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Abstract

The growth and invasion of cancer cells are very complex processes, which can
be regulated by the cross-talk between various signalling pathways, or by single
signalling pathways that can control multiple aspects of cell behaviour. TGF-
β is one of the most investigated signalling pathways in oncology, since it can
regulate multiple aspects of cell behaviour: cell proliferation and apoptosis, cell-
cell adhesion and epithelial-to-mesenchimal transition via loss of cell adhesion.
In this study, we use a mathematical modelling approach to investigate the
complex roles of TGF-β signalling pathways on the inhibition and growth of
tumours, as well as on the epithelial-to-mesenchimal transition involved in the
metastasis of tumour cells. We show that the nonlocal mathematical model
derived here to describe repulsive and adhesive cell-cell interactions can explain
the formation of new tumour cell aggregations at positions in space that are
further away from the main aggregation. Moreover, we show that the increase
in cell-cell adhesion leads to fewer but larger aggregations, and the increase in
TGF-β molecules – whose late-stage effect is to decrease cell adhesion – leads
to many small cellular aggregations. Finally, we perform a sensitivity analysis
on some parameters associated with TGF-β dynamics, and use it to investigate
the relation between the tumour size and its metastatic spread.
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1. Introduction1

Understanding and controlling the factors that govern the evolution of solid2

tumours has been one of the main research directions in cell biology for at least a3

century [1]. One of the most poorly understood aspects associated with tumour4

progression is tissue invasion and metastasis, a process that allows for cells to5

escape the primary tumour and to colonise new tissues [2, 3]. This very complex6

process is generally regulated by a cross-talk between multiple signalling path-7

ways [4, 5, 6]. Moreover, some of these pathways are controlling multiple aspects8

of cell behaviour. Among the most investigated signalling pathways is the TGF-9

β pathway, which is involved in cell proliferation and apoptosis, cell-cell adhe-10

sion, cell motility, cell differentiation, immune response [7]; see also Figure 1(a).11

The expression of this pathway has been studied in the majority of epithelial12

cancers: from prostate cancer, to skin, breast, lung, colorectal, and pancreatic13

cancers [7, 8]. Moreover, experimental studies have shown that TGF-β has a14

dual cancer role: in many early-stage tumours TGF-β has an anti-tumour effect,15

while in advanced tumours the TGF-β pathway is disregulated and promotes16

tumour growth and metastasis [7]. However, the timing at which TGF-β role17

switches from tumour-suppressor to tumour-inhibitor is still unclear [9]; see also18

Figure 2). A particular aspect of the metastasis process, which has been shown19

to be influenced by the TGF-β pathway, is the epithelial-to-mesenchimal tran-20

sition (EMT) [10]. During EMT, the E-cadherin proteins involved in cell-cell21

adhesion are down-regulated in the presence of TGF-β molecules, and the ep-22

ithelial cells loose cell-cell junction integrity and invade new tissues [10, 8]; see23

also Figure 1. The overall complexity of this pathway in shown in the contradic-24

tory results associated with cancer treatment: while many studies suggest the25

inhibition of TGF-β pathway to improve cancer treatments [11], other studies26

have shown that TGF-β inhibition can increase inflammation and accelerate27

pre-neoplastic lesions which were still controlled by TGF-β [12, 9].28

The detailed dynamics of the molecular components of the TGF-β signalling29

pathway has been investigated by various mathematical models [13, 14, 15].30

Many other mathematical models focused on the TGF-β role in the evolution of31

cancer. For example, Chung et al. [14] developed an ODE model for the dynam-32

ics of the components of the TGF-β/Smad signalling pathway, and used it to33

describe the TGF-β dose-dependent responses for these various molecular com-34

ponents in the presence of cancer cells. Ascolani et al. [16] derived models for35

the molecular and cellular mechanisms behind TGF-β role in tumour suppres-36

sion or tumour progression (again, with a focus on the molecular components37

of the TGF-β pathway, the concentration of TGF-β molecules, the density of38

some cell population and the TGF-β receptors on cell membranes). Arciero et39

al., [17] ignored the detailed molecular dynamics of the TGF-β pathway and fo-40

cused on cell-level immune suppressive and tumour promoting effects of TGF-β.41

Kim and Othmer [18] derived a complex hybrid model to investigate the role42

of TGF-β/EGF pathways on the spatial growth of fibroblasts/myofibroblasts in43

tumour stromal tissue (where the intra-cellular dynamics of the signalling path-44

way was described by ODEs, the dynamics of TGF-β and EGF molecules in the45
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Figure 1: (a) Caricature description of the dynamics of tumour cells, and the interactions
with the TGF-β molecules. (b) Caricature description of the metastasis process, where a cell
or a cluster of cells breaks off from the main tumour cell aggregation and migrate to distant
places.

stromal tissue was described by reaction-diffusion equations, and the growth46

and movement of the tumour was described by a particle-based model). Fi-47

nally, Wang et al. [19] considered a local Fisher-Kolmogorov equation to model48

the spatial dynamics of tumour cells in response to TGF-β molecules. However,49

these authors never modelled explicitly the effect of TGF-β on cell motility and50

growth; they only assumed that the presence of TGF-β would lead to changes51

in the constant random cell motility and constant tumour growth rate, and used52

experimental data to find values for these constants.53

Despite these different mathematical approaches to investigate the various54

roles of TGF-β pathway on tumour dynamics, there are currently no math-55

ematical models that investigate all these aspects (i.e., effect of TGF-β on56

growth/apoptosis of tumour cells, cell-cell and/or cell-matrix adhesion, and cell57
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Figure 2: Dual role of TGF-β molecules on tumour dynamics: tumour suppressor and tumour
promoter roles. Moreover, the timing for the switch from a tumour-suppressor to a tumour-
promoter effect of TGF-β is still unclear [9].

invasion) in an unitary manner.58

The aim of this study is to use a mathematical model to investigate the59

previously-identified multi-faceted role of TGF-β on tumour dynamics (see also60

Figure 1(b)). To this end, we use a system of nonlocal hyperbolic equations61

to describe the spatial movement of tumour cells (including their random and62

directed motion [20] as a result of random and directed turning behaviour), and63

their growth and decay in the presence of TGF-β molecules. We then couple64

this system with a local reaction-diffusion equation for the dynamics of TGF-β65

molecules. We first focus on the symmetry of the system and investigate the66

long-term dynamics of the model via steady state and stability analysis. We67

then use numerical simulations to show that the model can exhibit the formation68

of new cell aggregations at spatial positions further away from the original ag-69

gregations. In addition, we perform local sensitivity analysis to investigate the70

effect of small changes in the parameters that control the interactions between71

TGF-β molecules and tumour cells, on the overall tumour size and motility.72

The article is structured as follows. In Section 2 we describe the mathemat-73

ical model. In Section 3.3 we investigate the long-term behaviour of the system74

by focusing on the spatial homogeneous steady states and their symmetry. Then,75

in Section 4 we perform numerical simulations of the mathematical model, and76

investigate the sensitivity of tumour growth to changes in the parameters con-77

trolling TGF-β dynamics. We conclude with a summary and discussion of the78

results in Section 5.79

2. Model description80

To investigate the complex role of TGF-β molecules on tumour dynamics,81

we focus only on the densities of tumour cells, uT , and the concentration of82

4



TGF-β molecules, uβ . Moreover, to investigate the formation/break-up of tu-83

mour aggregations in response of TGF-β, as well as their migration, we focus84

on a domain that represents some tissue containing the tumour. For simplic-85

ity, throughout this study we consider a 1D domain. (A 2D generalisation86

of the model can be found in Appendix A.) To capture the polarity of cells87

during movement, we model separately the dynamics of left-moving u−T and88

right-moving u+T tumour cells (where uT = u+T + u−T is the total tumour cell89

density). The following equations describe the interactions between tumour90

cells and TGF-β molecules (uβ).91

∂u+T
∂t

+ γ
∂u+T
∂x

=− λ+[uT , uβ ]u+T + λ−[uT , uβ ]u−T

+
1

2
pTuT

(
1− uT

KT

)
− δTu+T uβ(K∗T − uT ), (1a)

∂u−T
∂t
− γ

∂u−T
∂x

=λ+[uT , uβ ]u+T − λ
−[uT , uβ ]u−T

+
1

2
pTuT

(
1− uT

KT

)
− δTu−T uβ(K∗T − uT ), (1b)

∂uβ
∂t

=D
∂2uβ
∂x2

+ pe + pβuT − δβuβ . (1c)

Next, we describe in detail the various terms that appear in model (1).92

1. The tumour cells move with velocity γ (fixed throughout this study), and
change their movement directions from right-to-left or from left-to-right
with rates λ+ and λ−, respectively. These turning rates depend on the
attractive (y±a ) and repulsive (y±r ) interactions with other tumour cells,
as well as on the TGF-β concentrations (uβ):

λ±[uT , uβ ] = λ1 + λ2f
(
y±r [uT ]− y±a [uT , uβ ]

)
, (2)

Here λ1 approximates the random turning, while λ2f(·) approximates the
directed turning. Since cell turning cannot occur infinitely fast, we choose
the turning function f to be a non-negative, bounded functional of the
attractive-repulsive interactions (y±r,a) with neighbouring cells and chemi-
cal concentrations:

f(y±r − y±a ) = 0.5 + 0.5 tanh
(
y±r − y±a −m0

)
, (3)

where the term m0 was chosen such that f ≈ 0 when y±r ≈ y±a (see
Table 2 and Figure 3(a), where m0 = 2). We assume here that cells
turn towards/away to/from other cells as a result of the attractive (i.e.,
adhesive) interactions [21] and repulsive interactions [22]; see also Fig. 4.
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These interactions can be described by the following nonlocal terms:

y±r [uT ] =± qr
∫ ∞
0

Kr(s)
(
uT(x + s)− uT(x− s)

)
ds (4a)

y±a [uT , uβ ] =± qa
∫ ∞
0

Ka(s)
( uT(x + s)

kβ + uβ(x+ s)
− uT(x− s)

kβ + uβ(x− s)

)
ds.

