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1. Summary 

For many commercial potato cultivars, tuber yield is optimal at average day time 

temperatures in the range of 14-22⁰C. Further rises in ambient temperature can reduce or 

completely inhibit potato tuber production, with damaging consequences for both producer 

and consumer. The aim of this study was to use a genetic screen based on a model 

tuberisation assay to identify Quantitative Trait Loci (QTL) associated with enhanced tuber 

yield. A candidate gene encoding HSc70 was identified within one of the three QTL intervals 

associated with elevated yield in a Phureja-Tuberosum hybrid diploid potato population 

(06H1). A particular HSc70 allelic variant was linked to elevated yield in the 06H1 progeny. 

Expression of this allelic variant was much higher than other alleles, particularly on exposure 

to moderately elevated temperature. Transient expression of this allele in Nicotiana 

benthamiana resulted in significantly enhanced tolerance to elevated temperature. An TA 

repeat element was present in the promoter of this allele, but not in other HSc70 alleles 

identified in the population. Expression of the HSc70 allelic variant under its native promoter 

in the potato cultivar Desiree resulted in enhanced HSc70 expression at elevated 

temperature. This was reflected in greater tolerance to heat stress as determined by 

improved yield under moderately elevated temperature in a model nodal cutting tuberisation 

system and in plants grown from stem cuttings. Our results identify HSc70 expression level 

as a significant factor influencing yield stability under moderately elevated temperature and 

identify specific allelic variants of HSc70 for the induction of thermotolerance via 

conventional introgression or molecular breeding approaches. 

2. Introduction 

Potato is the third most important food crop in the world after rice and wheat. More than a 

billion people worldwide eat potato, and global crop production exceeds 300 MT per annum. 

Yet this crop is particularly vulnerable to increased temperature, which is considered to be 

the most important uncontrollable factor affecting growth and yield (Levy and Veilleux, 2007). 

Potato (Solanum tuberosum L.) originated in the Andes of South America from regions with 

cool temperatures and most cultivated germplasm is highly sensitive to elevated 

temperature. For most commercial cultivars, yield is optimal at average day time 

temperatures in the 14-22⁰C range, above which yield falls off sharply (Van Dam et al., 

1996).  

Elevated temperatures are known to affect numerous physiological processes in potato 

plants. Heat strongly suppresses tuberisation and reduces the proportion of assimilated 

carbon partitioned to tuber starch (Ewing, 1981; Wolf et al., 1991; Hancock et al., 2014). 

Compounding this problem, photosynthetic performance is also adversely affected by high 
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temperatures that reduce chlorophyll levels and CO2 fixation rates (Reynolds et al., 1990). In 

addition high temperature has a negative effect on potato tuber dormancy causing 

premature sprouting or secondary growth (Bodlaender et al., 1964). A significant interaction 

is observed between photoperiod and temperature (Menzel, 1985). During longer day 

lengths, lower temperatures are required for optimal tuberisation. However, effects of high 

temperature depend on the plant developmental stage; warm conditions can be beneficial 

during early growth phases while during tuber induction, cool temperatures especially during 

the dark period are essential (reviewed in Levy and Veilleux, 2007).  

Whilst cultivated potato is generally a cool climate crop, there is significant variation in 

response to heat stress between cultivars (Marinus and Bodlaender, 1975; Mendoza and 

Estrada, 1979; Menzel, 1985; Levy, 1986; Levy et al., 1991; Midmore and Prange, 1991), in 

land races and wild potato species (Mendoza and Estrada, 1979; Hetherington et al., 1983; 

Reynolds and Ewing, 1989) and in progeny clones from heat tolerant parents (Mendoza and 

Estrada, 1979; Haynes and Haynes, 1983; Morpurgo et al., 1985;  Veilleux et al., 1997). 

Despite reported variation, we are unaware of any reports that identify QTLs for heat 

tolerance in potato. In contrast, in other crop species, QTL mapping studies have proven 

useful in identifying markers linked to heat stress tolerance. Multiple loci for heat tolerance 

have been identified in wheat (Paliwal et al., 2012) and maize (Messmer et al., 2009). A 

major QTL for high temperature germination and an additional QTL having smaller effects 

were identified in a genetic analysis of lettuce seed thermo-inhibition (Argyris et al., 2008).  

A major difficulty in screening for complex abiotic stress tolerance traits is control of 

environmental parameters whilst growing sufficient numbers of genotypes under replication 

for genetic analysis. In potato, segregation for earliness of tuberisation is a confounding 

factor in heat stress screening and has led to the development of screens based on nodal 

cuttings (Ewing and Wareing, 1978; Van den Berg et al., 1990). This technique uses an 

excised potato leaf and its subtended axillary bud, that when maintained in moist compost, 

tuberises rapidly. Leaf cuttings from induced plants produce tubers (in ~14 days) at the 

axillary bud, whereas non-induced plants fail to tuberise. The nodal cutting assay therefore 

provides a convenient, space and time-saving high throughput method to study tuberisation 

and dry matter partitioning. The use of a model system for analysis of traits that are 

impacted on by multiple factors has the potential to simplify the trait and allows the 

investigator to focus on specific components. 

