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Effects of inaccuracies in arterial path
length measurement on differences in MRI
and tonometry measured pulse wave
velocity
Jonathan R Weir-McCall1 , Faisel Khan1*, Deirdre B Cassidy1, Arsh Thakur1, Jennifer Summersgill1,
Shona Z Matthew1, Fiona Adams1, Fiona Dove1, Stephen J Gandy2, Helen M Colhoun3, Jill JF Belch1

and J Graeme Houston1*

Abstract

Background: Carotid-femoral pulse wave velocity (cf-PWV) and aortic PWV measured using MRI (MRI-PWV) show
good correlation, but with a significant and consistent bias across studies. The aim of the current study was to
evaluate whether the differences between cf.-PWV and MRI-PWV can be accounted for by inaccuracies of currently
used distance measurements.

Methods: One hundred fourteen study participants were recruited into one of 4 groups: Type 2 diabetes melltus
(T2DM) with cardiovascular disease (CVD) (n = 23), T2DM without CVD (n = 41), CVD without T2DM (n = 25) and a
control group (n = 25). All participants underwent cf.-PWV, cardiac MRI and whole body MR angiography(WB-MRA).
90 study participants also underwent aortic PWV using MRI. cf.-PWVEXT was performed using a SphygmoCor device
(Atcor Medical, West Ryde, Australia). The true intra-arterial pathlength was measured using the WB-MRA and then
used to recalculate the cf.-PWVEXT to give a cf.-PWVMRA.

Results: Distance measurements were significantly lower on WB-MRA than on external tape measure (mean diff = −85.
4 ± 54.0 mm,p < 0.001). MRI-PWV was significantly lower than cf.-PWVEXT (MRI-PWV = 8.1 ± 2.9 vs. cf.-PWVEXT = 10.9 ± 2.
7 ms−1,p < 0.001). When cf.-PWV was recalculated using the inter-arterial distance from WB-MRA, this difference was
significantly reduced but not lost (MRI-PWV = 8.1 ± 2.9 ms−1 vs. cf.-PWVMRA 9.1 ± 2.1 ms−1, mean diff = −0.96 ± 2.52 ms
−1,p = 0.001). Recalculation of the PWV increased correlation with age and pulse pressure.

Conclusion: Differences in cf.-PWV and MRI PWV can be predominantly but not entirely explained by inaccuracies
introduced by the use of simple surface measurements to represent the convoluted arterial path between the carotid
and femoral arteries.
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Background
Arteriosclerosis is the process of arterial stiffening that
has significant pathophysiological implications and is
strongly associated with cardiovascular events [1]. It is
predominantly a product of age and pulse pressure,
reflecting the effects of repetitive strain on the elastic fi-
bers of the arterial wall [2]. Pulse wave velocity is a well
established marker of arterial stiffening with important
prognostic implications, and as a result of such has now
been incorporated into management guidelines for the
treatment of hypertension [3]. Carotid femoral pulse
wave velocity (cf-PWV) is the most commonly used
technique for the measurement of PWV, however it re-
lies on the use of surface measures of distance to repre-
sent the convoluted path of the underlying arterial tree,
introducing potential errors in PWV calculation.
Use of Magnetic Resonance Imaging (MRI) for the

measurement of PWV (MRI-PWV) has become increas-
ingly prominent due to its ability to measure directly the
central aortic PWV coupled to recent advances in the
technique allowing high temporal resolution imaging
and reduced image acquisition time [4]. The two tech-
niques correlate well with each other, but with a signifi-
cant and consistent bias between the two techniques
across studies with cf.-PWV consistently being approxi-
mately 1.6–1.7 ms−1 higher than MRI-PWV [5, 6]. This
is consistent with observations of 1.9 ms−1 difference be-
tween the aortic pulse wave velocity measured invasively
and the cf-PWV, however this previous study also used a
direct carotid-femoral measurement which is known to
overestimate distance travelled and thus PWV by ap-
proximately 25% [7]. Previous work has demonstrated
both a clear discrepancy in the distances measured using
a tape measure and the actual arterial pathlength trav-
elled by the pulse wave due to the effects of age and
obesity confounding both arterial length and body con-
tour measurements [8]. However the muscular and elas-
tic properties of the aorta and its branch vessels is also
known to change throughout their length which in turn
affects their stiffness and by extension PWV [6, 9].
It is thus not currently clear whether the differences in