(4b)

As mentioned before, uT = u+T + u−T is the total cell density. Parameters93

qr and qa represent the magnitudes of the repulsive and attractive (adhe-94

sive) interactions, respectively. The interaction kernels Kr(s) and Ka(s)95

describe the spatial ranges of these interactions, and an example of such96

kernels is depicted in Figure 3(b), for s ≥ 0. (Note that we define the97

integrals in y±r,a only for s > 0, and understand that a reference cell at x98

interacts only with those neighbours ahead at x+ s, and behind at x− s,99

positioned within the repulsion/attraction ranges defined by Kr,a(s)� 0.)100

Equation (4a) incorporates the assumption that cell-cell repulsion is only101

the result of interactions with other neighbouring cells within the repul-102

sion range. In particular, a reference cell at position x (i.e., u±T (x, t)) can103

detect - through mechanical traction stresses of neighbouring cells [23] -104

how many other cells are ahead/behind its spatial position (i.e., by cal-105

culating uT (x + s, t) − uT (x − s, t), where uT = u+T + u−T ). Moreover,106

we assume that the cell will change its polarisation towards the spatial107

region with lower cell density (i.e., the cell tries to avoid collision with108

higher densities of neighbouring cells). Equation (4b) incorporates also109

the assumption that the attractive cell-cell interactions are weakened by110

the presence of TGF-β molecules in the tumour microenvironment (at111

positions x ± s in space, where neighbouring cells are detected). These112

molecules decrease the E-cadherin expression on tumour cells leading to113

a loss in cell-cell adhesion [8]. We assumed here that only the TGF-β114

levels at cell boundaries x ± s (where a cell interacts with another cell)115

are important for cell-cell adhesion; local (at x) TGF-β levels could affect116

only cell-cell repulsion, but we are ignoring this aspect to focus exclusively117

on this cytokine’s effect on cell adhesion. Finally, note that the terms y±r118

and y±a enter equation (3) with opposite signs, to depict that repulsion119

and attraction have opposite effects on the turning behaviour of cells.120

In addition to movement and turning behaviours, tumour cells exhibit also121

a proliferative behaviour at a rate pT , until they reach the carrying capac-122

ity KT . Following the approach in [27] (for reaction-hyperbolic systems),123

we assume that there is equal probability of left-moving and right-moving124

cells to proliferate, and thus the proliferation terms in (1a)-(1b) are simi-125

lar. Moreover, we assume that small tumours (i.e., uT < K∗T = KT /102,126

with K∗T a threshold parameter) have their growth inhibited by TGF-β127

molecules that act as a tumour suppressor. We denote this inhibition rate128

by δT . As tumour grows (i.e., uT > K∗T ), the TGF-β undergoes a shift129

from a tumour-suppressing to a tumour-promoting molecule, and so δT130
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Figure 3: (a) Description of a nonnegative and bounded turning function f(Y ) = 0.5 +
0.5 tanh(Y − m0), for m0 = 2; (b) Example of translated Gaussian kernels that model
the repulsive/attractive ranges for a cell positioned at x (i.e., at s = 0): Kr(s) =

1√
2π(sr/8)2

exp(−(x−sr)2/(2(sr/8)2)), Ka(s) = 1√
2π(sa/8)2

exp(−(x−sa)2/(2(sa/8)2)) with

sr = 0.05mm, sa = 0.3mm. Shown here is qaKa(s) and qrKr(s), where the magnitudes of
cell-cell repulsion and attraction are given by qr = 0.4 and qa = 2. This type of Gaussian
kernel incorporates the assumption that the repulsion force is stronger at some
distance sr > 0. This ensures that cells will not press on each other at almost zero
spatial distances, causing them to pile up on top of each other (as it has been
observed with Morse-type kernels, which have been considered more biologically
realistic, but which can lead to density blow-up patterns [24]). Note that this
kernel seems to describe the behaviour of cancer HeLa cells that have been shown
to have a maximum diameter of 40µm, which is then compressed to only 20µm
when cells are in aggregations and press on each other [25, 26]. Finally, to give a
more clear description of the interaction ranges (see also Appendix A), the inset
figure in panel (b) shows the repulsive and attractive kernels on a logscale y-axis.

now describes the tumour growth rate in the presence of TGF-β.131

Note that the majority of models for tumour spread are of parabolic type,132

assuming a diffusion term that describes random cell movement. Here,133

we are interested mainly in the directed movement of cells (in response to134

each other, and as controlled by TGF-β) and thus we assume only advec-135

tive movement. However, we emphasise that the turning rate λ1 induces136

random cell movement, which in the parabolic limit leads to a diffusive137

term [28]. Since our focus is on directed cell movement (as described by138

the magnitude of λ2), throughout this study we will assume that λ1 < λ2.139

2. The TGF-β molecules diffuse at a constant rate D, and are produced at140

a rate pe by the various cells in the environment (e.g., epithelial cells [29],141

monocytes and neutrophils [30] - considered here implicitly). Moreover,142

they are produced at a rate pβ by the tumour cells themselves [8]. Finally,143

the TGF-β molecules decay at a rate δβ .144

For the purpose of investigating the model analytically and numerically (see
Sections 3 and 4), we assume a finite-length domain [0, L] with periodic bound-

7
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Figure 4: Caricature description of turning behaviour in cells, in response to attraction and
repulsion signals from neighbouring cells.

ary conditions:

u±T (0, t) = u±T (L, t), uβ(0, t) = uβ(L, t). (5)

We note that these boundary conditions require the infinite integrals in (4) to145

be approximated by integrals over [0, L], which are then wrapped around the146

domain. The kernels in these integrals (described in the caption of Fig. 3(b))147

have an infinite support, but the parameters are chosen such that more than148

99.99% of their mass is inside the interval [0, L]; see also the approach in [31].149

3. Results: symmetry, steady states and their local stability150

A first step in the investigation of model (1) focuses on studying its symme-151

try. This will enhance our understanding of the types of patterns exhibited by152

model (1).153

3.1. Symmetry154

We observe immediately that the solutions of model (1) are invariant under
the translation symmetry:

θ · v(x, t) = v(x+ θ, t), θ ∈ [0, L), (6)

where “·” denotes the group action (see [32]), v = (u+T , u
−
T , uβ), and L is the

length of the 1D domain. This invariance is due to the translation invariance
of the differential and integral operators in (1) and the fact that the reaction
terms are not space dependent. Because of the periodic boundary conditions,
the translations can be interpreted as rotations and the group generated by the
elements θ ∈ [0, L) can be identified with the rotation group SO(2). Moreover,
the solutions of (1) satisfy the reflection symmetry:

κ · (u+T (x, t), u−T (x, t), uβ(x, t)) = (u−T (L− x, t), u+T (L− x, t), uβ(L− x, t)). (7)

Note that this symmetry sends the right-moving tumour cells at x into left-155

moving tumour cells at L − x, and vice-versa. Also, the symmetry moves the156
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TGF-β molecules from x to L− x. It is straightforward to verify that nonlocal157

interactions are preserved by these reflections:158

κ · y+r (x) = qr

∫ ∞
0

Kr(s)
(
uT (L− (x+ s))− uT (L− (x− s))

)
ds

= qr

∫ ∞
0

Kr(s)
(
uT ((L− x)− s)− uT ((L− x) + s)

)
ds = y−r (L− x),

κ · y+a (x) = qa

∫ ∞
0

Ka(s)
( uT (L− (x+ s))

kβ + uβ(L− (x+ s))
− uT (L− (x− s))
kβ + uβ(L− (x− s))

)
ds

= qr

∫ ∞
0

Kr(s)
( uT ((L− x)− s)
kβ + uβ((L− x)− s)

− uT ((L− x) + s)

kβ + uβ((L− x) + s)

)
ds

= y−a (L− x).

Therefore, the turning rates satisfy

κ · λ±[u+T (x), u−T (x), uβ(x)] = λ∓[u−T (L− x), u+T (L− x), uβ(L− x)].

Because κ preserves the second order derivative with respect to space and does159

not affect the reaction terms, we can conclude that if (u+(x, t), u−(x, t), uβ(x, t))160

is a solution of (1), then κ · (u+(x, t), u−(x, t), uβ(x, t)) is also a solution. The161

group generated by the rotations θ and the reflection κ is identified with O(2),162

the group of symmetries of the circle. These results are summarised in the163

following statement:164

Proposition 3.1. Model (1) defined on the finite domain [0, L] with periodic165

boundary conditions (5) is O(2) invariant, where the O(2) symmetry is given166

by (6)-(7).167

Overall, the existence of these symmetries in model (1), combined with the168

periodic boundary conditions (5), influences the type of solutions that could be169

exhibited by this nonlocal model. Moreover, the occurrence of stationary and170

moving aggregations of tumour cells (and TGF-β molecules) is also conditioned171

by the presence of steady-state and Hopf bifurcations - an aspect which will be172

investigated in the next two subsections in the context of spatially homogeneous173

states.174

3.2. Spatially homogeneous steady states175

To obtain a first understanding of the dynamics of model (1), we start176

investigating the spatially homogeneous steady-states, i.e., the states where177

all cells and the TGF-β molecules are equally spread over the whole domain178

(
∂u+

T

∂t =
∂u+

T

∂x = 0,
∂u−

T

∂t =
∂u−

T

∂x = 0,
∂uβ
∂t =

∂uβ
∂x = 0). Let us denote these179

steady-states by (u+,∗T , u−,∗T , u∗β), with the total cell density u∗T = u+,∗T + u−,∗T .180

Adding the right-hand-side terms in equations (1a) and (1b), leads to the
following steady-state system for the total cell density u∗T and TGF-β concen-
tration u∗β (note that the turning terms λ+u+T and λ−u−T disappear when adding

9



(1a)+(1b)):

0 =pTu
∗
T

(
1− u∗T

KT

)
− δTu∗Tu∗β(K∗T − u∗T ), (8a)

0 =pe + pβu
∗
T − δβu∗β . (8b)

The solutions of this system are:181

• A tumour-free state: (u∗T , u
∗
β) = (0, pe/δβ). The TGF-β molecules that182

persist in this case are produced by various cells in the environment (e.g.,183

epithelial cells, monocytes, etc.). This state has O(2) symmetry.184

• A tumour-present state: (u∗T , u
∗
β), which satisfies the following equations:

u∗β =
pe + pβu

∗
T

δβ
, u∗T =

−b±
√
b2 − 4ac

2a
, (9)

with

a =
δT pβ
δβ

> 0, b =
δT (pe − pβK∗T )

δβ
− pT
KT

, c = pT −
δT peK

∗
T

δβ
.