In this study we have exploited the well-characterised 06H1 biparental diploid potato 

population (Prashar et al., 2014) to identify a locus associated with tuber yield at both 

conventional and mildly elevated temperature. Interestingly this diploid population does not 
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segregate for variation at the maturity locus on chromosome 5 (Kloosterman et al., 2013) 

showing fairly late uniform foliage maturity. A candidate gene encoding HSc70 was identified 

within the QTL interval and a particular allelic variant was linked to elevated yield in the 06H1 

progeny. Expression of a transgene containing HSc70 under its native promoter in the potato 

cultivar Desiree resulted in enhanced HSc70 expression at elevated temperature leading to 

improved yield under moderately elevated temperature. Thus our results identify HSc70 

expression level as a significant factor influencing yield stability under moderately elevated 

temperature and we identify specific allelic variants of HSc70 for the induction of 

thermotolerance via conventional introgression or molecular breeding approaches. 

3. Results 

Assessing tuber yield using the nodal cutting assay and QTL analysis. 

Nodal cutting tuberisation assays were carried out for 170 genotypes from the 06H1 

population. For each genotype, six nodal cuttings were prepared from two plants, using the 

2nd, 3rd and 4th node from the apex. Two independent experiments were conducted. Nodal 

cutting tuber yields (based on a total of 12 cuttings) from the 06H1 population grown at 22⁰C 

and 28⁰C ranged from 0.0002 to 3.674 g (22⁰C ) and 0.0002 to 2.277 g (28⁰C), with means 

of 1.017 and 0.285 respectively, the data being considerably skewed towards zero (Figure 

1). These data were used for QTL analysis using the MapQTL 6 software (Van Ooijen, 2011) 

and the SNP linkage map previously reported (Prashar et al., 2014).  This linkage map 

comprises 2,157 mapped SNP markers generated using an Illumina SNP platform 

comprising a total of 8303 SNP markers. The 06H1 tuber yield data were subjected to a non-

parametric Kruskal-Wallis (KW) analysis in MapQTL6 which essentially carries out a one 

way analysis of variance (ANOVA) to test for association between each mapped marker and 

the analysed trait. QTL effects were detected on three linkage groups, 1, 4 and 9. At 22⁰C 

the only QTL effect detected was around the maternal marker c2_11487 at 11.53 cM 

(K*=14.21). At 28⁰C QTLs were detected on linkage group 1 (biparental marker c2_49910 at 

76.85 cM, K*=21.32), on linkage group 4 (maternal marker c2_11487 at 11.53 cM, K*=14.22) 

and on linkage group 9 (paternal marker c2_3948 at 11.64 cM, K*=16.243).    

Identification of HSc70 as a candidate gene for tuber yield in the tuber nodal cutting 

assay 

The genes encoded in the region of the QTLs on linkage groups 1, 4 and 9 were examined 

in the Potato Genome Browser hosted by Michigan State University 

(http://solanaceae.plantbiology.msu.edu/cgi-bin/gbrowse/potato/). For the linkage group 4 

QTL inspection of the genomic region corresponding to ~5 cM either side of the QTL peak 
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revealed a strong candidate gene encoding HSc70 (PGSC0003DMG400027750). 

Previously, genetic variation in HSc70 has been suggested to underpin heat tolerance in 

cabbage (Park et al., 2013) and variation in heat shock protein levels have been correlated 

with heat tolerance in potato (Ahn et al., 2004). Inspection of a similar sized genomic region 

on linkage groups 1 and 9 revealed no obvious candidate genes.  The presence of the 

HSc70 gene in the QTL region on linkage group 4 allied to results from previous studies with 

this gene led to our targeting it for further functional analysis.   

Identification of HSc70 alleles 

A region of the HSc70 gene was amplified from the parents of the 06H1 population 

(HB171(13) and 99FT1b5) by PCR (Figure S1). Sequence analysis of the PCR products 

identified four distinct alleles with the HB171(13) parent containing alleles designated A1 and 

A2 and 99FT1b5 containing alleles A3 and A4. A cleaved amplified polymorphic sequence 

(CAPS) assay (Konieczny and Ausubel, 1993) was designed to discriminate between the 

four HSc70 alleles (Figure 2) and the allelic complement of the genotypes from the 06H1 

population was determined. For each genotypic class present in the population, the mean 

tuber fresh and dry weight yields from nodal cutting experiments were determined. 

Genotypes containing the A2 allele yielded the highest fresh weight at both 20⁰C and 28⁰C 

(p < 0.05), with the A2A3 genotype having the highest yields and the A1A4 combination the 

lowest yield (Table 1). The ‘phase’ of the marker data around the position of the gene on 

linkage group 4 are consistent with a maternally inherited QTL effect caused by action of the 

HSc70 gene, the A2 allele being linked in coupling with the segregating maternal SNP 

alleles. The deduced amino acid sequences encoded by the four alleles were also compared 

(Figure S2). This analysis indicated that the amino acid sequences are similar and are only 

different in the C-terminal substrate-binding domain (SBD) (Mayer, 2013) (Figure S2). In the 

sequences encoded by the A2 and A3 alleles there are 6 additional amino acids resides 

(KIEEVD) in this region compared with the proteins encoded by the A1 and A4 alleles. No 

amino acid sequence variation was specific to only one of the four alleles. To further dissect 

any functional significance of sequence variation, amplification of up to 1KB upstream of the 

presumed ATG start codon was achieved for each allele by designing further PCR primers 

(Table S1).  Comparison of the promoter sequences of the four alleles identified sequence 

differences specific to the A2 allele (Figure 3). In particular, at ca. 495 bp upstream of the 

ATG start codon, the A2 allele uniquely has an extended run of ten TA repeats compared 

with four repeats in the other three alleles (Figure 3).  
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Expression levels of HSc70 in genotypes with contrasting response to moderately 

elevated temperature 

HSc70 expression level was compared by qRT-PCR in four genotypes that contained the 

A2A3 allelic combination and gave good tuber yield in the nodal cutting assay at 28⁰C and 

with four low yielding genotypes containing A1A4 alleles (Figure 4). In both tubers and 

leaves HSc70 expression was significantly higher in the A2A3 genotypes than in the A1A4 

when maintained at the optimal temperature of 22⁰C (p < 0.05 for both organs). 

