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Abstract 

Power generation from tidal currents is currently a fast developing sector of the renewable 

energy industry. A number of technologies are under development within this sector, of 

which the most popular one is based on the use of horizontal axis turbines with propeller-type 

blades. When such a turbine is operating, the interaction of its rotating blades with seawater 

induces pressure fluctuations on the blade surface which may cause cavitation. Depending on 

its extent and severity, cavitation may damage the blades through erosion of their surface, 

while underwater noise caused by cavitation may be harmful to marine life. Hence, it is 

important to prevent cavitation or at least limit its harmful effects. The paper presents a 

method for predicting the probability of cavitation on blades of a horizontal axis tidal stream 

turbine. Uncertainties associated with the velocities of seawater and water depth above the 

turbine blades are taken into account. It is shown how using the probabilistic analysis the 

expected time of exposure of the blade surfaces to cavitation can be estimated. 

Keywords: Tidal stream turbine, rotor blades, cavitation, turbulence, waves, probability 

Highlights: 

 A probabilistic approach to predicting the cavitation on the rotor blades of a tidal

stream turbine is proposed

 Probabilistic models describing uncertainties associated with the velocities of

seawater and water depth above the turbine blades are introduced

 A case study illustrating the application of the new probabilistic approach as well as

an existing deterministic approach is presented

 It is shown that the existing deterministic approach does not provide sufficient data

for rational and economically efficient design of tidal stream turbines for cavitation
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1. Introduction 

Harnessing the kinetic energy of tidal currents is a fast developing sector of the 

renewable energy industry [1, 2]. A horizontal axis turbine with propeller-type blades is one 

of the popular devices used for this purpose. During the turbine operation its rotating blades 

interact with flowing seawater. This interaction causes pressure fluctuations on the blade 

surfaces and may lead to the inception of cavitation. Cavitation is a process of formation of 

gas-vapour structures in a liquid when pressure reduces below a certain critical level at 

constant ambient temperature [3, 4]. The possibility of cavitation inception on the turbine 

blades is supported by experimental evidence [2, 5-8] and computational studies [9-11]. 

Depending on the blade geometry, hydrodynamic conditions and fluid properties, a number 

of cavitation forms can develop on the turbine blades: blade tip vortex cavitation, leading 

edge sheet cavitation and back side bubble cavitation [4, 6, 7, 9]. Numerical modelling of 

cavitation inception on the turbine blades indicated that cavitation clouds could cover up to 

two thirds of the blade [9]. Experimental investigation showed that the sheet cavitation could 

extend over 20% of the blade chord from its leading edge becoming unstable at the sheet tail 

end and transforming into the cloud cavitation [6]. Cavitation, depending on its extent and 

severity, can cause breakdown of turbine operation, blade surface erosion, noise and vibration 

[6, 7]. In particular, cavitation erosion can damage the turbine blades by removing the 

protective coating and exposing the blade shell to aggressive marine environment, followed 

by gradual damage to the blade shell material. The latter weakens the blades and negatively 

affects the turbine performance so that eventually the blade replacement is required. The 

possibility of cavitation inception can be reduced by limiting the rotational speed of the 

turbine rotor, shortening the blades and placing the rotor deeper under water. However, these 

measures negatively affect the power production efficiency of such a turbine [12]. Thus, 

cavitation is one of the major factors influencing the design of a tidal stream turbine and the 

choice of its operational conditions [2]. The need in maximising the power production drives 

the engineers towards the limits in ‘cavitation-safe’ design. So far, the evaluation of 

cavitation inception on the turbine blades has been carried out using a deterministic approach, 

aimed at keeping the blades out of the ‘cavitation window’ (i.e. completely avoiding the 

cavitation inception) (e.g., [8, 10, 11]). However, there are significant uncertainties associated 

with seawater velocities and quality, the distance from the sea surface to the turbine blades 

and a model used to estimate the pressure distribution on the blade surface. Under such 
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conditions the use of probabilistic analysis, which explicitly takes into account the 

uncertainties, is advantageous. 

Both deterministic and probabilistic approaches are used in this paper for the 

evaluation of cavitation inception on the rotor blades of a pitch-controlled tidal stream turbine. 