If c < 0, b > 0, or if b2 = 4ac and b < 0, there is one real and non-negative185

tumour-present state (u∗T , u
∗
β). However, if 0 < c < b2/4a and b < 0, there186

are two real different tumour-present states. For the parameter values187

used for numerical simulations (see Section 4 and Table 2) we have b < 0,188

c > 0 such that b2 − 4ac > 0, and model (1) has two tumour-present189

spatially homogeneous steady-states (see Fig. 5).

u*

T

T

(b)

T
δp

T1

u*
T2

u*  /2

u*  /2
T1

T2

T1
u*

u*
T2

u*  /2

(a)

T1

T2
u*  /2

u*

Figure 5: (a) Two tumour spatially-homogeneous steady states u∗T given by equations (9),
as we vary the tumour growth rate pT ; The states do not exist for very small pT . (b) Two
tumour spatially-homogeneous steady states u∗T given by equations (9), as we vary the rate
δT at which TGF-β influences tumour growth. The states do not exist for very large δT .

190
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We note here that equations (8) are satisfied by the states with u+,∗T =

u−,∗T = u∗T /2. This result becomes clear if we observe that the terms

−λ+u+,∗T + λ−u−,∗T in the steady-state equation corresponding to (1a)
vanish because the integrals in (4) vanish, and thus the turning function
in (3) reduces to a constant: f = 0.5− 0.5 tanh(m0). If we denote by

λ∗ = λ±[u+,∗T , u∗T − u
+,∗
T , u∗β ] = λ1 + λ2(0.5− 0.5 tanh(m0)),

we obtain −λ∗u∗T + λ∗u∗T = 0, which leads to equation (8a). For this191

reason, we graph in Figure 5 also the states u∗T /2.192

Next, we investigate the possibility of having tumour-present steady states
with u+,∗T 6= u−,∗T = u∗T −u

+,∗
T (i.e., states with SO(2) symmetry). Equat-

ing the steady-state expressions in (1a)-(1b) to eliminate the logistic terms
(which are similar in these two equations), we obtain that the equilibria
have to satisfy the following equation:

(u+,∗T − u−,∗T )
(

2λ∗ + δTu
∗
β(K∗T − u∗T )

)
= 0. (10)

Therefore, we have two possibilities:193

– u+,∗T = u−,∗T = u∗T /2. As discussed before, in this case u∗T satisfies194

equations (8), with the two explicit solutions given by (9); see also195

Figure 5). These states, where half of the tumour cells are facing196

right and half of the cells are facing left, have O(2) symmetry.197

– u+,∗T 6= u−,∗T . From equation (10) we note that this state exists only
when 2λ∗+δTu

∗
β(K∗T−u∗T ) = 0, which implies that we need u∗T > K∗T

and 2λ∗ = δTu
∗
β(u∗T −K∗T ). From this condition and the steady-state

equation (1a) we obtain that

u+,∗T =
(λ∗ + 0.5pT (1− u∗T /Kt))u

∗
T

2λ∗ + δTu∗β(K∗T − u∗T )
and u−,∗T = u∗T − u

+,∗
T . (11)

However, a simple algebraic investigation of the conditions required198

for the existence of this state with SO(2) symmetry shows that for199

the parameter values chosen in this study (see Table 2), this steady200

state is unphysical.201

3.3. Stability of spatially homogeneous steady states202

To determine whether the dynamics of system (1) approach in the long-
term the previously calculated spatially-homogeneous steady states, or some
spatially-heterogeneous states, we perform a local stability analysis. First we
consider the linearised version of system (1):

0 = ut + Lu = ut + (Ld + Ll)u, (12)

11



where u = (u+T , u
−
T , uβ)>, and the two linear operators are described by:

Ld =

 γ∂x 0 0
0 −γ∂x 0
0 0 −D∂xx

 (13)

and203

Ll =

 −B+
1 −B−1 −Bβ1

−B+
2 −B−2 −Bβ2

−pβ −pβ δβ

 , (14)

where

B+
1 = A1 − δTu∗β(K∗T − u∗T )− u∗Tλ2f ′(0)qr(K

+
r ∗ −K−r ∗)

+ u∗Tλ2f
′(0)qa(b1K

+
a ∗+b2K

−
a ∗)− (λ1 + λ2f(0)), (15a)

B−1 = A1 − u∗Tλ2f ′(0)qr(K
+
r ∗ −K−r ∗) + u∗Tλ2f

′(0)qa(b1K
+
a ∗+b2K

−
a ∗)

+ (λ1 + λ2f(0)), (15b)

B+
2 = A2 + u∗Tλ2f

′(0)qr(K
+
r ∗ −K−r ∗)− u∗Tλ2f ′(0)qa(b1K

+
a ∗+b2K

−
a ∗)

+ (λ1 + λ2f(0)), (15c)

B−2 = A2 − δTu∗β(K∗T − u∗T ) + u∗Tλ2f
′(0)qr(K

+
r ∗ −K−r ∗)

− u∗Tλ2f ′(0)qa(b1K
+
a ∗+b2K

−
a ∗)− (λ1 + λ2f(0)), (15d)

Bβ1 = −δTu+,∗T (K∗T − u∗T ) + u∗Tλ2f
′(0)qa(b3K

+
a ∗+b4K

−
a ∗), (15e)

Bβ2 = −δTu−,∗T (K∗T − u∗T )− u∗Tλ2f ′(0)qa(b3K
+
a ∗+b4K

−
a ∗). (15f)

The terms A1 and A2 that appear in equations (15) are204

A1 = −pTu
∗
T

2KT
+
pT
2

(
1− u∗T

KT

)
+ δTu

+,∗
T u∗β ,

A2 = −pTu
∗
T

2KT
+
pT
2

(
1− u∗T

KT

)
+ δTu

−,∗
T u∗β ,

while the terms b1, b2, b3 and b4 that appear from the linearisation of the
nonlocal attractive terms are

b1 =
1

kβ + u∗β
= −b2, b3 =

−u∗T
(kβ + uβ)2

= −b4. (16)

Moreover, in equations (15) we defined the following convolutions

K±r,a ∗ u =

∫ ∞
0

Kr,a(s)u(x± s)ds. (17)

Next, we consider small perturbations of the spatially-homogeneous steady
states, u±T (x, t) = u±,∗T + a± exp(iknx + σt) and uβ(x, t) = u∗β + aβ exp(iknx +
σt), where kn = 2πn/L is the wavenumber that emerges and σ describes the

12



growth of the perturbations. Substituting these terms into the linearised system
ut + Lu = 0, leads to the following Jacobian matrix:

J =

 σ + γik −B+
1 (k) −B−1 (k) −Bβ1 (k)

−B+
2 (k) σ − γik −B−2 (k) −Bβ2 (k)
−pβ −pβ σ +Dk2 + δβ

 ,

where the nonlocal terms B±1,2(k) and Bβ1,2(k) are defined in terms of the Fourier
transforms of K±r,a(k):

K̂+
r,a(k) =

∫ ∞
0

Kr,a(s)eiksds, K̂−r,a(k) =

∫ ∞
0

Kr,a(s)e−iksds. (18)

The critical eigenvalues of this Jacobian are the solutions of the cubic equation

σ3 +Aσ2 +Bσ + C = 0, (19)

where205

A = −B−2 −B
+
1 + (Dk2 + δβ),

B = γ2k2 + γik(B+
1 −B

−
2 ) +B+

1 B
−
2 −B

−
1 B

+
2 − pβ(Bβ1 +Bβ2 )

−(Dk2 + δβ)(B−2 +B+
1 ),

C = (Dk2 + δβ)
[
γ2k2 + γik(B+

1 −B
−
2 ) +B+

1 B
−
2 −B

−
1 B

+
2

]
−pβ

[
B+

2 B
β
1 +B−1 B

β
2 + γik(Bβ2 −B

β
1 )−Bβ1B

−
2 −B

β
2B

+
1

]
.