Furthermore, following transfer of cuttings to 28⁰C for four hours  genotypes containing the 

A2A3 alleles exhibited a further significant increase in the abundance of the HSc70 transcript 

in both leaves and tubers whereas there was no significant change in abundance (p = 0.8 to 

0.3) of the same transcript in genotypes containing the A1A4 alleles (Figure 4).  

In order to determine which HSc70 allele was up-regulated on exposure to elevated 

temperature a semi-quantitative RT-PCR expression assay was carried out and gave similar 

results to those shown in Figure 4 (Figure S3a). The PCR products from the RT-PCR assay 

were sequenced and from 8 cloned products, sequence analysis showed that all were 

transcripts arising from the A2 allele (Figure S3b). 

Transient expression of HSc70 in Nicotiana benthamiana leaves 

The function of the A2 HSc70 allele was characterized in transient expression experiments 

conducted in Nicotiana benthamiana. A binary construct containing the A2 coding sequence 

and 1KB of sequence upstream of the ATG start codon was engineered and introduced into 

leaves of Nicotiana benthamiana by agroinfiltration. Following agroinfiltration, plants were 

placed in a chamber at 45⁰C under 12h light. After 24 hours, the HSc70 expression level 

was compared in agro-infiltrated plants and mock inoculated plants. Those agro-infiltrated 

with the HSc70 construct expressed the HSc70 gene at levels ca. 7-fold higher than 

controls. Furthermore, plants agro-infiltrated with the HSc70 construct exhibited significantly 

lower levels of cell membrane injury compared with controls (60% compared with 90%, p < 

0.05, Figure 5). The values were consistent with the visual assessment of plant damage 

which was greater in controls (Figure S4). 

Promoter deletion analysis of the A2 HSc70 allele 

The A2 allele was differentiated from the other three HSc70 alleles by the presence of ten 

TA repeats in the promoter in a region 495 nucleotides upstream of the deduced start codon, 

whereas in the A1, A3 and A4 alleles only four TA repeats were present in this region 

(Figure 3). In order to test whether this repeat sequence was connected to the elevated 
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HSc70 expression level observed for the A2 allele on exposure to elevated temperature, 

promoter deletions were tested. Promoter constructs with 4 to 10 TA repeats were 

engineered in a binary construct upstream of the A2 coding sequence. Transient expression 

of HSc70 was measured on agroinfiltration of these constructs into Nicotiana benthamiana 

leaves following exposure to elevated temperature. HSc70 expression level was significantly 

higher (6-fold) in plants agro-infiltrated with constructs containing 8 or 10 TA repeats than in 

those agro-infiltrated with constructs containing 4 or 6 repeats (Figure 6a). Furthermore, the 

cell membrane injury level was greater in the plants agro-infiltrated with constructs 

containing 4 or 6 repeats (Figure 6b), providing evidence that the TA repeat sequence is 

important for HSc70 expression and reinforcing the link between HSc70 expression and heat 

tolerance. The values were consistent with the visual assessment (Figure S7). 

Characterisation of transgenic potato lines over-expressing the A2 HSc70 allele  

Transgenic potato lines expressing the A2 HSc70 allele under its native promoter were 

generated in the cultivar Desiree and independent transgenic lines were screened for HSc70 

expression level in leaves (Figure 7). In leaves harvested from plants grown at 22⁰C, HSc70 

expression level was low in both transgenic lines and controls although one transgenic line 

(line 56) did exhibit significantly higher HSc70 expression at this temperature. In plants 

subjected to 4 hours of elevated temperature (28⁰C) there was a dramatic increase in HSc70 

expression level particularly in line 56, where HSc70 transcripts were  60-fold (p < 0.05) 

more abundant than in wild type controls. Lines 33 and 48 exhibited significantly greater 

expression levels (4 and 8-fold respectively) than wild type after elevated temperature 

treatment. Lines 33, 48 and 56 were therefore selected for further analysis.  

Wild type and selected A2 HSc70 expressing lines were exposed to elevated temperature 

(40⁰C) for 24 hours. Leaf cell membrane injury was assessed using an electrolyte leakage 

assay. After four hours, HSc70 expression was greatly enhanced by up to 50-fold in all 

transgenic lines relative to wild type. However, following 24 hours exposure, there was no 

significant difference in expression level between any of the lines tested, with expression 

level in the transgenic lines declining to the levels prior to heat exposure (Figure 8a). No 

changes in electrolyte leakage from leaves were observed after 4 hours high temperature 

exposure in any of the genotypes however, after 24 hours there was significant increase in 

electrolyte leakage from wild-type leaves that was not observed in any of the HSc70 

transgenic lines (Figure 8b).  
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Protection of tuber yield at elevated temperature in A2 HSc70 expressing lines 

Having established that elevated transient expression of A2 HSc70 provided a temperature-

dependent protective effect as assessed by the electrolyte leakage assay, we wished to 

determine whether expression of the A2 allele could also protect tuber formation and yield at 

moderately elevated temperature. We therefore performed nodal cutting tuber yield assays.  

