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Abstract 

Background: There are approximately 12 million statin users in the United Kingdom. 

Reports of statin intolerance occurs between 7 and 29% of users, manifesting as muscle 

ache, fatigue or more seriously, muscle breakdown leading to myopathy. Creatine 

phosphokinase (CK) levels are used as a biomarker of statin-induced muscle damage. Non-

adherence or discontinuation of therapy is a common result of intolerance and can result 

in negative cardiovascular disease-related outcomes.  

Aim: This thesis attempts to identify trends in record-linked medical data in a Scottish 

Caucasian cohort (GoDARTS) that best represent statin intolerance in order to study 

associated genetic factors.  

Methods: Prescribing trends such as switching or discontinuation of statin therapy were 

examined, and thresholds created to select true cases of intolerance. Information on CK 

levels was gathered from medical records and appropriate test results were utilized. 

Genotypic data was gathered for the variants and genetic regions of interest using a variety 

of methods including chip-based genotyping followed by imputation, TAQMAN genotyping, 

and exome sequencing. Subsequently hypothesis-based association analyses were 

conducted, including linear and logistic regressions, followed by meta-analyses, regional 

GWAS followed by a regional meta –analysis. 

Results: The phenotypes of statin intolerance were validated both internally and 

externally. Previously reported missense variants in LILRB5 (Asp247Gly) and CKM 

(Glu83Gly) were replicated and shown to be associated with CK levels irrespective of 

statin usage in the GoDARTS cohort and the clinical trial setting (JUPITER). Further, the 

CKM variant was also associated with inducibility of CK at times of tissue injury. The 

Asp247 genotype in LILRB5 was associated with increased risk of statin intolerance, and 

was replicated in associations with non-compliance to statin therapy and the development 

of myalgia in the JUPITER trial. The association with myalgia showed a stratified effect 

based on therapy (statin or placebo), with those on placebo showing the genotype effect. 

Further, the variant was also associated with increased risk of statin-induced myositis, 

cases of which had been clinically adjudicated and exome sequenced for the 

PREDICTION-ADR consortium. Further exploration of the LILR gene region showed an 

association with variants in LILRB2 (His20Arg and Val235Met) which were in strong LD 

with each other but were not in linkage with the variant in LILRB5. Stratified analysis 

revealed that the risk for carriers of the LILRB2 variants was increased depending on the 

genotype carried at the LILRB5 variant.  

Conclusions: This study characterizes novel genetic factors associated with statin 

intolerance impacting adherence. The findings point to the immunomodulatory effects of 

statins. The results suggest that true statin-induced myalgia and non-specific myalgia are 

distinct, with a possible role for the immune system in their development. The findings 

encourage further investigation into the immune-physiology of statin-induced muscle 

damage and identifies genetically susceptible groups who are more likely to be statin 

intolerant. 
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1 Introduction 

1.1 Cholesterol in the etiology of cardiovascular diseases 

Cardiovascular diseases (CVD) affect the heart and blood vessels, and are a huge 

healthcare burden. They are the number one cause of deaths globally, accounting for over 

30% of all deaths, according to the World Health Organization (WHO) (1). In the United 

Kingdom, the National Health Service (NHS) estimates that CVD are the cause of  over 

160,000 deaths annually (2). CVD have many etiologies; chief amongst them is 

hypercholesterolemia (high amounts of circulating cholesterol). The transport of 

cholesterol from the liver (where it is synthesized) to the cells (where it is required as an 

essential structural and functional component) is carried out by Low Density Lipoprotein 

cholesterol (LDL-C). Excess circulating cholesterol is deposited along the walls of 

arteries leading to the formation of plaques or atheroma and the subsequent hardening 

and narrowing of the walls, this condition is known as atherosclerosis. A detailed 

schematic showing the molecular mechanism of plaque formation as demonstrated by 

Choudhury et al. is seen in Figure 1.1 (3). Depending on its location, plaque formation 

can restrict blood flow to surrounding organs and negatively impact their functioning. If 

a plaque ruptures it can cause a blood clot, if such a clot were to arrest the supply of blood 

to the heart it can lead to a myocardial infarction (MI), if blood supply to the brain is cut 

off it can lead to a stroke or a mini-stroke, also known as Transient Ischemic Attacks 

(TIA). In addition, coronary heart disease (CHD) and peripheral artery disease (PAD) are 

also caused by hypercholesterolemia.  
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Figure 1.1 Figure from Choudhury et al. showing the molecular mechanism of plaque formation in the artery. 

© 2004 Nature Publishing Group Choudhury, R. P. et al. Molecular, cellular and functional imaging of 

atherothrombosis. Nature Reviews Drug Discovery 3, 914 (2004). All rights reserved. 

1.2 Statins: mechanism of action 

Cholesterol is produced by the mevalonate pathway. Hydroxy-3-methylglutaryl-CoA 

(HMG-CoA) is converted to mevalonate in the cytoplasm, in a reaction catalyzed by 

HMG-CoA-reductase (Figure 1.2). This is the rate-limiting step in the biosynthesis of 

cholesterol.  Statins act by inhibiting HMG-CoA-reductase, thereby forestalling the 

production of cholesterol (4–7).  

After the discovery of the role of LDL-C in increasing the risk of CHD, and the role of 

HMG-CoA reductase in its synthesis, efforts began to find a successful HMG-CoA 

reductase inhibitor. In 1971, Endo et al. produced a compound known as ML-236B or 

compactin which was to become the first successful inhibitor (8); it was later called 

Mevastatin (7,8). After successful demonstrations of the compound’s ability to lower 

LDL-C in plant and animal models, in 1990 analogues Lovastatin, Simvastatin and 

Pravastatin were produced by pharmaceutical companies (4,7).  
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Figure 1.2 The mammalian mevalonate pathway. PP – pyrophosphate. Adapted from Corsini et al. by M. 

Schachter (5,9) 

1.3 Pharmacoepidemiology of statins 

Presently, the types of statins available in the United Kingdom are Simvastatin, 

Rosuvastatin, Atorvastatin, Pravastatin and Fluvastatin (10). Cerivastatin has been 

discontinued due to the high incidence of rhabdomyolysis and death associated with its 

use (11,12). Their relative efficacies in LDL reduction are shown in Table 1.1 (13,14) 
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Table 1.1 Statins and associated cholesterol and LDL reduction  

Statin drug (mg) Year of 

introduction 

Approved 

daily dose 

(mg) 

Change in 

total 

cholesterol 

(%) 

Change in 

LDL 

cholesterol 

(%) 

Simvastatin (10) 1991 10-40 -22 -27 

Atorvastatin (10) 1996 10-80 -27 -34 

Pravastatin (10) 1991 20-80 -11 -13.5 

Fluvastatin (10) 1993 20-80 -5.5 -6.75 

Rosuvastatin (10) 2003 10-40 -88 -10.8 

Cerivastatin (0.2) 1997 * 0.2-0.3 -22 -27 

Recalled in 2001 

Source: adapted from Maron et. al. 

 

The United Kingdom is already one of the largest users of statins worldwide (15), and 

with revised National Institute for Health and Care Excellence (NICE) guidelines an 

estimated 12 million people will now be prescribed statins by 2020 (16,17). The 

Organisation for Economic Co-operation and Development (OECD) estimates that statin 

use in the United Kingdom is over 40% higher than the OECD average, which includes 

countries such as France, Germany, Canada and the United States (18). NICE 

recommends statin use for people with pre-existing heart disease, people who have 

familial hypercholesterolemia and those who are presently healthy but are at a 20% or 

higher risk of developing heart disease. Risk of heart disease is determined using the 

QRISK2 tool (https://www.qrisk.org/) that makes the assessment based on known risk 

factors such as age, sex, body mass index (BMI), ethnicity, family history, chronic 

diseases such as diabetes, kidney disease, high blood pressure, atrial fibrillation or 

rheumatoid arthritis, an individual’s blood cholesterol levels and blood pressure (19). At 

present statins are the first choice of medication in cholesterol control for the prevention 

and management of CVD (20).  
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1.4 Pharmacokinetics of statins 

Transport of statins 

For statins to effectively reduce hepatic production of cholesterol, they have to be 

transported from the portal blood into the liver (where the cytochrome (CYP) P450 

enzyme systems can metabolize them via the hepatocellular membrane’s phospholipid 

bilayer, as seen in Figure 1.3. This transport primarily occurs through the actions of the 

organic anion-transporting polypeptide (OATP1B1) influx transporter, which is 

expressed on the basolateral membrane of human hepatocytes (21,22). The gene 

SLCO1B1 on chromosome 12 encodes OATP1B1. Disruption in the functioning of the 

transporter can result in decreased hepatic uptake, and greater systemic plasma 

concentrations of statins (23); this increased exposure to statins, could in turn increase 

the risk of development of adverse reactions. 

Members of the adenosine triphosphate –ATP- binding cassette (ABC) protein family 

mediate the efflux of statins and their metabolites out of the liver (22,24,25). Reduced 

efflux of statins increases their plasma concentration, which could in turn increase the 

risk of development of adverse reactions.  

A representation of the generic pharmacokinetics of statins is presented in Figure 1.3 

(21). It shows the entry of the drug into the liver via the intestines, CYP450 enzymes act 

on the drug in both locations but the vast majority of metabolism is hepatic. Active and 

inactive metabolites are released in both locations. From the liver these are transported 

out by efflux transporters (ABC family members) via bile or via the bloodstream. From 

the bloodstream, they are cleared through the kidneys by members of the same protein 

family.  
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Figure 1.3 Representation of a superset of all genes involved in the transport, metabolism and clearance of 

statin class drugs (image from PharmGKB https://www.pharmgkb.org/pathway/PA145011108#PGG) 
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Metabolism of statins 

 Statins are predominantly metabolized by the CYPP450 (CYP450) family of enzymes, 

which contains over 30 isoenzymes (26). The specific gene enzyme involved in the 

metabolism of each statin is presented in Table 1.2 (5).  

Table 1.2 Statins and genes involved in their first pass metabolism  

Statin drug Enzyme  Lipophilic 

Simvastatin  CYP3A4 Yes 

Atorvastatin  CYP3A4 Yes 

Pravastatin CYP3A4 No 

Fluvastatin  CYP2C9 No 

Rosuvastatin CYP2C9 * No 

Cerivastatin  CYP3A4, 

CYP2C8 

Yes 

*Lack of strong evidence 

Simvastatin and atorvastatin are predominantly metabolized by CYP3A4, and a portion 

of the circulating inhibitory effect of these agents for HMG-CoA reductase is attributable 

to active metabolites (26,27). For atorvastatin the major active metabolites are 2-hydroxy 

and 4-hydroxy-atorvastatin acid, while for simvastatin the β-hydroxy acid and its 6’-

hydroxy, 6’-hydroxymethyl and 6’-exomethylene derivatives are the major active 

metabolites (28–30). Fluvastatin is mainly metabolized by the CYP2C9 isoenzyme, 

while pravastatin and rosuvastatin do not undergo substantial metabolism by CYP450 

pathways (5,26). Lipophilic drugs are known to be much more susceptible to oxidative 

metabolism by the CYP450 system (5). It is recognized that statins metabolized by the 

CYP450 system are more likely to produce muscle toxicity because of the risk of 

interactions with the many drugs that inhibit CYP450, notably the CYP3A4 isoform 

(31,32). Drug interactions increase plasma levels of statins, with an increased risk of 

toxic side effects (5).  
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The predominant route of elimination for the majority of statins is via the bile after 

hepatic metabolism (33). Consequently, hepatic dysfunction is an important risk factor 

for statin-induced toxicity (14); the British National Formulary recommends caution 

when prescribing statins to someone with a history of liver disease (10). Pravastatin is 

eliminated mostly as unchanged drug by both renal and hepatic routes (5,32). However, 

in patients with hepatic dysfunction pravastatin pharmacokinetics are altered (5,34). 

Rosuvastatin is also eliminated, largely unchanged, by both the kidneys and liver and its 

pharmacokinetic properties remain unaltered in patients with mild to moderate hepatic 

impairment (35).  
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1.5 Statin intolerance: causes, symptoms and consequences  

Mechanisms 

The excessive inhibition of cholesterol synthesis by statins may impair the integrity of 

neuronal cell membranes. Lipophilic statins that cross the blood brain barrier (such as 

simvastatin and atorvastatin) may also have adverse effects (36). Conversely, there is 

evidence of mechanisms which suggest that statins might have a beneficial effect on 

cognition such as improved endothelial function, reduction in free radicals formation, 

reduction in inflammation(37).  

In a 2006 study Draeger et al. showed that statin-induced cholesterol lowering 

contributed to myocyte damage. They based their findings on biopsies of skeletal muscle 

fibers from statin users and non-users and reported substantial structural damage amongst 

statin users. Extracting cholesterol from muscle cells in vitro reproduced these 

characteristic abnormalities. They concluded that specific lipid-protein organization of 

the skeletal muscle is what renders it most vulnerable to statin exposure (38). 

However, previously conducted in vitro studies provide contradictory findings. Using 

squalene synthase inhibitors, Flint et al, blocked cholesterol synthesis (in the mevalonate 

pathway Figure 1.2). They reported that this did not produce myotoxicity in in vitro 

models, suggesting that other compounds produced by HMG-CoA reductase activity 

might be responsible for the damage seen in skeletal muscles of statin users (39). They 

postulate that reduction in small guanosine triphosphate (GTP) -binding proteins 

contributes to the myotoxicity of statins; indeed pravastatin reduces protein synthesis in 

neonatal rat myocytes (39). This effect is reversed by adding farnesol and geranylgeraniol 

to the cultures; whereas reducing cholesterol levels with squalene synthase inhibitors 
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produces only minimal cytotoxicity. Such results suggest that depletion of the 

mevalonate metabolites (farnesol and geranylgeraniol) and not cholesterol contribute to 

statin-induced myotoxicity (39). 

The hypothesized effect of farnesyl and geranylgeranyl pyrophosphate is via their role 

in the activation of certain regulatory proteins through prenylation. These regulatory 

proteins such as Ras, Rac and Rho promote cell maintenance and growth and attenuate 

apoptosis (40–43).  Apoptosis, or programmed cell death, is a crucial mechanism 

designed to assist in the remodeling and maintenance of tissue structure. However, 

inappropriately activated apoptosis can produce pathological conditions.  

Atorvastatin and simvastatin produce a dose-dependent increase in apoptosis in 

vascular smooth muscle cells (VSMCs). The effect is reversed by the addition of 

mevalonate, farnesyl pyrophosphate or geranylgeranyl pyrophosphate, but not 

ubiquinone or squalene. This also points to the role of statins in potentially enhancing 

apoptosis in VSMCs in a pathway not related to cholesterol depletion (44,45).  

Raised plasma concentration of statins increase the exposure of skeletal muscle to 

statins. Therefore, compounds that inhibit CYP450 activity, such as fibrates, are known 

to increase the risk of statin-associated muscle symptoms (SAMS). Further, genetic 

factors affecting the metabolism and transport of statins (discussed in sections 0and 0) 

are also thought to be associated with the development of statin intolerance (SI) and 

SAMS. 

The fact that statin-induced skeletal muscle injury involves inhibition of pathways that 

activate GTP might explain why exercise often appears to unmask the negative effects of 

statin therapy. Exercise has been shown to activate signaling pathways, specifically the 
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mitogen-activated protein kinase pathways, that are important in skeletal muscle cellular 

response to exercise-induced stress (43,46,47). These pathways are regulated by GTP 

binding proteins. Therefore, statins might impair the muscles ability to recover from 

physical exercise, resulting in skeletal muscle damage (43).  

Symptoms 

 While statins are generally well-tolerated, adverse reactions can be neurological (48), 

gastro-intestinal or muscle-based (49,50). Muscle-based adverse reactions to statins 

range from non-specific complaints of myalgia (see in 29% of statin users), through 

symptomatic myopathy with accompanying increases in serum CK levels, to 

rhabdomyolysis where the accumulation of CK due to muscle breakdown leads to kidney 

damage and death (occurring in 4 per 100,000 person years) (51,52). There is evidence 

that adverse drug reactions (ADR) to statins are dose dependent (53,54). 

Neurological adverse effects of statins are rare. They are highlighted by the United 

States Food and Drug Administration (FDA), who amended the statin product label in 

2012, to state that some users might experiences “ill-defined memory loss” and 

“confusion”. Evidence suggesting statins might have neurological effects stem mainly 

from small randomized trials and case reports. Two large randomized controlled trials 

(RCT), the PROSPER (The Prospective Study of Pravastatin in the Elderly) trial and 

HPS (Heart Protection Study) found no significant association between use statins and 

cognitive decline (55–57). Some studies report an increased risk for the deterioration of 

front-executive function and working memory (58,59), attention (60), processing speed 

and motor speed (58–61). Conversely, statins also reduce the risk of clinical 

atherosclerotic disease, which is a known risk factor for vascular dementia (62). However 
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there is a lack of conclusive evidence in a RCT or large cohort study that shows a 

temporally valid relationship between statin usage and cognitive decline.   

In 20 RCTs, the incidence of myalgia was reported to be 190 per 100,000 person years 

(63), whereas in the ambulatory setting it was reported to occur in 9% of statin users (64). 

Rhabdomyolysis was reported to occur 1.6 times per 100,000 person years in clinical 

trials. In the ambulatory setting, the incidence of hospitalization due to rhabdomyolysis 

was shown to be 4 per 100,000 person years on statin monotherapy (51,65).  

There are several approaches to defining SI. A study by Alfirevic et al. on behalf of the 

PREDICTION-ADR consortium, described the clinical presentations of statin-induced 

muscle toxicity as being muscle symptoms such as muscle fatigue, pain, weakness, 

cramps or tenderness (66). In addition, plasma CK elevations, rhabdomyolysis, and the 

presence of autoantibodies that recognize HMG-CoA reductase (HMGCR) – seen in 

some cases that develop statin-induced autoimmune myopathies. This variety of clinical 

manifestations also highlights the different etiologies of statin-induced muscle damage. 

They conclude, with consensus from a panel of experts that a CK elevation greater than 

4 times the upper limit of normal with or without clinical symptoms can be defined as 

myopathy.  

However, increased risk of ADRs are not related to LDL lowering efficacy of a drug.  

For example, cerivastatin was discontinued in 2001 for being associated with a higher 

risk of developing rhabdomyolysis among users (65,67) but is not more efficient at 

lowering LDLs than other statins (see Table 1.1) (12,68).    
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Consequences of intolerance  

ADR contribute to a significant health care burden, economic cost and a burden on 

disability-adjusted life years (DALYs). Drug adherence patterns are affected by ADRs; 

a large proportion of those suffering from severe ADR discontinue statin use, putting 

them at an increased risk of having a cardiac event. The high incidence of statin usage, 

combined with intolerance to them calls for perhaps a more individualized management 

of CVD, that takes into account the patient’s probability of developing ADR and 

adjusting treatment plans accordingly. In this vein, it is essential to analyze variables that 

might affect the risk of ADR and take those into account, such as the possible role of 

genetics, concurrent therapy with other drugs, and interaction between these two and any 

other risk factors such as age, gender and ethnicity.   
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1.6 Pharmacogenetics of statin intolerance  

With an ageing population and higher incidences of comorbidities for which 

prophylactic treatment with statins is recommended, such as diabetes, the number of 

people on statins is on the rise across the globe. In properly selected patients, statins 

decrease cardiovascular disease mortality by 25% (69); thus tens of millions of patients 

worldwide now receive statins for hypercholesterolemia. Surprisingly, more than 40% of 

those eligible for statin use are not currently taking them. While one reason is 

affordability, the other is intolerance to statins due to myopathy (17,70).  

There has been a lack of consensus amongst researchers about the exact definition of a 

statin-induced myopathy (SIM). This is likely caused by a lack of understanding about 

the underlying mechanisms. Several studies investigating the underlying mechanisms of 

SIM have focused on the genes linked to the pharmacokinetics of statin metabolism, since 

the exposure to a particular statin is much higher for an individual with a poor metabolizer 

genotype for certain CYP450 enzymes, compared to an intermediate, extensive or rapid 

metabolizers (71). For example, the pharmacokinetics of fluvastatin depend on the 

CYP2C9 genotype, with a three-fold difference in the active enantiomer and an even 

greater difference in the inactive enantiomer (72). A case report in 2004, Ishikawa et al,  

report that rhabdomyolysis associated with cerivastatin was caused by genetic variability 

within the CYP2C8 gene (71,73,74). The relationship between CYP3A4 and CYP3A5 

gene polymorphisms and atorvastatin-induced muscle damage was investigated in a case-

control study with 68 cases and 69 controls. Serum CK elevation was used as a proxy for 

muscle damage, and was found to be highest in patients on atorvastatin treatment who 

were homozygous for the CYP3A5*3 allele (75). Another study examined the 
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relationship between 388 common single nucleotide polymorphisms (SNPs; most of 

which were within the CYP-coding genes) and elevated CK or myalgia in 136 patients 

taking either atorvastatin or simvastatin and 296 controls. They reported an association 

between the CYP2D6*4 allele and atorvastatin-induced myopathy. Interestingly these 

findings extended to myopathy in patients taking simvastatin which is not known to be 

metabolized by CYP2D6 (71,76). This brings into question both the validity of these 

findings and whether or not the effect was confounded or mediated by an unknown 

variable. However, the biological plausibility of these findings as they pertain to 

atorvastatin metabolism suggests otherwise.  

Also of interest are drug transporters that mediate the uptake and elimination of statins. 

The hepatocellular influx transporter OAT1B1 (encoded by SLCO1B1)  and intestinal and 

hepatocellular efflux transporters ABCB1 (encoded by ABCB1) and ABCG2 (encoded 

by ABCG2) have been shown to affect the pharmacokinetics of statins (24,71,77,78).  

The pharmacokinetically different profile of statins between SLCO1B1 genotypes has 

also been shown to affect the risk of myopathy. The Study of the Effectiveness of 

Additional Reductions in Cholesterol and Homocysteine (SEARCH) collaborative group 

conducted a prospective cohort study conducting a genome-wide association study in 85 

myopathy cases and 90 controls all of whom were taking 80 mg of simvastatin once daily 

(53). Only a non-coding SNP (rs4363657) within the SLCO1B1 showed a strong 

association with myopathy. This SNP is in strong linkage disequilibrium with the non-

synonymous Val174Ala (rs4149056) variant which had been previously association with 

altered statin pharmacogenetics (77,78). For each copy of the variant allele there was 

approximately a four times greater risk of myopathy. Importantly, this finding was 
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replicated in a trial with subjects treated with 40 mg simvastatin once daily in the 

SEARCH trial.  

In a crucial replication study performed at the University of Dundee, Donnelly et al. 

examined 4196 individuals in the Genetics of Diabetes Audit and Research, Tayside 

Scotland (GoDARTS) cohort and concluded that two functional variants; the loss-of 

function Val174Ala and gain-of function Asp130Asn of the SLCO1B1 gene encoding 

OATP-C/OATP1B1 are associated with general statin intolerance. The study produced a 

diplotype risk score for intolerance. Since this is a large retrospective cohort study the 

findings have external validity (54). 

The Statin Response Examined by Genetic Haplotype Markers (STRENGTH) study 

investigated the genetics of four CYP genes and the SLCO1B1 gene in relation to SIM 

(use of simvastatin, atorvastatin and pravastatin was included). Not only did the study 

confirm the findings from the SEARCH study, it also reported an association between 

SLCO1B1  risk allele and myalgia symptoms without CK elevation for simvastatin and 

atorvastatin (weaker) but not for pravastatin treatment (79).  

An additional potentially important, but very rare, SNP in SLCO1B1 is 1628T>G. This 

novel variant was discovered by a Japanese group in a patient with pravastatin-induced 

myopathy (79), and was shown to reduce transporter activity of OATP1B1 (80). In 

another study, the TTT (or TAT) haplotype of ABCB1 1236C>T, 2677G>A/T, or 

3435C>T polymorphisms was more frequently seen in the simvastatin treated group 

without myalgia (81). The 421AA variant of efflux transporter ABCG2 has been shown 

to increase plasm concentrations of both rosuvastatin and atorvastatin (82). However, the 

findings for ABCB1 and ABCG2 are preliminary, and lack replication (22).   
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Statin related myopathy is usually managed by switching agents, use of fluvastatin, 

low-dose rosuvastatin, nondaily dosing, and ezetimibe or bile acid-binding resins (69).  

Since statins were first introduced, their effect on liver enzymes has been documented, 

albeit in a small proportion of the population taking statins. Specifically, alanine and 

aspartate transaminase levels show abnormalities (4). With standard doses, little or no 

effect is seen on gamma glutamyl transferase, alkaline phosphatase or bilirubin (83). 

These increases in transaminase levels with statins are seen within the first six months of 

commencement of treatment, and while these effects are reversible with the cessation of 

statins, the main concern is hepatotoxicity or some hepatic reaction to reduction of lipid 

levels.  

Other cholesterol lowering agents such as fibrates, resins, niacin and ezetimibe all 

increase liver enzymes, which suggests these changes could be a hepatic response to lipid 

lowering rather than hepatotoxicity (67,84–86).  

Thus far, attempts to identify an association between a specific genetic biomarker and 

the development of ADR with the use of statins have consistently found an association 

with the SLCO1B1 gene (53,54,87,88). This provides us with a robust candidate gene to 

examine using genetic association studies. However, the barrier to clinical applicability 

for these findings is a common pattern of pharmacogenomic associations that are not 

replicable in other studies (89). Often the reasons for inconsistent findings between 

studies include differences in study population, poorly defined phenotypes (different 

definitions of statin intolerance), statistical power issues and chance findings due to 

testing too many genetic variables (type 1 error). Many studies have been published that 

examine genetic markers for the prediction of statin efficacy. However, very few genetic 
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interactions have been confirmed, and the utility of these effects in clinical settings is 

very low, because the differential efficacy caused by genes is small (90). However, the 

association with the Val174Ala variant in SLCO1B1 has been replicated in multiple 

studies and confirmed by pharmacokinetic studies (91).  

It is important for statin-related studies to focus on pharmacokinetic enzymes that 

might be of importance to one or more statin. It would be preferable if the complete 

metabolic route for all statins were completely understood, however, this is not the case 

– the pathway is very complex and includes numerous transporters, and metabolizers (see 

Figure 1.3) (21,71).  

Studies into statin-intolerance have pinpointed genetic factors involved in the 

pharmacokinetics of statins. However, so far no studies have explored factors associated 

with susceptibility to muscle damage or immune factors that could predispose a statin 

user to intolerance. 

1.7 Genetics of statin intolerance  

Outwith pharmacogenetic factors associated with general statin intolerance, there are 

known genetic factors that are associated with autoimmune-mediated statin-induced 

myopathies. This pathology is seen in statin-exposed individuals who produce 

autoantibodies that recognize 3-hydroxy-3-methylglutaryl-coenzyme A reductase, which 

is the pharmacological target of statins (92,93). This form of myopathy is characterized 

by progressive weakness in the muscles, muscle enzyme elevations, necrotizing 

myopathy when a biopsy is taken and the presence of antibodies of HMGCR. The lack 

of resolution on dechallenge is another distinguishing feature of this form on statin 

intolerance (66,94).  
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A study undertaken by Mammen et al. compared 28 cases of anti-HMGCR-associated 

autoimmune myopathy, with 654 statin tolerant controls and 51 cases of self-limited 

statin intolerance. Variants in the HLA D gene were found to be associated with this form 

of statin-induced myopathy. DR1*11:01, a HLA class II allele was found to be a risk 

factor for anti-HMGCR, while alleles DQA1 and DQB6 appear to be protective (95).  

However, this form of statin intolerance is rare, there are fewer than  2 cases per million 

statin users (94,96).  

1.8 PREDICTION-ADR: a background to the current project 

The PREDICTION of Adverse Drug Reactions (PREDICTION-ADR) consortium is a 

collaboration between four academic institutions, the University of Dundee, the 

University of Liverpool, Universiteit Utrecht and Uppsala Universitet and two private 

companies, PGXIS and Asper Biotech. The project aims to discover the genetic factors 

predisposing patients to ADR from drugs used to treat CVD, specifically statins and 

angiotensin converting enzyme-inhibitors (ACE-Is). By pooling the clinically 

adjudicated cases of ADR collected at these different centers, we hope the findings will 

be clinically meaningful.  

