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To survive in its sand fly vector, the trypanosomatid proto-
zoan parasite Leishmania first attaches to the midgut to avoid
excretion, but eventually it must detach for transmission by the
next bite. In Leishmania major strain Friedlin, this is controlled
by modifications of the stage-specific adhesin lipophosphogly-
can (LPG). During differentiation to infective metacyclics,
D-arabinopyranose (D-Arap) caps the LPG side-chain galactose
residues, blocking interaction with the midgut lectin PpGalec,
thereby leading to parasite detachment and transmission. Pre-
viously, we characterized two closely related L. major genes
(FKP40 and AFKP80) encoding bifunctional proteins with
kinase/pyrophosphorylase activities required for salvage and
conversion of L-fucose and/or D-Arap into the nucleotide-sugar
substrates required by glycosyltransferases. Whereas only
AFKP80 yielded GDP-D-Arap from exogenous D-Arap, both
proteins were able to salvage L-fucose to GDP-fucose. We now
show that �afkp80� null mutants ablated D-Arap modifications
of LPG as predicted, whereas �fkp40� null mutants resembled
wild type (WT). Fucoconjugates had not been reported previ-
ously in L. major, but unexpectedly, we were unable to generate
fkp40�/afkp80� double mutants, unless one of the A/FKPs was
expressed ectopically. To test whether GDP-fucose itself was
essential for Leishmania viability, we employed “genetic
metabolite complementation.” First, the trypanosome de
novo pathway enzymes GDP-mannose dehydratase (GMD)
and GDP-fucose synthetase (GMER) were expressed ectopi-
cally; from these cells, the �fkp40�/�afkp80� double mutant
was now readily obtained. As expected, the �fkp40�/
�afkp80�/�TbGMD-GMER line lacked the capacity to gen-
erate GDP-Arap, while synthesizing abundant GDP-fucose.

These results establish a requirement for GDP-fucose for
L. major viability and predict the existence of an essential
fucoconjugate(s).

Leishmania undergoes dramatic changes during its infec-
tious cycle, alternating between a flagellated extracellular pro-
mastigote in the midgut of phlebotomine sand flies and an
intracellular amastigote residing within macrophages of the
mammalian host (1). Upon ingestion of a blood meal by the
sand fly vector, Leishmania parasites first need to attach to
the midgut to avoid excretion and undergo a period of rep-
lication and development, after which these procyclic pro-
mastigotes differentiate to unbound infective metacyclic
promastigotes, adapted for transmission to mammals (2).
Lipophosphoglycan (LPG),3 the most abundant glycoconju-
gate on the surface of promastigotes, has been implicated as an
adhesion molecule required for midgut attachment in several
Leishmania species (3).

LPG shows well-defined structural polymorphisms among
different Leishmania species, with a conserved heptasaccharide
core joined to a 1-O-alkyl-2-lysophosphatidylinositol anchor.
Attached to this glycan core, a long polymer of 15–30 disaccha-
ride phosphate repeating units ([6Gal(�1,4)Man(�1)-PO4],
also termed phosphoglycan or PG repeats) extends linearly, ter-
minating in a neutral capping oligosaccharide. Importantly, the
structure of LPG is developmentally regulated by varying the
capping oligosaccharide, the number of PG repeating units, and
side chain modifications to the PG repeats in a way character-
istic of each Leishmania species and critical for interactions
with sand fly vector and survival following transmission into
the mammalian host (3). One extensively studied pairing
involves the interactions of Leishmania major strain Friedlin
V1 (LmFV1) with its natural host Phlebotomus papatasi (4, 5).
Procyclic promastigotes express LPG with PG repeats modified
by �1, 3-Gal side chain residues mediating binding to the
midgut lectin PpGalec (6), as demonstrated by biochemical and
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genetic studies of LPG and side-chain galactosylation-deficient
mutants (7). Upon differentiation to infective metacyclics,
LmFV1 synthesizes an LPG in which the side-chain Gal resi-
dues are capped with �1,2-D-arapyranose (D-Arap), which is
not recognized by midgut lectin and thus permits parasite dis-
engagement in preparation for transmission (8 –10).

Arabinose exists naturally in both pyranose and furanose
conformations and D- and L-configurations. The most abun-
dant form of arabinose is L-arabinose, which is present in the
arabinogalactans of plants. D-arabinofuranose (D-Araf) is found
mainly in the arabinomannans, arabinogalactans, lipoarabino-
mannans, and mycolylarabinogalactan-peptidogalactans of
mycobacterial cell walls. However, D-Arap is a rare sugar,
occurring in several cell surface glycoconjugate structures from
certain trypanosomatid parasites: L. major and Leishmania
donovani (11, 12), Crithidia fasciculata (13), and Endotrypa-
num spp. (14, 15). In trypanosomatids, D-Arap is synthesized de
novo by an as yet uncharacterized pathway or taken up from the
media and ultimately is converted to the active form GDP-Arap
(16). GDP-Arap is then transported into the parasite’s Golgi
apparatus through the activity of nucleotide sugar transporter
LPG2 (17, 18), where it then serves as the donor for arabinosy-
lation of side-chain-galactosylated LPG by the arabinosyltrans-
ferases encoded by SCA1/2 (19, 20). Our knowledge of this
pathway is summarized in Fig. 1A.

Recently, we identified two closely related L. major genes
(LmjF16.0440 and LmjF16.0480) showing similarity to a
bifunctional kinase-phosphorylase mediating the salvage of
fucose to GDP-fucose in Bacteroides (21–23). Because D-Arap
is structurally similar to L-fucose (Fig. 1C), we asked whether
the Leishmania enzymes could synthesize GDP-Arap. Studies
of the two enzymes expressed from Escherichia coli showed
that only LmjF16.0480 was able to convert D-Ara through both
steps to GDP-Arap. LmjF16.0440 showed strong D-Arap kinase
activity but only trace pyrophosphorylase activity. This was

attributable to a 3-amino acid difference in the N-terminal
pyrophosphorylase enzymatic domain, because the two pro-
teins are otherwise identical (22, 23).4 In contrast, when assayed
with L-fucose, both Leishmania proteins yielded GDP-fucose,
although the Vmax for the phosphorylase activity with fucose
1-phosphate of LmjF16.0480 was about 10-fold greater than for
LmjF16.0440 (22). Based on their enzymatic activities and their
ultimate metabolic role in providing activated GDP-sugar sub-
strates, LmjF16.0480 was named AFKP80 (arabino/fucokinase/
pyrophosphorylase), whereas LmjF16.0440 was termed FKP40
(fucokinase/pyrophosphorylase) (22, 23).4 When referred to
collectively, the term A/FKP can be used.