At 20⁰C yield was not significantly (p < 0.05) different between the wild type and any of the 

three transgenic lines tested (Figure 8). However, in Desiree WT, yield decreased by 75% at 

28⁰C compared to 22⁰C (p < 0.05). Yield reductions were also observed in transgenic lines 

over-expressing HSc70 at higher temperatures however, these were not as extensive as 

observed in Desiree wild-type (Figure 9). For example in lines 48 and 56, fresh weight yield 

at 28⁰C was ca. 2-fold greater than in wild type controls at the same temperature (p < 0.05). 

Dry weight yield values also showed the same significant pattern with higher yield in the 

transgenic lines at elevated temperature (Table S3). Tuber yield was also measured in 

plants grown from stem cuttings. At maximum day temperature of 20⁰C, two of the three 

transgenic lines exhibited no significant difference in tuber yield between the over-

expressing lines and wild type control while line 48 exhibited a significant increase in both 

fresh and dry tuber weight. In contrast, at 28⁰C tuber yield was significantly higher (p < 0.05) 

in all of the transgenic lines relative to the controls on both a fresh weight and dry weight 

basis (Table 2).  

4. Discussion 

Genetic analysis of tuber yield using nodal cuttings 

For many years, a simplified model of the potato plant based on nodal cuttings has been 

used as a convenient system for studying tuberisation (Kumar and Wareing, 1972; Kumar 

and Wareing, 1974). It has also been suggested that cuttings can be used as a screen for 

heat tolerance (Ewing and Wareing, 1978). In addition, nodal cutting assays were developed 

to investigate the effects of temperature on tuber second growth (Van den Berg et al., 1990) 

where the negative effects of temperature on tuberisation were clearly demonstrated. Heat 

tolerance is dependent on both the ability to produce haulm that grows vigorously at high 

temperature and on maintaining carbon partitioning and tuber development. For genetic 

analysis it is useful to dissect complex traits into their components. In view of recent 

advances in potato genetics such as the availability of bi-parental populations and dense 

genetic maps (Prashar et al., 2014) we considered it timely to investigate the genetic control 

of tuber yield by deploying a nodal cutting system on a segregating population.  
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HSc70 identification from genetic analysis 

In the diploid 06H1 population QTLs for tuber yield were identified on linkage group 4 and 

two other linkage groups. The linkage group 4 QTL for yield was detected at both 

temperatures tested (22⁰C and 28⁰C). Inspection of the genome browser indicated that there 

were a large number of genes in the linkage group 4 QTL region and so the approach did 

not yield definitive genetic evidence of the causative gene. Nevertheless, it did focus our 

attention on the set of candidate genes amongst which, a gene encoding HSc70 was 

considered a good candidate for yield protection particularly at the elevated temperature.  

Heat shock cognate protein 70 (HSc70) is a constitutively expressed molecular chaperone 

which belongs to the heat shock protein 70 (HSP70) family (Al-Whaibi, 2011). In contrast to 

heat shock proteins (HSPs), heat shock cognate proteins are not generally induced by 

elevated temperature (McCallister et al., 2015). Despite this difference in expression 

response, no amino acid motifs have been defined that distinguish heat shock cognate 

proteins from HSPs. Phylogenetic analysis confirms that all four alleles of the presumed 

HSc70 gene in this study are more closely related to other HSc70 genes in Arabidopsis and 

tomato than to HSP70 sequences (Figure S5). Nevertheless the A2 allele identified here is 

clearly heat inducible, illustrating the difficulties in annotating this gene family. All organisms 

respond to heat stress by inducing heat-shock proteins (HSPs). HSP70s are the most 

abundant type of HSP, having important roles in preventing newly synthesized proteins from 

misfolding and aggregating. HSP70s are encoded by multi-gene families that can be divided 

into four subfamilies based on sub-cellular localization: cytosol, endoplasmic reticulum (ER), 

plastids, and mitochondria (Sung and Guy, 2003). In addition, Nicotiana tabacum contains a 

nuclear-localized HSP70, NtHSP70-1, which helps to prevent the fragmentation and 

degradation of nuclear DNA during heat stress (Cho and Choi, 2009). Although many 

studies have elucidated the molecular functions of individual family members, genome-wide 

analysis of this family is still limited, especially for crop species (Jung et al., 2013). 

HSc70 and protection from elevated temperature 

HSc70s are characterised by highly conserved ATPase and substrate-binding domains 

(SBDs) (Mayer, 2013). ATP binding by the ATPase domain induces conformational changes 

in the SBD, facilitating transient association with hydrophobic stretches in peptides. When 

stimulated by both substrate binding and the J-domains of co-chaperone proteins, HSc70s 

hydrolyse ATP to ADP, triggering a SBD conformation change resulting in capture of the 

hydrophobic substrate. Release of ADP by nucleotide exchange factors (NEFs) causes the 

SBD to return to the open conformation, releasing the substrate. 
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In Arabidopsis overexpression of HSc70 correlates with the acquisition of thermotolerance 

as well as an increase in tolerance to water deficit and salt stress (Lee and Schöffl, 1996; 

Leborgne-Castel et al., 1999; Alvim et al., 2001; Sung and Guy, 2003). Attempts to decrease 

HSc70 expression levels using a transgenic approach were unsuccessful implying that 

reduced HSc70 expression is lethal. Constitutive over-expression resulted in transgenic lines 

with impaired developmental phenotypes characterised by dwarfism and altered root 

structure. Nevertheless, these transgenic lines also exhibited a greater tolerance to heat 

shock (44⁰C for 10 minutes) than controls (Sung and Guy, 2003). These results led to the 

conclusion that it is necessary to tightly control HSc70 expression during development to 

avoid pleiotropic effects whilst having good tolerance to abiotic stresses.  In the present 

study, we examined allelic variation both in the coding region and in the upstream promoter 

sequence of HSc70. Comparison of the deduced amino acid sequence encoded by the four 

alleles revealed  differences in the coding region (Figure S2) although none specific to the 