206

Note that for u∗,+T = u∗,−T = 0, the roots of the dispersion relation are:

σ1,2 = B+
1 ±

√
(B−1 )2 − γ2k2, σ3 = −Dk2 − δβ < 0. (20)

Thus we can summarise the stability of this tumour-free state in the following207

result (see also Figure 6(a)):208

Proposition 3.2. The tumour-free steady state (u∗,+T , u∗,−T , uβ) = (0, 0, pe/δβ)209

is unstable provided that (B−1 )2 − (B+
1 )2 ≥ γ2k2. The first wavenumbers that210

become unstable have low modes, and the patterns arise via steady-state bifur-211

cation. Moreover, the stability of this steady state does not depend on the mag-212

nitudes of cell-cell adhesion and repulsion (qa and qr).213

In regard to the O(2) tumour-present steady states we can show below a214

stability result for qa = qr = 0. While this case makes the model trivial, the215

result will allow us to confirm analytically, when we will graph the neutral-216

stability curves in the qa − qr plane (see Figure 8), that the open region having217

the origin (qaqr)=(0,0) at its boundary corresponds to asymptotic stability of the218

tumour-free steady-state. The case qr,a > 0 is not investigated analytically, but219

rather graphically by determining the neutral stability curves, see Section 3.3.1):220

221
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Roots of dispersion relation (19)σ(κ)

σ(κ)

σ(κ)

σ(κ)

σ (κ)

σ (κ)

σ (κ)

σ(κ)

2

u*>0

3

1

u*>0

u*>0 u*>0

u*=0

qa=20qa=0
qr=0

T

qa=0
qr=28

T

qr=28
qa=50

T

T

T
any qr,qa

(b)

(a)

(e)(d)

(c)

qr=0

Figure 6: Dispersion relation (σ vs. k) for the steady states with O(2) symmetry

(u∗,+T , u∗,−T , u∗β), where u∗,+T = u∗,−T . (a) Tumour-free state (u∗,±T = 0); Its stability does

not depend on qa or qr. (b)-(e) Tumour-present steady state (state u∗T2 from Figure 5); Its
stability depends on qa and qr. For low qr, qa the state is stable (panel (b)). Increasing qa
leads to instability to low wavenumbers (k6 – shown in the inset figure in panel (c)). In-
creasing qr leads to instability to high wavenumbers (k71 – shown in the inset figure in panel
(d)). Increasing both qr and qa leads to instability to both low and high wavenumbers (panel
(e)). Here pT = 0.04, and the rest of parameters are as in Table 2. The points on the x-axis
represent the discrete wavenumbers kj = 2πj/L.
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Proposition 3.3. The tumour-present steady state (u∗T /2, u
∗
T /2, uβ) is asymp-

totically stable for qa = qr = 0 provided that the model parameters are such that
the following conditions hold:

pT > δTu
∗
Tu
∗
β , (21a)

u∗T > KT , (21b)

2
(
λ1 + λ2f(0)

)
> pT

( u∗T
KT
− 1
)
, (21c)

δβ
( pT
KT
− δTu∗β

)
> (u∗T −K∗T )pβδT . (21d)

This result is proved in Appendix C. For the parameter values described in Table222

2, all these three conditions hold true (see also Figure 6(b)). Note that we can223

interpret conditions (21) from a biological perspective. For example, condition224

(21a) states that tumour proliferation rate must be much higher than the rate225

of tumour inhibition/growth as determined by the TGF-β molecules. Condition226

(21b) states that the tumour must grow (slightly) above the carrying capacity227

(as a result of the pro-tumour effect of the TGF-β cytokines). Condition (21c)228

states that the (random/directed) turning rates of the tumour cells must be rel-229

atively large (to overcome the rate of tumour growth). Finally, condition (21d)230

states that the decay rate δβ of the TGF-β molecules must be high enough (to231

counterbalance the production rate of TGF-β and the rate of tumour inhibi-232

tion/growth in the presence of TGF-β). This last condition suggests that a low233

decay rate δβ (associated with a persistence of high TGF-β levels) leads to in-234

stability of the tumour-present steady state (u∗T /2, u
∗
T /2, uβ) and thus induces235

the formation of tumour aggregations.236

In Figure 6 we graph the three solutions σj , j = 1, 2, 3 of equation (19) as a237

function of the wavenumber k, for the tumour-present steady-states (u∗,+T , u∗,−T , u∗β)238

with O(2) symmetry (i.e., u∗,+T = u∗,−T ). Here, pT = 0.04 and the rest of pa-239

rameter values are as described in Table 2. Panel (a) shows the stability of the240

state with u∗,+T = u∗,−T = 0, while panels (b)-(e) show the stability of a state241

with u∗,+T = u∗,−T > 0. We remark that increasing qa leads to instability to242

low wavenumbers (panel (c)), while increasing qr leads to instability to high243

wavenumbers (panel (d)). In terms of pattern formation, low wavenumbers cor-244

respond to a small number of large cell aggregations, while high wavenumbers245

correspond to a large number of small cell aggregations (i.e., a sort of metastasis246

phenomena).247

To gain a better understanding of the previous stability results, in Figure 7248

we show the neutral stability curves σ(k) = 0 for different (discrete) wavenum-249

bers kj (i.e., j ∈ [1, 16] in panel (a); j ∈ [1, 80] in panel (b)). Panel (a) confirms250

that, for the steady states u∗T = 0, the neutral stability curves do not depend on251

qa or qr, and the first three wavenumbers (kj , j = 1, 2, 3) are always unstable252

(for the parameter values in Table 2). Panel (b) shows that, for the steady253

states u∗T > 0, when we keep qa fixed and vary qr, then small qr is associated254
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with instability of low wavenumbers (i.e., kj < 10) while large qr is associated255

with instability of high wavenumbers (i.e., kj > 30). When we fix qr and vary256

qa, then instability of low wavenumbers appears only for large qa. Note the for257

qa > 50 one could also observe instability of high wavenumbers (i.e., kj > 30;258

corresponding to the case in Figure 6(e)) - not shown here.259

(a)

(b)

fixedfixed
qr=20qa=20 σ(κ)>0

qr

qr

u*  =0
Τ

σ(κ)<0 σ(κ)<0

σ(κ)=0

qa

u*  >0T σ(κ)=0

σ
(κ

)>
0

qa

σ(κ)<0 σ(κ)<0

σ
(κ

)>
0

k k

k1 k80

σ(κ)>0σ(κ)>0

k80

1616

Figure 7: Neutral stability curves (σ(k) = 0) for (a) tumour-free state u∗T = 0, (b) tumour-

present state u∗T (with u+,∗T = u−,∗T ). Left panels show the neutral stability curves in the
(qr, k) space, while right panels show the neutral stability curves in the (qa, k) space. The
points on the x-axis represent the discrete wavenumbers kj = 2πj/L. For the left panel in (b)
we fix qa = 20 and we vary qr. For the right panel in (b) we fix qr = 20 and we vary qr.

Since for the parameters values in Table 2 the tumour-free and tumour-260

present steady-states are all unstable, the final transient pattern will likely be261

influenced by the most unstable wavenumbers in all states. In this case we262

expect that the patterns will be influenced by various mode-mode interactions.263

In the following, we confirm our results on the role of qr and qr on the264

dispersion relation σ(k) using a second method, which leads to the creation of265

bifurcation diagrams showing neutral stability curves for different wavenumbers.266
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3.3.1. Neutral stability curves267

The following derivation is similar to the one found in [33] and we omit most
of the calculations. We consider the action of the group O(2) described in (6),
on functions in the space

X = {u = (u+, u−, uβ) ∈W 1,p([0, L],R3) | u(0) = u(L)}.

Then,
Xn = {aeiknx + c.c | a = (a+, a−, aβ) ∈ C3}

is a O(2)-invariant subspace of X and it is straightforward to verify that X is
a direct sum of the Xn spaces. Let

f1 = (1, 1, 0)T , f2 = (1,−1, 0)T , f3 = (0, 0, 1).

Then, each subspace

Xj
n = {(vjeiknx + vje

−ikns)fj | vj ∈ C}

is O(2) irreducible and they are O(2) isomorphic. It is straightforward to verify
that Xn = X1

n ⊕ X2
n ⊕ X3

n. Therefore, the O(2) invariant subspaces form
an isotypic decomposition of X and in particular, L(Xn) ⊂ Xn. Thus, the
linearization L block decomposes into 3 × 3 matrices Ln and we write these
matrices in the basis given by the three vectors vje

iknxfj , j = 1, 2, 3 and vj ∈ C.
We obtain Ln by applying Ld and L` on those vectors. We set

M1 = A1 − δTu∗β(K∗T − u∗T )− λ∗ and M2 = A2 + λ∗.

Note that we write

2iK̃r(kn) = K̂+
r (kn)− K̂−r (kn) and 2iK̃a(kn) = (K̂+

a (kn)− K̂−a (kn)).

because the right hand sides of the above equalities are purely imaginary and
so K̃r,a are real. Finally, we write

P+ = δTu
+,∗
T (K∗T − u∗T ) and P− = δTu

−,∗
T (K∗T − u∗T ).

Note that at a O(2)-symmetric equilibrium, A1 = A2 and P := P+ = P−. Let
φn(x) = (v1, v2, v3)eiknx. A straightforward computation and simplifications
lead to Lnφn(x) = −(M1 +M2) iγkn −P

4iu∗Tλ2f
′(0)(qrK̃r − qab1K̃a) + iγkn −(M1 −M2) −2iu∗Tλ2f

′(0)qab3K̃a

−2pβ 0 δβ

φn(x).

We determine the formula for the neutral stability curves corresponding to zero
eigenvalues by computing the determinant of Ln. We obtain det(Ln) =

δβ((M2
1 −M2

2 ) + γ2k2n + 4γknu
∗
Tλ2f

′(0)(qrK̃r(kn)− qab1K̃a(kn)))

−2pβ(2γknu
∗
Tλ2f

′(0)qab3K̃a(kn)− P (M1 −M2))
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which is a linear function of qr and qa. We solve det(Ln) = 0 as

qr =
−δβ((M2

1 −M2
2 ) + γ2k2n)− 2pβP (M1 −M2)

4γknu∗Tλ2f
′(0)K̃r(kn)

+
(δβb1 + 4pβb3)K̃a(kn)

K̃r(kn)
qa.

(22)
We explore equation (22) for parameter values in Table 2. The numerator of268

the constant term is negative for n ≥ 2 and K̃r(kn) > 0 for n = 1, . . . , 50269

and negative for n = 51, . . . , 100. The slope of the line depends on the ratio270

K̃a(kn)/K̃r(kn) and a graph is shown in Figure 8(a). A subset of the neutral271

stability lines are graphed in Figure 8(b).