The main purpose of this evaluation and based on it design is to prevent (or limit) damage to 

the turbine blades due to cavitation erosion. In this context, the most damaging form of 

cavitation is cloud cavitation, which can develop from sheet and bubble cavitation [4]. Thus, 

although the inception of tip vortex cavitation may occur earlier than that of sheet cavitation 

the former is not considered in the paper. To simplify further analysis the engineering 

definition of cavitation is adopted, according to which cavitation occurs at a certain point on 

the blade surface when the local pressure at this point drops below the vapour pressure of 

seawater [4]. The distribution of the pressure (or the pressure coefficient, Cp, representing it) 

around the blade surface is derived using the 2D vortex panel code XFoil [13]. The 

deterministic approach is used to evaluate the minimum depth of the turbine rotor for given 

turbine and tidal current parameters to avoid cavitation inception. In principle, cavitation may 

cause damage to the blade surface in a relatively short period of time since the time history of 

a small transient bubble is measured in milliseconds [3]; however, a noticeable damage does 

not occur instantaneously but accumulates over time. By that reason, the probabilistic 

approach is employed to estimate the expected time of exposure of the blade surfaces to 

cavitation. In accordance to the adopted definition of cavitation, the blade surface is assumed 

to be exposed to cavitation whenever the local pressure is below the seawater vapour pressure. 

The model used in the probabilistic approach takes into account uncertainties associated with 

the velocities of seawater and water depth above the turbine blades. Uncertainties associated 

with the temperature and salinity of seawater, as well as the model for calculation of Cp are 

not considered in the analysis due to insufficient data for their quantification; however, they 

can easily be taken into account if such data are available. An important parameter affecting 

cavitation, which is also not considered in the following analysis, is the water quality (i.e. 

nuclei content) [4]. In this case, in addition to the lack of data to quantify uncertainties 

associated with this parameter and its influence on cavitation, taking it into account would 

significantly increase the complexity of the cavitation prediction. Thus, in order to keep the 

analyses, in particular probabilistic analysis, reasonably simple this phenomenon is omitted 

from consideration in this study.     
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2. Modelling cavitation inception 

It is assumed that cavitation occurs at a point on the blade surface where the local 

pressure, PL, drops below the vapour pressure of seawater, PV (e.g., [4, 8]) 

VL PP            (1) 

The local pressure consists of the contributions of the pressure applied by the flowing 

seawater, PF, the atmospheric pressure, PAT, and the immediate hydrostatic pressure of 

seawater, gH 

VATFL PgHPPP           (2) 

where H is the immediate distance from the seawater surface to the point under consideration 

on the blade surface, g the acceleration of gravity (= 9.81 m/s2) and ρ the density of seawater 

(= 1025 kg/m3). Rearranging Eq. (2) and dividing its both sides by 25.0 totU  leads to 

22 5.05.0 tot

VAT

tot

F

U

PgHP

U

P







         (3) 

or  

CaCp            (4) 

where / 0.5  is the pressure coefficient,	 / 0.5  

the cavitation number and Utot the total velocity of the flow around the considered section 

along the blade. Utot is defined as a combination of the flow velocity through the rotor disk, 

U(z,t)(1 – a), and the tangential velocity of the blade section, ωr(1+aω) (see Figure 1) 

       22 11,  aratzUU tot        (5) 

where U(z,t) is the upstream velocity of seawater at the distance z from the seabed at time t, a 

and a the axial and tangential induction factors, respectively, ω the angular velocity of the 

rotor and r the distance along the blade from the rotor axis to the considered blade section 

(e.g., at the blade tip r equals the rotor radius R). 