A2 encoded protein. The A2 and A3 alleles contain the C-terminal sequences KIEEVD which 

are missing in the A1 and A4 alleles. The conserved C-terminal EEVD sequences of Hsp70 

and Hsp90 mediate interactions with specialized tetratricopeptide repeat (TPR) domains in 

Hop and other related co-chaperones (Brychzy et al., 2003). The absence of this motif in the 

A1 and A4 alleles could be of functional significance and could account for the particularly 

low level of heat tolerance (based on yield at elevated temperature, Table 1) in the A1A4 

genotype class. However, the A1A3 genotype class, containing one allele with the C-

terminal domain also exhibits lower yields than genotypes containing the A2 allele. 

Interestingly, the protective A2 allele exhibited a unique extended TA repeat approximately 

495 bp upstream of the putative ATG start codon, implying that the A2 phenotype may be 

due to differences in expression patterns at elevated temperature. The best combination of 

alleles for enhanced yield arises from the A2A3 combination, where both alleles contain the 

KIEEVD domain as well as the high level of expression from the A2 allele and so it is 

possible that a combination of the A2 promoter sequence and the presence of the KIEEVD 

domain in both alleles is required for optimal yield. 

In Desiree lines transformed with the construct in which expression was driven by the A2 

promoter HSc70 expression was similar in wild-type and transgenic lines grown at 22⁰C 

however, on transfer to elevated temperature A2 expression was rapidly and transiently 

induced in transgenic lines. Transgenic lines did not exhibit any developmental abnormalities 

and our work therefore supports previous observations that appropriate HSc70 expression is 

essential to provide protection against abiotic stress while preventing adverse pleiotropic 

phenotypes.  Our work further highlights the A2 promoter as a tool to drive heat inducible 

expression of a range of gene constructs in potato and other Solanaceae.  
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We are unaware of any previous reports that identify alleles of HSc70 genes that may confer 

different expression properties and hence impact on yields particularly under abiotic stress 

conditions. However, in this respect, reports of heat tolerance in cabbage genotypes are of 

relevance (Park et al., 2013). Heat-responsive gene expression profiles in four heat-tolerant 

and four heat-sensitive genotypes were compared. Significantly higher expression levels (ca. 

8-fold) of an HSc70 gene were measured in all heat-tolerant lines than in the heat-sensitive 

lines, implying that HSc70 may be a marker for heat tolerance. Differential expression of 

small HSPs has been reported for several plant species including potato, where genotypic 

differences in heat tolerance correlated with small HSP expression. Two thermotolerant 

potato varieties expressed higher levels of small HSPs than two more sensitive varieties 

(Ahn et al., 2004). Similarly, in common bean, heat tolerant varieties express small HSPs at 

higher levels on exposure to heat stress (Simões-Araújo et al., 2003). 

Promoter motif associated with the differential response of the A2 allele 

In order to account for the different expression characteristics of the A2 allele of HSc70, the 

promoter sequences of the four different alleles in the parents of the 06H1 population were 

compared. The most striking difference between the promoter sequences was an extended 

TA repeat motif in the A2 promoter which contained 10 repeats compared with 4 in the other 

alleles. In yeast it has been demonstrated that tandem TA repeats in promoter regions can 

result in enhanced expression levels (Vinces et al., 2009) due to effects on local chromatin 

structure. Whilst we are unaware of a specific effect of TA tandem repeats in plants in 

relation to heat stress, TA rich regions in plant promoters do often enhance gene expression 

(Sandhu et al., 1998). In this study, promoter deletions clearly demonstrate the relationship 

between the number of TA repeats and the HSc70 expression level on exposure to elevated 

temperature in transient assays in Nicotiana benthamiana. It will be interesting to investigate 

the occurrence of the TA repeat allele in other potato genotypes and wild species. 

5. Conclusion 

Overall our results demonstrate that the presence of the A2 HSc70 allele confers tolerance 

to elevated temperature, both in the 06H1 population and transgenic lines where HSc70 

expression is driven by the A2 promoter. In the nodal cutting system and in plants generated 

from stem cuttings, the presence of the A2 allele results in enhanced yield at elevated 

temperature. In transgenic lines, the yield was up to 2-fold greater than in wild type plants at 

28⁰C but with no significant effect on yield at 20⁰C. In 06H1genotypes however, yield was 

enhanced at both temperatures tested. In both cases we propose the rapid response of the 

A2 allele to temperature perturbation underlies the yield effect. Deployment of the A2 allele 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

in potato breeding may provide a strategy for enhancing yield either under temperate 

conditions or under periods of abiotic stress.  

 

6. Experimental procedures 

06H1 population  

The mapping population used here (06H1) is a full-sibling progeny (n = 186) of a cross 

between two highly heterozygous diploid potato clones (HB171(13) and 99FT1b5), both of 

which result from crosses between diploids of Solanum tuberosum group Tuberosum and 

Solanum tuberosum group Phureja (Prashar et al., 2014).  

Growth of plant material 

06H1clones were grown from cores (6mm diameter, excised from tubers, each containing a 

single bud) in 10 cm diameter pots containing standard compost mix. Plants were raised in a 

glasshouse maintained at a daytime temperature of 200C and a nocturnal temperature of 

150C. Light intensity (photosynthetic photon flux density) ranged from 400 to 1000 μmol m-2 

s-1. Single nodal cuttings (Ewing and Wareing, 1978), were taken from 7-8 week old plants 

and the base of the petiole was placed in 50/50 coir/sand mix. A cutting consists of a fully 

extended leaf and its subtended bud. Cuttings were left in glasshouse conditions for 24h 

then moved to growth rooms set at 70% humidity, 12h photoperiod (light intensity of 400 

μmol m-2 s-1) and various temperature regimes. Cuttings were watered daily with prewarmed 

water. Tubers were harvested after 3 weeks. 