PWV between the two techniques are due to inaccur-
acies in distance measurement in cf-PWV, the lower
temporal resolution of MRI-PWV or the changing elas-
tic properties throughout the arterial tree. The effects of
this bias are also not clear. The aim of the current study
was therefore to evaluate whether the differences be-
tween cf.-PWV and MRI-PWV in a mixed cohort of
patients with and without diabetes mellitus and symp-
tomatic cardiovascular disease can be accounted for by
inaccuracies of currently used distance measurements
and whether recalculation of cf.-PWV using accurate
distance measurements results in improved detection of
cardiovascular disease.

Methods
Participants
The study was a single centre observational sub-study of
the multicentre SUMMIT (SUrrogate markers for
Micro- and Macrovascular hard endpoints for Innovative
diabetes Tools) study which was designed to analyse cardio-
vascular biomarkers in diabetes. Recruitment criteria, strat-
egy and study protocol have been described in detail
previously [10, 11], but in summary, subjects were recruited
and categorised into 4 groups based on their history of type
2 diabetes and cardiovascular disease (CVD) as follows:
Group 1: Type 2 diabetes mellitus (T2DM) with a prior
clinical diagnosis of cardiovascular disease that included
coronary artery disease (CAD), cerebrovascular disease
and/or lower extremity arterial disease (LEAD); Group 2:
Type 2 diabetes mellitus with no clinical evidence of cardio-
vascular disease; Group 3: Absence of diabetes mellitus with
clinical evidence of CAD, cerebrovascular disease and/or
LEAD; Group 4: Healthy controls, with no biochemical
evidence of diabetes mellitus (see below) and no clinical evi-
dence of cardiovascular disease. All participants had a de-
tailed clinical history and examination performed, bloods
taken for renal function, cholesterol and HbA1c, and under-
went whole body magnetic resonance angiography (MRA),
cardiac magnetic resonance imaging (CMR) and cf.-PWV.

Carotid-femoral pulse wave velocity
Carotid-femoral PWV was measured using a SphygmoCor
device (Atcor Medical, West Ryde, Australia). A blood
pressure (BP) cuff was attached to the left arm, and three
electrocardiogram (ECG) electrodes (lead I) were attached.
External distance measurements were performed using a
tape measure, and a proximal (carotid to sternal notch)
and distal (sternal notch to umbilicus and umbilicus to
femoral) measure with final distance used for calculation
being the proximal distance subtracted from the distal dis-
tance. After resting for 5 min, the BP was measured three
times at one-minute intervals, and the mean value of the
two final measurements was recorded. The carotid and
femoral pulses were captured using the SphygmoCor de-
vice with cf.-PWV automatically calculated as the mea-
sured distance divided by the differences in time between
the R wave of the ECG and the foot of the carotid and
femoral pulse curves. For the remainder of the paper, cf.-
PWV calculated using the external tape measure distance
shall be referred to as cf.-PWVEXT.

Magnetic resonance imaging
Images were acquired on a 32 RF receiver channel, 3
Tesla MRI scanner (Magnetom Trio, Siemens, Erlangen,
Germany). For whole body coverage, a combination of
six RF coils including head matrix, neck matrix, spine
matrix, two body matrix and peripheral angiography
phased array RF surface coils were used. Subjects where
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placed supine, head first into the magnet bore. The im-
aging protocol was carried out in 3 phases: i) MRA of
the thoracic and neck, and distal lower limbs, ii) CMR
including late gadolinium enhancement (LGE) and iii)
MRA of the abdomen, pelvis and proximal lower limb.

