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Abstract 

Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. Although previous TS studies 

revealed structural abnormalities in distinct cortico-basal ganglia circuits, the topological alterations of 

the whole-brain white matter (WM) structural networks remain poorly understood. Here, we used 

diffusion MRI probabilistic tractography and graph theoretical analysis to investigate the topological 

organization of WM networks in 44 drug-naive TS children and 41 age and gender matched healthy 

children. The WM networks were constructed by estimating inter-regional connectivity probability and 

the topological properties were characterized using graph theory. We found that both TS and control 

groups showed an efficient small-world organization in WM networks. However, compared to controls, 

TS children exhibited decreased global and local efficiency, increased shortest path length and 

small-worldness, indicating a disrupted balance between local specialization and global integration in 

structural networks. Although both TS and control groups showed highly similar hub distributions, TS 

children exhibited significant decreased nodal efficiency, mainly distributed in the default-mode, 

language, visual and sensorimotor systems. Furthermore, two separate networks showing significantly 

decreased connectivity in TS group were identified using network based statistical (NBS) analysis, 

primarily composed of the parieto-occipital cortex, precuneus and paracentral lobule.. Importantly, we 

combined support vector machine and multiple kernel learning frameworks to fuse multiple levels of 

network topological features for classification of individuals, achieving high accuracy of 86.47%. 

Together, our study revealed the disrupted topological organization of structural networks related to 

pathophysiology of TS, and the discriminative topological features for classification are potential 

quantitative neuroimaging biomarkers for clinical TS diagnosis. 

 

Key words: Tourette syndrome, Diffusion MRI, Probabilistic Tractography, Structural Network, Graph 

Theory, Topological Organization, Multiple Kernel Learning 

 

Abbreviations: TS = Tourette syndrome, MRI = magnetic resonance imaging, DTI = diffusion tensor 

imaging, WM = white matter, SWM = superficial white matter, NBS = network based statistical, 

YGTSS = Yale Global Tic Severity Scale, SVM = support vector machine, MKL = multiple kernel 

learning, MK-SVM = multiple kernel support vector machine 

  



1. Introduction 

Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of 

multiple motor and vocal tics. The typical age of onset ranges from 5 to 7 years old and the worst tic 

severity for most patients falls between 7 to 15 years old (Liu, et al., 2013b). Affected individuals 

typically have repetitive, stereotyped movements or vocalizations, such as blinking, sniffing, facial 

movements, or tensing of the abdominal musculature (Robertson and Kao, 2011). TS is frequently 

accompanied by comorbidities such as obsessive–compulsive disorder (OCD), attention-deficit–

hyperactivity disorder (ADHD) and other social and behavioral disturbances (Stokes, et al., 1991).  

The pathophysiological mechanism that produces tics remains elusive. However, previous 

neuropathological and neuroimaging studies have reported dysfunction of distinct cortico-basal ganglia 

circuits in relation to tic generation (Mink, 2003; Worbe, et al., 2012). Indeed, the dysfunction of 

cortico-basal ganglia circuits at different levels in TS patient were reveal by previous studies. Briefly, 

cortical structural changes were found in prefrontal, sensori-motor, anterior cingulate, parietal and 

temporal regions (Cherine, et al., 2010; Muller-Vahl, et al., 2009a; Peterson, et al., 2001; Sowell, et al., 

2008), with altered volumes of the corpus callosum (Plessen, et al., 2004), basal ganglia (Peterson, et 

al., 2003) and thalamus (Miller, et al., 2010). Apart from the macroscopic volumetric changes, several 

studies pointed to microstructural abnormalities in white matter (WM), which extend beyond motor 

pathways in TS patients (Neuner, et al., 2010; Neuner, et al., 2011). Nevertheless, these studies only 

revealed TS related structural alterations in some individual brain regions or circuits, including 

importantly, a series of parallel cortico-striato-thalamo-cortical (CSTC) circuits that link specific 

regions of the frontal cortex to subcortical structures and provide a framework for understanding the 

interconnected neurobiological roots of TS (Felling and Singer, 2011). In particular, looking at the 



brain as a complex network comprising highly interconnected brain regions motivates us to study TS 

related neurological disorders from a network perspective. The brain structural networks (Sporns, et al., 

2005) could provide us with an anatomical and physiological substrate of brain functions and help us 

understand how the brain structures shape functional interactions (Qi, et al., 2016). Therefore, studying 

WM structural networks has gained a lot of popularity recently, while highlighting the urgent need to 

quantify WM structural networks in vivo, non-invasively, on a global scale, in order to depict the 

topological organization of brain structures (Parker, et al., 2014). Subsequently, this may help pin down 

any neurological disease-related alteration in WM structural networks.  

One of the most popular noninvasive imaging techniques is diffusion MRI. This modality reveals the 

microstructural characteristics of white matter (WM) tracts in the brain. Specifically, diffusion tensor 

imaging (DTI) and diffusion MRI tractography can reliably reconstruct the major WM tracts, thereby 

mapping the WM integrity and structural connectivity of the human brain in vivo (Basser, et al., 1994a; 

Basser, et al., 1994b; Basser, et al., 2000). Many previous studies have utilized the DTI technique and 

diffusion measures to investigate microstructural changes in TS children (Liu, et al., 2013b; Wen, et al., 

2016a). These studies have shown that structural connectivity gets disrupted in TS patients in specific 

WM tracts, involving the prefrontal, parietal, occipital, and subcortical WM. These findings propel the 

hypothesis that structural connectivity is disrupted in TS. 

Although these previous studies have markedly advanced our understanding of WM alterations in TS, 

it remains unclear as to whether the topological organization (e.g., network global/local efficiency, 

small-worldness property and nodal efficiency) of WM structural networks is abnormal in TS children. 

With the increasing studies reconstructing human whole-brain WM networks using diffusion MRI 

deterministic or probabilistic tractography methods (Gong, et al., 2009a; Gong, et al., 2009b; 



Iturria-Medina, et al., 2008), more interest has been shown for depicting the network-based 

measurements derived from brain network data. Graph theoretical analysis can provide a unique 

framework for the measurement of brain networks, so it has gained more popularity in the 

neuroimaging and brain network research fields. In particular, graph theory analysis revealed that the 

WM networks exhibit many crucial topological properties, such as highly connected hubs and 

small-worldness (Watts and Strogatz, 1998). Generally, a small-world network is defined as a network 

which has high clustering coefficients and short average path lengths (Telesford, et al., 2011). 

Small-worldness is a global network measure that quantifies the balance between integration and 

segregation among all the nodes in the network (Humphries and Prescott, 2006). Furthermore, the 

topological organization of WM networks is disrupted under pathological conditions, for example, 

Alzheimer's disease (Lo, et al., 2010), schizophrenia (van den Heuvel, et al., 2010; Zalesky, et al., 

2010), attention-deficit hyperactivity disorder (ADHD) (Cao, et al., 2013), neuromyelitis optica (Liu, et 

al., 2013a) and multiple sclerosis (Shu, et al., 2011). As for TS, altered activation and functional 

connectivity in cortico-basal ganglia networks was found using resting state fMRI data (Werner, et al., 

2011; Worbe, et al., 2012). In addition, control networks in pediatric TS show immature and anomalous 

patterns of functional connectivity, primarily found in the fronto-parietal network, thought to be 

important for online adaptive control (Church, et al., 2009). Other studies using diffusion MRI and 

tractography methods showed altered structural connectivity of cortico-basal ganglia networks (Cheng, 

et al., 2014; Worbe, et al., 2015) in adult TS patients. However, those studies only revealed functional 

or structural abnormalities in distinct cortico-basal ganglia circuits, and no study has previously 

integrated the diffusion MRI tractography method and graph theoretical analysis to examine abnormal 

topological organization of whole-brain structural networks in TS patients, especially in TS children. 