 

U
(1

 –
a)
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Figure 1. Total flow velocity at the rotor plane 

 
The distribution of pressure applied by seawater on the blade surface depends on the 

angle of attack, α, which is the angle between the plane of the blade foil chord and the 

direction of Utot (see Figure 1) and can be expressed as 

            (6) 

where  is the angle between the rotor plane and the chord of the foil and  is the angle 

between the rotor plane and the direction of Utot. In pitch-controlled turbines  equals the sum 

of the immediate pitch angle of the blade, p, and the local twist angle of the considered blade 

section, t 

tp             (7) 

whereas  can be found as (see Figure 1) 

 
 


ar
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1
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tan 1         (8) 

Two approaches are applied to the analysis of cavitation inception on the surface of 

rotor blades of a tidal stream turbine, namely, (i) deterministic and (ii) probabilistic. In the 

deterministic approach, the minimum distance from the sea surface to the rotating blade 

required to prevent cavitation inception is determined using the model described above. All 

parameters appearing in the model are treated as constants or deterministic functions. The 

latter concerns U(z,t), which is represented by the average current velocity, Ū(z,t). For 

simplicity, the variation of the average current velocity over time, Ū(t), takes into 

consideration only the main semi-diurnal cycle with the period T1 = 12.4 hours and the 

spring-neap-spring cycle with the period T2 = 14.8 days (or 354.4 hours) so that 
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where the coefficients K0 and K1 depend on the maximum average velocities in spring and 

neap tides. The variation of Ū(z,t) over the water depth, i.e., tidal current profile, is described 

by the 1/7th power law [14] 
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where h is the total water depth. 
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In the probabilistic approach, the probability of cavitation, i.e., the probability that –

Cp exceeds Ca, and based on that the expected time of cavitation over a given time period are 

estimated. Uncertainties associated with the velocity of seawater and the water depth above 

the blade surface are taken into account. In this case, U(z,t) is expressed as the sum of the 

average tidal current velocity, Ū(z,t), and the fluctuations, u(z,t), caused by turbulence, utr(t), 

and wind waves, uw(z,t), i.e., 

),()(),(

),(),(),(

tzututzu

tzutzUtzU

wtr 


        (11) 

To simplify the analysis, the spatial variability of turbulence is not considered and only the 

horizontal particle velocity due to wind waves is taken into account. 

To account for uncertainty of the water depth, the distance H in Eq. (3) is presented as

wwtwim hhhH           (12) 

where him is the immediate depth of the considered blade section for the mean sea level, 

which varies cyclically due to the rotation of the turbine rotor, htw the depth change induced 

by a tidal wave and hww the surface elevation due to a wind wave. According to Eq. (3), the 

possibility of cavitation inception is the highest near the blade tip when the blade passes 

through the top region of the turbine rotor disk. This occurs because compared to other blade 

sections the blade tip has the highest tangential velocity and at the top point its distance to the 

water surface is minimal so that  has the smallest values. Further in the paper only 

cavitation on this section of the blade is considered. To apply the probabilistic approach 

models describing the turbulence, tidal wave, wind waves and their interaction with tidal 

current are needed and will be described in the following sections. 

It is important to note that the implementation of this cavitation inception model is 

based on the blade element momentum theory and the 2D vortex panel code XFoil [13]. As a 

result, the model can only account for the leading edge sheet cavitation and front/back side 

bubble cavitation developing on the blade segment near the blade tip, while the vortex 

cavitation which may occur right at the blade tip is ignored. This simplification seems 

reasonable since the sheet and bubble cavitation can become unstable and develop into the 

cloud cavitation, which is among the most damaging cavitation types [4, 6]. 
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3. Turbulence model 

Turbulence is characterised by its intensity, Iu, which is defined as the ratio of the 

standard deviation of the velocity fluctuations caused by turbulence, σu, to the average 

velocity, i.e., 

U
I u

u


            (13) 

According to available data, Iu depends on the average current velocity and for current 

velocities faster than 1.5 m/s is about 10%, e.g., [15]. Another characteristic of turbulence 

required in various turbulence models is the integral length scale, L. There are limited data 

about this characteristic. It has been suggested that for an open channel L can be set 

approximately equal to 0.8 of the channel depth [16]. Stochastic properties of turbulence are 

described by its power spectrum (or spectral density), Su(f), which is obtained by the Fourier 

transform of the autocorrelation of utr(t), where f represents the frequency of fluctuations. In 

this paper the tidal flow turbulence is described by the von Karman spectrum, which in non-

dimensional form can be expressed by as 

 
   6522

78.701

4

ULf

ULffSf

u

u





       (14) 

  
It is also assumed that utr(t) is a stationary Gaussian process with zero mean and standard 

deviation σu. 