For the project arm investigating the genetics of ADR to statins, the main work 

packages for the project include: discovery of sequence variants predisposing to statin 

myopathy, exome sequencing, statistical genomics, and diagnostic modeling, replication 

and population based validation, functional genomics and dissemination of findings. The 

PREDICTION-ADR project has received funding from the European Community’s 

Seventh Framework Programme (FP7/2007-2013) Under Grant Agreement no. 602108. 
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On a population level, the incidence of statin-induced myopathy is rare, occurring an 

estimated 5 per 100,000 person years (17,66). Other forms of intolerance such as non-

specific complaints of muscle aches, often not accompanied by big elevations in CK are 

much more prevalent (97). Estimates vary drastically between 1.5 to 26% of statin users 

experiences such a reaction (53,66,98–100). The development of ADRs to statins lead to 

problems with drug compliance, dose changes, and can lead to discontinuation which 

puts the user at higher risk for a CVD-related event (97,101,102).  

Due to the burden on population health, this study is focused on more prevalent forms 

of intolerance, which preclude statin users from adherence to therapy, and predispose 

them to poor outcomes such as CVD.   

This project is driven by clinical necessity and the overall goal is to provide a robust 

diagnostic algorithm that can be used by clinicians while prescribing statins to ensure 

best outcome.  

1.9 The GoDARTS study and JUPITER trial cohorts 

The GoDARTS study is a longitudinal cohort study of over 18,000 participants. 

Originally created to study the genetics of type 2 diabetes. GoDARTS is a rich source of 

data, combining complete electronic medical records including prescription information, 

all laboratory results from clinical visits (e.g. biochemistry, immunology), and genetic 

data from a cohort of 18,190 individuals in Tayside, Scotland. GoDARTS has been 

previously used to perform crucial pharmacogenetic studies on drugs such as statins (54), 

metformin (103,104), sulfonylureas (105,106), thiazolidinedione (107) and others. 

GoDARTS was also used to study the genes associated with lipid lowering efficacy such 

as apolipoprotein E (APOE) (108), lipoprotein A (LPA) and HMG-CoA (109). 
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GoDARTS also has contributed to the discovery genome-wide association study 

(GWAS) of statin efficacy with the Genomic Investigation of Statin Therapy (GIST) 

consortium leading to the discovery of the sortilin 1 (SORT1) locus as a marker of statin 

efficacy (110). The maintenance and use of this cohort is described in detail in the 

Methods chapter of this thesis. GoDARTS was used as the underlying cohort to perform 

a nested case-control study to examine statin intolerance in this thesis.  

Longitudinal cohort studies provide us with the unique opportunity to place the 

purported “exposure” and “outcome” in a temporally valid fashion, a distinct advantage 

over a cross-sectional study design (111). Another substantial advantage is the option to 

study many possible outcomes stemming from the same exposure. In this study the 

exposure was the use of statins, and the outcomes examined were different biochemical 

and prescribing patterns that would be suggestive of intolerance to statins, and the 

occurrence of events such as myocardial infarctions, ischaemic strokes and coronary 

artery disease that would be indicative of a failure of statin therapy. Another advantage 

of the cohort study is the ability to estimate not only odds and risk ratios but also the 

hazards of the exposure causing an outcome over time; analyses that cannot be performed 

when using cross-sectional data sets (112).  

Creating an ideal counterfactual in case-control studies is always a challenge, but is 

easier to accomplish in a cohort study. Unlike a cross-sectional or simple case-control 

study, access to longitudinal datasets gives us the opportunity to not only precisely define 

the occurrence of the outcome of interest, but also to more conclusively define what the 

lack of the outcome might be (113). This is especially important when examining the 

effects of a drug for chronic conditions, like statins which constitute a continuous 
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exposure over time (112). For the purpose of this thesis, chronological trends in the usage 

of medication can quite conclusively indicate an individual’s adherence to a drug, while 

hospital records and biochemistry test results can point to their tolerance of the same.  

The financial and human capital involved in the creation of such cohorts is 

considerable. Therefore cohort studies generally suffer from a lack of reproducibility of 

findings, since access to similar longitudinal datasets is limited. In order to improve the 

validity of the results presented in this thesis, the verification of findings was important. 

Randomized controlled trials (RCTs) are considered to be the gold standard for 

epidemiologic studies (111). Due to randomization, causal inference most robustly 

detected from RCTs compared to any other study design. However, due to the clinical 

nature of a RCT, various biases are introduced. Most notably reporting bias, where, due 

to the participant’s awareness of the clinical trial, they are more likely to report any events 

they believe might be associated with the exposure and modify their own behaviour. 

Clinicians too, behave differently than they would in the ambulatory setting, as they are 

more likely to document and treat reported events. Due to blinding, reporting bias does 

not necessarily impact the validity of findings. Selection biases are introduced due to the 

inclusion criteria of a study and due to fundamental differences in the baseline population 

that impact their willingness to participate in a RCT, such as their general health. 

Randomization is key in reducing the impact of the reporting biases. It provides a robust 

baseline for statistical testing, and it allows the investigators to assess the impact of the 

placebo effect.  

The JUPITER trial was conducted to determine the efficacy of Rosuvastatin in reducing 

CVD in people with raised C-reactive protein (CRP) levels, a known risk factor (114). 
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The cohort of approximately 8,000 individuals with genotype data were comprised of 

half of whom were randomized to receive Rosuvastatin and the remaining placebo (115).  

By using the JUPITER trial as the replication cohort, we also gain insight into the statin 

independent impact of the genetic variants under consideration. The main weakness of 

cohort studies, unmeasured confounding factors, are controlled for in a RCT and this 

strengthens the overall finding. Meanwhile, the modified behaviours of participants and 

physicians in RCTs that might impact outcomes are counterbalanced in the GoDARTS 

study.   

The results presented in this thesis have been examined in two large population-based 

studies, with different designs and independent strengths. 

1.10 Gaps in knowledge addressed by this thesis 

While criteria for the classification of statin intolerance abound, there remains a lacuna 

in the application of the most robust definitions of intolerance to large longitudinal 

population-based data sets. The use of CK however, remains the cornerstone in assessing 

the extent of statin-induced muscle damage, or indeed muscle damage in general. 

Paradoxically, there are cases of reported statin intolerance and myalgia, adjudicated by 

physicians that do not show the expected elevations in CK levels. We attempt to 

understand why this might occur. While the impact of poor adherence on outcomes for 

those on statin therapy have been examined, we attempt to uncover how intolerance to 

the drug impacts outcomes.  

Centrally, this thesis explores the role of members of an immune system related gene 

family, the Leukocyte Immunoglobulin-like Receptor (LILR) in the development of statin 

intolerance. Members of this family have been shown to be associated with serum CK 
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and lactose dehydrogenase (LDH) levels, T-cell tolerance and inflammation (116–119). 

The findings presented in this thesis are novel in their exploration of the immune system 

as a contributor to the developing intolerance to statins – whether mild or severe.  

1.11 Thesis aims 

1. Create and apply definition of statin intolerance in GoDARTS EMR data  

2. Validate these definitions against real-world outcomes 

3. Examine genetic factors associated with creatine kinase, the main biomarker of SI, and 

seek replication 

4. Examine the association between factors associated with CK and SI, and seek replication 

5. Examine the role of immune system gene family LILR with SI 
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2 Methods 

2.1 Clinical data – description of databases 

The Health Informatics Centre (HIC) in partnership with the University of Dundee 

(UoD), National Health Service (NHS) Tayside and the information services division of 

national services provides researchers and other with information derived from person-

specific datasets. These datasets are mainly derived from data held by the UoD and NHS 

and are anonymized in accordance with the Standard Operating Procedures approved by 

the Caldicott Guardians. In Scotland, every person registered with a medical practitioner 

is assigned a Community Health Index number (CHI). This is a unique 10 digit 

identification number that is lined to information on address such as postcode, medical 

practitioner registration status and their status at the General Registry Office (GRO) and 

tracks births and deaths. This information is collated and held by the Tayside Health 

Board for the entire Tayside population. Tayside also uses this number as the patient 

identifier in all health care activities from primary to tertiary care, thus allowing for the 

record-linkage of datasets 

DARTS 

Diabetes Audit and Research Tayside Scotland (DARTS) database includes 

information of all patients with diabetes in Tayside. Individuals with diabetes were 

identified from hospital records. The database as validated against general practice 

records and was confirmed to be robust. The methodology used was shown to be more 

sensitive than general practice alone at identifying individuals with diabetes. There are 

record linked data available for individuals within the DARTS cohort (120). 
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GoDARTS 

Genetics of Diabetes Audit and Research Tayside Scotland (GoDARTS) comprises 

18,190 participants enrolled between December 1998 and August 2012 in which there 

are 9829 with type 2 diabetes (T2D) and 8361 non-diabetics. Participants with T2D were 

identified for enrollment through DARTS. Age and sex matched diabetes-free 

participants were identified in populations within the Tayside region from general 

practice records (121). Relevant clinical data for all GoDARTS participants are drawn 

from electronic records of hospital admissions (Scottish Morbidity Register, SMR01), 

deaths (GRO), biochemical tests and dispensed drug prescriptions, available for the 

Tayside region. Data are available from 1980 until present for the SMR hospital 

admissions data; from 1998 for deaths from the GRO, from 1993 until June 2014 for 

biochemical tests.  

The GODARTS study was approved by the Tayside Committee for Medical Research 

Ethics and written, informed consent was obtained from each participants. A single 

sample of blood was collected for DNA extraction and genotyping, and the participant 

was assigned a unique anonymized system identifier. Baseline characteristics were 

recorded at time of recruitment for all participants (121).  

CHI master index 

This demography database contains one entry per individual in the study enlisting 

details such as their date of birth, ethnicity, sex and date of recruitment to the GoDARTS 

study.  
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Scottish Morbidity Register (SMR01) 

This is a record of acute hospital admissions in Tayside and Fife, Scotland. The 

database consists of one line per patient admission that includes a date of admission, one 

principal diagnostic field and five additional diagnostic fields. This database also 

includes admissions for hospital procedures that include one principal procedure field 

and eight additional procedure fields. The hospital admissions are classified according to 

the International Classification of Diseases (ICD) 9th and 10th versions (122). Procedures 

are classified according to the Office of Population, Censuses and Surveys Classification 

of Surgical Operations and Procedures’ 3rd and 4th revisions.  

General Registry Office (GRO) death certification 

The GRO death certification database is a record of the date and cause of death. Deaths 

in Tayside have been electronically recorded since 1989 and the database includes a 

principal cause of death field and ten additional related causes of death fields. Cause of 

death is classified according to ICD9 and ICD10 codes (122).  

Laboratory data 

The Tayside Laboratory systems record all tests performed in surgeries, clinics and 

hospitals that have been sent to the Tayside laboratories for processing. Clinical 

laboratory data are available from 1992. The database contains biochemistry, 

hematology, microbiology, virology and serology laboratory results and reports. 

Prescribing data 

HIC provides complete data for prescriptions dispensed in Tayside since 1993. 

Prescriptions dispensed between 1993 and 2004 were recorded as scanned paper 

prescriptions analyzed with purpose written software. Since late2004, all prescriptions 
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were obtained in electronic format from the Practitioner Services Division (PSD). The 

PSD are responsible for the processing and pricing of all prescriptions in Scotland. The 

prescriptions recorded include all those dispensed in community pharmacies, dispensing 

doctors, and a small number of specialist appliance suppliers. Hospital prescriptions are 

included if they were dispensed in the community.  

Individual drug prescriptions are linked to an individual CHI number and state the name 

of the drug, date of prescription, amount dispensed, as well as dosing instructions. Drugs 

are identified by name and individual drug codes linked to the British National Formulary 

(10). 

2.2 Data handling and manipulation 

The electronic medical records (EMR) are supplied as flat text files from which relevant 

data are extracted and combined in forms suitable for statistical analyses. Phenotypes 

used in this thesis are derived from prescribing, biochemistry, SMR01 and GRO data 

sets. All management, cleaning and processing of data was done using SAS 9.3 (SAS 

Institute, Cary, North Carolina).  

Statistical analyses 

All statistical analyses were performed in SAS 9.3 (SAS Institute, Cary, North 

Carolina). Specific statistical tests performed are described, along with the SAS 

command in each result chapter. The main methods used to determine genetic 

associations are binary logistic regression, linear regression and cox proportional hazards 

models.  
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2.2.1.1 Binary logistic regression  
This model is employed when the dependent variable is binary such as a case – control 

study and the predictor or explanatory variables that are linear or categorical. Binary 

logistic regressions were used to determine associations with statin intolerance (treated 

as 1 – intolerant and 0 – tolerant). The assumptions of a logistic regression are:  

1. The observations are independent of each other  

2. The parameters are approximately normal (usually with a large sample size)  

3. The model is correctly specified (categorical outcome, more observations than 

parameters). 

Logit (pi) = α + β1X1 + β2X2 + … + βnXn  

Equation 2.1 Formula for logistic regression (predictors with two levels) 

Logit (pi) = α + β1X1 + β2X
1 2 + + β3X

2 2 + β3X3… + βnXn 

 

Equation 2.2 Formula for logistic regression (predictor X2 has three levels) 

Interpretability: The logistic regression co-efficient describes the size of the 

contribution of each subsequent sub-category compared to the reference sub-category of 

a categorical variable in modifying the probability of the dependent variable’s occurrence 

(123).  

2.2.1.2 Linear regression 
Multiple linear regression is used to determine the relationship between a linear 

dependent variable and linear or quantitative independent variables.  

1. That the residuals in the model are normally distributed 

2. Error terms are constant and do not depend on the value of the independent variable 

3. There is no collinearity between independent variables.  

Residuals are calculated by subtracting the observed values of the dependent variable 

from those that are predicted by the model.  
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y  = β1X1 + β2X 2 + + β3X3… + ε 
Equation 2.3 Formula for Linear regression  

Interpretability: The beta estimates produced by the linear regression can be interpreted 

as the expected change in the dependent variable for a unit change in the independent 

variable if all other independent variables are held constant (124).  

2.2.1.3 Cox proportional hazards model 
This model is used in epidemiological studies to model the independent variables that 

determine the dependent variable which in this case is time to failure. In observational 

studies, an observation time is defined, usually time from an index or start date until the 

occurrence an outcome (however, it may be defined) or until the study censor date in lieu 

of outcome. Each individual has a numerical value for the observation time and a binary 

measure for outcome (1 or 0). To calculate the survival function the survival time is 

broken into intervals and for each time interval the proportion of individuals that have 

not failed and go on to enter the next time interval is measured. The number of cases that 

have had an outcome can be measured and the number of individuals that were censored 

for that time interval can also be computed.  

1. The model rests of the proportional hazards assumption which is that, the estimation of 

the hazard function from independent variables does not depend on the time and i.e. 

there is a constant relative hazard across the two strata over time. 

2. Equation: where x is the variable, and β is the estimate generated in a linear model 

 

3. The baseline hazard rate is cancelled out, and the hazard rate does not depend on time. 
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4.  

Equation 2.4 Formula used to compute hazard ratios 

5. Interpretability: Hazard ratios are used to represent instantaneous risk over the study 

period or a subset of the study period. They are interpreted as the chance of an event 

occurring in the “treatment” arm divided by the chance of the event occurring in the 

“control” arm of a study. Kaplan-Meier plots usually accompany survival analyses and 

represent the resolution of such endpoints (125).  

2.3 Genetic data  

Genetic data used in this thesis were generated on either high density arrays (such as 

Affymetrix 6.0 or Illumina Omni-express arrays) or using the TAQMAN procedure. 

Samples which were genotyped on the Genome-Wide Human SNP Array 6.0 were 

processed at Affymetrix’s service laboratory for all samples passing Affymetrix’s 

laboratory quality control; raw intensities were renormalized within collections using 

CelQuantileNorm. Their normalized intensities were used to call genotypes with an 

updated version of the Chiamo software adapted for Affymetrix 6.0 SNP data.  

DNA was prepared on the QIAsympohony (QIAGEN, Hildon, Germany). The process 

for extraction is described in Figure 2.1. The quality of genomic DNA was validated 

using the Sequenom iPLEX assay designed to genotype four gender SNPs and 26 SNPs 

present on the Illumina Beadchips. DNA concentrations were quantified using a 

PicoGreen assay (Invitrogen) and an aliquot assayed by agarose gel electrophoresis. A 

DNA sample was considered to pass quality control if the DNA concentration was greater 

than or equal to 50 ng/µL, the DNA was not degraded, gender assignment from the 
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iPLEX assay matched those provided in the patient manifest and genotypes were 

obtained for at least two thirds of the SNPs on the iPLEX.  

DNA preparation and genotyping were performed by members of the Palmer laboratory 

staff, principally, Ms. Fiona Carr, Dr. Roger Tavendale and Ms. Karen Wilson. 
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Figure 2.1 DNA extraction procedure (QIAsymphony DNA handbook, QIAGEN, Hilden, Germany) 

Affymetrix 6.0 genotyping array 

4000 diabetic individuals were genotyped on the Affymetrix 6.0 SNP genotyping array 

that includes 1 million SNPs (Affymetrix, Santa Clara, USA). These individuals were 

specifically chosen for genotyping as they had all gone onto receive statins after 

recruitment to GoDARTS.  
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Illumina Omni-express array 

4000 diabetic cases were genotyped on the Illumina Omni-express array which consists 

of ~ 700 thousand SNPs selected from HapMap 1-3 for SNPs with a MAF greater than 

5% (Illumina, San Diego, USA) (126). The array was designed by selecting tag SNPs to 

serve as a proxy for a number of other SNPs across the genome. This approach allows 

for the broadest selection of maximally informative markers, resulting in genome-wide 

coverage of both common and rare variants.  

Exome Chip 

This Illumina Infinium Exome-24 v1.0 BeadChip was designed to genotype functional 

exonic variants selected from over 12,000 individual human exome and whole-genome 

sequences. Marker selection was performed with the goal of developing an extensive 

catalog of exome variants. Exonic content consists of over 240,000 markers representing 

diverse populations, for a range of conditions such as type 2 diabetes, cancer, metabolic 

and psychiatric disorders.  

TaqMan 

Direct typing of individual SNPs was performed using TaqMan allelic discriminations 

assays as supplied by Applied Biosystems (Carlsbad, CA) as “Assays on Demand”, or 

“Assays by Design”. All typing was performed in 384 well plate format using 10-20 ng 

of DNA in 2µL reaction volumes using Universal TaqMan master mix (Applied 

Biosystems, Carlsbad, CA). Assays were plated using a DEERAC Equator GX 

microdispenser (Labcyte, Sunnyvale, CA) and thermal cycling was performed in 

H20BIT high throughput thermal cycler (KBiosystems, Basildon, Essex). End point 
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fluorescence was measured and genotypes were called using an ABI7900HT sequence 

detection system (Applied Biosystems, Carlsbad, CA).  

Genotype imputation  

Genotype imputation is conducted in two stages: the first is estimation of the haplotypes 

from the study population and the second is the imputation of genotypes by comparing 

study haplotypes to reference panel haplotypes.  

2.3.1.1 Haplotype inference 
The segmented haplotype estimation and imputation tool (SHAPE-IT, 

http://www.shapeit.fr) (127) was used to estimate haplotypes for downstream imputation 

with IMPUTEv2 (128). The method is highly accurate and computationally light when 

compared with other available methods and is particularly suited to populations that 

contain high linkage disequilibrium in their genomes such as Caucasians. The inference 

of haplotypes is computed in a similar way to Phase v2 where all possible haplotypes are 

estimated from the available genotype set with an associated probability. Since the 

number of haplotypes increases exponentially with the addition of more genotypes, there 

need to be methods to reduce the haplotype set to the most likely one.  

2.3.1.2 Genotype imputation  
Genotype imputation was performed using the IMPUTEv2 program  

(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) (126) using the estimated 

haplotypes from SHAPE-IT to impute genotypes from the haplotype set. Impute 2 

compares the study population haplotypes with up to two reference panels for the 

imputation of missing genotypes in the study population. Alleles are imputed in the study 

population by running a forward-backward algorithm to impute missing alleles with a 

certain probability. The two sets of haplotypes are compared to each other and missing 
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alleles are imputed into the study panel from the reference panel with certain probability. 

The two sets of haplotypes are compared to each other and missing alleles are imputed 

into the study panel from the reference panel with certain probability. Certain SNPs will 

be found in haplotypes together so if one SNP is not present in the study panel but the 

haplotypes match we can impute an allele for that SNP with a certain probability given 

the alleles that are present in the reference panel and the alleles provided by the study 

panel. If there is good coverage of a haplotype on a particular chip and the haplotypes 

are sparsely covered or SNPs are not in linkage disequilibrium with any other SNPs to 

form haplotypes then the alleles may be imputed with low confidence in their accuracy 

or may be missing all together. Given that we assume both sets of haplotypes are sampled 

from population in Hardy-Weinberg equilibrium the allelic probabilities can be 

converted to genotypic probabilities (126). 

Genotype imputation for all datasets used were performed by Mr. Phillip Appleby.  

Categorization of dominant or recessive traits 

Genotypes of SNPs were coded as 0 – no rare alleles present, 1 – one rare allele present 

(heterozygous) and 2 – two rare alleles. Statistical analyses were first run using additive 

models, where the risk of each additional rare allele was calculated successively.  

Dominant traits were defined as those where the presence of one or two rare alleles 

made no statistically significant difference to the probability of the outcome, while both 

were significantly different from those who had no rare alleles (1 and 2 v. 0). Recessive 

traits were the opposite, in that only carriers of two rare alleles were able to show a 

statistically significant difference in the probability of the outcome (2 v. 1 or 0).  
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2.4 Epidemiological Study Design 

While GoDARTS is a longitudinal cohort study, this thesis focusses on the statin using 

subpopulation that are either tolerant or intolerant to their therapy, and therefore forms a 

nested case-control study (NCC). A NCC study is a retrospective design, using data 

already collected to determine if a study participant can be categorized as having the 

outcome, i.e. being classified as a case or a control. Since a participant’s documented 

clinical records are used to ascertain their exposure, such a study is less prone to recall 

bias compared to a case-control study. Since cases and controls are selected from a 

database and no further participation is required, the NCC design is more representative 

of the baseline population than a traditional case control study and is less prone to 

selection bias. Figure 2.2 shows the overall design of a NCC. 

The other advantage is that in studies of the long-term impact of drug exposure, 

randomized clinical trials, which are the gold standard for assessing causality, are poorly 

powered. In such an instance, a cohort of a large number of individuals with an exposure 

of interest and longitudinal follow-up is the more appropriate study design as it has the 

power to detect risk factors due to the person-years of exposure data available.   



38 

 

 

Figure 2.2 Design of this nested case-control study

GoDARTS
Cohort

Statin users

Cases: develop 
outcome 

Controls: do not 
develop 
outcome

Non-users
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3 Characterizing statin intolerance in the GoDARTS population 

3.1 Introduction  

 

The GoDARTS (Genetics of Diabetes Audit and Research, Tayside) cohort is 

comprised of 18,190 Scottish Caucasian individuals. The data set is maintained by the 

Health Informatics Centre at the University of Dundee and contains record-linked 

electronic medical records, biochemical, and clinical, prescribing and demographic 

information for all participants. The study was approved by the Tayside Medical Ethics 

Committee. The cohort is comprised of 9439 type 2 diabetics and 8187 non-diabetics.  

GoDARTS has been previously used to establish the pharmacogenetic associations of 

genes such as the influx transporter: SLCO1B1 and statin intolerance (54), and genes 

associated with lipid lowering efficacy such as APOE (108), LPA and HMG-CoA (109). 

GoDARTS has also contributed to the discovery GWAS of statin efficacy with the 

GIST consortium, leading to the discovery of the SORT1 locus as a marker of statin 

efficacy (110). In addition, GoDARTS has been used extensively in understanding 

medication use, adherence and efficacy, for statins (129), metformin (103) and 

sulfonylureas (106), and to study the heritability of metformin response (104). 

Statins are the most effective drug for the reduction of LDL-cholesterol. They are 

recommended for type 2 diabetics over the age of 40 years, and for younger diabetics 

with poor glycemic control (HBA1c greater than 9%), low-HDL cholesterol and raised 

triglyceride concentration, hypertension or a family history of premature cardiovascular 

disease. Statins are also advised where total cholesterol concentration to HDL-

cholesterol ratio exceeds 6 (10). For these reasons the use of statins is widespread in the 

adult population, which is reflected in GoDARTS.  
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While they are generally well-tolerated; neurological (48), gastro-intestinal or 

muscle-based (49,50) reactions to statins have been noted. Muscle-based adverse 

reactions reported by statin users range from non-specific complaints of myalgia, 

through symptomatic myopathy with accompanying increases in serum CK levels, to 

rhabdomyolysis where the accumulation of CK due to muscle breakdown leads to 

kidney damage (4 per 100,000 person years) (51,52,66). While these severe myopathies 

are attributable to statins, the incidence of milder muscle-based reactions to statins is 

highly debated. However, the co-existence of elevated CK with muscle symptoms 

makes a causal relationship between statin exposure and muscle symptoms more likely.  

In order the study the genetic underpinnings of statin intolerance it is crucial to first 

successfully define the phenotype in a population-based study using EMRs. Due to the 

lack of physician adjudicated diagnoses of statin-induced myalgia or other forms of 

intolerance, we must employ trends in drug use and biomarkers that best reflect the 

occurrence of an adverse reaction.  

A phenotype standardization paper put forward by the PREDICTION-ADR 

consortium proposed that CK elevations of 4 or more times the upper limit of normal 

(ULN) should be considered for statin-induced myositis (66). In it, Alfirevic et al. state 

that this threshold of CK elevations in the presence or absence of clinical symptoms 

provides the right balance in preventing inclusion of patients with CK elevation due to 

normal variation or other causes, while simultaneously ensuring that we do not 

unnecessarily exclude valuable patients in studies investigating genetic factors 

predisposing to statin myotoxicity.  

Adverse events are cited as the most common cause of discontinuation of therapy 

(102). Adverse reactions to statins are likely to manifest as elevated CK levels, usually 

in conjunction with poor adherence to statin treatment (66,102) which in turn is 
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associated with an increased risk of cardiovascular events compared with compliant 

users of statins (101).  

We therefore chose to examine intolerance based on raised CK and on prescription 

encashment patterns representing poor adherence, such as statin discontinuation or 

switching, in the presence and absence of elevated CK levels in the GoDARTS study. 

More recently, a position paper by Banach et al. sought to provide a unified definition 

of statin intolerance – a more general counterpart to statin-associated muscle symptoms. 

The authors state statin intolerance affects a wider population of statin users (10-15%), 

unlike rhabdomyolysis, myositis and myopathy that affect less than 1 % of statin users 

(130). They suggest new, slightly altered parameters to define statin intolerance from 

prescription trends; namely the individual should be intolerant to at least two different 

statin therapies and they should have been on the lowest starting dose of at least one of 

those therapies. We therefore applied this criteria as well, to create a dose intolerant 

phenotype.  

In order to examine the internal validity of our definitions, we examined the hazards 

of statin failure for those classified as intolerant, as those who are unable to take their 

therapy regularly and as prescribed should be at an increased risk of having a CVD-

related outcome. Further, we examined the association between the phenotype groups 

created and a known gene risk score in the influx transporter, OATP1B1-encoding 

SDLCO1B1 gene (54,131), which has been previously validated as being associated 

with non-autoimmune mediated statin intolerance and statin-induced myopathies.  

It is also necessary to validate the use of poor adherence to reflect the statin user 

experiencing adverse effects on therapy. Using physician adjudicated accounts of 

myalgia and non-compliance to therapy in the clinical trial setting, we attempt to 

address the external validity of using poor adherence to reflect intolerance.  
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The first documented statin used in the GoDARTS cohort was in the year 1989, which 

reflects the beginning of statin therapy as it was made available in the United Kingdom. 

As of June 2014 the GoDARTS cohort contained a total of 11,566 statin users who 

contribute approximately 98,400 person years of statin exposure, thus providing an 

ideal template for a study of the long-term trends in statin usage.  

3.2 Methods 

Data handling  

EMRs in GoDARTS are held in separate files such as biochemistry, prescribing, 

baseline demography, hospital emergency admissions, regular hospital admissions, 

outpatient hospital records etc. as described in Chapter 2. These files were cleaned and 

merged as shown in the consort diagram Figure 3.1. The processing and handling of 

each file is described below.  

Statin types, dose conversions, switching, and discontinuation  

Individuals with at least two prescriptions of statins were identified, there were 11,566 

such statin users. Medications are categorized under the code provided by the British 

National Formulary (BNF), statins are classified under “2.12 – Lipid-regulating drugs” 

(10). 