In addition, to date, the studies on TS were mainly limited to using traditional univariate analyses (eg. 

t-tests) to test for group differences. The significant findings (structural or functional alterations) are 

only at group level which limited clinical application. Therefore, recent attention has turned toward 

integrating machine-learning and neuroimaging techniques to assist clinical diagnosis. Unlike 

group-based comparison approaches, machine-learning techniques are able to detect the fine-grained 

spatial discriminative patterns, which are critical for individual-based disease diagnosis (Liu, et al., 

2014). Especially, many studies have applied machine learning methods to investigate brain functional 

or structural networks for assisting clinical disease diagnosis (Dai, et al., 2013; Dai, et al., 2012; Jie, et 

al., 2014; Jin, et al., 2015; Sacchet, et al., 2015), however, only a few of them (Greene, et al., 2016) are 

related to TS. To date, there are no reliable neuromarkers for clinical TS diagnosis, and TS is still 

misdiagnosed due to its complicated clinical presentation (Cavanna and Seri, 2013). Therefore, 

applying machine-learning algorithms to network-based features for diagnostic classification/prediction 

of individuals will be helpful in assisting eventual clinical diagnosis. Furthermore, the important 

features used to classify individuals by diagnosis also hold promise for further refinement of the 

classification methods to ultimately predict prognosis and treatment responses (Greene, et al., 2016).  

In the present study, we used diffusion MRI probabilistic tractography and graph theory to investigate 

the topological organization of whole-brain structural networks in drug-naive TS and healthy children, 

and their relation to clinical features. In our study, we used drug-naive subjects to exclude the effects of 

stimulants, as previous studies have suggested that stimulants can significantly influence the structure 

and function of central nervous system in TS (Golden, 1977). In this paper, we aimed to investigate 

whether TS children would show abnormal global and regional topological properties, disrupted nodal 

efficiency, altered structural connectivity between nodal regions in the whole-brain WM networks and 



whether these topological changes would significantly correlate with the clinical characteristics of TS 

children. We assumed that the brain structural network in both TS and healthy children could follow a 

small-world organization, which was investigated using graph theoretical analysis to identify the 

differences in global and regional topological properties of brain structural networks between TS and 

healthy children. We hypothesized that TS children may have a disrupted topological organization of 

WM structural networks, involving importantly, the basal ganglia and cortical frontal areas, as previous 

studies revealed that microstructural dysfunction measured by DTI in component regions of the 

fronto-striato-thalamic (FST) circuit contributes to the pathophysiology in TS (Müller-Vahl, et al., 2014; 

Makki, et al., 2008). Moreover, to enhance our contributions to assisting the clinical TS diagnosis, we 

investigated using the complementary topological properties (global, nodal, edge) of WM structural 

networks as features to accurately discriminate TS children from controls. We employed the multiple 

kernel learning (MKL) frameworks in our previous study (Wen, et al., 2017a) to fuse these 

complementary network-based features, and the most discriminative features for classification, which 

are highly related to pathophysiology of TS, will be potential important neuroimaging biomarkers for 

assisting the clinical TS diagnosis. 

 

2. Materials and Methods 

2.1 Subjects 

44 TS patients were recruited from outpatient clinics in Beijing Children’s Hospital from July 2012 to 

May 2015 (age: 8.98±3.114 years, range: 3–16 years; 11 female). All the patients met DSM-IV-TR 

(Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, text revision) criteria for TS. We 

also included 41 age and gender matched health controls in our study (age: 10.27±3.18 years; range: 3–



15 years; 15 female). The child psychiatrist (chief physician) in our hospital did outpatient interview to 

make differential diagnosis of psychiatric comorbidities for child subjects, based on the exclusion 

criteria of psychiatric disorders. The exclusion criteria of psychiatric disorders were established 

according to the Chinese Classification of Mental Disorders (currently on a third version, the CCMD-3), 

published by the Chinese Society of Psychiatry (CSP), and used as a clinical guide in China for the 

diagnosis of mental disorders. The diagnostic criteria of CCMD-3 also refer to the research criteria of 

DSM-IV (Chen, 2002). Then the professional neurologists made differential diagnosis of OCD and 

ADHD using scales. Briefly, we used a clinical interview and the Children’s Yale-Brown Obsessive 

Compulsive Scale (CY-BOCS) (Scahill, et al., 1997) to diagnose OCD and used the German short 

version of Wender Utah rating scale (WURS-k, translated to Chinese) (Retz-Junginger, et al., 2003) to 

diagnose ADHD. Patients fulfilling OCD criteria or other co-morbidities were excluded from the study. 

Tic severity for all patients was rated using the Yale Global Tic Severity Scale (YGTSS) (Leckman, et 

al., 1989) and ranged from 10 to 79 ([mean±SD]: 51.20±19.38). The duration of TS ranged from 3 

months to 5 years ([mean±SD]: 1.73±1.44 years). For subjects who had course less than 1 year, their 

diagnosis was made by follow-up call and they were all finally diagnosed exactly as TS by our 

professional neurologists and psychiatrists. Following the study approval by Beijing Children’s 

Hospital review board, written informed consent was obtained from all the parents/guardians according 

to the Declaration of Helsinki. Details of the patients are shown Table 1. 

[ Insert Table 1 about here ] 

 

2.2 Data acquisition 

Magnetic resonance imaging was acquired using a 3T MR scanner (Gyroscan Interna Nova, Philips, 



Netherland). Head positioning was standardized using canthomeatal landmarks. The head was 

stabilized with foam pads to minimize head movements. Patients were instructed to suppress tics and 

minimize head movements during scanning as much as possible. All children under seven years old 

were kept asleep during the MR scan. Axial three-dimensional diffusion tensor imaging (DTI) was 

acquired from all the subjects. DTI was performed using the following protocol: spin-echo 

diffusion-weighted echo-planar imaging sequence, 2mm slice thickness, no inter-slice gap, repetition 

time = 4300ms, echo time = 95ms, field of view (FOV) =255×255mm, reconstructed image matrix = 

336×336. Diffusion MRI images were obtained from 30 non-collinear directions with a b value of 1000 

s/mm2. 3D T1-weighted imaging were performed with axial three-dimensional-Fast Field Echo (3D 

FFE) sequence with the following parameters: repetition time (TR) = 25ms, echo time (TE) = 4.6ms, 

flip angle = 30°, reconstructed image matrix = 256×256, field of view (FOV) = 200×200mm, slice 

thickness = 1mm. 

 

2.3 Preprocessing 

Following DTI acquisition, we used the FMRIB’s Diffusion Toolbox (FDT2.0) within FSL v4.1 

(http://www.fmrib.ox.ac.uk/fsl) for DTI processing. As Differences in head motion between groups can 

induce spurious group differences (Yendiki, et al., 2014), prior to the estimation of diffusion, we used 

the same preprocessing pipeline	as in the previous TS study (Wen, et al., 2016a) to perform corrections 

for distortions due to eddy currents and head motion. In detail, we used the eddy tool in FDT, which is 

a tool to correct for eddy current-induced distortions and subject movements in diffusion data. It 

simultaneously models the effects of diffusion eddy currents and movements on the image. It also 

performs outlier detection to identify slices where signal has been lost as a consequence of subject 



movement during the diffusion encoding, and permits replacement of the outliers with distortion-free 

data. For each participant, 30 DTI volumes with 1000s/mm2 b-value were first affinely registered to the 

b0 volume. After running motion and eddy correction, we extracted the head motion parameters with 

the displacement, rotation and translation information for each subject. We found no significant 

between-group differences for any head motion parameter using the two-sample t test (Table 1). 

Non-brain voxels were removed using Brain Extraction Tool (BET) of FSL; a fractional intensity 

threshold of 0.25 was selected, resulting in a brain-extracted 4D image and a binary brain mask for 

each subject. We then used the eddy-corrected 4D data and corresponding brain mask to fit the 

diffusion tensor model at each voxel using the FDT. Eigenvalues of diffusion tensor matrix (λ1, λ2, λ3) 

were obtained and maps of fractional anisotropy (FA) were generated. 

 

2.4 Network construction 

Nodes and edges constitute the two basic elements of a network. In the present study, we defined all of 

the network nodes and edges using the following steps. 

 

2.4.1  Network node definition. 

We defined the network nodes strictly in accordance with the procedure described previously (Gong, et 

al., 2009a; Gong, et al., 2009b) and was performed here using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). 

Briefly, individual T1-weighted images were coregistered to the b0 images in the DTI space. Then, the 

transformed T1 images were then nonlinearly transformed to the ICBM152 T1 template in the MNI 

space. The inverse transformations were used to warp the automated anatomical labeling (AAL) atlas 

(Tzourio-Mazoyer, et al., 2002) from the MNI space to the DTI native space. Of note, the 



nearest-neighbor interpolation method was used to preserve discrete labeling values. Using this 

procedure, we obtained 90 cortical and subcortical regions (45 for each hemisphere; Table 2), each 

representing a node in the network (Fig. 1). 