 
4. Modelling of waves 

4.1 Tidal wave 

Assuming that the tidal wave amplitudes are small compared to the water depth and 

the depth is relatively small compared to the wavelength, the tidal wave can be modelled as a 

purely progressive wave [17]. This formulation adopts a linear relationship between the 

height of the tidal wave and the velocity of the tidal current. The changes of the depth 

introduced by the tidal wave can then be calculated as 

   21gdtUhtw            (15) 

where d is the depth of water at the location of the turbine corresponds to the mean sea level. 

This is obviously a simplistic approach since Eq. (15) does not take into account possible 

effects of shoaling/funnelling, damping due to bottom friction, reflection against the estuary 
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boundaries and deformation due to differences in velocities of flood and ebb tides. Ū(t) can 

take both positive (flood tide) and negative (ebb tide) values. The latter are of higher 

importance for cavitation inception since they correspond to the reduction of the height of the 

water column and, consequently, of Ca. 

4.2 Wind waves 

Only short-term variations of wind waves are considered. According to [18], the 

random variable representing the wave height, Hw, is then can be modelled by the following 

Rayleigh distribution 
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where Hs is the significant wave height and   15.0H . The parameter ρ represents band 

width effects of the wave spectrum and typically is in the range -0.75 to -0.6. The distribution 

of the wave period, Tw, is conditional on the wave height 
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where Φ(.) is the standard normal cumulative distribution function and 

11 wT TC
w
  

12 w
w

s
HT T

h

H
C

ww
          (18) 

The coefficients C1 and C2 depend on the mean wave period Tw1. 

4.3 Wave-current interaction 

The above wave model is applicable in the absence of current. However, tidal current 

is present in the problem considered herein. Hence, the interaction between the waves and the 

current should be considered since it affects both the wave height and the particle velocity 

associated with the wave. In the following, a reasonably simple approach for taking into 

account the wave-current interaction is described. It is assumed that the waves are linear and 

the current is slow varying (i.e., it changes little over a wave length) and uniform. The latter 

contradicts the current velocity variation over depth previously introduced by Eq. (10). 

However, it was found in the past that linear waves over a current flow of nearly 1/7th power 

form responded only to the surface current velocity [19]. Thus, for the purpose of modelling 
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the wave-current interaction, the current velocity, Uc, will be taken equal to 1.07Ū. It is also 

assumed that the current and wave directions are parallel, i.e., the current is either following 

or opposing the waves, and the current is negligible outside the region of the turbine location. 

These are reasonable assumptions when the turbine is located in a narrow strait. 

The dispersion relation in this case is (e.g., [20])  

   ccccw Ukdkgk  tanh         (19) 

where ωw=2π/Tw is the apparent (or absolute) angular wave frequency and kc the wave 

number in the presence of tidal current. This wave number is unknown but can be found by 

numerically solving Eq. (19). It should be noted that when the current is opposing the waves 

Eq. (19) may not have a solution for kc or yield a negative number. This means that the waves 

are blocked by the current at the strait entrance. 

 After kc has been calculated, the wave height in the region with the tidal current (i.e., 

within the strait), Hwc, can be found based on the conservation of wave action as [20] 

w

wc

cgc

g
wwc UC

C
HH





         (20) 

where ωwc is the intrinsic (or relative) angular wave frequency, Cg and Cgc the wave group 

velocities without and with tidal current, respectively. These parameters can be calculated 

using the following formulae: 

 dkgk ccwc tanh          (21) 

 









)2sinh(
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         (22) 

 