Whole body magnetic resonance angiography protocol
Whole body magnetic resonance angiography (WB-
MRA) was performed using 4 overlapping data sets cov-
ering: head, neck and thorax (station 1), abdomen and
pelvis (station 2), upper legs (stations 3) and lower legs
(station 4). All stations were acquired using a coronal
spoiled FLASH (Fast Low Angle Shot) sequence (repeti-
tion time TR = 2.6–3.47 ms; echo time TE = 0.96–
1.21 ms; flip angle = 16–37°; pixel area = 1.1–1.5 mm2

and slice thickness = 1–1.4 mm, slight variation accord-
ing to station and participant body habitus). [12].
First, station 1 and 4 pre-contrast images were acquired.

Following this an injection of 10 ml of 0.5 M Gadoterate
meglumine (Guerbet, Villipinte, France) followed by a
20 ml saline flush were administered at a rate of 1.5 ml/s.
Acquisition of station 1 was triggered when the contrast
reached the aortic arch (timed using a fluoro sequence
through the aortic arch), following which three sequential
acquisitions of station 4 were performed. Cardiac MRI
was performed after this first injection (see next section
for details) before stations 2 and 3 image acquisition
began. After the cardiac acquisition was completed, pre
contrast images were acquired of both stations following
which post-contrast images were acquired after an injec-
tion of 15 ml gadoterate meglumine and 20 ml saline
flush, both administered at a rate of 1.5 ml/s.
The 3D WB-MRA datasets were viewed offline

(Carestream PACS Client Suite Version 10.1 sp1,
Rochester, NY, USA). An arterial centreline was drawn be-
tween the bifurcation of the right common carotid artery
and the right common femoral artery. From this a curved
multiplanar reformat of the vessel was generated. From
this the distance from the carotid bifurcation to the centre
of the aortic arch was measured (proximal distance) (See
Fig. 1). The distance from the common carotid to the
common femoral artery was measured, from which the
aortic arch to the common femoral artery bifurcation dis-
tance (distal distance) was calculated as the carotid to arch
distance subtracted from the total distance, with these
representing the measures taken using the external tape
measure technique. The distances were measured twice
and an average of the two used for subsequent analysis.
This distance was then used to recalculate the cf.-PWV
using MRA measured distance (distal – proximal distance)
divided by the carotid-femoral time interval produced by
the SphygmoCor device. For the remainder of the article,
the cf.-PWV calculated using the MRA derived arterial dis-
tance shall be referred to as cf.-PWVMRA.

Fig. 1 Curved multiplanar reformat of the arterial centerline from the
bifurcation of the common carotid artery to the bifurcation of the
common femoral artery with A- Right common carotid to aorta, and
B- Right common carotid to common femoral artery, distances
measured
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Cardiac magnetic resonance (CMR) protocols
Cardiac magnetic resonance (CMR) imaging utilised a
spine matrix and six-element body array matrix RF coils.
TurboFLASH two-chamber, four-chamber and short axis
localiser, and two-chamber and four-chamber cine im-
ages were acquired. Left ventricular assessment involved
the acquisition of a horizontal long axis, vertical long
axis and stacked short axis cine images using a retro-
spectively gated TrueFISP sequence (repetition time
TR = 3.4 ms; echo time TE = 1.48 ms; flip angle = 50–60°;
pixel area = 1.4 mm by 1.9 mm; slice thickness = 6 mm;
inter-slice gap = 4 mm). Left ventricular mass (LVM),
end diastolic volume (EDV), end systolic volume (ESV),
stroke volume (SV) and ejection fraction (EF) were cal-
culated from the short axis stack.