The types of statins made available by NHS Scotland, and therefore observed in the 

GoDARTS dataset are Simvastatin, Cerivastatin, Atorvastatin, Pravastatin, Fluvastatin 

and Rosuvastatin. Their usage distributions were examined and elaborated on in the 

results section.  

3.2.1.1 Average daily dose 
In order to compare dosages of statins – each statin was converted to its’ equivalent 

dose of simvastatin in terms of LDL-lowering efficacy (14) Table 3.1. The dose 

conversions are described in the table below. Average daily dose was calculated by 
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dividing the sum of the product of the usage directions and the strength of the individual 

tablets for each prescription by the total number of days of statin usage, Equation 3.1. 

The average daily dose was 32 mg (of simvastatin or equivalency of other statins), 

therefore 35 mg was used as the threshold for above average daily dose tolerance.  

 
Table 3.1 Dose conversions used for different statin types  

Statin  Equivalence 

in simvastatin 

Simvastatin - 

Rosuvastatin 4x 

Atorvastatin 2x 

Pravastatin 0.5X 

Cerivastatin 50X 

Fluvastatin 0.25X  

 

 

 

 

 

Equation 3.1 Average daily dose 

3.2.1.2 Statin discontinuation  
Discontinuation was defined as there being no statin prescription in the 9 months 

preceding an individual’s date of death, the study censor date (30th July 2013) or the 

date they left the data catchment area. This is to account for any periods of 

hospitalization that might occur, since medications dispensed at Ninewells Hospital are 

not included in the GoDARTS prescribing data set.  

3.2.1.3 Statin switching  
Physicians often switch a user’s statin if they complain of adverse reactions. This is 

especially common between lipophilic statins (atorvastatin and simvastatin) and 

hydrophilic statins (pravastatin and rosuvastatin) (5), this pattern is also observed in 

GoDARTS. Statin switching was ascertained in our data by first classifying all the brand 

name drugs into their generic formulations i.e. simvastatin, atorvastatin etc. and then 

looking for changes in the statins consumed over time. A systemic switch was noted 

from Simvastatin to Atorvastatin when the latter came off patent in the UK, since this 

Average daily dose = {
𝛴 (𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠)∗(𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑎𝑏𝑙𝑒𝑡) 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑛 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
}  
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was independent of intolerance, individuals were not excluded from being considered 

statin tolerant if they had such a switch. It was noted that less than 10% of statin users 

in GoDARTS had switched 3 or more times, therefore this threshold was applied to 

account for any re-challenges to statin therapy.  

3.2.1.4 Percent Daily Coverage 
Percent Daily Coverage (PDC) was computed by calculating the time between the 

first and last documented statin prescription, calculating the number of days of coverage 

each prescription provided depending on directions (e.g. 1/day or 2/day) and the 

quantity of pills dispensed. The PDC was then calculated by comparing the days of 

coverage provided by the prescription and the total time spent on statin treatment, 

Equation 3.2. The average PDC in the study was 89%, therefore 90% was used at the 

threshold for high adherence.  

The prescription patterns indicating intolerance used in this study are similar to those 

used by Donnelly et al. to establish the association between statin intolerance and 

SLCO1B1 genotypes in the GoDARTS study (54).  

 

 

 
Equation 3.2 Percent daily coverage 

3.2.1.5 Co-medications 
We examined the data for commonly prescribed co-medications. The most frequently 

used co-medications were Amlodipine (38% of statin users), Omeprazole (32%) and 

Clopidogrel (17%), Clarithromycin (11%), Fluconazole (9%), and Fibrates (5%). 

Several of these medications are substrates for the CYP3A enzymes, and could 

potentially interact with statins. Known medications that inhibit CYP enzymes such as 

azole anti-fungals, anti-biotics, anti-retrovirals, anti-diuretics (e.g. conivaptan), 

amiodarone taken for arrhythmias, and verapamil, a calcium channel blocker were 

PDC = {
𝛴 (𝑑𝑎𝑦𝑠 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑠𝑡𝑎𝑡𝑖𝑛 𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠)/(𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 )

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑛 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
} x 100 
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categorized as potential interacting medications. Fibrates, especially gemfibrozil are 

contra-indicated for use with statins, as they increase the risk of rhabdomyolysis (10). 

All these drugs were classified as potentially interacting co-medications. 

Creatine kinase  

CK tests from wards such as Accidents & Emergencies (A&E) or Emergency Rooms 

(ER), Cardiac Care, Stroke, surgical wards and high dependency units were excluded. 

We excluded individuals who had a history of thyroid disease, or those that had suffered 

a myocardial infarction, kidney disorder, or had a hospital admission associated with an 

accident in the 6 months preceding the CK test result. The usable test results were 

categorized into normal and above the upper limit of normal, 120 IU/L for women and 

180 IU/L for men (NHS Tayside Biochemistry Meta-Data). The first high CK test result 

while on statins or within 3 months of their last statin was used to define intolerance.  

CONSORT flow chart  

  

The processing of data files and their subsequent use in producing the final 

phenotypes are described in the consort diagram below Figure 3.1.  
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Figure 3.1 Consort diagram of the derivation of statin intolerant individuals in the GoDARTS study  

In the consort diagram, phenotype groups A, B, C, D and G are classified as statin 

intolerant, while groups E and H are statin tolerant controls. 

In Table 3.2 the phenotypes are specified along with the number of individuals 

meeting the criteria for each group. This number reflects those available from the 
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EMRs, however when examining genetic associations, the numbers available for 

analyses are lower to due to limited genotyping.  

Table 3.2 Criteria used to create phenotypes and the number of individuals meeting the criteria in 

GoDARTS 

Phenotypes Elevated CK 
≥3 Switches or 

Discontinuation 

Lowest 

Dose 

Before 

Switch 

Total 

 
≥ 1X 

ULN 

≥ 4X 

ULN 

 
 

 

A: Raised CK Yes N/A N/A N/A 2467 

B: Raised CK + Non-

adherent 
Yes N/A Yes N/A 

588 

C: Non-adherent N/A Yes N/A 869 

D: Statin-induced 

myositis 
 Yes Yes N/A 

45 

G: Dose intolerance N/A Yes Yes 731 

E: Normal CK + 

Adherent 
No No No N/A 

960 

F: Adherent N/A No N/A 1397 

H: Dose tolerant N/A No N/A 500 

 

Compliance and myalgia in the JUPITER trial  

In the JUPITER trial compliance to assigned therapy was adjudicated by pills counts. 

1435 participants were found to be non-compliant to therapy, while 7046 were 

compliant. The trial had a placebo run-in period where participants were selected for 

having good compliance (115,114). Myalgia was ascertained by physicians who were 

blinded to the treatment status of the participant (132).  
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Defining phenotypes  

3.2.1.6 Phenotypes of statin intolerance 
We defined multiple phenotypes of intolerance, to account for the dependency of the 

definition of adverse reactions to statins on CK levels, and the modulation of CK by 

genetic variants put forward by Dubé et al. The effect of this variant on CK levels is the 

focus of Chapter 4. First we categorized statin users who had raised CKs (> 1X ULN) 

associated with their statin therapy (Case Phenotype A). We did this by excluding 

individuals who might have co-morbidities that could lead to high CK levels as 

described in the methods. Statin intolerance (Case Phenotype B) was defined as statin 

users who had a raised CK (>1X ULN) while on statins and showed patterns of poor 

adherence by either discontinuing their statins or switching their statins three or more 

times. Individuals who showed the same poor adherence patterns described above, 

regardless of their CK levels were classified as having general intolerance (Case 

Phenotype C). Individuals who were non-adherent and who had CKs raised (>4X ULN) 

were treated as having statin-induced myopathy or myositis (Case Phenotype D) based 

on parameters put forward by Alfirevic et al. (66). Finally, in a recent position paper, 

Banach et al. suggest that statin intolerance should be dose-related; in that an individual 

must have been placed on the lowest approved starting dose of the specific statin before 

being switched to another statin before being classified as “intolerant” (133). This 

specification was added to those who had discontinued therapy or switched therapy 

three or more times, irrespective of CK levels (Phenotype G). The lowest approved 

starting doses are 5 mg for Rosuvastatin, 10 mg Simvastatin, 40 mg Pravastatin, 40 mg 

Fluvastatin and 0.1 mg of Cerivastatin (133).  

3.2.1.7 Phenotypes of statin tolerance  
In order to be classified as statin tolerant, a statin user had to have no recorded high 

CK test results while on statins, be on a minimum average daily dose of 35 mg 

(calculated as equivalence of simvastatin), be on statins for a minimum of 5 years, have 
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a minimum of 90% daily coverage, with no discontinuation and no more than one 

switch between simvastatin and atorvastatin (to account for the mass switch that 

occurred when the latter came off patent in 2012) (Control Phenotype E). We also 

created a group of individuals who met the same prescribing criteria as phenotype E, 

irrespective of their CK levels (Control Phenotype F). This second group was created 

in order to form an appropriate comparison group for Case Phenotype C. Phenotype E 

was then further refined for a higher average dose tolerance of 40 mg (calculated as 

equivalence of simvastatin) which is generally the medium dose of statin therapy 

prescribed, in addition to the other criteria and irrespective of CK levels (Phenotype H). 

The normal CK and adherent phenotype E was used for comparison with statin 

intolerance phenotypes (A and B), while the adherent, irrespective of CK phenotype (F) 

was used for comparison with the non-adherent phenotype (C) to ensure that the 

difference detected was not just from inducible CK levels. Finally, we compared the 

dose intolerance phenotype (G) to dose tolerant individuals (phenotype H). 

A summary of the phenotypes and the criteria used to define them is provided in Table 

3.2 Criteria used to create phenotypes and the number of individuals meeting the criteria 

in GoDARTS. 

3.2.1.8 Baseline co-variables  
Important risk factors for statin intolerance include age and female gender, use of 

fibrates and other interacting co-medications as listed in the British National Formulary 

and the use of higher dose of statins (10,66)  

Additionally, we examined baseline variables such as sex, age and LDL level at time 

of starting statin therapy and diabetic status that could affect the probability of 

developing statin intolerance. Statin users commencing treatment after the occurrence 

of a CV event were classified as being on therapy the secondary prevention of disease, 

while statin users who began commenced use without any noted CV events were 
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classified as being on therapy for the primary prevention of disease. This is an important 

co-factor impacting adherence to therapy. 

LDL measures within a 1-year window prior to the commencement of statin treatment 

were considered as a baseline LDL measurement. Since biochemistry data was only 

available from Fife after 2005, we do not have baseline LDL levels from individuals 

who were resident in Fife at the time of starting statin therapy as seen in Table 3.3. 

 
Table 3.3 LDL testing data Tayside v. Fife  

LDL testing prior to 

statin treatment 
Tayside Fife 

Yes 16% 3.4% 

No 77% 4% 

 

Statins are prescribed to Type 2 Diabetics (T2D) upon diagnosis, since T2D is 

considered a major risk factor for CVD, irrespective of LDL levels. Therefore, testing 

for LDL prior to commencing statin therapy is low in GoDARTS. However, differences 

in LDL levels across phenotype comparison groups and the number of tests used are 

quoted in the results. 

Association of phenotypes with statin failure 

In order to assess the validity of the phenotypes developed, we checked their 

association with a coronary artery disease or ischemic event while on statin therapy, 

classified as “statin failure”. The event could result in a hospitalization or in death. 

Hospitalization (SMR01) and General Register Office of Scotland (GRO) records   were 

checked for ICD (International Classification of Diseases) 

(http://www.who.int/classifications/icd/en/) codes that corresponded to such an event. 

Adapted from Bijlsma et al. (134) we used the codes presented in Table 3.4 below.  

Table 3.4 ICD codes used to classify statin failure (SF) 

Outcome ICD 9 ICD 10  

Ischemic stroke 433 - 436 I63, I64, I67, G45 

Coronary artery 

disease 

410 – 414, 427, 789 I20-I25, I46 
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Association of phenotypes with the SLCO1B1 gene risk score 

The score was developed using data from two variants rs4149056 (Val174Ala) and 

rs2306283 (Asp130Asn) and the model provided by Donnelly et al. (54).  

Statistical analysis  

All data cleaning and statistical analyses were undertaken in SAS 9.3. Kaplan-Meier 

survival plots were also produced using SAS 9.3 (SAS Institute, Cary, North Carolina). 

All other graphs were produced in R studio (135). Statistical analyses for the JUPITER 

trial were performed by Dr. Dan Chasman using R (136).  

Categorical variables are presented as percentages. Associations between categorical 

variables (sex, statin doses, statin types etc.) were assessed using the Chi square test 

(proc freq/chisq measures). Continuous variables (such as age, LDL measures, CK 

response etc.) are presented as mean, median and range (proc means). The association 

with continuous variables were assessed using a T tests (proc ttest in SAS) or linear 

regression to produce beta estimates (proc reg). Association with statin failure was 

assessed using Cox proportional hazards model (proc phreg). Statin failure was treated 

as binary outcome and intolerance status was the binary predictor. This was done for 

each phenotype. 

All p values reported are two-sided and values below 1 x 10-4 are represented as < 

0.0001. 
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3.3 Results 

Statin types, dose conversions, switching, and discontinuation 

The vast majority of statins used in the GoDARTS were simvastatin (61%), followed 

by atorvastatin (30%) and the least frequently used was fluvastatin (2%). Since 

cerivastatin was discontinued due to reports of toxicity leading to rhabdomyolysis 

(11,137) the usage is below 1%. A representation of the usage is presented in Figure 

3.2 

Figure 3.2 Distribution of statins used in GoDARTS  

 
 

However, it is important to note that while simvastatin was most widely used, 

approximately 20% of statin users switched from the use of simvastatin to atorvastatin 

when their first and last statin treatments were compared. Conversely, there is a 

commensurate increase in the use of atorvastatin. This is mostly driven by  the 

expiration of Pfizer’s patent on Lipitor (brand name atorvastatin) in 2012, and the mass 

switch from simvastatin to atorvastatin that occurred subsequently. Rosuvastatin was 

the only other statin that that shows a higher percent of users at the end of treatment. A 

Simvastatin
61%

Pravastatin
4%

Atorvastatin
30%

Fluvastatin
2%

Cerivastatin
0%

Rosuvastatin
3%

Distribution of statins used in GoDARTS

Simvastatin Pravastatin Atorvastatin Fluvastatin Cerivastatin Rosuvastatin
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complete summary of the percentage of users of specific statins at the beginning and 

end of treatment is provided in Figure 3.3 below.  

Figure 3.3 Transitions from first statin used to the last statin prescribed 

 
 

Switching from one statin to another often occurs when a patient is unable to either 

show the necessary reduction in LDL levels or is unable to tolerate the drug. Therefore, 

statin switching is an important trend in an EMR to determine rates of intolerance. 

Figure 3.4 below represents the number of switches noted for statin users and frequency 

of their occurrence. 
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Figure 3.4 Number and frequency of statin switching in GoDARTS  

 
 

Using the criteria described in the methods section to define discontinuation of statin 

treatment, there were 1721 individuals (15% of statin users) who had discontinued 

treatment for 9 months preceding the date of their death or leaving the data catchment 

area of the study censor date.   
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Creatine kinase 

 

Figure 3.5 Creatine kinase (originally in IU/L) distribution in the GoDARTS population  

The highest recorded CK level in GoDARTS was 129,825 IU/L. The CK measures 

were log10 transformed to create the histogram in Figure 3.5 above.  

Defining phenotypes  

Using various combinations described in the methods section phenotypes of statin 

intolerance (SI) and tolerance (ST) were created. They are presented in Table 3.2. 

Baseline characteristics 

5041 (43.6%) statin users were female. The average age for starting statin therapy was 

62 (+/-11) years. Additional baseline characteristics pertaining to statin intolerance are 

discussed in the subsequent tables that are set up to contrast between intolerance and 

tolerance.  
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3.3.1.1 Phenotype A (Raised CK) v. E (Normal CK and Adherent) 
Phenotype A (raised CK while on statin treatment) is compared to Phenotype E (those 

who are adherent to their therapy and have always shown normal CK while on statins) 

seen in Table 3.5 Phenotype A (Raised CK) v. E.  

We find that while the age at which statin therapy commenced was not significantly 

different across the two groups, those who were intolerant were likely to be older at the 

end of follow-up period, indicating that they had been on statin therapy for longer. There 

was no significant difference in the diabetes status across the two groups. Statin tolerant 

individuals were more likely to have begun therapy on simvastatin. Intolerant 

individuals were more likely to be on simvastatin at the end of the study period. SI 

individuals began therapy on lower doses and were more likely to end on lower doses 

than those who were able to tolerate their statins. The use of potentially interacting co-

medications was 48% amongst those with raised CK compared to 44% amongst tolerant 

controls, the difference was not statistically significant. 21% of those classified as 

intolerant were on statins for the secondary prevention of CVD contrasted with 23% of 

tolerant controls, although the difference was not statistically significant. CK levels 

differed between the two groups, by definition of the phenotype, where the median CK 

for those who were SI was 175 IU/L and 74 IU/L for those who were ST. Although the 

numbers available for analysis were reduced – there was no significant difference is 

baseline LDL levels between the groups.  
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Table 3.5 Phenotype A (Raised CK) v. E (Normal CK and Adherent) 

Variables Statin 

intolerant 

(Phenotype 

A) 

Statin 

tolerant 

(Phenotype 

E) 

Test of  

Association 

 n = 2467 n = 960  

Mean age  starting statin 

therapy (SD) 

62  

(11) 

62 

(10) 

T value = 1.23 

P value = 0.22 

Mean age  at censor date ( 

SD) 

73 

(10) 

71 

(10) 

T value = 4.7 

P value 

<0.0001  

Sex (% Females) 45 43 Χ2 = 1.1 

P value = 0.3  

Diabetes (%) 76 79 Χ2 = 2.1 

P value = 0.15  

First Statin as Simvastatin 

(%) 

71 78  

Χ2 = 47.5 

P value 

<0.0001 

Last Statin as Simvastatin 

(%) 

47 41  

Χ2 = 120 

P value 

<0.0001 

Starting dose as “low” (< 

20mg/day) (%) 

80 53 Χ2 = 165 

P value 

<0.0001 

Ending dose as “high” 

(≥80 mg/day) (%) 

21 36 Χ2 = 376 

P value 

<0.0001 

CYP inhibitors or 

substrates (Yes v. No) (%) 

48 44 Χ2 = 3.13 

P value = 0.08 

Statin use for secondary 

prevention of CVD (%) 

21 23 Χ2 = 0.4 

P value = 0.50 

CK levels (IU/L)    

Median 175 74 

T* value = 15 

P value 

<0.0001 

Minimum 8 11 

Maximum  21,214 7,457 

Mean 282 97 

LDL at baseline (mmol/L) n= 192 n= 219  

Median 3.1 3.1 

T value = 0.22 

P value = 0.82 

Minimum 0.8 0.4 

Maximum  6.3 8.7 

Mean 3.2 3.2 

T*: unequal variances  
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3.3.1.2 Phenotype B (Raised CK + Non-Adherent) v. E (Normal CK + Adherent) 
Next we compared individuals who had raised CK while on statins and who also either 

discontinued their treatment entirely or switched their statin 3 or more times (Phenotype 

B) to the same statin tolerant group as before (Phenotype E) seen in Table 3.6 Phenotype 

B (Raised CK + Non-adherent) v. E (Normal CK + Adherent). 

SI individuals were more likely to start their treatment at an earlier age, but were older 

at end of follow-up. More women were likely to be SI. There was no significant in the 

diabetes status across the two groups. More ST individuals began treatment on 

simvastatin and were also more likely to be on simvastatin at the end of the study period. 

SI individuals more likely to begin and end treatment on a lower doses. The use of 

potentially interacting co-medications was 52% amongst those classified as SI 

compared to 44% amongst tolerant controls, the difference was statistically significant. 

27% of those classified as intolerant were on statins for the secondary prevention of 

CVD contrasted with 23% of tolerant controls, the difference was not statistically 

significant. Again, by definition criteria SI individuals had higher CK levels, median 

CK was 200 IU/L and 76 IU/L for ST individuals. Median baseline LDL levels were 

slightly higher for SI individuals (3.5 mmol/L) compared to those who were ST (3.2 

mmol/L).  
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Table 3.6 Phenotype B (Raised CK + Non-adherent) v. E (Normal CK + Adherent)  

T * represents unequal variances 

Variables Statin 

intolerant 

(Phenotype 

B) 

Statin 

tolerant 

(Phenotype 

E) 

Test of  

Association 

 n = 588 n = 960  

Mean age  starting statin 

therapy (SD) 
60 

 (10) 

62 

(10) 

T value = 2.8 

P value= 0.005 

Mean age  at censor date ( 

SD) 
72 

 (10) 

71 

(10) 

T value = 2.6 

P value= 0.01 

Sex (% Females) 
50 43 

Χ2 = 7.3 

P value = 0.007 

Diabetics (%) 
78 79 

Χ2 = 0.17  

P value = 0.68 

First Statin as Simvastatin 

(%) 64 71 

Χ2 = 87.4 

P value < 

0.0001 

Last Statin as Simvastatin 

(%) 31 41 

Χ2 = 186.5 

P value  < 

0.0001 

Starting dose as “low” (< 

20mg/day) (%) 85 53 

Χ2 = 160.6 

P value < 

0.0001 

Ending dose as “high” 

(≥80 mg/day) (%) 22 36 

Χ2 = 335.8  

P value < 

0.0001 

CYP inhibitors or 

substrates (Yes v. No) (%) 

52 44 Χ2 = 9.1 

P value = 

0.0025 

Statin use for secondary 

prevention of CVD (%) 

27 23 Χ2 = 1.8 

P value = 0.18 

CK levels     

Median 200 76 

T value = 40.4 

P value < 

0.0001 

Minimum 120 17 

Maximum  12,700 179 

Mean 306 81 

LDL at baseline  n= 87 n= 219  

Median 3.5 3.2 

T* value = 1.83  

P value = 0.07 

Minimum 1.1 0.4 

Maximum  5.5 8.7 

Mean 3.5 3.2 
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3.3.1.3 Phenotype C (Poor adherence, irrespective of CK) v. F (Adherent, irrespective 
of CK) 

We then compared individuals who were unable to stay on their statin therapy, 

evidenced by 3 or more switches or discontinuing therapy (phenotype C to individuals 

highly adherent to their statins, irrespective of their CK elevations (phenotype F) seen 

in Table 3.7 . 

SI individuals were younger at the time of starting therapy, they were not older at the 

end of follow-up and were more likely to be female. They were less likely to start or 

end therapy on simvastatin. They were more likely to start therapy on a low dose (<20 

mg) and less likely to be on a high dose (>80 mg) at the end of study follow-up period. 

The use of potentially interacting co-medications was significantly higher (59%) 

amongst those classified as SI compared to amongst tolerant controls (43%). Of those 

classified as intolerant, 31% were on statins for the secondary prevention of CVD 

contrasted with 22% of tolerant controls, the difference was statistically significant. In 

spite of not being factored into the phenotypic definition, CK levels were significantly 

different across the two groups. SI individuals had a median CK of 116 IU/L, compared 

to 102 IU/L for individuals who were tolerant to statin therapy, but both were with the 

normal range. Median LDL levels were not significantly different across the two 

groups. 
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Table 3.7 Phenotype C (Poor adherence, irrespective of CK) v. F (Adherent, irrespective of CK)  

Variables Statin 

intolerant 

(Phenotype 

C) 

Statin 

tolerant 

(Phenotype 

F) 

Test of  

Association 

 n = 869 n = 1430  

Mean age  starting statin 

therapy (SD) 

58 

(9) 

61  

(10) 

T value = 7.6 

P value < 

0.0001 

Mean age  at censor date ( 

SD) 

72 (9) 71 (10) T value = 1.4 

P value= 0.16 

Sex (% Females) 47 44 Χ2 = 2.5 

P value = 0.11 

Diabetes (%) 82 78 Χ2 =  6.4 

P value = 0.01 

First Statin as Simvastatin 

(%) 

59 70 Χ2 = 163 

P value 

<0.0001   

Last Statin as Simvastatin 

(%) 

17 41 Χ2 = 306 

P value  

<0.0001 

Starting dose as “low” (< 

20mg/day) (%) 

90 55 Χ2 =249 

P value 

<0.0001 

Ending dose as “high” (≥80 

mg/day) (%) 

34 38 Χ2 =245 

P value 

<0.0001 

CYP inhibitors or substrates 

(Yes v. No) (%) 

59 43 Χ2 = 48 

P value < 

0.0001 

Statin use for secondary 

prevention of CVD (%) 

31 22 Χ2 = 11.6 

P value = 

0.0006 

CK levels     

Median 116 102 

T  value = 2.6 

P value = 

0.0095 

Minimum 21 17 

Maximum  3,271 5,217 

Mean 173 144 

LDL at baseline  n= 64 n= 338  

Median 3.3 3.2 

T value = 1.18 

P value = 0.24 

Minimum 1.5 0.4 

Maximum  6.4 8.7 

Mean 3.5 3.4 
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3.3.1.4 Phenotype D (Statin-induced myositis) v. E (Normal CK + Adherent) 
Next we compared a group of individuals who showed CK elevations 4 or more times 

the upper limit of normal while on statins and had either switched statin 3 or more times 

or discontinued treatment (Phenotype D) to highly adherent individuals with normal 

CKs (Phenotype E) seen in Table 3.8 Phenotype D (Statin-induced myositis)  v. E. SI 

individuals started therapy at a younger age, although there was no difference in the 

ages across the groups at the end of follow-up period. SI individuals were less likely to 

start or end therapy on simvastatin. They were more likely to begin on a low dose and 

also less likely to be on a higher dose at the end of follow-up period. The use of 

potentially interacting co-medications was 60% amongst those classified as SI 

compared to 44% amongst tolerant controls, the difference was statistically significant. 

31% of those classified as intolerant were on statins for the secondary prevention of 

CVD contrasted with 23% of tolerant controls, the difference was marked by did not 

achieve statistical significance. By phenotype definition CK levels varied drastically 

across the groups, the median in the SI group was 903 IU/L and 76 in the ST group. 

LDL levels did not vary significantly across the groups, although the numbers in the 

analyses are quite low.   
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Table 3.8 Phenotype D (Statin-induced myositis)  v. E (Normal CK + Adherent) 

  

Variables Statin 

intolerant 

(Phenotype 

D) 

Statin 

tolerant 

(Phenotype 

E) 

Test of  

Association 

 n = 45 n = 960  

Mean age  starting statin 

therapy (SD) 

56 

  (10) 

62 

 (10) 

T *value = 

3.35 

P value= 

0.0004 

Mean age  at censor date 

( SD) 

71 

  (10) 

71 

 (10) 
T value = 0.29 

P value= 0.77 

Sex (% Females) 
36 43 Χ2 = 0.96 

P value = 0.3 

Diabetes (%) 
80 79 Χ2 =  0.03 

P value = 0.87 

First Statin as Simvastatin 

(%) 

53 71 Χ2 = 36 

P value 

<0.0001 

Last Statin as Simvastatin 

(%) 

18 41 Χ2 = 134 

P value <0.001 

Starting dose as “low” (< 

20mg/day) (%) 

82 53 Χ2 = 15 

P value = 

0.0005 

Ending dose as “high” (≥80 

mg/day) (%) 

31 36 Χ2 = 98 

P value 

<0.0001 

CYP inhibitors or substrates 

(Yes v. No) (%) 

60 44 Χ2 = 4.7 

P value = 0.03 

Statin use for secondary 

prevention of CVD (%) 

31 23 Χ2 = 0.9 

P value = 0.34 

CK levels (IU/L)    

Median 903 76 

T value = 42 

P value < 

0.0001 

Minimum 483 17 

Maximum  19,156 179 

Mean 1604 81 

LDL at baseline (mmol/L) 8 549  

Median 3.6 3.1 

T value = 1.3 

P value = 0.2 

Minimum 3.1 0.4 

Maximum  4.7 8.7 

Mean 3.7 3.2 
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3.3.1.5 Phenotype G (Dose-related Intolerant) v. H (Dose tolerant + Adherent) 
We defined this phenotype based on criteria proposed by Banach et al. that in order 

to be classified as intolerant, an individual must have been on the lowest prescribed 

daily dose of a specific statin before being switched to another statin. Therefore, 

individuals who had been on the lowest approved dose of a specific statin before being 

switched to another, or discontinuing it completely were compared to individuals with 

a tolerant phenotype where users had been on a minimum of 40 mg of simvastatin (or 

equivalent), for a minimum of 5 years, with a 90% daily coverage rate with no switches 

or discontinuations. This is presented in Table 3.9 Phenotype G (Dose-related 

intolerant) v. H (Dose tolerant + Adherent).  