Four heat sensitive and four heat tolerant genotypes of the 06H1 population were grown 

from cores excised from tubers as described above. Plants were raised under glasshouse 

conditions for 8 weeks. Then, the plants were acclimated for 2 weeks under controlled 

environment conditions (20⁰C day/16⁰C night). Plants were moved to a cabinet at high 

temperature (28⁰C) and low temperature (22⁰C) for 4 hours, at a light intensity of 400 μmol 

m-2 s-1. After 4 hours, leaves and tubers were collected, immediately frozen in liquid nitrogen, 

and then stored at −80⁰C until use. 

HSc70 overexpressing lines were grown from in vitro propagated tissue culture plants in 10 

cm diameter pots containing standard compost mix. Plants were grown in a glasshouse (15-

20⁰C, 12h light, 400 to 1000 μmol m-2 s-1) for 7-8 weeks. Single nodal cuttings were 

prepared as described above. 
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QTL analysis 

QTL mapping of nodal cutting tuber yield data (22⁰C and 28⁰C) was performed using 

MapQTL®6.0 (Van Ooijen, 2011) and Genstat 15.1 (VSN International Ltd.) software. The 

non-parametric Kruskal–Wallis (KW) test supported in MapQTL version 6.0 was performed. 

In this method, a single marker analysis was used to test the association of a marker with 

the trait at significance p≤ 0.001.  

Allele mining and cleaved amplified polymorphic sequence (CAPS) assay 

Genomic DNA was isolated from leaves using the AquaGenomicTM DNA isolation solution 

(http://www.aquaplasmid.com) according to manufacturer's instructions. PCR primers (Table 

S1) were designed to amplify a partial fragment from parental DNA templates.  PCR was 

performed on 25 to 50 ng DNA in 50 µl reaction volume using 2.5 U of Platinum high fidelity 

DNA polymerase and buffer (www.invitrogen.com) containing 1.25 mM MgSO4. Gene 

specific primers and deoxynucleotides (dNTPs) were used at a concentration of 0.4 µM and 

200 µM, respectively. Thermal cycling conditions were: 2 min denaturation at 95⁰C followed 

by 25 to 40 cycles (30 sec at 95⁰C, 30 sec annealing at the appropriate Tm, 1 to 2 min 

extension at 68⁰C) followed by 5 min final extension step at 68⁰C. Polymorphisms were 

present in the parental sequences at positions that resulted in the presence or absence of a 

HindIII restriction site (Figure 2). PCR products were digested with HindIII prior to being 

analysed by electrophoresis on agarose gels and visualised following staining with ethidium 

bromide. Distinct restriction digestion patterns were observed for the four alleles identified 

(Figure 2). 

qRT-PCR 

RNA was extracted from potato leaves and tubers as described (Ducreux et al., 2008). The 

first strand cDNA templates were generated by reverse transcription, using random 

hexamers as primer and SuperScript II reverse transcriptase (Invitrogen Life Technologies, 

Carlsbad, California, USA). Potato elongation factor1-alpha (EF1α) primers were used as a 

control. The expression level of HSc70 was analyzed using the StepOnePlus Real-Time 

PCR system (Applied Biosystems) and StepOne Software version 2.3 (Applied Biosystems). 

Gene-specific primers and Universal probe Library (UPL, Roche Life Science) probes  

(Table S2) were used at a concentration of 0.2 µM and 0.1 µM, respectively. Thermal cycling 

conditions were: 10 min denaturation at 95⁰C followed by 40 cycles of 15s at 94⁰C, 60 s at 

60⁰C. Relative expression levels were calculated and the primers validated using the Ct 

method (Livak, 1997). To normalize the values, an alternative method for calculating relative 
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quantification was used (Pfaffl, 2001). The HSc70 expression level in transgenic lines was 

determined using the same method. 

HSc70 Promoter analysis 

Genomic DNA was isolated and PCR performed as described for allele mining using the 

specific primers described in Table S1. PCR products were analysed by electrophoresis on 

agarose gels and DNA fragments eluted from the gel. The purified DNA fragments were 

ligated into pGEM-T and transformed into E.coli strain DH5α and the plasmid DNA from 

each clone was extracted using a DNA Plasmid Miniprep Kit (Promega, Madison, WI, USA) 

and sequenced with M13 universal primers on a 3730 automated DNA sequencer (Applied 

Biosystems: http://www.lifetechnologies.com) using a cycle sequencing protocol and the 

BigDye Terminator Cycle Sequencing Kit (version 3.1; Applied Biosystems). Analysis of 

sequences was performed using Sequencher software v.4.9 (http://genecodes.com/).   

Transgenic plants generation.  

