4. After cervix sperm move to
uterus it induces a host reaction where leukocytes out number sperm (100:1) engulf abnormal sperm. B 5. Isthmus - Sperm are attached to oviductal epithelium
and this stage sperm becomes quiescent (sperm in blue) and they are stored in readiness for ovulation. As the ovulation approaches sperm undergo a maturation
process (slow/late phase) called capacitation that makes sperm to acquire reproductive competency and also shown hyperactivated motility that helps sperm in
detaching from oviductal epithelium (sperm in red). C 6 After isthmus sperm moves to ampulla – point of fertilisation. 7 For fertilisation to happen sperm
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1.7  Intracellular calcium signalling toolkit    

In somatic cells, long-term regulation of cellular activity happens through control of genetic 

expression in response to signals from other cells or signals from the extracellular space. This 

control of gene expression occurs through transcription (DNA to RNA), translation (RNA to 

protein) and regulation of protein products. Signals from extracellular components, like 

hormones and cell growth factors, are involved in modification of final product (proteins) 

functions. One such mechanism is through changes in the intracellular calcium [Ca2+
i] 

concentration (Costello et al., 2009).   

Unlike somatic cells, the mature haploid sperm cell has a reduced cytoplasmic volume and 

loss of endoplasmic reticulum (ER). In addition replacement of histones with protamines and 

tight condensation nuclear DNA make the prevent the occurrence transcription and 

translation. To achieve successful regulation of cellular activity, sperm use modification of 

protein functions, termed “post-translation modification”. Post-translation modifications, 

therefore, are involved in controlling all cellular activities in a sperm cell.  

In sperm cells, calcium signalling is particularly important in the regulation of different 

sperm functions, such as HA, chemotaxis and the AR (Publicover et al., 2007) and may be 

involved in penetration of mucus. SU cells performs better in viscous medium penetration 

compared to DG cells (see chapter-3) because they more effectively express CatSper and 

CatSper-mediated Ca2+ signals (Chapter 6). Defects of Ca2+ calcium in human sperm are 

associated with male infertility (Krausz et al., 1995, Baldi et al., 2000, Espino et al., 2009, 

Costello et al., 2009, Darszon et al., 2011, Williams et al., 2015). This chapter discusses the 

presence of the PM and intracellular calcium channels (See Figure 17) in human sperm.    
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1.7.1 Calcium channels in the PM 
 

In the human sperm cell, four calcium channels are involved in PM calcium influx. These 

channels enable the flow of calcium into the cell to increase cytoplasmic [Ca2+] i. These four 

PM-positioned calcium channels are storage operated calcium channels, transient receptor 

protein channels, voltage operated calcium channels and sperm-specific calcium channels.    

1.7.1.1 Storage-operated calcium channels 
 

An increase in intracellular calcium levels is achieved by Ca2+ influx through the PM and the 

release of calcium from intracellular stores. Both of these calcium pathways are necessary to 

achieve and control a variety of cellular functions in a cell. The release of calcium from 

intracellular stores is accomplished by IP3-induced calcium release from stores (somatic cells 

ER; Acrosome/RNE – sperm cell) coordinated with Ca2+ influx through the PM, is achieved 

by process called storage-operated calcium entry (SOCE) or capacitive calcium entry (CCE) 

(Putney, 2009, Darszon et al., 2011). The calcium channels that are responsible for SOCE are 

called storage-operated calcium channels (SOCs). These SOCs are located in the PM of 

human sperm (Costello et al., 2009), and this SOCE pathway in a somatic cell is important 

(Davis et al., 2016) to regulate cellular functions. 

SOCE-associated calcium influx across the PM causes a small storage-operated current, 

called the calcium-release-activated calcium current (ICRAC) (Soboloff et al., 2006, Frischauf 

et al., 2008). Two membrane proteins play an important role in calcium entry into the cell 

through storage-operated calcium-release-activated calcium (CRAC) signalling (Derler et al., 

2016). These membrane proteins are the stromal interaction molecule (STIM) and Orai 

(CRAC PM channel).   

The STIM acts as ER located Ca2+ sensor (Putney, 2007, Fahrner et al., 2013) and the Orai 

membrane protein is involved in the calcium selective ion channel in the PM (Prakriya et al., 
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2006, Hogan et al., 2010, Fahrner et al., 2013). Upon IP3 binding to IP3R induced calcium 

mobilisation from ER to cytoplasm that creates calcium depletion from the store. As the 

calcium gets depleted from the ER, the STIM1(an isoform of STIM which is the ER calcium 

sensor) detects the calcium content and the STIM1 gets redistributed close to the PM 

(Cahalan, 2009) where it couples and activates Orai1 (an isoform of Orai) (Cahalan, 2009, 

Fahrner et al., 2013). This results in the activation of the CRAC channel, which causes influx 

extracellular calcium into the cell (Soboloff et al., 2006). Other than STIM1 and Orai, the 

transient receptor potential channel (TRPC) is involved in CCE, where it forms protein 

clusters with Orai and helps in refilling the store (Elaib et al., 2016). 

All three membrane proteins, STIM1, Orai and TRPC, are found in human sperm (Castellano 

et al., 2003a, Darszon et al., 2012, Lefievre et al., 2012, Correia et al., 2015). STIM1 is found 

in the neck/midpiece and the acrosome region of the head. Unlike in somatic cells, in human 

sperm cells, redistribution of STIM  towards the PM won’t happen; instead STIM  is 

localised near the PM as calcium storage organelles (e.g. acrosome, neck/midpiece (Lefievre 

et al., 2012)) and SOCE could activate immediately (Correia et al., 2015). Treatment of 

human sperm with 2-aminoethoxydiphenylborate (2-APB) initiates CCE, which promotes the 

interaction of STIM1 with storage-operated calcium channels (Lefievre et al., 2012). This 

activation by 2-APB significantly increases the P4-induced transient calcium response at 

sperm neck but does not affect the calcium responses in the sperm flagellum that are 

dependent on CatSper (Correia et al., 2015). 

1.7.1.2 Canonical transient receptor potential channels 
 

Canonical transient receptor potential channels (TRPC) are classified into TRPC, TRPV, 

TRPM, TRPP, TRPML and TRPN all together forms TRP superfamily (Huang, 2004). TRPC 

channels were first reported in Drosophila, where TRP gets activated in response to 
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continuous light exposure of Drosophila photoreceptor cells (Huang, 2004). Activation of 

TRPC results in the influx Ca2+, raising [Ca2+] i.  

TRPC1, TRPC3, TRPC6 and TRPC7 are found in human sperm (Castellano et al., 2003b). 

They are localised in the head and the flagellum, suggesting they may play an important role 

in HA (Trevino et al., 2001, Castellano et al., 2003b) and other events of fertilisation (e.g. 

capacitation and AR). Human sperm treated with SKF96365 (TRP channel inhibitor) show 

decreased motility in a dose-dependent manner, suggesting that the TRP channel is involved 

in sperm motility (Castellano et al., 2003b).  

1.7.1.3 Voltage-operated calcium channels 
 

VOCCs (Cav) are a family of voltage-operated calcium channel that contribute to the increase 

in [Ca2+]i during PM depolarisation (Darszon et al., 2011). VOCCs are classified into two 

different functional groups: (i) High voltage activated (HVA); and (ii) Low voltage activated 

(LVA) (Darszon et al., 2011). With respect to their biophysical and pharmacological 

characteristics, both HVA and LVA VOCCs are divided into different types of currents: L, N, 

P, Q and R (Birnbaumer et al., 1994, Dunlap et al., 1995, Publicover and Barratt, 1999, 

Darszon et al., 2011). Strong depolarisation is necessary to activate HVA-VOCC channels, in 

contrast to LVA-VOCCs, which are activated by weaker depolarisation but  inactivate rapidly 

and at less depolarised potentials compare to HVA VOCCs (Darszon et al., 2011).  

The VOCC or Cav is formed by an α subunit and is encoded by a family of 10 genes (Cav1.1-

1.4; Cav2.1-2.3; Cav3.1-3.3) grouped into three sub-families (Cav1; Cav2 and Cav3). Cav1 

with its four genes Cav1.1-1.4 conducts L-type current, Cav2 with its three genes conducts P- 

and Q- (Cav2.1), N- (Cav2.2) and R- (Cav2.3) type currents. Cav3 with its three genes (Cav3.1; 

Cav3.2 and Cav3.3) conducts T-type currents (Darszon et al., 2011). Cav channels can be 
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regulated by activation of a G-protein-coupled mechanism involving PLC, DAG and 

activates PKC.    

mRNA and or protein for all three Cav subfamilies are reportedly present in mammalian 

sperm. Cav1.2, Cav2.2, Cav2.3 (Goodwin et al., 2000), Cav1.3 and Cav2.3 (Trevino et al., 

2004) have been detected in human sperm. In mouse sperm Cav3.3 is present in the midpiece 

and Cav3.2 is localised at the principle section and posterior sperm head (Serrano et al., 

1999).  

1.7.1.4 CatSper channel 
 
CatSper is a cationic channel of sperm cells (Ren et al., 2001, Quill et al., 2001, Kirichok and 

Lishko, 2011, Brenker et al., 2012, Singh and Rajender, 2015). CatSper channels are 

expressed exclusively in the plasma membrane (PM) of the sperm flagellar principle (Quill et 

al., 2001, Ren et al., 2001, Qi et al., 2007, Singh and Rajender, 2015, Tamburrino et al., 

2015). This channel is pH sensitive (Kirichok et al., 2006) and voltage-gated (Quill et al., 

2001, Shukla et al., 2012, Singh and Rajender, 2015). Upon activation by increasing 

intracellular pH or by progesterone or prostaglandins (Lishko et al., 2011, Publicover and 

Barratt, 2011, Strunker et al., 2011, Brenker et al., 2012), CatSper mediates Ca2+ entry to 

raise [Ca2+] i,(Ren et al., 2001, Publicover et al., 2007, Navarro et al., 2008, Ren and Xia, 

2010).  

CatSper channels are made up of four homologous alpha subunits and three additional 

auxiliary subunits. They are CatSper α (α1-4), CatSper β, CatSper γ and CatSper δ (Lishko et 

al., 2010, Singh and Rajender, 2015). CatSper α 1 (Ren et al., 2001, Singh and Rajender, 

2015), CatSper α 3 and α 4 (Jin et al., 2005, Qi et al., 2007, Singh and Rajender, 2015) are 

expressed in late stage spermatids. CatSper2 protein is expressed in early stage sperm cell 

division (pachytene spermatocytes) (Quill et al., 2001, Schultz et al., 2003, Singh and 
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Rajender, 2015). The three auxiliary subunits - CatSper β (Liu et al., 2007), CatSper γ 

(Wang et al., 2009) and CatSper δ (Chung et al., 2011) - are expressed in spermatocytes and 

spermatids (Singh and Rajender, 2015).   

CatSper is required for hyperactivated motility, successful detachment from the oviductal 

epithelium and fertilisation (Qi et al., 2007, Ho et al., 2009, Singh and Rajender, 2015, 

Ernesto et al., 2015). Absence of any of the four CatSper alpha subunit proteins results in 

failure of channel expression, which will in turn affect sperm hyperactivated motility (Qi et 

al., 2007) and the fertilising potential in human sperm (Williams et al., 2015).  

CatSper channel is activated by different agonists such as progesterone (P4) (Lishko et al., 

2011, Publicover and Barratt, 2011, Brenker et al., 2012) and Prostaglandins (Lishko et al., 

2011, Brenker et al., 2012). These hormones (progesterone and prostaglandins) are produced 

by cumulus cells that surrounds the oocyte and follicular fluid (FF). P4 stimulates calcium 

increase in a non-genomic fashion (Publicover et al., 2007, Strunker et al., 2011) that ensures 

rapid calcium influx. An increase in intracellular pH also activates the CatSper channel that 

ensures rapid influx of extracellular calcium (Strunker et al., 2011). 

1.7.2 Calcium pumps 
The main purpose of calcium pumps is to maintain basal (resting) levels of [Ca2+] i and to 

return [Ca2+] i to basal levels after the completion of necessary cell functions in somatic and 

sperm cells. This is achieved either by pumping calcium into the stores or into the 

extracellular environment. This calcium clearance mechanism is achieved by ATP-driven 

Ca2+ pumps (Ca2+ ATPases) and/or Na+ - Ca2+ exchanger (NCX) that eject calcium from the 

cytoplasm into the extracellular environment or move calcium from cytoplasm into the 

intracellular compartments  (Michelangeli et al., 2005, Jimenez-Gonzalez et al., 2006).  



82 
 

Plasma membrane Ca2+ ATPase (PMCA) is the largest Ca2+ ATPase pump with a 

molecular weight ranging between 130 and 140Kda (Carafoli and Brini, 2000, Jimenez-

Gonzalez et al., 2006) It is located exclusively in the principle piece in mammalian sperm 

(Wennemuth et al., 2003, Okunade et al., 2004, Schuh et al., 2004, Jimenez-Gonzalez et al., 

2006). PMCA4 (isoform of PMCA) knockout in mice are incapable of inducing HA motility 

(Okunade et al., 2004). More than 90% of the PMCA proteins contain a PMCA4 isoform 

(Okunade et al., 2004, Jimenez-Gonzalez et al., 2006).   

Sarco/Endoplasmic reticulum Ca2+ ATPase (SERCA) is localised in the ER and ensures 

the refilling of the calcium store. SERCA1 (isoform of SERCA)  is expressed in skeletal 

muscle, SERCA2 is expressed in tissues, and SERCA3 has limited expression (Correia et al., 

2015). SERCA2 is localised at the acrosome and midpiece of the human sperm (Lawson et 

al., 2007, Correia et al., 2015). Apart from the SERCA pump, another calcium pump called 

secretory pathway Ca2+ ATPase (SPCA) is present in the Golgi apparatus in somatic cells 

(Wootton et al., 2004, Correia et al., 2015). In human sperm, SPCA1 has been detected in the 

redundant nuclear envelope (RNE) of human sperm (Harper et al., 2005, Correia et al., 2015).   

Na+-Ca2+ exchanger (NCX) has a coupling ratio of 1:3, exchanging one Ca2+ for three Na+ 

across the PM. In forward mode this occurs as extrusion of one Ca2+ for entry of three Na+, 

and is thus driven by the membrane Na+ gradient  (Jimenez-Gonzalez et al., 2006)). NCX1.3 

and NCX1.7 are found in rat testis (Quednau et al., 1997) and observed to be localised in the 

PM of the flagellum (Bradley and Forrester, 1980). NCX is present in the PM of human 

sperm and any loss or inhibition of NCX activity could lead to a disturbance in the 

distribution of Na+-Ca2+ ions and inhibit human sperm motility (Krasznai et al., 2006, 

Peralta-Arias et al., 2015).    
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1.7.3 Mobilisation of stored calcium through intracellular store channels 
 

Ca2+ stores are involved in the calcium signalling process in somatic cells. In somatic cells, 

Ca2+ is stored primarily in the endoplasmic reticulum and is mobilised upon activation of 

intracellular Ca2+ channels by secondary messengers. Apart from the ER, other organelles, 

such as the sarcoplasmic reticulum (SR), mitochondria, nuclear envelope and Golgi 

apparatus, have all been identified as intracellular calcium stores in somatic cells 

(Michelangeli et al., 2005). There are at least two intracellular channels that release stored 

Ca2+:  inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), both of 

which have been identified in mammalian sperm (Walensky and Snyder, 1995, Naaby-

Hansen et al., 2001, Costello et al., 2009, Correia et al., 2015).  

1.7.3.1 Inositol 1,4,5-trisphosphate receptors 
 

IP3R-associated calcium signalling exists in somatic and sperm cells, and involves the 

generation of the diffusible secondary messenger inositol 1,4,5-trisphosphate (IP3) 

(Vermassen et al., 2004, Jimenez-Gonzalez et al., 2006) (Parys and De Smedt, 2012).. 

Binding of IP3 to IP3R activates the release of calcium from stores into the cytoplasm. IP3R 

activity is also regulated by calcium itself: when cytoplasmic calcium concentrations are low 

(~300nM), then IP3 binding affinity to IP3R increases and results in the mobilisation of 

calcium from stores to the cytoplasm. The presence of higher concentrations of calcium in the 

cytoplasm inhibits IP3R activity. Three isoforms of the IP3R family have been identified: 

IP3R1, IP3R2 and IP3R3.  

Three isoforms of IP3R occur, with 75% sequence similarity to one another (Taylor et al., 

1999, Jimenez-Gonzalez et al., 2006). It is the IP3R1 isoform that is expressed in the anterior 

region of the acrosome in mammalian sperm (Kuroda et al., 1999). IP3R, G-protein and 

phospholipase-α (PLCα) are present in mammalian sperm, and these proteins are involved in 
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agonist-induced IP3 production (Walensky and Snyder, 1995, Kuroda et al., 1999, Jimenez-

Gonzalez et al., 2006). Dissociation of the G-protein subunit Gα upon receptor activation 

leads to activation of phospholipase Cβ1 (PLCβ1), which results in hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) and the production of IP3 and diacyl glycerol 

(DAG). The IP3 binds to and activates IP3R to release calcium from stores (anterior region of 

acrosome) into the cytoplasm.      

1.7.3.2 Ryanodine receptors 
 

Ryanodine receptors (RyRs) are so-called because of their activation by the alkaloid 

ryanodine (Van Petegem, 2012). The molecular mass of these receptors is about ~2.2MDa 

(Lai et al., 1988, Lanner et al., 2010). Similarly, to IP3Rs, RyRs are an intracellular calcium 

channel located on the ER/SR membrane that is involved in releasing stored calcium into the 

cytoplasm. The family of RyRs contains three different isoforms: RyR1, RyR2 and RyR3. All 

of these are homotetrameric proteins that are activated by Ca2+ and regulated by proteins (e.g. 

calsequestrin (CSQ)-SR luminal calcium binding protein (Zhang et al., 2015) and Calreticulin 

in ER (Ellgaard and Helenius, 2003)). RyR1 is expressed primarily in skeletal muscle, RyR2 is 

in cardiac muscle and RyR3, which has the widest distribution, is expressed in brain tissue. 

(Brini, 2004, Jimenez-Gonzalez et al., 2006). 

In somatic cells (e.g. cardiac muscle), calcium entering the cytoplasm through plasma 

membrane channels activates ryanodine receptors, causing Ca2+-induced Ca2+ release (CICR) 

(Zhang et al., 2015). In addition, RyRs are activated by cyclic-adenosine diphospho-ribose 

(cADPR) which thus acts as a secondary messenger  (Ogunbayo et al., 2011). 

If RyR activation leads to depletion of stored Ca2+ (and a significant reduction in the calcium 

gradient across RyRs) this may lead to closure of the channel. As a result, the cytoplasmic 

calcium drops down within 15ms, eventually preventing the CICR mechanism. Low store 
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(SR) calcium will stop the reopening of the RyR channel, resulting in a termination of store 

calcium release (Guo et al., 2012, Laver et al., 2013, Zhang et al., 2015).  

Ryanodine receptors isoforms RyR1 and RyR3 are expressed in mouse spermatocytes and 

spermatids, but no expression of RyR2 was observed in mouse sperm (Giannini et al., 1995). 

Later investigations into RyR localisation detected only RyR3 in mature sperm (Treviño et al., 

1998). RyR3 expression could be detected in both acrosome-intact and acrosome-reacted 

mouse sperm (Treviño et al., 1998) from studies performed using RT-PCR and RyR3-specific 

RyR antibodies. 

Investigations into RyR localisation in human sperm, performed by Harper et al. (2004), 

using a fluorescent ryanodine analogue (BODIPY-FL-X-ryanodine) detected RyRs primarily 

at the posterior head/neck (PHN) region though some atining of the acrosome was also 

reported. These authors also reported that calcium oscillations in human sperm were 

independent of IP3Rs, but the oscillations could be modified by application of ryanodine: 

with a low dose of ryanodine application, an increased frequency of intracellular calcium 

oscillations was observed and at higher doses of ryanodine application, a decrease in 

frequency of intracellular calcium oscillations was observed.  

High doses of RyR application can also affect spermatogonial proliferation and increase cell 

meiosis (Chiarella et al., 2004). Observations highlighted here suggests that RyR plays an 

important role in sperm development and potentially in secondary messenger-mediated 

calcium mobilisation from store (PHN) to the cytoplasm when sperm are exposed to P4.   
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1.8 Role of calcium in regulation of motility   

Events such as HA, chemotaxis and the AR are all associated with [Ca2+] i signalling in 

human sperm, which is necessary to facilitate successful fertilisation. Signalling of [Ca2+] i is 

achieved by the influx of calcium from the extracellular milieu to the intracellular cytoplasm 

through the CatSper channels. Intracellular calcium signalling can also be achieved by 

calcium flow from the intracellular store to the cytoplasm. The mobilisation of calcium from 

either stores or CatSper results in initiating different characteristic behaviours (Alasmari et 

al., 2013b) (see Figure 18) that play a key role in sperm transportation and fertilisation. 

During the sperm’s journey in the female tract, it encounters viscous and viscoelastic 

environments. To penetrate successfully through these environments, the sperm selects and 

switches between different behaviours for which calcium signalling is crucial. After 

migrating through these environments, calcium is also essential to initiate particular 

behaviour that helps it to detach from the oviductal epithelium, penetrate through the cumulus 

matrix and ZP and to fertilise the oocyte. To artificially (in vitro) induce different behaviours, 

sperm were treated with different drugs like 4-Aminopyridine (4-AP), Progesterone (P4) and 

Prostaglandin (PE1). Further explanation about 4-AP was enclosed below. 

Please see Figure 19 for an illustration of the mobilisation of calcium from stores and 

CatSper channel in human sperm.   