Although the nature and roles of D-Arap-bearing glycocon-
jugates are well-known in L. major, fucose has never been
directly identified for any glycoconjugate isolated from this spe-
cies. However, there are scattered reports of fucosylation in
other Leishmania species. The fucosylation of four proteins was
inferred from mass spectrometry and proteomics in L. don-
ovani (24), and this species synthesizes several complex man-
nose-fucose-bearing antigens (25). When expressed heter-
ologously in L. tarentolae, human erythropoietin was found
to bear a fucosylated biantennary N-glycan (26). The poten-
tial for fucosylation in L. major became apparent with the
discovery that this species showed significant levels of GDP-
fucose (27). Because L. major lacks the genes encoding the de
novo biosynthetic pathway from GDP-mannose to GDP-fu-
cose (GDP-mannose 4,6-dehydratase (GMD) and GDP-fu-
cose synthetase, also known as GDP-4-dehydro-6-deoxy-D-
mannose epimerase/reductase (GMER) (28)), GDP-fucose
presumably arises via salvage of Fuc through A/FKPs. Fucose
may be acquired following digestion of fucosylated mole-
cules abundant in the host or from medium serum supple-

4 N. M. Novozhilova, T. Notton, H. Guo, S. J. Turco, and S. M. Beverley, manu-
script in preparation.

Figure 1. D-Arap and L-fucose pathways in Leishmania and trypanosomes. A, L. major. Known metabolic steps (referenced in this paper or established by
this work) are depicted with solid arrows. D-Arap is known to be synthesized de novo, but the steps have not been determined as yet; both D-Arap and L-fucose
can be taken up, but the specific carrier(s) has not been established. The presence of fucosyltransferase acting in various cellular compartments is shown in this
work, but the specific enzymes and product conjugates remain to be determined. The salvage pathway to GDP-fucose is absent in T. brucei but present in
T. cruzi and humans. B, the two enzymes comprising the de novo pathway for synthesis of GDP-fucose from GDP-mannose. This pathway is absent in Leishmania
but present in T. brucei as well as T. cruzi and humans. C, the structures of D-arapyranose and L-fucose. The difference between them is circled.
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ments. Trypanosoma brucei lacks A/FKPs and an active sal-
vage pathway, and GDP-fuc synthesis by the de novo pathway
is essential (29).

To dissect the potentially overlapping roles of AFKP80 and
FKP40 in vivo and the relative contributions of D-Arap and
fucose to Leishmania biology, we focused on the role of A/FKPs
through the generation of null mutants. Surprisingly, whereas
we could generate �fkp40� and �afkp80� single mutants, we
were able to generate �fkp40�/�afkp80� double mutant only
in the presence of ectopically expressed AFKP80. Importantly,
rescue was also obtained following expression of the GDP-fu-
cose de novo pathway genes GMD and GMER, thereby estab-
lishing that GDP-fucose is required for the survival of L. major.

Results

Generation of �fkp40� or �afkp80� null mutants

We created null mutants of the A/FKP genes individually by
homologous gene replacement of each ORF. Because the Leish-
mania genome is predominantly diploid, albeit with occasional
aneuploidy (30 –33), typically two rounds of gene targeting are
required to generate null mutants. Analysis of the L. major
genome (34) revealed that AFKP80 and FKP40 are located on
L. major chromosome 16, separated by about 12 kb of DNA
encoding at least three unrelated genes: LmjF16.0470 (hypo-
thetical protein), LmjF16.0460 (60S ribosomal protein L21),
and LmjF16.0450 (hypothetical protein; Fig. 2A; labeled 70, 60,
and 50). This interspersed arrangement posed additional chal-
lenges for gene targeting, further complicated by the sequence
similarity between the two A/FKP genes (99.9% identity),
extending outside of their coding regions 540 nt on the 5� side
and 110 nt on the 3� side of the two A/FKP ORFs (Fig. 2A).
Reasoning that, as in other organisms, the specificity of homo-
logous recombination is directed by the sequence of the invad-

ing linear DNA termini, we used targeting sequences that
extended beyond the flanking homology into unique regions
(Fig. 2A).

For AFKP80, we designed constructs that precisely replaced
the AFKP80 ORF with ORFs conferring hygromycin (HYG) or
puromycin (PAC) resistance, flanked by �1 kb of 5� and 3�
AFKP80 sequence (Fig. 2A and supplemental Fig. S1). Succes-
sive transfections yielded numerous clonal lines at typical fre-
quencies for Leishmania (�10 clones/�g of DNA). Loss of the
AFKP80 ORF with retention of FKP40 in the presumptive
�afkp80� mutants was demonstrated by PCR using a common
A/FKP ORF primer in combination with flanking primers spe-
cific for the right or left flanking regions of the AFK80 or FKP40
ORFs (Fig. 2A). Whereas control WT parasites showed both the
expected AFKP80 and FKP40 amplicons (Fig. 2 (B and C), lanes
labeled WT), the �afkp80� mutant showed loss of the AFKP80
but not FKP40 product (Fig. 2 (B and C), lanes labeled �afkp�).
The planned replacement of AFKP80 was also confirmed by
PCR using primer pairs with one located outside of the target-
ing fragment to either the 5� or 3� side, partnered with HYG- or
PAC-specific primers (supplemental Fig. S1).

Similar constructs were made replacing the FKP40 ORF with
markers conferring blasticidin (BSD) or nourseothricin (SAT)
resistance. Loss of the FKP40 ORF with retention of the
AFKP80 ORF in the presumptive �fkp40� mutants was dem-
onstrated by PCR showing loss of the FKP40 but not AFKP80
product (Fig. 2 (B and C), lanes labeled �fkp�). Furthermore,
generation of the planned replacement of FKP40 was estab-
lished by PCR using primer pairs, with one located outside of
the targeting fragment to either the 5� or 3� side, partnered with
BSD- or SAT-specific primers (supplemental Fig. S1).

As an additional control, we confirmed that the three ORFs
separating AFKP80 and FKP40 were intact. PCRs covering all of

Figure 2. Generation of L. major �afkp80� and �fkp40� null mutants singly. A, map of the A/FKP locus. The ORFs for AFKP80 (LmjF16.0480) and FKP40
(LmjF16.0440) are shown in red and blue, respectively. The ORFs for the three intervening genes LmjF16.0470 (hypothetical protein), LmjF16.0460 (60S ribosomal
protein L21), and LmjF16.0450 (hypothetical protein) are shown in gray (labeled 70, 60, and 50). Narrow bars flanking A/FKP ORFs depict conserved flanking
regions shared by the two genes (gray, 5�; white, 3�) or the boundaries of the targeting fragments used for gene replacement (black). The locations of PCR
primers and predicted fragments described in B–D are shown above or below the central map. For clarity, the labels for AFKP80 or FKP40-specific products have
been colored red or blue, respectively; similarly, l or r designate PCR products probing the left (5�) or right (3�) flanking regions, respectively. Primer sequences
can be found in supplemental Table S1. The analysis of the marker replacement alleles is shown in supplemental Fig. S1. B, PCR analysis of left (5�) flanking
regions of FKP40 and AFKP80 in WT, �fkp40�, and �afkp80�. These PCRs establish the presence or loss of either or both of the A/FKP genes. Primer e (SMB2453)
is common for both A/FKP genes, primer d (SMB 2830) is specific for the AFKP80, and primer f (SMB2783) is specific for FKP40. C, PCR analysis of right (3�) flanking
regions of FKP40 and AFKP80 in WT, �fkp40�, and �afkp80�. These PCRs establish the presence or loss of A/FKP genes as expected. Primer a (SMB2451) is
common for A/FKP, primer b (SMB2793) is specific for AFKP80, and primer c (SMB2784) is specific for FKP40. D, PCR analysis of intervening genes in WT, �fkp40�,
and �afkp80�. These PCRs establish that the intervening genes are maintained intact as expected. Primers 2 � 3 (SMB3522, 3) amplify regions including the
LmF16.0450 ORF, primers 4 � 5 (SMB3524, 5) amplify the region including LmjF16.0460 ORF, and primers 6 � 7 (SMB3526, 7) amplify the region encompassing
the LmjF16.0470 ORF.
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the three ORFs and their flanking regions were performed; for
both mutants, the PCR products of the proper size were
obtained (Fig. 2D, lanes labeled I, II, and III).