)2sinh(

2
1

2 dk

dk

k
C

c

c

c

wc
gc


         (23) 

where k is the wave number in the region without tidal current, which can be found by either 

solving Eq. (19) with Uc=0 or using an approximate formula given in [18]. In addition, it has 

been shown that in the case of opposing current waves usually oversteepen and break before 

the actual blocking condition is reached [21]. To check if this happens Hwc needs to be 

compared with the breaking wave height, Hw,max, which can be estimated using Miche’s 

criterion [25] 

 dk
k

H c
c

maxw tanh
28.0

,


         (24) 

i.e., Hwc > Hw,max means that the waves break near the strait entrance. 
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If the waves are blocked or break then uw in Eq. (11) and hww in Eq. (12) are equal to 

zero. Otherwise, they are calculated as 

   
   t

dk

zkH
tzu wc

c

cwcwc
w 

cos
sinh

cosh

2
,        (25) 

 tH
h wc

wc
ww cos

2
          (26) 

where z = d - him. 

 
5. Case study 

5.1 Turbine design and location 

The phenomenon of cavitation is studied in this paper on the example of a horizontal 

axis pitch-controlled turbine with a three-bladed rotor. The selection of the turbine 

parameters is explained in detail in [22]. The turbine is intended to produce 1 MW power 

before losses at the rated current velocity of 2.6 m/s, its operating current velocity range is 1 

– 3.5 m/s. The rotor diameter is 18 m (i.e., its radius R = 9 m). The turbine has a fixed 

rotational speed 14  rpm and its power coefficient is slightly above 0.45 [22]. The 

turbine blades are designed using NREL S814 foil [23]. The blade geometry is such that the 

twist of the blade tip is 4o. The pitch angle of the turbine blades changes when the average 

current velocity, Ū, exceeds its rated value to ensure the production of the rated power. Table 

1 shows the relationship between Ū and the pitch angle obtained from the analysis of the 

turbine performance. 

Table 1: Pitch angle vs. Ū 

 (m/s)  Pitch, θp  (o) 
1.0 0.0
2.6 0.0
2.7 4.4
2.8 6.0
2.9 7.3
3 8.4

3.1 9.4
3.2 10.3
3.3 11.2
3.4 12.1
3.5 12.9

 
It has been recommended to select the rotor diameter as 50% of the water depth at the 

turbine location and place the rotor hub at the midpoint of the depth [24]. In accordance to 
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these recommendations, it is assumed that the turbine is located in 36 m deep waters and its 

hub is 18 m from the seabed. It has also been assumed that the significant wave height at the 

turbine location is 4 m and the mean wave period is 8 s, i.e., Hs = 4 m and Tw1=8 s, and that 

 = -0.7. For such wave conditions values of the coefficients C1 and C2 in Eq. (18) can be 

selected as 1.20 and 0.22, respectively [18]. It is also assumed that at the turbine location the 

maximum values of Ū in spring and neap tides are 3.5 m/s and 1.7 m/s, respectively. The 

corresponding values of the coefficients K0 and K1 in Eq. (9) are 2.6 m/s and 0.9 m/s, 

respectively. 

5.2 Induction factors  

In order to find the angle of attack α and Utot, values of the axial and tangential 

induction factors (a and a) need to be known (see Figure 1). These values have been 

calculated for the tip segment of the blade using the NWTC Subroutine Library [25], which is 

based on the blade element momentum theory. It has been found that a and a depend on 

both Ū(z,t) and u (see Eq. (11)). However, for simplicity the dependency of aω on u has been 

neglected since it has been checked that the influence of aω on Utot is less than 1%. The 

following relationships between a and Ū(z,t) and u, and a and Ū(z,t) have been obtained by 

regression analysis: 

2
210 uauaaa           (27) 
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5.3 Minimum pressure coefficient 

The pressure coefficient is expressed as 

25.0 tot

F
p U

P
C


          (32) 

The distribution of PF (and so of Cp) over the blade surface depends on the angle of attack , 

which defines the direction of Utot in relation to the blade foil chord and is influenced by 

changes in the values of Ū and u. According to the cavitation inception model given in Eq. 