The binary construct was designed using the GoldenBraid strategy (gb.cloning.org) (Sarrion-

Perdigones et al., 2011). Specific primers for the HSc70-promoter from the A2 allele and the 

HSc70-A2 coding region containing the required BsmBI type II restriction sites were 

designed (Table 1). PCR amplification was performed using High Fidelity Polymerase 

(Invitrogen). PCR products were analyzed by agarose 1% gel electrophoresis and purified 

using a Promega kit. The PCR purified fragments were ligated into a pUPD entry vector 

using the BsmBI digestion-ligation reaction protocol of the GoldenBraid 2.0 cloning 

methodology. This method required repeated cycles of 37⁰C for 2 minutes and 16⁰C for 5 

minutes. Once complete, the ligation reaction was transformed into E.coli strain DH5α 

(Invitrogen, USA). Cloned inserts were sequenced using M13 universal primers to verify the 

fragment sequence and the Type II restriction sites required for recombination in the 

expression vector. The HSc70 overexpression construct in pDGB3 was created by 

recombining GBparts (HSc70-promoter, HSc70-coding region, pTnos-terminator) as 

described by (Sarrion-Perdigones et al., 2011) using BsaI (New England Biolabs, Ipswich, 

MA, USA) restriction enzyme and T4 DNA ligase in 25-cycle digestion/ligation reactions. The 

binary construct was transformed into Agrobacterium tumefaciens strain AGL1 by 

electroporation (Curtis, 2004) Transformation of potato cv. Desiree using this construct was 

as described (Ducreux et al., 2005). 

Electrolyte leakage assay 

Cell membrane injury was assessed using an electrolyte leakage assay as described in 

(Campos et al., 2003). Four replicate samples of three 10mm leaf discs were punched from 
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each leaf sample assayed and placed in a test tube. The discs were washed twice with 

deionised water then 5ml of deionised water was added to each tube and samples were 

shaken for 1h in a 29⁰C incubator. The leachate was transferred to a 50 ml tube, 25 ml 

deionised water was added and the initial conductivity was measured using a conductivity 

meter. Samples were autoclaved, and total conductivity determined after cooling to room 

temperature. The extent of cell membrane injury was calculated as follows: [Initial 

conductivity x 100 / total conductivity]. 

Transient expression in N. benthamiana 

For the transient expression experiments, plasmids were transferred to A. tumefaciens strain 

AGL1 by electroporation. Agroinfiltration was performed as described previously (Wydro, 

2006). Overnight-grown bacterial cultures were pelleted and re-suspended in agro-infiltration 

medium (10 mM MES, pH 5.6, 10 mM MgCl2, and 200 mM acetosyringone) to an optical 

density at 600 nm of 1.2. Infiltrations were carried out using a needle-free syringe in leaves 

of N. benthamiana plants (growing conditions: 24⁰C day/20⁰C night in a 16h-light/8h-dark 

cycle) and the plants were kept at 22⁰C overnight. The following morning, the agro-infiltrated 

plants were moved to 45⁰C. After 24h, 12h photoperiod with light intensity of 400 µmol m-2s-

1, leaves were harvested for gene expression analysis and cell membrane injury assays as 

described above. 

Promoter deletion assays 

In order to investigate the role of the TA repeats in the A2 promoter in the region 495 base 

pairs upstream of the start codon promoter deletions were engineered and the effects tested 

on transient expression in Nicotiana benthamiana. Sequences from the HSc70-promoter 

containing 4, 6, 8 or 10 TA repeats were engineered using GenArtTM Gene Synthesis 

(Invitrogen) as illustrated in Figure S6. The binary constructs were generated using the 

GoldenBraid strategy as described previously, and plasmids were transferred to A. 

tumefaciens strain AGL1 by electroporation. The transient expression experiments in N. 

bethamiana were performed as described previously and leaves were harvested for gene 

expression analysis and cell membrane injury assays as described above. 

Statistical Analysis 

All analysis of variance (ANOVA) and the Student’s t-test were conducted using GenStat, 

18th edition (VSN International, Oxford, United Kingdom). 
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9. Tables 

 

Table 1. Genotype means after heat stress screening of 188 genotypes from the 06H1 

population. Fresh weight (FW) and dry weight (DW) are measured in grams (gr) 

 

Trait measured 
Genotypic mean 

 for A1A3 
(gr) 

Genotypic mean
 for A2A3 

(gr) 

Genotypic mean
 for A1A4 

(gr) 

Genotypic mean
 for A2A4 

(gr) 

FW at 20⁰C 2.27±0.28a 3.58±0.31b 1.46±0.18a 3.13±0.32b 

FW at 28⁰C 0.51±0.13ab 1.24±0.20c 0.35±0.08a 0.92±0.15bc 

DW at 20⁰C 0.50±0.2ab 0.76±0.18b 0.31±0.22a 0.85±0.18b 

DW at 28⁰C 0.11±0.06ab 0.30±0.08c 0.06±0.01a 0.24±0.08bc 

Data are presented as mean ± standard error and different letters indicate significant 

differences between genotypes (Fisher’s, p<0.05). 

 

Table 2. Weight of tubers from single stem plants of A2 HSc70 expressing lines. Fresh 

weight (FW) and dry weight (DW) are measured in grams (gr). 

Trait measured Line 33 (gr) Line 48 (gr) Line 56 (gr) WT (gr) 

FW at 20⁰C 11.9±4.0a 14.7±4.9b 11.2±3.8a 10.6±2.1a 

FW at 28⁰C 15.3±5.1b 19.7±8.8b 17.6±4.9b 8.8±1.8a 

DW at 20⁰C 1.89±0.63a 2.93±0.98b 1.7±0.57a 1.96±0.30a 

DW at 28⁰C 2.7±0.90b 4.80±1.00c 2.90±0.73b 1.39±0.27a 

Data are presented as mean ± standard error (n=9) and different letters indicate significant 

differences between lines (Fisher’s, p<0.05). 
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10.  Figure Legends 

Figure 1. Frequency distribution of tuber yield from genotypes of the 06H1 population using 
the nodal cutting assay. 