4-Aminopyridine (4-AP)  

4-Aminopyridine (4AP), also known as Fampridine (Goodman et al., 2009), is used primarily 

as a broad spectrum potassium (K+) channel blocker (Aronson, 1992, Ishida and Honda, 

1993, Grimaldi et al., 2001, Bhaskar et al., 2008, Goodman et al., 2009). It bears a single 

amino group and is a weak base (Gobet et al., 1995), which can exist either in an ionized or 

non-ionized form (Choquet and Korn, 1992). Therapeutically 4AP is used to treat 

neurological disorders such as multiple sclerosis (MS), a disease that effects the central 
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nervous system (Judge and Bever Jr, 2006). Clinical studies conducted on MS patients has 

shown an improvement in the neurological condition when treated with the 4-AP (Goodman 

et al., 2009) by blocking the Potassium (K+) channel present in the neurons. Application of 

this drug clearly improved the walking ability in the MS patients. Although this drug has a 

therapeutic importance, it can cause some side effects such as epilepsy (partial seizures), 

anxiety and respiratory distress (Peña and Tapia, 1999, Pena and Tapia, 2000, Sun et al., 

2010).  

 

 

 

 

 

 

 

Resting membrane potential (Emr), which is determined primarily by activity of the sperm K+ 

channel KSper (Mansell et al., 2014), is of central importance in regulation of human sperm 

[Ca2+]i and activity, since CatSper channels (sperm-specific Ca2+ channels) are voltage 

sensitive.  However, KSper activity and sperm Vm are insensitive to 4AP (Mansell et al, 

2014).  

In addition to its role as a K+ channel blocker, 4-AP is able to raise [Ca2+]i in a range of cell 

types, apparently by mobilising stored Ca2+ (Gobet et al., 1995, Grimaldi et al., 2001, Bhaskar 

et al., 2008, Alasmari et al., 2013b). Grimaldi et al (2001) reported that in astrocytes and 

neurons, 4-AP induced dose dependent, reversible [Ca2+]i responses that were independent of 

N

NH2

Figure 18. Showing the structure of the 4-Aminopyridine/Fampridine (4-AP). Showing the structure of the
4-Aminopyridine/Fampridine (4-AP) with amino group (-NH2).
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extracellular calcium [Ca2+]o (Grimaldi et al., 2001). (Grimaldi et al., 2001)(Grimaldi et al., 

2001) Assessment of IP3 levels indicated that 4AP treatment activated the phospholipase C 

pathway (PLC) (Grimaldi et al., 2001). (Alasmari et al., 2013b) showed that in human sperm 

4AP raised [Ca2+]i independently of [Ca2+]o.     
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A
[Ca2+]Ext

HA progressive behaviour
observed when stimulated with

PE1 & P4 

HA non-progressive behaviour
observed when stimulated with

4AP 

B Sperm neck 
[Ca2+]St

Progesterone (P4) Prostaglandin E1 (PE1) CatSper Calcium Channel

[Ca2+]Int

Sperm 
flagellum

Calcium Induce 
Calcium release 

(CICR)

4-Aminopyridine (4AP)

[pH]Int

Figure 19: Calcium is responsible for initiating different behaviours in human sperm. A. Explains that the stimulation of human sperm with
4 aminopyridine (4AP) activates intracellular calcium signalling [Ca2+]i by mobilising calcium from the sperm neck region. Activation of [Ca2+]i
signalling by 4AP triggers hyperactivated non-progressive behaviour. Hyperactivated non-progressive behaviour is associated with deep flagellar
bend with an increase in curvilinear velocity (VCL) and a decrease in progressive velocity (VSL) and linearity (LIN). B. Explains that stimulating
human sperm with prostaglandin (PE1) and progesterone (P4) activates [Ca2+]i signalling by mobilising calcium from the sperm principle piece
(CatSper). Activation of [Ca2+]i signalling by PE1 and P4 triggers hyperactivated progressive behaviour, which is ideal for sperm to penetrate
viscous and viscoelastic environments.
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Aims and Objectives   

 

Aims  

During ascent of the female tract, sperm must navigate various physically and anatomically 

complex environments. Sperm can adopt a number of different behaviour types and the 

ability to select different behaviours as required may be crucial to achieving successful 

fertilisation. 

The aim of this research study is to: (i) investigate the effects of different preparation 

techniques (SU & DG) on sperm motility characteristics (VCL, ALH and %LIN), on their 

penetration of artificial mucus; and on their response sot manipulation of Ca2+ signalling and 

(ii) study the significance of human sperm behaviours and their regulation by [Ca2+]i in the 

penetration of artificial mucus. 

 

Objectives 

 

To achieve the aims, the following objectives were designed: 

 To investigate the effect of sperm preparation methods (density gradient 

centrifugation and direct swim-up) on human sperm motility and on the penetration of 

artificial mucus (methylcellulose) – Chapter 3. 

 

 To investigate the effects of different behaviours, induced by manipulation of Ca2+ 

stores and CatSper channels, on the penetration through artificial viscous 

(methylcellulose) and viscoelastic (polyacrylamide) media of human sperm prepared 

using density gradient (DG) centrifugation and direct swim-up (SU) – Chapter 4. 
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 To assess whether any differences in motility between swim-up and density-gradient 

prepared sperm are associated with a difference in sperm maturation (capacitation) – 

Chapter 5. 

 

 To investigate possible differences in CatSper channel expression and function, 

assessed using progesterone-induced [Ca2+]i responses and immunofluorescent 

assessment of CatSper expression, between swim-up and density-gradient prepared 

cells – Chapter-6. 
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Chapter 2: Materials and Methods                      
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2.1 Materials 
 

2.1.1 Chemicals  
 

All chemicals were cell culture tested (for suppliers see Appendix 9.1). Media were prepared 

in the laboratory using chemicals obtained from Sigma-Aldrich Ltd (for a list of chemicals 

used in preparing media, please see Appendix 9.2). They were supplemented immediately 

before use with 0.3% (w/v) fatty-acid-free bovine serum albumin (BSA) acquired from 

United States Biological (Swampscott, MA, USA) and distributed by Stratech Scientific 

Limited (Oaks Drive, Suffolk, UK), unless otherwise stated. Osmotic strength was 

maintained by adjusting NaCl content. Human sperm cells were separated from semen by 

using direct swim-up and the Percoll-density gradient method. Percoll was purchased from 

Sigma-Aldrich, UK.  

 

For the intracellular calcium imaging experiments, Pluronic F-127 (1 ml in 20% solution in 

Dimethyl sulfoxide (DMSO)) and Fluo-4 AM were obtained from Invitrogen Molecular 

Probes, and poly –D-lysine from BD-Biosciences, UK.  

 

Anti-phosphotyrosine antibody for Western blotting was obtained from New England Biolabs 

Ltd (Hitchin, Hertfordshire, UK) and Goat anti-Mouse IgG secondary antibody was 

purchased from LI-COR Biosciences, Ltd. UK. 

 

For the immunofluorescence experiments, 4% formaldehyde was used as a cell fixing agent 

(37% stock solution), purchased from Merck Chemicals, UK. Rabbit anti-CatSper four 

polyclonal antibody (used at 1:50 and 1:100) and control antigen (used at 1:50) was obtained 



95 
 

from Alomone Labs (Jerusalem, Israel). Fluorescein isothiocyanate (FITC)-conjugated affini 

pure goat anti-rabbit immunoglobulin (IgG) was obtained from Jackson Immuno Research 

Laboratories, West Baltimore Pike, West Grove, PA, USA. For blocking non-specific sites, 

normal goat serum (NGS) (used at 1:10) was procured from Sigma-Aldrich Company Ltd., 

Dorset, UK. Rabbit serum was used as a negative control (used at 1:100) and was purchased 

from Santa Cruz Biotechnology, Dallas, TX, USA. PetmaFluor aqueous mounting medium 

was used to mount cell smears in preparation for viewing by fluorescence microscopy; this 

was obtained from Thermo Scientific. Phosphate buffer saline (PBS) was obtained from 

Sigma-Aldrich Company Ltd., Dorset, UK. For sperm cell permeabilisation, 0.2% Triton X-

100 was purchased from Sigma-Aldrich Company Ltd., Dorset, UK.  

All other chemicals, including 4-aminopyridine (4AP), prostaglandin E1 (PE1), progesterone 

(P4) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPEs), were bought from 

Sigma-Aldrich Company Ltd., Dorset, UK. Agonists 4AP and P4 were dissolved as a 

concentrated stock solution in dimethyl sulfoxide (DMSO), and PE1 was dissolved as a 

concentrated stock solution in ethanol where necessary, and diluted in supplemented Earle’s 

balanced salt solution (sEBSS) containing 0.3% BSA, 15 mM HEPES at pH 7.4 and 

osmolarity 292 mOsm before application.   

2.1.2 Laboratory Instruments and Consumables  
 

Samples were collected in 100 ml specimen pots from Alpha Laboratories (Hampshire) and 

transferred to 5ml round bottom swim-up tubes supplied by Starlabs UK Ltd (Milton Keynes, 

UK). Computer-assisted sperm analysis (CASA) was performed using a Hamilton Throne 

CASA system running CEROS v.12 (Massachusetts, USA). For the human in vitro sperm 

penetration assessment, 5cm flattened capillary tubes were used (0.4x4.0mm section, 0.2 mm 

inner depth; C M Scientific). Phosphotyrosine proteins were separated by sodium dodecyl 
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sulphate – polyacrylamide gel (10%) electrophoresis (SDS-PAGE) and transferred onto 

nitrocellulose membrane by using the western blot/immunoblot method.   

Human sperm cell imaging was performed using a perfusion chamber manufactured by 

Biosciences Workshop (University of Birmingham, UK), mounted on a Nikon TE300 

inverted fluorescence microscope, fitted with a Cairn Opto LED light source using either a 

Rolera-XR cooled CCD camera or an Andor Ixon 897 EMCCD camera controlled by a PC 

running iQ v.3 software (Andor Technology, Belfast, UK). 

2.2 Donor Recruitment 
 

Human research sample donors were recruited at the Department of Biosciences at the 

University of Birmingham (UK) in accordance with the Human Fertilisation and Embryology 

Authority (HEFA) code of practice. An ethical review of the research self-assessment form 

was submitted online, and ethical approval was obtained from the University of 

Birmingham’s Department of Biosciences Ethical Committee; all donors gave informed 

written consent to the research. 

2.3 Experimental Work flow 
 

The semen sample was split and different sperm preparation techniques (Direct Swim up 

(SU) and Density gradient (DG) centrifugation) were applied to the two portions of the 

sample. See sections 2.4.1 and 2.4.2. for technical details. After sperm preparation the DG & 

SU cells were left to capacitate (sperm cell maturation) for 4 h 30 min in an incubator (37oC, 

5% CO2). After the completion of capacitation, concentration (both DG & SU) was adjusted 

to 3x106 sperm cells/ml and cells were then aliquoted into multiple tubes (aliquot volume of 

100µl).      
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To assess the hyperactivation (HA) in DG and SU cells, both untreated (control) and cells 

treated with different agonists (4AP, P4 and PE1) were analysed and compared for different 

parameters (VCL, ALH and %LIN) that define human sperm hyperactivated motility, using 

computer assisted semen analysis (CASA). After the completion of CASA analysis, the 

Kremer Penetration Test was performed (section 2.6; figure 2.5). Cells (DG & SU) were left 

to incubate for 1 hr in the incubator at 37°C and penetration into and through 

viscous/viscoelastic column was assessed by counting their numbers at 0, 1 and 2cm from the 

base of the capillary tube. In vitro penetration was compared between untreated (control) 

cells and cells stimulated with different agonists (4AP, PE1 and P4) at different distances (0,1, 

& 2cm) (section 2.6).  

After this step, the Kremer tubes were placed on the CASA microscope stage and the 

hyperactivation parameters (VCL, ALH & %LIN) were analysed and compared in both 

untreated (Control) and cells treated with different agonists (4AP, P4 &PE1) at different 

distances (0, 1 & 2cm). The same experimental design was carried out for different donors.            
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Density Gradient (DG) Direct Swimup (SU)

Seminal Plasma

Capacitation (4hr 30min) 

After 4hr 30min of capacitation adjust 
the sperm concentration to 3x10^6/ml

in both DG & SU. 
Aliquot the sample for both DG & SU 

and
To assess the HA treat the cells with 
different agonists (4AP,P4&PE1) and 

compare them with control (C)  

Assessment of Hyperactivation 
(HA)

by CASA Technique C    P4 PE1 PE1P44APC

Chapter-3

         

C 4AP P4 PE1
C 4AP P4    

Penetration Test in both Viscous 
and Visco-elastic medium

by Kremer technique 

Incubated for 1hr

Kremer tubes were filled with 
Visco/Visco-Elastic media and sealed 

at one end. The tubes were then 
inserted into the sample prep and left 
for 1hr for incubation in the incubator

After 1hr of Incubation, the kremer 
tubes were taken out and the number

Of cells were counted at distances
0,1 and 2cm

  S + K  m  ’s in combin  ion   S   nd K  m  ’s w    us d in combin  ion. 
S   m c ll (In K  m  ’s) mo ili y

Characteristics (VCL,ALH & %LIN) were 
analysed using the CASA technique in both 

Visco/Visco-Elastic medium  

Figure 2.0: Flow chart showing the experimental design. Human sperm cells are separated from the liquefied semen sample using the
density gradient (DG) and Direct swim-up technique (SU). After sperm cells were from separated from the liquefied semen sample both DG
and SU cells were left to capacitate for 4hr 30min at 37°C in the incubator. After capacitation the cell concentration was adjusted to
3x10^6/ml in both DG and SU preparations and then the cells were aliquoted. To assess the hyperactivation (HA) in DG and SU cells, both
untreated (Control) and cells treated with different agonists (4AP,P4 &PE1) were analysed and compared for their hyperactivation parameters
(VCL,ALH &%LIN) using Computer assisted semen analysis (CASA). After CASA analysis, kremer’s penetration technique was performed
where 5cm glass capillary tubes were filled with either 1% (w/v) viscous (methylcellulose) or viscoelastic (polyacrylamide) medium as an in
vitro penetration medium. One end of the tube is sealed with cristal seal wax and the other end is placed in contact with the sperm reservoir.
Cells (DG & SU) were left to incubate for 1hr in the incubator at 37°C, and after the incubation penetration of motile human sperm into and
along the viscous/viscoelastic column is assessed by counting their numbers at 0, 1 and 2cm from the base of the capillary tube. In vitro
penetration is compared between untreated (control) cells and cells stimulated with different agonists (4AP, PE1 and P4). After this step, the
kremer tubes were then placed on the CASA stage and the hyperactivation parameters (VCL,ALH & %LIN) was analysed and compared in
both untreated (Control) and cells treated with different agonists (4AP,P4 &PE1). The same experimental design was carried out for different
donors.
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2.4 Human Sperm Preparation  
 

2.4.1 Direct Swim-Up (SU) 
Highly motile spermatozoa were harvested by direct swim-up (~60 min) (Figure 2.1) into 

supplemented Earle’s balanced salt solution (sEBSS) containing 0.3% BSA. Cell 

concentration was determined using an improved Neubauer haemocytometer and adjusted to 

6x106/ml. Cells were left to capacitate for further 4.5 hr in an incubator (37oC, 5% CO2). 

Afterwards, the cell density was adjusted to 3x106/ml and used for the experimental study.  

 

 

 

 

Figure 2.1: Sperm cell preparation technique – direct swim-up. Human sperm cells are separated from the
liquefied semen sample using the direct swim-up technique. A. The liquefied semen sample is placed at the bottom of
the swim-up tube under Supplemented Earle’s Balanced Salt Solution (sEBSS) containing 0.3% Bovine Serum
Albumin (BSA). B. After 1 hour of incubation at 37oC, 5% CO2, highly motile cells are collected from the sEBSS.
The upward arrows indicate highly motile sperm cells swimming up from semen into saline during the sample
incubation.

B

1hr sample incubation at 37oC, 
5% CO2

Liquefied semen sample 

Supplemented Earle’s Balanced Salt 
Sol (sEBSS) + 0.3% Bovine Serum 
Albumin (BSA) 

Non-motile cells 

Up arrow indicates 
cell swim-up from 
semen to saline

Highly motile cells 
collected in saline

A
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2.4.2 Density Gradient (DG) Centrifugation  

1ml of semen was gently added to the top layer of the density gradient (1ml of 80% Percoll 

overlaid with 1ml of 40% Percoll). Percoll gradients made isotonic with M medium. (For a 

list of chemicals used in preparing M medium, please see Appendix 9.2.) Cells were 

centrifuged at 300 g for 20 min. The pellet was washed in phosphate buffer saline (PBS) (500 

g, 10 min) and then resuspended in sEBSS (0.3% BSA). Cell concentration was determined 

using an improved Neubauer haemocytometer and adjusted to 6x106/ml. Cells were left to 

capacitate for 4.5 hr in an incubator (37oC, 5% CO2). Afterwards, the cell density was 

adjusted to 3x106/ml and used for the experimental study (Figure 2.2) 
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2.5 Assessment of motility by Computer Assisted Semen Analysis (CASA)  

CASA was performed using a Hamilton Thorne CEROS system (HTM-CEROS; Hamilton 

Thorne, Inc. Beverly, MA, USA) connected to an Olympus CX41 microscope with heated 

stage (37oC) using a 10x negative phase contrast objective. Motility of a was analysed at 

60Hz  

100µl aliquots of sperm suspension (3x106cells/ml) prepared by direct SU and DG were 

treated with agonists (4AP (5mM), PE1 (2µM) and P4 (3µM) as required and a 5µl aliquot 

was immediately added to either side of the pre-warmed CASA 2X-CEL chamber to a depth 

of 20µm. 

At least 20 frames, collected at 60 Hz, were used for analysis of motility, with a minimum of 

100 cells in each sample. The playback option (which replays the acquired video overlaid 

with the sperm tracks derived by the software) was used to check successful identification 

and discrimination of cells. Cells departing the area during analysis are identified as a blue 

track (not counted by CASA), motile cells entering the area are identified as green or cyan 

(light blue), red dots show immotile/static cells, white dots show cells that collided during 

their movement (leads to miscounting - not counted by CASA). 

Motility characteristics (kinematics) were downloaded from CASA system for offline 

analysis. Cells were considered to be hyperactivated when they satisfied the criteria of 

curvilinear velocity (VCL) ≥  50µ m/s, linearity (LIN) < 50%, increased amplitude of lateral 

head displacement (ALH) ≥ 7µm (Mortimer, 2000c). 

Paired t-tests were used to compare motility of agonist-treated cells with parallel controls 

treated with vehicle. If P < 0.05, then the effects were considered statistically significant.    
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Figure 2.4: Showing different motility tracks analysed by the CASA. Image showing an output of video
sequences of 20 data fields analysed by the CASA. A & B Motile cells entering the area, identified by a green or
cyan (light blue) overlay of the actual track the cell followed. C The blue track shows cells departing the area
during the analysis. These cells are not considered by the CASA. D Immotile/static cells, assigned a red track. E
Cells displayed as white dots have collided with other cells during their movement. These cells lead to a
miscounting of total sperm numbers, and hence they are excluded during analysis by the CASA.

E

B

A

C
D
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2.6 Kremer’s Penetration/Migration Test 

2.6.1 Establishment of Artificial Penetration Test    

Sperm penetration into viscous (methylcellulose) (4,000 centipoise (cp), artificial viscous 

medium, 1% w/v) and viscoelastic (polyacrylamide) media (2.4 – 2.7 centipoise (cp), 

artificial visco-elastic medium, 1% w/v) was assessed using 5 cm flattened capillary tubes 

(0.4x4.0mm section, 0.2mm inner depth; C M Scientific) (Figure 2.5).  

For viscous medium methylcellulose was created using a 1% w/v methylcellulose in sEBSS 

medium supplemented with 0.3% BSA. After this, the methylcellulose solution was 

incubated O/N (with mild shaking for proper mix) in a cold room and next day the solution 

was left in the incubator at (37oC, 5% CO2). Prior to the start of the penetration experiment 

methylcellulose solution (~200µl) was then aliquoted into 1.5ml eppendrof tubes and then 

glass capillary tubes were inserted into the eppendrof tubes and left it for ~2min. During this 

time (~2min) methylcellulose solution was transferred into glass capillary tubes by capillary 

action, once the glass capillary tubes were filled with methylcellulose solution the glass 

capillary tubes were taken out from eppendrof tubes, and they were wiped with a soft tissue 

to remove excess of methylcellulose. After this, one end of the glass capillary tubes were 

sealed with cristal seal wax.  

Human sperm cells were prepared by direct SU and DG methods (as explained in sections 

2.4.1 & 2.4.2). Following this, 1µl of agonist was added to 99µl of sperm suspension, giving 

final concentrations of 5mM 4-aminopyridine and 2µM prostaglandin E1.  

Now the open end of the glass capillary tube were placed into the sperm preparation and then 

incubated for 1 hr (37oC, 5% CO2). Afterwards, the tubes were then removed, wiped and 

viewed (using a 20x phase contrast objective lens). 
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For visco-elastic medium polyacrylamide was created using 1% w/v polyacrylamide in 

sEBSS medium supplemented with 0.3% BSA. The same procedure was followed (as 

explained in the case of viscous medium) in preparing visco-elastic medium and filling the 

glass capillary tubes.   

2.6.2 Data Acquisition 

At 0, 1 and 2cm from the base of the capillary tube, three microscope fields were selected at a 

depth of 0.1mm (100microns (µ)) and the average cells/field was calculated. In experiments 

where the effect of drug treatment was investigated cell counts were normalised to parallel, 

untreated controls to allow comparison between different experiments. Different motility 

characteristics were also analysed at 0, 1 and 2cm using CASA.  

2.6.3 DG Data Normalisation 

Though the cells prepared by SU and DG were adjusted to the same cell density (see section 

2.4.1 & 2.4.2), CASA recordings showed that the proportion of progressively motile cells 

was lower in DG samples than in samples prepared by the direct SU technique. It was thus 

not possible to make a direct comparison of the number of penetrating DG and SU cells. 

To overcome this, the data were normalised by calculating the ratio of motile cell counts in 

direct SU and DG samples and scaling the observed number of cells counted in the Kremer 

tests with DG cells.  