(4), the cavitation occurs initially at the point on the blade surface where the pressure 

coefficient is at its minimum value, i.e., -CP,min. Therefore, Eq. (4) can be written as 

CaC minp  ,          (33) 

The value and location of Cp,min on the blade surface can be found from the 

distribution of Cp over the blade tip segment and can be connected to  through a –Cp,min vs. 

 diagram. This diagram can be seen as a type of the cavitation bucket diagram (e.g., see [8]) 

and is derived in this study for the NREL S814 foil and the range of values of  between -25o 

and 25o. The 2D vortex panel code XFoil [13] was found in the past to be suitable for the 

calculation of Cp [8] and used in this study to obtain values and locations of a Cp,min. XFoil 

utilises a linear-vorticity second order accurate panel method coupled with an integral 

boundary-layer method and an en-type transition amplification formulation. The Newton 

solution procedure is used in this software for computing of the inviscid/viscous coupling. 

The NREL S814 foil has been modelled in XFoil using 280 panels. The panels varied in 

length and were distributed by the default XFoil’s panelling routine non-uniformly around the 

foil perimeter. 

The adopted range of  (-25o  25o) is deemed to cover all possible combinations of 

the following angles: twist θt= 4o, pitch θp corresponding to the turbine operating range of Ū 

(see Table 1) and the angles generated by the seawater velocity fluctuations due to turbulence 

and wind waves u = 0  5 m/s. The resulting –Cp,min vs.  diagram is shown in Figure 2, 

where each point represents one simulation. The analysis of the Cp distributions derived for 

the considered range of  indicates that Cp,min occurs at three different points on the foil 

surface shown in Figure 3. The –Cp,min vs.  diagram can be divided into four regions where 

one of these points is dominant (see Figure 2). Figure 4 depicts examples of distributions of 

Cp on the foil surface for each region, i.e.,  = -15o for Region 1 where Point 3 is dominant,  

= -5o for Region 2 where Point 1 is dominant,  = 2o for Region 3 where Point 2 is dominant 
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and (d)  = 9o for Region 4 where Point 3 is dominant. Note that Figure 4 presents Cp curves 

obtained using viscous (solid curves) and inviscid (dashed curves) flow, while only the 

viscous flow simulation results were used in this study. From the analysis of Figure 4 follows 

that these three points (shown in Figure 3) define zones with lowest Cp on the foil surface. 

The abscissae of the three points along the foil chord are as follows: 

 Point 1: -Cp,min occurs at the front side at x = 0.2182 

 Point 2: -Cp,min occurs at the back side at x = 0.2944 

 Point 3: -Cp,min occurs at the foil leading edge 

 

 

 

Figure 2. -CP,min vs.  diagram 

 

 

Figure 3. Locations of -Cp,min on NREL S814 foil. 
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It is important to note that experiments carried out on small scale turbine prototypes 

[6, 7] showed that sheet cavitation developed at the leading edge and extended over a part of 

the back (suction) side of the blade at its top half. Additionally, bubble cavitation developed 

on the back side of the blade away from the leading edge. Figures 3, 4a and 4b additionally 

suggest that in pitch controlled tidal stream turbines, cavitation (possibly bubble cavitation) 

can also occur on the front (pressure) side of the blade for very low and negative values of the 

angle of attack. 

 

 (a) (c) 

 

 (b) (d) 

Figure 4. Distributions of Cp on back and front sides of NREL S814 foil for (a)  = -15o, (b) 
 = -5o, (c)  = 2o and (d)  = 9o. The dashed curves represent inviscid flow while solid 
curves viscous flow. The figure also shows flow separation at the foil trailing edge. 
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5.4 Deterministic analysis 

The aim of the deterministic analysis is to find the minimum water depth to the tip of 

the rotating blade that is required to prevent cavitation, i.e., to ensure that -Cp,min < Ca. It 

starts with derivation of the -Cp,min vs. Ū relationship. This relationship (rather than the -Cp,min 

vs.  diagram in Figure 2) is used here for its convenience, since only Ū varies while the 

velocity fluctuations u are ignored and the angular velocity of the rotor is constant. Figure 5 

shows that the –Cp,min vs. Ū curve is piecewise with three distinct maximum points 

corresponding to the minimum (1 m/s), rated (2.6 m/s) and maximum (3.5 m/s) operating 

current velocities. Additionally, –Cp,min occurs at different places on the blade surface with 

increasing Ū, i.e., it occurs on the front side of the blade (at Point 1) for relatively low and 

high Ū and on the back side (at Point 2) for intermediate Ū close to the rated velocity. The 

locations of Points 1 and 2 on the surface of the blade tip segment are shown in Figure 3. The 

relationship between Ca and Ū has then been calculated for various values of H (see Eq. (3)) 

until the condition -Cp,min ≥ Ca has been reached for H = 5.3 m at Ū just below 3.5 m/s (see 