These groups started statin therapy at the same age, but SI individuals had used statins 

for 6 months longer at the end of follow-up. SI individuals were less likely to have 

started or ended therapy on simvastatin or atorvastatin compared to tolerant individuals. 

SI individuals were more likely to have begun therapy on a dose lower than 20 mg of 

simvastatin (or equivalent). Statin tolerant individuals were more likely to be on a 

therapy of 80 mg or higher at end of follow-up. However, this is an artefact of the 

definition of tolerance that involves a high average daily dose. The use of potentially 

interacting co-medications was significantly higher, (51%) amongst those classified as 

SI compared to tolerant controls (42%). 28% of those classified as intolerant were on 

statins for the secondary prevention of CVD contrasted with 25% of tolerant controls, 

the difference was statistically significant. Even though CK levels were not included in 

the definitions, we see significantly higher median CK levels amongst those who were 

intolerant (98 IU/L v. 85 IU/L), however both were within the normal range.  

A main concern with a phenotype that is dose dependent is that differences might 

arise from the LDL cholesterol reduction required between tolerant and intolerant 

individuals. However, we find that there is no significant difference in LDL levels prior 

to starting therapy between the two groups.  
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Table 3.9 Phenotype G (Dose-related intolerant) v. H (Dose tolerant + Adherent) 

Variables Statin 

intolerant 

(Phenotype 

G) 

 

Statin  

tolerant 

(Phenotype 

H) 

Test of  

Association 

 n = 731 n = 443  

Mean age at start of statin 

therapy (SD) 

60 

 (10) 

60 

(10) 

T value = 0.15 

P value= 0.9 

Years on statin therapy 

(SD) 

10 

(5) 

9.5 

(3) 

T value = 2.7 

P value= 0.007 

Sex (% Females) 
48 46 

Χ2 = 2 

P value = 0.16 

Diabetics (%) 
92 90 

Χ2 = 0.97 

P value = 0.33 

First Statin as    Χ2 = 69 

P value = 2 x 

10-15 

Simvastatin (%) 59 65 

Atorvastatin (%) 21 30 

Last Statin as    
Χ2 = 129 

P value  = 3 x 

10-34 

Simvastatin (%) 31 36 

Atorvastatin (%) 

 
44 61 

Starting dose as    
Χ2 = 303 

P value < 

0.0001 

< 20 mg/day (%) 94 37 

20-80 mg/day (%) 5.7 57 

≥80 mg/day (%) 0.3 6 

Ending dose as    
Χ2 = 249  

P value < 

0.0001 

< 20 mg/day (%) 43 0.40 

20-80 mg/day (%) 34 57.4 

≥80 mg/day (%) 23 50 

CYP inhibitors or substrates 

(Yes v. No) 51% 42% 

Χ2 = 18 

P value < 

0.0001 

Statin use for secondary 

prevention of CVD 
28% 25% 

Χ2 = 1.1 

P value = 0.3 

CK levels (IU/L)    

Median 98 85 
T* value = 4.3 

P value < 

0.0001 

Minimum 13 19 

Maximum  12735 1369 

Mean 170 107 

LDL levels at baseline 

(mmol/L) 
n = 149 n = 285 

 

Median 3.2 3.1 

T* value = 0.10 

P value 0.38 

Minimum 1.1 0.5 

Maximum  6.4 8.7 

Mean 3.1 3.2 
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Association between non-compliance and reports of myalgia in a RCT 

Since, we do not have accounts of physician diagnosed or patient-reports of myalgia 

in the GoDARTS study, we sought to validate the use of poor adherence as a proxy. 

Due to the primary nature of data collected for myalgia and non-compliance in the 

clinical trial setting, we sought to examine this in the JUPITER trial. We observed that 

those having myalgia had 2.2 times the odds of being non-compliant with their therapy 

(p value = 1 x 10-10).  

Association of phenotypes with statin failure in GoDARTS 

In order to determine the validity of each of the phenotypes developed, the association 

with the main negative outcome of statin intolerance – failure of statin therapy (SF), 

was tested. Of the 11,912 who were ever on statin treatment, 3123 (26%) had an 

ischemic or coronary artery event after commencing therapy. We performed a Cox 

proportional hazards regression for each comparison group in a 10 year follow-up 

period. 

The hazards of SF were 1.5 times higher for those who had raised CK (A) while on 

therapy and 1.9 times higher for those who had raised CK and poor adherence (B) 

compared to those with consistently normal CK and good adherence. For those with 

poor adherence (C) the hazards were 1.7 times higher compared to those with good 

adherence, irrespective of CK levels (F). Those meeting our criteria for statin-induced 

myositis had 2 times the hazards of SF compared to those with normal CK and good 

adherence (E). Finally, those showing intolerance to even the lowest dose of specific 

statin therapies (G) had 1.9 times the hazards of SF compared to dose-tolerant controls 

(H). All models were adjusted for age at time of starting therapy, sex and whether the 

statin was prescribed after a CV-event (secondary prevention) or not (primary 

prevention). Analyses stratified by primary or secondary prevention and related risks of 
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statin intolerance are also presented. Table 3.10 presents the number of events of “statin 

failure” that occurred in each phenotypic group.  

Table 3.10 Number of events of statin failure in phenotype groups 

Phenotype 

groups 

Number of 

events 

Percentage of 

events (%) 

Case: A 213 40 

Case: B 134 41 

Case: C 208 45 

Case: D 15 58 

Case: G 199 42 

Control: E 152 30 

Control: F 224 30 

Control: G 104 31 

 

Before undertaking any statistical analyses it is clear that statin intolerant “case” 

groups had a much higher percent of events compared to tolerant groups. A complete 

summary with hazard ratios, standard errors and p values in each category are presented 

in Table 3.11. 
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Table 3.11 Hazards of statin failure for each phenotype of intolerance. All main effects models were 

adjusted for age at start of therapy, sex and whether the therapy was for the primary or secondary prevention 

of CVD. Stratified results are presented for those who were on statins for primary or secondary prevention 

of CVD. 

Phenotypes Hazards 

of Statin 

Failure 

Standard 

Error 

P value  

A v. E: Raised 

CK 

1.5 0.12 0.0008 

Primary  1.70 0.16 0.0003 

Secondary 1.14 0.20 0.5 

B v. E: Raised 

CK + non-

adherent 

1.9 0.14 <0.0001 

Primary  2.30 0.19 <0.0001 

Secondary 1.50 0.22 0.07 

C v. F: Non-

adherent 

1.7 0.11 <0.0001 

Primary  2.6 0.15 <0.0001 

Secondary 1.0 0.17 0.92 

D v. E: Statin-

induced 

myositis 

2.1 0.31 0.015 

Primary  2.0 0.38 0.076 

Secondary 2.4 0.54 0.12 

G v. H: Dose 

intolerance 

1.9 0.14 <0.0001 

Primary  2.1 0.2 0.0001 

Secondary 1.6 0.2 0.028 
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3.3.1.6 Hazards of statin failure for raised CK stratified by primary or secondary 
prevention  

For primary prevention, the hazards of statin failure for those classified as having 

raised CK while on statins were 1.7 times that compared to tolerant controls, where 

64% of all individuals in the analysis had the outcome. However, due to the reduced 

numbers in the secondary prevention group, and the high proportion of individuals who 

had another CV event (90%) the association was not significant. Results seen in Table 

3.11and Figure 3.6. 

 

 
Figure 3.6 Raised CK: Kaplan-Meier of hazards of statin failure by statin intolerance status stratified by 

whether therapy was for primary of secondary prevention of CVD. Primary refers to primary prevention, 

while secondary refers to secondary prevention. 
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3.3.1.7 Hazards of statin failure for raised CK and non-adherence stratified by 
primary or secondary prevention 

For primary prevention, the hazards of statin failure for those classified as having 

raised CK and being non-adherent to their statins were 2.3 times higher compared to 

tolerant controls, where 61% of the individuals in the analysis had the outcome. Once 

again due to the reduced number of individuals receiving statins for secondary 

prevention, and the accompanying high proportion that had another CV event (92%), 

the association is not statistically significant. Results seen in Figure 3.7 and Table 3.11. 

 

 
Figure 3.7 Raised CK and non-adherent: Kaplan-Meier of hazards of statin failure by statin intolerance 

status stratified by whether therapy was for primary of secondary prevention of CVD. Primary refers to 

primary prevention, while secondary refers to secondary prevention. 
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3.3.1.8 Hazards of statin failure for non-adherence stratified by primary or secondary 
prevention 

For primary prevention, the hazards of statin failure for those classified as non-

adherent to their statins were 2.6 times higher compared to adherent controls, where 

62% of the individuals in the analysis had the outcome. Once again due to the reduced 

number of individuals receiving statins for secondary prevention, and the 

accompanying high proportion that had another CV event (90%), the association 

between adherence and statin failure is not statistically significant. Results seen in 

Figure 3.8 and Table 3.11. 

 
Figure 3.8 Non-adherent: Kaplan-Meier of hazards of statin failure by statin intolerance status stratified 

by whether therapy was for primary of secondary prevention of CVD. Primary refers to primary prevention, 

while secondary refers to secondary prevention. 
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3.3.1.9 Hazards of statin failure for statin-induced myositis stratified by primary or 
secondary prevention 

For primary prevention, the hazards of statin failure for those classified as having 

statin-induced myositis were 2 times higher compared to tolerant controls, where 55% 

of the individuals in the analysis had the outcome. For the secondary prevention, the 

hazards of statin failure were 2.4 times higher for those who developed statin-induced 

myositis compared to tolerant controls. However, due to low numbers in both primary 

and secondary prevention arms of this analysis, the associations were not statistically 

significant. Results seen in Figure 3.9 and Table 3.11. 

 
Figure 3.9 Statin-induced myositis: Kaplan-Meier of hazards of statin failure by statin intolerance status 

stratified by whether therapy was for primary of secondary prevention of CVD. Primary refers to primary 

prevention, while secondary refers to secondary prevention. 
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3.3.1.10 Hazards of statin failure for dose intolerance stratified by primary or 
secondary prevention 

For primary prevention, the hazards of statin failure for those classified as dose 

intolerant were 2.1 times higher compared to dose tolerant controls, where 69% of the 

individuals in the analysis had the outcome. For the secondary prevention of CV events, 

the hazards for those who were dose intolerant were 1.6 times that of those who could 

tolerate higher doses. In this arm of the analysis 93% had another CV event. Results 

seen in Figure 3.10 and Table 3.11. 

 
Figure 3.10 Dose intolerance: Kaplan-Meier of hazards of statin failure by statin intolerance status 

stratified by whether therapy was for primary of secondary prevention of CVD. Primary refers to primary 

prevention, while secondary refers to secondary prevention. 
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Association between phenotypes and SLCO1B1 gene risk score 

Using the gene risk score created by Donnelly et al. that was shown to be associated 

with SI, we attempt to validate our phenotype. The results are presented in Table 3.12 

and show that all the groups created are strongly associated with the gene risk score, 

where those classified as cases appear to carry the deleterious genotypes.  

 
Table 3.12 Phenotype validation using SLCO1B1 gene risk score 

Phenotype SLCO1B1 gene risk score 

Beta (SE) P value 

A: Raised CK 0.43 (0.14) 0.0016 

B: Raised CK + 

non-adherence 

0.48 (0.18) 0.009 

C: Non-

adherence 

0.43 (0.19) 0.02 

G: Dose 

intolerance 

0.56 (0.17) 0.0012 

 

3.4 Discussion & conclusions  

The aim of this chapter was to describe trends in the population level usage of statins 

that reflected an inability to tolerate the medication, using the most up-to-date 

knowledge in field. Defining statin intolerance using EMR presents several challenges, 

most notably the necessary use of surrogates to define the occurrence of an adverse 

event such as patient reports of myalgia etc. Therefore, our findings had to be examined 

for both internal validity (did those who were intolerant have increased risk of suffering 

a CV event) and external validity (are the trends of poor adherence associated with 

increased reports of adverse events).  

We observed, individuals in the statin tolerant groups were more likely to have started 

therapy at a later age (phenotypes B, C and D), however, this difference in age was not 

noted in the raised CK (phenotype A) and dose-related intolerance groups (phenotype 

G). The younger age points toward a potential difference in whether therapy was 

commenced for the primary or secondary prevention of CVDs. We observe that those 
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who began therapy at a younger age were more likely to be intolerant to their 

medications, and to be on therapy for secondary prevention compared to tolerant 

controls. The majority of individuals in this study were on statin therapy for primary 

prevention of CVD. Consistent with reported risk factors, females were more likely to 

have raised CK and be non-adherent to their medication (phenotype B), but there was 

no significant difference in genders across other phenotypes. Those who were non-

adherent to therapy (phenotype C) were more likely to have type 2 diabetes (T2D), 

however diabetic status did not differ significantly across other phenotypes. While 

reports of statin use leading to the development of T2D have gained traction (138,139), 

we did not assess the temporal relationship between the two in this analysis.  

 We observed that those classified as intolerant were less likely to have started therapy 

on simvastatin (across all groups), at the end of follow up phenotype B, C, D and G 

were less likely to be on simvastatin. This effect is blunted for those with raised CKs 

(phenotype A) as some of the individuals included would have had asymptomatic 

increases in CK, and their statins would likely remain unchanged. As such, phenotype 

A is most prone to detecting false positives. Due to experimental design individuals 

classified as tolerant were on higher starting and ending doses. Interestingly, those 

classified as intolerant began therapy on daily doses lesser than 20 mg of simvastatin 

(or equivalent of other statins), contrary to reports that intolerance might develop in 

response to initiation at high dose, here it appears that it might occur in response to 

gradual dose escalation, as seen in phenotype G – where merely 0.3% of intolerant 

individuals began on a daily dose ≥80 mg, while 23% ended on such a dose. The 

concurrent use of interacting medications was significantly higher amongst those who 

became intolerant to their therapy, confirming the use of CYP inhibitors or substrates 

as risk factors for statin intolerance and statin-induced myopathy. 
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We observe that while CK measures differ significantly across the comparison groups, 

by experimental design for phenotypes A, B, C and D; for phenotypes C and G where 

intolerance was adjudicated irrespective of CK elevations, levels were higher amongst 

those who were intolerant. This indicates that there is some muscle damage in response 

to statin usage for those unable to tolerate the drug, even if the change in CK is not 

clinically significant. 

Crucially, there was no significant difference in baseline LDL measures, reflecting 

that it is not merely LDL cholesterol levels at baseline that determine the type of statin 

and dose an individual is prescribed. This indicates that the overall risk of CVD that 

factors in age, BMI, family history and co-morbidities also inform the statin treatment 

an individual receives.  

Clinically the attribution of muscle-based side effects to statin exposure is 

strengthened by an individual having on-treatment circulating levels of CK higher than 

a standard reference range. However, since many patients do not have recorded pre-

treatment CK levels in GoDARTS, it is not possible to assess relative increases in CK 

levels.  

We report, in a RCT-setting, that those with documented myalgia had twice the odds 

of non-compliance to therapy in a clinical trial setting, where both outcomes were 

adjudicated. This serves as the external validation of our use of non-compliance 

parameters, and conversely, our use of compliance or adherence as markers of tolerance 

to therapy. 

The phenotypes of intolerance developed in this study appear to increase the risk of 

CV-related events. This study is especially powered to detect these effects amongst 

those seeking primary prevention of CVD as the vast majority of statin users in the 

GoDARTS cohort are placed on statins for primary prevention. We represent the 

increased risk by intolerance status stratified by primary or secondary prevention in 
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Kaplan-Meier survival plots – where being classified as intolerant shows a higher risk 

in both arms. Behaviorally, it seems plausible that those on primary prevention are more 

likely to discontinue therapy at the onset of symptoms of intolerance, than those who 

are using statins for secondary prevention. 

Further, our validation of the association between the gene-risk score in SLCO1B1 

put forward by Donnelly et al. across all the phenotype of statin intolerance created 

shows that the definitions applied are robust. Additionally it implies that the outcomes 

seen are affected by the rate of efflux of statins that is regulated by the gene.  

While our calculations of adherence are necessarily a proxy for whether the individual 

actually consumed the medicine, it is unlikely that many subsequent prescriptions 

would be encashed if the patient were not taking the medication with some degree of 

regularity.  

Advantages: The thresholds used for phenotypes in this study have been previously 

validated and some are more stringent than used before. The usage of statin switching 

to define statin intolerance in a population study is unusual, but is more likely to reflect 

intolerance than dose reductions which could reflect better LDLc response in those with 

dose reductions.  

Future directions: The GoDARTS study provides a unique opportunity to study a 

population’s health and drug usage trends, with data available from over two decades. 

The uninterrupted prescribing history, juxtaposed with medical records and genotype 

data can provide insights into genetic factors associated with drug use patterns and 

outcomes in a real-world setting. Subsequent analyses can examine the association of 

genetic variants with these phenotypes of statin intolerance, and arrive at valid 

conclusions.  
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4 The association of variants in CKM and LILRB5 with creatine 

phosphokinase levels  

4.1 Introduction  

Creatine phosphokinase (CK) is an enzyme, 381 amino acids in length (140). It 

catalyzes the reversible reaction that utilizes creatine to produce phosphocreatine and 

ADP by the dephosphorylation of ATP. This is an exergonic reaction, and is important in 

the maintenance of energy homeostasis in all muscle tissues. CK subunits are present in 

the brain (CK-B) and skeletal muscles (CK-M), and an isozyme is present in the heart 

(CK-MB) (141).  

The enzyme creatine phosphokinase or CK is used as a marker for tissue damage, 

muscle breakdown, muscular dystrophy, infection, pulmonary infarction, acute kidney 

failure, heart attacks, rheumatoid arthritis and some liver diseases. Notably, it is used a 

marker of muscle damage or myopathy in adverse reactions to statins.  CK is a routine 

biochemical test performed in the clinical setting with widespread applicability.  

In 2014 Dubé  et al. performed an original study with 3412 Caucasian statin users 

recruited in Quebec, Canada (119). The 1262 cases had statin-related muscle symptoms 

based on a clinician’s assessment that resolved upon withdrawal or dose reduction. 2150 

controls were treated with a moderate or higher dose of statin, for a minimum of 3 months. 

However, 954 past sufferers of statin-induced myotoxicity were removed from the study, 

considerably impacting the power to detect the effect of these variants on CK levels in 

statin intolerant individuals. They applied exclusion criteria such as known renal 

impairment, hereditary or acquired muscle disease, liver disease etc. Serum CK measures 

and statins were noted at the time of recruitment into the study.  The study found two 

SNPs that passed the genome-wide significance threshold: a synonymous variant, 

rs2361797 in the LILRB5 gene and a nonsynonymous variant rs11559024: Glu83Gly in 
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the CKM gene for an association with serum CK levels. They found heterozygous carriers 

of the rare allele at CKM had a mean CK level of 68.13 (SD 35.57) U/L compared to 

119.32 (SD 84.74) for homozygous carriers of the common allele (119).  

A replication study was undertaken using the Montreal Heart Institute Biobank, where 

the association was tested in 3389 statin users and 1941 non-users. Only Caucasian 

participants were selected for the study. Replication confirmed the findings for 

rs11559024 Glu83Gly in the CKM gene and rs12975366 Asp247Gly (BP 19:54255498) 

and rs2361797 (BP 19:54249685) in LILRB5 with associations in statin users and non-

users – showing that this genetic effect is not modulated by statin use (119). The results 

from the original study are presented in Figure 4.1. 

 
 
Figure 4.1 Results from GWAS performed by Dube et al. signals from chromosome 19 appeared strongly 

associated with serum CK levels. The variants were found in genes CKM and LILRB5. 

 

The Canadian study described two SNPs in tight LD i.e. rs2361797 and rs12975366 as 

being associated with CK levels. The SNP in LILRB5 primarily used by our study, 

rs12975366 (Asp247Gly) has a D’ of .92 with rs2361797 (142) in the GoDARTS cohort 

CKM 

LILRB5 
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and similar association results were found with both SNPs in our cohort.  These signals 

are therefore not independent and it is as yet unclear if either are causal variants. 

In 2016, Kristjansson et al. replicated these findings in a GWAS performed on 63,159 

Icelanders with CK measurements. They report the main effect of the Glu83Gly variant 

(β = -0.446, p value= 1.8 x 10-115) and for the Asp247Gly variant (β = -0.08, p value= 6.5 

x 10-44) (118). 

   We attempt to test this association in the GoDARTS population. Furthermore, since 

the study has access to longitudinal health records we are able to assess the impact of 

these variants on intra-individual variability or inducibility of creatine kinase levels. 

Inducibility of CK in response to appropriate stressor is the clinically significant feature, 

as CK is usually measured when tissue damage is suspected, and is no longer part of a 

routine biochemistry panel. The findings of this analysis could impact on the viability of 

CK as a reliable biomarker, especially for statin intolerance.   

4.2 Methods:  

CK testing 

Creatine kinase measures were gathered per the methods described in Chapter 3.  

The CK measures used for replication in the JUPITER trial were tested at baseline, 

when the population was treatment-naïve.  

The CK enzyme assays were performed at the Ninewells Hospital Central Biochemistry 

Laboratories and follow the protocols summarized subsequently.  

Enzyme assay kits for CK produced by abcam (Cambridge, United Kingdom) are 

designed to detect the products of the reaction catalyzed by creatine phosphokinase. CK 

catalyzes the dephosphorylation of ATP to produce phosphocreatine and ADP. The 

generated phosphocreatine and ADP then react with the CK enzyme mix to form an 

intermediate, which reduces a colourless probe to a coloured product with strong 
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absorbance (λ = 450 nm). The assay is quite sensitive and can detect activity less than 1 

mU. Enzyme assay kits produced by Sigma-Aldrich (St. Louis, United States of America) 

detect the reverse. In the reaction, phosphocreatine and ADP are converted to creatine 

and ATP. The generated ATP is used by hexokinase to phosphorylate glucose resulting 

in glucose-6-phosphate, which is oxidized by NADH in the presence of glucose-6-

phosphate dehydrogenase to produce NADPH and 6-phospho-D-gluconate. The assay 

detects NADPH at 340 nm.  

In both assays, one unit of CK is the amount of enzyme that will catalyze the conversion 

of 1.0 µmole of substrate per minute at pH 6.0 at 37°C. Both options are used widely, and 

rely on the enzyme’s ability to act on substrate, measuring products on either side of the 

reversible reaction as seen in Figure 4.2.  

 

Figure 4.2 Reaction catalyzed by CK and end products detected by the two assay methods. 

The end products of the assays helps us understand what aspect of CK activity is being 

measured and what an abnormal CK results might suggest about the altered 

functionality or structure of the molecule.  



82 

 

Genotype data 

Genotype data for the LILRB5 variant (rs12975366: Asp247Gly) was available for 5785 

individuals. Out of those 2747 were imputed from the Illumina HumanOmni Express -

12VI platform (Illumina, San Diego) and 2451 from the Affymetrix 6.0 platform 

(Affymetrix, Santa Clara) with an imputation quality of 86.8% and 81.7% respectively. 

An additional 587 were genotyped using TAQMAN. Imputation was performed against 

the 1000G Phase I V3 reference panel using Impute2 (126). 

Genotype data for the CKM variant (rs11559024:Glu83Gly) was available for 6271 

individuals, of whom 4578 were genotyped using the Human Exome -12 VI_A_chip and 

1693 using TAQMAN.  

Genotyping techniques for the GoDARTS cohort are described in Chapter 2. 

Genotyping for 8749 JUPITER trial participants was performed on the Omni1-Quad 

platform (Illumina, San Diego). The imputation quality of the LILRB5 Asp247Gly 

variant, rs12975366 was 94%, R2=0.90 and MAF = 0.40. The CKM Glu83Gly variant, 

rs11559024 was directly typed with R2=0.99 and MAF = 0.018  (115). 

The variants were in Hardy-Weinberg equilibrium. 

Statistical analysis 

This analysis was not restricted to statin users. Logarithmic transformations were 

applied to all CK levels to normalize their distribution. Genotypes were treated as 

numerical variables, 0 represented homozygous carriers of the wild type (T/T) alleles, 1 

represents heterozygotic carriers (T/C) and 2 represents homozygous carriers of the rare 

allele (C/C). For the association of “baseline” CK, each individual’s first test result in an 

ambulatory setting was used. To ascertain the intra-individual variation in CK, the 

standard deviations were calculated (proc means noprint) procedure and specifying the 

by function to represent the participant ID. The associations were tested using linear 

regression (proc reg). The beta, standard error and R2 are reported. 
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All analyses was performed in SAS 9.3 (SAS Institute, Cary NC). Plots were generated 

in R studio (135). Meta-analyses were performed using the metafor package in the R 

studio environment (135,136,143). 

Statistical analyses in the JUPITER trial were performed by Dr. Dan Chasman using R 

(136).  

4.3 Results: population distributions, MAF association and case report 

Creatine kinase  

The effect of the Glu83Gly variant in CKM was assessed using SWISSPROT(144–146) 

and the change in protein structure is presented in Figure 4.3. The thymine to cytosine 

switch, resulting in the substitution of glycine for glutamic acid occurs at the 83rd position 

in the 381 amino acid long enzyme. As seen in the protein model, the mutation does not 

fall in the active site of the enzyme. 

 

Figure 4.3 Tertiary structure of the enzyme CK. ATP-binding sites of the enzyme are highlighted in red, 

orange, amber, yellow and fluorescent green. Location of the Glu83Gly variant is highlighted in blue.  

Mean CK levels were significantly different across genders, with males having 

significantly higher CK levels (β= 0.13, p value 2 x 10-16). Gender accounts for 7% of the 

variation seen in CK levels (see Figure 4.4).  
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Although significantly associated with CK (p value = 0.015), age did not appear to be 

a significant predictor of CK levels; explaining lesser than 0.0004% of the variation, (see 

Figure 4.5).  

In this analysis, 87% of individuals tested for the association with CKM Glu83Gly and 

93% of those tested for LILRB5 Asp247Gly were statin users. 
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Figure 4.4 Boxplot of log 10 transformed CK levels stratified by sex in the GoDARTS study. The upper 

band corresponds to the upper limit of normal CK levels i.e. 180 IU/L, while the lower band corresponds to 

the lower limit of normal CK levels i.e.  IU/L. 45% were female. 

 
 
Figure 4.5 Scatterplot of the association between log 10 transformed CK levels and Age. Correlation:  r = - 

0.022, p value = 0.015 

Genotype data 

Genotype information for the Glu83Gly variant in CKM was obtained for 6271 

individuals. We observed 6064 were homozygous for the reference allele (T/T), 207 were 

heterozygous carriers of the mutation (T/C) and one individual was homozygous for the 

CKM variant (C/C), the MAF was 0.02.  



86 

 

Genotype information for the Asp247Gly variant in LILRB5 was obtained for 5785 

individuals in GoDARTS. We observed that 2295 were homozygous for the reference 

allele (T/T), 2715 were heterozygotes (T/C) and 790 (C/C) were homozygous carriers of 

the minor allele. The minor allele frequency MAF was 0.37.  

In the JUPITER trial, genotyping for the trial participants was performed on the Omni1-

Quad platform (Illumina, San Diego). The CKM variant ( rs11559024) was directly typed, 

and had a MAF of 0.018. The imputation quality of LILRB5 Asp247 variant, rs12975366 

was 94% and had a MAF of 0.40 (115). 

Association of the variants with CK levels 

Creatine kinase levels were significantly associated with the CKM Glu83Gly variant (n 

= 4599, p value = 2 x10 -16). Heterozygous carriers of the CKM 83Gly variant (T/C) had 

mean CK of 86 (+/-68) compared to 126 (+/-82) for homozygotes of the ancestral allele 

Table 4.1.  

CK levels were also significantly associated with the LILRB5 Asp247Gly variant (n = 

5020, p value = 4 x 10 -7). Homozygous carriers of the variant (C/C) had mean CK of 100 

(+/-84) compared to 124 (+/-83) for homozygotes of the ancestral allele.   

Box plots of log transformed CK levels stratified by the genotypes are provided in 

Figure 4.6 and Figure 4.7. 

Table 4.1. Creatine kinase levels by genotype 

SNP Mean 

CK 

SD 

CK 

Median 

CK 

Minimum 

CK 

Maximum 

CK 

N 

CKM: rs11559024 (Glu83Gly) 

T/T: 

Glu83 

126 82 102 16 934 4447 

T/C: 

83Gly 

86 68 61 14 420 152 

LILRB5:rs12975366 (Asp247Gly) 

T/T: 

Asp247 

124 83 100 18 574 1972 

T/C: 

247Gly 

119 82 96 12 931 2361 

C/C: 

247Gly 

100 84 87 17 900 688 
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Figure 4.6 Boxplot of log 10 transformed CK levels stratified by CKM genotypes in the GoDARTS study. 