Mathematically, it is described as:  

Z =       % progressive cells (from direct SU)             
                % progressive cells (from DG) 
 

Normalised cell count in DG experiments = Z * no. of cells observed  
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2.7 Western Blot/Immunoblot  

2.7.1 Sample Preparation 

Donors recruitment is same as explained in section 2.2. Semen was collected from healthy 

donors by masturbation after 2-3 days of sexual abstinence and allowed to liquefy for 30min 

at 37oC, 5% CO2. Cells were prepared using DG (For DG technique see figure 2.2) in a non-

capacitating HEPES-buffered medium adopted from sEBSS lacking both albumin and 

bicarbonate. (For a list of chemicals used in preparing non-capacitating medium (NCM), 

please see Appendix II) 

For density gradient technique (For DG technique see figure 2.2) and gradient preparation is 

same as explained in section 2.4.2.  

Cells were centrifuged at 300g for 20min. The pellet was washed in PBS (500g, 10min) and 

then resuspended in non-capacitating HEPES-buffered medium adopted from sEBSS lacking 

both albumin and bicarbonate. (For a list of chemicals used in preparing NCM, please see 

Appendix II) To initiate capacitation, bicarbonate and BSA were added (1/10th of the final 

obtained volume from DG). Cell concentration was determined using an improved Neubauer 

haemocytometer and adjusted to 1x106/ml. In direct SU (for technique, please see Figure 

2.1), motile spermatozoa were harvested (~60min) into the non-capacitating HEPES-buffered 

medium adopted from sEBSS lacking both albumin and bicarbonate. (For a list of chemicals 

used in preparing NCM, please see Appendix II). To initiate capacitation, bicarbonate and 

BSA were added (1/10th of the final obtained volume from direct SU). Cell concentration was 

determined using an improved Neubauer haemocytometer and adjusted to 1x106/ml.  

 

 



108 
 

 

At 0, 30, 90 and 180 min an aliquot containing 1x106 was taken (the T0 sample was taken 

immediately following resuspension in the medium with a maximum of 1 min incubation). 

Aliquots were immediately centrifuged at 2,000 rpm at 25oC for 5 min, and the sperm pellet 

was then washed in PBS for 5min, at 2,000 rpm and 25oC. The supernatant was discarded 

(without disturbing the sperm pellet), 5µl of 5X sample buffer containing 5X vanadate 

(tyrosine phosphatase inhibitor) was added to the pellet, and the sample was frozen at -20oC. 

The same experimental procedure was carried out using sperm samples from 5 different 

donors. 

2.7.2 SDS-PAGE and Western/Immunoblot Setup 

Frozen samples were boiled at 100oC for 5min, sonicated (10sec) and centrifuged at 

maximum relative centrifugal force (rcf) between 22oC and 23oC for 5min. Sodium dodecyl 

sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) (10% gels) was used to separate 

the proteins. For detailed SDS-PAGE procedure, please see Appendix III.  

After completion of electrophoresis, the proteins were electrotransferred onto nitrocellulose 

membrane at 100V for 1hr. 5% skimmed milk was used to block non-specific binding sites 

on nitrocellulose membrane and washed with TTBS (Tris-buffered saline (TBS) (0.9% NaCl, 

20mM tris-HCl, pH 7.8) supplemented with 0.1% Tween 20).  

The nitrocellulose membrane was incubated overnight at 4oC with anti-phosphotyrosine 

antibody (pAb) (1/10,000). After this step, the membrane was washed with TTBS three times 

(10 min) and incubated with the corresponding secondary antibody (sAb), conjugated with 

horseradish peroxidase for 1hr and washed three times with TTBS (10min).        
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Immunoreactive bands were detected using an Odyssey Infrared Imaging System. Silver 

staining was performed to confirm equal protein loading for all samples.  

 

 

T0        30          90         180        T0         30          90        180  

Figure 2.7: Showing silver staining image of a nitrocellulose membrane. Silver
staining image of proteins transferred onto a nitrocellulose membrane. The image shows
equal protein loading for all samples during various time intervals (T0, 30, 90 and
180min) of capacitation (sperm maturation) when cells were prepared using direct SU
and DG. Protein tyrosine phosphorylation was used as a marker to evaluate capacitation.

Direct Swim up (SU)               Density Gradient (DG)           
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Chapter 3: Effect of Sperm preparation techniques (DG & SU) on human 
sperm motility & penetration of artificial mucus                  
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3.1 Objective:  

The objective of this chapter is to investigate the effect of sperm preparation methods (density 
gradient centrifugation and direct swim up) on human sperm motility and on the penetration of 
artificial mucus (methylcellulose). 
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3.2 Introduction 

Motility is crucial to the sperm’s ability to interact with an oocyte and achieve successful 

fertilisation. Testicular spermatozoa of humans, as well as the sperm of all other eutherian 

mammals, are either motionless or poorly motile, but become progressively motile upon 

ejaculation, rapidly leaving the seminal plasma. Exposure of sperm to seminal plasma for 

long periods (>30min) could affect sperm function, leading to a decrease in fertilising 

potential (Rogers et al., 1983). Therefore, it is important to use sperm preparation methods 

that can separate sperm from seminal plasma, eliminate decapacitation factors and support 

capacitation when suspended in a culture medium under in vitro conditions.  

When selecting the sperm preparation techniques, four basic approaches were used to 

establish a safe method (Mortimer and Mortimer, 1992). The four basic approaches were: A. 

Simple dilution and washing to separate human sperm from seminal plasma; B. Methods 

based on sperm migration to acquire highly motile sperm (direct from liquefied semen, a 

washed sperm pellet or from a suspension of washed sperm) C. Selective washing procedures 

(density gradients) to separate motile sperm; and D. Adherence-based methods to remove 

dead sperm and debris. Of these approaches B (swim-up) and C (selective washing/density 

gradient centrifugation) are the most widely used.  

The normal swim-up technique is an example of migration-based techniques, and involves a 

double wash with a centrifugation step at a speed of 220g for 10min, followed by upward 

migration of the sperm, separating a highly motile sub-population (Lopes et al., 1998, 

Younglai et al., 2001). Inclusion of a centrifugation step may remove the antioxidant 

properties of seminal plasma (Aitken, 1999) resulting in DNA damage in sperm (Twigg et al., 

1998, Mortimer, 1991). Direct swim-up avoids this problem by allowing sperm to swim 

directly from semen into prepared medium, separating the highly motile sub-population and 

excluding ROS-generating cells (Mortimer, 2000a).  
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The selective washing procedure involves separation of cells based density, cells being 

distributed throughout a gradient column according to their individual density. During the 

early days of this procedure, colloidal silica was used as a gradient medium to allow 

separation of sperm, but these cells show fertility problems (Mortimer, 2000a). Later, this 

technique was upgraded with the introduction of modified colloidal silica as a gradient 

medium. In 1970, polyvinylpyrrolidone (PVP) coated silica particles were introduced by 

(Pertoft et al., 1978) and later, in 1980, this was commercialised as Percoll. Normal 

(morphologically) and mature sperm have a density (specific gravity) above 1.12g/ml, 

whereas immotile and abnormal sperm have a lower density between 1.06 and 1.09g/ml 

(Oshio et al., 1987). Colloidal silica (Percoll) prepared at 40% and 80% has densities of 1.06 

and 1.10g/ml, respectively. Therefore, in a discontinuous gradient (Arcidiacono et al., 1983, 

Lessley and Garner, 1983, Dravland and Mortimer, 1985, Mortimer, 2000a), composed of 

layers of 80% and 40% Percoll, most mature and normal spermatozoa can penetrate through 

the lower gradient (80%) whereas abnormal cells will tend to be retained at the boundary.   

Both direct swim-up and discontinuous density gradient centrifugation techniques are 

effective, providing a sperm population with high levels of motility, fewer DNA nicks, low 

levels of abnormal sperm and better chromatin stability than raw semen (Sakkas et al., 2000, 

Tomlinson et al., 2001, Mortimer, 2000a). However, yields with DG are much higher than 

with SU. This may reflect relative inefficiency of the SU technique, or may indicate that the 

population selected by these two techniques differ in their characteristics. I therefore 

compared motility and penetration of artificial mucus (methylcellulose) of cells prepared by 

DG and SU. 

In this study computer-assisted sperm analysis was used for the evaluation of motility. 

Hyperactivated and activated motilities have characteristic features which can be 

distinguished by their different kinematic parameters. These kinematic parameters include 
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velocity of movement, the lateral movement of the sperm head and frequency of side-side 

movement of the sperm head (Mortimer, 2000b). Several kinematic parameters are defined 

below (Mortimer, 2000c).  

VSL is defined as the straight-line distance between the beginning and end of the track 

divided by the time elapsed (µm/sec). VCL is defined as the total distance between each 

centre of brightness (CB) of sperm head position for a given cell during acquisition divided 

by the time elapsed (µm/sec). It is always higher than VAP and VSL.  Average path velocity 

is the distance the spermatozoon has travelled in the regular direction of movement during the 

observation period. In some cases, where the sperm head trajectory is very regular and linear 

and there is low lateral movement, the VAP is almost the same as VSL. In the case of 

irregular trajectories (low linearity and high lateral deviation), the VAP is much higher than 

VSL. ALH is the width of the lateral movement of the sperm head. It is calculated as the total 

width of the head trajectory and is expressed in micrometres (µm). 

There are two ways of reporting amplitude of lateral head displacement: ALH mean or ALH 

maximum. According to Mortimer, ALH mean is the mean of a set number of ALH readings 

along the trajectory. ALH maximum is explained as the maximum ALH value analysed for a 

trajectory segment. The CASA instrument from Hamilton Thorne uses ALH maximum 

(Mortimer, 2000c). Linearity measures the departure of the cell track from a straight line. It is 

the ratio of VSL/VCL.   Straightness measures the departure of the cell path from a straight 

line. It is the ratio of VSL/VAP.   Human sperm with curvilinear velocity (VCL) ≥ 50 µm/s, 

linearity (LIN) <50%, high amplitude of lateral head displacement (ALH) ≥7 µm are 

considered to be hyperactivated (Mortimer 2000).     
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3.3 Materials and Methods  
 
3.3.1 Materials    
 

For the Materials section, see Chapter 2.1.1. and 2.1.2 

Agonists like 4-Aminopyridine (4AP), Prostaglandin E1 (PE1) & Progesterone (P4) were not 

used in this experiment. 

3.3.2 Methods 
 
3.3.2.1 Donor Recruitment 
Donor recruitment was conducted as described in Chapter 2.2.  

3.3.2.2 Sperm cell preparation  
Human seminal fluid was collected from healthy donors by masturbation after 2-3 days of 

sexual abstinence and then semen sample was allowed to liquefy for 30min at 37oC (5% 

CO2). After liquification the semen sample was split into two halves with one-half was used 

to harvest highly motile sperm using direct swim up (SU) procedure. 

In direct swim up (SU) method (Figure 2.1) 1ml of sEBSS medium (contains 0.3% BSA and 

15mM HEPES) were underlaid with 0.2ml of liquefied semen. After this tubes were then 

incubated at a 45o angle for 1hr at 37oC and 5% CO2. After 1hr of incubation the top layer 

(containing highly motile cells) was removed from each tube and pooled together. Cell 

concentration was determined using an improved Neubauer haemocytometer and adjusted to 

6x106/ml. Cells were left to capacitate for further 4.5 hr in an incubator (37oC, 5% CO2). 

Afterwards, the cell density was adjusted to 3x106/ml and used for the experimental study.  
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The other half (1ml) of the liquefied semen was gently added to the top layer of the density 

gradient (1ml of 80% Percoll overlaid with 1ml of 40% Percoll) (Figure 2.2).  Percoll 

gradients made isotonic with M medium. (For a list of chemicals used in preparing M 

medium, please see Appendix 12.2.) Cells were centrifuged at 300 g for 20 min. The pellet 

was washed in PBS (500 g, 10 min) and then resuspended in sEBSS (0.3% BSA and 15mM 

HEPES). Cell concentration was determined using an improved Neubauer haemocytometer 

and adjusted to 6x106/ml. Cells were left to capacitate for 4.5 hr in an incubator (37oC, 5% 

CO2). Afterwards, the cell density was adjusted to 3x106/ml and used for the experimental 

study. 

 

3.3.2.3 Computer-assisted Semen Analysis (CASA) 
 

The effect of sperm preparation methods (SU & DG) on human sperm motility was assessed 

in this experiment by using CASA (Section 2.5). Cells were considered to be hyperactivated 

when they satisfied the criteria of curvilinear velocity (VCL) ≥  50µ m/s, linearity (LIN) < 

50%, amplitude of lateral head displacement (ALH) ≥ 7µm (Mortimer, 2000c). 

 

3.3.2.4 Kremer’s Penetration Test 

For Kremer’s Penetration Test, See Chapter 2.6. 

The effect of sperm preparation methods (SU & DG) on the penetration of artificial mucus 

(methylcellulose) in vitro was observed in this experiment. No agonists were used for this 

experiment.     
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3.4 Results   

 

CASA was used to assess the effect of sperm preparation techniques (DG and SU) on 

motility characteristics in relation to hyperactivated motility. Human sperm cells prepared by 

DG showed greater levels of hyperactivated motility (HA) (DG 6.25%) (as measured by 

CASA) compared to cells prepared by direct swim-up (SU 3.75%) (p = 0.004; n = 20; paired 

t-test) (Figure 3.1, A).  

Specific parameters ALH, VCL & VSL (Figure 3.1 B, C & D) and VAP, %LIN and %STR 

(Figure 3.1 E, F & G) were also assessed. Cells prepared by DG and SU showed a significant 

difference in VAP, %LIN (p < 0.001; n = 20; paired t-test) (Figure 3.1, E (DG 54.3% Vs SU 

63.13) and F (DG 54.1% Vs SU 60.3)) and %STR (p < 0.05; n = 20; paired t-test) (Figure 

3.1, G (DG 81.85% Vs SU 87.25)). Cells prepared with DG shown reduced forward motility 

(VSL) (Figure 3.1, D (DG 45.585% Vs SU 55.89)) when compared with SU cells. There was 

no significant difference in ALH and VCL between cells prepared by DG and SU (Figure 3.1, 

B (DG 3.795% Vs SU 4.05%) and C (DG 91.345% Vs SU 94.16%)).  

Table 3.1 below showing the effect of different sperm preparation techniques (DG and SU) 

on different motility parameters (HYP – Sort7%, ALH, VCL, VAP, %LIN and %STR).  
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Density Gradient Centrifugation (DG) Direct Swim up (SU)

PARAMETER                                                                                  Mean                                                                                 S.E.M                                                                                 Mean                                                                                 S.E.M                                                                                 

Hyperactivation (% Sort 

7)

6.25** 0.695 3.75 0.742

Lateral amplitude (ALH) 

(µm)

3.795 0.099 4.05 0.129

Curvilinear velocity 

(VCL) (µm/s)

91.345 3.134 94.16 2.192

Straight line/Prog. Or 

Forward motility (VSL) 

(µm/s)

45.585**** 1.423 55.89 1.722

Average path velocity 

(VAP) (µm/s)

54.3*** 1.585 63.13 1.573

Linearity (LIN) (% LIN) 54.1*** 1.309 60.3 1.675

Straightness  (STR) (% 

STR)

81.85* 1.809 87.25 0.891

Table 3.1: Effect of different sperm preparation techniques density gradient centrifugation (DG) and direct
swim up (SU) on motility parameters. Experiments were carried out in pairs, where cells from the same semen
sample were analysed by CASA. Cells were prepared in sEBSS (15mM HEPES, pH=7.4) without any treatment.
For each sperm preparation technique (DG and SU), hyperactivation (sort 7%), lateral head amplitude (ALH),
curvilinear velocity (VCL), straight-line/progressive or forward motility (VSL), Average path velocity (VAP),
Straightness (%STR) and linearity (% LIN) were determined. P = 0.004; with DG compared to SU (sort 7%), P <
0.001with DG compared to SU (VSL, VAP and % LIN) and P < 0.05 with DG compared to SU (%STR) paired t-
test; n=20.
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Figure 3.1: Effect of sperm preparation techniques density gradient centrifugation (DG)
and direct swim-up (SU) on human sperm motility. Figure A Shows the percentage of
hyperactivated motility (% HYP), and Figures B, C, D, E, F & G show different motility
characteristics (ALH, VCL, VSL, VAP %LIN and %STR) of human sperm cells when
prepared using DG and SU in sEBSS. A: Cells prepared by DG show enhanced hyperactivated
motility (P = 0.004) when compared to SU. B & C: There is no significant difference in ALH
and VCL when cells are prepared using DG and SU. D There is significant difference in VSL
(P < 0.001) when cells are prepared using DG and SU. E, F & G: There is significant
difference in VAP (P < 0.001), %LIN (P < 0.001) & %STR (P < 0.05) when cells are prepared
using DG and SU. Each bar shows mean S.E (error bars) from 20 experiments.
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Frequency distributions (FD) were collected from the raw CASA output and were analysed in 

Excel. FD plots for DG and SU cells in standard CASA is shown in figure 3.2 A, B & C).  

The peak of the FD for VCL of cells prepared by DG swimming in saline (standard CASA) is 

clearly shift to the left (lower VCL) compared to SU cells but in DG cells there was also a 

greater sub-population of cells at the extreme right of the distribution (very high VCL) 

compared to the SU (Figure 3.2 A). There was no difference in the FD for ALH (Figure 3.2 

B) but LIN was lower in the DG cells (Figure 3.2 C) compared to the SU cells.   
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Figure 3.2 Showing the frequency distributions (FD) between direct SU and DG cells using CASA analyser. A, B, and C Showing the frequency
distributions (FD) of Hyperactivated (HA) motility determinants (VCL (µm/sec), ALH (µm) and %LIN) when cells were prepared with direct SU (Purple)
and density gradient techniques (DG) (Red) and analysed using Computer assisted semen analyser (CASA). When the frequency distributions were
analysed there was a increase in (A) VCL and (B) ALH with a decrease in (C) %LIN in both DG & SU cells. When (A) VCL where analysed between DG
& SU cells, the VCL response peak for the DG cells shift left compared to the SU cells and at the end of the distribution there is an increase in VCL in DG
cells compared to SU. This increase in the VCL in the DG cells contributed to a decrease in the (C) %LIN compared to the SU cells with no difference in
ALH between the cells prepared using DG & SU techniques. Each plot shows mean  S.E (error bars) of 20 experiments between direct SU and DG
techniques.
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Kremer’s in vitro penetration test (Figure 3.3 A & B) was used to investigate how differences 

in the motility characteristics between cells prepared by DG and SU may affect their ability 

to penetrate artificial mucous (methylcellulose). Because the % progressive motility of cells 

prepared by DG was consistently lower than that of cells prepared in parallel SU, cell counts 

in the DG Kremer experiments were normalised, as described in Chapter 2.6 cells were 

prepared by DG and SU.  

Though cells prepared by DG showed increased levels of hyperactivated motility (Figure 3.1, 

A), when cells from the same aliquot were tested for their ability to penetrate artificial 

mucous (methylcellulose), they were clearly performed less well than SU cells.  Without 

normalisation this difference was significant at distances of 0cm (P < 0.005), 1cm (P < 

0.001), and 2cm (P < 0.0001) (Figure 3.3, A, n = 12; multiple t-tests). When data for DG 

cells were normalised to take account of the lower numbers of progressively motile cells, 

there was no significant difference 0cm and the small difference at 1cm was not significant. 

At 2cm, however, penetration by DG cells was significantly lower than that of SU cells even 

after normalisation (P < 0.005; n = 12; multiple t-tests). Figure 3.3, B).  

FDs were also analysed for the cells penetrated at 0, 1, and 2cm into viscous medium 

(methylcellulose). As cells penetrated further in to methylcellulose VCL and LIN of both DG 

and SU cells had very similar characteristics though there appeared to be fewer SU cells with 

high ALH at 1 or 2 cm into the gel (compare figs 3.4B, 3.5B and 3.6B).  At 2 cm the FDs for 

VCL and ALH of DG cells were shifted to the right compared to SU cell but LIN was clearly 

higher in SU. 
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Figure 3.4 Showing the frequency distributions (FD) between direct SU and DG cells in kremer’s (In Viscous medium) at 0cm using CASA
analyser. A, B, and C Showing the frequency distributions (FD) of Hyperactivated (HA) motility determinants VCL (µm/sec), ALH (µm) and %LIN
when cells were prepared with direct Swimup (SU) (Purple) and density gradient techniques (DG) (Red). The cells were measured at 0cm in the viscous
medium prepared using methylcellulose and the frequency distributions were analysed using CASA analyser. Cells prepared with SU shown an slight
increase in the (A) VCL, with a decrease in the (B) ALH (observed at the beginning) and a decrease in the (C) LIN suggesting SU cells were slightly more
hyperactivated which helps them (SU cells) them to enter into the kremer tube (tube filled with the viscous medium) in an effective way compare to the
DG cells. Each plot shows mean  S.E (error bars) of 12 experiments between direct SU and DG techniques.
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Figure 3.5 Showing the frequency distributions (FD) between direct SU and DG cells in kremer’s (In Viscous medium) at 1cm using CASA
analyser. A, B, and C Showing the frequency distributions (FD) of Hyperactivated (HA) motility determinants VCL (µm/sec), ALH (µm) and %LIN
when cells were prepared with direct Swimup (SU) (Purple) and density gradient techniques (DG) (Red). The cells were measured at 1cm in the viscous
medium prepared using methylcellulose and the frequency distributions were analysed using CASA analyser. Cells prepared with SU shown an slight
increase in the (A) VCL, with a decrease in the (B) ALH (observed at the beginning) and even though there is a decrease in the (C) LIN (at the end), there
was a increase in the LIN in SU cells which were higher (See black arrows) in the parts of the distribution compared to the DG cells suggesting this
increase in the LIN assist SU cells to progress further in the viscous medium than in DG cells. Each plot shows mean  S.E (error bars) of 12 experiments
between direct SU and DG techniques.
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Figure 3.6 Showing the frequency distributions (FD) between direct SU and DG cells in kremer’s (In Viscous medium) at 2cm using CASA
analyser. A, B, and C Showing frequency distributions (FD) of Hyperactivated (HA) motility determinants VCL (µm/sec), ALH (µm) and %LIN when
cells were prepared with direct Swimup (SU) (Purple) and density gradient techniques (DG) (Red). The cells were measured at 2cm in the viscous medium
prepared using methylcellulose and the frequency distributions were analysed using CASA analyser. At 2cm SU cells show an increase in the (A) VCL (a
slight shift to the left side), (B) ALH and (C) LIN suggesting they are hyperactivated and with a increase in LIN makes them to be better progressive
(compared to DG) in the viscous medium, i.e they (SU cells) switch to hyperactivated progressive behaviour which enables them to perform better
compare to the DG cells in the viscous medium. This also suggesting that the hyperactivation is a very important mechanism that sperm cells adopts to
face the penetration challenge that they encounter in the viscous medium or mucus. Each plot shows mean  S.E (error bars) of 12 experiments between
direct SU and DG techniques.
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3.5 Discussion    
 

In this chapter, I investigated the effects of two different sperm preparation techniques 

(density gradient centrifugation (DG) and direct swim-up (SU)) on human sperm motility and 

the ability to penetrate into artificial mucus.   