Figure 5). This means that if the distance from the sea surface to the rotor blades is greater 

than 5.3 m then according to the deterministic approach there should be no cavitation 

inception on the blade surface within the operating current velocity range. 

 

 
Figure 5. Ca and -Cp,min vs. Ū for H=5.3 m. 
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5.5 Probabilistic analysis 

The probabilistic approach is aimed to estimate the expected time of the blade surface 

exposure to cavitation during a given time interval (e.g., the design life of the rotor blades). 

To achieve that the probability of cavitation (i.e. of –Cp,min ≥ Ca) is initially estimated for 

different possible values of Ū. This is carried out using Monte Carlo simulation. For a given 

value of Ū (e.g., -2.6 m/s) 100,000 samples are generated. Each sample represents the time of 

passage of one wind wave over the turbine. Thus, for each sample the wind wave height is 

first generated in accordance to Eq. (16) followed by the generation of the wave period in 

accordance to Eq. (17). The wave period is then converted to the relative wave period 

Twc = 2π/ωwc to take into account the wave-current interaction; if a wave is blocked or breaks 

the duration of the sample is set equal to 10 s. In each sample, the initial position of the 

considered blade is also randomly generated. The time interval associated with each sample is 

divided into 0.2 s subintervals. For each subinterval, a value of the stochastic process 

representing rapid fluctuations of the current velocity due to turbulence utr(t) is generated in 

accordance to the previously described model using the inverse Fourier transform (for more 

detail see [22]). The variation of the wind wave height over the turbine and the change of the 

blade position due to rotation are considered so that values of him and hw are changing from 

one subinterval to another as well as values of uw(z,t) and Ū(z,t) (for the latter this occurs due 

to its variation over the water column in accordance to Eq. (10)). The expected relative time 

of cavitation exposure for a given value of Ū is then the ratio of the number of subintervals 

within which cavitation inception occurs to the total number of the subintervals in 100,000 

samples. It is worth to note that almost the same procedure can be used to estimate the 

distribution of the relative time of cavitation exposure if more information about this random 

variable than just its expected value is needed. In this case, instead of directly aggregating 

results for all 100,000 samples the ratios are calculated separately for each sample and then, 

based on these results, a histogram of the relative time of cavitation exposure is constructed. 

Results of the analysis are shown in Figure 6. As can be seen, the highest probability 

of cavitation is during ebb tides at the highest operating current velocity of -3.5 m/s. It drops 

sharply at lower average velocities and then increases again at the rated current velocity of -

2.6 m/s. For the ebb current velocity below -1.6 m/s the probability of cavitation is less than 

1×10-3. The probability of cavitation is low for flood tides; the highest value is 1.3×10-3 for 

the rated current velocity of 2.6 m/s. 
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Figure 6. Probability of cavitation vs. Ū. 

 
To estimate the expected time of cavitation exposure for a given time interval the 

results presented in Figure 6 are combined with Eq. (9) so that the function of the probability 

of cavitation vs. lifetime of the turbine during the spring-neap-spring cycle is obtained – see 

Figure 7. Numerically integrating this function over the duration of the cycle and then 

dividing the result by this duration yields the expected relative time of cavitation exposure. 