MRI pulse wave velocity measurement
A retrospective ECG-gated gradient-echo pulse sequence
with velocity encoding was applied to measure the
through plane flow at two predefined locations in the as-
cending and abdominal aorta. The first slice was posi-
tioned axial through the aortic arch at the level of the
pulmonary bifurcation, and the second slice was placed
axial through the descending aorta immediately prox-
imal to the renal arteries.
Imaging parameters included the following: echo time

of 4.83 ms, repetition time of 14 ms, flip angle 20°, slice
thickness of 8 mm, field of view at 350 mm, matrix size
256 × 256. The temporal resolution was optimised to en-
sure that 128 phases per cardiac cycle were obtained and a
VENC of 150 cm/s. To determine the distance between
the two aortic slices, a 2D gradient echo FLASH (fast low
angle shot) was acquired of the aorta in a ‘candy stick’
double-oblique orientation. TR/TE 40/1.2 ms; flip angle
15°, slice thickness of 8 mm, 23 cardiac phases, 1 averages,
a pixel size of 1.5 × 1.5 mm2, bandwidth of 475 Hz/ pix
and breath hold scan time of average 9 s. Aortic PWV was
calculated from the MRI images using the transit time
method [4]. Image analysis was performed by a single
observer using Segment version 1.9 R4339 (http://seg-
ment.heiberg.se) [13], blinded to the clinical status of the
subjects. The up-slope of the arriving pulse wave at each lo-
cation was calculated from the flow curves. The distance
was measured along the aorta between the two analyses
planes using candy stick FLASH and the time delay calcu-
lated as the time delay between the arrival of the foot of the
pulse wave at the ascending aorta and abdominal aorta.

Statistical methods
Descriptive statistics were used for the analysis of the
demographic and clinical features of the cohorts with
data expressed as mean ± standard deviation (SD) for
continuously distributed variables, and n(%) for nominal
data.. Normality of distribution was tested using Shapiro

Wilk test; if the test failed, where possible standard
transformations such as square root, reciprocal or loga-
rithmic transforms were used to generate a Gaussian
distribution. To test the null hypothesis that samples
originate from the same population, a paired sample t-
test was used for comparison of distance measurements
and between technique PWV measurements. Spearman
correlation coefficient and Bland-Altman plots were per-
formed to further examine the differences between
carotid-femoral and MRI PWV. One-way analysis of
variance (ANOVA) and Kruskal–Wallis ANOVA by
ranks was used for the non-parametric data to compare
demographic data and PWV measurements between the
four groups. Backward stepwise linear regression was
used to determine the contribution of body metrics and
contours to discordances between tape measure and
MRI measured arterial pathlengths. All data were ana-
lysed using SPSS statistical package (version 21.0, SPSS
Inc. Chicago, Illinois). Significance was assumed when
p < 0.05.

Results
One hundred fourteen study participants completed the
study protocol undergoing cf.-PWV, whole body MRA
and cardiac MRI. Of these 90 also underwent MRI PWV
measurement using phase contrast MRI of whom 88
had analysable data, and thus used in the final analysis.
Demographics and CMR measurements of the 4 groups
are described in Table 1.
PWV distance measurements were significantly lower

using MRA arterial centrelines than on external tape
measure (tape measure distance = 537 ± 48 mm vs.
MRA distance = 452 ± 33mm,mean diff = 85.4 ± 54.0 mm,
p < 0.001). This is predominantly due to an underesti-
mation of the carotid arteries to the arch distance meas-
urement, and an over-estimation of the arch to femoral
artery measurement (See Table 2). As a result, cf.-
PWVEXT was significantly higher than the recalculated
cf.-PWVMRA (cf-PWVEXT = 10.98 ± 2.63 ms−1 vs. cf.-
PWVMRA = 9.2 ± 2.04 ms−1, p < 0.001). Despite this the
carotid femoral PWV calculated using the tape measure
and using the MRA centerline showed a high degree of
correlation (rho = 0.90, p < 0.001). A backward stepwise
linear regression model using the difference between ex-
ternal tape measure differences and arterial centerline
distances as the dependent variable and age, sex, height,
weight, waist circumference, and hip circumference as
independent variables was performed to better under-
stand the source of the differences between the two
measurement techniques. Age (B = −0.75 ± 0.45,
p = 0.1), height (B = −187 ± 50.3, p < 0.001), waist
(B = 1.29 ± 0.5, p = 0.011), and hip circumference
(B = 2.17 ± 0.62, p = 0.001) were all significantly related
to distance measurement discrepancy and combined
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accounted for 42.9% of the difference between the
techniques.
MRI-PWV showed moderate correlation with cf.-