Density gradient centrifugation (DG) cells show better hyperactivated motility 

(%HA) in comparison to direct swim-up cells (SU). 

When human sperm motility characteristics was analysed by CASA (See section 2.4), DG 

cells shown a lower progressive motility compared to SU cells (Figure 3.1 D). DG cells show 

a significantly higher rate of hyperactivation when compared to SU cells (Figure 3.1 A). 

Hyperactivation was defined according to Mortimer (Mortimer, 2000c) and included cells 

where curvilinear velocity (VCL) ≥  50µ m/s, linearity (LIN) < 50%, amplitude of lateral 

head displacement (ALH) ≥ 7µm.g.  

Although DG cells show a slightly higher ALH and VCL (Figure 3.1 B & C), these 

differences were not significant, but LIN of DG cells was significantly lower (Figure 3.1 F) 

and this appears to be the primary reason for the difference between the levels of HA in cells 

prepared by the two techniques (Figure 3.1 A). LIN is VSL/VCL: the ratio of straight line 

velocity (calculated using the linear distance between first and last points of the sperm track) 

to the curvilinear velocity (calculated using the total distance of the sperm head track). 

Lateral movement of the sperm head (ALH) was not increased in DG cells (Figure 3.1B) 

therefore the reduction in LIN must reflect a more curved path in the DG cells.  
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Frequency Distributions (FD) from Standard CASA and in methylcellulose 

Comparison of FDs for SU and DG cells showed clear differences. In standard CASA (cells 

swimming in saline) the peak of the FD for VCL in SU cells was clearly higher than in DG. 

(fig 3.2A). This is surprising since DG cells have significantly higher levels of 

hyperactivation (fig 3.1A). However, in DG there was a sub-population (approx. 7.5% of 

cells) with extremely high VCL. In combination with the lower LIN of DG cells (fig 3.2C) 

this is sufficient to account for the higher proportion of cells in DG-prepared samples that are 

classified by CASA as hyperactivated. FDs for DG and SU cells in methylcellulose were 

similar at 0 and 1 cm but at 2 cm the DG cell distributions showed higher VCL and ALH and 

lower LIN. These kinematics, characteristic of hyperactivated motility, may explain, in part, 

the poorer performance of DG cells in Kremer assays (see below). 

 

Direct swim-up cells (SU) show better penetration into artificial mucus when 

compared to density gradient centrifugation (DG) cells.     

An in vitro penetration assessment was performed using Kremer's penetration test. Figure 3.3 

A and B show the effect of sperm preparation techniques on the penetration into artificial 

mucus (methylcellulose). SU cells clearly have a better penetration ability, even after 

adjustment (normalisation) to take account of the lower proportion of progressive cells in 

these preparations (Figure 3.3 B). The reason for this difference is not clear, but one 

possibility is that the increase in HA motility impairs the ability of DG sperm to penetrate 

through the methylcellulose. To investigate this possibility, the effect of artificial induction of 

HA on penetration was investigated (see chapter 4). 
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I can conclude that different sperm preparation techniques (DG and SU) affect motility and 

the penetration of artificial mucus in vitro. Cells prepared by the SU method show better 

functional (penetration) ability when compared to DG cells, suggesting that these cells (SU 

cells) might have a better fertilising potential.      
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Chapter 4: Effect of different behaviours on penetration – artificial viscous 
& viscoelastic media (Met/Poly) – DG & SU                  
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4.1 Objective:  

The objective of this chapter is to investigate the effects of different behaviours on the 
penetration of human sperm through artificial viscous (methylcellulose) and viscoelastic 
(polyacrylamide) media when prepared using different sperm preparation methods (density 
gradient centrifugation and direct swim-up). These behaviours are artificially induced in vitro 

by mobilising calcium (the primary regulator of sperm motility) from stores or by CatSper 
(calcium-specific for sperm cell signalling). 
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4.2 Introduction   
For successful fertilisation, mammalian sperm must be able to enter, progress through the 

female reproductive tract, and successfully bind to the oocyte. During mammalian sperm 

migration in the female reproductive tract, they encounter various physically and 

anatomically complex environments (viscous and viscoelastic environments in cervical 

mucus) that can hinder sperm interaction with the oocyte, which plays a crucial role in 

determining successful fertilisation.  

To successfully pass through these barriers (viscous and viscoelastic), human sperm are 

believed to adopt an appropriate flagellar beat pattern that results in a characteristic behaviour 

that is essential for sperm transportation and fertilisation. Incubation of sperm under 

capacitating conditions (capacitation was defined as the mammalian sperm maturation event 

that happens in the female reproductive tract and enables sperm to achieve fertilising 

potential) (Ikawa et al., 2010) is necessary to initiate a more vigorous type of motility, which 

is termed as "hyperactivated motility".  

In 1970 Yanagimachi (YANAGIMACHI, 1970) reported that movement of hamster 

spermatozoa is extremely active after completing capacitation. Later, several researchers 

considered hyperactivation to be an important marker for capacitation and its motion 

characteristics were examined in humans (Mortimer and Mortimer, 1990, Burkman, 1984, 

Mortimer et al., 1997, Aitken et al., 1985). A typical hyperactivated sperm cell showed 

motility characteristics of an asymmetrical beat pattern, increased lateral head movement, 

deep flagellar bends, and increased bending of the midpiece/proximal flagellum (Ho and 

Suarez, 2001). To assess human sperm motility (in vitro) in real time we use computer-

assisted sperm analyser (CASA) that can distinguish different sorts of behaviours (from a 

hyperactivated behaviour pattern to a linear behaviour pattern) by tracking sperm head 

motion, which cannot be measured or observed manually.    
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4.2.1 In vitro penetration test – artificial viscous (methylcellulose) & 
viscoelastic (polyacrylamide) media 

Computer-assisted sperm analysis provides information about motility, morphology, and 

concentration of a sperm sample. Although CASA plays a vital role in understanding 

different aspects of sperm, its role in providing accurate prognostic and diagnostic 

information is limited. Given this scenario, a technique called the in vitro sperm penetration 

test into human cervical mucus (HCM) has been developed to provide valuable 

information about sperm function (Ivic et al., 2002) that is important in understanding the 

fertility outcome.  

 

4.2.1.1 In vitro penetration test (Kremer test) 

Under in vivo conditions, before sperm interacts with the oocyte for successful fertilisation, 

sperm needs to penetrate through cervical mucus, and the fertilisation success depends on the 

ability of the sperm to transit through the female tract and reach the fertilisation site in the 

ampulla of the oviduct. Therefore, in vitro assessment of human sperm penetration provides 

valuable information about the fertilising capacity of a sperm sample. Under in vitro 

conditions, the human sperm penetration test is performed by using glass capillary tubes 

filled with penetration medium and placed with one end in contact with the sperm sample. 

Penetration is assessed by counting motile sperm cells at various distances after establishing 

contact (sperm – penetration medium). 

Dr Jan Kremer developed this sperm penetration test in 1965 (Kremer, 1965). Initially, the 

method used circular cross-section capillaries, which have now been replaced by rectangular 

glass capillary tubes for easier examination under a microscope.          
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Use of this technique is limited when considering the problems that were associated with 

human cervical mucus (HCM) (limited availability, instability and storage problems) (Ivic et 

al., 2002). Due to this reason, there is a need for using an alternative artificial penetration 

medium to assess human sperm penetration under in vitro conditions.        

4.2.1.2 Methylcellulose (viscous) – artificial penetration medium (in vitro)   
Methylcellulose is used as an alternative medium to human cervical mucus for the sperm 

penetration test under in vitro conditions (Ivic et al., 2002). Methylcellulose is a long-chain 

substituted cellulose with 30% of its hydroxyl groups in the form of methyl ether. Different 

grades of methylcellulose have viscosities in the range of 10-10,000 centipoise (cp) for a 2% 

solution, which are similar to the range of human cervical mucus, where viscosities are 2800–

10,000 cp (Karni et al., 1971) (Ivic et al., 2002). The advantages of using methylcellulose 

comprise its stability over extended periods of time, uniform quality and consistency, and that 

it is easy to obtain and significantly cheaper than hyaluronic acid. As it is non-toxic, it is 

widely used in pharmaceutical and food industries. It is also used to dilute sperm in intra-

cytoplasmic sperm injection procedures (ICSI) (Ray et al., 1995) (Ivic et al., 2002). 

4.2.1.3 Polyacrylamide (viscoelastic) – artificial penetration medium (in vitro)   
Polyacrylamide has also been used as an artificial sperm penetration medium since 

polyacrylamide gels are visco-elastic and thus resemble more closely the characteristics of 

mucus. Polyacrylamide chains have a molecular mass of 6000 kDa (Berg and Turner, 1979) 

(Suarez and Dai, 1992). Previous experimental results have shown that viscoelastic fluid 

response can increase the speed and efficiency of a simple moving swimmer, although the 

work is carried out by immersing a flexible sheet in a fluid rather than working on a sperm 

model (Teran et al., 2010).  
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Parameters Human cervical 
mucus (HCM)

Methylcellulose Polyacrylamide

Toxicity Not toxic Not toxic Toxic

Nature Viscous Viscous Viscoelastic

Stability Instability Stable Stable

Availability Difficulty in collecting Easy to obtain Easy to obtain 

Storage Storage problem Can easily store Can easily store 

Cost Expensive Not expensive Expensive

Table 4.1: Comparison of HCM, methylcellulose and polyacrylamide as human sperm
penetration media.

Different parameters, e.g. toxicity, nature of the medium, stability, availability, storage and cost, are
compared between human cervical mucus (HCM), methylcellulose and polyacrylamide to use as
human sperm penetration media. Methylcellulose seems to be a better alternative than HCM and
polyacrylamide as it is non-toxic, stable for longer periods, easy to obtain, and not expensive.

Work done in the laboratory of Susan. Suarez on mouse sperm showed that the motility of 

hyperactivated sperm becomes more progressive when the viscosity of the medium is 

increased. It was proposed that under in vivo conditions, when mouse sperm encounter the 

viscoelastic environment present in the oviductal region the development of hyperactivated  

motility will enable sperm to progress more effectively (Suarez and Dai, 1992).  

Average path length (VAP) indicates that the translation of the flagellar beat pattern into 

directional movement of a sperm cell is lower in the case of both fresh and hyperactivated 

sperm in viscous medium, but the hyperactivated flagellar beat is superior for sperm in 

polyacrylamide.  

4.2.1.4 Comparison of HCM (human cervical mucus), methylcellulose and 
polyacrylamide as human sperm penetration media   
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4.3 Materials and Methods  
4.3.1 Materials    
Supplemented Earle's balanced salt solution (sEBSS) contains 1.0167 mMNaH2PO4, 5.4 

mM KCl, 0.81mM MgSO4·7H2O, 5.5 mM C6H12O6, 2.5 mMC3H3NaO3, 19.0 

mM CH3CH(OH)COONa, 1.8 mM CaCl2·2H2O, 25.0 mM NaHCO3, 118.4 mM NaCl, and 15 

mM HEPES (pH 7.4, 292 mosM), supplemented with 0.3% (w/v) fatty acid-free BSA. 

Osmotic strength was maintained by adjusting NaCl.  

Chemicals used in the preparation of media were from Sigma-Aldrich (Poole, Dorset, UK). 

Fatty acid-free Bovine Serum Albumin (BSA) was from United States Biological 

(Swampscott, MA, USA). Osmotic strength was maintained by adjusting NaCl. Drugs (4-

Aminopyridine (4AP, 5 mM), Progesterone (P4, 3 µM) and Prostaglandin E1 (PE1, 2 µM)) 

used in the experiments were from Sigma-Aldrich (Poole, Dorset, UK). 

4.3.1.1 Materials – viscous medium      

1% w/v methylcellulose (4000cp viscosity in a 2% solution at 20°C, Sigma-Aldrich, UK) 

made up in sEBSS, 50 x 4 x 0.4mm glass capillary tubes (CM Scientific, UK), Cristaseal wax 

(Hawksley, UK) to seal one end of the glass capillary tube, and 1.5ml Eppendorf tubes.     

4.3.1.2 Materials – viscoelastic medium   

1% w/v polyacrylamide (2.4-2.7cp viscosity in a 0.1% solution 25°C, Sigma-Aldrich, UK) 

made up in sEBSS, 50 x 4 x 0.4mm glass capillary tubes (CM Scientific, UK), Cristaseal wax 

(Hawksley, UK) to seal one end of the glass capillary tube, and 1.5ml Eppendorf tubes.  
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4.3.2 Methods   

4.3.2.1 Donor Recruitment 
Donor recruitment was conducted as described in Section 2.2.  

4.3.2.2 Human Sperm Preparation  
For human sperm preparation by direct swim up method (SU) and density gradient 

centrifugation methods please see Section 2.4  

4.3.2.3 Computer-assisted Semen Analysis (CASA)   
For CASA, See Chapter 2.5. 

After 4 hours and 30 min of capacitation, 100µl aliquots of sperm suspension were treated 

with or without different agonists (4AP, PE1 & P4). From each of these stimulants, 5 µl of 

sperm suspension were immediately added to either side of the pre-warmed CASA 2X-CEL 

chamber (Hamilton Thorne Biosciences) with a depth of 20 µm, and temperature is 

maintained at 37oC throughout the experiment using a Thermo slider.  

Figure 4.0: Computer assisted sperm analysis (CASA). Assessment of human sperm
hyperactivated motility (in vitro) is performed by a CASA. A Showing CASA 2X-CEL chamber
(Hamilton Thorne Biosciences) with a depth of 20 µm. B Showing computer assisted semen
analyser. C Showing sperm motility tracks. Green = Hyperactivated non-progressive motility,
Light Blue = Hyperactivated progressive motility, Dark Blue = Activated motility, Red =
Immotile/Dead sperm.

A
B C
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At least 20 data points were selected for analysis of each sample, with a minimum of 100 

cells observed for each sample. Motility of a hyperactivated human sperm was analysed at 60 

Hz using a 10x objective. According to Mortimer (Mortimer, 2000c), hyperactivated human 

sperm is defined as curvilinear velocity (VCL) ≥ 50  µm/s, linearity  (LIN) <50%, increased 

amplitude of lateral head displacement (ALH) ≥7 µm (Mortimer, 2000b).                                                                                         

Different motility behaviours were observed as cells were treated with different stimulants 

(4AP, PE1 & P4). Treated cells were compared with parallel untreated cells (control) and 

analysed using statistical software. A paired t-test is performed to test statistical significance 

between stimulants and control. If P<0.05, then the results were considered statistically 

significant.         

 

4.3.2.4 Kremer’s Penetration Test 

For Kremer’s Penetration Test, See Chapter 2.6. 

The effect of different behaviours (established artificially by stimulating human sperm with 

different agonists 4AP, PE1 & P4) on the penetration of human sperm through artificial 

viscous (methylcellulose) and viscoelastic (polyacrylamide) media in both direct SU and DG 

cells where analysed using kremer’s penetration test.   

4.3.2.5 Work flow and control data. 

In Table 4.2 and 4.3 effects of agonists (4AP, P4 and PE1) on motility parameters are 

compared to the untreated parallel control in both DG and SU cells. The control data shown 

in Table 4.2 (DG Cells) and Table 4.3 (SU Cells) are the same as those listed in Table 3.1 in 

Chapter 3. This reflects analysis of different aspects of the data generated during the same 
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experimental protocol.  A detailed experimental work flow is given in Section 2.3 and Figure 

2.0, explaining the use of same control in both Chapters 3 and 4.    
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4.4 Results   

4.4.1 Assessment of human sperm hyperactivated motility by 4-Aminopyridine 

(4AP), Prostaglandin E1 (PE1) and progesterone (P4) agonists by two different 

sperm preparation techniques – DG & SU  

Stimulation with 5 mM 4AP enhanced hyperactivated motility compared to parallel controls, 

both in cells prepared by direct swim-up ((p< 0.0001; **** n=20; paired t-test) and density 

gradient centrifugation ((p< 0.0001; **** n=20; paired t-test) (Figure 4.1). Consistent with 

this increase in hyperactivation, 4AP-treated showed significantly increased lateral head 

displacement (ALH) and curvilinear velocity (VCL) and significantly decreased (VSL) and 

linearity in both swim-up and density gradient-prepared cells (figs 4.2-4.5) 

Statistical F-TEST was performed to test if there is any equal variability between two sperm 

preparation techniques (DG & SU) when cells are stimulated with 4AP. Since Fvalue (0.30722) 

is smaller than F Critical (0.46120) there was no significant difference in the variability of two 

sperm preparation techniques (DG & SU) when cells are stimulated with 4AP (SU Vs DG).  

2µM Prostaglandin (PE1) or 3µM Progesterone (P4) were much less effective in inducing 

hyperactivation. Only treatment of DG cells with PE1 caused a significant increase in 

hyperactivation compared to the parallel controls (p=0.0142; Figure 4.1).  

 FDs of key kinematic parameters (generated by CASA) were analysed using Microsoft 

Excel. The FD of DG cells stimulated with PE1 and P4 were similar to the control but 4-AP 

induced clear differences compared to the control and to PE1 and P4-treated cells. In Figure 

4.6 (A, B) it can be seen that the FDs for VCL and ALH of 4AP-treated cells each have a 

peak similar to that of the control but also a ‘tail’ of cells with much higher values.  



147 
 

There was also a marked decrease in LIN of 4AP-treated cells with the entire curve shifted to 

the left (Figure 4.6 C). When FD data were analysed for the SU sperm a similar pattern was 

observed, though in these cells, whereas 4AP caused a shift of the LIN distribution to the left, 

PE1 and P4 also shifted the LIN curve but to the right (Figure 4.7 A, B & C).  
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Density Gradient Centrifugation (DG)

PARAMETER

Control S.E.M. 5mM  4-Amino 

pyridine (4AP)

S.E.M. 2µM 

Prostaglandin 

(PE1)

S.E.M. 3µM 

Progesterone (P4)

S.E.M.

Hyperactivation 

(% Sort 7)

6.25 0.695 19.45**** 1.669 8.8** 0.972 6.4 1.037

Lateral 

amplitude (ALH) 

(µm)

3.795 0.099 5.16**** 0.208 3.93 0.124 3.97 0.131

Curvilinear 

velocity (VCL) 

(µm/s)

91.345 3.134 123.87**** 6.045 94.82 3.277 92.17 3.502

Straight-line / 

Prog. velocity 

(VSL) (µm/s)

45.585 1.423 34.435**** 1.297 45.28 1.752 44.31 1.679

Linearity (LIN) 

(% LIN)

54.1 1.309 35.2**** 1.634 53 1.374 51.7 1.682

Table 4.2: Effects of 4-Aminopyridine (4AP), Prostaglandin (PE1) and Progesterone (P4) on motility parameters, as determined
by CASA when cells are prepared by density gradient centrifugation (DG). Experiments were carried out in pairs, where cells
from the same semen sample were analysed by CASA with and without treatment (different agonists). Cells without treatment
were prepared in sEBSS (15mM HEPES, pH=7.4), and no treatment in control (no colour). Cells were stimulated with 5mM
4AP (4AP, Brown), 2µM PE1 (PE1, Green) and 3 µM (P4, Blue). For each condition, hyperactivation (sort 7%), lateral head
amplitude (ALH), curvilinear velocity (VCL), straight-line/progressive velocity (VSL), and linearity (% LIN) were determined.
**** P<0.0001; with 4AP compared to control (sort 7%, ALH, VCL, VSL & % LIN); paired t-test; n=20. ** P<0.0142; with
PE1 compared to control (sort 7%); paired t-test; n=20.
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Direct Swim-up (SU)

PARAMETER

Control S.E.M. 5mM  4-Amino 

pyridine (4AP)

S.E.M

.

2µM 

Prostaglandin 

(PE1)

S.E.M. 3µM Progesterone 

(P4)

S.E.M.