The �afkp80� and �fkp40� mutants showed no obvious
morphological change and grew at similar rates and to similar
stationary phase cell density as WT in the culture (�5 � 107

cells/ml; data not shown). To further control the nonspecific
effects arising from the disruption of FKP40 and AFKP80, we
restored the expression of FKP40 and AFKP80 in each mutant,
respectively. These complemented lines are referred to subse-
quently as �afkp80�/�AFKP80 and �fkp40�/�FKP40.

Enzymatic activities of afkp80 and fkp40� mutants

We prepared cell extracts and evaluated their ability to sup-
port the synthesis of GDP-fucose or GDP-Arap from radiola-
beled L-fucose or D-Arap in vitro. In WT parasite extracts, com-
parable activity was seen with either L-fucose or D-Arap (Fig. 3,
black bars). Thus, Leishmania parasites express a fucose sal-
vage pathway with activity comparable with that of D-Arap.

GDP-Arap synthesis was unaffected in extracts from the
�fkp40� mutant, as expected because the recombinant FKP40
enzyme is unable to synthesize GDP-Arap. Consistent with the
ability of recombinant AFKP80 to synthesize GDP-Arap in
vitro, ablation of this enzyme in the �afkp80� mutant reduced
GDP-Arap synthesis to trace levels (�1% of WT; Fig. 3). We
suspect that this reflects a residual ability of FKP40 to synthe-
size GDP-Arap that was not measurable in studies of the
recombinant enzyme.

GDP-fucose synthesis was not significantly affected in
extracts from the �fkp40� mutant but was reduced to 15% of
WT levels in the �afkp80� (Fig. 3, gray versus white bars).
Importantly, these data provide evidence that both enzymes
mediate GDP-fucose salvage, with the contribution of AFKP80
(present in �fkp40�) being greater than that of FKP40 (present
in �afkp80�). Quantitatively, these data are consistent with the
kinetic properties of the recombinant enzymes, which were
similar other than for the pyrophosphorylase reaction leading
to GTP-fucose synthesis from fucose 1-phosphate, where the
Vmax was about 10 times greater for AFKP80 than FKP40.

Although the close similarity of the two proteins precluded
determination of their relative expression, assuming the pro-
teins are expressed at similar levels, the differences in Vmax
would predict 91% versus 9% activity in the �fkp40� versus
�afkp80� mutants relative to WT, in reasonable agreement
with our data (Fig. 3).

Collectively, our findings establish that in vivo, AFKP80
encodes the dominant activity, contributing as expected all of
the GDP-Arap synthetic activity and the majority of total cellu-
lar GDP-fucose activity.

Surface arabinosylation is greatly reduced in �afkp80� but
not in �fkp40� single mutants

We examined the functional consequences of the single
A/FKP ablations by assessing the reactivity of the mutants with
monoclonal antibody 3F12, which recognizes arabinosylated
LPG, specifically the Arap(�1,2)Gal(�1,3)[6Gal(�1,4)Man(�1)-
PO4] phosphoglycan repeating units (35, 36). Parasites were
examined in both logarithmic and stationary phase, a time
when metacyclogenesis accompanied by up-regulation of LPG
arabinosylation occurs (19). As expected, all log phase parasites
showed little reactivity with 3F12 (data not shown). In station-
ary phase, WT and �fkp40� mutant parasites showed strong
reactivity with 3F12, whereas �afkp80� parasites showed little
reactivity (Fig. 4A). Importantly, 3F12 reactivity was restored
following introduction of AFKP80 expression in the �afkp80�/
�AFKP80 “add-back” control (Fig. 4A).

These findings were supported by quantitative flow cytom-
etry, again establishing similarly strong 3F12 reactivity in sta-
tionary phase WT, �fkp40�, and �afkp80�/�AFKP80 lines,
but with a significant decrease in 3F12 binding to �afkp80�

(Fig. 4B). Importantly, these results are exactly those predicted
from the enzymatic assays. Although not evident by immuno-
fluorescence, flow cytometry clearly showed a small increase in
3F12 staining (5– 6 FU versus 2 FU), in keeping with the residual
AKP activity in the �afkp80� mutant (�1%; Fig. 3). Thus, in
vivo AFKP80 is dominant, contributing the majority of total
cellular GDP-fucose and GDP-Arap synthetic activity.

LPG arabinosylation is greatly reduced in �afkp80 but not in
�fkp40

LPG was purified, and the structure of the PG repeating units
was assessed by glyco-FACE (fluorophore-assisted carbohy-
drate electrophoresis). All lines showed similar patterns in
log phase, expressing primarily Gal- or Gal-Gal-modified PG
repeat units ([Gal-Man-P]�), as expected (Gal-Gal-Man-P or
Gal-Gal-Gal-Man-P; Fig. 4C, lanes labeled L). In stationary
phase, both WT and �fkp40� showed a decrease in the synthe-
sis of the Gal-terminated PG repeats and the appearance of
Arap capped PG repeats (Arap-Gal-Gal-Man-P or Ara-Gal-
Gal-Gal-Man-P; Fig. 4C, lanes labeled with S). In contrast,
Arap-capped PG repeat units were barely detectable in station-
ary phase �afkp80� parasites (Fig. 4C). Western blot analysis of
log and stationary WT and �afkp80� parasites with monoclo-
nal antibody WIC79.3, which preferentially detects the PG
repeat units with side chains terminating in Gal (36, 37),
showed that the sizes of the LPG were unaltered, with a slightly
larger size in stationary phase, consistent with the known

Figure 3. GDP-fucose and GDP-Arap synthesis in cytosolic extracts from
WT and A/FKP mutant Leishmania. Cytosolic extracts from WT, �fkp40�,
and �afkp80� were incubated with [3H]fucose (left series) or [3H]D-Arap (right
series) and the production of radiolabeled GDP-fucose or GDP-Arap was
determined as described under “Experimental procedures.” Black bars, WT;
gray bars, �fkp40�; white bars, �afkp80�. The average and S.D. from three
independent experiments are shown, calculated using Microsoft Excel 2010.
For �afkp80�, the numbers in parenthesis were calculated relative to WT.
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increase in PG repeating units in this phase (supplemental Fig.
S2). These studies establish a dramatic loss of the Arap modifi-
cation of LPG in the �afkp80� but not the �fkp40� mutant.

Failure to generate a �fkp40�/�afkp80 double mutant by
“classic” sequential replacements

We reasoned that the properties of an A/FKP double mutant
could provide information about potential roles of the FKP
activities encoded by these genes. The �afkp80� mutant above
was the starting cell line to inactivate FKP40, using the
same constructs used successfully to create �fkp40�. The
FKP40::BSD replacement fragment was first transfected into
�afkp80�, yielding clonal lines without difficulty that were
typed as �afkp80�/�fkp40::BSD/FKP40, as expected. These
“3/4 A/FKP replacement” transfectants grew normally. One

line was then transfected with the targeting fragment
FKP40::SAT and plated on semisolid medium containing all
four marker-selective drugs. Whereas transfectants were
obtained without difficulty, PCR tests of over 50 transfectants
from three independent experiments showed that all contained
successful FKP40 replacements with the BSD- and SAT-select-
able markers as well as retaining a copy of FKP40 (supplemental
Fig. S3). A similar strategy attempting to inactivate AFKP80 in
the �fkp40� mutant yielded similar results (data not shown).