PWVEXT (rho = 0.49, p < 0.001) but showed a consistent
bias with a significantly lower MRI-PWV than cf.-
PWVEXT (MRI-PWV = 8.12 ± 2.9 ms−1 vs. cf.-
PWV = 10.92 ± 2.68 ms−1, p < 0.001). When cf.-PWV
was recalculated using the inter-arterial distance from
whole body MRA, correlation between the two tech-
niques improved (R = 0.55, p < 0.001), and a significant

Table 2 Comparison of the proximal and distal measurements
using an external tape measure technique and arterial centerline
technique

Distance measurement External (A) MRA (B) p-value (A - B)

Carotid-Arch (mm) 92 ± 15 160 ± 17 <0.001

Arch-Femoral (mm) 629 ± 45 611 ± 39 <0.001

Distance for PWV
calculation (mm)

537 ± 48 451 ± 33 <0.001

Table 1 Population demographics of the participants

Volunteer Demographics Group 1
CVD+ DM+

Group 2
CVD- DM+

Group 3
CVD+ DM-

Group 4
CVD- DM-

P Value

N 23 41 25 25

Age (years) 64 ± 7 62 ± 9 68 ± 9** 62 ± 8 0.18

Male 18(78) 24 (59) 17 (68) 10 (40) 0.05

Height (m) 1.71 ± 0.09 1.68 ± 0.09 1.66 ± 0.08 1.67 ± 0.10 0.33

Waist (cm) 106 ± 11^ 104 ± 11^ 98 ± 12 94 ± 14 <0.001

Hip (cm) 108.9 ± 8.5^ 109.8 ± 9.3^ 103.8 ± 8.7 104.2 ± 8.3 0.006

BMI (kg/m2) 30 ± 4 30 ± 5 29 ± 3 28 ± 4 0.27

Current/ex smoker 16 (70) 21 (51) 14 (56) 13 (52) 0.43

Hypertension 17 (74)* 23 (56)* 21 (84)** 7 (28) <0.001

Systolic BP (mmHg) 135 ± 12 135 ± 13 137 ± 17 135 ± 15 0.96

Diastolic BP (mmHg) 73 ± 8 77 ± 7 76 ± 8 78 ± 9 0.14

Total cholesterol (mmmo/L) 3.85 ± 0.89* 3.92 ± 0.78* 4.08 ± 0.67* 5.07 ± 1.0* <0.001

LDL Cholesterol (mmol/L) 1.71 ± 0.51* 1.97 ± 0.74* 2.07 ± 0.66* 2.69 ± 0.79 <0.001

HDL Cholesterol (mmol/L) 1.14 ± 0.33* 1.21 ± 0.29* 1.29 ± 0.45* 1.53 ± 0.44 <0.001

Triglycerides (mmol/L) 2.11 ± 1.01 1.64 ± 0.72 1.55 ± 0.79 1.86 ± 1.07 0.06

Creatinine (mg/mL) 81 ± 21 73 ± 19 82 ± 19 71 ± 16 0.007

HbA1c (mmol/mol) 7.6 ± 1.3^ 7.3 ± 1.3^ 5.5 ± 0.2 5.7 ± 0.2 <0.001

Medications

Antihypertensive 19 (83)** 30 (73)* 19 (76)** 7 (28) <0.001

Statin 18 (78)* 23 (56)* 23 (92)** 8 (33) <0.001

Prior cardiovascular eventa

CAD 18 (81) 17 (74)