[ Insert Table 2 about here ] 

 

2.4.2  Network edge definition. 

To define the connections (edges) between brain regions, we performed probabilistic tractography 

using the FMRIB Diffusion Toolbox (FSL, version 4.1; http://www.fmrib.ox.ac.uk/fsl). Firstly, we used 

the bedpostx tool in FSL to run Markov Chain Monte Carlo sampling, in order to estimate distributions 

on diffusion parameters at each voxel, which allows to model crossing fibers within each voxel of the 

brain. Secondly, we used the probtrackx tool in FSL to perform probabilistic tracking. Briefly, we 

repetitively performed 5000 sampling from the distributions of voxel-wise principal diffusion 

directions, each time computing a streamline through these local samples to generate a probabilistic 

streamline fiber. For a seed region, 5000 × n streamline fibers were sampled; n is the number of voxels 

in the seed region. The number of streamline fibers passing through a given region divided by 5000 × n 

is calculated as the connectivity probability from the seed region to the given region. In our study, each 

brain region in AAL template was selected as the seed region, and its connectivity probability to each 

of the other 89 regions was calculated. Notably, the probability from i to j is not necessarily equivalent 

to the probability from j to i because the tractography is dependent on the seeding location. However, 

these two probabilities are highly correlated across the brain regions for all subjects in our study (all 

Pearson r > 0.76, p < 0.05). Thus, we defined the unidirectional connectivity probability Pij between 

region i and region j by averaging these two probabilities as in (Cao, et al., 2013). 



Finally, to define the network edges, we computed wij = Pij as the weight between brain regions i and j. 

For each subject, a 90 × 90 symmetric weighted network was constructed. To remove spurious 

connections, we applied a set of thresholds ranging between 0.01 and 0.1 at equal intervals of 0.0025 

empirically based on a previous structural network study (Cao, et al., 2013). Specifically, two brain 

regions were considered disconnected if the connection weight wij was below a given threshold. The 

flowchart for structural network construction was shown in Fig. 1. 

[ Insert Figure 1 about here ] 

 

2.5 Network topological attributes analysis 

For the weighted WM networks (G) at each threshold, we calculate two sets of network topological 

attributes, including both global and local network properties. The general descriptions of these 

network properties are given below. 

 

Global network properties  

Sp: network strength (mean degree). Sp is the strength of the network, which is defined as the mean 

degree of all the regions in the brain network. 

Eglob: network global efficiency. Eglob is defined as the inverse of average shortest path length. It 

reflects the network efficiency in transferring information, which can be computed as follows: 
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Eloc: network local efficiency. Eloc is defined as the average value of all regions’ local efficiency. It 

reflects system redundancy and tolerance to attack, which can be computed as follows: 
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Lp: the shortest path length. Lij is defined as the length of the path for node i and node j with the 

shortest length. Lp is the shortest path length of network G, which can be computed as follows: 
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Cp: the clustering coefficient. C(i) is defined as the clustering coefficient of a node i, equal to the ratio 

between the existing number of edges among the neighbors of the node i and the maximum possible 

number of connections among these neighbors, which can be computed as follows:  
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where ki is the degree of node i, and !"#	is the edge weight, which is scaled by the mean of all edge 

weights to control each participant’s cost at the same level. Cp is defined as the average clustering 

coefficient over all nodes, It quantifies the cliquishness and reflects the extent of local 

interconnectivity. 

To examine the small-world properties, the Cp and Lp of the brain networks were compared with those 

of random networks. In this study, we generated 100 matched random networks, which had the same 

number of nodes, edges, and degree distribution as the real networks (Maslov and Sneppen, 2002). To 

preserve the weight distribution of the network, we retained the weight of each edge during the 

randomization procedure. 

λ: the normalized shortest path length. λ = L()*+,/L()+./, L()+./ is the mean shortest path length of 

100 matched random networks. 

γ: the normalized clustering coefficient. γ = C()*+,/C()+./, C()+./ is the mean clustering coefficient 

of 100 matched random networks. 



σ: the small-worldness. σ=γ/λ, which reflects the balance between integration and segregation among 

all the nodes in the network. The network with small-worldness is a kind of network with both high 

clustering coefficient and low shortest path length. 

 

Regional nodal characteristics 

Enodal(i): nodal efficiency. Enodal(i) is the regional efficiency of node i and indicates the nodal (regional) 

characteristics of the WM networks, which can be computed as follows: 
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where Lij is the shortest path length between node i and node j in the network G, and Enodal(i) measures 

the average shortest path length between a given node i and all of the other nodes in the network. 

Similar to previous studies (Zhang, et al., 2015; Zhang, et al., 2011), we also calculated the area under 

the curve (AUC) for each network metric (global and local topological properties) to provide a 

summarized scalar independent of single threshold selection. Of note, we used the AUC value of the 

nodal efficiency across thresholds for the analysis of regional properties, defining brain hubs and 

significant altered nodes. 

 

2.6 Network based statistical analysis 

To localize specific pairs of brain regions in which structural connectivity was altered in TS children, 

we used a method called network based statistical (NBS) analysis (Zalesky, et al., 2010) 

(http://www.nitrc.org/projects/nbs/), which identifies the between-group differences in pair-wise edge 

(or connection) weight under a series of probability thresholds (0.01–0.1, interval = 0.0025). The basic 

idea of the network-based statistics is to correct for multiple comparisons by testing for evidence 



against the null distribution at the level of graph components, rather than at the level of individual 

connections (Hong, et al., 2014). Briefly, the two-sample t-tests were firstly performed to test for 

between-group differences in the connections of the 90*(90-1)/2=4005 unique regional pairings. Then, 

a most liberal primary threshold (p=0.01) (Marques, et al., 2015; Zhu, et al., 2016) in NBS analysis was 

applied to the t statistic computed for each link to define a set of suprathreshold links, among which 

any connected components and their size (number of links) were then determined. The t value was 

uniquely determined, when the degrees of freedom (N1 - 1 + N2 - 1 for independent samples, in our 

study, 41-1+44-1=83), and significance level (p value = 0.01 in our study) were determined. The 

t=2.372 in our study can be calculated based on the table for T distributions which is provided in the 

supplementary material. Secondly, the null distribution of connected component size was derived using 

a nonparametric permutation approach (10,000 permutations) in order to estimate the significance for 

each component, then the threshold (p=0.05) was used to generate suprathreshold links (Cao, et al., 

2013). Finally, the corrected p value was estimated for each component as the proportion of 

permutations that yielded a larger component or one of equal size. This NBS method has recently been 

used to identify abnormal brain connectivity circuitry in other diseases such as ADHD (Cao, et al., 

2013; Hong, et al., 2014) and depression (Zhang, et al., 2011). The NBS method aims to identify the 

connected sub-networks in the connectivity matrix that significantly differ between groups which 

would offer greater statistical power (Verstraete, et al., 2011) and reveal more differences that probably 

have been overlooked with the false discovery rate (FDR) correction (Li, et al., 2013). 

 

2.7 Linking changes to clinical variables 

For all significantly altered nodal efficiencies in regional topological analysis, and significantly altered 



structural connections (SC) in NBS analysis, we examined the correlations between these significantly 

altered network metrics and the clinical variables in the TS group. To lessen the concern that the 

between-group differences of age, gender and head motion parameters (though all the metrics were not 

significantly different between groups) might significantly affect the analysis results, we performed 

partial correlation analyses (dependent variables: network metrics; independent variables: tic severity 

score/YGTSS or tics duration) using SPSS 19.0. Age, gender and six head motion parameters (x, y, z 

rotation and x, y, z translation) were calculated as covariates. 