The finding of seemingly successful “double replacements”
accompanied by retention of the WT gene has been reported
previously in attempts to target other essential genes in Leish-
mania and shown to arise from generation of aneuploid or
tetraploid parasites (31, 38), although the strength of this
conclusion has been mitigated by the appreciation of wide-
spread aneuploidy within most laboratory strains of Leish-
mania (33). Measurements of DNA content by flow cy-
tometry after propidium iodide staining of the quadruply
drug-resistant “double transfectants” showed a pattern similar
to that of WT (data not shown), suggesting that these lines were
likely to be aneuploid.

Plasmid segregation tests establish the essentiality of A/FKPs

Recently, we introduced a plasmid segregational approach as
a more stringent, controlled test of gene essentiality (38). First,
we inserted AFKP80 into the pXNGPHLEO vector, which
expresses the GFP� reporter gene, and transfected this into
the �afkp80� mutant (�afkp80�/pXNGPHLEO-AFKP80).
The genotype was confirmed by PCR tests, and these lines
showed normal arabinosylation, as expected (not shown). Then
we performed successive transfections with the FKP40::BSD
and FKP40::SAT replacement constructs used successfully to
inactivate FKP40 above (Fig. 5A). In contrast to the “classic”
four replacement attempts without ectopically expressed
AFKP80, each transfectant showed successful deletion of the
chromosomal copy of FKP40 and AFKP80 (Fig. 5B). PCR tests
confirmed that the marker replacements occurred as planned
and that the lines maintained the three intervening genes (as
described in Fig. 2A and supplemental Fig. S1; data not shown).
Thus, in the presence of ectopically expressed AFKP80, all
chromosomal A/FKP genes could be successfully eliminated,
generating �afkp80�/�fkp40�/�pXNGPHLEO-AFKP80.

To perform plasmid segregation tests, parasites were grown
briefly (24 h) in the absence of phleomycin (selective for the
PHLEO marker of pXNG) (38). The parasites were then ana-
lyzed for GFP expression by flow cytometry, as a measure of
pXNG copy number. Two populations were revealed: a large
population of “bright” cells showing strong fluorescence bear-
ing high copy numbers of pXNG-AFKP80 (�200 FU; Fig. 5C)
and a smaller population of “dim” cells, exhibiting control/
background fluorescence levels (2–20 FU; Fig. 5C), presumably
lacking pXNG-AFKP80 completely or bearing only a few
copies.

Fluorescence-activated cell sorting was then used to recover
single cells into individual wells of a 96-well microtiter plate,
containing M199 medium without phleomycin. For the bright
cell population, 264 of 480 cells inoculated with single bright
parasites grew out (55%), representing the “cloning/plating”

Figure 4. Surface LPG arabinosylation is greatly reduced in �afkp80�

but is unaffected in �fkp40�. A, indirect immunofluorescence microscopy
of fixed promastigote in stationary phase with monoclonal antibody 3F12,
specific for D-arabinosylated PG repeating units. The complemented mutant
line �afkp80�/�AFKP80 is also shown. B, flow cytometry of 3F12 binding
(shaded); controls omitting 3F12 antibody are shown (open). 10,000 cells were
counted for each cell line. AU, arbitrary fluorescent units. C, FACE analysis of
L. major LPG repeats in log phase (L) and stationary phase (S). A red star
denotes repeats containing D-Arap. LPG side chain structures corresponding
to each major band are noted on the right (Arap (A), Gal (G), and Man (M)). Lane
1, glucose oligomer standards (G2–G7).
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efficiency of cells subjected to this protocol. In contrast, growth
was seen in only 2 of 1920 of the dim parasites tested similarly
(0.1%; Fig. 5D). The two survivors still retained pXNG-AFKP80,
as judged by their ability to grow out in the presence of phleo-
mycin and expression of GFP (data not shown), and were thus
likely to arise by imperfect sorting or other technical factors, as
seen previously (38). After correction for the plating/cloning
efficiency, we estimated that parasites lacking both A/FKP
genes were not obtained from �1056 cells tested, thereby
extending the stringency of this conclusion beyond that possi-
ble by the classic approach (�50 cells tested).

Rescue of a �afkp80�/�fkp40� double mutant by
introduction of a de novo GDP- fucose pathway

We hypothesized that inviability of the �afkp80�/�fkp40�

mutant could arise if GDP-fucose was unexpectedly essential in
Leishmania. One way to test this was by “genetic metabolic
complementation” (38), through introduction of an alternative
source of GDP-fucose. Because Leishmania normally lack the
de novo pathway (Fig. 1A), we chose to introduce that from
T. brucei, comprising three enzymatic activities encoded by two
proteins (GMD and GMER) that have proven amenable to
genetic manipulation (29).

First, we inserted the two genes required (TbGMD and TbG-
MER) (29) into the bicistronic expression vector pIR1PHLEO,
yielding pIR1PHLEO-TbGMD-GMER (see “Experimental
procedures”). This construct was introduced into the penul-
timate “3/4” replacement line described earlier, yielding

�afkp80�/�fkp40::BSD/FKP40/�TbGMD-TbGMER. In this
experiment, the pIR vectors were transfected without lineariza-
tion, which yields circular episomal transfectants; these overex-
press passenger molecules, but not to the same extent as when
inserted into the rRNA locus (39).

Finally, the remaining FKP40 allele was removed by transfec-
tion with the FKP::SAT targeting fragment (Fig. 6). In contrast
to the studies above with WT lines lacking a functional de novo
GDP-fucose pathway, now all transfectants (�afkp80�/
�afkp40�/�TbGMD-TbGMER) showed loss of all A/FKP
alleles (Fig. 6). PCR tests showed that these lines retained all
chromosomal markers as planned, as well as the three interven-
ing ORFs (similar to those shown in Fig. 2A, supplemental Fig.
S1, or Fig. 6C, or data not shown). Thus, expression of a func-
tional de novo GDP-fucose synthetic pathway is able to bypass
the absence of all A/FKP genes.

�afkp80�/�fkp40�/�TbGMD-TbGMER lacks GDP-Arap while
synthesizing abundant GDP-fucose

Sugar nucleotides were analyzed in WT and �afkp80�/
�fkp40�/�TbGMD-TbGMER double mutants grown in log-
arithmic and stationary phase cells, as described previously
(27). As expected, no GDP-Arap was detectable in the
A/FKP-null mutant, whereas WT levels were similar to those
reported previously (Table 1) (27). Second, GDP-fucose
expression rose tremendously in the episomal TbGMD/
GMER transfectant A/FKP null mutant, increasing 129- or

Figure 5. Plasmid segregational test of A/FKP essentiality. A, workflow for deletion of A/FKP genes in the presence of ectopic AFKP80. First, a
pXNG-AFKP80 episomal expression construct was transfected into the �afkp80� mutant, yielding �afkp80�/�pXNG-AFKP80. Following confirmatory
PCR tests, one clonal line was sequentially transfected with FKP40::BSD and FKP40::SAT targeting fragments, resulting in loss of FKP40. B, PCR confirma-
tion of loss of chromosomal FKP40 and AFKP80 using primers as described in Fig. 2 and the presence of episomal AFKP80 confirmed by PCR using primer
f (specific in pXNG vector; SMB 3176) paired with the AFKP80 primer e (SMB2453). C, plasmid segregational tests of A/FKP essentiality. �afkp80�/
�fkp40�/�pXNG-AFKP80 was grown for 24 h in the absence of phleomycin and analyzed by GFP flow cytometry. For subsequent quantitation and/or
sorting, weakly fluorescent (dim) and fluorescent (bright) parasites were defined as shown in the figure. D, single cells from both GFP dim and bright
populations gated (Fig. 5C) were sorted into 96-well plates containing M199 medium; the numbers sorted and their growth and properties are shown.
The two survivors from the “dim” and 12 of the 12 from the “bright” population sort were tested for retention of pXNGPHLE-AFKP80 by growth in
medium containing phleomycin.
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95-fold in logarithmic or stationary phase cells, respectively
(Table 1).