Cerebrovascular 3 (14) 4 (17)

LEAD 2 (9) 6 (26)

Cardiac MRI

LVM (g/m2) 61 ± 9** 55 ± 9 59 ± 9* 53 ± 9 <0.001

LVEDV (ml/m2) 71 ± 10 67 ± 12 73 ± 12 68 ± 10 0.14

LVESV (ml/m2) 25 ± 11 23 ± 8 26 ± 11 23 ± 7 0.49

LVEF (%) 65 ± 11 65 ± 8 65 ± 10 67 ± 7 0.95

Values expressed as Mean ± SD, or N (%)
BMI = body mass index; BP = blood pressure; CAD = coronary artery disease; LEAD = Lower extremity arterial disease. LVM = left ventricular mass; LVEDV = left
ventricular end diastolic volume; LVESV = left ventricular end systolic volume; LVEF = left ventricular ejection fraction.
*p < 0.05 compared to group 4
**p < 0.05 compared to groups 2 and 4
^ p < 0.05 compared to groups 3 and 4
‘p < 0.05 compared to group 2
agroups add up to >100% as several individuals had more than one prior cardiovascular event
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reduction in the difference between the two techniques
(MRI-PWV = 8.12 ± 2.92 ms−1 vs. cf.-PWVMRA

9.08 ± 2.06 ms−1. Despite this improved correlation, and
a significant reduction in the bias and a reduction in the
inter-technique variability, as demonstrated in the Bland
Altman plots in Fig. 2, the differences between the tech-
niques remained significantly different (mean differ-
ence = 0.96 (95%CI 0.36–1.55 ms−1). Recalculation of the
PWV using the MRA measurements improved the correl-
ation between PWV and age (cf-PWVEXT rho = 0.5, cf.-
PWVMRA rho = 0.65, p < 0.001 for both) and pulse pres-
sure (cf-PWVEXT rho = 0.5, cf.-PWVMRA rho = 0.52,
p < 0.001 for both), see Table 3 for a full list of correlates.
Neither cf.-PWVEXT nor cf.-PWVMRA differentiated be-

tween the four groups although the MRI PWV showed a
trend towards differentiation between the groups (see Table
4). When the groups were combined into having CVD or
no-CVD, a continued lack of difference between these
groups was observed for both cf.-PWVEXT (p = 0.68) and
cf.-PWVMRA (p = 0.39), however a significant difference
was seen in MRI-PWV (CVD + ve MRI-PWV = 9.22 ± 3.37
vs CVD-‘ve MRI-PWV 7.22 ± 2.12 ms−1, p = 0.01).

Discussion
In the current study we have shown a significant differ-
ence between the external distance measurement used

for the calculation of PWV and the actual arterial path-
length. When this distance discrepancy is corrected for
using intra-arterial distances measured on MRI there is
a significant improvement in the agreement between
PWV measured using tonometry or MRI.
The continued difference of approximately 1 ms−1 be-

tween the two techniques after accounting for this dif-
ference in distance measurements suggests part of the
differences in the PWV is due to differences in the
underlying arterial stiffness between the underlying ves-
sels. Previous work has shown the PWV to increase
throughout the aorta, although even in the distal aorta
where the PWV was the highest, this was still 1 ms−1

lower than cfPWV [6]. Thus differences in the two mea-
surements are almost certainly secondary to differences
in carotid and iliac stiffness. Of these the iliac stiffness is
the most likely to contribute to this difference as the ca-
rotid artery demonstrates a similar distensibility to the
abdominal aorta, while the femoral arteries are signifi-
cantly stiffer than both [14, 15]. The distorting effect of
the iliac stiffness on this measurement has clinically sig-
nificant implications, as even the corrected cfPWV did
not differentiate between those with and without cardio-
vascular disease, whereas the aortic stiffness as measured
on MRI was able to detect a significant difference in the
PWV between these.