The upper band corresponds to the upper limit of normal CK levels i.e. 180 IU/L, while the lower band 

corresponds to the lower limit of normal CK levels i.e. 38 IU/L 

 

Figure 4.7 Boxplot of log 10 transformed CK levels stratified by LILRB5 genotypes in the GoDARTS study. 

The upper band corresponds to the upper limit of normal CK levels i.e. 180 IU/L, while the lower band 

corresponds to the lower limit of normal CK levels i.e. 38 IU/L 
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The association with the CKM Glu83Gly variant was replicated in the JUPITER trial (n 

= 8745, p value <2 x 10-16). A meta-analysis with the GoDARTS cohort showed a highly 

robust association (β = -0.18, p value = 1 x 10-63). A forest plot of the association is 

presented in Figure 4.8. 

 
 

Figure 4.8 Forest plot of the meta-analysis of the association of creatine kinase with the CKM Glu83Gly 

variant in the GoDARTS study (p value = 1 x 10-16) and the JUPITER trial (p value = 1 x 10-16).  
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 The association with the LILRB5 Asp247Gly variant was replicated in the JUPITER 

trial (n = 8745, p value = 2.8 x 10 -16). A meta-analysis of the effect of the LILRB5 

Asp247Gly variant across the two studies showed a robust association (beta = -0.029, p 

value 3.5 x 10-17). A forest plot of the association is presented in Figure 4.9. 

 

 
 

Figure 4.9. Forest plot of the meta-analysis of the association of creatine kinase with the LILRB5 Asp247Gly 

variant in the GoDARTS study (p value = 1 x 10-7) and the JUPITER trial (p value = 1 x 10-16).  

 

We conclude that “resting or un-induced” CK levels are strongly associated with the 

variants in CKM and LILRB5. From the meta-analyses of the GoDARTS and JUPITER 

populations we conclude that heterozygous carriers of the Glu83Gly variant in CKM there 

was a 0.18 log decrease, equivalent to an average decrease of 1.20 IU/L serum CK levels 

compared to non-carriers. Meanwhile, the addition of each rare allele for the Asp247Gly 

variant in LILRB5 results in a 0.03 log decrease in enzyme levels, which is equivalent to 

an average reduction of 1.03 IU/L of serum CK per C allele.  
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Association of the variants with CK variability 

With access to an average of 13 years of follow-up and a median of 9 measures of CK 

per individual in GoDARTS we decided to examine the impact of these variants on the 

intra-individual variation in CK levels. We restricted this analysis to individuals with 

three or more measures of CK. Per individual standard deviations were calculated.  

The standard deviation of an individual’s CK test results were stratified by the genotype 

to create Figure 4.10 and Figure 4.11. We observe that CKM Glu83Gly variant exerts a 

strong effect on the inducibility of CK measures in an individual (beta = -0.24, p value 2 

x 10-5). There is a 1.27 IU/L reduction in the standard deviation of their intra-individual 

serum CK levels. However, the LILRB5 Asp247Gly variant does not have a similar effect 

(p value = 0.8), this effect was also absent when the genotype was treated as a dominant 

trait Figure 4.12.  
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Figure 4.10 Boxplot showing intra-individual variability demonstrated as standard deviation by CKM 

Glu83Gly genotype. The reference line indicates the mean standard deviation in the population (40 IU/L). 

 
Figure 4.11 Boxplot showing intra-individual variability demonstrated as standard deviation by  

LILRB5 Asp247Gly genotype. The reference line indicates the mean standard deviation in the population (40 

IU/L). 
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Figure 4.12 Boxplot showing the intra-individual variability in CK levels stratified by LILRB5 Asp247Gly 

genotype treated as a dominant trait. C/C and C/T = 1 and T/T = 0 

We observe that when considering intra-individual variability the LILRB5 Asp247Gly 

variant shows no significant effect. 

In the absence of a clear additive effect for the LILRB5 variant on CK levels, subsequent 

analyses in this thesis employed a dominant model; where individuals homozygous for 

the ancestral allele (T/T: Asp247) were compared to carriers of the minor allele (T/C and 

C/C: 247Gly).  

The impact of the Glu83Gly variant in CKM on CK inducibility is further highlighted 

in the single individual in the GoDARTS cohort who was homozygous for the variant 

(C/C). In Figure 4.13, we see the patient’s CK levels during hospitalization for necrotizing 

fasciitis, a condition during which there is aggressive infection of the tissue and where 

CK levels could rise to > 600IU/L (147), while the patient’s CK levels did not exceed 15 

IU/L/. In response to the subsequent development of gangrene the patient underwent a 

debridement procedure, post-operatively CK levels were at a maximum of 28 IU/L. Later, 

the patient underwent a hemicolectomy for bowel cancer. The patient’s pre and post-

operative CK levels remained relatively unchanged and in fact, seemed lower (34 IU/L 
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and 25 IU/L respectively). The findings are presented by Wallace et al as a case report. 

Notably, the patient was a statin user who had undergone 4 switches in statin therapy 

between 3 types of statins, namely pravastatin, atorvastatin and simvastatin. This 

switching is attributed to complaints of intolerance however her CK measurements had 

been deemed normal by clinicians looking for evidence of statin-induced myositis (148). 

 

Figure 4.13 Serum CK levels of homozygous CKM Glu83Gly carrier 

4.4 Discussion 

We report the replication of the association between two variants, one in CKM and the 

other in LILRB5 with serum CK levels, first reported by Dubé et al. using data obtained 

in a prospective cohort study (GoDARTS) and in the treatment-naïve population of a 

clinical trial (JUPITER). Further, we show that the variant in CKM, Glu83Gly is also 

associated with the inducibility of CK levels. The use of standard deviations to calculate 

the inducibility gives us a conservative estimate of the effect, as the impact of the variant 

could be assessed by contrasting the highest and lowest CK recorded for an individual. In 

the case of the homozygous carrier of the variant we see the lack of CK response in 



94 

 

conditions that would normally cause extremely high CK levels, such as severe tissue 

infection and surgical trauma (148). We conclude that carriers of this CKM Glu83Gly 

variant are less likely to produce large quantities of measureable, and therefore, 

functioning CK in response to tissue damage. 

 Since the variant inhibits measureable CK levels from rising, potentially obfuscating 

the correct diagnosis, it might be essential to factor in the genotype of the individual 

before determining the validity or normalcy of the result.  

The MAF for the CKM Glu83Gly variant in the GoDARTS population was 0.02, in 

JUPITER it was 0.018, similar to the European population group in the 1000 Genome 

project (0.022). Similarly the MAF for the LILRB5 Asp247Gly variant was 0.37 and 0.40 

in the GoDARTS and JUPITER populations respectively, comparable to the 1000 

Genome project MAF of 0.43 amongst Caucasians.  This indicates that the populations 

under study were not suffering from participant selection bias.  The frequency of the CKM 

variant in the Kenyan Masai population is 0.223 (149). This significant difference in the 

allele frequencies in the Masai is striking and warrants further investigation in other 

populations and for association with features of muscle or athletic performance.  

The diminished quantity of functional of CK in the serum, would have to be 

compensated by other mechanisms in the body to maintain energy homeostasis. One 

potential hypothesis revolves around switch between aerobic and anaerobic metabolism. 

An oxygen debt created when there is insufficient phosphocreatine to make enough ATP 

needed during periods of high exertion. The process of energy generation then shifts from 

muscles to the liver (where ATP is generated anaerobically via glycolysis and the Cori 

cycle, which delays the oxygen consumption process). Therefore, those with low CK 

activity (CKM carriers) might make this switch sooner, to maintain homeostasis. 

All definitions of statin intolerance hinge on the elevation of CK and, in some instances 

on the resolution of muscle-associated CK elevations upon the discontinuation of statin 
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therapy. The most established threshold for a “clinically relevant” CK elevation is 4 or 

more times the upper limit of normal (4 X ULN) and 10 X ULN (66). However, as this 

study suggests, these outcomes are less likely to occur amongst carriers of the CKM 

variants.  

We therefore posit that the employment of the traditional classifications would lead to 

the artificial enrichment of non-carriers of the CKM variant being classified as having 

statin-induced myalgia, myositis or rhabdomyolysis. It would be interesting to examine 

if the CKM Glu83Gly variant is associated with reduced reports of myalgia or muscle-

aches, as it is associated with lower CK. If the variant confers no protective effect, this 

might provide a novel mechanistic rationale for a sub population of individuals presenting 

with statin intolerance or myalgia without raised CK levels (97).  

While the LILRB5 variant shows a significant trend toward having lower CK levels, 

carriers do still seem to retain the ability to induce high CK levels. This finding, along 

with the reported association of this variant with serum lactose dehydrogenase (LDH) 

levels (118), potentially implicates it as a baseline muscle-susceptibility marker, with 

carriers being less prone to muscle breakdown or being better able to repair muscle 

damage.  
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5 Are the missense variants in CKM and LILRB5 associated 

with statin intolerance? 

5.1 Introduction  

In Chapter 4, we provide evidence that un-induced or baseline CK levels, and the 

intra-individual variation in CK levels is confounded by the Glu83Gly variant. We 

provide evidence to suggest that CK levels must be considered in light of the genotypes 

of individuals at Glu83Gly and Asp247Gly before their validity can be determined. 

These conclusions point to a potential genetic underpinning for the phenomenon of 

muscle-based symptoms that are not reflected in commensurate increases in serum 

enzyme levels of CK (97). Therefore, in Chapter 3, we created phenotypes of statin 

intolerance that accounted for this confounding effect, by virtue of their being 

independent of CK elevations, but strongly reflecting patterns of statin consumption 

that indicate intolerance. These phenotypes also showed increased risk of failure of 

statin therapy.  

Since carriers of the CKM 83Gly variant do not produce as much functional CK, we 

investigated the data to assess if this variant is also associated with lower reported 

instances of muscle aches and non-compliance (in the JUPITER trial), with the 

phenotypes of intolerance created in Chapter 3, and with clinically adjudicated cases of 

SIM. It would be clinically interesting to known if the CKM Glu83Gly variant is 

associated with reduced reports of myalgia or muscle-aches. If the variant confers no 

protective effect, this might provide a novel mechanistic rationale for a sub population 

of individuals presenting with statin intolerance or myalgia without raised CK levels 

(97). 

The finding by Kristjansson et al. of the association of variants in LILRB5 including 

Asp247Gly with serum LDH levels suggests the variant might impart a statin 
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independent susceptibility to muscle-based events, as LDH is often used in conjunction 

with CK as a marker of tissue damage. The variant shows the same direction of effect, 

i.e. carriers of 247Gly appear to have lower LDH levels. This makes it a viable marker 

for susceptibility to the commonly noted muscle-based symptoms that are attributed to 

statin intolerance.  

Therefore, we tested the association between the phenotypes created a priori with the 

LILRB5 Asp247Gly variant to check if the variant predisposed to statin intolerance. We 

hypothesize that carriers who appear to have lower muscle enzyme activity levels (CK 

and LDH) will also be protected from forms of statin intolerance that are independent 

of CK levels.  

We then attempted to replicate the findings presented here in a clinical trial setting 

that might be less prone to the confounding factors associated with a cohort study such 

as GoDARTS. The main outcomes from the JUPITER trial being examined in this 

chapter are compliance and the development of myalgia. Widely understood to play a 

role in CVD outcomes for statin users, compliance to therapy is often impacted when 

an individual experiences an adverse reaction to a medication (102), whether or not that 

is reflected in commensurate increases in biomarkers.  

Finally, we sought to replicate our findings using clinically adjudicated cases of statin-

induced myositis (SIMs) from the PREDICTION-ADR consortium. The aims and work 

packages for the PREDICTION-ADR project are described in Chapter 2.  
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5.2 Methods 

Methods and development of phenotypes covariables and genotype data used in the 

analyses are detailed in Chapter 3. The JUPITER cohort was introduced in Chapter 2, and 

Chapters 3 and 4 describe how the genetic data and patient-level data were collected. The 

outcomes studied in JUPITER are contextually re-introduced here. The novel cohort 

introduced in this chapter is the PREDICTION-ADR cases of SIM and matched controls.  

JUPITER trial 

The replication effort in JUPITER focused on 4381 study participants randomized to 

receive statin treatment and 4368 who received the placebo. The JUPITER trial 

ascertained compliance on the basis of a questionnaire, pill counts and non-trial statin use 

(114,115).  Myalgia was ascertained by physicians who were blinded to treatment (132).  

Since the trial focused on the role of low-grade underlying inflammation (evidenced by 

high C-reactive protein levels), patients with inflammatory conditions such as severe 

rheumatoid arthritis, lupus, or inflammatory bowel disease were excluded, as were 

patients using immunosuppressant agents (114). 

Genotyping for 8749 JUPITER trial participants was described in Chapter 4 (115). 

All analyses for JUPITER trial data were performed, upon request, by Dr. Daniel I 

Chasman.  

Statin-induced myositis (SIM) in PREDICTION-ADR 

Cases and controls for SIM were contributed by the consortium’s study centers in 

Dundee, Liverpool, Uppsala and Utrecht.  

5.2.1.1 Definition and adjudication of cases and controls  
Cases of statin-induced myopathy were classified according to the criteria cited by 

Alfirevic et al. (13); of CK raised ≥ 4 X ULN when using population-based databases 

such as GoDARTS or CPRD (Clinical Practice Research Datalink) where identification 
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is dependent on electronic medical records (14,15). The CK elevations must not be 

attributable to any other clinical circumstances that would result in such drastic increases. 

Individuals so identified were then subjected to clinical adjudication by a panel of 

physicians and specialists. Factors considered for adjudication were the resolution of 

CK after de-challenge, post-event prescribing changes (such as switching or total 

discontinuation), patient’s medical history of kidney disease, trauma, falls, MI, thyroid 

disease and tests for HMGCR antibodies, muscle biopsy and physical activity, if 

available.  

Additional cases were identified from CVD clinics, General Practitioners (GP) 

practices, and clinics specialized for muscle diseases where the individuals were 

adjudicated directly by the physician as having statin-induced myopathy. A total of 249 

adjudicated cases of statin-induced myositis were age, gender and starting statin therapy 

matched to 246 adjudicated controls. Statin tolerant controls had been on therapy for a 

minimum of 1 year and had shown no CK elevations, while maintaining regular therapy 

without any modifications. 

5.2.1.2 Sequencing for SIM cases and controls  
Sequencing was performed by the PREDICTION-ADR consortium (refer Chapter 1 

and 2). Sequencing of 495 statin samples (249 cases and 246 controls) was performed 

using exome-enriched sequence data. SureSelect QXT reagents (Agilent Technologies, 

Wokingham, UK) were used to perform fragmentation, end-repair, A-addition and 

adaptor ligation reactions to generate Illumina-compatible sequencing libraries. 

Hybridization capture enrichment of whole genome libraries was performed using the 

SureSelect v5 all-exon probe set, following manufacturer’s recommendations 

throughout (http://www.agilent.com/cs/library/usermanuals/Public/G9681-90000.pdf). 

Equimolar aliquots of 12 post-enrichment libraries (6 cases and their 6 matching 

controls) were pooled before sequencing using version 2 TruSeq chemistry on a 
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Nextseq500 (Illumina Inc., San Diego, CA, USA). Paired-end 150-bp sequence reads 

were then analyzed through the Basespace app BWA enrichment v2.1.0 (Illumina) 

which gathers demultiplexing, alignment, duplicate removal, variant discovery and 

annotation. The core algorithm in this workflow is the alignment to indexed reference 

genome (hg19) using BWA and indel realignment, base quality score recalibration as 

well as variant discovery were performed using Genome Analysis Toolkit (GATK) 

v.1.6 UnifiedGenotyper.  

For the PREDICTION-ADR cohort, selection of cases and controls was carried out 

by the candidate for samples contributed by the University of Dundee. Selection for the 

Liverpool and Uppsala cohorts was undertaken by Dr. Ana Alfirevic and Dr. Mia 

Wadelius respectively. Exome sequencing, post-sequencing processing were performed 

by Dr. Cyrielle Maroteau who extracted genotypes of interested upon request.  

Statistical analysis  

All statistical analyses on GoDARTS and PREDICTION-ADR data were performed 

in SAS 9.3 (SAS Institute, Cary, North Carolina). Association testing between the 

variants and each phenotype of intolerance as well as SIM were done using a binary 

logistic model using the “proc logistic” command. 

Covariables known to be associated with intolerance such as gender, age, co-

medication usage, type of statin, dose of statin were added to each model, as discussed 

in Chapter 3. A backwards step-wise approach was used to eliminate covariables that 

were not significant predictors in each model.  

Statistical analyses in the JUPITER trial were performed by Dr. Dan Chasman upon 

request using R (136). A binary logistic regression was performed to test the association 

between compliance and the Asp247Gly variant using the “glm” function with the 

“family = ‘binomial’” specification. Survival analyses were performed using the 
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“coxph” function. Stratified survival analyses were performed using the “strata” 

function in the relevant command.  

5.3 Results of association tests with both variants in GoDARTS 

Distribution of CKM Glu83Gly across phenotypes 

The distribution of Glu83 genotypes across each phenotype is presented in Table 5.1. 

Due to the infrequency of occurrence of the rare allele, the vast majority of each 

phenotype is populated by non-carriers. However there doesn’t seem be any notable 

difference is frequency of T/T homozygotes (Glu83) between cases and controls, this 

will be formally tested in the next section.  

Table 5.1 Distribution of CKM Glu83Gly genotypes across phenotype groups 

Case/ Control Phenotypes 
CKM 

Glu83 83Gly Total 

Case A: Raised CK 
1064 

(99%) 
16 1080 

Case 
B: Raised CK + Non-

adherent 

288 

(98%) 
5 293 

Case C: Non-adherent 
318 

(96%) 
12 330 

Case 
D: Statin-induced 

myositis 

20 

(91%) 
2 22 

Case G: Dose Intolerant 
286 

(95%) 
14 300 

Control 

(A,B,D) 

E: Normal CK+ 

Adherent 

419 

(97%) 
15 434 

Control (C) F: Adherent 
671 

(97%) 
19 690 

Control (G) H: Dose tolerant 
269 

(97%) 
8 277 

Distribution of LILRB5 Asp247Gly across phenotypes 

 

The distribution of Asp247Gly genotypes across each phenotype group is presented 

in Table 5.2. Of note is the difference in Asp247 (T/T) allele frequency between the 

groups classified as cases and those are controls. Cases appear to have higher percentage 

of individuals encoding Asp247.  
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Table 5.2 Distribution of LILRB5 Asp247Gly genotypes across phenotype groups 

Case/ 

Control 
Phenotypes 

LILRB5 

Asp247 247Gly 247Gly Total 

Case A: Raised CK 
279 

(46%) 
263 63 605 

Case 
B: Raised CK + Non-

adherent 

176 

(47%) 
160 37 373 

Case C: Non-adherent 
198 

(43%) 
195 64 457 

Case 
D: Statin-induced 

myositis 

11 

(39%) 
12 5 28 

Case G: Dose Intolerant 
270 

(42%) 
272 98 640 

Control 

(A,B,D) 

E: Normal CK+ 

Adherent 

198 

(35%) 
281 79 558 

Control (C) F: Adherent 
237 

(36%) 
328 89 654 

Control (G) H: Dose tolerant 
177 

(35%) 
256 73 506 

 

 

 

The number of samples available for analyses differs across the two genotypes as the 

CKM variant was genotyped on the exome chip and through TAQMAN, while the 

LILRB5 variant is imputed from the Illumina and Affymetrix platforms as well as 

directly typed using TAQMAN.  

Next, the odds ratios for the development of each definition of intolerance by 

genotypes are presented in Table 5.3 and Table 5.4 and discussed subsequently.  
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Table 5.3 Association of phenotypes of statin intolerance with Glu83Gly 

Phenoty

pe 

Group

s 

Phenotype 

Description 

CKM 

Glu83Gly 

Unadjusted model Adjusted model 

83Gly v. Glu83: 

OR (95% CI) 

P value 

 

83Gly v. Glu83: 

OR (95% CI) 
P value 

A v. E Raised CK 0.42 (0.21, 0.87) 0.017 1.61 (0.66, 3.92) 0.55 

B v. E 
Raised CK + 

Non-adherence 
0.44 (0.16, 1.18) 0.10 -  

C v. F Non-adherence 1.33 (0.64, 2.78) 0.44 -  

D v. E 
Statin-induced 

myositis 
 2.52 (0.55, 11.55) 0.24 -  

G v. F 
Dose 

intolerance 
1.64 (0.68 3.96) 0.28 -  

 

All models adjusted as stated in the methods section, with variables found to be significantly associated with each phenotype in Chapter 

3. Subsequently a backwards step-wise process was used to create a model with only significant predictors.  
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Table 5.4 Association of phenotypes of statin intolerance with Asp247Gly. Here the odds of intolerance for those with the ancestral allele are being contrasted to carriers 

Phenoty

pe 

Group

s 

Phenotype 

Description 

LILRB5 

Asp247Gly 

Unadjusted model Adjusted model 

Asp247 v. 247Gly: 

OR (95% CI) 

P value 

 

Asp247 v. 247Gly: 

OR (95% CI) 
P value 

A v. E Raised CK 1.36 (1.10, 1.70) 3 x 10-3 1.82 (1.25, 2.63) 1 x 10-3 

B v. E 
Raised CK + 

Non-adherence 
1.62 (1.24, 2.12) 4 x 10-4 1.96 (1.25, 3.07) 3 x 10-3 

C v. F Non-adherence 1.35 (1.06, 1.73) 0.015 2.07 (1.17, 3.67) 1 x 10-2 

D v. E 
Statin-induced 

myositis 
1.18 (0.54, 2.57) 0.68 1.92 (0.61, 6.11) 0.27 

G v. F 
Dose 

intolerance 
1.36 (1.07, 1.73) 0.013 2.00 (1.27, 3.15) 2 x 10-3 

 

All models adjusted as stated in the methods section, with variables found to be significantly associated with each phenotype in Chapter 

3. Subsequently a backwards step-wise process was used to create a model with only significant predictors.  
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Association of raised CK while on statins (A v. E)  

Consistent with our prior knowledge of the modulation of CK levels by the CKM 

variant, individuals with the reduced CK; 83Gly variant had much lower odds of having 

raised CK while on statin therapy, compared to non-carriers (OR = 0.42, p=0.017). 

However, this protective effect was no longer significant in a model adjusted for 

covariables such as starting and ending statin therapies, starting dose and the use of 

interacting co-medications as seen in Table 5.3. 

Also, as expected, based on the association of the LILRB5 Asp247 variant with CK 

levels, we find this phenotype is associated with the variant. Individuals homozygous 

for Asp247 have 1.82 times the odds of having CK raised above the normal while on 

statin therapy compared to carriers of the variant, in a model adjusted for the starting 

and ending statin therapies, dose at which therapy was started, the use of interacting co-

medications and age they were first prescribed statin as seen in Table 5.4  

Association with raised CK and non-adherence while on statins (B v. E) 

The CKM Gly83 variant was not significantly associated with having raised CK and 

being non-adherent to statin therapy, although the point estimate still demonstrates a 

marked protection (OR =0.4; 95% CI: 0.16 1.18) as seen in Table 5.3. This could be 

due to the smaller sample size and, a power analysis reveals that given the MAF of the 

variant, we would need 505 cases matched at least 1:1 with controls to have 80% power 

to detect an effect. At present with a power of 67% the analysis is slightly underpowered 

(150). 

When considering the LILRB5 247Gly variant, in spite of a smaller sample size 

compared to the previous analyses, this genotype shows a significant association with 

this definition of intolerance. Those homozygous for Asp247 had 1.96 times the odds 

of having raised CK and being non-adherent to therapy compared to carriers of the 

variant, in a model adjusted for the first statin on therapy and it’s dose, the age and sex 
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of the individual and their concurrent use of interacting medications as seen in Table 

5.4. This analysis has over 99% power to detect an effect of this magnitude (150). 

Association with non-adherence, irrespective of CK (C v. F) 

The CKM 83Gly variant was not associated with non-adherence to statin therapy as 

seen in Table 5.3. However, a power analysis reveals that given the MAF of the variant, 

the power to detect an odds ratio between 1.1 and 1.5 for this analysis was under 60% 

(150). 

For the LILRB5 Asp247 genotype, individuals who were homozygous carriers of 

Asp247 had 2.07 times the odds of being non-adherent to their treatment compared to 

carriers of the variant, in a model adjusted for the first statin on treatment, its dose, the 

last statin prescribed and their concurrent use of interacting medications as seen in Table 

5.4. This analysis had over 99% power to detect an effect of this magnitude (150). 

Association with statin-induced myositis (D v. E) 

Given the MAF of the CKM variant it was impossible to draw any conclusions from 

the data.  

For the LILRB5 Asp247 variant, individuals homozygous for Asp247 showed 1.92 

times the odds of developing statin-induced myositis, in a model adjusted for the 

concurrent use of interacting co-medications, however, this is merely a trend and the 

finding was not statistically significant, seen in Table 5.4 . The analysis had 37% power 

to detect an effect of the magnitude.  

Association with dose-related intolerance (G v. H) 

The CKM 83Gly variant was not associated with dose-related intolerance to statins, as 

seen in Table 5.3. However, a power analysis reveals that given the MAF of the variant, 

at present the power to detect an odds ratio between 1.1 and 1.5 for this analysis was 

under 60% (150). 
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For the LILRB5 Asp247 genotype individuals homozygous for Asp247 had 2 times the 

odds of being intolerant to the lowest dose of a statin compared to carriers of the variant, 

in a model adjusted for the first and last statin on treatment and the concurrent use of 

interacting medications, as seen in Table 5.4. This analysis had over 99% power to detect 

an effect of this magnitude (150). 

5.4 Results of replication studies 

Replication in the JUPITER trial 

The two outcomes studied in the JUPITER trial population were compliance to 

therapy and the incidence of myalgia. 

5.4.1.1 Association of variants with compliance in JUPITER 
In the JUPITER trial 1435 participants were found to be non-compliant with their 

therapy, while 7046 were compliant. There was no association between the Glu83Gly 

variant and non-compliance (OR = 1.04, SE = 1.37, p value = 0.80).  

However, individuals homozygous for Asp247 had 1.15 times the odds of being non-

compliant (95% CI 1.03, 1.27) p value = 0.02 compared with carriers of 247Gly.  

5.4.1.2 Association of variants with myalgia in JUPITER 
Myalgia was observed in 837 trial participants and showed no association with their 

assigned therapy (132). 

Table 5.5 shows the incidence of myalgia by the CKM Glu83Gly genotype. The Chi-

square statistic for this association is 1.2 and the p value 0.27, indicating there was no 

statistically significant overall association between 83Gly and incident myalgia in the 

trial. 

Table 5.5 Incidence of myalgia by Glu83Gly genotype 

Myalgia Glu83 (T/T) 83Gly (T/C) Total 

No 7627 285 7912 

Yes 813 24 837 

Total 8440 309 8749 
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Table 5.6 shows the incidence of myalgia by LILRB5 Asp247Gly genotype. The Chi-

square statistic for this association was 1.6 and the p value 0.2, indicating there was no 

statistically significant association between Asp247 and incident myalgia in JUPITER.  

Table 5.6 Incidence of myalgia by Asp247Gly genotype  

Myalgia 
Asp247 

(T/T) 

247Gly (T/C 

or C/C) 
Total 

No 2674 5238 7912 

Yes 301 536 837 

Total 2975 5774 8749 

5.4.1.3 Association with myalgia stratified by treatment arms (statin v. placebo) 
Next we examined the association of the variants with the development of myalgia 

stratified by the two arms of the trial. For the CKM Glu83Gly variant, as seen in Table 

5.7, there was no association in either arm of the trial, nor was myalgia significantly 

associated with the interaction between the treatment allocation and genotype. 

Table 5.7 Association of Glu83Gly with myalgia stratified by trial allocation arms (modelled for carriage of 

the variant) 

Trial arm 
Myalgia 

events 

OR (95% 

CI) 

P 

value 

Interaction 

OR (95% CI) 

P 

value 

Rosuvastatin  439 
0.64 

(0.35,1.19) 
0.16 

0.65(0.29,1.47) 0.31 

Placebo  398 
0.96 

(0.93,1.75) 
0.91 

The interaction term is between trial arm and genotype 

For the LILRB5 Asp247Gly variant, as seen in Table 5.8, we observed a significant 

effect only in the placebo arm of the study, with individuals homozygous for the 

ancestral (T/T) allele having 1.27 times the odds of developing myalgia compared to 

carriers of the 247Gly variant. The interaction between statin allocation and the Asp247 

genotype appeared to trend toward significant (p = 0.085).  