50

(b)(a)

30 40

30

20

10

0
0 10 20 qa

qr

Figure 8: (a) Ratio K̃a(kn)/K̃r(kn) as a function of n. (b) Examples of neutral stability lines
determining the boundary of the asymptotic stability region of the nonzero O(2) equilibrium.
Dashed lines show the neutral stability lines corresponding to high wavenumbers (e.g., here
we graph k69 − k73), while continuous lines show the neutral stability lines corresponding to
low wavenumbers (e.g., here we graph k4 − k7).

272

For the parameter values satisfying Theorem 3.3, the region in Figure 8(b)273

that contains (0, 0) and is bounded by the neutral stability lines, encloses the274

asymptotic stability region for the O(2) symmetric equilibrium. Thus, we see275

that the neutral stability lines with positive slope bounding the region of asymp-276

totic stability have low wave numbers (k4, . . . , k7) while the neutral stability277

lines with negative slope bounding the region of asymptotic stability have high278

wave numbers (k69, . . . , k74).279

We conclude by mentioning that Hopf bifurcations do not occur for the280

parameter values chosen in this paper. This can be observed by computing281

det(Ln − σiI) = 0 which leads to a characteristic equation of the form iσ3 +282

c2σ
2 + ic1σ + c0 = 0 leading to two equations σ2 + c1 = 0 = c2σ

2 + c0 and283

therefore a line of purely imaginary eigenvalues exists given that c0 − c1c2 = 0.284

In our case, this equation leads to a line entirely in the third quadrant of the285

(qa, qr) plane. The details can be verified by the interested reader.286

In the following section, we investigate numerically the patterns displayed by287

model (1), when we perturb randomly (i) spatially homogeneous steady states288
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(u+,∗T , u−,∗T , u∗β), and (ii) an initial small aggregation of cells described by a step289

function.290

4. Numerical results291

For the numerical simulations, we discretise model (1) on a 1D dimensional292

domain of length L = 10 mm, and assume periodic boundary conditions given293

by equation (5). The numerical integration is based on a time splitting method,294

which calculates first the time propagation of the diffusion and advection parts,295

and then the time-propagation of the reaction part. Equations are first dis-296

cretised in space on a uniform mesh with space step ∆x = 10−2 mm, and the297

system is then discretised in time with a time step ∆t = 1
310−2 day (chosen298

to satisfy the Courant-Friedrichs-Lewy condition for the stability of the up-299

wind/downwind numerical schemes). The diffusion term is discretised using the300

Crank-Nicholson method (with periodic boundary conditions), while the advec-301

tive term is discretised using the upwind/downwind scheme (also with periodic302

boundary conditions). For the reaction term we use the 4th order Runge-Kutta303

method. The nonlocal attraction-repulsion terms are approximated using Simp-304

son’s method (with periodic boundary conditions that see the nonlocal terms305

being wrapped around the domain). The numerical codes were written in C.306

In the following two subsections we show the result of numerical simula-307

tions when we vary two parameters: the cell-cell adhesion factor qa, and the308

proliferation rate pT . In Section 4.1 we vary qa ∈ [20, 80], when the tumour309

proliferation rate is pT = 0.04 (as observed in B16 melanoma murine tumours,310

which have a doubling time between 14-24 hours, corresponding to tumour pro-311

liferation rates between 0.028-0.049). Since for qa ≤ qr = 10 we do not observe312

any spatio-temporal patterns (i.e., the solutions approach the stable spatially313

homogeneous steady states – see also Figures 7(b) and 8), we present only the314

results of the simulations obtained with qa � qr. To investigate (from a theoret-315

ical point of view) what happens if we increase the proliferation rate of tumour316

cells, in Section 4.2 we discuss the case pT = 0.4. All other parameter values317

are fixed, as described in Table 2.318

Finally, for the numerical simulations we use two types of initial conditions:319

• random perturbations of nonzero spatially homogeneous steady states
(u+,∗, u−,∗, u∗β), to describe the formation of tumour aggregations when
tumour cells are equally spread over the whole domain:

u±T (x) = u±,∗T + rand(0, 0.01), u±β (x) = u∗β + rand(0, 0.01). (23)

• step function, to describe an already formed small tumour:

u±T (x) = u∗, for x ∈
[ 3

10
,

4

10

]
, and u±T (x) = 0 elsewhere, (24a)

uβ(x) = u∗b , for x ∈
[ 3

10
,

4

10

]
, and u±T (x) = ε elsewhere, (24b)
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with u∗b � ε > 0 to describe the higher level of TGF-β molecules at the320

position of the tumour. Note that it is possible to have low levels of TGF-321

β also outside the tumour since these cytokines can be produced by other322

types of cells: normal epithelial cells, immune cells, etc. For pT = 0.4 we323

choose ε = 0.1, while for pT = 0.04 we choose ε = 0.01.324

4.1. Lower tumour proliferation rates325

To investigate the dynamics of weakly-aggressive tumour cell lines, we per-326

form numerical simulations with proliferation rate pT = 0.04. We vary the327

magnitude of the cell-cell attraction force for two types of initial conditions:328

random perturbations of the spatially homogeneous steady states given by equa-329

tions (9)-(11) (see Figure 9), and step-function initial conditions to describe an330

initial tumour aggregation of maximum size u∗ = 0.036 (see Figure 10).331

Figure 9 shows the dynamics of model (1) for small (panels (a)-(d)), medium332

(panels (a’)-(d’)) and large (panels (a”)-(d”)) attractive interactions between333

cells. For small and intermediate attraction, the transient dynamics of the334

model (i.e., dynamics for t ∈ (200, 650)) is characterised by the formation of335

new aggregations of cells at distant positions in space, followed by the move-336

ment of these aggregations. These new aggregations form due to continuous337

cell proliferation, combined with the appearance of new space between existing338

aggregations. In some cases, these aggregations collide with other aggregations339

moving in opposite directions (due to cell-cell attraction). The asymptotic dy-340

namics of the model is characterised by classical solutions: rotating waves (i.e.,341

moving aggregations of cells) and stationary pulses (i.e., stationary aggregations342

of cells). In fact, the rotating waves exist for small cell-cell attractive interac-343

tions, while the stationary pulses exist for large cell-cell attractive interactions.344

Note that the bias to the left of the rotating waves is likely a random choice of345

direction, due to the appearance of new cell aggregations at positions in space346

between already formed cell aggregations, and the nonlocal interactions between347

these cells.348

The transient phenomenon characterised by the formation of new cell aggre-349

gations (formed of newly-proliferating cells and cells that broke off from existent350

aggregations) can be seen more clearly in Figure 10, where we start the numer-351

ical simulations assuming an already-formed tumour. Again, for low cell-cell352

attractive interactions (qa = 20) these newly-formed cellular aggregations move353

around the domain (due to periodic boundary conditions), while for high at-354

tractive interactions (qa = 40, 80) the aggregations are stationary. We note here355

that the different initial conditions in Figures 9-10 do not seem to impact the356

asymptotic dynamics of model (1).357

Remark 4.1. We emphasise that the transient behaviour of arising and merg-358

ing cell aggregations is the result of cell growth, in the context of a dominating359

wavelength. It is likely that this behaviour is the results of unstable spatial het-360

erogeneous patterns (see the discussion in [34]). However, due to the nonlocal361

terms in model (1), an analytical investigation of the stability of these heteroge-362

neous states is very difficult, and beyond the scope of this paper. The asymptotic363
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Figure 9: Dynamics of model (1) for pT = 0.04 and for initial conditions given by equations
(23). Panels (a)-(d): model dynamics when qa = 20; Panels (a’)-(d’): model dynamics when
qa = 40; Panels (a”)-(d”): model dynamics when qa = 80. The rest of parameter values are
as in Table 2. Finally, panels (a)-(a”) show total tumour density, panels (b)-(b”) show TGF-β
concentration, panels (c)-(c”) show u+T , and panels (d)-(d”) show u−T .

behaviour of the system is described by classical patterns: stationary pulses and364

rotating waves, which are prevalent in differential equations with O(2) symme-365

try.366
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Figure 10: Dynamics of model (1) for pT = 0.04 and for initial conditions given by equations
(24). Panels (a)-(d): dynamics when qa = 20; Panels (a’)-(d’): dynamics when qa = 40;
Panels (a”)-(d”): dynamics when qa = 80. The rest of parameter values are as in Table 2.
Finally, panels (a)-(a”) show total tumour density, panels (b)-(b”) show TGF-β concentration,
panels (c)-(c”) show u+T , and panels (d)-(d”) show u−T .