 

2.8 Combining complementary network-based features for individual classification using 

multiple kernel learning  

Apart from revealing disrupted topological properties of WM structural networks in TS using 

univariate approach, we also investigate using multiple levels of network topological properties as 

features to accurately discriminate TS children from controls. We used the original network 

characteristics including 8*37 global properties (across all 37 thresholds), 90 nodal properties (AUC 

value), 4005 (90*89/2) edge weights,, respectively, as features for subsequent classification. As in our 

previous study (Wen, et al., 2017a), the SVM-RFE (Guyon, et al., 2002) algorithm was used for feature 

selection. Then, classification was performed using the support vector machine (SVM) algorithm 

(Cortes and Vapnik, 1995) with a radial basis function (RBF) kernel. To estimate optimal values for the 

two SVM parameters, the complexity or cost constant (c>0) and kernel width (γ>0), we used a grid 

search in the range of c=2−4, 2−1, ..., 24 and γ=2−8, 2−9, ...,22, with 10-fold CV to evaluate the goodness 

of SVM parameters.  



To further integrate the complementary information of these three kinds of network metrics (global, 

nodal, edge), we employ the same multiple kernel learning (MKL) frameworks (Wen, et al., 2017a) to 

fuse these features. The MKL algorithm can automatically search the optimal combination of the kernel 

matrix of these features to form an integrated kernel matrix (assigning weight to each kernel matrix), 

which outperforms the use of single kernels. The output of MKL is defined as: 
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where k denotes the k-th kind of feature; yi denotes the corresponding class label of i-th subject; Kk is 

the kernel matrix; βk is the sub-kernel weight; λj
k is the Lagrange parameters; xj

k is the support vector of 

training set; and xi
k is the feature vector of the i-th test sample. 

We used the same optimal feature subset and SVM parameters determined earlier for each single type 

of features (global, nodal, edge). Our classification framework and validation experiments were 

implemented in Matlab using LIBSVM (v3.1.2, www.csie.ntu.edu.tw/~cjlin/libsvm/) for the SVM 

classifier and Shogun (v3.2.0, www.shogun-toolbox.org/) for the MKL framework. 

In our study, the same nested cross-validation strategy (Wen, et al., 2017a) (Fig. 2 shows the detailed 

flow chart) was used to evaluate the classification performance, which was considered as the excellent 

estimation of generalization (Wilson, et al., 2009). The statistics we used to evaluate our classification 

algorithm performance are accuracy, sensitivity, specificity and the area under the curve for the 

receiver operated characteristic curve (AUC ROC). Accuracy is defined as (TP+TN)/(TP+TN+FN+FP) 

where TP = True Positive, TN =True Negative, FP = False Positive and FN = False Negative. 

Sensitivity is defined as TP/(TP+FN) and Specificity is defined as TN/(FP+TN). 

[ Insert Figure 2 about here ] 



 

3. Results 

3.1 Alterations in the global properties of WM networks in TS 

Both TS patients and controls showed a small-world organization of WM networks characterized by 

γ>1 and λ≈1 (Fig. 3). However, compared with controls, TS children had significantly decreased Cp, l, 

global and local efficiency, increased Lp, γ and σ in the WM networks for different thresholds. All the 

significant p value (<0.05) were derived after FDR correction (Benjamini and Hochberg, 2015). 

Moreover, the AUC value of the shortest path length Lp significantly increased in TS group compared 

to control group. There were no significant differences between groups in other network metrics (Fig. 3; 

Table 3). 

 

[ Insert Figure 3 about here ] 

[ Insert Table 3 about here ] 

 

3.2 Alterations in the regional properties of WM networks in TS 

We identified the hub regions of the WM networks for each group. The nodes were considered brain 

hubs if their nodal efficiencies (AUC value) were at least 1 standard deviation (SD) greater than the 

average nodal efficiency of the network.  

We found that the TS and control groups showed highly similar hub distributions, with core regions 

mainly in the cingulate gyri (both anterior, middle and posterior part), occipital (bilateral cuneus, 

superior occipital gyrus, left middle occipital gyrus) and parietal cortices (bilateral precuneus) (Fig. 4; 

Table 4).  



[ Insert Table 4 about here ] 

Further statistical analysis revealed that TS group had significant reduced nodal efficiency mainly in  

the bilateral inferior occipital gyrus	and superior parietal gyrus, left lingual gyrus, left inferior frontal 

gyrus (opercular, triangular part), left parietal cortices (supramarginal gyrus and inferior parietal gyrus) 

and left temporal cortices (fusiform gyrus and hippocampus)(Table 5). No node region showed 

significant increased nodal efficiency. Of note, the regions that showed significant reduced nodal 

efficiency in TS group were not the hubs regions (Fig. 4). In addition, for TS group, we found no 

significant correlations between nodal efficiency and clinical variables in any disrupted region. 

[ Insert Table 5 about here ] 

[ Insert Figure 4 about here ] 

 

3.3 Decreased regional connectivity in TS revealed by NBS analysis 

Using the NBS analysis, two separate networks showing significantly decreased connection strengths 

in TS children compared with healthy children were identified (p values < 0.05, NBS corrected). The 

first network (network 1 in Table 6) comprised 6 links, involving 7 different brain regions, which locate 

in the right occipital gyrus, superior parietal gyrus, cuneus, precuneus, lingual gyrus (p values < 0.05, 

NBS corrected; Fig. 5). The second network (network 2 in Table 6) was composed of 4 links, involving 

5 different brain regions, which locate in the left middle occipital gyrus, superior parietal gyrus, 

precuneus, bilateral paracentral lobule (p values < 0.05, NBS corrected; Fig. 5). The strengths, 

percentages, and frequencies of these decreased WM connections across thresholds are shown in Table 

6. We did not identify any network with significantly increased connectivity in the TS group. In 

addition, for TS group, we found no significant correlations between connection strength and clinical 



variables in any disrupted links. 

[ Insert Table 6 about here ] 

[ Insert Figure 5 about here ] 

 

 

3.4 Classification results using multiple kernel learning 

We used SVM classifier, which classifies subjects into TS group and healthy control groups. The 

classification accuracies of using a single type of features (global, nodal, edge) and combining features 

(using MKL) are showed in Table 7. To avoid potential lack of robustness and stability of classification 

based on one-time random partitioning in CV, we repeated the nested CV procedure for twenty times. 

The highest classification performance with mean (±SD) accuracy (86.47±3.71%), sensitivity 

(85.57±4.38%), specificity (87.44±4.13%), and ROC AUC (92.62±3.35%) were achieved on the 

combined features using MKL, which was demonstrated to perform better than a single type of features. 

Fig. 6A shows the receiver operating characteristic (ROC) curves of all the methods.  

As the highest accuracy was achieved when combining features, the current work also identified the 

most discriminative network features for TS classification. Since the feature selection in each fold is 

performed based only on the training set, the selected features could differ slightly across different 

cross-validation folds. Therefore, we summed the counts of each feature selected by our proposed 

method over the 20 rounds nested 10-fold CV. The frequencies of the top ten features for each type of 

network properties were provided in Table 8. 

For the purpose of visualization, we display the brain regions with nodal efficiencies identified as 

discriminative features (with frequency >0.2) for TS classification using MKL in Fig. 6B. 



[ Insert Table 7 about here ] 

[ Insert Table 8 about here ] 

 [ Insert Figure 6 about here ] 

 

4. Discussion 

In the present study, we used probabilistic diffusion tractography and graph theory to investigate the 

topological organization of the WM structural networks in drug-naive TS children compared with 

healthy children. Both TS and healthy children showed small-world properties of the WM networks, 

characterized by high local clustering and short path length, which are in accordance with previous 

WM network studies in healthy children (Cao, et al., 2013). Despite the common small-world topology, 

TS children showed decreased global and local efficiency and increased shortest path length. Although 

both TS and control groups showed highly similar hub distributions, TS children exhibited significant 

decreased nodal efficiency, primarily in the inferior frontal gyrus, inferior parietal gyrus (Wittfoth, et al., 

2012) and hippocampus (Peterson, et al., 2007), and previous studies also revealed structural alterations 

of these regions in TS. Furthermore, TS children exhibited decreased network connectivity, primarily in 

the occipital gyrus, superior parietal gyrus, cuneus, precuneus, and lingual gyrus. Finally, no significant 

correlation between network metrics and clinical variables was found, using age, gender and head 

motion parameters as covariates. Of note, though age is not significantly different between groups, 

there may still be a between-group difference (p=0.062) in age. Therefore, age was calculated as a 

covariate to eliminate its potential impact on the correlation analysis results. Together, our study 

showed the disruption of topological organization in WM networks in TS children. 