Table 5.8 Association of Asp247Gly with myalgia stratified by trial allocation arms (modelled for carriage 

for ancestral allele) 

Trial arm 
Myalgia 

events 

OR (95% 

CI) 

P 

value 

Interaction 

OR (95% CI) 

P 

value 

Rosuvastatin  439 
0.97 

(0.79,1.19) 
0.76 

0.77(0.57,1.03) 0.085 

Placebo  398 
1.27 

(1.01,1.56) 
0.036 

The interaction terms is between trial therapy-allocation arm and the genotype 
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From the stratified analyses we conclude that there is an association between the 

Asp247 variant in LILRB5 and the development of myalgia in the placebo arm. To 

understand the differentiation of risk across genotype and treatment allocation groups 

we conducted a stratified survival analysis. 

5.4.1.4 Incidence of myalgia and the LILRB5 Asp247Gly variant 
This association is explored further in a survival analysis performed on the study 

participants with myalgia as the outcome as seen in Figure 5.1 in a 5 year follow-up 

period.  The Kaplan-Meier showed that individuals homozygous for Asp247 regardless 

of whether they were allocated to receive statin or placebo, were at most risk of 

developing myalgia. Those most protected from the development of myalgia were 

carriers of the 247Gly variant who were randomized to receive placebo.  

 

Figure 5.1 Kaplan-Meier of the association of myalgia with Asp247Gly. Plot produced by Dr. Dan Chasman 

(rs12975366.dom = 0: Asp247 or T/T, rs12975366.dom = 1: 247Gly or C/T or C.C). 

Drug = 1: Rosuvastatin arm, drug = 0: Placebo arm) 

 

Detailed output from the survival analysis are presented in Table 5.9.  
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Table 5.9 Hazard ratios of survival to myalgia  

Variables 
Hazard Ratio 

(95% CI) 
P value 

Asp247Gly 1.24 (1.02, 1.52) 0.039 

Rosuvastatin 0.95 (0.725, 3.24) 0.63 

Interaction 0.79 (0.60, 1.04) 0.10 

 

5.4.1.5 Association of statin use with myalgia stratified by LILRB5 Asp247Gly 
genotypes 

The protective effect of the LILRB5 247Gly variant, is not seen in the statin treated 

group, where the levels of myalgia are similar to the Asp247 homozygous group.  This 

reveals a genotypic subgroup that is apparently protected from statin independent 

myalgia, but is selectively susceptible to statin induced myalgia.  This data agrees strongly 

with the cross sectional analysis presented in Table 5.8. 

Table 5.10 Association of Rosuvastatin treatment with myalgia stratified by genotype 

 Hazards Ratio (95% CI) P value 

Asp247 (T/T) 

Rosuvastatin v. placebo 0.95 (0.76, 1.19) 0.64 

247Gly (C/T or C/C) 

Rosuvastatin v. placebo 1.2 (1.011, 1.42) 0.037 
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Replication in the PREDICTION-ADR cohort 

In this cohort, clinically-adjudicated cases of statin-induced myositis (SIM) were 

examined. Due to the size of the cohort and MAF of the CKM 83Gly variant we were 

underpowered to detect an association between the variant and SIM.  

For the LILRB5 Asp247 variant, we observed consistent with all our findings so far, 

that those with the Asp247 genotype had 1.5 times the odds of developing SIM (95% CI: 

1.03, 2.16, p value = 0.033). The cases and controls were matched for sex, type of statin 

at time of event and study center.  

A cross-tabulation of the cases and controls in this cohort by their genotype is presented 

in Table 5.11 below.  

Table 5.11 Distribution of LILRB5 Asp247Gly genotypes by clinically adjudicated SIM status 

Group Asp247 247Gly Total 

Statin-

induced 

myositis 

102 147 249 

Statin 

tolerant 

controls  

78 168 246 
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5.5 Conclusion and Discussion 

We find a consistent relationship between various definitions of statin intolerance and 

created using EMRs and the LILRB5 Asp247 variant in the GoDARTS population. 

There is a congruent association with non-compliance in the JUPITER trial, which has 

a median follow-up period of 1.9 years (with a maximum of 5) and with clinically 

adjudicated cases of statin-induced myopathy.  

However, the variant in CKM appears to be associated purely with constitutive serum 

CK levels. As hypothesized in Chapter 4, this divergence between 

measurable/functional CK and physician documented myalgia points to a hypothesis 

for the occurrence of muscle-based symptoms with no accompanying rise in CK levels. 

It also calls into question the validity of using CK as the cornerstone for classifications 

of statin intolerance, especially the exclusive use of extremely high thresholds that 

carriers of the CKM 83Gly variant might not be able to achieve. 

The association of LILRB5 Asp247 with the development of myalgia in the JUPITER 

trial suggests a more complex gene-drug interaction. The Asp247 variant which is 

robustly associated with higher CK levels is also associated with greater statin 

intolerance in GoDARTS, with evidence of higher levels of statin switching and 

discontinuation.  The JUPITER study allows us to look at these effects in the absence 

of statins and this reveals that Asp247 is associated with greater frequency of myalgia, 

over the study period.  This would support that concept that LILRB5 modulates CK 

levels through statin independent muscle damage. This would give rise to increased 

apparent intolerance in a statin treated population where the causality in not evident.  

Even more intriguing, however is the finding that the protected group, the 247Gly 

carriers, display a higher risk of statin induced myalgia.  This suggests that there is a 

subpopulation of individuals who are inherently protected from muscle pain, but are 

susceptible to true “statin induced” pain. 
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We have opted to differentiate between an observational study and a RCT by the use 

of adherence and compliance in the respective populations. The term adherence 

suggests a “persistence in practice” which is more applicable to a real-world setting of 

medication consumption as opposed to compliance which implies “acting in accordance 

with” the demands of a RCT (151). Participants in the JUPITER trial had been pre-

selected for good compliance in the trial placebo run-in period. Therefore, the reported 

finding of non-compliance is more likely to be associated with intolerance, rather than 

inter-individual variability in compliance to medication. 

Certain co-medications are known to interact with statin use. Fibrates, especially 

gemfibrozil, are inhibitors of the hepatic uptake transporter OATP1B1 which transports 

statins into the liver for metabolism (152). Therefore, concurrent use of fibrates could 

increase un-metabolized statin concentration in circulating blood (153). Fibrates are 

prescribed to Type 2 diabetics to control triglyceride levels, and are generally not 

recommended as a co-medication with statins for primary lipid control (10).  However, 

since GoDARTS is primarily a population of T2 diabetics, fibrates are widely 

prescribed. Additionally, other drugs that are known inhibitors or substrates of CYP3A4 

enzymes are contra-indicated for concurrent use with statins. These co-medications are 

included in analyses of statin intolerance. We find these drugs appear to consistently 

increase the risk of statin intolerance, but the association is independent of the effect of 

the Asp247 variant as seen in the adjusted models.  

This is the first evidence from JUPITER (or any other RCT) of any role of statins in 

myalgia, as there is absolutely no difference in the incidence of any measure of muscle 

pain or myalgia between the placebo and rosuvastatin arm, but the incidence of these 

phenotypes in both arms is similar to the “intolerance” observed in populations.  The 

complete lack of association of statins with muscle pains in RCTs has led to a debate 

regarding the existence of statin related muscle symptoms. Indeed the validity of this 
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conclusion is supported by the recently concluded Goal Achievement after Utilizing an 

anti-PCSK9 Antibody in Statin-Intolerant Subjects -3 (GAUSS-3) trial, that was 

designed to examine the efficacy of non-statin therapies in lowering LDL for 

individuals with uncontrolled LDL, who were also statin intolerant (154). The trial had 

a randomized, blinded crossover run-in period, where participants were given either 

placebo or 20 mg atorvastatin followed by a washout period and the alternate therapy. 

This run-in was designed to eliminate those whose complaints of myalgia were not 

statin specific. The results revealed that 37% of participants reported non-specific 

myalgia (either in response to both therapies or just to placebo), while 43% had 

atorvastatin-specific complaints. 

The LILRB5 247Gly genotype presents a unique opportunity to probe this phenomena 

of muscle pain specific to statins compared to “constitutive’ muscle pain that appears 

in the Asp247 individuals.  
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6 Statin intolerance and the LILR gene family 

6.1 Introduction – LILR gene family in GWAS 

In Chapter 5, an association between a missense variant in LILRB5 and statin 

intolerance and adherence was demonstrated and replicated. The variant was also 

observed to have a statin-independent effect on myalgia. The novel implication of the 

immune system in statin intolerance warrants further probing of the functional role of 

the gene itself, and its gene family. A candidate gene approach was employed with an 

aim to gain a more complete understanding of how and why these effects were being 

observed. 

The LILR family  

The LILR are located in the Leukocyte Receptor Complex (LRC) (117) on 

chromosome 19. The LRC encodes the Ig-superfamily proteins that regulate the 

function of various hematopoietic cell types and other genes also associated with 

immunoregulatory functions; including Killer Immunoglobulin-Receptors (KIR) and 

Leukocyte Associated Inhibitory Receptors (LAIR) and the Leukocyte 

Immunoglobulin-like Receptor family (LILR) (116). The LILR are a family of 11 genes; 

five activating (LILRA1, 2, 4-6), five inhibitory (LILRB1-5) and one has soluble 

(LILRA3) form. They are expressed on cells of myeloid and lymphoid lines, indicating 

that they are involved in both the innate and adaptive arms of the immune system. 

Several members of the LILR family recognize Human Leukocyte Antigen (HLA) class 

1 molecules (116,117,155,156). LILR activity influences the antigen presenting 

properties of macrophages and dendritic cells, and may thus play a role in T cell 

tolerance (116). The range of effects of LILR signaling on immune cell activity 

indicates that they might be involved in a wide range of clinical situations. 
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6.1.1.1 Gene organization 
 From the 5’ end (positive strand) in the centromeric cluster the genes are in the 

following order: LILRB3, LILRA6, LILRB5, LILRB2, LILRA3, LILRA5, and LILRA4. In 

the telomeric cluster they are: LILRA2, LILRA1, LILRB1 and LILRB4 as seen in Figure 

6.1. This study focuses on the centromeric cluster of genes.  

 

 
Figure 6.1 Gene organization of the LILR adapted from Hirayasu et al. © 2015 Nature Publishing Group, 

Hirayasu, K et al., Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication 

for disease associations. Jour of Hum Gen , 6, 64 (2015). All rights reserved. 

6.1.1.2 Structure of the LILR receptors 
Activating (LILRAs) or inhibitory (LILRBs) receptor isoforms are defined by 

residues found within their transmembrane or cytoplasmic domains as seen in Figure 

6.2. Activating LILRs have a short cytoplasmic tail and an arginine residue located 

within the transmembrane domain. Protein sequence motifs; immunoreceptor tyrosine-

activating motifs (ITAMs) and immunoreceptor tyrosine-inhibitory motifs (ITIMs) are 

responsible for the activating and inhibitory signals transmitted by LILR respectively 

(116).   

Inhibitory LILRs do not express a charged arginine residue in the transmembrane 

region, they instead have a long cytoplasmic tail with two or four ITIM domains. The 

ITIM motifs are phosphorylated upon cell activation and receptor ligation and inhibit 

leukocyte activation through SHP (Src-homology 2-domain-cotaining protein tyrosine) 
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phosphatase recruitment (156).  Stimulatory receptors have a shorter tail and interact 

with ITAM incorporating adaptor molecules to activate immune cells.  

 
Figure 6.2 Schematic diagram of the LILR family adapted from Brown et al. showing their specific 

cytoplasmic and transmembrane features. © 2004 Blackwell Munksgaard, Brown, D et al., The LILR family: 

modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 5, 64 (2004). All 

rights reserved. 

Both inhibitory and stimulatory LILRs have 2-4 extracellular Ig domains which are 

responsible for ligand binding at the cell surface. The 2-4 extracellular Ig domains are 

termed D1, D2, D3 and D4 (as seen in Figure 6.3). The membrane distal D1 and D2 

domains form the sites for binding to HLA class I ligands for receptors such as LILRB1 

and LILRB2. The D3 and D4 domains form a stalk region, enabling some LILR 

receptors such as LILRB2 to bind to class I ligands both in cis (on the same cell) and in 

trans orientations (157). Recently it has been shown that both the D1 and D4 domains 

of LILRB2 are necessary for binding to the non-HLA ligand angiopoietin-like protein 

(Angtpl2) (156,158). 

 

Figure 6.3 LILRB1 interacts with HLA class I molecules at two interfaces from Brown et al. © 2004 

Blackwell Munksgaard, Brown, D et al., The LILR family: modulators of innate and adaptive immune 

pathways in health and disease. Tissue Antigens 5, 64 (2004). All rights reserved. 

Comparisons between human and chimpanzee LILR genes showed that the LILR 

genes are rapidly evolving and exhibiting greater interspecies differences than the 
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genome average (159). These differences make it difficult to elucidate the physiological 

function of LILR using an animal model. There are limited studies in humans but they 

have shown that LILR expressions are upregulated in peripheral blood leukocytes after 

endotoxin challenge (160). Since there is a LILR that recognizes viral proteins and since 

there is high interspecies variability, Hirayasu et al, hypothesize that LILR genes might 

have co-evolved with pathogens (117). 

6.1.1.3 Genetic variation of the LILR family 
There are two haplotypes in the gene cluster one at the centromeric cluster and one at 

the telomeric end as seen in Figure 6.1 (117). LILRs consist of 2 pseudogenes and 11 

functional genes encoding five activating (LILRA1, A2, A4, A5 and A6), five inhibitory 

(LILRB1-5) and one soluble (LILRA3) form. The gene cluster is separated into 

centromeric and telomeric clusters. The centromeric and telomeric clusters are 

transcribed in opposite directions, from telomere to centromere and the reverse (117). 

The number of LILR genes is conserved among individuals, except for LILRA3 and 

LILRA6, which show variation in copy number (CNV). LILRA3 exhibits a presence or 

absence in variation due to a large deletion that encompasses almost the entire gene. 

The gene also shows the most extreme differences in copy number in the HapMap 

populations (117,161,162). Northeast Asians have a high frequency (up to 84%) of the 

LILRA3-deletion compared with that in European (17%) (163), and the deletion is 

uncharacterized in African populations. Common variants in the gene show similarly 

opposite frequencies in populations, and Sub-Saharan Africans have frequencies similar 

to Caucasians. In addition, it was found that in Northeast Asians the LILRA3 deletion 

was in strong LD with variants in adjacent LILRB2 and the region shows strong 

evidence of positive selection (162). Additionally, nonfunctional alleles containing 

premature stop codons have been detected in East Asians. The nonfunctional alleles are 

estimated to have been maintained for a long time in humans – suggesting that balancing 
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selection has been acting on this locus. There has been no characterization of the 

LILRA3 deletion in a Scottish/British Caucasian population. In contrast, the copy 

number of LILRA6 observed in an individual ranges from one to six, which can be 

explained by the deletion of duplication of this gene (164,165). The bulk of increased 

diversity seen in the African population is explained by the CNVs of LILRA6 (166).  

6.1.1.4 Functional role of LILR members 
Information on the mechanistic mode of action for the genes is sparse. Zhang et al. 

performed tetramer staining studies to determine the ligands for LILR gene family 

members (156). They conclude, with confirmation from co-immunoprecipitation that 

HLA class I free heavy chains are ligands for LILRB5. They further hypothesize that 

this unique binding specificity is due to differences in the D1 and D2 Ig-like binding 

domains, which are distinct from other LILR genes; many of which bind to the β2m-

associated HLA-class 1.  This suggests that the roles of individual genes in this region 

could be independent, especially as pertains to an immune-mediated response to statin 

therapy and therefore their associations should be examined both independently and 

conditionally. 

Information on the impact of these genes on human physiology implicates low-

expressing LILRB1 and non-deleted allele in LILRA3 in the development of rheumatoid 

arthritis (RA) (155,163,167). A variant associated with low expression of LILRB3 was 

associated with Takayasu’s arteritis in a GWAS (168). Variants in LILRB4 (169)  and 

LILRA2 were found to be associated with Systemic Lupus Erythematosus (SLE) (170).  

The same variant in LILRA2 is associated with polyangiitis (170). It has also been 

speculated that LILRA2 plays a role in leprosy – as elevated expression of the gene has 

been observed in lesions of lepromatous patients (171) and the mean numbers of 

LILRA2-expressing cells in synovial tissue are associated with the severity of RA (172). 

The deletion polymorphism in LILRA3 has been found to be associated with several 
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autoimmune diseases. Since this deletion polymorphism shows significantly different 

frequencies across ethnicities (162) the association of diseases or phenotypes with the 

deletion polymorphism are highly specific to the population group. The deletion was 

found to be associated with multiple sclerosis in German and Spanish cohorts, however 

this effect was not replicated in a Polish population (163,173,174). The functional form 

of the gene was associated with Sjögren’s syndrome in Chinese (167,175). 

Homozygosity of the non-deletion increased susceptibility to RA and SLE (167,176). 

A GWAS in a Chinese cohort found a SNP in LILRA3 to be associated with prostate 

cancer, the SNP, rs103294, is in strong LD with the deletion polymorphism (177). A 

SNP located between LILRB2 and LILRA3 was found to be associated with plasma 

levels of high-density lipoprotein cholesterol (HDL) in a GWAS (178). A summary of 

the associations and the cells on which the receptors are expressed is presented in Table 

6.1. 

Table 6.1 LILR receptors, expression and disease associations 

Gene  Expression (from Hirayasu et al.) Disease 

LILRB1 
Subsets of T and NK cells, B cells, Mo, 
Mac, DC 

RA (155,163,167) 

LILRB2 Mo, Mac, DC, HSC, neuron Unknown 

LILRB3 Mo, DC, G Takayasu’s arteritis (168) 

LILRB4 Mo, Mac, DC, plasmablast cells  SLE (169,170) 

LILRB5 NK cells, Mo, mast cell granules 
Serum CK levels (118,119), serum LHD 
levels (118) and statin intolerance 

LILRA1 Mo, Mac, DC Unknown 

LILRA2 
Subsets of T and NK cells, Mo, Mac, 
DC, G 

SLE (167,176) + microscopic 
polyangiitis (170). 

LILRA3 
Subsets of T – cells, B cells, Mo, Mac, 
DC 

MS (163,173,174), SS (167,175), SLE & 
SLE (167,176), prostate cancer (177)., 
HDL-C (178) 

LILRA4 pDC Unknown 

LILRA5 Mo, PMN Unknown 

LILRA6 Mo Unknown 

NK: natural killer, MO: monocytes, MAC: macrophages, DC: dendritic cells, HSC: 

hematopoietic stem cells, G: granulocytes, pDC: plasmacytoid DC, PMN: poly 

morphonuclear neutrophil. SLE: Systemic lupus erythematosus, CK: creatine 

phosphokinase, RA: Rheumatoid arthritis, MS: multiple sclerosis, SS: Sjögren’s 

syndrome, HDL-c: high density lipoprotein cholesterol 
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Study aims 

The role of the immune system in drug intolerances was relatively unexplored with 

the exception of the Human Leukocyte Antigen (HLA) system (179–181). Evidence for 

the role of the immune system in statin intolerance is minimal, with the exception of 

the extremely rare, statin-association autoimmune myopathy noted in the presence of 

anti-HMGcR antibodies. There have been reports of the immunomodulatory effects of 

statins (182,183). This novel exploration of the LILR gene family could shed light on 

the potential role played by the immune system in drug adherence and intolerance.  

Study plan  

While designing the candidate gene approach, external replication of findings was 

sought from the University of Liverpool (UoL), a partner in the PREDICTION-ADR 

consortium. The cohort analyzed in UoL contains cases and controls from the Clinical 

Practice Research Datalink (CPRD) and the Wellcome Trust Case Control Consortium 

(WTCCC). A meta-analysis across the studies in UoD and UoL was conducted for the 

genomic region of interest. Hits replicated across these studies would potentially have 

external validity to be genetic variations predisposing to statin intolerance. 

Performing a meta-analysis of the gene region could result in many signals that are 

proximately located. Alleles of SNPs located in close proximity to another are not 

necessarily inherited independently, these alleles can be highly correlated such that 

many individuals could share the same haplotype (or combination of consecutive alleles 

on a single chromosome).  Therefore tagSNPs can be selected, that best represent a 

haplotype block (184). 

The scope of this chapter is to examine the signals from the gene family, determine 

their independence, and the strength of their associations with statin intolerance. In 

determining the independence of the signals, it was necessary to effectively characterize 

the deletion polymorphism in LILRA3. Therefore we used data from exome sequencing 
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performed in the PREDICTION-ADR consortium, to assess the association of the 

deletion polymorphism with the index SNP selected from our study and with the 

development of SIM.  
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6.2 Methods  

Cohorts used 

6.2.1.1 The GoDARTS study 
The development of phenotypes is described in detail in Chapter 3 “Defining Statin 

Intolerance in GoDARTS”. For this chapter, analyses were performed using phenotypes 

B – statin intolerance defined as raised CK after commencing statin therapy and poor 

adherence to therapy and C – poor adherence to statin therapy. Their genetic differences 

were contrasted with those categorized as phenotype E – statin tolerant defined as 

individuals who had normal CK measures while on statin therapy and who were highly 

adherent and phenotype F – statin  adherent. The LILR region is sparsely typed on the 

genetic chips available in GoDARTS and we therefore used a combination of directly 

typed and imputed data available for the Affymetrix 6.0 and Illumina HumanOmni 

Express -12V1 platforms. Imputation was performed against 1000G Phase I V3 

reference panel using Impute2 (126). Samples with imputation quality below 80% were 

not included in the analysis. 

6.2.1.2 University of Liverpool cohort 
The Liverpool cohort was composed of statin intolerant individuals from the 

Wellcome Trust Case Control Consortium (WTCCC) and the Clinical Practice 

Research Datalink (CPRD) (185) and statin tolerant individuals from CPRD (186). 

GWAS data was available for 585 statin exposed controls and 128 statin intolerant cases 

(187). Individuals were classified as cases if they had CK measures raised 4 or more 

times the upper limit of normal while on statin treatment; and as controls if they had 

used statins for at least 1 year and had either no recorded CK tests, normal CK tests and 

had no record of rhabdomyolysis. WTCCC genotyping was performed using the 

Affymetrix v 6.0 (Affymetrix, Santa Clara, USA) and Illumina 1.2 M (Illumina, San 

Diego, USA) chips. Imputation was performed against the 1000G Phase I V3 reference 
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panel using Impute2 (126). CPRD was used to replicate signals found in the WTCCC 

cohort. Genotyping for CPRD cases was performed on the Illumina OmniExpress 

Exome v1.0 Beadchip (Illumina, San Diego), while controls were genotyped for 

significant hits (p value < 1 x 10-6 in a primary GWAS) using Sequenom MassArray 

(Sequenom, San Diego) and TAQMAN (187). Data for meta-analysis was received as 

SNPTEST (188) output from a GWAS conducted by Dr. Dan Carr at the University of 

Liverpool, upon request. This cohort was used to perform a meta-analyses of the LILR 

gene region.  

6.2.1.3 The JUPITER trial 
The population of the trial are described in Chapter 5. Genotyping for the trial 

participants was performed on the Omni1-Quad platform (Illumina, San Diego). The 

outcomes being used in this study is change in CK from baseline. This was assessed as 

the absolute difference in CK levels collected when participants were treatment-naïve 

and CK tested from post-treatment samples. There was no specific time point for the 

collection of the subsequent sample in the study; therefore the time interval between the 

two samples differs by participant. All analyses in the JUPITER trial data were 

performed by Dr. Daniel I Chasman upon request. This cohort was used to validate 

signals reported from the meta-analysis on the LILR gene region. Due to the low 

frequency of non-compliance and myalgia, coupled with the low MAF of the variant 

identified through the meta-analysis and the intention to perform stratified/conditional 

analyses, we were underpowered to test these associations in the trial population. 

6.2.1.4 PREDICTION-ADR study 
The sequencing data used to characterize the LILRA3 deletion polymorphism was 

obtained from 175 individuals in the Dundee arm of the PREDICTION-ADR study (99 

cases of clinically adjudicated SIM and 76 controls). The selection of cases and controls 

is detailed in Chapter 1 and 5. All sequencing experiments were performed by Dr. 
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Cyrielle Maroteau upon request. Linkage testing between the sequenced variants and 

deletion polymorphism were performed by the candidate.   

Regional GWAS  

We selected the region on chromosome 19, between base positions 54720147 to 

54850421 in the Dundee and Liverpool studies. 

The regional GWAS in GoDARTS was conducted to contrast phenotype B: those who 

had raised CK and were non-adherent to their statin therapy (phenotype B) with those 

who had normal CK and were adherent to therapy (phenotype E). The GWAS was 

performed using SNPTEST (188), as a logistic model (binary outcome of case and 

control), using the frequentist association test method, and the score method to deal 

with genotypic uncertainty. The GWAS was run on separately on each platform 

(Affymetrix and Illumina) as described in Chapter 2. The model was adjusted for all the 

covariates associated with each phenotype discussed in Chapter 5, namely the age at 

which CK was tested, sex, interacting co-medications, the first daily dose and the first 

statin on treatment.  

Meta-analysis  

The meta-analysis of results from the GWA studies conducted in GoDARTS and the 

Liverpool cohort was conducted using the GWAMA (Genome-Wide Association Meta-

Analysis) software (189).  Results from GWAMA output file were then pruned to only 

include hits coming from the same direction from both studies and all three platforms 

(GoDARTS Affymetrix, GoDARTS Illumina and Liverpool) and those with p value 

lesser than 0.05.  

This list was then annotated with the functional roles of each SNP and whether or not 

they were an eQTL for the gene they were located in, or the flanking genes. This 

information is presented in Table 6.5 and Table 6.6.  



126 

 

Selecting index SNPs from the meta-analysis 

A TagSNP, as defined by Pettersson et al. is a SNP in a region of the genome featuring 

high LD, which is a proxy for others in close proximity and which can be used to 

genotype individuals at a reduced cost, while maintaining power (184). Index SNPs 

were selected using these criteria, additionally we selected based on imputation quality 

in the GoDARTS cohort so they could be subsequently used for other analyses, and for 

their functional roles. The index SNP thus selected from the LILRB2-A3 block was 

rs383369 in LILRB2, (see Table 6.5); the trend of the variant with the surrounding SNPs 

is seen in both the effect allele frequencies and the direction of effects. Figure 6.7 shows 

the LD between the variant and the other signals in the genomic region. The only 

unlinked SNPs are from LILRB5. Additionally, rs383369 is a coding variant (His20Arg) 

and is an eQTL for LILRB2 and LILRA3 gene expression. These factors together make 

it the ideal index SNP. Further, the LD between the top hits was tested using the - - ld 

command on the imputed file for chromosome 19 in Plink 1.9 (190,191) and are 

presented in the results.  

Conditional analysis on index SNPs in the GoDARTS study 

The selected variant in LILRB2, His20Arg (rs383369) was then tested in regression 

models predicting creatine kinase levels, statin intolerance (phenotype B) and statin 

adherence (phenotype C); phenotypes described in Chapters 3 and 4. Models were built 

using the backwards step-wise method, including the LILRB5 variant, Asp247Gly 

(rs12975366), LILRB2 His20Arg, and other covariables known to be associated with 

the phenotypes. Associations for phenotype D (CK elevations 4 or more times the upper 

limit of normal) were not tested as we are insufficiently powered to detect effects due 

to the small sample size.  

A linear regression for log transformed CK levels was performed and the results are 

presented in Table 6.7 as point estimates, standard error and p values. Logistic 
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regression analyses were performed for the association with phenotypes B and C. The 

results reflect Maximum Likelihood Estimates. Percent variability (R2) analyses for 

phenotypes B and C were performed using linear regression, results for which are 

presented in Table 6.8 and Table 6.9. 

Characterizing the LILRA3 deletion polymorphism in the PREDICTION-ADR 

cohort 

Exome sequencing methods are described in Chapter 5. The deletion was 

characterized in 175 samples. Per base coverage analysis was performed on the LILRA3 

region (NG_034046.1, NCBI) using BEDTools (192). Visual representations of a 

random selection of individuals’ coverage enabled us to fix discrimination thresholds 

for homozygotes and heterozygotes (see Figure 6.4). Subsequently, using those 

thresholds a custom AWK script (193) was used to assign a deletion status to each 

individual. 
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Figure 6.4 Graphical 

representation of the 

LILRA3 deletion on 

chromosome 19.  