These data established that the de novo pathway had been suc-
cessfully transplanted into L. major. Importantly, the great
increase in GDP-fucose over that seen in WT was not accompa-
nied by a significant drop in the vital GDP-mannose precursor in
either growth phase (which, in fact, rose somewhat in stationary

phase; Table 1). This suggests that the parasites were able to auto-
regulate and compensate for the increased flux through the GDP-
mannose synthetic pathway toward GDP-fucose.

Little change was seen in the UDP-GlcNAc or UDP-hexose
levels in log phase, although a modest drop to 16 and 22% of WT
levels, respectively, was seen in stationary phase (Table 1). Nei-
ther change reached statistical significance (p 	 0.05) in the
studies performed. Curiously, perturbations of UDP-glucose
and/or galactose synthesis following genetic perturbations of
UDP-sugar pyrophosphorylase (USP) or UDP-Glc pyrophos-
phorylase (UGP) also led to changes in GDP-fucose levels (40).
This suggests the possibility that GDP-fucose and UDP-Gal
synthesis may be co-regulated for some reason, perhaps related
to the structure of hypothetical fucoconjugates, although this
has not been studied further.

Preliminary evidence for fucoconjugates in L. major

As yet no evidence of fucosylated molecules occurring natu-
rally in L. major has been presented, although when provided
with high levels in the medium, fucose can be substituted for
D-Arap on LPG (41). For preliminary evidence of fucoconju-
gates, we used cryo-electron microscopy and binding to bioti-
nylated Ulex europaeus agglutinin I (UEA-I) lectin, which rec-
ognizes terminal �1,2-fucosyl linkages (42) in WT and the
�afkp80�/�fkp40�/�TbGMD-TbGMER mutant synthesizing
elevated GDP-fucose. UEA-I-conjugated gold particles were
counted across several cellular compartments in both the
mutant and WT parasites (Fig. 7A,). Increased numbers of par-
ticles were seen only in the flagellar pocket and on the parasite
surface in the GDP-fucose-overexpressing TbGMD/GMER
transfectant (3– 6-fold; Fig. 7B). Comparable levels were
seen in the cytosol and other compartments, including the
mitochondrion, endoplasmic reticulum, and Golgi appara-
tus (Fig. 7B).

The cryo-EM data were confirmed by flow cytometry of non-
permeabilized cells allowed to bind the fucose-specific fluores-
ceinated UEA-I. WT Leishmania showed little reactivity
(Fig. 7C), whereas �afkp80�/�fkp40�/�TbGMD-TbGMER
showed a significant increase in fluoresceinated UEA-I fucose
lectin binding (�10-fold; Fig. 7C, gray shading). Importantly,
the addition of fucose totally inhibited the reactivity (Fig. 7C,
dotted line).

The Leishmania genome predicts at least five candidate ara-
binosyl/fucosyl transferases, including the two encoded by
SCA1/2 that reside within the secretory pathway, where they
normally mediate LPG arabinosylation or fucosylation if cells
are provided with high levels of fucose (19, 41). LPG was iso-
lated from WT and �afkp80�/�fkp40�/�TbGMD-TbGMER,
hydrolyzed, and analyzed by glyco-FACE (see “Experimental
procedures”). In these analyses, fucose was undetectable in WT
LPG, whereas it was present at about 5– 8% the level of man-
nose in the GDP-fucose overexpresser (which occurs mostly as
a single residue within the LPG phosphoglycan repeats) (Fig.
7D). This is consistent with the hypothesis that the elevated
UEA-I reactivity in the TbGMD/GMER expresser mainly arises
from fucosylated LPG. Regardless, our data establish that the
high levels of GDP-fucose in the TbGMD/GMER expressers
are accessible within the secretory pathway.

Figure 6. Genetic metabolite complementation permits the recovery of
�afkp80�/�fkp40� double null mutants. A, workflow for the deletion of
chromosomal FKP40 in the �afkp80� mutant, in the presence of the de novo
GDP-fucose pathway encoded by TbGMD and TbGMER. First, pIR1PHLEO-
TbGMD-GMER was transfected into the intermediate line �afkp80�/
�fkp40::BSD/FKP40 depicted in Fig. 6A (this line can be considered a “3/4”
A/FKP replacement). After confirmatory PCR tests, this line was then trans-
fected with the FKP40::SAT targeting fragment to replace the last copy of
FKP40, yielding the line termed �afkp80�/�fkp40�/�TbGMD-TbGMER. B,
scheme of primers used to confirm loss of all A/FKP alleles. Primer 1,
SMB2828; primer 2, SMB3544; primer 3, SMB2446; primer 4, SMB3752;
primer 5, SMB 2450; primer 6, SMB2829. C, PCR tests showing loss of all
four A/FKP alleles in �afkp80�/�fkp40�/�TbGMD-TbGMER and the pres-
ence of all four selective markers. Lines 1–5 represent five independent
lines with four replacements removing all A/FKP genes. Not shown are PCR
tests confirming the presence of the pIR1PHLEO-TbGMD-TbGMER, whose
presence is confirmed by GDP-fucose synthesis (Table 1).
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The AFKP80 and FKP40 proteins are located in the cytoplasm

In trypanosomatids, nucleotide sugars are synthesized in the
cytosol or glycosome (27, 43) and enter the secretory pathway
through the action of nucleotide-sugar transporters (44). GDP-
mannose, GDP-fucose, and GDP-Arap have been shown previ-
ously to be substrates for the nucleotide-sugar transporter
encoded by LPG2 (Fig. 1A) (17, 45, 46). We constructed N-ter-
minal GFP-tagged versions of both FKP40 and AFKP80 and

introduced them separately into WT parasites. Fluorescence
microscopy showed that the GFP-tagged FKP40 and AFKP80
were both distributed throughout the whole-cell WT (Fig. 8),
consistent with an absence of predicted cellular targeting sig-
nals within these two polypeptides. �afkp80�/�GFP-AFKP80
transfectants showed full 3F12 (Arap-LPG) reactivity, confirm-
ing that the GFP tag did not compromise enzymatic activity
(data not shown).

Table 1
Nucleotide-sugar levels in WT and the �afkp80�/�fkp40�/�TbGMD-TbGMER mutant L. major
The averages 
 S.D. from 2–3 experiments with 2–3 replicas each are shown. Asterisks mark results where the mutant significantly differs from WT; *, p 	 0.05; **, p 	 0.005
(two-sided t test with unequal variance). S.D. and statistical tests were calculated using Microsoft Excel 2010. ND, not detectable.