Hyperactivation 

(% Sort 7)

3.75 0.742 26.4**** 3.011 4.6 0.877 4.8 0.869

Lateral amplitude 

(ALH) (µm)

4.05 0.129 6.54**** 0.319 3.995 0.127 4.77**** 0.159

Track speed (VCL) 

(µm/s)

94.16 2.192 130.47**** 6.717 94.185 2.944 95.61 2.566

Straight-line / 

Prog. velocity 

(VSL) (µm/s)

55.89 1.722 37.89**** 1.595 55.365 1.907 45.965**** 1.517

Linearity (LIN) (% 

LIN)

60.3 1.675 34**** 1.676 59.9 1.465 50.05**** 1.595

Table 4.3: Effects of 4-Aminopyridine (4AP), Prostaglandin (PE1) and Progesterone (P4) on motility parameters, as determined by
CASA when cells are prepared by direct swim-up (SU). Experiments were carried out in pairs, where cells from the same semen sample
were analysed by CASA with and without treatment (different agonists). Cells without treatment were prepared in sEBSS (15mM
HEPES, pH=7.4), with no treatment in control (no colour). Cells were stimulated with 5mM 4AP (4AP, Brown), 2µM PE1 (PE1, Green)
and 3 µM (P4, Blue). For each condition, hyperactivation (sort 7%), lateral head amplitude (ALH), curvilinear velocity (VCL), straight-
line/progressive velocity (VSL), and linearity (% LIN) were determined. **** P<0.0001; with 4AP compared to control (sort 7%, ALH,
VCL, VSL & % LIN); paired t-test; n=20. **** P<0.0001; with P4 compared to control (ALH, VSL & LIN); paired t-test; n=20.
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Figure 4.6 Showing the frequency distribution (FD) data for the DG cells. Showing the FD of A Curvilinear velocity (VCL) (µm/sec), B Amplitude
of lateral head displacement (ALH) (µm) and C Linearity (%LIN) for the cells prepared using DG technique under the control conditions (Green) and
after the stimulation of human sperm cells with 5mM 4-Aminopyridine (4-AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone
(P4) (Black) in the standard CASA. Compared to the control, DG cells stimulated with 4-AP shown an increase in the A VCL with a decrease in the C
linearity (LIN) and also there is a shift in the linearity curve towards the left side. At the beginning of the distribution the 4-AP stimulated cells show a
decrease in B ALH compared to the control. Cell stimulated with PE1 (Purple) and P4 (Black) shown similar characteristics (ALH & LIN) compared
to the control, where as in the case of A VCL the P4 peak shift to right compared to the control. The data suggests that cells treated with 4-AP behave
differently in their motility characteristics (VCL, ALH and LIN) compared to the Control, PE1 and P4. Each plot shows mean ± S.E (standard error) of
20 experiments when human sperm cells were prepared using density gradient (DG) technique.
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Figure 4.7 Showing the frequency distribution (FD) data for the SU cells. Showing the FD of A Curvilinear velocity (VCL) (µm/sec), B Amplitude
of lateral head displacement (ALH) (µm) and C Linearity (%LIN) for the cells prepared using SU technique under the control conditions (Green) and
after the stimulation of human sperm cells with 5mM 4-Aminopyridine (4-AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4)
(Black) in the standard CASA. Compared to the control, DG cells stimulated with 4-AP shown an increase in the A VCL with a decrease in the C
linearity (LIN) and also there is a shift in the linearity curve towards the left side. 4-AP (Red) stimulated cells show a decrease in B ALH compared to
the control. Cells stimulated P4 (Black) shown a B ALH response that is lower than control but higher than 4-AP and the C P4 (Black) LIN peak shift to
the left side but stands in-between control and 4-AP. Cells stimulated with PE1 (Purple) show similar motility characteristics (ALH and LIN) and A
VCL was slightly lower to the control. The data suggests that 4-AP cells behave differently from other treated (PE1 and P4) and untreated (control) ones,
with increase in hyperactivation contributing to the decrease in linearity. Each plot shows mean ± S.E (standard error) of 20 experiments when human
sperm cells were prepared using density gradient (DG) technique.
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4.4.2 Comparative study of penetration into methylcellulose of sperm 

prepared by the two different sperm preparation techniques when stimulated 

with 4-Aminopyridine (4AP), Prostaglandin E1 (PE1) and progesterone (P4) 

Kremer's in vitro penetration test was used to investigate how stimulation of different sperm 

behaviours, as measured by a CASA, affected the ability of cells to enter viscous medium. 

Treatment with 4-AP potently increased hyperactivated motility (as described above, 4.4.1) 

but when cells were tested for their ability to penetrate into viscous medium 

(methylcellulose), both density gradient and swim-up cells were clearly inhibited at all 

distances into the methylcellulose (p=0.004; n=12, Figure 4.8 c & Figure 4.8 a). Treatment of 

DG cells with PE1 (to activate CatSper channel) had no effect in curvilinear velocity (VCL) 

(Figure 4.3 b) but enhanced sperm entry in the viscous medium (p=0.019; n=12 compared to 

control; paired t-test; Figure 4.8 c). There was no significant enhancement of penetration in 

cells prepared by swim up (p=0.0964; n=12 compared to control; paired t-test; Figure 4.8 a). 

FDs were analysed for cells penetrated 0, 1, and 2 cm into viscous medium (methylcellulose). 

In cells that had penetrated further into methylcellulose FDs for VCL and LIN of both DG 

and SU cells maintained similar characteristics to those at 0 cm, but it was clear that there 

were fewer cells with high ALH (compare 4.13B and 4.14B with 4.9B and 4.10B), consistent 

with poor progress of hyperactivated cells through viscous medium. Stimulation with P4 or 

PE1 had no consistent effects on the FDs of cells inside methylcellulose.  
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Figure 4.8: 4AP strongly inhibits penetration into the viscous medium (methylcellulose) (in vitro). Figures A, B & C show an average
number of human sperm cells penetrated into the viscous medium (in vitro) when induced by 5mM 4-Aminopyridine (4AP), 2µM
Prostaglandin (PE1), and 3µM Progesterone (P4). A. Cells are prepared by the direct swim-up technique; B & C. cells prepared by density
gradient centrifugation (before and after normalisation). A. When compared with control (4-AP), p=0.004; ** significantly inhibits
penetration at 0, 1 and 2 cm when prepared using the direct swim-up technique. B & C. When compared with control (4-AP), p=0.0023;
** (before normalisation) and p=0.004; ** (after normalisation) significantly inhibits penetration at 0, 1, and 2 cm when prepared using
the density gradient method. A & C. Treatment of cells prepared by direct swim-up and density gradient with PE1 enhanced performance
in a viscous medium. When compared with control (PE1), p=0.019; * significantly enhances penetration in a viscous medium when
prepared using the density gradient method, other than the direct swim-up method (PE1), p=0.0964; each bar shows the mean S.E. (error
bars) of 12 experiments.
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Figure 4.9 Showing the frequency distributions (FD) for the DG cells in response to different agonists in an artificial viscous
penetration medium (methylcellulose). A,B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)),
amplitude of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial
viscous medium (methylcellulose) at 0cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-
Aminopyridine (4AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using
the CASA analyser when the cells were in the kremer’s (in the viscous medium). Compared to the control (Green) cells stimulated with
3µM P4 (Black) shown an slight increase in A VCL (greater than 4-AP (Red)) with a decrease in C Lin. This suggesting that the P4
stimulated cells were hyperactivated (more than 4-AP) and this was necessary for the P4 cells to make a entry into the viscous medium. This
was similar to the control cells although the C LIN for P4 cells were lower than control (at the beginning) but later the LIN increases
suggesting they would progress better for the further distances in the viscous medium. Each plot shows mean ± S.E (standard error) of 12
experiments prepared using density gradient (DG) technique.
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Figure 4.10 Showing the frequency distributions (FD) for the SU cells in response to different agonists in an artificial viscous penetration
medium (methylcellulose). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)), amplitude of lateral
head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial viscous medium
(methylcellulose) at 0cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-Aminopyridine (4AP) (Red),
2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using the CASA analyser when the cells
were in the kremer’s (in the viscous medium). Compared to the control (Green) the cells stimulated with P4 (Black) show lower A VCL, B ALH
but increase in C LIN, this suggesting even though the hyperactivation is lower because of high LIN the P4 stimulated cells would make a better
entry compare to the control. Each plot shows mean ± S.E (standard error) of 12 experiments prepared using direct swim up (SU) technique.
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Figure 4.11 Showing the frequency distributions (FD) for the DG cells in response to different agonists in an artificial viscous
penetration medium (methylcellulose). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)),
amplitude of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial
viscous medium (methylcellulose) at 1cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-
Aminopyridine (4AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using the
CASA analyser when the cells were in the kremer’s (in the viscous medium). Compared to the control (Green) the cells stimulated with P4
(Black) show lower A VCL with B ALH response similar to the control but there is a increase in C LIN compared to the control. This data
suggests P4 stimulated cells with an increased LIN capable of progressing further distance in the tube. Cells stimulated with 4-AP (Red)
although shown less hyperactivation (lower VCL) compared to the control, because of their (4-AP) lower LIN (compared to the control) they
would progress at a lower pace compare to the control. Each plot shows mean ± S.E (standard error) of 12 experiments prepared using the
density gradient (DG) technique.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

%

F

r

e

q

u

e

n

c

y

LIN (%)

Methylcellulose -%LIN-DG-Kremer's-1cm

Control

4-AP

PE1

P4



167 
 

 

 

A B

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200

%

F

r

e

q

u

e

n

c

y

VCL (µm/sec)

Methylcellulose-SU-VCL (µm/sec)-K  m  ’s – 1cm

Control

4-AP

PE1

P4

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

%

F

r

e

q

u

e

n

c

y

ALH µm

Methylcellulose – SU-ALH (µm) – K  m  ’s – 1cm

Control

4-AP

PE1

P4



168 
 

 

 

C

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

%

F

r

e

q

u

e

n

c

y

LIN (%)

Methylcellulose –SU-LIN (%) – K  m  ’s – 1cm

Control

4-AP

PE1

P4

Figure 4.12 Showing the frequency distributions (FD) for the SU cells in response to different agonists in an artificial viscous penetration
medium (methylcellulose). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)), amplitude of
lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial viscous medium
(methylcellulose) at 1cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-Aminopyridine (4AP)
(Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using the CASA analyser when the
cells were in the kremer’s (in the viscous medium). Compared to the control (Green) the cells stimulated with P4 (Black) show slightly higher
A VCL compared to the control, B ALH was similar to that of control, but with a higher C LIN suggesting their better progressive ability in the
viscous medium. Each plot shows mean ± S.E (standard error) of 12 experiments prepared using direct swim up (SU) technique.
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Figure 4.13 Showing the frequency distributions (FD) for the DG cells in response to different agonists in an artificial viscous
penetration medium (methylcellulose). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)),
amplitude of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial
viscous medium (methylcellulose) at 2cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-
Aminopyridine (4AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using the
CASA analyser when the cells were in the kremer’s (in the viscous medium). Compared to the control (Green) the cells stimulated with PE1
(Purple) show lower A VCL compared to the control, B ALH was higher to that of control, but with a higher C LIN suggesting their progressive
behaviour in the viscous medium. In the case of cells stimulated with 4-AP show higher A VCL and BALH with low C LIN (when compared to
the control) suggesting they (4-AP) were associated with hyperactive non-progressive behaviour which is restricting them perform better in the
viscous medium. A behaviour that is contrast to PE1. Each plot shows mean ± S.E (standard error) of 12 experiments prepared using the density
gradient (DG) technique.



171 
 

 

 

A B

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

%

F

r

e

q

u

e

n

c

y

VCL (µm/sec)

Methylcellulose – SU – VCL (µm/sec) – K  m  ’s -2cm

Control

4AP

PE1

P4

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

%

F

r

e

q

u

e

n

c

y

ALH (µm)

Methylcellulose – SU- ALH (µm) – K  m  ’s – 2cm

Control

4AP

PE1

P4



172 
 

 

C

0

10

20

30

40

50

60

70

0 20 40 60 80 100

%

F

r

e

q

u

e

n

c

y

LIN (%)

Methylcellulose – SU –LIN (%) – K  m  ’s -2cm

Control

4AP

PE1

P4

Figure 4.14 Showing the frequency distributions (FD) for the SU cells in response to different agonists in an artificial viscous penetration
medium (methylcellulose). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)), amplitude of
lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial viscous medium
(methylcellulose) at 2cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-Aminopyridine (4AP)
(Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using the CASA analyser when the
cells were in the kremer’s (in the viscous medium). Compared to the control (Green) the cells stimulated with PE1 (Purple) show a slightly
higher A VCL compared to the control B ALH was similar to that of control and with higher C LIN. 4-AP stimulated cells show high A &B
VCL and ALH with low C LIN. This data suggests even though 4-AP cells were hyperactivated, but because of low LIN they struggle to
penetrate in the viscous medium and therefore compare to control, PE1 and P4, 4-AP stimulated cells has a higher inhibition in the viscous
medium. Also suggesting hyperactive non-progressive behaviour of 4-AP cells is what contributing to their inhibition in the viscous medium.
Each plot shows mean ± S.E (standard error) of 12 experiments prepared using the direct swim up (SU) technique.
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4.4.3 Comparative study of penetration behaviour (polyacrylamide) in relation 

to hyperactivated motility when stimulated with 4-Aminopyridine (4AP), 

Prostaglandin E1 (PE1) and progesterone (P4) agonists by two different sperm 

preparation techniques – DG & SU  

Kremer's in vitro penetration test was used to investigate how stimulation of different sperm 

behaviours, as measured by a CASA, affected the ability of cells to enter visco-elastic 

medium. Treatment with 4-AP potently increased hyperactivated motility (as mentioned in 

the previous section, 4.4.1) but when cells from the same aliquot were tested for their ability 

to penetrate into viscoelastic medium (polyacrylamide) both density gradient and swim-up 

cells were clearly inhibited at all distances into the medium (p<0.006; n=8, Figure 4.15 a & 

Figure 4.15 c). Treatment of cells prepared by density gradient with PE1 (to activate the 

CatSper channel) has no effect in curvilinear velocity (Figure 4.3 b) but enhanced sperm 

entry into viscoelastic medium although this was not statistically significant when compared 

to control (p=0.2215; n=8 compared to control; paired t-test; Figure 4.15 c).    

Treatment of cells prepared by swim-up with PE1 had similar effects but again these were 

smaller than in density gradient cells and again not statistically significant when compared to 

control (p=0.2877; n=8 compared to control; paired t-test; Figure 4.15 a).  

FDs were analysed for cells penetrated 0, 1, and 2cm into viscoelastic medium 

(polyacrylamide). As cells penetrated further in to polyacrylamide, FDs for VCL and LIN of 

both DG and SU cells had very similar characteristics, though the peak of the VCL 

distribution was shifted slightly to the left in some assays. However, as with analysis of cells 

in methycellulose, there were very few sperm with high ALH (≥5 m) at 1 or 2 cm into the 

gel (compare 4.20B and 4.21B with 4.16B and 4.17B).  4AP clearly shifted the peak VCL of 

both DG and SU cells at 0 cm (figs 4.16A, 4.17A) and SU cells at 1 cm (fig 4.19A) to lower 
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values (Figure 4.16A, 4.17A). Stimulation P4 or PE1 had no consistent effects on the FDs of 

cells inside polyacrylamide.    
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Figure 4.15: 4AP strongly inhibits penetration into the viscoelastic medium (polyacrylamide) (in vitro). Figures A, B & C
show an average number of human sperm cells penetrated into the viscoelastic medium (in vitro) when induced by 5mM 4-
Aminopyridine (4AP), 2µM Prostaglandin (PE1), and 3µM Progesterone (P4). A. Cells are prepared by the direct swim-up
technique; B & C. cells prepared by density gradient centrifugation (before and after normalisation). A. When compared with
control (4-AP), p=0.003; ** significantly inhibits penetration at 0, 1 and 2 cm when prepared using the direct swim-up technique.
B & C. When compared with control (4-AP), p=0.0007; *** (before normalisation) and p=0.005; ** (after normalisation)
significantly inhibits penetration at 0, 1, and 2 cm when prepared using the density gradient method. C. Treatment of cells
prepared by density gradient with PE1 enhanced performance in a viscoelastic medium when compared with control, although
they are not statistically significant (after normalisation); each bar shows the mean S.E. (error bars) of 8 experiments.
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Figure 4.16 Showing the frequency distributions (FD) for the DG cells in response to different agonists in an artificial visco-elastic
penetration medium (polyacrylamide). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)),
amplitude of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial
visco-elastic medium (polyacrylamide) at 0cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-
Aminopyridine (4AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using
the CASA analyser when the cells were in the kremer’s (in the visco-elastic medium). Cells stimulated with PE1 show slightly higher A
VCL, B lower ALH and higher C LIN. This data suggests with high linearity PE1 stimulated cells make an better entry into the visco-elastic
medium. Each plot shows mean ± S.E (standard error) of 8 experiments prepared using density gradient (DG) technique.
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Figure 4.17 Showing the frequency distributions (FD) for the SU cells in response to different agonists in an artificial visco-elastic
penetration medium (polyacrylamide). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)),
amplitude of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial visco-
elastic medium (polyacrylamide) at 0cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-Aminopyridine
(4AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using the CASA analyser when
the cells were in the kremer’s (in the visco-elastic medium). Cells stimulated with PE1 show A low VCL (compared to the control) with a similar B
ALH and a higher C LIN. With higher C LIN and lower VCL, PE1 cells make a better entry in to the visco-elastic medium. Contrast to PE1, 4-AP
cells when compared to control show low C LIN and high A VCL (peak shifts to left) suggesting they (4-AP treated cells) were more
hyperactivated and fall behind (to PE1 treated cells) in entering in to the visco-elastic medium. Each plot shows mean ± S.E (standard error) of 8
experiments prepared using direct swim up (SU) technique.
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Figure 4.18 Showing the frequency distributions (FD) for the DG cells in response to different agonists in an artificial visco-elastic
penetration medium (polyacrylamide). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)),
amplitude of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial
visco-elastic medium (polyacrylamide) at 1cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-
Aminopyridine (4AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using
the CASA analyser when the cells were in the kremer’s (in the visco-elastic medium). When compared to the control cells stimulated with
PE1 show low A VCL, Higher B ALH and a higher C LIN (both at the beginning and at the end of the peak). This data suggests with high
linearity and low VCL PE1 stimulated cells progress into the visco-elastic medium. Each plot shows mean ± S.E (standard error) of 8
experiments prepared using density gradient (DG) technique.
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Figure 4.19 Showing the frequency distributions (FD) for the SU cells in response to different agonists in an artificial visco-elastic
penetration medium (polyacrylamide). A,B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)), amplitude
of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial visco-elastic medium
(polyacrylamide) at 1cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-Aminopyridine (4AP) (Red),
2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using the CASA analyser when the cells
were in the kremer’s (in the visco-elastic medium). Cells stimulated with 4-AP show very high A VCL and C LIN which is contrast to control and
P4. This suggests 4-AP stimulated cells makes less progression further into the visco-elastic medium. With respect to 4-AP same behaviour was
observed even in DG (Fig 4.11), but in DG 4-AP stimulated cells show low VCL suggesting they were less hyperactivated in DG than in SU. Each
plot shows mean ± S.E (standard error) of 8 experiments prepared using direct swim up (SU) technique.
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Figure 4.20 Showing the frequency distributions (FD) for the DG cells in response to different agonists in an artificial visco-elastic
penetration medium (polyacrylamide). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)),
amplitude of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial
visco-elastic medium (polyacrylamide) at 2cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-
Aminopyridine (4AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using
the CASA analyser when the cells were in the kremer’s (in the visco-elastic medium). When compared to the control cells stimulated with
PE1 show low A VCL, Low B ALH and a higher C LIN. This data suggests with high linearity and low VCL PE1 stimulated cells progress
further (2cm) into the visco-elastic medium. Each plot shows mean ± S.E (standard error) of 8 experiments prepared using density gradient
(DG) technique.



186 
 

 

 

A B

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200

%

F

r

e

q

u

e

n

c

y

VCL (µm/sec)

Polyacrylamide-Swimup-VCL(µm/sec)-Kremer's-2cm

Control

4-AP

PE1

P4

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20

%

F

r

e

q

u

e

n

c

y

ALH (µm)

Polyacrylamide-Swimup-ALH(µm)-Kremer's-2cm

Control

4-AP

PE1

P4



187 
 

 

C

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

%

F

r

e

q

u

e

n

c

y

LIN (%)

Polyacrylamide-%LIN-Swim up-Kremer's-2cm

Control

4-AP

PE1

P4

Figure 4.21 Showing the frequency distributions (FD) for the SU cells in response to different agonists in an artificial visco-elastic
penetration medium (polyacrylamide). A, B and C showing the frequency distributions (FD) of curvilinear velocity (VCL (µm/sec)),
amplitude of lateral head displacement (ALH (µm)) and Linearity (%LIN) during human sperm cells enhancement into the artificial visco-
elastic medium (polyacrylamide) at 2cm under control conditions (Green) and after stimulation of human sperm cells with 5mM 4-Aminopyridine
(4AP) (Red), 2µM Prostaglandin E1 (PE1) (Purple) and 3µM Progesterone (P4) (Black). The FD data was recorded using the CASA analyser when
the cells were in the kremer’s (in the visco-elastic medium). Contrast to DG in SU cells stimulated with 4-AP show lower A VCL, slightly higher B
ALH and a high C LIN. This suggests 4-AP cells would perform better in the SU preparation compared to 4-AP stimulated cells in DG preparation.
Each plot shows mean ± S.E (standard error) of 8 experiments prepared using direct swim up (SU) technique.
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4.5 Discussion    

It is crucial to understand the sperm journey into the female tract. Research advances in this 

area help us to address infertility problems, improve diagnosis, and develop effective 

contraceptives. During sperm migration in the female reproductive tract, it will encounter 

different environments, e.g. viscous and viscoelastic environments. To reach the oocyte and 

be able to fertilise, the sperm must select and switch appropriate behaviours that will enable 

successful migration through distinct environments (viscous and viscoelastic), detach from 

the oviductal epithelium, penetrate through the cumulus matrix and zona pellucida and, 

finally, fertilise with the oocyte. [Ca2+] i signalling plays a key role in regulating these events 

and influx of extracellular Ca2+ and/or mobilisation of calcium from intracellular organelles is 

therefore essential. Absence or malfunction of these calcium sources in human sperm can 

lead to infertility.  

In this chapter I used manipulation of Ca2+ release from stores in the posterior head and neck 

region (RNE (redundant nuclear envelope)) and activation of Ca2+ influx in the flagellar 

principal piece (CatSper) to induce different behaviours.  4-Aminopyridine (4AP) was used 

to mobilise calcium from stores in the posterior head and neck region, inducing 

hyperactivation (Alasmari et al, 2011) and prostaglandin E1 (PE1) and progesterone (P4), 

which increase Ca2+ influx into the flagellar principal piece by activating the CatSper 

channel, were used to enhance activated motility (Alasmari et al 2011).  Using human sperm 

prepared by direct swim-up and density gradient methods, the effects of sperm behaviours 

induced by these manipulations of [Ca2+] i signalling on penetration of viscous 

(methylcellulose) and viscoelastic (polyacrylamide) media was assessed.       
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4.5.1 Effects of 4AP, PE1 and P4 on hyperactivated motility in swim-up 

compared to density gradient 

4-Aminopyridine (4AP) significantly increased hyperactivated motility (measured by % sort 

7) in both swim-up and density gradient cells but this effect was significantly greater in 

swim-up sperm (Figure 4.1). An increase in hyperactivation corresponds to an increase in 

different motility characteristics, e.g. ALH (Figure 4.2), VCL (Figure 4.3), VSL (Figure 4.4), 

and a decreased LIN (Figure 4.5). This data suggests that cells prepared with swim-up and 

stimulated 4AP show enhanced hyperactivated motility when compared to the density 

gradient method.     