 

 

 

 

 

 

 

 

 

 

The blue boxes at the 

base represent the exons, 

numbered 7 - 1(from left to 

right). The deletion is 

characterized by a drop in 

coverage as seen in the 

contrast between those 

homozygous for the ancestral allele (in orange), and those carrying the deletion heterozygously (in green). Coverage for homozygous carriers of the deletion is in blue and is only seen in exon 7. 

Thresholds for coverage are represented in purple for homozygous carriers of the ancestral allele (set at 240X and above) and in red for homozygous carriers of the deletion (set at 40X and below) 

for exon 4 and 6. Intermediate coverage represents heterozygotes. Figure produced by Dr. Cyrielle Maroteau. 
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6.2.1.5 Linkage between variants in LILRB2 and the LILRA3 deletion polymorphism 
The presence of absence of the deletion was treated as “0” for no deletion, “1” for 

heterozygous carriers of the deletion polymorphism and “2” for homozygous carriers. 

A similar dosage was applied for applied for the number of rare alleles carried at 

LILRB2 His20Arg. A Pearson correlation coefficient and the squared correlation co-

efficient were computed and reported. Diplotypes were used to calculate D and D’ as 

highlighted in Equation 6.1 

SNP1 SNP2 

Allele  Frequency Allele Frequency 

G p1 A q1 

C p2 T q2 
Table 6.2 Representation of allele frequencies 

  SNP2 

Allele A T 

SNP1 
G GA (p11) GT (q12) 

C CA (p21) CT (q22) 
Table 6.3 Representation of diplotype frequencies 

Equation 6.1 Formula for relative measure of disequilibrium D’ 

𝑫′ =
𝑫

𝑫 𝒎𝒂𝒙
 

Where D = p11*p22 – p12*p21, and D max = min [p1q2 or p2q1] when D is positive 

or D max = min [(p1q1) or (p2q2)] when D is negative (see Table 6.2 and Table 6.3) 

(194,195). 
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6.3 Results  

The results are presented in the following order: results from the regional GWAS, 

linkage between the top hits and picking index SNPs, testing their association with CK 

levels and non-adherence in the GoDARTS population, performing conditional 

analyses with the LILRB5 Asp247Gly and the index SNPs, replication of stratified 

effect in the JUPITER trial, eQTL effects of the main variants identified, and finally 

characterizing the LILRA3 deletion in exome sequenced samples and testing its linkage 

with the index SNP. 

LILR Family regional GWAS analysis 

6.3.1.1 Regional GWAS and meta-analysis 
The LILR region GWAS was performed using SNPtest. The numbers available for 

the meta-analysis are shown in Table 6.4. The number available for this analysis include 

only samples for whom GWAS data was available on the Affymetrix and Illumina 

platforms.  

Table 6.4 Number of individuals included in the meta-analysis of statin intolerance  

Study Number of cases Number of controls Total 

Dundee* 181 645 826 

Liverpool 128 585 713 

*Dundee samples are those available on the GWAS platforms of Affymetrix and 
Illumina, which was necessary in order to perform a genome -wide meta-
analysis.  

The results of the individual GWAS were meta-analyzed using GWAMA and the 

results are presented graphically in Figure 6.5 as a regional association plot using 

LocusZoom (196). Subsequently, the top hits are presented, sorted by their base position 

on chromosome 19 and annotated to represent the gene in which they are located, their 

functional role, and their association with statin intolerance in the meta-analysis. This 

information is presented in Table 6.5 and Table 6.6.  
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Figure 6.5 Results from the LILR region GWAS.  

Results represented are only those that showed the same direction of effect in all three studies (the two platforms 

in Dundee and Liverpool). The shapes for each SNP correspond to a functional role, as annotated. The colours 

represent the r2 between the SNPs and the index SNP rs595872 
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Table 6.5 Meta-analysis output for SNPs with a deleterious effect on statin intolerance 

Position Role SNP 
Substitutio
n 

eQTL Gene 
Reference 
Allele 

Other 
Allele 

EAF OR OR_95L OR_95U P Value 

54754946 Intron rs146755009  Yes LILRB3 A G 0.26 1.44 1.14 1.81 0.001993 

54755636 Intron rs624315  Yes LILRB3 C T 0.26 1.41 1.12 1.78 0.003886 

54763969 Unknown rs595872  Yes LILRB2 A G 0.23 1.59 1.28 1.97 2.72E-05 

54764322 Unknown rs389096  Yes LILRB2 G A 0.31 1.42 1.17 1.74 0.000527 

54766423 Unknown rs377681  Yes LILRA3 G A 0.17 1.51 1.19 1.92 0.00065 

54772618 Unknown rs4083825  Yes LILRB2 C A 0.18 1.53 1.21 1.93 0.000369 

54775349 Unknown rs419304  Yes LILRB2 G C 0.18 1.51 1.20 1.90 0.000518 

54779101 Unknown rs443501  Yes LILRB2 T C 0.16 1.50 1.16 1.94 0.002716 

54779389 Intron rs443874  Yes LILRB2 T C 0.16 1.47 1.15 1.89 0.002214 

54779455 Intron rs444004   LILRB2 T C 0.79 1.42 1.13 1.79 0.002345 

54781078 Intron rs452717  Yes LILRB2 T G 0.16 1.55 1.21 1.98 0.000608 

54781541 Intron rs450937  Yes LILRB2 T C 0.13 1.45 1.10 1.92 0.009031 

54781554 Intron rs451000  Yes LILRB2 T C 0.13 1.44 1.09 1.91 0.010064 

54781557 Intron rs400942  Yes LILRB2 C T 0.13 1.44 1.09 1.91 0.010081 

54782919 Missense* rs386056 Val235Met Yes LILRB2 T C 0.21 1.49 1.19 1.85 0.000423 

54783375 Missense rs373032 Asp161Glu  LILRB2 A T 0.23 1.41 1.12 1.77 0.003142 

54783521 Unknown rs383925  Yes LILRA3 T C 0.21 1.48 1.19 1.85 0.000424 

54783923 Synonymous rs366337   LILRB2 G A 0.94 1.95 1.28 2.96 0.001727 

54784130 Missense * rs383369 His20Arg Yes LILRA3 C T 0.21 1.48 1.19 1.85 0.00045 

54784920 5' UTR rs448083  Yes LILRA3 T C 0.21 1.47 1.18 1.84 0.000507 

54784936 Unknown rs200926686   LILRA3 T C 0.22 1.47 1.18 1.83 0.000526 

54784936 Unknown rs448092  Yes 
LILRB2/
MIR475 

T C 0.22 1.47 1.18 1.83 0.000833 

54785593 Unknown rs380573   LILRB2 G A 0.80 1.46 1.16 1.84 0.001342 

54786546 Upstream rs436911   LILRB2 G C 0.80 1.44 1.15 1.82 0.001859 

54786922 Unknown     A A 0.80 1.38 1.10 1.73 0.006058 

54786925 Upstream rs367720231 in-del  LILRB2 G G 0.80 1.38 1.10 1.73 0.006063 
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54792079 Unknown rs431420  Yes  T G 0.21 1.45 1.17 1.80 0.000651 

54792761 Unknown rs386000  Yes  C G 0.23 1.27 1.04 1.57 0.021027 

54792769 Unknown rs386003  Yes  T G 0.23 1.27 1.04 1.57 0.021041 

54793038 Unknown rs398217  Yes  G A 0.23 1.27 1.03 1.56 0.023945 

54793048 Unknown rs398227  Yes  C A 0.23 1.26 1.03 1.55 0.02681 

54793188 Unknown rs798887  Yes  G A 0.23 1.24 1.01 1.52 0.041111 

54793250 Unknown rs798889  Yes  T G 0.23 1.29 1.05 1.58 0.015337 

54793273 Unknown rs57827784  Yes  A T 0.24 1.30 1.06 1.59 0.013254 

54793280 Unknown rs56883673  Yes  C T 0.24 1.31 1.07 1.61 0.010387 

54793357 Unknown rs57906249  Yes  A G 0.24 1.28 1.04 1.57 0.020315 

54793360 Unknown rs59605183  Yes  T C 0.24 1.27 1.04 1.57 0.021566 

54793415 Unknown rs58609643  Yes  T C 0.23 1.27 1.04 1.56 0.021776 

54793505 Unknown rs399657  Yes  G A 0.23 1.28 1.04 1.57 0.0204 

54793721 Unknown rs61703366  Yes  A G 0.23 1.28 1.04 1.58 0.017989 

54793830 Unknown rs798893  Yes  C G 0.23 1.27 1.04 1.56 0.022028 

54794098 Unknown rs397558  Yes  C G 0.23 1.28 1.04 1.57 0.020733 

54794205 Unknown rs419772  Yes  C T 0.23 1.28 1.04 1.57 0.020206 

54795299 Unknown rs427366   LILRA6 C T 0.71 1.39 1.14 1.71 0.001396 

54796630 Unknown rs103294  Yes LILRA3 A G 0.23 1.29 1.05 1.58 0.013994 

54796719 Unknown rs384116  Yes  G C 0.24 1.32 1.08 1.61 0.007175 

54799083 Unknown rs380267  Yes  G A 0.23 1.31 1.07 1.61 0.009691 

54799692 Unknown     G G 0.24 1.38 1.12 1.69 0.001963 

54800222 Unkown rs368178  Yes LILRA3 G A 0.33 1.44 1.18 1.75 0.000243 

54800225 MNV rs71302140 CCTC/TCTT  LILRA3 G A 0.33 1.44 1.19 1.75 0.000225 

54800225 Unknown rs368177  Yes LILRA3 G A 0.33 1.44 1.19 1.75 0.000377 

54800371 Unknown rs410852  Yes LILRA3 C T 0.33 1.44 1.19 1.74 0.000223 

54800500 Unknown rs367070  Yes LILRA3 G A 0.23 1.33 1.08 1.63 0.006749 

54800679 Unknown rs798895  Yes LILRA3 C T 0.29 1.42 1.14 1.76 0.001657 

54800703 Intron rs798896  Yes LILRA3 C T 0.17 1.44 1.06 1.95 0.019957 

54800810 Unknown    LILRA3 C C 0.32 1.38 1.13 1.69 0.001851 

54800810 Unknown No info    C C 0.32 1.38 1.13 1.69 0.002695 
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54800856 Unknown    LILRA3 G G 0.22 1.33 1.08 1.64 0.007459 

54801469 Unknown rs7245916   LILRA3 G T 0.13 1.70 1.24 2.33 0.000998 

54801475 Unknown rs7245918   LILRA3 G T 0.13 1.64 1.20 2.24 0.001805 

54802440 Unknown rs7508470   LILRA3 G T 0.13 1.68 1.23 2.31 0.001273 

54803504 Missense rs6509862 Leu107Arg  LILRA3 C A 0.13 1.73 1.26 2.38 0.000746 

   

Table legend: SNPs labelled in bold are lead to amino acid substitutions, * represents eQTL effect on the same gene.   
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Table 6.6 Meta-analysis output for SNPs with protective effect on statin intolerance 

Position Role SNP Substitution eQTL Gene 
Reference 
Allele 

Other 
Allele 

EAF OR OR_95L OR_95U P Value 

54754385 3' UTR rs2361796  Yes LILRB5 G T 0.32 0.78 0.64 0.95 0.013302 

54754865 Intron rs62133136   LILRB5 G A 0.16 0.76 0.58 0.98 0.036724 

54755572 Intron rs111901459   LILRB5 T C 0.16 0.77 0.59 1.00 0.046198 

54755709 Intron rs12986034   LILRB5 A G 0.22 0.76 0.60 0.96 0.021144 

54755911 Intron rs12977057   LILRB5 T C 0.22 0.74 0.59 0.94 0.013765 

54756155 Intron rs45446093   LILRB5 C T 0.16 0.76 0.59 0.99 0.045662 

54759361 Missense rs12975366 Asp247Gly  LILRB5 C T 0.39 0.72 0.59 0.87 0.000896 

54759666 Intron rs10405357   LILRB5 C T 0.44 0.73 0.60 0.88 0.001041 

54760691 Intron rs11879136   LILRB5 T C 0.25 0.69 0.55 0.86 0.001054 

54762408 Unknown rs6509859   LILRB2 T C 0.25 0.70 0.56 0.88 0.001968 

54766055 Unknown rs34450379   LILRB2 C T 0.22 0.65 0.52 0.82 0.000226 

54767965 Unknown rs12974390   LILRB2 A G 0.22 0.66 0.53 0.83 0.000299 

54769205 Unknown rs12984962   LILRB3 C T 0.31 0.69 0.57 0.85 0.000373 

54769366 Unknown rs12984029   LILRB2 A G 0.22 0.67 0.53 0.83 0.000406 

54770827 Unknown rs4090914   LILRB2 G T 0.22 0.67 0.54 0.84 0.000503 

 

Table legend: SNPs labelled in bold are lead to amino acid substitutions  
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6.3.1.2 Linkage with index SNP in LILRB5 
The Asp247Gly variant in LILRB5 was selected as the index SNP to represent the signal 

arising from the gene. Using criteria explained in 0 Selecting index SNPs from the meta-

analysis. Additionally, the association with this variant has been studied in-depth in 

Chapter 5.  The linkage between Asp247Gly and the other significantly associated SNPs in 

the meta-analysis was checked. The results are presented in Figure 6.6. The signals from 

LILRB5 appear to be independent of others in the region, specifically signals from LILRB2 

and LILRA3. Therefore the variant can be used to represent a signal from LILRB5 while 

predicting effects on the phenotypes discussed previously in this chapter.  
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Figure 6.6 Linkage with LILRB5 Asp247Gly (rs12975366)  

Results represented are only those that showed the same direction of effect in the GWAS of all three studies (the 

two platforms in Dundee and Liverpool). The shapes for each SNP correspond to a functional role, as annotated. The 

colours represent the r2 between the SNPs and the LILRB5 variant rs12975366 (Asp247Gly) 

6.3.1.3 Linkage with index SNP in LILRB2  
The His20Arg variant in LILRB2 was selected as the index SNP to represent the signal 

arising from the gene. Using criteria explained in 0 Selecting index SNPs from the meta-

analysis. There were two functionally comparable variants in LILRB2 (His20Arg and 

Val235Met), that were also eQTLs for gene expression. We compared their imputation 

quality in the GoDARTS population, and His20Arg was found to be better imputed 

(average information score 0.89 compared to 0.84). In Figure 6.7, we examined the linkage 

between LILRB2 His20Arg (in purple) and the other signals from the meta-analysis.  

rs12975

366 
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The variant was in strong LD with other signals from the gene, especially the other 

missense + eQTL variant, Val235Met in LILRB2. Using the imputed chromosome 19 

variant calling file in Plink 1.9, the r2 and D’ between the two variants rs386056 

(Val235Met) and rs383369 (His20Arg) was 0.99 and 1 respectively (190,191). 

Furthermore, congruous signals from abutting SNPs indicate they belong to a haplotype, 

and that the His20Arg variant could be used to represent the effect. The LILRB2 His20Arg 

variant appears linked to SNPs in LILRA3 as well, albeit not as strongly. However, we were 

unable to test the linkage with the deletion polymorphism in LIRA3 using the chip-based 

genotyping and imputation methods available to us. This linkage is further examined in 

section 0  “Linkage between the LILRA3 deletion polymorphism and variants in LILRB2”. 

Therefore, going forward, we employ LILRB2 His20Arg to be the index SNP representing 

signals from the gene.  
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Figure 6.7 Linkage with LILRB2 His20Arg (rs383369) 

Results presented are only those that showed the same direction of effect in the GWAS 

of all three studies (the two platforms in Dundee and Liverpool). The shapes for each SNP 

correspond to a functional role, as annotated. The colours represent the r2 between the 

SNPs and the LILRB2 variant rs383369 (His20Arg) 

The index SNPs selected in LILRB5 and LILRB2 were thus both missense variants, and 

they were not in linkage disequilibrium with each other. Using the imputed chromosome 

19 variant calling file in Plink 1.9, the r2 and D’ between the two variants LILRB5 

Asp247Gly and LILRB2 His20Arg was 0.04 and 0.54 respectively (190,191).  
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Independent and Conditional analyses using index SNPs 

Finally, conditional analyses were performed for the two SNPs selected from the meta-

analyses; rs12975366 (Asp247Gly in LILRB5) and rs383369 (His20Arg in LILRB2). The 

LILRB2 variant, His20Arg was tested for association with CK levels, statin intolerance 

(Phenotype B) and statin adherence (Phenotype C). The two variants were then tested 

together for independence of association in predictive models. The main effects models 

adjusted for the variants one at-a-time then both together. Finally they were tested in full 

models containing phenotypic variables that were found to be significantly associated with 

the specific phenotypes in Chapter 3.  
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6.3.1.4 Association of index SNPs with CK levels 
The association with (log transformed) creatine kinase levels was conducted in a sample 

of 4,224 individuals for whom CK, as well as genotype information was available. As seen 

in Chapter 4, carriers of the LILRB5 Asp247Gly variant had significantly lower CK levels; 

the variant predicted 0.5% of the variation in CK.  

While the LILRB2 His20 shows a slightly weaker association, carriers of the variant had 

higher CK levels and the variant predicted 0.1% of the variation in CK.  

The full model, including gender and age can predict 13.3% of the variation CK levels. 

Results are presented in Table 6.7. 

Table 6.7 Association with CK levels 

Log Transformed Creatine Kinase (IU/L) (n = 4224) 

Variables Beta SE P Value R2 (%) 

Univariate models 

rs12975366 -0.03 0.005 <0.0001 0.5 

rs383369 0.014 0.006 0.025 0.1 

Gender (F v. M) -0.14 0.007 <0.0001 7.4  

Age -0.004 7.4 e-4 <0.0001 2.3 

Full model    

13.3 
rs12975366 -.02 0.005 <0.0001 

rs383369 0.005 0.006 0.4 

Gender (F v. M) 
Age 

-0.13 
-0.004 

0.007 
8.6 e-4 

<0.0001 
<0.0001 

SNP annotation: rs12975366 = LILRB5 Asp247Gly and rs383369 = LILRB2 His20Arg 
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6.3.1.5 Association of index SNPs with statin intolerance: raised CK and non-adherence 
to therapy  

Carriers of the LILRB5 Asp247Gly variant were observed to be protected from 

developing raised CK and being non-adherent to statin therapy as seen in Chapter 5.  

LILRB2 His20 was also associated with statin intolerance, with carriers of the variant 

having higher risk. Independently, the variant predicted 0.5% of the variance in the trait. 

However, when both variants were added into the same model, the association with LILRB2 

His20 was substantially weakened. In order to examine if the associations were 

independent or if there was an interaction between the two, we stratified the association by 

LILRB5 Asp247 genotype (T/C or C/C) or non-carriers (T/T).  We found that the 

deleterious effect of the LILRB2 His20 variant was only significant for those who did not 

carry the variant at LILRB5 Asp247 ancestral (T/T). This stratification of effect was also 

observed in the full predictive model containing covariables known to be associated with 

the outcome (OR 1.4, p value = 0.049).  In the fully adjusted model, the R2 is lower in the 

group with the LILRB5 Asp247 (T/T) genotype than in the 247Gly variant carriers (T/C or 

C/C). This might be due to diminished sample size in that group. Further, for this analyses 

only individuals with genotype data available for both SNPs were used in order to maintain 

a consistent set of individuals through the analyses. The results are presented in Table 6.8.  
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Table 6.8 Association with raised CK and non-adherence (B v. E) 

Phenotype B: (n = 660: n  cases = 250, n controls = 410) 

Variables Beta SE P Value R2 (%) 

Univariate models 

rs12975366 -0.103 0.025 <0.0001 2.0 

rs383369 0.06 0.03 0.04 0.5 

rs12975366 + rs383369  -0.09 
0.06 

0.03 
0.03 

0.0016 
0.07 

2.5 

Main Effect Stratified by LILRB5 Asp247Gly (rs12975366) 
 247Gly (variant carriers) n = 466, n cases = 156, n controls 310 

rs383369 0.16 0.18 0.36  

Asp247rs12975366 = T/T (ancestral allele) n = 318, n cases = 145, n controls = 173 

rs383369 0.32 0.18 0.076  

Full Models 

Full model    

12.5 

rs12975366 (dom) -0.134 0.037 0.0003 

rs383369  0.155 0.08 0.05 

Starting statin (Oth v. S) 0.72 0.20 0.0003 

Starting statin (A v. S) -0.30 0.16 0.053 

Starting dose -0.009 0.001 <0.0001 

Gender 0.32 0.15 0.03 

Age -0.02 0.007 0.003 

Full Model Stratified by LILRB5 Asp247Gly (rs12975366) 
247Gly rs12975366 = T/C or C/C (variant carriers) n = 466, n cases = 156, n controls = 310 

Full model    

19 

rs383369  0.16 0.18 0.37 

Starting statin (Oth v. S) 1.3 0.23 <0.0001 

Starting statin (A v. S) -0.96 0.20 <0.0001 

Starting dose -2.1 0.32 <0.0001 

Gender 0.33 0.20 0.095 

Age -0.027 0.009 0.006 

Asp247rs12975366 = T/T (ancestral allele) n = 318, n cases = 145, n controls = 173 

Full model    

6.7 

rs383369  0.36 0.18 0.049 

Starting statin (Oth v. S) 0.99 0.29 0.0005 

Starting statin (A v. S) -0.52 0.20 0.01 

Starting dose -0.98 0.26 0.0001 

Gender (F v. M) 0.29 0.24 0.22 

Age -.05 0.011 0.20 

Table legend: Oth: refers to all other statins, A: Atorvastatin S: Simvastatin. Gender 

comparisons are Female v. Male. SNP annotation: rs12975366 = LILRB5 Asp247Gly (dom 

= dominant model) and rs383369 = LILRB2 His20Arg 
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6.3.1.6 Association of index SNPs with statin intolerance: non-adherence to therapy, 
irrespective of CK 

Carriers of the LILRB5 Asp247Gly variant were observed to be protected from being 

non-adherent to statin therapy as seen in Chapter 5.  The LILRB2 His20Arg variant showed 

no significant association with statin non-adherence in a main effects model, however when 

stratified by LILRB5 Asp247 genotype, a deleterious effect was noted. Carriers of the 

20Arg variant had increased odds of being non-adherent to statin therapy if they did not 

carry the LILRB5 Asp247 variant, predicting 1.08% of the variance in the trait. Consistent, 

with the previous analysis, this effect was strengthened in a fully adjusted model stratified 

by the Asp247 genotype. Again, the R2 of the fully adjusted model in this genotype group 

is lower than those with the T/C or C/C genotypes, as stated previously, this might be due 

to a smaller sample size. Further, for this analyses only individuals with genotype data 

available for both SNPs were used in order to maintain a consistent set of individuals 

through the analyses. The results are presented in Table 6.9. 
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Table 6.9 Association with non-adherence, irrespective of CK (C v. F) 

Phenotype C: (n = 1043: n  cases = 369, n controls = 674) 

Variables Beta SE P Value R2 (%) 

rs12975366 (dom) -0.06 0.03 0.03 0.4 

rs383369  0.06 0.09 0.52 0.2 

rs12975366 (dom) + 
rs383369  

-0.13 
0.075 

0.12 
0.11 

0.11 
0.50 

0.55 

Main Effect Stratified by LILRB5 Asp247Gly (rs12975366) 
 247Gly rs12975366 = T/C or C/C (variant carriers) n = 629, n cases = 209, n controls 420 

rs383369 -0.20 0.17 0.23 0.23 

Asp247 rs12975366 = T/T (ancestral allele) n = 414, n cases = 160, n controls = 254 

rs383369 0.33 0.16 0.035 1.08 

Full Model Stratified by LILRB5 Asp247Gly (rs12975366) 
247Gly  rs12975366 = T/C or C/C (variant carriers) n = 629, n cases = 209, n controls 420 

Full model     

21.7 

rs383369  -0.27 0.21 0.21 

Starting statin (Oth v. S) 1.3 0.20 <0.0001 

Starting statin (A v. S) -0.75 0.19 <0.0001 

Last statin (Oth v. S) 1.54 0.24 <0.0001 

Last statin (A v. S) -0.25 0.18 0.16 

Starting dose  -2.12 0.34 <0.0001 

Ending dose -0.6 0.19 0.0016 

Gender 0.001 0.22 0.99 

Age -0.04 0.01 0.0004 

Asp247 rs12975366 = T/T (ancestral allele) n = 414, n cases = 160, n controls = 254 

Full model     

19.6 

rs383369  0.41 0.19 0.019 

Starting statin (Oth v. S) 0.79 0.23 0.0007 

Starting statin (A v. S) -0.37 0.21 0.07 

Last statin (Oth v. S) 1.58 0.33 <0.0001 

Last statin (A v. S) -0.32 0.21 0.13 

Starting dose  -1.1 0.29 0.0002 

Ending dose -1.12 0.22 <0.0001 

Gender 0.41 0.24 0.09 

Age -0.036 0.013 0.0061 

Table legend: Oth: refers to all other statins, A: Atorvastatin S: Simvastatin. Gender 

comparisons are Female v. Male. SNP annotation: rs12975366 = LILRB5 Asp247Gly (dom 

= dominant model) and rs383369 = LILRB2 His20Arg 

Replication in the JUPITER trial 

We sought to replicate our findings of the stratification of the effect of the LILRB2 His20 

variant stratified by the LILRB5 Asp247Gly variant in the trial setting. The imputation 

quality of LILRB2 His20Arg variant, rs383369 was 98%, r2=0.94 JUPITER cohort (115) 

in the. The MAF was 0.18.  
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6.3.1.7 Association of LILRB2 variant with baseline and induced CK levels 
The variant was not significantly associated with baseline CK levels (β = -0.0002, SE = 

0.005, p value = 0.95). An analysis stratified by the LILRB5 Asp247Gly variant also 

showed no significant association. This indicates that the variant has no relationship with 

CK levels in the trial and that its association with intolerance might occur from a 

mechanism independent to that of the LILRB5 variant. 

6.3.1.8 Association of LILRB2 variant with changes in CK levels stratified by LILRB5 
variant  

The LILRB2 His20Arg variant was not associated with a change in CK from baseline to 

final measurement in a main effects model (β = 1.23, SE = 0.89, p value = 0.16. 

However, when stratified by LILRB5 Asp247 genotypes a significant association was 

observed among individuals who did not carry the variant, consistent with our findings so 

far. Individuals with the LILRB2 20Arg variant have increased risk of having raised CK 

after starting statin therapy if they did not carry the LILRB5 Asp247 variant (β = 3.02, SE 

= 1.39, p value = 0.03, as seen in Table 6.10. 

Table 6.10 Association of LILRB2 His20Arg with changes in CK stratified by LILRB5 Asp247 genotypes 

LILRB2 His20Arg Beta SE P Value 

247Gly rs12975366 = T/C or C/C (variant carriers) n = 5679 

rs383369 -0.38 1.18 0.74 

Asp247 rs12975366 = T/T (ancestral allele) n = 2403 

rs383369 3.02 1.39 0.03 

Next, we examine how these variants impact on the expression of their own and 

neighboring genes, since the LILRB2 variant is a known eQTL.   
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Expression quantitative trait loci 

Gene expression in whole blood and skeletal muscle were examined for the variants in 

LILRB5 and LILRB2 in order to explore their functional roles using the Genotype-Tissue 

Expression (GTEx) Project data set (197–199). 

6.3.1.9 Cis-eQTL effects of LILRB5 variant on LILRB2 gene expression (might be trans – 
regulatory) 

The Asp247Gly variant was a significant eQTL for LILRB2 expression in whole blood 

(β = -0.10, p = 0.03), and trended toward significance for skeletal muscle cells (β = -0.11, 

p = 0.057). Indicating that carriers of the 247Gly variant had lower expression of LILRB2 

in whole blood seen in Figure 6.8. However, the variant was only weakly associated with 

the expression of LILRB5 in the spleen, but in no other tissues. It was not associated with 

the expression of any other members of the LILR family. 