Nucleotide sugar

Log phase Stationary phase

WT
�afkp80�/ �fkp40�/
�TbGMD-TbGMER WT

�afkp80�/ �fkp40�/
�TbGMD-TbGMER

pmol/107 cells pmol/107 cells
UDP-hexose 12.9 
 8 12.6 
 8.6 1.05 
 0.42 0.26 
 0.16**
UDP-GlcNAc 23.8 
 9.2 17.5 
 13.9 1.94 
 1.30 0.31 
 0.24**
GDP-Man 1.07 
 0.49 0.57 
 0.72 0.20 
 0.05 0.20 
 0.21
GDP-Arap 0.17 
 0.11 ND 0.21 
 0.14 ND
GDP-Fuc 0.06 
 0.11 6.7 
 5.3* 0.35 
 0.14 11.4 
 5.5**

Figure 7. Evidence for fucosylation in WT and �fkp40�/�afkp80�/�TbGMD-GMER L. major. A, binding of biotinylated UEA-I lectin/streptavidin gold
particles detected by cryo-EM (see “Experimental procedures”). FP, flagellar pocket; k, kinetoplast; N, nucleus. B, quantitation of cellular location of UEA-I-bound
gold particles in WT and mutants. Three experiments were performed, counting 10 cells from each line; the averages and S.D. values are shown, calculated
using Microsoft Excel 2010. “Other” locations include the mitochondrion, Golgi apparatus, and endoplasmic reticulum. C, WT or �afkp80�/�fkp40�/�TbGMD-
TbGMER parasites were washed with PBS, incubated with fluoresceinated UEA-I lectin (UEAI; shaded) or PBS (open), or fluoresceinated UEA-I lectin plus 25 mM

fucose (dotted), and then subjected to flow cytometry. Representative experiments from three independent replicas for each line are shown. D, glyco-FACE
analysis. Lane 1, Man � Gal standard; lane 2, fucose standard; lane 3, WT; lane 4, �fkp40�/�afkp80�/�TbGMD-GMER. A representative experiment from three
independent replicas is shown.
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Discussion

In this work, we used single and double gene knockouts as
well as “genetic metabolic complementation” to probe the con-
tributions of the two closely related A/FKP genes to L. major
metabolism. Previous studies of recombinant enzymes had
shown that only AFKP80 could mediate synthesis of GDP-D-
Arap, whereas both AFKP80 and FKP40 could mediate synthe-
sis of GDP-fucose (22, 23).4 Consistent with these data, ablation
of AFKP80 resulted in reduction of AKP activity to trace levels
as well as an 85% decrease in FKP activity (Fig. 3). Correspond-
ingly, LPG arabinosylation was entirely eliminated, suggesting
that this is the sole route of GDP-Arap synthesis in the parasite
(Fig. 4). Because LPG itself is not essential in vitro (47), it was
unsurprising that lack of LPG arabinosylation had no effect on
cell viability or growth.

In contrast, for FKP40, which is able only to mediate the
synthesis of GDP-L-fucose, genetic ablation yielded no detect-
able phenotype. Cells grew normally, with WT morphology,
and maintained LPG side chain arabinosylation (Fig. 4). This
could not be attributed to a lack of FKP40 expression or activity,
because the �afkp80� mutant, which retains only FKP40,
showed about 15% of WT levels of GDP-fucose synthesis (Fig.
3), consistent with studies of recombinant enzymes in vitro.4

Given the paucity of evidence for an important role for L-fu-
cose in Leishmania and the nonessential role for D-Arap, we
attempted to generate a double A/FKP mutant, expecting that
this would confirm the lack of a requirement for GDP-fucose or
fucosylation. However, we were unable to create the double
mutant. Various controls ruled out technical issues, and the
double mutant could be obtained in the presence of ectopic
AFKP80 expression (Fig. 5). Importantly, plasmid segregation
tests of � 1000 cells expressing ectopic AFKP80 in a double
chromosomal null background showed that it was impossible
to generate cells lacking both of the A/FKP genes (Fig. 5).

These data raised the possibility that unlike GDP-Arap,
GDP-fucose was an essential metabolite in L. major. To con-
firm this hypothesis, we employed the approach of “genetic
metabolic complementation” (38), introducing an alternate,
“bypass” route of metabolite synthesis to confirm the role of the

primary target (provision of GDP-fucose). This was accom-
plished by introduction of the well-characterized de novo GDP-
fucose pathway from the closely related protozoan T. brucei,
which, inverse from Leishmania, lacks a salvage pathway (29).
Successful expression was shown by the synthesis of high levels
of GDP-fucose (Table 1). In the presence of an active de novo
GDP-fucose pathway, we were readily able to generate chromo-
somal null mutants lacking any A/FKP genes whatsoever (Fig.
6). These data argue strongly that GDP-fucose is an essential
metabolite in Leishmania.

We exploited the greatly elevated levels of GDP-fucose in
transfectants expressing TbGMD/GMER to facilitate visualiza-
tion of fucoconjugates normally present at undetectably low
levels. Increased UEA-I lectin binding signal was seen over the
flagellar pocket and cell surface (Fig. 7, B and C), potentially
arising from any or all of the candidate fucosyltransferases, tar-
geted to the secretory pathway. Some evidence of cytoplasmic
fucoconjugates also emerged, (Fig. 7, A–C). The Leishmania
genome encodes a candidate homolog of SKP1 (LmjF.11.1210),
a cytosolic protein identified first in Dictyostelium and known
to bear essential fucosyl modifications in other unicellular
microbes (48, 49). We did not see prominent staining of nuclear
structures, in contrast to Toxoplasma gondii, where fucosyla-
tion of nuclear pore complexes may occur (50).

Collectively, our data suggest that L. major may synthesize a
variety of fucoconjugates, at least one of which must be essen-
tial. Whereas LPG can be fucosylated in the presence of high
levels of fucose (exogenous or endogenous; Fig. 7D) (41), the
essential glycoconjugate(s) is unlikely to be LPG, because LPG-
null mutants are viable in vitro (47). Because Leishmania lack
the de novo fucose pathway and rely entirely on salvage, we
speculate that in our studies in vitro and probably in vivo, the
fucose requirement may be satisfied through ingestion and
catabolism of fucosylated proteins.

The de novo GDP-fucose pathway is also essential in T. bru-
cei, where the essential fucoconjugate similarly remains
unknown (29). In contrast, the T. cruzi genome predicts the
presence of both the de novo and salvage pathways. T. cruzi
synthesizes a complex fucose-containing surface glycan
attached to gp72 (51–53), ablation of which results in flagellar
detachment (54). Although the T. brucei gp72 ortholog is not
known to be fucosylated, its ablation leads to death preceded by
flagellar detachment and blockage of cell division (55, 56).
The Leishmania genome predicts at least one gp72 ortholog
(LmjF10.0630), whose role(s) and/or modifications have not
been studied. GDP-fucose synthesis and fucoconjugates have
also been described in apicomplexan parasites. In T. gondii, the
de novo GDP-fucose pathway appears to be essential, possibly
due to a role in nuclear pore complex modification (50). Protein
O-fucosylation of the surface CSP and TRAP sporozoite pro-
teins of the malaria parasite Plasmodium falciparum has been
described (57), although the de novo pathway for GDP-fucose
synthesis does not appear to be essential (58, 59).

Formally, the ability of the GDP-fucose de novo pathway to
rescue pan-A/FKP mutants might not imply that GDP-fucose
itself is essential. Potentially, an unknown downstream metab-
olite could be responsible, or perhaps GDP-Arap itself is essen-
tial, and GDP-fucose rescues simply by mimicry. We think

Figure 8. GFP-tagged L. major FKP40 and AFKP80 are localized in the
cytoplasm. Wild-type L. major expressing FKP40 or AFKP80 bearing an N-
terminal GFP� tag (WT/�pXG-GFP-FKP40 or WT/�pXG-GFP-AFKP80) were
stained with Hoechst 33342 dye and visualized by fluorescence microscopy.
Left panels, GFP fluorescence; center panels, Hoechst fluorescence; right pan-
els, merged.