 



4.1 Altered global properties in the WM networks in TS 

In the present study, we characterized the small-world topology of the WM networks in both TS and 

healthy children, using the probabilistic tractography method to map whole-brain WM connectivity, 

which has advantages in tracking crossing and splitting fiber bundles compared with deterministic 

tractography methods (Behrens, et al., 2007). Both TS and healthy children had brain networks with 

small-worldness property. Small-worldness property means that the network has high efficiency in 

information processing and transfer (Sporns and Honey, 2006). Previous studies have proven the 

small-worldness property of the brain structural network via diffusion MRI (Gong, et al., 2009a; 

Hagmann, et al., 2007; Iturria-Medina, et al., 2008). 

Although the structural networks in TS children showed prominent small-world topology, the global 

and local efficiencies were significantly decreased, while short path length and small-worldness were 

significantly increased at a series of threshold compared with controls. The global efficiency reflects 

the information transfer between remote cortical regions, and it is mainly associated with long-range 

connections. The local efficiency is predominantly related to the short-range connections between 

neighboring regions. Decreases in both global and local efficiencies reflect disrupted topological 

organizations of the WM networks in TS patients, which could be due to impaired structural 

connections. Many DTI studies provided direct evidence for disrupted structural integrity in various 

WM tracts in TS children, such as the corticospinal tract, the superior/inferior longitudinal fasciculus, 

the superior/inferior fronto-occipital fasciculus, the anterior thalamic radiation and the corpus callosum 

(Wen, et al., 2016a). Evidence from a magnetization transfer ratio (MTR) study also showed WM 

reductions in the inferior frontal gyrus and cingulate gyrus in TS patients (Muller-Vahl, et al., 2009b), 

and previous post-mortem study (Thomas, et al., 2004) proved MTR reductions correlate with myelin 



and axonal loss in the WM. So, our results showed that reduced white matter integrity is associated 

with TS children (Plessen, et al., 2006; Wen, et al., 2016a) from a network perspective, and the reduced 

global and local efficiencies in TS group may indicate a disturbance of the normal balance in their 

structural brain network, which tends to have a more randomized configuration (Peng, et al., 2014). 

Moreover, significantly increased short path length and small-worldness were also found for different 

thresholds, especially the AUC value of shortest path length was significantly increased in TS group 

compared to control group. Increased short path length suggests reduced efficiency of parallel 

information transfer in the WM networks in TS children. Since the small-world connectivity model 

reflects an optimal balance between local specialization and global integration, the significant increased 

short path length and small-worldness in the structural networks of TS children could indicate less 

optimal organization of the brain networks, possibly as a consequence of reorganization secondary to 

cortical injury (Liu, et al., 2012). 

 

4.2 Highly similar hub distributions between TS and controls 

In addition to noting prominent small-world topology in both TS and healthy children, we also found 

that the TS and control children have highly similar hub distributions, with core regions mainly in the 

cingulate gyri (both anterior, middle and posterior part), occipital (bilateral cuneus, superior occipital 

gyrus, left middle occipital gyrus) and parietal cortices (bilateral precuneus). Our results suggest that 

the key regions of structural network are conserved throughout the development process and the 

small-world networks can tolerate developmental alterations or disease (He, et al., 2009; Supekar, et al., 

2009). 

Of note, our results showed that the bilateral anterior, posterior cingulate gyrus and precuneus were hub 



regions in both groups. These regions were in the default-mode network (DMN), one of the most 

described resting-state networks (RSNs). DMN activates when an individual is awake and alert, but is 

not actively involved in an attention demanding or goal-directed task. Although the DMN concept is 

derived from resting-state functional MRI, some recent studies have combined fMRI and DTI in 

healthy participants (Greicius, et al., 2009; Horn, et al., 2014; Oort, et al., 2013; Supekar, et al., 2010), 

reporting significant correlations between the DMN structural and functional connections. A previous 

WM network study also showed similar hubs regions within DMN in healthy children (Cao, et al., 

2013) as ours. In particular, bilateral precuneus with DMN were found to be consistent rich-club hub 

regions in both TS and healthy children (Wen, et al., 2017c). Our finding of highly similar hub 

distributions between groups is also largely consistent with this study. 

 

4.3 Distributed regions with altered efficiency in TS 

In the present study, we observed several brain regions with reduced efficiency in TS children, 

primarily in the occipital gyrus (bilateral inferior occipital gyrus, left ingual gyrus), left inferior frontal 

gyrus (opercular, triangular part), left parietal (supramarginal gyrus, superior and inferior parietal gyrus) 

and left temporal cortices (fusiform gyrus and hippocampus). These regions are key nodes in the brain 

networks and exhibit structural and functional abnormalities in TS (Bush et al., 2005; Seidman et al., 

2005), which were involved in visual, default-mode, language and sensorimotor related areas.  

Firstly, reduced nodal efficiencies were also found in several occipital regions (inferior occipital gyrus 

and lingual gyrus) that are important for visual processing. Few studies have identified structural 

abnormalities in the TS patients in the visual regions. Smaller inferior occipital volumes were found in 

TS subjects (Peterson, et al., 2001) and WM volumes decreased in left lingual gyrus (Liu, et al., 2013b). 



Of note, the nodal efficiency of right inferior occipital gyrus was also reported to be one of the 

discriminative structural network features for differentiating early TS children form healthy children 

(Wen, et al., 2016b). Despite these advances, very little is known about the alterations in the 

topological organization of network in visual regions. Thus, our results provide further evidence for the 

structural disruption of the visual system in TS patients. 

Secondly, we observed a decreased nodal efficiency in the structural networks of TS children in several 

default-mode regions (hippocampus and inferior parietal lobules). These regions represent core 

components of the DMN, which has been reported to be highly related to tic generation in adult TS 

patients (Neuner, et al., 2014). Cui et al. (Cui, et al., 2014) found that TS children showed significantly 

decreased ALFF in the inferior parietal lobules (IPL). Furthermore, functional abnormalities in the IPL 

have been described before (Swick, et al., 2011). Hippocampal volume alterations were also been 

found in TS boys and structural changes in hippocampus might indicate an involvement of 

temporolimbic pathways of the CSTC in the syndrome (Ludolph, et al., 2006). Previous studies 

combined DTI tractography with resting-state functional connectivity MRI to demonstrate that 

resting-state functional connectivity could reflect structural connectivity in the DMN (Greicius, et al., 

2009). Thus, our results are in agreement with these previous findings. 

Thirdly, reduced nodal efficiencies were observed in several frontal regions (IFGoperc, IFGtriang) that 

are key components for language processing. The IFGoperc and IFGtriang, comprising Broca’s area, 

especially in the left hemisphere, are known to be important for language synthesis. Structural and 

functional changes in the inferior frontal gyrus (IFG) regions in TS patients have been reported in 

previous neuroimaging studies (Ganos, et al., 2014; Wittfoth, et al., 2012). Apart from playing a key 

role in tic inhibition (Ganos, et al., 2014), the left IFG has also been associated with aspects of 



language processing (Liakakis, et al., 2011). Particularly, several previous studies have indicated that 

the left IFG (eg. IFGoperc.L and IFGtriang.L) are important for elaborated semantic inhibition (Zhu, et 

al., 2013; Zhu, et al., 2009). In this study, 28 of 44 TS patients exhibited vocal tic (including humming, 

grunting, or saying actual words, usually in an explosive fashion and the words may involve curses), 

which supports for our findings of the abnormalities in the language areas. 

Finally, we observed reduced nodal efficiencies in the bilateral superior parietal lobe, which is related 

to sensorimotor association functions. A previous study (Wolpert, et al., 1998) suggests that the 

superior parietal lobe is critical for sensorimotor integration, by maintaining an internal representation 

of the body's state. Buse et al. (Buse, et al., 2015) found decreased prepulse inhibition related BOLD 

activity in TS boys in the superior parietal cortex. Bohlhalter et al. (Bohlhalter, et al., 2006) showed 

that at the beginning of tic action, significant fMRI activities were found in sensorimotor areas 

including the superior parietal lobule bilaterally and cerebellum. Morphological studies also reported 

increases in GM volumes in left superior parietal lobule (Liu, et al., 2011) or cortical GM volumes in 

superior parietal lobule showing significant correlations with clinical scores (Wittfoth, et al., 2012). 