In contrast to the above result, agonists PE1 show significant increase in hyperactivated 

motility (measured by % sort 7) when cells are prepared by density gradient compared to 

swim-up (DG; Table 4.2). 

4.5.2 Effects of 4AP, PE1 and P4 on penetration in viscous and viscoelastic 

environments  

Data from standard CASA suggests that 4AP is a potent inducer of hyperactivation (Figure 

4.1) in both swim-up and density gradient, but when analysing Kremer penetration results of 

DG and SU cells, 4AP shows an inhibitory effect in both viscous (Figure 4.8) and 

viscoelastic (Figure 4.15) environments. When compared to 4AP, both PE1 and P4 show less 

hyperactivation in standard CASA data (Figure 4.1) but show greater penetration (Figures 4.8 

& 4.15). Although penetration of PE1 and P4 treated cells is similar, DG-prepared cells when 

treated with PE1 show slightly higher curvilinear velocity (VCL) (Figure 4.3) when compared 

to swim-up (Figure 4.3), which may assist in enhancing sperm entry into the viscous and 

viscoelastic media.  
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Frequency distribution (FD) data from both DG and SU cells inside viscous (methylcellulose) 

and visco-elastic (polyacrylamide) media showed little variation in the distribution of VCL or 

LIN as cells progressed up the tube. However, it was noticeable that at 0 cm ALH was 

variable in both viscous and viscoelastic environments. Some of these cells had ‘high’ ALH 

(> 5 m).  In cells that had progressed 1 and 2 cm into the tube the FD was narrower and 

more consistent between the different treatments (e.g. see figs 4.12B, 4.13B, 4.20B, 4.21B). 

This suggests that cells with low ALH progress better within the viscous and visco-elastic 

environments, which is consistent with the poor performance of 4AP treated cells in the 

Kremer assay. PE1-stimulated cells, in contrast, maintain a low lateral head movement (ALH) 

and had better progressive ability in both viscous and viscoelastic media.  

Previous research done by Suarez (Suarez and Dai, 1992) explained that increase in 

hyperactivated motility enhance sperm penetration in to viscous and visco-elastic medium. 

(though this experimental work was carried out in mouse model). But from this chapter, it 

suggests that CatSper (PE1 & P4) plays a crucial role in enhancing sperm penetration through 

viscous and viscoelastic environments, whereas store-mediated hyperactivation (4AP), 

significantly reduces the ability of sperm to enter viscous or visco-elastic environments.   
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Chapter 5: Assessment of Capacitation using Protein Tyrosine 
Phosphorylation – direct SU & DG               
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5.1 Objective:  

From Chapter 3, I observed that there is a difference in human sperm motility when prepared 
using direct SU and DG. As capacitation is a prerequisite to acquire functional competence 
(motility) to achieve successful fertilisation, it would be of great interest to investigate whether 
the difference in motility that is observed between these two techniques is associated with a 
difference in sperm maturation (capacitation). In this chapter, I use protein tyrosine 
phosphorylation as a marker to evaluate sperm capacitation in both direct SU and DG. 
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5.2 Introduction 
 

5.2.1 Capacitation 
 

For successful fertilisation sperm must undergo a maturation process called “capacitation” 

(Chang, 1951a, Baldi et al., 2000, Bedu-Addo et al., 2005, Battistone et al., 2013), which 

regulates sperm motility, zona pellucid binding, acrosome reaction and a number of other key 

aspects of sperm function and therfore it is (Capcitation) absolutley important (Baldi et al., 

1996, de Lamirande et al., 1997, Visconti et al., 1999, Baldi et al., 2000, Bedu-Addo et al., 

2005, Tateno et al., 2013, Aitken and Nixon, 2013). Capacitation normally happens in the 

female reproductive tract, but can also be initiated in in vitro conditions by incubation in 

medium containing appropriate amounts of glucose, sodium bicarbonate (NaHCO3
-), calcium 

and bovine serum albumin (BSA), which has allowed study of the events that occur.      

During capacitation, the sperm undergoes set of modifications that include cholesterol 

removal from the plasma membrane and increased fluidity, increased ionic membrane 

permeability (Cross, 1998) and increased intracellular levels of [Ca2+]i and cyclic adenosine 

monophosphate (cAMP). Hyperactivated motility also becomes more vigorous with the start 

of capacitation, but hyperactivated motility and capacitation are believed to be two different 

events which differ in their regulation (Ho and Suarez, 2001) 

It has been shown that increased levels of tyrosine phosphorylation (TyrP) is associated with 

capacitation (Visconti, 2009). I have therefore used TyrP as a marker for sperm maturation, 

to investigate whether differences in motility of SU and DG may be due to differences in 

capacitation.     
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5.2.2 The Role of Protein TyrP in Capacitation 
  

It has been shown that an increased level of sperm tyrosine phosphorylation (TyrP) is 

associated with in vitro capacitation of mammalian sperm (including human) induced by 

HCO3
-, BSA and Ca2+ (Leclerc et al., 1996a) (Visconti, 2009). Increased  TyrP was absent in 

the non–capacitation medium (Visconti and Kopf, 1998, Visconti, 2009). Also, during 

capacitation, the association between TyrP and sperm motility was observed (Leclerc et al., 

1996a, Leclerc and Goupil, 2002).  I have therefore used TyrP as a marker for sperm 

maturation, to investigate whether differences in motility of SU and DG may be due to 

differences in capacitation.     

For signalling and biochemical events associated with capacitation, please see fig.11 in 

section 1.6.1    
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5.3 Materials and Methods 
 

5.3.1 Sample Preparation – direct SU and DG 
 

For sample preparation, please see section 2.7.1   

 

 

5.3.2 SDS and Western/Immunoblot setup 

For SDS and western/immunoblot setup, please see section 2.7.2  
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5.4 Results 
 

5.4.1 Comparison of Human Sperm Capacitation in both direct SU and DG 
using TyrP  
Capacitation was performed with cells prepared using direct SU and DG, and samples were 

assessed for TyrP immediately upon suspension in capacitating medium (with a delay of not 

more than 2min; T0) and following incubation in capacitating medium for 30 min (T30), 90 

(T90) and 180 min (T180).  

Figure 5.1 shows the expression of TyrP of two major proteins of 105 and 81KDa extracted 

from sperm prepared using direct SU and DG. There was a clear difference in intensity of 

TyrP as capacitation developed (compare T0 and T180) but no difference in TyrP was 

observed between direct SU and DG cells. 

Silver staining of the proteins transferred to the nitrocellulose membranes shows equal 

protein loading in all wells (Figure 5.1). 
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5.5 Discussion 
 

There is a significant difference in human sperm motility (hyperactivated motility and 

specific kinematic components) between sperm prepared by direct SU and by DG (see 

Chapter 3). As hyperactivated motility is normally associated with capacitation, it was of 

interest to investigate whether the difference in hyperactivated motility between SU and DG 

cells was associated with a difference in capacitation status of sperm prepared by the two 

techniques. 

From Figure 5.1, it appears that there was no major difference in the level of tyrosine 

phosphorylation, between direct SU and DG sperm. Furthermore, the time course of 

increased protein TyrP was similar irrespective of how the cells were prepared. These data 

thus show no differences in the occurrence or time-dependence of capacitation (as assessed 

by TyrP) between direct SU and DG cells, suggesting that the observed differences in 

motility (chapter 3) are unlikely to reflect differences in capacitation. However, this 

conclusion must be interpreted with caution.   The use of TyrP as a marker of capacitation has 

recently been questioned since fertilisation competence in mouse sperm can be achieved by 

temporary elevation of [Ca2+]i (using the ionophore A23187), in the absence of TyrP (Tateno 

et al., 2013). TyrP is therefore not a requirement for achieving capacitated status though it is 

not yet clear whether TyrP is part of the processes leading to ‘natural’ capacitation, perhaps 

by regulation of Ca2+ signalling.  
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Chapter 6: Intracellular calcium signalling [Ca2+] i & Assessment of 
calcium channel [CatSper] activity – direct SU and DG                        
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6.1 Objective:  

Differences were observed between direct SU and DG cells in their motility and penetration 
of viscous media (chapter 3). In this chapter the possible significance of CatSper channel 
function in these differences (HA motility & penetration) is investigated. I use progesterone 
(P4) as a potent activator of CatSper channel under in-vitro conditions and compare 
progesterone induced intracellular calcium [Ca2+]i responses in both direct SU and DG cells. 

Differences in CatSper channel expression between DG (40/80% boundary and 80% Percoll 
pellet) and direct SU cells was investigated using Immunofluorescence (IF) technique.  
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6.2 Introduction 
 

In somatic cells, regulation of many cellular activities is controlled by gene expression, 

through control of transcription and translation of proteins. However, human sperm are 

transcriptionally and translationally silent and therefore rely on post-translational 

modification to regulate various sperm functions which are required for fertilisation. For 

hyperactivation, chemotaxis and acrosome reaction this is achieved primarily through [Ca2+] i 

signalling (Costello et al., 2009, Darszon et al., 2011).  

Human sperm possess different calcium signalling mechanisms which are now well 

established (Publicover et al., 2007). These signalling mechanisms involve the entry of 

calcium from extracellular space into cytoplasm and the mobilisation of calcium from 

intracellular stores (Acrosome & Redundant nuclear envelope (RNE)) (Costello et al., 2009, 

Alasmari et al., 2013b).  

A central feature of calcium signalling in human sperm is the CatSper channel, a calcium-

permeable channel present on the plasma membrane of the flagellum (Ren et al., 2001, 

Kirichok et al., 2006, Qi et al., 2007, Kirichok and Lishko, 2011, Singh and Rajender, 2015).  

Results from use of Catsper knock-out models and clinical studies show that CatSper 

channels are necessary for male fertility, and mutations of CatSper genes in human’s lead to 

male infertility (Hildebrand et al., 2010, Singh and Rajender, 2015, Williams et al., 2015). 

From earlier research observations and from my research findings (Chapter 4) it can be 

concluded that calcium signalling regulates human sperm motility (Publicover et al., 2007). 

The activation of a CatSper channel (see figure 6.1 A), and calcium mobilisation from stores 

through the calcium induce calcium release (CICR) mechanism (see figure 6.1 B), induces 

functionally different behaviours; therefore, the sperm motility pattern is determined, at least 

in part, by the site of calcium mobilisation (Alasmari et al., 2013b). 
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For clinical studies, the most widely used sperm preparation method is the density gradient 

technique (Kim et al., 2015), because of its high yield (Henkel and Schill, 2003) compared to 

the direct swim up technique (in lab method). Although DG offers high yields, its effects on 

sperm motility are often ignored. From my research findings (from Chapter 3), it was 

observed that sperm prepared by DG and by direct SU differed in their functional abilities 

(HA and penetration of viscous medium), with direct SU cells offering better penetration and 

lower levels of HA, as compared to DG cells.  

Considering these functional differences as observed with respect to DG and direct SU cells, 

it is of great interest to investigate the characteristics of [Ca2+] i signalling (by studying the 

activity of CatSper) and important to evaluate Catsper protein expression using 

immunofluorescence method (IF) in relation to the functional differences observed between 

DG and direct SU cells. I have used progesterone (P4), a potent activator of CatSper channel 

(Lishko et al., 2011, Strunker et al., 2011, Smith et al., 2013, Alasmari et al., 2013b), in order 

to observe [Ca2+] i responses in both DG and direct SU cells. To observe the effect of 

intracellular calcium [Ca2+] i responses in both DG and direct SU cells under in vitro 

conditions, a fluorescent calcium indicator, Fluo4, was used. When bound to calcium, Fluo4 

shows an increase in fluorescence. The Fluo4 calcium indicator is a cell impermeant so the 

cell permeant Fluo4 acetoxymethyl (AM) derivative (Tsien, 1981, Takahashi et al., 1999) 

was used. Unlike its original form (Fluo4), Fluo4 AM can passively penetrate across the lipid 

membrane. Once the Fluo4 AM is inside the cell, esterases cleave the acetoxymethyl group, 

trapping Fluo4 inside the cell (see figure 6.1 C).  

In addition to [Ca2+] i signalling & evaluating Catsper protein expression in direct SU and DG 

cells, I have demonstrated, here, the existence of the CatSper protein in two different patterns 

(Continuous & Punctuated signal) in human sperm.     
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6.3 Materials and Methods 
 
6.3.1 Single Cell Imaging   
 

6.3.1.1 Sample Preparation   

Sample preparation was performed as mentioned in sections 2.4.1 and 2.4.2. 

After 4.5hr of capacitation, the cell concentration was adjusted to 3x106 cells/ml with sEBSS 

containing 0.3% BSA prior to imaging experiments.    

6.3.1.2 Experimental setup 

A perfusable, polycarbonate imaging chamber was used for imaging. The base of the 

chamber, through which the cells were viewed, was a coverslip (22x32mm) coated with 0.5% 

Poly-D-lysine, attached using high vacuum grease (Dow Corning). A 12mm circular glass 

coverslip formed the upper surface of the chamber, allowing transillumination.  

Fluo-4 AM was used for labelling cells. 50µl of Pluronic F-127 (1 ml in 20% DMSO) was 

added to 50µg of Fluo-4 AM and left at room temperature for 2~3 min. From this mixture 1µl 

was added to 200µl aliquots of capacitated sperm (prepared using direct SU and DG 

methods) and incubated for 25 min at 37oC and 5% CO2. Following this incubation, an 

aliquot volume of 125 µl was transferred to the imaging chamber. A further 15min incubation 

of the imaging chamber at 37oC and 5% CO2 allowed the labelled cells to attach to the Poly-

D-lysine-coated coverslip.  
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After incubation, the chamber was mounted above a 40x oil objective on a Nikon TE300 

inverted fluorescence microscope that was fitted with a Cairn Opto LED light source and 

filters for excitation 494nm and emission 523nm (Cairn Research, Kent, UK). The imaging 

chamber was connected to a perfusion system consisting of a peristaltic pump with a 

perfusion rate of approximately 0.66 ml/min.  

 

Before the start of the experiment, at least 10ml of fresh sEBSS medium was washed through 

the chamber to remove excess dye and unattached cells. Following a 2min recorded control 

period, the sEBSS was removed and agonists, such as progesterone (P4), were added directly 

to the perfusion header. A 38.4 s (0.64min) delay was taken into account (the time takes for 

saline to travel from the perfusion tube to the inlet of the imaging chamber) when assessing 

response kinetics.  
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Imaging experiments were carried out at 25oC. Continuous perfusion of the imaging chamber 

at a constant and regulated temperature was achieved by maintaining the imaging room and 

equipment at the working temperature. Working at higher temperatures using a microscope 

incubator and/or heated stage in combination with perfusion caused temperature fluctuations 

and consequent effects on focus. Experiments carried out at 31oC and 37oC (achieved by 

maintaining the room at these temperatures) have established that responses to progesterone 

(including generation of [Ca2+] oscillations) at 25oC are functionally similar (though slower) 

than at higher temperatures (Harper et al., 2004).       

6.3.1.3 Image Acquisition and analysis 

Cells were illuminated and fluorescence images were normally captured at 0.2Hz (Frame rate 

5s) using a 40x oil objective and images were obtained using an Andor Ixon EMCCD camera 

controlled by a PC running Andor IQ acquisition and analysis software. For offline analysis 

regions of interest (ROI) were drawn around the posterior head of each of at least 20 cells. 

Fluorescence was background corrected and the raw data was imported into Microsoft Excel 

and normalised using:           

 R= [(F-F
rest

)/F
rest

] x 100-100 

Where R is the normalised fluorescence intensity  

F is called the fluorescence intensity at time t 

F
rest 

is the mean of at least 20 determinations of F taken during the control period before 

stimulation 

The normalised fluorescence intensity values (R) at each time point were compiled to 

generate a mean value for normalised head fluorescence from all cells in the experiment 
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(Rtot). The resulting values were then plotted on a time-fluorescence intensity graph (see 

Figure 6.3).  

For calculating transient responses (peak amplitude), the five highest consecutive points on 

the peak (the highest point and two points on the either side of the peak) were selected and 

averaged. Transient responses were recorded within ~ 38.4sec (7.68 frames) of agonist 

(progesterone) addition. The amplitude of sustained calcium response was recorded for five 

consecutive points after ~3min of agonist (progesterone) addition, and the data was 

averaged. To compare responses in SU and DG cells derived from the same sample paired t-

tests were performed using Graph Pad Prism, and P < 0.05 was considered as statistically 

significant.  
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6.3.2 Immunofluorescence (IF) 

 
6.3.2.1 Sample preparation – Direct SU and DG  

SU sample preparation was same as explained in section 2.4.1.  After adjusting concentration 

to6x106/ml., SU cells were used straight away for the IF technique.  

DG sample preparation was as in section 2.4.2 except that cells were collected from both 

40/80% boundary and the 80% Percoll pellet. Cells were then washed in PBS (500g for 

10min) and then resuspended in sEBSS (0.3% BSA). Cell concentration was determined 

using an improved Neubauer haemocytometer and adjusted to 50x106/ml. After adjusting 

concentration, the cells were used straight away for the IF technique.  

6.3.2.2 Experimental Procedure 

Frost slides were numbered 1 to 15 (for slide layout, please see Table 6.1) and coated with 

Poly-L-lysine (1:10 dilution with deionized water) for 5min then left to dry overnight. The 

next day, 70µl of 6x106/ml cells from direct SU and 20µl of 50x106/ml cells obtained from 

40/80% Percoll and 80% Percoll gradients were added onto each frost slide and smeared and 

then left it to dry at room temperature (RT). 10ml of 4% formaldehyde (diluted from a 37% 

stock solution using PBS) was used to fix the cells (6 min at RT) and then the slides were 

washed three times with 100% PBS for 5 min each. 

Cells were permeabilised with 0.2% Triton-X 100 (TX-100) in PBS for 20 min and washed 

once with 0.1% TPBS (0.1% TX-100 in PBS) for 5 min. After this step, 10% normal goat 

serum in TPBS was used to block non-specific sites for 1 hr at RT and slides were then 

washed once for 5 min using 0.1 % TPBS. Based on slide layout (please see Table 6.1), cells 

were incubated overnight at 4°C with 0.8 mg/ml anti-CatSper-4-antibody at two different 

dilutions (1:50 and 1:100), both with and without blocking peptide), 4µg/ml rabbit serum or 
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0.1% TPBS alone was used as negative control. Slides were then washed 3-4 times with 0.1% 

TPBS for 5min each then incubated in the dark for 60 min with fluorescein-conjugated Affini 

Pure Goat Anti – Rabbit IgG (dilution 1:100 in 0.1% TPBS). After further washing (3-4 times 

with 0.1% TPBS for 5 min each in the dark) the cells were mounted with 15µl Perma Fluor 

(mounting medium). 

6.3.2.3 Data Acquisition  

Frost slides were examined using a Nikon Eclipse E600 fluorescence microscope equipped 

with FITC filter set, excitation max 490 and emission max 525 and an oil immersion x100 

objective. CatSper 4 expression was evaluated in 2,000 sperm cells prepared using 40/80% 

gradient and 80% gradient, and ~1000 sperm cells prepared using direct SU.  

A chi-square test (in Graph Pad Prism) was used to assess differences in the proportion of 

cells expressing CatSper 4 in the three different groups (40/80%, 80% and direct SU). 
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Formaldehyde 

Percoll 80% (DG) Percoll 40/80% (DG) Direct SU

Slide # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CatSper 4 

0.8mg/ml 

(1/50)

X X X

CatSper 4 

0.8mg/ml 

(1/100)

X X X

CatSper 4+ 

Blocking 

Peptide 1:1 

(1/50)

X X X

Normal Goat 

Serum 

X X X X X X X X X X X X X X X

Rabbit Serum 

4µg/ml 

(1/100)

X X X

0.1% TPBS X X X 

2nd Anti-Rabbit 

- FITC

1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/10

0

A

B

C

D

E

F

G

6.3.2.4 Slide Layout  

Table 6.1: Showing slides layout for IF technique. Human sperm cells were prepared using direct swim up (SU) and density gradient
centrifugation (DG) using Percoll gradient. In DG cells were collected from two different layers (Percoll 40/80% and Percoll 80%). A
Slides 1,6 and 11 were incubated with 0.8mg/ml anti-catsper 4 antibody (dilluted 1:50) (test sample) and B Slides 2,7 and 12 were
incubated with 0.8mg/ml anti-catsper 4 antibody (dilluted 1:100) (test sample). C Slides 3,8 and 13 were incubated with equal parts of
anti-catsper-4 antibody + blocking peptide 1:1 (dilluted 1:50) (Positive control). D In order to block non-specific sites all slides were
treated with 10% Normal goat serum (NGS). E Slides 4,9 and 14 were incubated with 4µg/ml Rabbit Serum (1:100) & F slides 5,10
and 15 were treated with 0.1% TPBS alone (Negative control). G All slides were incubated with Fluorescein (FITC)-conjugated
AffiniPure Goat Anti-Rabbit IgG (dilluted 1:100).
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6.4 Results  
6.4.1 Progesterone (P4) induced intracellular calcium response – direct SU 
and DG 
 
Progesterone induced [Ca2+] i responses were evaluated in single sperm cells that had been 

prepared from the same ejaculate using either direct SU and DG. Figure 6.5 and Figure 6.6 

shows the Intracellular calcium traces of the individual cells prepared using both direct 

swimup (SU) and density gradient (DG) techniques. When SU and DG cells were treated 

with 3µM progesterone (P4) sperm cells show a transient (T) calcium response and 

subsequent calcium oscillations. Sequential intracellular calcium image series of SU and DG 

cells treated with 3µM P4 are shown in the Fig 6.5 B (SU cells) and Fig 6.6 B (DG cells). In 

both SU and DG cells a [Ca2+]i transient response followed by [Ca2+]i oscillations were also 

observed. Table 6.2 summarises different parameters (Response (Transient only (T only)) – 

cells that give a transient response but no oscillation, Oscillations (O) – cells that give a 

transient response with oscillations, Total responsive cells - responsive cells as a proportion 

of all cells (TS); Reactive Live cells - responsive cells as a proportion of live cells (RL); No 

response (NS) and Die (D)) between SU and DG cells. When the statistical significance of 

each parameter was looked at between SU and DG cells, O, TS, RL, NS & D was shown to 

be statistically significant (P<0.05) between SU & DG techniques (Table 6.2). In contrast to 

this there was no statistical significance (P>0.05) with respect to the cells that show response 

(T only) up on 3µM P4 stimulation.          