GDP-fucose is an essential metabolite for Leishmania

10704 J. Biol. Chem. (2017) 292(25) 10696 –10708

 at U
N

IV
E

R
SIT

Y
 O

F D
U

N
D

E
E

 on July 13, 2017
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


these scenarios are unlikely to rule out a role for GDP-fucose for
the following reasons: 1) GDP-fucose is typically a terminal
metabolite, not undergoing further modification; 2) WT
L. major synthesize GDP-fucose (27); and 3) candidate fuco-
conjugates have been reported in closely related species (24 –
26, 60).

Instead, it seems more likely that there remain new, uniden-
tified fucoconjugates to be found. In all probability, these will differ
significantly from known parasite glycoconjugates, probably
occurring at low levels, yet playing vital role(s) in parasite biology.
Our studies now elevate the priority of studies seeking to charac-
terize the fucoconjugate repertoire of Leishmania, at least one of
which is predicted to play a vital role(s) in parasite biology.

Experimental procedures

Leishmania culture and transfection

L. major strain Friedlin V1 (MHOM/IL/80/Friedlin) was
grown at 26 °C in M199 medium (U.S. Biologicals) containing
10% heat-inactivated fetal bovine serum and other supplements
as described (61). Leishmania cells were transfected by electro-
poration using a high-voltage protocol (62). Following transfec-
tion, cells were allowed to grow for 16 –24 h in M199 medium
and then plated on semisolid media containing 1% Nobel agar
(Fisher) and appropriate selective drugs (50 �g/ml hygromycin
B, 30 �g/ml puromycin, 10 �g/ml blasticidin, 100 �g/ml
nourseothricin, 10 �g/ml phleomycin, and/or 10 �g/ml G418).
Individual colonies were picked and grown in liquid medium in
same drug concentration as used in plates. Clones were main-
tained in selective medium and then removed from selection
for one passage before experiments.

Flow cytometry and immunofluorescence microscopy

Parasites were washed in PBS and fixed with 4% paraformal-
dehyde for 10 min at room temperature. For immunofluores-
cence labeling, cells were immobilized on poly(L-lysine)-coated
glass coverslips and blocked with 5% normal goat serum. Fixed
parasites were then sequentially incubated for 1 h at room temper-
ature with primary and secondary antibodies diluted in 5% normal
goat serum (63). Flow cytometry was performed with a BD Biosci-
ences FACSCalibur system. Monoclonal antibody 3F12 was used
at 1:100 dilutions, Fluor 488 goat anti-mouse IgG was used at
1:1000, and fluoresceinated UEA-I was used at 10 �g/ml.

Targeted gene replacement of L. major FKP40 and AFKP80

Fusion PCR was used to generate replacement constructs.
Briefly, the flanking regions and drug resistance cassettes were
amplified separately by PCR using primers that produce over-
lapping ends. An 870-nt 5� region and a 930-nt 3� region of
FKP40 were amplified using primer pairs SMB 2664/2665 and
SMB 2666/2667 (primer sequences are listed in supplemental
Table S1). The ORFs of blasticidin (BSD) and nourseothricin
(SAT) were amplified from pXGBSD (strain B4098) and pXG-
SAT (strain B2352), respectively, using primers with added
linker sequence. A linear DNA BSD or SAT between 5�- and
3�-flanking regions of FKP40 was synthesized in a second round
of PCR by mixing the purified PCR products of the flanking
regions and a drug-resistance cassette as templates using prim-

ers SMB 2664/2667 and then inserted into pGEM-T (Promega)
to make pGEM-FKP40-BSD (strain B5925) and pGEM-FKP40-
SAT (B5926), respectively. The targeted linear fragments were
liberated from pGEM-FKP40-BSD and pGEM-FKP40-SAT by
digestion with BsmI and DraIII, respectively; treated with calf
intestinal phosphatase; purified after agarose gel electrophore-
sis; and transfected into LmFV1. The heterozygous mutant
�fkp40::BSD/FKP40 was obtained by transfecting 5 �g of
FKP40::BSD fragment into WT LmFV1 promastigotes as
described previously (62). A second targeting round with
FKP40::SAT resulted in �fkp40::BSD/�fkp40::SAT, referred to
as the �fkp40� mutant. Before study, all lines were passed
through mice once by injecting hind footpads of BALB/c mice
(Charles River Laboratories, Wilmington, MA) with a large
inoculum (1–5 � 107) of stationary-phase parasites and recov-
ering parasites by needle aspiration of footpad regardless of
pathogen 4 weeks afterward.

A similar strategy was used to create the �afkp80� mutant.
AFKP80 allelic replacement constructs were made by inserting
ORFs encoding hygromycin B (HYG) or puromycin (PAC) resis-
tance between 930-nt 5� and 980-nt 3� AFKP80 flanking
regions, making pGEM-AFKP80-HYG (strain B5950) and
pGEM-AFKP80-PAC (strain B5961). Targeting fragment was
liberated from pGEM-AFKP80-HYG by NspI and StuI, purified
before transfection into LmFV1. The second round replace-
ment was performed by electroporation of AFKP80::PAC frag-
ment excised from pGEM-AFKP80-PAC (strain B5961) by
NdeI and KpnI, resulting in �afkp80::HYG/�afkp80::PAC,
hereafter referred to as the �afkp80� mutant. Using the same
constructs and similar methods, we attempted unsuccessfully
to make a �fkp40�/�afkp80� double mutant by inactivating
FKP40 in the afkp80� mutant or AFKP80 in the fkp40� mutant.

The ORFs of FKP40 and AFKP80 were PCR-amplified from
LmFV1 genomic DNA using primer pairs SMB 2828/2829 with
an XmaI site included. For expression, an optimal translation
sequence (CCACC) was added upstream of the ORF starting
codon in primer 2828. Because there is only a 3-base difference
in the middle of the ORFs between FKP40 and AFKP80, PCR
products were a mixture of FKP40 and AFKP80. PCR products
were then directly cloned into pGEM-T vector by TA cloning.
Some clones were sequenced, sorting out pGEM-FKP40
(B5988) and pGEM-AFKP80 (B5989). The ORFs were then lib-
erated with XmaI and inserted in the sense direction of the
XmaI expression site of pXG (NEO-B1288), creating pXG-
FKP40 (B5990) and pXG-AFKP80 (B5992). To restore the
expression of FKP40 or AFKP80, fkp40� and afkp80� mutants
were transfected with 5 �g of pXG-FKP40 and pXG-AFKP80,
respectively. For simplicity, in this work, the transfectants
�fkp40::BSD/�fkp40::SAT [pXG-FKP40] are designated �fkp40�/�
FKP40; similarly, the transfectants �afkp80::HYG/�afkp80::
PAC [pXG-AFKP80] are designated �afkp80�/�AFKP80.