These findings suggest that structural and functional changes exist in the sensorimotor related areas in 

patients with TS, which provides support for our findings. 

Of note, many TS children were reported to also have fine motor control and visual-motor integration 

impairment. A neuropsychological model of visual-motor integration skill was proposed and tested in 

50 TS children and 23 unaffected age-matched control children (Schultz, et al., 1998), which suggests 

that the integration of visual inputs and organized motor output is a specific area of neuropsychological 

weakness among TS children. Our studies revealed regional efficiencies decreased in visual and motor 

related areas in TS children. This finding reflects a less optimal balance between local specialization 



and global visual-motor integration in structural networks, which may weaken visual-motor integration 

functioning in TS children. 

 

4.4 Decreased connectivity of parieto-occipital association areas in TS 

We observed aberrant structural connectivity in two networks in TS patients. One network with 

decreased connection strengths was primarily composed of the bilateral occipital gyrus, superior 

parietal gyrus and right cuneus. Decreased structural connectivity means biologically the decreased 

WM connection probabilistic between regions, and decreased WM connection probability or fractional 

anisotropy (FA) values are usually associated with disease pathology (Cao, et al., 2013). Superior 

occipital gyrus follows the superior edge of the lobe and merges with cuneus on the medial surface of 

the occipital lobe, and this link connecting the superior occipital gyrus to the cuneus showed the 

significantly decreased structural connection strength in NBS analysis. At the level of the 

parieto-occipital fissure, the superior parietal gyrus is linked to the superior occipital gyrus by a 

transitional area called arcus parieto-occipitalis, and this link also showed significantly decreased 

structural connection strength.  

Previous studies using structural MRI in TS provided some evidence for parieto-occipital anatomical 

abnormalities. TS children (5–18 years) were found to have larger cortical volumes in parieto-occipital 

regions (Peterson, et al., 2001) compared to unaffected children, which also suggest a possible 

connection that increased volumes of parieto-occipital cortex are significantly correlated with tic 

severity. However, at present, it is unclear whether, or how, larger parieto-occipital volumes in TS 

children affect the abnormal structural connectivity in those regions. In addition to volumetric 

approaches, DTI has also been used to investigate, indirectly, the microstructural properties of the 



regions in TS. The previous diffusion MRI studies found decreased FA and increased MD in superficial 

WM regions of parieto-occipital cortex in TS children (Wen, et al., 2016a)	 and suggested that a 

disrupted myelination mechanism underlie the abnormalities. Increased MD value or decreased FA 

values could reflect reduced myelination, fewer axons, or atypical organization of axons within the 

WM tract. Considering the somewhat consistent finding of increased cortical volumes, increased MD 

value or decreased FA value in TS children, those microstructural differences would likely coincide 

with altered cortical volumes. Our study made a meaningful exploration of this issue, providing 

interesting and potentially valuable information about the regional morphology, WM properties and 

whole-brain structural networks in TS children.  

 

4.5 Decreased connectivity of precuneus, paracentral lobule in TS 

The second network component with decreased WM connections in TS primarily involved the 

precuneus and paracentral lobule. As the precuneus is a part of the superior parietal lobule forward of 

the occipital lobe (cuneus), the precuneus linking the superior parietal gyrus and paracentral lobule 

were two important connections with significantly decreased connectivity in our study. The precuneus 

has been suggested to be the hub of the DMN that is activated during "resting consciousness" in which 

people do not engage intentionally in sensory or motor activity (Cavanna, 2007). Bullmore et al. also 

proposed that its functions link to its role as a central and well connected "small-world network" hub 

between parietal and prefrontal regions (Bullmore and Sporns, 2009). Furthermore, our result showed 

that the precuneus is also a structural hub and its structural connection with parietal regions is 

significantly disrupted in TS children. The previous study (Wen, et al., 2016a) also reported 

significantly reduced FA value or increased RD value in precuneus WM, which reveals microstructural 



abnormalities in this region and is in line with our finding. 

Of note, the precuneus, inferior parietal gyrus (IPL), median cingulate (DCG) and frontal cortex are 

key components in the ‘fronto-parietal’ network. A previous study (Church, et al., 2009) revealed that 

pediatric TS patients showed immature and anomalous patterns of functional connectivity, primarily in 

the fronto-parietal network, which is important for online adaptive control. Our results also revealed 

regional efficiencies decrease in the IPL and frontal cortex. The disrupted structural connectivity in 

fronto-parietal network may lead the functional underconnectivity (Church, et al., 2009), which could 

affect the communication and coordination of activity between the cerebellum, frontal cortex and 

parietal cortex, related to distinctive symptoms in different developmental disorders. Furthermore, a 

previous WM structural networks study (Wen, et al., 2017b) also found that the nodal topological 

properties of precuneus and paracentral lobule were discriminative features for TS classification, which 

could be used as biomarkers for TS pathology . 

 

4.6 The MKL framework combining complementary network-based features has stronger 

classifying ability 

Identification of objective neuroimaging biomarkers is of great interest as it could, ultimately, assist 

clinical decisions for individual patients. To date, TS diagnosis mainly depends on the qualitative 

description of symptoms as there is no hallmark imaging abnormality in routine examination or other 

reliable diagnostic biomarkers (Felling and Singer, 2011). Specially, network-based biomarkers can 

capture the role of brain network structure in a phenotype and study the role of known subsystems for a 

given disorder, thereby defining new potential beneficial neuroimaging biomarkers. With this 

consideration, a previous study (Greene, et al., 2016) used resting state functional connectivity (RSFC) 



MRI to construct the RSFC networks by calculating the correlation (r value) of each ROI’s time-course 

with every other ROI’s time-course. The functional connections (r value) were directly regarded as 

features and fed into SVM for distinguishing TS children from healthy children. The peak accuracy 

reached 74% with sensitivity of 76% and specificity of 71%. Nevertheless, since the human brain is a 

very complex and rich network, solely relying on low-level original connectivity values as features 

cannot capture high-level topological properties of this network. In addition, the conventional 

single-kernel SVM used for classification cannot optimize kernel weights of different types of features, 

therefore, cannot reflect the different discriminative ability of features for classification. 

In this study, we combined multiple levels of original topological properties of WM structural networks, 

and then used the MKL framework to fuse the complementary network-based features. We 

implemented feature selection algorithm on the original features without between-group statistical 

comparison to select significantly altered features firstly, which can ensure SVM results have good 

generalization ability as in our previous study (Wen, et al., 2017a). The classification performances 

with higher accuracy, sensitivity and specificity in our study than the previous study (Greene, et al., 

2016) have shown that the integration of multiple kernels not only increases the classification accuracy 

but also enhances the interpretability of the results. For each feature, we also counted its selection 

frequency by SVM-RFE method in nested CV procedure, to reveal the discriminative features for 

classification. Our results showed that the features with significant between-group difference might 

differ from the features that were highly discriminative in distinguishing two groups. Therefore, we 

combined between-group statistical comparison and SVM based individual classification to provide 

complementary information for assisting clinical TS diagnosis.   

 



5. Conclusion 

In the present study, we used probabilistic diffusion tractography and graph theoretical analyses to 

investigate TS-related changes in the topological organization of WM structural networks. We found 

that, compared with healthy children, despite TS children showed small-world property, they had a 

reduced network efficiency in their brain networks, with the most pronounced reduction observed in 

the visual, default-mode, language and sensorimotor association regions. In addition, two separate 

network components showing significantly decreased connection strengths were identified by NBS 

analysis,	 primarily composed of the parieto-occipital cortex, precuneus and paracentral lobule. 

Importantly, to enhance our contributions to clinical application, we employed the MK-SVM 

frameworks to fuse multiple levels of network topological properties as features for accurate 

classification of individuals, achieving high accuracy of 86.47%. Together, our results suggest a 

disrupted integrity in the large-scale brain systems in TS and provide structural insights into the brain 

networks of TS children. The present study may extend our understanding of how structural disruptions 

of neuronal circuits link to the pathophysiology of TS. The most discriminative network topological 

features for classification will be potential quantitative neuroimaging biomarkers for assisting the 

clinical TS diagnosis. 
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Figure Legends 

 

Figure 1. The flowchart for constructing the WM structural network using diffusion MRI data. 