 
Figure 6.8 eQTL of LILRB5 variant rs12975366 (Asp247Gly) on LILRB2 in whole blood (on left) and skeletal 

muscle (right) (Box plots generated on GTEx portal) 
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Figure 6.9 eQTL of LILRB5 variant rs12975366 (Asp247Gly) on LILRB5 expression in the spleen (Box plots 

generated on GTEx portal) 

6.3.1.10 Cis-eQTL effects of LILRB2 variant on LILRB2 and LILRA3 gene expression 
The His20Arg variant was a significant eQTL for LILRB2 and LILRA3 in whole blood 

and skeletal muscle cells. In whole blood, carriers of the 20Arg variant had an increased 

expression of LILRB2 (β = 0.28, p = 3 x 10-6) (see Figure 6.10) and a decreased expression 

of LILRA3 (β = -0.93, p = 4 x 10-28) (see Figure 6.11). Similarly, in skeletal muscles carriers 

of the 20Arg variant had increased expression of LILRB2 (β = 0.23, p = 0.003) (see Figure 

6.10) and a decreased expression of LILRA3 (β = -0.36, p = 1 x 10-4 (see Figure 6.11). 
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Figure 6.10 eQTL of LILRB2 variant rs383369 (His20Arg) on LILRB2 in whole blood (on left) and skeletal 

muscle (right) (Box plots generated on GTEx portal) 

 
Figure 6.11 eQTL of LILRB2 variant rs383369 (His20Arg) on LILRA3 in whole blood (on left) and skeletal 

muscle (right) (Box plots generated on GTEx portal) 

In summary, those with the risky Asp247 genotype in LILRB5 would express more 

LILRB2, as would those carrying the deleterious His20Arg variant in LILRB2.  

6.3.1.11 Trans-eQTL effects of LILRB2 variant 
LILRB2 is known to interact with certain transfectants of HLA-A, -B, -C, -F and –G. Due 

to their highly interlinked roles in the immune system, we checked if the 20Arg variant was 

a trans-eQTL for the expression of any of these HLA sub-types.  
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As seen in Figure 6.12, His20Arg is an eQTL for the expression of HLA-C in both spleen 

cells (β = -0.54, p = 0.008) and in whole blood cells (β = -0.21, p = 0.02), where each copy 

of the rare allele appears to decrease the expression of HLA-C. The variant appears to have 

the inverse effect on expression of HLA-G in spleen cells (β = 0.44, p = 0.035) and in whole 

blood cells (β = 0.19, p = 0.073), the rare allele appears to increase the expression of HLA-

G.  

It is worth noting that the eQTL effects are identical for the LILRB2 Val235Met variant, 

which was in strong LD with His20Arg, indicating that the haplotype block is crucial in 

the expression of LILRA3, LILRB2, HLA-C and HLA-G. 
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Figure 6.12 eQTL of LILRB2 variant rs383369 on HLA-C in the spleen (on left) and whole blood (right) (Box plots 

generated on GTEx portal) 

 

Figure 6.13 eQTL of LILRB2 variant rs383369 on HLA-G in the spleen (on left) and whole blood (right) (Box 

plots generated on GTEx portal) 

The LILRB5 variant did not show an eQTL effect for the expression of any HLA-class I 

subtypes. 

Linkage between the LILRA3 deletion polymorphism and variants in LILRB2 

Based on the strong association of the LILRB2 (His20Arg and Val235Met) variants on 

reduced LILRA3 expression, we wanted to examine if this was due to linkage with the 

deletion polymorphism in LILRA3, and to test whether reduction in LILRA3 was associated 

with the development of statin intolerance.  
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The deletion was successfully characterized from 150 exome sequenced samples. The 

LILRB2 Val235Met variant was successfully extracted from the data and used as a proxy 

for the haplotype containing both LILRB2 variants of interest, since it had better coverage.  

The deletion polymorphism was observed as homozygous in 10 individuals and 

heterozygous in 80. There were 8 homozygous carriers of the LILRB2 variant and 64 

heterozygous carriers. The correlation between the LILRB2 Val235Met variant and deletion 

polymorphism was 50% (p value < 0.0001) and the r2 = 0.25. 

The occurrence of the deletion polymorphism is cross-tabulated with carriers of the 

variant in LILRB2 Val235Met. The calculated D’ was 0.5. 

Table 6.11 Cross-tabulation of LILRA3 deletion polymorphism and LILRB2 variant 

LILRA3 deletion 
LILRB2 Val235Met 

Val235 235Met 

Carriers of deletion 35 55 

Non-carriers (homozygous 

ancestral allele) 

68 17 

 

The LILRB2 variant and LIRA3 deletion polymorphism do not show genetically 

significant linkage and the D’ indicates that there is significant recombination occurring 

between them.  

However, there was no significant association between the deletion polymorphism or the 

LILRB2 Val235 variant and SIM in the PREDICTION-ADR cohort tested. However, we 

are underpowered to determine an association with SIM in this analysis (150).  
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6.4 Discussion 

These analyses were undertaken to probe the role of the the LILR family in statin 

intolerance, which is a novel hypothesis. The LILR gene family belongs to the 

immunoglobulin (Ig) superfamily that plays an essential roles as antigen receptors, 

costimulatory proteins, adhesion molecules and immunomodulatory receptors. The LILR 

are involved in both the innate and adaptive arms of the immune system.  

This study concludes that an association exists between SNPs in LD in LILRB2 and statin 

intolerance represented by the index SNP, His20Arg in LILRB2. The effect of this variant 

was modulated by the Asp247Gly variant in LILRB5, which was independently reported to 

be associated with intolerance and myalgia in Chapter 5. Those with the risky genotype in 

LILRB5 (Asp247) showed the deleterious effects of the LILRB2 His20 variant on raised 

CK and non-adherence to statin treatment, and to non-adherence to treatment irrespective 

of CK. The association was replicated in the JUPITER trial where those with the LILRB5 

Asp247 genotype and LILRB2 20Arg variant were more likely to have raised CK after 

commencement of therapy, which is a traditional statin intolerance diagnosis paradigm.  

The lower percent of variation explained in the LILRB5 Asp247 (T/T) genotype group 

for statin intolerance seen in the fully adjusted model in Table 6.8 might also point to the 

fact that there are perhaps other factors that render an individual unable to tolerate their 

statin therapy that have not been captured in our analysis. Due to the stratified analyses, we 

were underpowered to include co-medications which we know are a significant, but 

independent risk factor as they were included as a covariables in the original meta-analysis. 

The MAF in GoDARTS was 0.21 and 0.18 in the JUPITER trial, in the 1000Genomes 

for Caucasian population the MAF was 0.17 indicating these results are likely to be 

extrapolatable to Caucasian populations in the western world. A drawback of the study is 
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lack of overlap in case control definitions across the Dundee-Liverpool cohorts. The 

relatively relaxed definition of statin tolerance for the Liverpool cohort might have blunted 

the possible effects of the variants. Sustained exposure to medium to high dose of statin 

therapy is what is understood to be a risk factor for the development of an adverse reaction 

(97,154) . 

Based on eQTL analyses it appears that LILRB2 expression could be related to statin 

intolerance (SI) and myalgia. LILRB5 Asp247Gly variants decrease LILRB2 expression, 

however, since variant carriers are protected from SI and myalgia (as seen in Chapter 5), 

higher expression of LILRB2 is associated with both outcomes. Furthermore, carriers of the 

LILRB2 His20Arg variant also express more LILRB2, and since carriers are also more likely 

to develop SI and myalgia, we can support our previous hypothesis that LILRB2 expression 

is associated with both outcomes.  

In the receptor, the LILRB2 variant, His20Arg encodes the third domain of the 

extracellular domain (162) and since these are the sites of interaction with the HLA-class 

1 molecules this points to a potential role in the adaptive arm of the immune system (116). 

The eQTL effect on HLA-C and –G expression by the variant in LILRB2 suggests a more 

closely connected association and one worthy of further exploration in gene expression and 

response studies. However, trans-eQTL effects could be prone to type 1 error, and must be 

examined in a larger population than presented in these results. 

In our eQTL analyses we find that the LILRB2 His20Arg variant carriers have lower 

LILRA3 expression.  A study by Hirayasu et al. showed that the His20Arg variant is in 

strong LD with the deletion polymorphism (D’ = 0.96) in Northeast Asians (162). Our 

characterization of the deletion polymorphism in LILRA3 in the Caucasian population is 

novel. We demonstrate that in the Caucasian population, the variant in LILRB2 is not linked 
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with the LILRA3 deletion polymorphism. This provides further evidence for population 

selection in this region. However, we are insufficiently powered to test the association 

between the deletion polymorphism and statin-induced myositis. The lower LILRA3 

expression seen in those at risk of developing statin intolerance (LILRB2 variant carriers) 

could be an independent effect of the gene. Identifying a variant that is in strong linkage 

with the deletion (from the exome sequenced samples) could help answer this question in 

genotyped populations, such as GoDARTS.  

This study presents a statin intolerance susceptibility marker in the immune system and 

suggests that the development of a gene risk score for the LILR region, initially perhaps 

predicting LILRB2 expression levels, would help categorize risk levels for muscle-

associated susceptibility. The selection of this index SNP will also simplify future 

replication studies, as it did in the JUPITER trial.   
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7 General Discussion 

7.1 Summary of findings: 

Perspectives on statin intolerance 

This thesis presents findings contrasting two central concepts of statin intolerance. 

Symptoms of statin intolerance, specifically myalgia (resulting from muscle damage), has 

been reported to occur in between 7% and 29% of statin users (97) and is thought to be 

caused by statin use. Furthermore, a diagnosis of statin-induced muscle damage relied 

heavily on changes in levels of a biomarker of muscle breakdown – creatine phosphokinase 

(CK). Studies present various cut-offs for CK elevations, to reflect the severity of statin-

induced muscle damage. At the same time, there are numerous reports of a lack of extreme 

CK elevations in statin users who complain of myalgia, and whose symptoms resolve upon 

discontinuation of therapy.  

First, we provide evidence to suggest that there might be genetic factors that determine 

an individual’s constitutive and inducible CK levels. The Glu83Gly variant in CKM had 

previously been shown to be associated with CK levels under normal conditions. We show 

that this variant impairs an individual’s ability to induce CK levels in response to tissue 

trauma. This finding provides an example of how the phenomenon of myalgia with no 

commensurate CK elevations may occur.  The stratification of CK response by genotype 

calls into question the use of CK as the end-all be-all biomarker of statin-induced muscle 

damage.  

Second, we provide evidence to suggest that there might be one or more genetic factors 

that increase an individual’s predisposition to myalgia, irrespective of statin use. We 

observe carriers of the 247Gly variant in LILRB5 are much better able to tolerate their statin 
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therapy, carriers of the same variant are also shown to have lower baseline CK levels and 

other studies have shown they have lower lactose dehydrogenase (LDH) levels as well. 

LDH is an enzyme found ubiquitously in cells, and used predominantly to help guide 

diagnoses of tissue (including muscle) damage. This evidence suggests that carriers of the 

LILRB5 247Gly variant might have improved capacity to repair muscle, irrespective of 

statin exposure. The modulation of this effect by statin use was seen clearly is the RCT 

setting, where we saw evidence congruent with our findings; carriers of the variant were 

less likely to have myalgia in general, representing a baseline susceptibility for non-

carriers. However, the true statin-induced effect was seen only amongst carriers of the 

putatively protective variant. These observations coincide with the general observation of 

similar levels of reported myalgia in placebo and statin treated arms of the published 

clinical trials. This suggests that the trends of intolerance seen in populations unable to 

tolerate their statin therapy are not entirely statin-specific, but could be due to a genetic 

susceptibility to myalgia. 

Randomized clinical trials including JUPITER and the GAUSS-3 trial have reported clear 

instances of non-specific myalgia. In the JUPITER trial, 48% of reported myalgia occurred 

in participants receiving placebo (114,115). In the run-in to the GAUSS-3 trial, designed 

to select statin-specific myalgia, 37% of the reported instances were non-specific (154). 

Therefore, if those with non-specific myalgia were placed on statin therapy, they would 

likely complain of muscle-based symptoms, which might be exacerbated by the structural 

disruption occurring in myocytes due to statin therapy (38). These individuals are then at a 

much higher risk of being non-adherent to their statin therapy, which in-turn raises their 

risk of suffering from CVD-related event.  
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Mechanisms of intolerance mediated by the innate immune system 

Statins not only reduce circulating LDL but also increase HDL (200,201). A SNP in 

LILRA3, (rs386000) was reported in our meta-analysis for the association between the LILR 

gene family and statin intolerance (see Chapter 6). This variant was also reported to be 

associated with plasma HDL levels (0.83 m/dL increase in HDL for variant carriers, p value 

= 4 x 10-16) (178). The variant was also is a strong eQTL for decreased LILRA3 expression 

and increased LILRB2 expression (197–199).These expression profiles are consistent with 

those noted in association with intolerance. The variant in LILRA3 has an r2 of 0.75, and 

D’ of 0.92 with the the index SNP in our analysis of statin intolerance. While the association 

with the LILRA3 variant might have been driven through its linkage with the index SNP, it 

does suggest that the haplotype could be related to HDL levels. 

HDL plays an active role in the innate immune system by reducing inflammation. HDL’s 

ability to modulate the bioavailability of cholesterol in lipid rafts in the plasma membranes 

of cells is evolutionarily conserved and affects the properties of cells involved in both 

innate and adaptive immune responses; tuning inflammatory responses and antigen 

presentation functions of macrophages, as well as B and T cell activation. B and T cell 

receptors are located in these lipid rafts, and their activity is modulated by changes in lipid 

raft composition and structure. Higher HDL levels would transport more cholesterol out of 

the lipid rafts. Therefore, the modulation of HDL by statins and LILRA3 could be 

responsible for the immunomodulatory effects that result in statin intolerance. 

Interestingly, LILR gene expressions are upregulated in peripheral blood leukocytes after 

endotoxin challenge (160). Again, highlighting the potentially interlinked roles of the gene 

family and HDL in the innate immune system. 

The well-known interaction between lipids and inflammation might also help shed some 

light on the specific types of immune reactions occurring in those who are intolerant to 
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statin treatment. It might also help explain the increased risk of CVD-events for statin 

intolerant individuals as seen in Chapter 3. A study by Sokolowska et al. showed that 

hyaluronan (HA) which is an essential component of extracellular matrix is broken down 

during inflammation (202). Fragmented HA polarizes macrophages toward a 

proinflammatory MI phenotype with a unique eicosanoid profile (202). This mechanism 

could help explain a proportion of the increased risk of CVD-events for those intolerant to 

their statins seen in Chapter 3.  

However, while the mechanism by which these variants modulate HDL levels is not 

known, it is apparent that the association is being driven by a haplotype that contains two 

missense variants in the extracellular domain of the LILRB2 receptor and also is a high 

expressing haplotype of LILRB2 mRNA in several tissues.  It is unclear if all of these 

features are required for the observed phenotypes due to the tight linkage in this region.  

The amino acid substitutions could affect the binding affinity for HLA ligands, and indeed 

we observe that the variants are trans-eQTLs for HLA-C and HLA-G gene expression as 

well. A variant affecting both a gene in cis and in trans suggests that the cis gene is 

functionally linked to the trans gene expression (203). Therefore, it seems plausible that 

there is a strong functional relationship between LILRB2 and the proteins encoded by the 

HLA subtypes. LILRB2 receptors are present on monocytes which are adaptive and can 

differentiate into macrophages and dendritic cells (DC). When activated DC can generate 

mediators of the innate immune system, which leads to the expression of co-stimulatory 

proteins that in-turn induce an adaptive immune response. The versatility of monocytes 

places the impact of the LILRB2 variants in either or both arms of the immune system.  
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Mechanisms of intolerance mediated by the adaptive immune system 

The genetic variant reported in Chapter 5 LILRB5 Asp247Gly is involved in the immune 

system rather than in statin metabolism or statin pharmacokinetics. This makes the 

conclusion that the drug is not central to the observed phenotype more valid.  Since the 

variant is not an eQTL for LILRB5 gene expression, its effect most likely arises from the 

amino-acid substitution occurring in the extracellular domain. HLA class I heavy chains 

are reported ligands for LILRB5 (156). It may be that the LILRB5 Asp247Gly variant is 

modulating muscle pain in response to a wide range of common environmental agents, or 

may be involved in the general day to day repair homeostasis of muscles, perhaps in 

conjunction with the observed role of T regulator (Treg) cells.  

Kuswanto et al. report that the presence and rapid accumulation of Treg cells in healthy 

and young skeletal muscles is associated with swifter repair and regeneration. This feature 

is lost with age. Treg cells are regulated by FOXP3, ST2 (the IL-33 receptor). Sphingosine-

1-phosphate receptor 1 (S1P1) expression on T cells determines the migration of 

lymphocytes from lymphoid organs (204,205), and can lead to poor accumulation of Treg 

cells, even if the splenic populations are normal (206) (see Figure 7.1). 

 
Figure 7.1 Outline of factors influencing T reg cell accumulation in skeletal muscle cells. Statins and LILRB5 

modulate Foxp3 expression. 

T reg: T regulator, Foxp3: Forkhead box P3, ST2: Suppression of Tumorigenicity (IL-33 

receptor), IL-33: Interleukin-33, S1P1: Sphingosine-1-phosphate receptor 
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Rodriguez-Perea et al. report that statins increase both the number and suppressive 

function of CD4+ Foxp3+ Treg cells in inflammatory conditions (see Figure 7.1) (182). 

They conducted the study on normocholesterolemic male subjects who were placed on 

statin therapy for 45 days; and found that after an initial increase in Treg and Foxp3 mRNA 

levels, Treg cells numbers returned to normal. However, Foxp3 expression levels remained 

high.  

Treg cells are characterized by their expression of Foxp3, a transcription factor that is the 

master-regulator of Treg immune-suppressive activity. The mechanisms that induce Foxp3 

expression and sustain Treg activity are therefore of great interest. The clear importance of 

Foxp3 in T reg cell function and muscle homeostasis, and the apparent association between 

myalgia and the LILRB5 variant, led us to test the eQTL effect of the Asp247 variant in 

LILRB5 on Foxp3 expression in the spleen. The Asp247 variant in LILRB5 is a cis-eQTL 

for LILRB5 expression (see Chapter 6) and a trans-eQTL for Foxp3 expression (β = 0.36, 

p value = 0.009) in the spleen. This eQTL effect localized in the spleen suggests that 

perhaps the roles of the receptor and transcription factor are interlinked.  

IL-33 receptor (ST2) expression was found to be crucial in Treg cells accumulation post-

injury (206). Interestingly, IL-33 is produced mainly by fibro-adipogenic progenitor cells, 

which are found abundantly in regions surrounding muscles and are often associated with 

nerve structures. This has led to a hypothesized role for IL-33 in pain perception via the 

relaying of signals between nervous and immune systems in muscle (206), which could be 

linked with the inter-individual variation in myalgia-associated pain.  

Treg frequency was found to be positively correlated with plasma HDL levels, suggesting 

a possible role of HDL cholesterol in T reg homeostasis (182) and a common thread 

through the various etiologies of statin intolerance – HDL.  
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The pleiotropic effects of statins on human physiology are of increasing interest; reports 

of their immunomodulatory effects (182,207) come on the heels of reports of the 

association between statins and new-onset diabetes (138,208,209). It has been reported 

recently that fat-resident Treg cells accumulate in adipose tissue with age, and their 

selective depletion increases adipose tissue insulin sensitivity (210). The Treg cell-

mediated failure to preserve an optimal immune state in the aged adipose tissue may 

contribute directly to metabolic disorders such as insulin resistance and age-associated 

diabetes. This non-obesity dependent, Treg cell-driven metabolic disease of the elderly has 

been designated Type IV diabetes, and it is plausible that the immunomodulatory role of 

statins in increasing Treg cells frequency might be causative (208).  

Therefore, while Treg cells might be beneficial in regulating muscle regeneration and 

recovery, and tempering immune reactions, they can also interfere with immune response.  

7.2 Comments on study design:  

Causal inference is a major aim of epidemiological studies. Therefore, in order to assess 

the validity of the findings presented in this thesis, we examined factors that compromise 

causal inference (111). 

 Construct validity: This arises when the exposure and outcomes measured do not reflect 

the intended exposure and outcomes. These are addressed in Chapter 3. Measurement of 

the exposure, which is statin use is robust and relies on repeated encashment of 

prescriptions. Errors in the encashment data are possible, but unlikely to be systematic. A 

second factor that could be considered an “exposure” is genotype. Individuals were 

genotyped on widely used chip-based arrays, TAQMAN genotyping, exome sequencing, 

or imputation. These techniques are widely used. Further evidence for consistent 

genotyping or imputation in our datasets arises from the similarity of MAFs seen in the 

JUPITER trial population and on the NCBI data base. Finally, characterisation of the 
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LILRA3 deletion polymorphism was performed using a novel method to determine 

deletions in gene regions using sequencing output. The limitations and necessary 

modifications to improve this methodology will become apparent with more 

experimentation. Outcomes include CK test results and changes in prescribing patterns that 

are suggestive of intolerance. CK assay results are produced with kits that are used 

universally; the results are used in the Tayside and Fife area for the treatment and diagnoses 

of patients. They are all measured centrally and are therefore unlikely to suffer from site-

based drift in results. Classical definitions of statin-induced myopathy or myositis include 

CK elevations 4 or 10 times above the normal. However, while these elevations represent 

an extreme reaction to the drug, they are not normally observed in statin users who 

complain of muscle aches, a fact noted by Banach et al. when detailing the limitations of 

myalgia classifications (133). Our definitions of intolerance (switching or discontinuation) 

are robust, in that they predict a pattern that results in poor outcomes for statin users, as 

seen in Chapter 3 (validation against statin failure) and are patterns seen more commonly 

amongst statin users. The inability to tolerate more than two or three therapies is considered 

sufficient criteria even for recruitment into clinical trials (154). Studying the genetic 

underpinnings of such traits is crucial to improving patient compliance and adherence to 

long-term statin therapy.  

 Statistical validity: This is generally driven by a lack of power in the analysis. Due to the 

size of the GoDARTS cohort this is generally not a problem, but for outcomes that were 

rare, the results of power calculations are provided in the relevant results sections. The 

expected frequency of outcomes was determined from the literature. The analyses 

presented in this thesis have employed the appropriate tests to measure the outcomes of 

interest, and the interpretation of data has been congruent to the test performed. 

 Internal validity: This stems from an information or selection bias, or the occurrence of 

unmeasured or untested confounding factors. This threat to the causal inference of a study 
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can be mitigated by evaluating the effects of systematic errors in the design, conduct and 

analysis of a study. Limitations of intolerance phenotypes dependent on raised CK could 

lead to false positives, as CK can be raised in a variety of non-clinical conditions such as 

exercise, or prolonged sitting. The switching or discontinuation of statins could be for 

reasons other than statin-induced intolerance. Perhaps those discontinuing therapy are less 

careful about their health, or these could be intrinsic effects, such as a susceptibility to 

myalgia that is independent of statin use. This would appear to be consistent with reports 

of myalgia in patients treated with placebo in the JUPITER trial. However, in the absence 

of patient-reported or physician-documented myalgia, using prescribing changes in 

conjunction with changes in biomarkers is the closest approximation of statin intolerance 

and has been used successfully to find variants in efflux transporter encoding SLCO1B1 in 

the GoDARTS study (54) and in the CPRD (187).   

 External validity: This evaluates what populations, geographic locations etc. these findings 

apply to. With replication from the American Caucasian cohort (JUPITER), the British 

Caucasia cohort (CPRD and WTCCC) and the combined Dutch, English, Swedish and 

Scottish Caucasian populations in the PREDICTION-ADR consortium, in addition to the 

Scottish Caucasian population in the GoDARTS study, our findings are applicable to the 

Western Caucasian population. Since we do not observe any environmental factors 

predisposing to statin intolerance or myalgia, we have no reason to expect these genotypes 

effects will not follow the same dosage-associated risk in other ethnic groups as well.  

7.3 Future directions  

The impact of the CKM Glu83Gly variant on CK brings into focus the population 

selection that has occurred, resulting in the MAF in the Caucasian population being ten 

times lower than Kenyan Masai population’s. In sustained exercise the transition from fast 

twitch muscle to slow-twitch is crucial to maintain energy homeostasis. Population studies 
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using common variants in CKM have reported no association with elite endurance 

performance, however these variants have no known association with CK levels. CK plays 

an important role in this transition, a role that has been explored in the past (211). Studies 

have found that over more prolonged exercise, CK might contribute to the fatigue process 

by increasing myoplasmic concentration of inorganic phosphate (212). The low levels of 

CK produced as a result of the CKM 83Gly genotype seen widely in the Masai population 

might explain their enhanced ability to withstand prolonged exercise such as marathon 

running. The mechanism by which the compensation occurs in the body is worth exploring, 

perhaps with the aid of metabolomic studies.  

The question raised by this thesis, regarding what specific immunogenetic factors are 

associated with statin-induced myalgia and how they interact with ligands in the HLA to 

produce an immune response might best be answered on a population scale in large cohort 

studies by running well-powered conditional analyses using associated variants in 

interacting both HLA class I and II ligands. It is plausible that some of the genetic factors 

in HLA D, that predispose to auto-immune mediated myopathies might be involved in the 

etiology of general statin intolerance, albeit to a lesser extent.  

Contrasting the metabolic by-products of those who develop intolerance to those able to 

tolerate statins therapy might shed light on the changes that occur in those who become 

intolerant. A lipidomic profile (e.g. eicosanoids, sphingolipids etc.) might be especially 

helpful in understanding the role of lipids in inflammation-mediated statin intolerance and 

intolerance-related adverse effects. Perhaps this would help clarify the etiologies of statin-

intolerance, as they appear to straddle both the innate and adaptive arms of the immune 

system.  
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The challenge remains untangling statin-induced and statin-independent muscle pain. A 

question that can best be answered in a RCT with Mendelian randomization of genotype. 

Perhaps, genotyping in a trial such as GAUSS-3 might reveal if those with non-specific 

myalgia also have the Asp247 genotype in LILRB5. With the localization of IL-33 receptors 

in the nerves, examining NSAIDs or muscle relaxants use by LILRB5/B2 genotypes might 

help answer if those with risky genotypes are actually experiencing more muscle pain and 

being medicated for it in the ambulatory setting.  

Finally, recruitment by genotype might allow investigators to more specifically contrast 

such outcomes as time-to-development of muscle-based symptoms, metabolites found in 

serum, changes in muscle biopsy results, changes in lipid profiles. Studying muscle 

biopsies raises its own challenges; due to the invasive nature of the procedure and the lack 

of concrete proof that muscle biopsies provide “best evidence” of statin-induced damage, 

makes it harder to justify as a study design. Furthermore, since we are not yet certain what 

specific changes might occur in smooth muscle cells, it might be advisable to wait until 

more specific information exists about muscle cell transformation by LILRB5/B2 genotype 

before muscle biopsies are sought to understand the impact of statin use on myocytes.  

7.4 Clinical impact of the findings  

Based on our findings with the CKM variant, we would expect that approximately 4% of 

individuals might not show expected CK elevations with tissue damage. While this is a rare 

genotype, and CK diagnoses rarely affect the outcomes of acute therapy, it is a clear effect 

and statin users complaining of myalgia, but showing no CK elevations might carry this 

genotype.  

The British Heart Foundation states that over half of all adults in the United Kingdom 

have LDL cholesterol raised above normal. With revised National Institute for Health and 



167 

 

Care Excellence (NICE) guidelines an estimated 12 million people will be prescribed 

statins by 2020 (16,17). The findings of this thesis suggest between 5 - 7% of statin users 

will not adhere to their therapy, that is, they will be switched across various statin types, or 

discontinue therapy in spite of medical necessity. Based on the survival analyses performed 

in Chapter 3, where non-adherent individuals showed significantly increased risk of CVD-

events, it appears that the healthcare and economic burden of those unable to sustain statin 

therapy will be enormous.  

This thesis provides insights into the reasons for their inability to adhere to therapy. 

Further, we provide evidence to suggest that the main side effect of statin treatment might 

not be solely statin-mediated, but instead be mediated by genetic factors in the immune 

system. The MAF of the LILRB5 Asp247Gly variant, associated with myalgia is 0.37, 

meaning that approximately 60 out of every 100 people carries the protective variant, that 

has a dominant effect. Therefore, for the remaining 40% are at risk of having muscle-based 

symptoms. The symptoms are unrelated to statin-type but are dependent on dose, which 

can be modulated for those at risk. 

We present possible genetic variants that might be interacting or acting independently to 

predispose to myalgia. With the involvement of immune cells in the maintenance and repair 

of skeletal muscles, the role of the LILRB5 and LILRB2 variants in statin-induced myalgia 

is more plausible. This thesis presents the first reports of variants in the immune system 

predisposing to non-autoimmune-mediated statin intolerance and myalgia.  
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