4.2. High tumour proliferation rate367

In Figure 11 we investigate the dynamics of model (1) when we increase pT368

to pT = 0.4. We see that in this case, low cell-cell adhesive interactions lead to369

a spread of cells over the whole domain (see panels (a),(b) and (c),(d)). Higher370

cell-cell adhesion leads to the formation of moving aggregations (which persist371

even for very high cell-cell adhesion - e.g., qa = 120; not shown here). For initial372
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Figure 11: Dynamics of model (1) for pT = 0.4 and for initial conditions given by equations
(23) - panels (a)-(b”), and equations (24) - panels (c)-(d”). We show only the total tumour
density uT (panels (a)-(a”) and (c)-(c”)) and the concentration of TGF-β molecules (panels
(b)-(b”) and (d)-(d”)).

conditions that are random perturbations of the homogeneous steady states (see373

top panels (a’),(b’) and (a”),(b”)), the transient dynamics shows small groups374

of tumour cells that break off from existent moving aggregations, and choose375

to move either left or right (giving rise to a topological defect line that persists376

up to t ≈ 600). Then, because of the periodic boundary conditions, these new377

aggregations collide with other aggregations that move in the opposite direction.378

23



This type of transient dynamics is not observed for initial conditions described379

by step functions with u∗ = 0.39 and u∗b = 1.3 – panels (c)-(d”) (at least not380

for the parameter space investigated in this study). Again, we note that the381

different initial conditions in Figure 11 (top and lower panels) do not seem to382

impact the asymptotic dynamics of model (1).383

4.3. Sensitivity to TGF-β384

Since TGF-β plays an important role on tumour dynamics, next we perform385

a local sensitivity analysis to investigate the effect of small changes in δT , pβ ,386

and kβ (we ignore δβ since we assume that the degradation rate of this cytokine387

is more or less fixed). To this end, we vary these three parameters by ± 80%388

(see Table 1). Fourth column in Table 1 shows the range in the percentage389

change in tumour size, corresponding to changes in parameter values (for both390

homogeneous and step-like initial conditions). For simplicity, we focus only on391

the case pT = 0.04.392

Param. Baseline Param. range % Change in total tumour size uT
(baseline±80%) on day 140 (compared to baseline)

δT 0.001 (0.0002, 0.0018) Homog. IC: (−0.03%, 0.033%)
Step-like IC: (−0.0189%, 0.02%)

pβ 0.1 (0.02, 0.18) Homog. IC: (−0.5948%, 0.0146%)
Step-like IC: (−0.09%, 0.19%)

kβ 0.1 (0.02, 0.18) Homog. IC: (−0.149%, 0.0001%)
Step-like IC: (−0.0449%, 0.048%)

Table 1: Sensitivity of tumour cells to changes in TGF-β parameters. We investigate the

percentage change in total tumour density on day t = 140, UT (140) = (1/L)
∫ L
0 (u+T (x, 140) +

u−T (x, 140))dx, using the formula: [UnewT (140) − UbaselineT (140)]/[UbaselineT (140)] (for both
homogeneous and step-like initial conditions). Here we assume pT = 0.04, qa = 20, qr = 10,
and all other parameters as in Table 2.

Figure 12 shows the change in the total tumour cell density on day t = 140393

(UT (140) =
∫ T
0

(u+T (x, 140)+u−T (x, 140))dx), as the three parameters associated394

with TGF-β are varied by ±80% (for both homogeneous and step-like initial395

conditions). Note that an increase in parameters values leads to an increase in396

tumour size, while a decrease in parameter value leads to a decrease in tumour397

size (irrespective of the initial conditions). We also note the different magnitudes398

of changes in tumour growth (on day t = 140) for different initial conditions.399

Finally, we emphasise that the parameter that induces the largest variations in400

tumour size on day t = 140 is pβ – the production of TGF-β molecules by the401

tumour cells.402

Figure 13 shows the effect of parameter changes on the growth of tumour cells403

until day 140 (panels (a)-(c)), and on the spatial structure of the tumour on day404

140 (panels (a’)-(c’)), for homogeneous initial conditions. We observe that an405

increase in the parameter values leads not only to larger tumours on day 140 (as406

shown in Figure 12), but also to a delay in the formation of spatial aggregations407

24



k p
T β β

%
 t

u
m

o
u
r 

ch
an

g
e 

o
n
 d

ay
 t

=
1
4
0 (a) homogeneous I.C.

δ k p
βT β

(b) step function I.C.

−80% parameter

+80% parameter

−80% parameter

+80% parameter

%
 t

u
m

o
u
r 

ch
an

g
e 

o
n
 d

ay
 t

=
1
4
0

δ

Figure 12: Changes in total tumour size at time t = 140, as the three parameters associated
with TGF-β, δT , kβ , pβ , are changed by ±80%. (a) Initial conditions for simulations are
perturbations of homogeneous steady states; (b) Initial conditions for simulations are step-
like functions.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  2  4  6  8  10

0.0002 (-80%)
0.0018 (+80%)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10

0.02 (-80%)
0.18 (+80%)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10

0.02 (-80%)
0.18 (+80%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140

0.02 (-80%)
0.18 (+80%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140

0.02 (-80%)
0.18 (+80%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140

0.0002 (-80%)
0.0018 (+80%)

β
β

p  =
p  =β

β

δ  =
Τ
Τ

T
o
ta

l 
tu

m
o
u

r 
d
en

si
ty

 a
t 

x
=

5
T

o
ta

l 
tu

m
o
u

r 
d
en

si
ty

 a
t 

t=
1
4

0

T
o
ta

l 
tu

m
o
u

r 
d
en

si
ty

 a
t 

t=
1
4

0

T
o
ta

l 
tu

m
o
u

r 
d
en

si
ty

 a
t 

t=
1
4

0

(a’)

(a)

(b’) (c’)

(c)

space spacespace

days days

Τ

k  =
β
β

p  =
p  =β

β
δ  =

Τδ  =

k  =

k  =

Τ

Τ

days

δ  =

(b)

T
o
ta

l 
tu

m
o
u

r 
d
en

si
ty

 a
t 

x
=

5

T
o
ta

l 
tu

m
o
u

r 
d
en

si
ty

 a
t 

x
=

5

k  =

Τ

Τ

Τ

Τ

U   ~20.3

+80%

−80%
U    ~7.96

−80%

U    ~19.6

U    ~19.9

U    ~16.7
−80%

+80%

U   ~19.0
+80%

Figure 13: Tumour density (u+T +u−T ) as we vary three parameters associated with TGF-β (δT ,
kβ , pβ) by ±80% (see values in Table 1). Panels (a), (b), (c) show the time-growth of tumour
cells at spatial position x = 5. Panels (a’),(b’),(c’) show the spatial distribution of tumour cells
at time t = 140 days. Here we consider qa = 20, qr = 10, pT = 0.04 and all other parameters
are as in Tables 1 and 2. Total tumour density corresponding to the parameter values changed

by ±80%, as calculated using formula UT (140) = (1/L)
∫ L
0 (u+T (x, 140) + u−T (x, 140))dx, is as

follows: (a’) UT (140)−80% = 19.05, UT (140)+80% = 20.308; (b’) UT (140)−80% = 16.718,
UT (140)+80% = 19.65; (c’) UT (140)−80% = 7.96, UT (140)+80% = 19.94.

of cells. Since the formation of these cellular aggregations can be associated408

with a synchronous metastasis-like process (where cells form new aggregations409
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at distant positions in space), this result suggests an interesting behaviour in410

tumour dynamics: smaller tumours could lead to faster synchronous metastasis.411

While many clinical studies focused on the correlation between the size of the412

tumour and the probability for synchronous metastases [35, 36, 37, 37, 38, 39,413

40], these results are sometimes contradictory. For example, there are a few414

studies on renal tumours which could not find any correlations between the size415

of (relatively small) tumours and their metastatic potential [37]. However, many416

other studies supported such a correlation, with larger tumours having a higher417

probability for synchronous metastasis in renal or breast tumours [35, 36, 37, 39].418

It should be emphasised that all these clinical studies look at the size of419

the primary tumour following detection and treatment. In Figure 14(a)-(c) we420

consider step-like initial conditions, and show the spatial distribution of tumour421

cells on day t = 140, as we vary three parameters associated with TGF-β: δT ,422

kβ and pβ . We note that for δT and kβ there are no significant differences in423

the spatial distribution of tumour cells at this initial time (t=140 days). Only424

an increase in pβ (associated with an increased total tumour size) leads to a425

faster spatial spread of secondary tumour aggregations further away from the426

primary aggregation; see Figure 14(c). This behaviour could be associated with427

an increased metastatic potential, thus suggesting that larger tumours could428

spread faster. In Figure 14(a’)-(c’) we show the spatial distribution of tumour429

cells at a later time, t = 800 (with the inset showing a space-time plot for the430

case where parameters are increased by 80%). Again, there are no significant431

differences between the patterns obtained when we vary δT and kβ . However,432

increasing pβ leads to tumour invasion of larger territories.433

Remark 4.2. The results in this section were obtained for sr = 0.1 (see434

Table 2). This repulsion range required strong attractive cell-cell in-435

teractions for aggregation patterns to form. However, we investigated436

pattern formation also with smaller repulsive ranges: sr = 0.01 (not437

shown here). In this case, we obtained patterns similar to those in438

Figures 9, 10, but for much smaller attractive cell-cell interactions:439

qa = 15, qa = 20 and qa = 30. Hence, the size of the repulsion range440

(which can be related to the strength of the compressive stress) in-441

fluences the strength of cell-cell adhesion that leads to the formation442

and movement of small cancer cell aggregations. Note that experi-443

mental results have shown that increased cell-cell compressive stress444

(as a result of tumour growth) leads to increased motility of aggres-445

sive tumour cells and cancer cell invasion [41].446

5. Summary and Discussion447

In this study we derived a new 1D mathematical model for the dynamics448

of tumour cells in response to TGF-β molecules produced by themselves and449

by other cells in the tumour microenvironment. (A 2D version of this model is450

presented in Appendix B.) We then used this mathematical model to investigate451
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Figure 14: Tumour density (u+T + u−T ) as we vary three parameters associated with TGF-β
(δT , kβ , pβ) by ±80% (see values in Table 1). Initial conditions are step functions. Panels (a),
(b), (c) show the spatial distribution of tumour cells at time t = 140. We also show here the

total density of tumour cells, calculated using the formula: UT = (1/L)
∫ L
0 (u+T (x, 140) +

u−T (x, 140))dx. Panels (a’),(b’),(c’) show the spatial distribution of tumour cells at time
t = 800 days. Here we considered qa = 20, qr = 10, pT = 0.04 and all other parameters
as in Tables 1 and 2. The inset figures show space-time tumour densities corresponding to
+80% changes in parameter values.
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various hypotheses regarding the factors that might influence the evolution and452

structure of tumours in response to TGF-β cytokines.453

With the help of numerical simulations, we showed that this model can ex-454

plain the formation of aggregations of tumour cells (resembling tumour metas-455

tases) at positions in space further away from the main tumour aggregation456

(due to the TGF-β molecules that can break the adhesive bonds between the457

cancer cells, combined with cancer proliferation). While the asymptotic dy-458

namics of the model was described by classical solutions with O(2) symmetry,459

such as stationary pulses (i.e., stationary cell aggregations) and rotating waves460