For the considered example it equals 0.014. This means that for, e.g., 10-year service life the 

surface of the blade near its tip will be exposed to cavitation on average 51 days. 
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Figure 7. Probability of cavitation exposure over the spring-neap-spring cycle. 
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damage caused by cavitation to the blade material over time is needed. The model should 

relate the level of damage induced by cavitation with the time that the blade has been exposed 

to it. In addition, an acceptable level of the damage (e.g. cavitation erosion remains within the 

incubation period), i.e. limit state, and the corresponding target probability of failure need to 

be defined. The latter can be determined from economic considerations. The design of turbine 

blades for cavitation is then should ensure that the probability of failure (i.e. probability of 

violating the limit state) does not exceed its target value. The probability of failure can be 

calculated by using the model for cavitation-induced damage to construct a curve relating the 

probability of exceeding the specified level of damage with a given time of cavitation 

exposure and then combining this curve with the distribution of the relative time of cavitation 

exposure obtained by the procedure presented in this paper. Uncertainties associated with a 

cavitation-induced damage model can be naturally taken into account in such an analysis. 

Thus, the probabilistic approach can answer the above question and provide a rational and 

efficient tool for the design of tidal turbine blades for cavitation. However, there is currently 

no model capable to predict cavitation-induced damage (i.e. erosion) in composite materials 

of tidal turbine blades so that further experimental and numerical studies are needed before 

the probabilistic approach can be implemented in design practice. 

Returning to the deterministic approach, it is incapable by itself to answer what values 

of uncertain parameters (e.g. water depth, velocity of seawater) should be used in the design 

for cavitation to ensure that the turbine blades do not suffer unacceptable damage but, at the 

same time, the turbine power production is not unnecessarily negatively affected. For 

example, if the static head (i.e. water depth) above the blades is to be determined by taking 

into account the wave height what value of the latter should be used (e.g. mean, mean plus 

standard deviation, etc.)? Similar, what value should be added to the seawater velocity to 

account for the fluctuations due to turbulence? By taking larger and larger values of these 

parameters, the probability of cavitation will be further and further reduced but the design 

will become more overconservative and inefficient. The problem can be resolved by initially 

employing the probabilistic approach to determine what values of the uncertain parameters 

(or corresponding safety factors) should be used in the design to ensure that the probability of 

failure (i.e. of unacceptable cavitation-induced damage) does not exceed its target value. This 

would then exclude the need for carrying out a complex probabilistic analysis each time when 

the blades of a tidal turbine are designed for cavitation and in essence similar to the 

calibration of modern design standards (e.g. [26]). Since in such an approach the values used 
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in deterministic design have been derived based on probabilistic analysis it would more 

correct to refer to the approach as semi-probabilistic rather than deterministic.  

In the probabilistic analysis various sources of uncertainty, e.g., uncertainties 

associated with the seawater properties (i.e. temperature, salinity) and quality (i.e. nuclei 

content) and the employed models, have been neglected. Taking them into account will lead 

to an increase of the probability of cavitation and, subsequently, of the expected time of 

cavitation exposure. Eq. (15) does not account for a number of important factors affecting 

tidal waves and, as a result, usually overestimates the height of such waves. At the same time, 

the value of the significant wave height (Hs = 4) used for modelling wind waves may either 

increase or decrease depending on the turbine location. Thus, among the factors not fully 

considered in this analysis there are the ones that lead to an increase of the time of cavitation 

exposure and those that lead to a decrease of this time. Their effects need to be further 

investigated in the future. 

It is also worth to note that the blade design used in the paper could probably be 

improved in terms of cavitation avoidance, e.g. by pitch reduction near the blade tip or 

increase in the blade chord. However, it would not completely eliminate the probability of 

cavitation. Thus, the above analyses and discussion would still be valid although the –Cp,min 

vs. α diagram (Figure 2) would change.  

 

6. Conclusions 

A probabilistic approach to the evaluation of cavitation on blades of tidal stream 

turbines has been presented. Although not all major sources of uncertainty associated with 

such analysis have been taken into account it has been demonstrated that the blades of a tidal 

turbine may be exposed to cavitation over relatively long periods of time during their service 

life even when a deterministic analysis predicts that cavitation inception is not possible. 

Moreover, it has been explained that the current deterministic approach does not provide 

sufficient information for rational design of tidal turbine blades for cavitation. For such 

design, an approach based on the combination of probabilistic estimation of the expected time 

of cavitation exposure and a model for prediction of cavitation-induced damage in the blade 

material can be very beneficial. However, in order to implement this approach models of 

material damage by cavitation are needed. 
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