Figure 2. HSc70 cleaved amplified polymorphic sequence (CAPS) assay. Four alleles were 

identified in the diploid parents. HB171(13) parent contains alleles A1 and A2 and 99FT1b5 

contains alleles A3 and A4. Vertical lines represent HindIII restriction enzyme sites and 

numbers refer to nucleotide position. 

Figure 3. HSc70 promoter sequence of the four different alleles. TA extension in A2 at 495 

bp upstream of ATG start codon is marked in red. 

Figure 4. Relative expression level of HSc70 in 06H1 population. (a) Tubers from A2A3 heat 

tolerants genotypes (genotype number 50, 153, 289 and 295); (b) tubers from A1A4 heat 

sensitive genotypes (genotype number 202, 206, 242 and 278); (c) leaves from A2A3 heat 

tolerants genotypes (genotype number 50, 153, 289 and 295) and; (d) leaves from A1A4 

heat sentitive genotypes (genotype number 202, 206, 242 and 278). Asterisk indicates 

statistical differences between temperatures as determined by Student’s t-test. Error bars 

represent the standard error of the mean (n=3) (p<0.05). 

Figure 5. Agroinfiltration of Nicotiana benthamiana plants. (a) Relative expression level of 

HSc70 after one day at 45⁰C in agro-infiltrated plants with HSc70 construct versus 

agroinfltrated plants with empty vector (Mock).(b) Membrane damage in agro-infiltrated 

Nicotiana benthamiana plants after 1 day at 45⁰C by electrolyte leakage assay compared 

with agro-infiltrated plants with empty vector (Mock). Asterisks indicate significant difference 

with wild type at high temperature as estimated using Student’s t-test (p<0.05). Error bars 

represent the standard error of the mean (n=6) (p<0.05). 

Figure 6. Promoter deletion analysis by agroinfiltration of Nicotiana benthamiana plants. (a) 

Relative expression level of HSc70 after one day at 42⁰C in agro-infiltrated plants with 

HSc70-promoter deletion constructs versus agro-infiltrated plants with empty vector (Mock). 

(b) Membrane damage in agro-infiltrated Nicotiana benthamiana plants after one day at 

42⁰C by electrolyte leakage assay compared with agro-infiltrated plants with empty vector 

(Mock). Asterisks indicate significant difference. Error bars represent the standard error of 

the mean (n=3) (p<0.05). 

Figure 7. Expression level of HSc70 gene in transgenic potato lines A2 HSc70  allele after 

4h at 22⁰C or 28⁰C relative to wild-type plants Desiree cv (WT). Asterisks indicate significant 

difference. Error bars represent the standard error of the mean (n=3) (p<0.05). 
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Figure 8. Screening of overexpression transgenic lines at high temperature (40⁰C). (a) 

Expression level of HSc70 gene in transgenic potato lines A2 HSc70 allele and wild-type 

plants Desiree cv (WT). (b) Membrane damage by electrolyte leakage assay of A2 HSc70 

expressing lines and wild-type plants Desiree cv (WT).  Asterisk indicates statistical 

differences with wild type at high temperature as determined by Student’s t-test. Error bars 

represent the standard error of the mean (n=6). 

Figure 9. Fresh weight of tubers in A2 HSc70 expressing lines at 22⁰C and  28⁰C. Asterisk 

indicates statistical difference with wild type at high temperature (Fisher’s,p<0.05). Error bars 

represent the standard error of the mean (n=3) (p<0.05). 

 

11. Supporting Information Legends 

Figure S1. Clustal Omega alignment of the genomic DNA sequences of HSc70 alleles A1, 

A2, A3 and A4 isolated from parents of the 06H1 population (HB171(13) and 99FT1b5). 

Intron is indicated by blue text. Quantitative PCR primers and probe binding sites are 

highlighted in grey. Reverse primers used to amplify promoter regions: HSC70PA1R 

CTGAACGAGAATCATGAATCT; HSC70PCOMMONR AGATGCGAAGCGATTAATTGGT; 

HSC70PA3R  TATACCAAACATAAACTCAT; HSC70PA4R  TCCTAGCTCCAATACTAAACA 

Figure S2. CLUSTAL O (1.2.1) multiple sequence alignment of the predicted HSc70 amino 

acid sequences from the C-terminal region of 4 alleles. 

Figure S3. Expression level of HSc70 by semi-quantitative RT-PCR. (a) Bands of semi-

quantitative RT-PCR in agarose gel (1%). HT means heat tolerante genotype; HS means 

heat sensitive genotype; C means control, L means 4h at 20⁰C and H measn 4h at 28⁰C. (b) 

Sequence analysis of clone products with HSc70-A2 sequence and HSc70-A3 sequence as 

model, where all transcripts show GATT region as A2. 

Figure S4. Phenotype of HSc70 agro-infiltrated and Mock inoculated plants of Nicotiana 

benthamiana after 24h at 45⁰C. 

Figure S5. Phylogenetic tree of heat shock protein sequences resulting from a BLASTP 

search against Arabidopsis, Potato and Tomato databases using the translated HSc70 A2 

allele. The tree was generated using Phylogeny.fr web service  (Dereeper et al., 2008). The 

scale bar represents amino acid substitutions per site i.e., the number of changes or 

'substitutions' divided by the length of the sequence. 

Table S1. Primer sequences used for PCR and binary construct . 
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Table S2. Primer sequences and probe used in qRT-PCR. 

Table S3. Nodal cutting results of HSc70 overexpression lines. Fresh weight (FW), dry 

weight (DW). 
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