(i.e., travelling cell aggregations), the transient dynamics was puzzling. The461

formation of new cell aggregations at distant position in space followed by their462

merging with other aggregations was likely the result of spatially heterogeneous463

solutions which were saddle points (see the discussion in [34] on unstable steady464

states with exponentially small eigenvalues, i.e., metastable states, and their465

role on the emergence and merging of patterns). We believe that the diffusion466

of TGF-β and the nonlocal interactions between cells do not allow the aggrega-467

tion patterns to be completely independent, leading to unstable heterogeneous468

patterns. However, given the nonlocal nature of model (1), investigating the469

stability of spatially heterogeneous solutions exhibited by this model is a diffi-470

cult task, which is beyond the scope of this article. Nevertheless, an analytical471

investigation into the stability of heterogeneous patterns (which will be the472

subject of a different study) could reveal the similarities between the nonlocal473

hyperbolic-parabolic model (1), and other local and nonlocal models in the lit-474

erature, which exhibit similar patterns. For example, similar splitting/merging475

aggregations have been observed in local models of parabolic type describing476

chemotactic behaviour of cells [42, 34], or in nonlocal parabolic models for col-477

lective movement in cells [43]. In contrast to the models in [42, 43], where split-478

ting/merging aggregations seem to be a persistent phenomenon, in our study it479

is a transient phenomenon.480

Some clinical studies associated larger tumour sizes (at detection time) with481

increased metastatic potential [35, 36, 37, 39]. Using this mathematical model,482

we showed that this behaviour might be the result of an increased production483

of TGF-β cytokine (i.e., increased pβ).484

Other clinical studies associated increased tumour proliferation with in-485

creased metastasis [44, 45]. In our theoretical study, we showed distinct metas-486

tasis-like patterns for low tumour proliferation rates. We hypothesise that these487

metastasis-like patterns are the result of the delicate balance between the tu-488

mour growth rate, the speed of tumour cells, and the long-range effect of TGF-β489

molecules on cell-cell adhesion. We believe that similar patterns could be ob-490

tained also for higher proliferation rates, but given the very large parameter491

space (even after model non-dimensionalisation - not shown here), we did not492

investigate this particular aspect. The goal of this study was not to investigate493

the exact parameter values for which metastasis behaviours can be obtained.494

Rather, we wanted to show that the nonlocal effects of TGF-β molecules on495

cell-cell adhesion can explain the movement of cells at distant positions in space,496

and the formation of new cell aggregations.497

28



Future research directions. In addition to a more detailed investigation of the498

short-time dynamics of model (1) that we mentioned before, there are a few more499

other research directions that should be investigated. From a biological point of500

view, it will be interesting to incorporate in model (1) the molecular mechanisms501

that control the TGF-β paradox, namely the switch form tumour-suppressing502

to tumour-promoting functions. From a mathematical point of view, it would503

be interesting to compare in terms of bifurcation and symmetry the dynamics504

of the 1D model (1) and the 2D model (25) described in Appendix B.505
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Appendix A508

Table 2 summarises the parameters used for the numerical simulations. For509

simplicity, we rescaled the density of tumour cells (u±T ) by their carrying capac-510

ity, and thus for the simulations we used KT = 1. This also led to a re-scaling511

by KT of qr,a, pβ and δT , parameters not known from the literature.512

In regard to the parameters estimated/available from the literature, we note513

that tumour cells can migrate in a streaming mode at speeds of 1−2µm/min [46].514

Here, we assume that γ = 1µm/min=0.06mm/hr. For the tumour proliferation515

rate, we focus on murine B16 melanoma cells, which have a doubling time516

between 14-24 hours, depending on the cell line [47]. Here we consider an average517

of 17 hours (corresponding to B16F10 cells), which translates into a proliferation518

rate of pT = 0.04/hr. For TGF-β parameters we note that while the active form519

of TGF-β has a very short half life (of 2-3 minutes), the latent form of TGF-520

β has a much longer half-life, of more than 100 minutes [52]. Moreover, the521

TGF-β half-life can be prolonged even more (to almost 159 hours) following522

fusion with longer-lived proteins such as antibodies [53]. Therefore, here we523

consider a half-life of about 6 hours, corresponding to δβ ≈ 0.11/hr. Since524

total serum TGF-β levels in control mice are varying between 8× 105pg/ml =525

0.8µg/ml [51] and 125ng/ml = 0.125µg/ml [54] (with active TGF-β levels even526

lower, around 102pg/ml = 10−4µg/ml), in this theoretical study we choose527

pe = 0.1/hr/(µg/ml). For simplicity, we also approximate pβ = 0.1/hr.528

In regard to the diffusion coefficient D, various studies reported different529

bio-molecular diffusion coefficients, depending on the substrate [48, 49]. For530

example, [49] reported that the diffusion coefficient of another cytokine, IL-531

2, can vary between 100 µm2/s=0.36 mm2/hr and 16 µm2/s=0.057 mm2/hr.532

However, since [50] showed that long-range diffusion is not a property of the533

TGF-β cytokines, throughout this study we assume a lower diffusion coefficient534

D ≈ 10−4mm2/hr.535

In regard to the random and directed turning rates we assume that λ1, λ2 ∈536

(0.1, 0.9) (since they can be interpreted as probabilities of turning per unit time;537

see [28]). Because we are interested in studying directed collective movement538

we also assume that λ1 < λ2. For simplicity, throughout this study we choose539

λ1 = 0.2 and λ2 = 0.8.540
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Param. Value Units Description
γ 0.06 mm

hr average speed of tumour cells [46]
λ1 0.2

(0.1-0.9)

1
hr approximation of the random turning rate for

tumour cells
λ2 0.8

(0.1-0.9)

1
hr approximation of the directed turning rate for

tumour cells
qa 0–102 µg

cell max. magnitude of attractive interactions be-
tween cells within the attraction range, in the
presence of TGF-β molecules

qr 101 ml
cell magnitude of repulsive interactions between

cells within repulsion range
sa 0.3 mm parameter that controls the spatial range of

attractive cell-cell interactions
sr 0.1

(0.01-0.1)
mm parameter that controls the spatial range of

repulsive cell-cell interactions
kβ 0.1

(0.02-0.2)

µg
ml half-concentration of TGF-β necessary to de-

crease expression of E-cadherin and reduce
cell-cell adhesion

m0 2 – threshold parameter that ensures that f ≈ 0
when y±r ≈ y±a

pT 10−2–
10−1

1
hr proliferation rate of tumour cells (we assume

a doubling time between 1-15 days) [47]
KT 1 – carrying capacity of tumour cells
K∗T KT /102 – tumour size threshold that causes TGF-β

to shift from tumour-suppressing to tumour-
promoting

δT 10−3

(10−4 −
2× 10−3)

µg
hr·cell rate of tumour inhibition/growth in the pres-

ence of TGF-β molecules

D 10−4 mm2

hr diffusion rate of TGF-β molecules [48, 49, 50]

pe 0.1 µg/ml
hr baseline rate at which TGF-β is produced by

epithelial and other cells [51]
pβ 0.1

(0.02-0.2)

1
hr rate at which TGF-β is produced by tumour

cells
δβ 0.11 1

hr decay rate of TGF-β molecules [52, 53]
L 10 mm domain length

Table 2: Description of model parameters and their values used during simulations. For the
nonlocal interactions, we use the translated Gaussian kernels shown in Fig. 3(b). We define
cells density as cell numbers per ml of blood (for mice, blood volume is about 1.5-2.5ml), and
the concentration of TGF-β as µg/ml.

In regard to cell sizes, the largest cells in the body (e.g., egg cells541

or muscle fiber cells) can reach up to 100 − 120µm in diameter [55].542

However, one of the most known cancer cell, namely the HeLa cell,543
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can spread on a microscope slide up to a diameter of ≈ 40/µm, and544

when in an aggregation these cells can press on each other to compact545

the diameter to ≈ 20µm [25, 26]. For this reason, we chose the spatial546

range for cell-cell repulsion to be sr ∈ (10, 100)µm = (0.01, 0.1)mm (in547

Figure 3 we show sr = 0.05mm). For the spatial range of cell-cell548

attraction, experimental studies have shown that the traction forces549

between cells during collective movement can extend across very large550

spatial distances, involving multiple cell rows [56]. In this study we551

assume that sa = 0.3mm (=300µm). Finally, we choose a domain of size552

L = 10mm (=104 µm). All other parameters listed in Table 2 are varied within553

the shown estimated ranges.554

We emphasise that this approach (of combining parameters taken from the555

literature, with parameters approximated based on published experimental re-556

sults, and parameters estimated within some ranges) is very common in the557

mathematical literature on cell biology and immunology, due to a lack of quan-558

titative results regarding the cell responses. In addition to the fact that very559

few labs measure and estimate kinetic cell parameters, there is also the diffi-560

culty of interpreting kinetic data; see the review in [57]. Moreover, the few561

rigorously estimated kinetic parameters in the mathematical literature depend562

on the estimation method used, as emphasised in [58]. A more detailed discus-563

sion on model validation and parameter estimation in mathematical biology can564

be found in [59].565

Based on these facts, we acknowledge that the majority of models in the mathe-566

matical cell biology and immunology literature, including this particular study,567

can have at this moment only a theoretical value. In particular, the model pre-568

sented here can only propose hypotheses regarding the possible outcomes of the569

interactions between the TGF-β and the tumour cells.570

Appendix B571

For completeness, we describe a 2D version of the 1D model (1). To this end,572

we define uT (x, t, φ) to be the density of tumour cells at position x = (x, y), time573

t and orientation φ, and uβ(x, t) to be the concentration of TGF-β molecules574

at position x = (x, y) and time t. The 2D model is575

∂uT (x, t, φ)