 

Figure 2. The nested cross-validation strategy used in our study. (A) The flow chart of the nested 

CV strategy. The feature selection is implemented on the training set, rather than entire dataset. The 

performance is evaluated on independent test set in outer CV, which may avoid the overfitting problem. 

(B) The detailed explanation of the inner CV. In the inner CV, the training set is further divided into 

estimation set and validation set, the SVM parameters was estimated using a grid search method on the 

estimation set, the validation set is used to assess the optimal SVM parameters. 

 

Figure 3. Differences in topological properties of WM structural networks between TS patients 

and controls. Global metrics of WM structural networks were quantified in controls and TS patients 

with different probability thresholds. Data points marked with a star indicate a significant group 

difference (p < 0.05) in the global network metric under a corresponding threshold. Both TS patients 

and controls showed a small-world organization of WM networks characterized by a γ > 1 and λ ≈ 1. 

However, compared with controls, TS patients had significantly decreased Cp, l, global and local 

efficiency, increased Lp, γ and σ in the WM networks for a series of considered thresholds. HC denotes 

Healthy controls. 

 

Figure 4. Distribution of hub regions in the WM structural networks of the control and TS groups 

and nodes with decreased efficiency in TS children. (a,b) 3D representations of the hub distributions 



in the control (a) and TS (b) groups. The hub nodes are shown in blue and red with node sizes 

indicating their nodal efficiency values. (c) The disrupted nodes with the significant between-group 

differences in the regional efficiency are shown in yellow, and the node sizes indicate the t values in 

t-test. The brain graphs were visualized by using BrainNet Viewer software 

(http://www.nitrc.org/projects/bnv/). HC denotes Healthy controls. For the abbreviations of nodes, see 

Table 2. 

 

Figure 5. Two separate networks that show decreased structural connection strengths in TS 

children. Two separate networks showing significantly decreased connectivity were identified in TS 

group compared with control group (p values < 0.05, NBS corrected). The red nodes and edges 

represent network 1, primarily comprising the right parieto-occipital, precuneus and cuneus regions. 

The blue nodes and edges represent network 2, involving the left parieto-occipital, precuneus and 

bilateral paracentral lobule regions. In the 3D surface view of the components, the edge widths 

represent the emerging percentage of the WM connections under all 37 thresholds. The nodes and 

connections were mapped onto the cortical surfaces using BrainNet Viewer software 

(http://www.nitrc.org/projects/bnv/). For detailed information of the WM connections in the significant 

NBS components, see Table 6. 

 

 

Figure 6. Results of TS classification based on different types of features. (A) ROC curves of the 

classification results, which demonstrate the superior performance of using combined features over a 

single type of features. (B) Brain regions with nodal efficiencies identified as discriminative features 



for classification using MKL. The brain graphs were visualized by volume to surface function in 

BrainNet Viewer software. The regional colors with progressive shade (from blue to red) indicate the 

frequency of being selected by the nested CV procedure. Abbreviation is the same as Table 2. 

 



Table 1. Demographic variables and clinical characteristics of TS patients and normal controls. YGTSS 
= Yale Global Tic Severity Scale; ADHD = attention deficit hyperactivity disorder; OCD = obsessive 
compulsive disorder; M = male; F = female. * = two-sample t test. † = c2 (chi-square) test. 

Characteristics TS(n=44) HC(n=41) p-value 
Sex 33M/11F 26M/15F 0.247† 
Age 8.98±3.1114 10.27±3.18 0.062* 

Concurrent ADHD 7 No - 
Concurrent OCD No No - 

YGTSS 51.20±19.38 - - 

Duration (years) 1.73±1.44 - - 

Head Motion 

Translation 
(mm) 

x  0.049±0.045 0.051±0.039 0.804* 
y 0.154±0.058 0.163±0.032 0.393* 
z 0.397±0.161 0.362±0.122 0.263* 

Euclidian distance (mm) 0.406±0.111 0.423±0.133 0.546* 

Rotation 
(10-1´radians) 

x 0.023±0.023 0.029±0.025 0.196* 
y 0.010±0.009 0.013±0.009 0.068* 
z 0.010±0.007 0.010±0.006 0.558* 

Mean displacement 
(mm) 

abs 0.810±0.199 0.820±0.133 0.768* 
rel 0.299±0.054 0.300±0.056 0.974* 

p>0.05 indicates age, gender and all head motion parameters have no significantly between-group 
differences and well matched. abs: absolute; rel: relative. 
  



Table 2. Cortical and subcortical regions of interest defined in our study. 

Regions Abbr. Regions Abbr. 
Precentral gyrus PreCG Lingual gyrus LING 

Superior frontal gyrus, dorsolateral SFGdor Superior occipital gyrus SOG 

Superior frontal gyrus, orbital part ORBsup Middle occipital gyrus MOG 

Middle frontal gyrus MFG Inferior occipital gyrus IOG 

Middle frontal gyrus orbital part ORBmid Fusiform gyrus FFG 

Inferior frontal gyrus, opercular part IFGoperc Postcentral gyrus PoCG 

Inferior frontal gyrus, triangular part IFGtriang Superior parietal gyrus SPG 

Inferior frontal gyrus, orbital part ORBinf Inferior parietal, but supramarginal and angular gyri IPL 

Rolandic operculum ROL Supramarginal gyrus SMG 

Supplementary motor area SMA Angular gyrus ANG 

Olfactory cortex OLF Precuneus PCUN 

Superior frontal gyrus, medial SFGmed Paracentral lobule PCL 

Superior frontal gyrus, medial orbital ORBsupmed Caudate nucleus CAU 

Gyrus rectus REC Lenticular nucleus, putamen PUT 

Insula INS Lenticular nucleus, pallidum PAL 

Anterior cingulate and paracingulate gyri ACG Thalamus THA 

Median cingulate and paracingulate gyri DCG Heschl gyrus HES 

Posterior cingulate gyrus PCG Superior temporal gyrus STG 

Hippocampus HIP Temporal pole: superior temporal gyrus TPOsup 

Parahippocampal gyrus PHG Middle temporal gyrus MTG 

Amygdala AMYG Temporal pole: middle temporal gyrus TPOmid 

Calcarine fissure and surrounding cortex CAL Inferior temporal gyrus ITG 

Cuneus CUN   

 
 
  



Table 3.Group comparisons of AUC values (%) of global network properties. 

 Sp Eglob Eloc Lp Cp λ  γ σ 
HC 3.08±0.18 0.18±0.01 0.2±0.02 141.88±8.91 0.62±0.05 11.8±0.28 82.78±6.61 63.13±4.76 

TS 2.99±0.3 0.17±0.02 0.2±0.03 135.78±13.31 0.6±0.07 11.68±0.32 85.02±11.89 65.69±10.42 

p value 0.11 0.122 0.498 0.016* 0.17 0.061 0.294 0.154 

Two sample t-tests were used to determine the differences in the global network properties between 
groups. Values were the AUC values (mean ± SD) of global network properties in each group.*p < 
0.05. 
  



Table 4. Hub regions of WM networks in control and TS groups. Enodal represents the AUC value (%) of 
the nodal efficiency across thresholds. 

HC   TS   

Hub regions Category mean Enodal Hub regions Category mean Enodal 

ACG.L Cingulate 0.215 ACG.L Cingulate 0.211 
   ACG.R Cingulate 0.206 

DCG.L Cingulate 0.222 DCG.L Cingulate 0.216 
DCG.R Cingulate 0.226 DCG.R Cingulate 0.222 
PCG.L Cingulate 0.219 PCG.L Cingulate 0.211 
PCG.R Cingulate 0.222 PCG.R Cingulate 0.215 
CUN.L Occipital 0.232 CUN.L Occipital 0.222 
CUN.R Occipital 0.233 CUN.R Occipital 0.227 
SOG.L Occipital 0.223 SOG.L Occipital 0.214 
SOG.R Occipital 0.218 SOG.R Occipital 0.209 
MOG.L Occipital 0.216 MOG.L Occipital 0.207 
PCUN.L Parietal 0.233 PCUN.L Parietal 0.223 
PCUN.R Parietal 0.232 PCUN.R Parietal 0.225 

 

  



Table 5. Brain regions with significant between-group differences in nodal efficiency. Enodal represents 
the AUC values (mean ± SD) (%) of the nodal efficiency of each group. 