 

Figure 6.7 shows the time course of average normalised fluorescence responses in both direct 

SU and in DG cells. Stimulation with 3µM progesterone, P4, (a saturating dose for calcium 

channel activation, Alasmari et al., 2013) shows a biphasic [Ca2+] i elevation (consisting of an 

early transient peak (T) followed by a sustained response (S)) in both direct SU and DG cells.  
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BA

Figure 6.5: Intracellular Calcium response and Oscillations of SU cell. A Showing traces of Intracellular Calcium transient (T) response and
Oscillations of the individual cells for a single experiment when treated with 3µM Progesterone (P4) and prepared using direct swimup (SU) technique.
B Pictorial representation of the sequential image series of the SU cells showing the intracellular calcium transient (T) response to P4 and the
subsequent calcium oscillations. Time interval between the acquired images is 5sec. Calibration bar with different colours representing the areas of low
to high intracellular calcium levels. Sign representing the area with the low intracellular calcium levels (Black Colour) and representing the area
with the high intracellular calcium levels (White Colour).
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Calcium response to the P4

First Ca2+Oscillation

Second Ca2+Oscillation

- +

BA

3µM P4

Figure 6.6: Intracellular Calcium response and Oscillations of DG cell. A Showing traces of Intracellular Calcium transient (T) response and
Oscillations of the individual cells for a single experiment when treated with 3µM Progesterone (P4) and prepared using the density gradient (DG)
technique. B Pictorial representation of the sequential image series of the DG cells showing the intracellular calcium transient (T) response to P4 and the
subsequent calcium oscillations. Time interval between the acquired images is 5sec. Calibration bar with different colours representing the areas of low
to high intracellular calcium levels. Sign representing the area with the low intracellular calcium levels (Black Colour) and representing the area
with the high intracellular calcium levels (White Colour).- +
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Direct Swimup (SU) Density Gradient (DG) Centrifugation

PARAMETER                                                                                  Mean                                                                                 S.E.M                                                                                 Mean                                                                                 S.E.M                                                                                 

% Response (T only) 64.487 3.023 53.922 5.784

% Oscillations (O) 25.189**** 3.142 5.346 5.198

% Total Response (TS) 
(TS=T only + O)

89.676***** 3.195 59.268 5.784

% Reactive Live (RL)
RL= [TS/(TS+NS)*100]

98.9**** 0.624 70.370 5.670

% No Response (NS) 0.980*** 0.549 23.650 4.563

% Die (D) 9.343* 3.118 17.080 3.399

Table 6.2: Table showing the data of different parameters (T only, O, TS, RL, NS & D) obtained from the Calcium
Imaging analysis when cells were prepared using both Direct Swimup (SU) and density gradient (DG) techniques.
For Calcium Imaging experiments human sperm cells were treated with 3µM Progesterone (P) and the obtained imaging
data was analysed with each different parameter. When each parameter [(Response (Transient (T)) only, Oscillations
(O), Total Response (TS), Reactive –Live (RL), No Response (NS) and Die (D)] was analysed between SU and DG,
cells prepared using Direct Swimup (SU) perform significantly (P < 0.05) better compare to Density Gradient (DG)
technique. Contrast to this no significant difference (P > 0.05) was observed with respect to the cells showing calcium
response (S) when treated using 3µM Progesterone (P) and prepared using both SU and DG techniques. Paired t-test;
n=17.
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From figure 6.7, in direct SU cells both transient (T) [Ca2+] i elevation and the sustain (S) 

[Ca2+]i plateau were higher compared to those of DG cells. After 23 frames (F) of the control 

period, Progesterone (P4) was added at 2 min (24 frames), the [Ca2+] i response of both DG & 

direct SU cells was observed at 2.64 min (~32 frames) with a delay of ~ 38.4 s (0.64min). 

This delay refers to the time taken for progesterone (P4) to travel from the perfusion tube to 

the inlet of the imaging chamber. In direct SU and DG cells the peak transient (T) [Ca2+] i 

response was observed at 3.36min (40.32 frames). Sustain (S) response was observed at 

~5min (60 frames) in direct SU cells compared to ~6.5min (78 frames) in DG cells (See fig. 

6.7).    

 

From figure 6.8 amplitudes from both transient (T) and sustain (S) [Ca2+] i responses were 

compared in P4 stimulated sperm prepared using direct SU and DG techniques. Cells 

prepared using DG and direct SU shown a transient responses (T) of 51.08% (DG) compared 

to 74.7% in direct SU. 

The observed differences in transient responses (T) was not significant (P>0.05) between DG 

and direct SU. When sustain (S) [Ca2+] i responses was measured between DG & direct SU 

cells, DG cells shown a sustain (S) response of 12.87% (DG) compared to 44.40% in direct 

SU cells. The observed differences in sustain responses (S) between DG and direct SU was 

statistically significant (P=0.0002).         

   

Figure 6.9 shows a pseudo-coloured image series of responding cells prepared using direct 

SU and DG methods. Both higher and lower levels of [Ca2+] i are shown, and the image series 

were compared – i.e. between the direct SU and DG methods.    



 

218 
 

 

 

 

1 2 3 4 5 6 7

-50

0

50

100

SU Vs DG - [Ca2+]i Response

Time (min)
 F

lu
o

re
s

c
e

n
c

e
 (

%
)

SU

DG

Control (sEBSS)

3M Progesterone

T

T
S

S

Figure 6.7 Intracellular calcium signalling in human sperm. The figure represents average fluorescence trace vs time
from one experiment. It shows progesterone (3µM) induced [Ca2+]

i responses in Fluo4-AM loaded cells prepared by
density gradient (DG) and by direct swim-up (SU). After a control period, sperm cells (both direct SU and DG) were
treated with P4 (3µM) which entered the perfusion chamber at 2 min 40 s (arrow). P4 induced Bi-phasic (both Transient
(T) and Sustained (S)) intracellular calcium responses.
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Figure 6.8 Transient (T) and Sustain (S) Intracellular calcium [Ca2+]i responses in DG and direct SU cells. A&B showing
amplitudes of transient (T) and sustain (S)[Ca2+]i responses in progesterone (P4) stimulated human sperm cells prepared using DG &
direct SU respectively. Sustained [Ca2+]i response are significantly smaller in DG prepared cells (P=0.0002). Each bar shows mean ±

S.E. (error bars) of 17 experiments.
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6.4.2 Evaluation of CatSper protein expression using IF  
 
Since [Ca2+] i responses to stimulation with progesterone were markedly different in SU and 

DG cells, evaluation of CatSper expression (CatSper4 protein) was performed using 

immunofluorescence (IF).  DG cells (from both the 40/80% boundary and the 80% Percoll 

pellet) and SU cells were examined. IF images in Figures 6.10, 6.11 & 6.12 show 

comparisons of CatSper4 expression (in the presence of anti-CatSper4 antibody at two 

different dilutions - 1:50 and 1:100) to their respective controls (absence of anti-CatSper4 

antibody - D & E in Figures 6.10, 6.11 & 6.12) and to the situation pertaining in the presence 

of CatSper4 peptide (C in Figures 6.10, 6.11 & 6.12).  

CatSper4 protein expression is observed in the sperm principal piece in Figures 6.10, 6.11 & 

6.12 A & B whereas the IF images from Figures 6.10, 6.11 & 6.12 C, D & E show negligible 

staining in the principal piece. Many cells showed staining for most of the length of the 

principal piece but in some cells a punctate signal was observed as described by  (Tamburrino 

et al., 2014). For different types of CatSper4 expression patterns see Figure 6.14 A 

(continuous signal) and B (punctate signal).  

The percentage of cells expressing CatSper4 varied significantly between the three 

preparation methods (40/80%, 80% and direct SU) 64% of SU cells expressed CatSper4, 

compared to 36% in DG 80% Percoll pellet and 8% in DG 40/80% boundary (p< 0.0001; 

Chi-square). (Figure 6.13) 
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Figure 6.13 Shows the percentage of cells expressing CatSper 4 in all three different groups (40/80%, 80% and direct
SU). SU cells show better expression of the CatSper 4 protein (64%) as compared to DG (80% Percoll pellet), 36% & DG
(40/80% boundary), 8%, - zones of Percoll gradient. About 92% of cells prepared using DG (40/80%) don’t express the
CatSper 4 protein, as compared to only 36% of SU cells. The black bar shows the % of sperm cells from DG (40/80% &
80%) & SU expressing the CatSper 4 protein. The grey bar shows the % of cells not expressing CatSper 4 in all three
different sperm populations. Mean (± SEM) shows both CatSper 4 expressed or not expressed sperm cells when prepared
using DG (40/80% & 80%) & SU techniques. The Chi-squared (ᵡ2) test statistic is 68.06 (ᵡ2 = 68.06) with an associated
probability (p< 0.0001).

A B

Figure 6.14 Different patterns of Catsper 4 protein expression in human sperm. The CatSper 4
protein is expressed in the principal piece of human sperm either as (A) a continuous signal (not
observed at the end piece) or as (B) a punctuated signal.
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6.5 Discussion  
 

6.5.1 Intracellular calcium response – direct SU and DG 
 
From my earlier research work, I have observed that different preparation techniques affect 

characteristics of sperm motility (Chapter 3), though there is no detectable difference in 

tyrosine phosphorylation (a marker of capacitation) between direct SU and DG cells (Chapter 

5). Previous studies have shown the role of calcium in regulation of human sperm motility 

and it is therefore of great interest to evaluate intracellular [Ca2+] i signalling in direct SU and 

DG cells and use these results to understand better the functional differences (motility and 

penetration) observed between cells prepared using different sperm preparation techniques 

(Chapter 3).   

In this chapter, I used imaging of direct SU and DG cells (prepared from the same ejaculate) 

to compare [Ca2+]i responses induced by  progesterone (P4), which activates CatSper channel-

mediated calcium influx in human sperm (Lishko et al., 2011). The results presented here 

(Figure 6.7) show a difference in [Ca2+] i responses (T & S) between direct SU and DG cells. 

In direct SU cells the amplitude of transient (T) [Ca2+] i response was ~75% (Figure 6.8) as 

compared to the ~51% in DG cells. In the case of sustained calcium response (S), in direct 

SU cells show the amplitude was ~45%, significantly greater than the mean of ~12% 

observed in DG cells.  

6.5.2 Evaluation of CatSper protein expression using IF - direct SU and DG  
 

Having observed functional differences between direct SU and DG cells (Chapter 3) and 

differences observed in characteristics of [Ca2+] i signalling (fig 6.7) it is important to validate 

whether these differences have any correlation with the way CatSper channel is being 

expressed in DG and SU cells. To investigate differences in CatSper expression between DG 
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and SU cells, I used the immunofluorescence (IF) to compare expression in SU and DG cells 

and also cells collected from the 40/80% boundary when preparing using the DG method. SU 

cells showed significantly higher expression of CatSper (% cells) than DG cells, which in 

turn showed higher expression than 40/80% boundary cells (P<0.0001). The fact that DG 

cells collected from 40/80% boundary show very low CatSper expression may underlie the 

poor levels of motility seen in these cells.   

6.5.3 Potential functional significance  

Greater expression of CatSper protein in SU cells (fig.6.13), is consistent with the occurrence 

of larger and more prolonged intracellular calcium responses – fig 6.7, better forward 

progressive motility (as evaluated by CASA in Chapter 3). Furthermore, it has previously 

been shown that performance in the Kremer (viscous medium penetration) test is inhibited by 

CatSper blockade (Alasmari et al, 2013) which may explain the observation that SU cells 

perform better than DG cells in this test (Chapter 3).        
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Human sperm uses different sets of behaviour to negotiate various aspects of its transit 

through the female reproductive tract. During this transit, it will encounter different 

environments (viscous and viscoelastic). To reach the oocyte and be able to fertilise, the 

sperm must select and switch to appropriate behaviour that will enable successful migration 

through distinct environments, detach from the oviductal epithelium, penetrate through the 

cumulus matrix and zona pellucida and, finally, fuse with the oocyte.     

In order to successfully complete migration through distinct environments, sperm must 

undergo capacitation (maturation), be functionally active, not lose its fertilising potential, and 

must be separated from the seminal plasma as soon as possible in order to avoid the effect of 

decapacitation factors (DF). Too much exposure to DF could adversely affect sperm function, 

which potentially decreases its fertilising capacity (Rogers et al., 1983). Therefore, there is a 

need to use sperm separation techniques that can separate sperm from the seminal plasma and 

avoid prolonged exposure to DF. 

In a clinical setting, density gradient (DG) centrifugation is often used to separate sperm from 

the seminal plasma (Arcidiacono et al., 1983, Lessley and Garner, 1983, Dravland and 

Mortimer, 1985, Mortimer, 2000a) because of DG’s ability to provide good yield, a clean 

fraction of highly motile cells, to separate sperm’s motile fraction from immature sperm, to 

separate other debris (e.g. white blood cells) from semen, and to reduce the activity of 

reactive oxygen species (ROS) (Henkel and Schill, 2003).  

Apart from the DG technique, the Direct swim up (SU) method allows sperm to swim 

directly from the semen into the prepared medium, separating the highly motile sub-

population and excluding ROS-generating cells (Mortimer, 2000a). The disadvantage of the 

SU technique is that it provides low yield in comparison to DG technique (Henkel and Schill, 
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2003) and this may reflect the relative inefficiency of the SU technique, or may indicate that 

the sperm population selected by these two techniques differ in their characteristics.  

Therefore, I investigated the effects of these two different preparation techniques on human 

sperm motility and on the penetration of artificial mucus (methylcellulose as artificial viscous 

medium). When results were analysed, DG cells showed a significantly higher rate of 

hyperactivation (HA) when compared to SU cells (Figure 3.1 A). As explained previously by 

Mortimer (Mortimer, 2000c), cells showing curvilinear velocity (VCL) ≥  50µ m/s, linearity 

(LIN) < 50%, and amplitude of lateral head displacement (ALH) ≥ 7µm are classified as 

hyperactivated cells.  

When the distribution of the motility characteristics (VCL, ALH and LIN) of the 

hyperactivated cells were looked at, then VCL increases with decreasing of LIN in both DG 

and SU cells. The VCL distribution curve of DG cells shift left to that of SU cells, 

contributing to a significantly higher rate of HA when compared to the SU cells (Figure 3.2 

A). When in vitro penetration was assessed between DG and SU cells, the SU cells show 

better penetration into the artificial mucus than the DG cells (Figure 3.3 B). These 

observations show that different sperm preparation techniques effect human sperm’s 

functional abilities. The higher hyperactivated motility observed with DG cells is what 

contributes to a reduced penetration ability of these cells through viscous (methylcellulose) 

medium (see Chapter 3).  

Further research was carried out to investigate the effects of different sperm behaviours on 

the penetration of human sperm through artificial viscous (methylcellulose) and viscoelastic 

(polyacrylamide) media when prepared using DG and SU techniques. To distinguish between 

different kinds of behaviour (from a hyperactivated behaviour pattern to a linear behaviour 

pattern) in real time, a computer-assisted sperm analyser (CASA) was used. Different types 

of sperm behaviour were identified by tracking sperm head motion, which cannot be 
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measured or observed manually. As explained by Alasmari et al (Alasmari et al., 2013b) 

behaviours are artificially induced in vitro by mobilising calcium (the primary regulator of 

sperm motility) from stores or by CatSper channels (calcium-specific channels for sperm cell 

signalling).  

From this available evidence, I used different agonists, like 4-aminopyridine (4AP) – a potent 

activator of hyperactivated motility (Gu et al., 2004, Bedu-Addo et al., 2008, Costello et al., 

2009, Alasmari et al., 2013a) which activates the release of stored calcium from the sperm 

neck region (Alasmari et al., 2013b). Apart from 4AP, I also used prostaglandin E1 (PE1) and 

progesterone (P4). PE1 and P4 are used to activate CatSper channels in the flagellum 

(Alasmari et al., 2013b). These agonists (4AP, PE1 and P4) are used to raise different 

behaviours artificially (in vitro).  

When the results were analysed, it was observed that 4AP is a potent inducer of HA (Figure 

4.1) in both SU and DG methods, but when analysing penetration results, it shows an 

inhibitory effect in both viscous (Figure 4.8) and viscoelastic (Figure 4.15) environments. 

When compared to 4AP, both PE1 and P4 show less HA in the standard CASA data (Figure 

4.1), but show enhanced penetration in both viscous and viscoelastic environments, by 

switching to a type of behaviour known as less hyperactivated with increase in progressive 

motility (Figures 4.8 & 4.15).  

Previous research done by Suarez and Dai (Suarez and Dai, 1992) explained that an increase 

in hyperactivated motility enhanced sperm’s penetration through viscous and viscoelastic 

media (although this experimental work was carried out using a mouse model). But from my 

work it suggests that CatSper (PE1 & P4) plays a crucial role in enhancing sperm penetration 

through viscous and viscoelastic environments, whereas store-mediated hyperactivation 

(4AP), significantly reduces the ability of sperm to enter viscous or visco-elastic 

environments (see Chapter 4).  
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As previously explained, for successful fertilisation, sperm must undergo a maturation 

process called capacitation within the female reproductive tract (Chang, 1951a, Baldi et al., 

2000, Bedu-Addo et al., 2005, Battistone et al., 2013), which regulates sperm motility, zona 

pellucida binding, the acrosome reaction and a number of other key aspects of sperm 

function. From this evidence, I have investigated whether the observed motility differences 

between DG and SU (as explained in Chapter 3) are associated with a difference in sperm 

maturation (capacitation) and not with the way the sperm cells are prepared (using DG and 

SU). It has been shown that increased levels of tyrosine phosphorylation (TyrP) is associated 

with capacitation (Visconti, 2009). I have, therefore, used TyrP as a marker for identifying 

sperm capacitation in both DG and SU cells.  

The results explain that there was no difference in the capacitation process, as assessed by the 

level of TyrP, between DG and SU sperm. Furthermore, the increase in levels of protein TyrP 

was similarly time-dependent irrespective of how the cells were prepared. This suggests that 

neither occurrence nor time-dependence of capacitation varies significantly between SU and 

DG cells, and that the observed differences in motility (in Chapter 3) are unlikely to reflect 

differences in capacitation (Chapter 5). 

As previously explained human sperm possesses different calcium signalling mechanisms 

(entry of calcium from extracellular space into cytoplasm and the mobilisation of Ca2+ from 

intracellular stores (acrosome and redundant nuclear envelope (RNE)) (Costello et al., 2009, 

Alasmari et al., 2013b) that regulate sperm motility (Publicover et al., 2007).  

Understanding the importance of calcium in the regulation of sperm motility and the 

observed functional differences observed between DG and SU cells (Chapter 3), I 

investigated the characteristics of [Ca2+] i signalling (by studying the activity of CatSper), and 

evaluated CatSper protein expression using immunofluorescence (IF) technique.    
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I have used P4, a potent activator of CatSper channels (Lishko et al., 2011, Strunker et al., 

2011, Smith et al., 2013, Alasmari et al., 2013b), in order to observe [Ca2+] i responses in both 

DG and SU cells. Apart from [Ca2+] i observations and CatSper protein expression evaluation 

in SU and DG cells, I have also demonstrated the presence of the CatSper protein in two 

different patterns (continuous (not observed at the end piece) and punctuated signal) in 

human sperm.  

The results showed that there is a difference in [Ca2+] i (both transient (T) and sustained (S)) 

responses (Figure 6.8), with SU cells performing better in both [Ca2+] i T and S responses 

compared to DG cells. When CatSper channel expression was evaluated (using IF) in relation 

to the functional differences between SU and DG cells (see Chapter 3), differences were 

observed in characteristics of [Ca2+] i signalling (Figure 6.7), and SU cells showed 

significantly higher expression of CatSper (% cells) than DG cells (see Chapter 6). The fact 

that DG cells show low CatSper expression correlates with the poor levels of motility of these 

cells.  

Better CatSper expression in SU cells than in DG cells (Figure 6.13) is shown to be 

consistent with the larger and more prolonged intracellular calcium responses (Figure 6.7), 

better forward progressive motility (Figure 3.1 D) and better performance in the Kremer's 

penetration test (Figure 3.3). The previous research investigations carried by Alasmari et al. 

(2013) explained that performance in the Kremer (viscous medium penetration) test is 

inhibited by CatSper blockade.  

Previous studies comparing SU and DG techniques have varied in their outcomes and 

conclusions, suggesting that exact experimental approach and the assessments used may 

result in differing outcomes. (Facio et al., 2016) compared the effect of SU and DG sperm 

preparation on normozoospermic human samples, measuring concentration, motility and 

morphology. They concluded that DG cells show higher concentration than SU cells but there 
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was no significant difference in the motility between the SU and DG cells. Moohan and 

Lindsay (1995) (Moohan and Lindsay, 1995) also reported that DG gave a greater yield of 

motile sperm but also reported that DG cells showed greater hyperactivation with higher 

levels of  VCL and ALH accompanied by a decrease in the linearity (LIN). In comparison 

observations from my experiments showed that no significant difference in the VCL and 

ALH between the two techniques (DG & SU) (Figure 3.1 B (ALH) and C (VCL)) but 

agreeing to the fact that there was greater hyperactivation (Figure 3.1 A) and lower linearity 

(Figure 3.1 F) in DG cells. The higher levels of hyperactivation in DG cells probably reflect 

the fact that though the peak of the VCL frequency distribution for DG cells was shifted 

towards the left side (decrease in VCL) there was an increase in the subpopulation of cells 

with very high VCL (>150 m.s-1; Figure 3.2 A). Thus, though DG and SU cells have similar 

VCL (Figure 3.1 C), their behaviour is different and the DG cells have a subpopulation that 

are classified as hyperactivated.   