Subcellular localization of L. major FKP40 and AFKP80

The ORFs of FKP40 and AFKP80 were excised from pGEM-
FKP40 (B5988) and pGEM-AFKP80 (B5989) by digestion with
NotI and inserted in the sense orientation of the NotI site of
pXG-GFP�2 (B2952), yielding pXG-GFP-FKP40 (B6250) and
pXG-GFP-AFKP80 (B6251). Both constructs were transfected
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into WT LmFV1, and clonal lines were obtained and verified.
As a control, pXG-GFP-AFKP80 was also transfected into
�afkp80� mutant. WT/�GFP-FKP40 and WT/�GFP-AFKP80
promastigotes were fixed with 0.5% (w/v) paraformaldehyde in
PBS and immobilized on coverslips. Hoechst 33342 staining (5
�g/ml in PBS) was performed to visualize nuclear and kineto-
plast DNAs.

Cytosolic fractionation and enzymatic assay

Stationary phase parasites were suspended in 12 ml of lysis
buffer (100 mM HEPES, pH 7.4, 50 mM KCl, 10% glycerol, and
EDTA-free protease inhibitor mixture) and lysed by nitrogen
cavitation (1500 –2000 p.s.i., incubated on ice for 30 min). The
crude lysate was centrifuged at 100,000 � g for 1 h at 4 °C, and
the supernatant was used as a source of cytosolic enzymes. The
standard assay mix contained 100 �l of the cytosolic fraction, 5
mM final concentration each of ATP, GTP, and MgSO4; 1 unit
of inorganic pyrophosphatase; and 0.15 �Ci of D-[5-3H]arabi-
nose (20 Ci/mmol) or L-[6-3H]fucose (60 Ci/mmol). Assay mix-
tures were incubated at 37 °C for 16 h and terminated by boiling
for 1 min. Nucleotide sugars were purified by anion-exchange
chromatography, as described earlier (64). Briefly, the reaction
mixtures were applied to a column (1.5 � 7.5 cm) of DE-52 cellu-
lose and washed with 50 ml of water. The products of the reaction
were eluted with a 120-ml gradient (0–250 mM) of (NH4)HCO3.
GDP-Arap and GDP-fucose emerged with 120–150 mM

(NH4)HCO3 and were subjected to scintillation counting.

Purification and analysis of LPG

LPG was extracted and purified by phenyl-Sepharose chro-
matography (65). Briefly, exponentially growing (1–2 � 106

cells/ml) or stationary phase (5 � 107 cells/ml) parasites were
extracted in solvent E (H2O/ethanol/diethyl ether/pyridine/
NH4OH; 15:15:5:1:0.017); dried under a stream of N2; resus-
pended in 0.1 N acetic acid, 0.1 M NaCl; and applied to a column
of phenyl-Sepharose (1 ml), equilibrated in the same buffer.
LPG was eluted with solvent E. The PG repeats of LPG were
generated by depolymerization under mild acid conditions
(0.02 N HCl, 15 min at 60 °C) and dephosphorylated with E. coli
alkaline phosphatase (5 units/ml, 16 h at 37 °C) (7, 65). Aliquots
of dephosphorylated PG repeats were fluorophore-labeled at
the reducing ends with 8-aminonaphthalene-1,3,6-trisulfate
and analyzed by FACE according to the manufacturer’s speci-
fications (Glyko Inc., Novato, CA).

Purified LPG was resolved by 12% SDS-PAGE and electro-
blotted onto Hybond ECL nitrocellulose membranes (Amer-
sham Biosciences). Mouse monoclonal antibody WIC79.3 was
used to detect LPG (1:1000 dilution) (66). An enhanced chemi-
luminescence detection system (Amersham Biosciences) was
used to detect signal.

Double knock-out A/FKPs in the presence of ectopically
expressed AFKP80

The ORF was released from pXG-AFKP80 (B5992) by diges-
tion with SmaI and blunt-ligated into the BglII site of pXNG5-
Phleo (B6432), yielding pXNG5-Phleo-AFKP80 (B6481). The
construct was transfected into �afkp80� mutants, yielding
�afkp80�/�pXNG-AFKP80, whose activity was confirmed by

3F12 agglutination. The cell was further submitted to third- and
fourth-round replacements with FKP40::BSD and FKP40::SAT,
resulting in �fkp40�/�afkp80�/�pXNG-AFKP80.

Single-cell sorting

Before cell flow cytometry, �fkp40�/�afkp80�/�pXNG-
AFKP80 cells were grown in M199 without any drug for 24 h,
washed with PBS, and filtered through CellTrics 50-�m filters
(Partec). Single-cell sorting was then performed based upon
their GFP fluorescence using a Dako MoFlo high-speed cell
sorter, with single cells selected by stringent gating on forward-
and side-scatter parameters. Single cells were placed into indi-
vidual wells of 96-well plates, each containing 150 �l of M199
medium. Plates were incubated at 26 °C for 2 weeks, and para-
site growth was scored.

Cloning and overexpression of TbGMD and TbGMER in
L. major

GMD and GMER ORFs (GenBankTM accession numbers
AM746334 and AM746335) were amplified by PCR from
genomic DNA of T. brucei 427 using primer pairs with XmaI or
BglII restriction sites added (SMB 3448/3449 for GMD, SMB
3450/3451 for GMER). PCR products were digested with XmaI
(GMD) and BglII (GMER), ligated into the XmaI and BglII sites
of pIR1Phleo (B6175), respectively, producing pIR1Phleo-Tb-
GMD-GMER (B6339). The construct was electroporated into
the third targeting round (“3/4”) afkp80�/�fkp40::BSD/FKP40,
resulting in afkp80�/�fkp40::BSD/FKP40/�TbGMD-GMER.
The resulting cell was then submitted to the fourth-round
replacement with FKP40::SAT to replace the last copy of
FKP40, yielding fkp40�/afkp80�/�TbGMD-GMER.

Nucleotide-sugar analysis

Sugar nucleotide extraction and analysis were performed as
described (27). Briefly, cells were pelleted by centrifugation,
washed in ice-cold PBS, and lysed in 70% ethanol in the pres-
ence of 20 pmol of the GDP-glucose as an internal standard
(Sigma). The lysate was centrifuged to remove insoluble mate-
rial, and the supernatant was extracted with butan-1-ol to
remove lipids. Sugar nucleotides were extracted from the
resulting aqueous phase using EnviCarb graphitized carbon
columns (Supelco) as described previously (67). The eluted
sugar nucleotides were analyzed by multiple-reaction monitor-
ing LC-MS/MS (27).

Electron microscopy

Parasites were fixed in 4% paraformaldehyde, 0.05% glutar-
aldehyde (Polysciences Inc., Warrington, PA) in 100 mM PIPES,
0.5 mM MgCl2, pH 7.2, for 1 h at 4 °C. Samples were then
embedded in 10% gelatin and infiltrated overnight with 2.3 M

sucrose, 20% polyvinylpyrrolidone in PIPES/MgCl2 at 4 °C.
Samples were trimmed, frozen in liquid nitrogen, and sectioned
with a Leica Ultracut UCT cryo-ultramicrotome (Leica Micro-
systems Inc., Bannockburn, IL). 50-nm sections were blocked
with 5% FBS, 5% normal goat serum and subsequently incu-
bated with biotinylated UEA-I (1:20) (Vector Laboratories, Inc.,
Burlingame, CA) followed by streptavidin conjugated to 15-nm
colloidal gold (BB International, Cardiff, UK). Sections were
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washed in PIPES buffer, followed by a water rinse, and stained
with 0.3% uranyl acetate, 2% methyl cellulose. Samples were
viewed with a JEOL 1200EX transmission electron microscope
(JEOL USA Inc., Peabody, MA). Parallel controls omitting the
biotinylated UEA-I were consistently negative at the concen-
trations of streptavidin used.
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