  Enodal  

Regions Category HC TS p value 

IFGoperc.L Frontal 0.178±0.016 0.169±0.025 0.035 
IFGtriang.L Frontal 0.181±0.016 0.171±0.025 0.026 

HIP.L Temporal 0.159±0.015 0.151±0.019 0.024 
LING.L Occipital 0.191±0.015 0.183±0.023 0.044 
IOG.L Occipital 0.19±0.015 0.18±0.022 0.022 
IOG.R Occipital 0.166±0.014 0.156±0.02 0.012 
FFG.L Temporal 0.204±0.015 0.194±0.024 0.024 
SPG.L Parietal 0.195±0.017 0.182±0.03 0.019 
SPG.R Parietal 0.165±0.019 0.154±0.03 0.046 
IPL.L Parietal 0.21±0.018 0.198±0.031 0.041 

SMG.L Parietal 0.183±0.017 0.172±0.028 0.028 

 
  



Table 6. The strengths, percentages, and frequencies of decreased NBS structural connections within 
two separate white matter networks across all 37 thresholds. 

Connection Connection strengths Threshold Range Percentage 

 Control TS  (frequency) 

Network 1:     

Cuneus_R « Occipital_Sup_R 0.177±0.016 0.166±0.013 0.02-0.05, 

0.0575-0.6, 

0.08-0.1 

64.86%(24) 

Occipital_Sup_R « Occipital_Mid_R 0.174±0.017 0.163±0.019 0.02-0.05, 

0.0575-0.6, 

0.08-0.1 

64.86%(24) 

Occipital_Sup_R « Parietal_Sup_R 0.064±0.013 0.058±0.017 0.02-0.05 35.14%(13) 

Lingual_R « Occipital_Inf_R 0.050±0.010 0.040±0.010 0.01-0.0125, 

0.0575-0.6 

10.81%(4) 

Occipital_Mid_R « Occipital_Inf_R 0.076±0.011 0.066±0.014 0.0575-0.6 5.41%(2) 

Parietal_Sup_R « Precuneus_R 0.063±0.009 0.058±0.014 0.05 2.70%(1) 

Network 2:     

Parietal_Sup_L « Precuneus_L 0.076±0.011 0.069±0.014 0.015-0.0175 5.41%(2) 

Precuneus_L « Paracentral_Lobule_L 0.042±0.010 0.035±0.008 0.015-0.0175 5.41%(2) 

Paracentral_Lobule_L « Paracentral_Lobule_R 0.031±0.010 0.026±0.008 0.015-0.0175 5.41%(2) 

Occipital_Mid_L « Parietal_Sup_L 0.030±0.010 0.026±0.006 0.0175 2.70%(1) 

Connection strengths: mean (±SD) values of the connection strength (probability) in each group. 

Threshold Range/Percentage (frequency): the values represent the threshold range, the emerging 

percentage and times of the WM connections under all 37 thresholds (0.01–0.1, interval = 0.0025) in 

which the NBS components were statistically significant. For the abbreviations of the regions, see 

Table 2. 

	 	



Table 7. Classification performances of all methods in percentage. 

Feature Accuracy(%) Sensitivity(%) Specificity(%) ROC AUC(%) 
Global properties 63.24±3.54 64.32±5.22 62.07±5.57 64.09±2.87 
Nodal efficiencies 60.76±3.82 65.11±4.96 56.10±7.51 62.18±3.18 

Pair-wise SC 78.18±2.82 67.95±6.91 89.15±3.01 88.77±1.57 
Combining features 86.47±3.71 85.57±4.38 87.44±4.13 92.62±3.35 

	
	 	



Table 8. The top ten features for each kind of network properties selected by the nested CV procedure 
as the most discriminative for TS classification. 

Global feature Nodal feature Edge feature 

Property Counts Freq Region Counts Freq Connection Counts Freq 

λ (T=0.09)* 198 99.0% IOG.R* 194 97.0% ORBinf.R-PreCG.R 200 100.0% 

Cp (T=0.045)* 190 95.0% PUT.R 188 94.0% IFGtriang.R-MFG.R 200 100.0% 

σ (T=0.0575)* 190 95.0% HIP.L* 175 87.5% PCG.L-INS.L 197 98.5% 

Eglob (T=0.085)* 156 78.0% IFGtriang.L* 150 75.0% CUN.R-SOG.R* 192 96.0% 

σ (T=0.075)* 155 77.5% SPG.L* 123 61.5% CUN.R-DCG.R 190 95.0% 

Cp (T=0.0425)* 154 77.0% IOG.L* 118 59.0% DCG.R-PCG.R 189 94.5% 

λ (T=0.095)* 136 68.0% FFG.L* 108 54.0% CAL.L-OLF.R 188 94.0% 

Eloc (T=0.045)* 130 65.0% AMYG.R 107 53.5% MOG.L-SPG.L* 185 92.5% 

g (T=0.095)* 130 65.0% IFGoperc.L* 102 51.0% SOG.R-ORBsupmed.L 185 92.5% 

Eloc (T=0.04)* 128 64.0% SPG.R* 85 42.5% SOG.R-MOG.R* 184 92.0% 

Counts: the counts of each feature selected by our proposed method over the 20 rounds nested 10-fold 
CV. Freq: the frequency of being selected, equals Counts/total times in 20 rounds nested 10-fold CV 
(200 times). *: Feature marked with a star (*) indicates it was significantly altered in between-groups 
statistical comparison. 
	



	
Figure 1. The flowchart for the construction of the functional structural network by rs-fMRI data. 
  



 
 
	
	

	
Figure 2. The flow chart of the nested CV procedure in our classification framework. 

  



 

	

	
Figure 3. Differences in topological properties of WM structural networks between TS patients and controls. 
Global metrics of WM structural networks were quantified in controls and TS patients with different probability 
thresholds. Data points marked with a star indicate a significant group difference (P < 0.05) in the global net- 
work metric under a corresponding threshold. Both TS patients and controls showed a small-world organization 
of WM networks characterized by a ! > 1 and $ ≈ 1. However, compared with controls, TS patients had 
significantly decreased &', $, global and local efficiency, increased (', !, and ) in the WM networks for a series 
of considered thresholds. HC, healthy controls.  
  



 

 
 
Figure 4. Distribution of hub regions in the WM structural networks of the control and TS groups and nodes with 
decreased efficiency in TS children. (a,b) 3D representations of the hub distributions in the control (a) and TS (b) 
groups. The hub nodes are shown in blue and red with node sizes indicating their nodal efficiency values. (c) The 
disrupted nodes with the significant between-group differences in the regional efficiency are shown in yellow, 
and the node sizes indicate the t values in t test. The brain graphs were visualized by using BrainNet Viewer 
software (http://www.nitrc.org/projects/bnv/). HC, healthy controls. For the abbreviations of nodes, see Table II.  
  



 

 
Figure 5. Two separate networks that show decreased structural connection strengths in TS children. Two separate 
networks showing significantly decreased connectivity were identified in TS group com- pared with control group 
(P values < 0.05, NBS corrected). The red nodes and edges represent network 1, primarily comprising the right 
parieto-occipital, precuneus, and cuneus regions. The blue nodes and edges represent network 2, involving the 
left parieto-occipital, precuneus, and bilateral paracentral lobule regions. In the 3D surface view of the 
components, the edge widths represent the emerging percentage of the WM connections under all 37 thresholds. 
The nodes and connections were mapped onto the cortical surfaces using BrainNet Viewer software (http:// 
www.nitrc.org/projects/bnv/). For detailed information of the WM connections in the significant NBS 
components, see Table VI.  
 
 
	 	



	
Figure 6. Results of TS classification based on different types of features. (A) ROC curves of the classification 
results, which demonstrate the superior performance of using combined features over a single type of features. 
(B) Brain regions with nodal efficiencies identified as discriminative features for classification using MKL. The 
brain graphs were visualized by volume to surface function in Brain- Net Viewer software. The regional colors 
with progressive shade (from blue to red) indicate the frequency of being selected by the nested CV procedure. 
Abbreviation is the same as Table II.  
 
	