∂t
+ γeφ∇xuT (x, t, φ) =− λ[uT (x, t, φ)]uT (x, t, φ)

+

∫ π

−π
T (x, t, φ, φ′)uT (x, t, φ′)dφ′

+R[uT , uβ ], (25a)

∂uβ(x, t)

∂t
=D∆xuβ(x, t) + pe + pβ

∫ π

−π
uT (x, t, φ)dφ

− δβuβ(x, t). (25b)
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The velocity of cells moving in direction φ is γeφ = γ(cos(φ), sin(φ)). The576

reaction term R[uT , uβ ] is similar to the one in (1), but the carrying capacity is577

determined by all tumour cells moving in all possible directions φ:578

R[ut(x, t, φ), uβ(x, t)] =
1

2
pTuT

(
1−

∫ π
−π uT (x, t, φ)dφ

KT

)
−δTuTuβ

(
K̃T −

∫ π

−π
uT (x, t, φ)dφ

)
. (26)

The term λ[uT ] describes the turning of individuals at (x, t) out of direction φ,579

while the nonlocal term
∫ π
−π T (x, t, φ, φ′)dφ′ describes the turning into direction580

φ, from all possible directions φ′ ∈ [−π, π]. These two operators that define the581

turning behaviour depend on nonlocal attractive-repulsive interactions between582

cells:583

λ[uT (x, t, φ)] = qr
∫
R2

∫ π
−πK

d
r (x− s)Ko

r (s; x, φ)uT (s, t, θ)dθds

+qa
∫
R2

∫ π
−πK

d
a(x− s)Ko

a(s; x, φ) uT (s,t,θ)
kβ+uβ(s,t)

dθds, (27)

and584

T (x, t, φ, φ′) =

qr

∫
R2

∫ π

−π
Kd
r (x− s)Ko

r (s; x, φ′)Wr(φ
′ − φ, φ′ − ψ)uT (s, t, θ)dθds

+qa

∫
R2

∫ π

−π
Kd
a(x− s)Ko

a(s; x, φ′)Wa(φ′ − φ, φ′ − ψ)
uT (s, t, θ)

kβ + uβ
dθds (28)

The spatial kernels Kd
r,a and orientational kernels Ko

r,a can be defined as in [60]:585

Kd
j (x) =

1

Aj
e−(
√
x2+y2−dj)2/m2

j , j = r, a, (29)

Ko
j (s; x, t) =

1

2π

(
1± cos(φ− ψ)

)
, j = r, a, (“ + ”for j = r; “− ”for j = a),

=
1

2π

(
1± cos(φ)

sx√
s2x + s2y

± sin(φ)
sy√
s2x + s2y

)
(30)

with dr and da describing the repulsive and attractive spatial interaction ranges,
mr,a describing the width of these ranges, and Ar,a constants that ensure that
each kernel integrates to 1 [60]. The angle ψ that appears in (27)-(28) is the angle
formed by the direction of x− s with the positive x-axis (see Fig. 15). Finally,
function Wr,a describes the probability that cells change direction from φ′ to φ
upon interactions with other cells positioned at s (within the repulsive “r” and
attractive “a” spatial ranges), which are having direction θ. Wr,a must satisfy∫ π
−πWr,a(φ′−φ, φ′−ψ)dφ=1. An example of such function is given in [60], where
W (φ′−φ, φ′−ψ) = 1/2σ if |φ′−φ−v(φ′−ψ)| < σ and W (φ′−φ, φ′−ψ) = 0 if
σ < |φ′−φ− v(φ′−ψ)| ≤ π, with the turning function v(Θ) = kΘ, −1 ≤ k ≤ 1.
Note that, as in [60], the previous assumptions lead to
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/

θ
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s

x
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ψ

Figure 15: Cell re-orientation in 2D. The reference cell at x, moving in direction φ, will change
its direction towards/away the position s of neighbouring cells within the attraction/repulsion
ranges of interaction. We assume that these neighbouring cells at s have orientation θ ∈
(−π, π]. We denote by ψ the angle made by the vector x− s and the positive x-axis.

λ(x, φ) =

∫ π

−π
T (x, φ, φ′)dφ′,

and thus the turning rate from direction φ into any other direction is obtained586

by integrating the re-orientation term T (x, φ, φ′) over all possible directions φ′.587

However, model (25) cannot be reduced to the the 1D model (1), since the588

turning behaviour of uT cells is now linear, as opposed to the nonlinear turning589

rates (3) in the 1D model. If we would assume nonlinear turning also for the 2D590

model, namely λ[uT (x, t, φ)] = f [uT (x, t, φ)] with f [y] = 0.5+0.5 tanh(K∗y) and591

T (x, t, φ, φ′) = f [uT (x, t, φ), uT (x, t, φ′), uβ(x, t)], then we could not connect592

anymore the turning terms λ and T .593

We emphasise that the aim of this paper is not to investigate the dynamics594

of the 2D model (which, due to model differences, we believe it will be slightly595

different from the dynamics of the 1D model). This will be the subject of a596

future study, which will focus on a symmetry and bifurcation investigation of the597

patterns described by these 1D and 2D models (with linear turning behaviour,598

i.e., f(y) = y). Rather, the goal of this paper was to show that the effect599

of TGF-β on cell-cell adhesive interactions could explain the observed tumour600

metastasis patterns.601

Appendix C602

In the following we prove the stability result in Proposition 3.3. First, we
note that when u∗,+T = u∗,−T , the following terms that appear in the dispersion

relation (19) are equal: A1 = A2, Bβ1 = Bβ2 , B+
1 = B−2 and B−1 = B+

2 . More-
over, for qa = qr = 0, the coefficients A, B and C in the dispersion relation are
all real. Therefore, the roots of the cubic polynomial

σ2 +Aσ2 +Bσ + C = 0
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are all negative provided that the following Routh-Hurwitz stability conditions
hold:

A > 0, C > 0, B > 0, and AB > C.

In the following, we will show that each of these inequalities hold provided that603

the conditions in the statement of Proposition 3.3 are valid.604

“A > 0”. We use the equation for the steady state u∗T , namely pT (1−u∗T /KT ) =
δTu

∗
β(K̃T − u∗T ), to re-write the expression for A:

A =
[
(Dk2 + δβ) + 2

(
λ1 + λ2f(0)

)]
+ pT − δTu∗Tu∗β .

Since the first term is positive, we have A > 0 if the following condition holds:605

pT > δTu
∗
Tu
∗
β .606

“C > 0”. Since Dk2 + δβ ≥ δβ we have607

C ≥ δβ(B+
1 −B

−
1 )(B+

1 +B−1 )− 2pβB
β
1 (B−1 −B

+
1 )

= (B−1 −B
+
1 )
[
− δβ(B+

1 +B−1 )− 2pβB
β
1

]
.

If condition (21c) holds true then B−1 −B
+
1 = 2(λ1+λ2f(0))+pT (1−u∗T /KT ) >608

0. Therefore C > 0 reduces to showing that the second term is positive.609

−δβ(B+
1 +B−1 )− 2pβB

β
1 = u∗T

[
δβ(

pT
KT
− δTu∗β) + pβδT (K∗T − u∗T )

]
> 0

provided that condition (21d) holds true.610

“AB > C”. First, we note that if pT > δTu
∗
Tu
∗
β then B+

1 < 0 since

B+
1 = −

[pT
2
− δT

2
u∗Tu

∗
β

]
−
[
λ1 + λ2f(0)

]
< 0.

Since AB and C have a common term ((Dk2 + δβ) · (γ2k2 + (B+
1 )2 − (B−1 )2)),611

showing that AB > C reduces to showing that612 [
(Dk2 + δβ)2B+

1 − 2pβB
β
1

]
[Dk2 + δβ − 2B+

1 ] + 2B+
1

[
γ2k2 + (B+

1 )2 − (B−1 )2
]

< pβ2Bβ1 (B−1 −B
+
1 ).

Note that, assuming u∗T > KT > K∗T , we obtain Bβ1 > 0. Then the right-hand-613

side of the previous inequality is614

pβ2Bβ1 (B−1 −B
+
1 ) = 2pβB

β
1

[
2(λ1 + λ2f(0)) + δTu

∗
β(K∗T − u∗T )

]
= 2pβB

β
1

[
2(λ1 + λ2f(0)) + pT

(
1− u∗T

KT

)]
> 0
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provided that 2(λ1+λ2f(0))+pT
(
1−u∗T /KT

)
> 0. For the left-hand-side terms,615

since B+
1 < 0 we have Dk2 + δβ − 2B+

1 > 0 and (Dk2 + δβ)2B+
1 − 2pβB

β
1 < 0.616

Finally,617

2B+
1

[
γ2k2 + (B+

1 )2 − (B−1 )2
]

= 2B+
1

[
γ2k2 + (B+

1 −B
−
1 )(B+

1 +B−1 )
]

= 2B+
1 γ

2k2 − 2B+
1

[
2(λ1 + λ2f(0)) + pT (1− u∗T

KT
)
][

2A1 − δTu∗β(K∗T − u∗T )
]

= 2B+
1 γ

2k2 − 2B+
1

[
2(λ1 + λ2f(0)) + pT (1− u∗T

KT
)
][
− pT
KT

u∗T + δTu
∗
Tu
∗
β

]
< 0

provided that conditions (21a) and (21c) in the statement of Proposition 3.3
hold. In particular, we use the fact that pT > δTu

∗
Tu
∗
β is equivalent to

− pT
KT

u∗T + δTu
∗
Tu
∗
β < 0

Therefore AB > C.618

“B > 0”. Since A > 0, C > 0 and AB > C we have that B > 0.619

All conditions in the Routh-Hurwitz stability criterion are satisfied, and620

thus the real parts of all roots of the dispersion relation (19) are negative, which621

ensures the stability of the non-zero state with O(2) symmetry for the case622

qa = qr = 0.623
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