Although agreeing with the Moohan and Lindsay’s observation that DG show a greater yield 

of motile cells compared to the SU, my research findings looking at CatSper expression 

between these two techniques showed that DG has a lower proportion of CatSper positive 

cells compared to SU, suggesting even though DG produces a higher yield the cells were of 

poorer quality. Also, in contrast to Moohan and Lindsay (1995), who reported higher 

progressive velocity in DG cells at 6 hrs of incubation, I observed significantly higher 

progressive velocity (VSL) in SU cells (p<0.05), although this observation was recorded at a 

different time interval (4hr 30 min -  immediately after completion of capacitation) (Figure 

3.1 D). I also observed a better functional characteristics (as assessed by the Kremer 

penetration test in both the visco and visco-elastic media) in SU cells.  

The data reported here show that Ca2+ signals and CatSper expression are greater in SU than 

DG cells. Similarly, recent reports have shown that direct swim up (SU) selected cells had 
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larger P4 induced [Ca2+]i responses compared to the pure sperm (a density gradient method)  

(Tamburrino et al., 2014, Luconi et al., 2004). Agreeing with this observation my work also 

shown that SU selected cells has a better P4 induced [Ca2+]i responses compared to the 

density gradient (DG) method, although in my work I have not used pure sperm, instead used 

percoll as a gradient. CatSper expression was also higher in SU cells in normozoospermic 

cells compared to the asthenozoospermic samples and was positively correlated with 

progressive motility (Tamburrino et al., 2014, Luconi et al., 2004). Although in my work I 

have not compared normozoospermic vs asthenozoospermic, the subjects I have used in my 

work are of having normal motility (normozoospermic) and the CatSper expression was 

higher in SU prep cells.  

Research investigations by (Morales et al., 1991) were performed in looking at the functional 

differences (motility and acrosome reaction) and sperm yield between DG and SU cells. 

Results shown that DG cells show a significantly (p<0.001) higher sperm yield compare to 

the SU cells, this observation agree with my work as DG cells show higher sperm yield 

compare to the SU cells, apart from the sperm yield there is no significant difference 

(p>0.05) in the percentage of motile cells which is contrast to my work where I see a 

significant difference (p<0.05) in the percentage of motile cells between these two sperm 

preparation methods (DG & SU).  

Other research investigations performed in looking at the differences between these two 

techniques (DG & SU) in humans show, DG has a better yield (McClure et al., 1989, Ng et 

al., 1992, Mortimer, 1994, Chen et al., 1995, Shalika et al., 1995, Facio et al., 2016) and 

better recovery of progressive motile cells (Ng et al., 1992, Shalika et al., 1995, Chen et al., 

1995) compare to SU, while SU cells show better progressive motility (Chen et al., 1995) and 

velocity (Ng et al., 1992), better percentage with normal morphology (Ng et al., 1992, 

Brandeis and Manuel, 1993) better acrosome intact sperm (Ng et al., 1992). Although I have 
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not looked at morphology and acrosome intact sperm, I agree with the observation that DG 

cells has a better yield compare to SU and SU cells show better progressive motility. 

Although I don’t agree with the observation that DG has a better recovery of progressive 

motile cells, from my work when the penetration (in vitro) results were looked at clearly SU 

cells progress better with more progressive cells observed at 2cm compare to DG and these 

differences are statistically significant (p<0.05).    

Clinical Implications  

Successful performance of assisted reproductive technologies (ART – In vitro fertilization 

(IVF), Intrauterine insemination (IUI)) for the patients having infertility problems, requires 

effective sperm selection procedures. Use of seminal fluid directly for the ART procedures 

can result in the poor fertilization rates. Apart from the sperm, seminal plasma contains other 

components such as leukocytes and other cell debris. It was reported that these components 

present in the seminal plasma produce reactive oxygen species (ROS) that can decrease the 

fertilizing potential of the normal sperm (Aitken and Clarkson, 1988) and therefore sperm 

separation procedures are essential. Density gradient (DG) centrifugation and swim up (SU) 

are the preferred technique for the successful separation of sperm from the seminal plasma 

prior to ART procedures.  

The main factors that must be considered when addressing male infertility is the quality of 

the sperm that are obtained from the seminal plasma. These cells must be able to penetrate 

the visco/visco-elastic environments that are encountered in the cervix and the uterus (in 

vivo), bind to zona, undergo the acrosome reaction and fuse with the oocyte. These 

characteristics will depend on a large number of aspects of the cell’s structure and physiology 

(such as express of ion-channels that are involved in the fertilisation). The analysis of these 

two different sperm separation procedures (DG and SU) reported here confirms previous 

reports that the DG technique provides a higher yield of cells than SU. Also previous studies 
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reported that morphology of SU cells is poorer (Englert et al., 1992, Facio et al., 2016), 

although this indirect SU technique does involve a centrifugation step. However, this may not 

be sufficient to conclude that DG is the more suitable technique to use in preparation for 

ART. Is yield more important than the quality? Although SU isolates fewer cells, my 

observations, suggest they are of a better quality (progressive motility) and are functionally 

better (perform better in the Kremer’s penetration test (in vitro) and have higher levels of 

CatSper expression and intracellular calcium signalling. Loss or abnormities in CatSper 

channel function can lead to fertilisation failure at IVF suggesting it’s importance in 

fertilisation success (Williams et al., 2015). Thus SU arguable isolates cells that are 

physiologically (and therefore functionally) more competent.   

Recent study has shown higher levels of denature DNA in sperm with large nuclear 

vacuolization and are highly subject to DNA damage (Franco et al., 2008, Garolla et al., 

2008, Hazout et al., 2006, Monqaut et al., 2011). These DNA abnormalities in sperm affect 

blastocysts development and are responsible for early abortion (Berkovitz et al., 2005, 

Berkovitz et al., 2006, Jones et al., 1998, Monqaut et al., 2011). Therefore, for successful 

ART sperm with low DNA damage and low nuclear vacuolization is very important. Both the 

DG and SU techniques show low sperm vacuolization and DNA damage compared to whole 

semen but compared to DG technique, SU is more effective for producing the samples with 

lower vacuolization and less DNA fragmentation and therefore produce high quality cells. 

(Monqaut et al., 2011). Similarly, both DG and SU sperm show far fewer necrotic and 

apoptotic sperm than whole semen but the percentage of viable cells is significantly higher in 

SU compare to DG (Ricci et al., 2009, Monqaut et al., 2011). Thus other assays confirm that 

the relatively lower yield of SU is enriched in high quality, competent cell. 

Currently DG is widely used for sperm preparation in andrology labs. It is clinically useful 

with patients having asthenozoospermic (reduced sperm motility) and oligozoospermia (low 
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sperm counts) conditions but it is almost certainly the high yield factor that drives clinicians 

to use DG over SU. Optimisation of SU may help to overcome this, for instance by using a 

45° tube angle to increasing the semen-medium interface area. Also in certain instances using 

SU and DG techniques in combination may be beneficial. In the mouse a combination of DG 

and SU is effective in eliminating DNA damage sperm, although this swim up technique has 

a centrifugation in it (Ghumman et al., 2011). In my view a combination of these two 

techniques with no centrifugation step in swim up may be a better approach in getting higher 

yield with high quality cells that can be used for the ART procedures. However, this 

suggestion must be taken with caution as they (DG/SU in combination) are not yet validated 

in the in vitro conditions.     

Apart from the humans, research investigations on the bull sperm was performed to examine 

the ability of DG (Bovipure (gradient) instead of Percoll) and SU techniques on the sperm 

separation. Different factors such as motility, concentration, membrane activity, membrane 

integrity and embryo yield (Samardzija et al., 2006) were evaluated. When the bull sperm 

progressive motility was analysed there is a significant difference (p<0.05) in the progressive 

motility between DG and SU methods, with DG cells (Bovipure gradient) showing better 

progressive motility. Contrast to this what I observe from the human samples is sperm cells 

prepared using the SU method (with no centrifugation step involved) show better progressive 

motility (straight after 4hr 30min of capacitation) to that of human sperm prepared using the 

density gradient (percoll) method. The SU method that was used in separating the bull sperm 

has a centrifugation (two times) step involved in it and therefore this inclusion of 

centrifugation might have resulted in the low progressive motility that is observed in the SU 

cells. When the concentration factor was looked at between the raw sample and the final prep 

they was a significant difference (p<0.05) but there was no significant difference (p>0.05) 

observed in the concentration between these two techniques which is contrast to my results. 
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Functional integrity was evaluated using the HOS test and it revealed that DG technique has a 

higher number of active sperms (the cells swell (tails up)) compare to the SU method. When 

acrosome status was looked at DG cells shown a high percentage of acrosome intact sperm 

compare to SU cells when evaluated using EthD/FITC-PSA test. When looking for the 

membrane activity more live cells were observed in the DG cells than SU cells when 

evaluated using SYBR-14/PI test. It was also observed that the bovine embryo development 

was appeared to be better in the DG (Bovipure method) compare to the SU cells. Both the 

cleavage (day2) and blastocysts (day 7) was significantly (p<0.05) higher in DG Bovipure 

gradient compare to SU cells but there is no significant (p>0.05) in the number of hatched 

blastocysts (day 9). Overall the results suggest that DG is a better technique in separating the 

bull sperm compare to SU.                            

It is of great interest to know whether low functional ability that is observed in the DG cells is 

because of the effect of DG technique on the sperm DNA. Research investigation was carried 

out in the mouse sperm to see which sperm separation technique (DG, SU or combination of 

both (DG/SU)) is capable of eliminating DNA damage (Sperm DNA damage effects 

fertility/reproductive potential and pregnancy (humans)) (Tarozzi et al., 2007, Lewis and 

Aitken, 2005). In mouse the sperm cells were extracted from the cauda epididymis and the 

obtained sperm suspension was used to study the DNA integrity (before the use of sperm 

separation techniques - control) and the remaining sperm suspension was used to look at 

DNA integrity after the sperm preparation methods were applied. When the results were 

looked between the sperm prepared using the single wash technique and the unprocessed one 

they was no significant (p>0.05) difference in the level of DNA damage. When the effect of 

sperm cells prepared using swim up technique (Pellet (centrifugation step is involved) and the 

fraction (no centrifugation step is involved)) on the DNA damage was analysed there was no 

significant difference (p>0.05) was observed. In the case of DG the sperm DNA damage 
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observed in the 40% gradient is significantly differing to that of unprocessed (control) ones. 

With significant number of DNA damaged mouse sperm cells retained at gradient 40 

suggests that DG technique might induce nuclear anomalies in the mouse sperm (Mortimer, 

1991, Zini et al., 1999, Ghumman et al., 2011) or the technique is effective in retaining the 

DNA damage sperms. When both the techniques were combined (DG/SU) the sperm DNA 

damage was significantly (p<0.05) reduced, although this has a low sperm yield. It is also 

explained that the mean percentage of motile sperm observed in both SU and DG was 

significantly higher than the combined technique (DG/SU). Although I have not worked 

looking at the sperm DNA integrity, when looking at the motility between these two 

techniques swim up do better compare to the DG but the yield of motile cells in SU is lower 

than DG (Although this conclusion needs to be taken with caution as this observation is from 

the human sperm cells but not from the mouse sperm cells).   

Research investigations were carried out to evaluate the effects of swim up on boar sperm 

motility (Holt et al., 2010). Different motility characteristics of the boar sperm were looked at 

and the obtained data was pooled into three different groups based on the type of motility 

behaviour that sperm show. In the group 1 the boar sperm shown a moderate VCL with low 

VSL and LIN and this group represents moderately active sperm. In the group 2 the sperm 

show High VCL (not extremely high), exceptionally high VSL and high LIN and this group 

was explained as highly active and progressive.  

Comparing with my results I agree with this observation as high VSL and high LIN is 

responsible for the progressive motility and these cells prepared by using the SU shown better 

CatSper expression and better performance in the in-vitro (kremer’s) penetration test 

suggesting they are functionally active which also agrees with the observation that boar 

sperm cells (prepared using SU) are active. When looked at another group (group 3) the boar 

sperm cells shown moderate VCL, with very low VSL and low LIN and this group 



 

241 
 

represented as sperm showing non-progressive behaviour. In my view, although I agree that 

low VSL and low LIN contribute to the non-progressive behaviour, from my observation 

(looking at my results) I do not agree from the VCL observations as my results shown in the 

case of non-progressive behaviour (when treated with 4-AP) the VCL will not be moderate 

but it will be very high and it is very high VCL with low VSL and LIN that contributes to the 

non-progressive behaviour, although this work (my results) is carried out in the humans not 

in the boar.  

Overall I conclude that although SU gives less yield, it has high number of high quality 

(motility) cells, better functional activity (compare to the DG) - as observed in the kremer’s 

penetration test in both visco/visco-elastic medium, better CatSper expression and high 

transient and sustain intracellular calcium responses to the progesterone when compare to the 

DG technique. As previously explained significant loss of this principle calcium channel 

(CatSper) effects the fertilising potential in the human sperm suggest the importance of this 

(CatSper) calcium channel and with the observation (from my results) that SU cells do have a 

better functional ability in comparison to DG cells because they have better CatSper 

expression explaining the clinical significance of this (CatSper) channel in using it as a 

potential target for the development of new contraceptives and for treating male patients with 

infertility problems. With direct swim up (SU) prep cells performing better in all aspects 

(progressive motility, better functional ability, higher intracellular calcium levels and better 

CatSper expression) compare to the density gradient (DG), explaining SU as a better sperm 

preparation technique and the cells obtained from this technique may be used in the ART 

procedures to get better fertilization rates. Although this conclusion must be accepted with a 

great caution and that there is a need of further research to be carried out in comparing the 

effect of the different sperm preparation techniques (DG and SU) on the fertilisation rates in a 

wider sample study.          
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APPENDIX        

Appendix I – List of suppliers  

Appendix II – Media, Gel and Buffer Preparation 

Appendix III – SDS PAGE 

Appendix I - List of Suppliers   
 

Alpha Laboratories  
40 Parham Drive  
Eastleigh  
Hampshire  
UK  
  
BD Biosciences  
Edmund Halley Road   
Oxford Science Park  
Oxford  
UK  
  
Cairn Research Ltd   
Graveney Road  
Faversham  
Kent  
UK  
  
Calbiochem  
Distributed by Merck Biosciences,  
Beeston,   
Nottingham,  
UK  
  
CM Scientific Ltd   
1 Ryefield Court 
Rye field way 
Silsden 
UK  
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Fisher Scientific UK Ltd  
Bishop Meadow Road  
Loughborough  
UK  
 
Hamilton Thorne, Inc.  
100 Cummings Centre  
Beverly  
MA   
USA  
 
Invitrogen Life Technologies Ltd  
3 Fountain Drive  
Inchinnan Business Park  
Paisley   
UK  
  
LI-COR Biosciences Ltd  
St. John's Innovation Centre 
Cowley Road 
Cambridge 
CB4 0WS 
UK 
 
Merck Millipore  
Building 6  
Croxley Green Business Park  
Watford  
UK  
  
Nikon Instruments UK  
380 Richmond Road  
Kingston Upon Thames  
Surrey  
UK  
 
Sigma- Aldrich Company Ltd  
The Old Brickyard  
New Road  
Gillingham  
Dorset  
UK  
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Scientific Laboratory Supplies  
Wilford Industrial Estate  
Ruddington Lane  
Wilford  
Nottingham  
UK  
  
Starlabs UK Ltd  
4 Tannors Drive  
Blakelands  
Milton Keynes  
UK  
  
Stratech Scientific Limited  
Oaks Drive  
Newmarket  
Suffolk  
UK  
  
United States Biological  
PO Box 261  
Swampscott  
MA 01907  
USA  
  
Warner Instruments from Harvard Apparatus  
Firecroft Way  
Edenbridge  
Kent  
UK 
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Appendix II – Media, Gel and Buffer Preparation  

Showing different chemicals involved in preparing supplemented Earle’s Balanced Salt 
Solution (sEBSS)   

Chemical Formula M.W mM g/l 
Sodium Phosphate 

Monobasic 
NaH2PO4 119.98 1.0167 0.1219 

Potassium Chloride KCl 74.55 5.4 0.4025 
Magnesium 

Sulphate 
Heptahydrate 

MgSO4.7H2O 246.48 0.811 0.1998 

Glucose C6H12O6 180.16 5.5 1.0 
Sodium Pyruvate C3H3NaO3 110 2.5 0.275 
Sodium Lactate-LD C3H5NaO3.         112.1 

 
19.0 2.1299 

Calcium Chloride CaCl2.2H2O 147 1.8 0.2646 
Sodium 

Bicarbonate 
NaHCO3 84.01 25 2.100 

HEPEs C8H18N2O4S 238.31 15 3.574 
 

sEBSS pH was adjusted to 7.4 and then approximately 5g (118.4mM) NaCl (MW 58.44) was 

added to achieve osmolarity of 292 mOSM. Media was sterilised and filtered into 100ml 

aliquots before storing at 4oC for future use.  

Media was supplemented with 0.3% (w/v) fatty acid free BSA immediately before use.  

Showing different chemicals involved in preparing M - Medium   

Chemical Formula M.W mM g/l 
Potassium Chloride KCl 74.55 2.5 0.1863 

Glucose C6H12O6 180.16 10 1.801 
HEPEs C8H18N2O4S 238.31 15 3.574 

  

M-Medium pH was adjusted to 7.4 and then approximately 8g (137mM) NaCl (MW 58.44) 

was added to achieve osmolarity of 292 mOSM. Media was sterilised and filtered into 100ml 

aliquots before storing at 4oC for future use.  M-medium was used to dissolve 40% and 80% 

Percoll gradients.   
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Showing different chemicals involved in preparing Non Capacitating Medium (NCM)  

Chemical Formula M.W mM g/l 
Sodium Phosphate 

Monobasic 
NaH2PO4 119.98 1.0167 0.1219 

Potassium Chloride KCl 74.55 5.4 0.4025 
Magnesium 

Sulphate 
Heptahydrate 

MgSO4.7H2O 246.48 0.811 0.1998 

Glucose C6H12O6 180.16 5.5 1.0 
Sodium Pyruvate C3H3NaO3 110 2.5 0.275 
Sodium Lactate-LD C3H5NaO3.         112.1 

 
19.0 2.1299 

Calcium Chloride CaCl2.2H2O 147 1.8 0.2646 
HEPEs C8H18N2O4S 238.31 15 3.574 

   

NCM pH was adjusted to 7.4 and then approximately 8.3g (143.4mM) NaCl (MW 58.44) was 

added to achieve osmolarity of 292 mOSM. Media was sterilised and filtered into 100ml 

aliquots before storing at 4oC for future use.  Media was not supplemented with Sodium Bi 

carbonate (NaHCO3) and BSA.   

Showing different ingrdients involved in preparing 10% gel (For 3 gels)  

Resolving/Running Gel  

Chemical For 3 gels 
Polyacrylamide Bis 12.5ml 

Tris 2M pH 8.8 7ml 
H2O 17.75ml 

20% SDS 1.875ml 
TEMED 0.5ml 

10% Ammonium per sulphate 
(APS) 

      0.375ml 
 

                                Tot Volume                                                 40ml 
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Stacking Gel 

Chemical For 3 gels 
Polyacrylamide Bis 2.5ml 

Tris 0.5M pH 6.8 6.25ml 
H2O 16.25ml 

20% SDS 1.25ml 
TEMED 0.375ml 

10% Ammonium per sulphate 
(APS) 

      1.25ml 
 

                                Tot Volume                                               ~28ml 

 

 MOPS Running Buffer (20X MOPS) 

Chemical Mm 

MOPS 50mM 

Tris Base 50mM 

EDTA 1mM 

0.1% SDS  

            Prepared in 400ml distilled water and pH = 7.7  

 

For 1X MOPS Prep 

25ml of 20X MOPS were added to 500ml H2O 

 

Transfer Buffer (Western’s) 

TB Ingredients  g/lit 

Tris Base 3.0285 

Glycine 14.41344 

20% Methanol (pH 8.3) 200ml 
Water 500ml 

                        Adjust Vol to 1lit 
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Appendix III – SDS PAGE   

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) involves a gel 

cassette assembly containing two glass plates (one shorter and one taller plate). The two 

square shaped glass plates are held together by inserting them into the green casting frame 

and then clamped. After this step, the green casting frame was then placed into the casting 

stand. Water was added on top of glass plates to make sure there were no leaks in the 

assembly, and water was then removed by filter paper.  

The running gel was prepared (for running gel preparation, please see Appendix II) and 

immediately (after adding Tetramethylethylenediamine (TEMED) poured (up to the centre 

level) to cast the gel. The gel was then left for 15min (during this time the running gel 

solution gets polymerised) and then rest of the plate was filled with stacking gel. (For 

stacking gel preparation, please see Appendix II) The comb was then placed and left for 10-

15min to solidify. After solidification, the casting frame was then placed in the cassette. 

Then the whole assembly was then placed in a tank and the inner chamber filled with 3-

Morpholinopropane-1-sulfonic acid (MOPS) running buffer. (For buffer preparation, please 

see Appendix II) The comb was then removed carefully without damaging the wells. Next, 

4µl of blue plus2 pre-stained standard was added in first well (Blue Plus2 Pre-stained was 

purchased from Invitrogen Life Technologies Ltd, Cat no. LC5925) and 5µl of the sample 

(prepared from direct SU and DG) was loaded from well 2 (W2) to well 9 (W9) (Please see 

figure below). Electrophoresis was initiated at 200V for 50min.  
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