Fig. 2 Scatter plot and Bland-Altman plots of cf.-PWVEXT compared to MRI-PWV (A and B) and cf.-PWVMRA with MRI-PWV (C and D)
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Our difference between cf.-PWV and MRI is consistent
with prior studies, although is even more pronounced at
2.8 ms−1 than previous reports of 1.8 ms−1 [5, 6]. The
most likely explanatory factor for this is the much higher
BMI of the recruited participants in the current study
compared with these two previous studies. Our findings of
an 85 mm discordance between the external measurement
technique and the actual arterial pathlength taken by the
pulse wave is in agreement with prior work by Huybrechts
et al. who found a difference in distance measurement of
81.8 mm between an arterial centreline and external tape
measure distance [8]. This previous study found a sig-
nificant confounding effect from age on pathlength
measurement with only 4% of the discrepancy being
accounted for by BMI. This is in contradistinction to
our study where weight and hip circumference
accounted for 42% of the measurement differences
with only 1% of differences explained by age. These
differences in findings are likely due to the much nar-
rower age range combined with the more obese na-
ture of our study participants compared to the wide
age range and relatively normal weight in the previ-
ous study, as obesity is known to result in increased
tape measure distances [16, 17]. However as those

who are most likely to be assessed by PWV for risk
assessment are likely to be older and overweight, ra-
ther than young and slim, our findings are likely to
be more clinically relevant, and add weight to the
proposal that direct caliper measured distance be-
tween the carotid artery and femoral artery should be
the measurement technique of choice as these are
least affected by body contours [7]. Creating a con-
sistent technique for the accurate calculation of
travelled pulse wave distance is crucial to the inter-
pretation of these studies, and also to allow compari-
son between different techniques. We have shown
that differences in PWV between MRI and tonometric
measures can be largely accounted for by inaccuracies
in these distance measurement techniques. Thus cre-
ation of suitable techniques may allow not just accur-
ate PWV measurements but improved cross centre
reproducibility and the ability to combine data from
multiple techniques in systematic reviews and meta-
analysis adding greater power to these. It may be pos-
sible to generate these measurements automatically
from simple patient allometric measures such as sex,
age, and height, and indeed several groups have tried
exactly this [18, 19]. However one of these used the

Table 4 Comparison of PWV between the four groups calculated using tonometry with an external tape measure technique or an
arterial centerline technique for the distance measurement, and separately using MRI

PWV technique Group 1
CVD+ DM+

Group 2
CVD- DM+

Group 3
CVD+ DM-

Group 4
CVD- DM-

p

cf-PWVEXT (ms−1) 11.3 ± 3.0 11.2 ± 2.7 11.1 ± 2.4 10.2 ± 2.4 0.25

cf-PWVMRA (ms−1) 9.2 ± 2.3 9.2 ± 1.9 9.7 ± 2.1 8.8 ± 1.8 0.5

MRI-PWV (ms−1) 9.2 ± 2.3 7.6 ± 2.4 9.2 ± 3.6 6.7 ± 1.6 0.09

Cf = carotid-femoral; MRA = distance measured using arterial centrelines obtained on whole body magnetic resonance angiography; MRI = Magnetic resonance
imaging; PWV = Pulse wave velocity; EXT = distance measured using an external tape measure technique

Table 3 Comparison of the effects of recalculation of PWV on correlation with cardiovascular risk factors

cf-PWVEXT cf-PWVMRA MRI-PWV

Rho p Rho p Rho p

Age 0.50 <0.001 0.65 <0.001 0.49 <0.001

Systolic BP 0.50 <0.001 0.52 <0.001 0.44 <0.001

Diastolic BP 0.08 0.4 0.06 0.5 0.08 0.5

Pulse pressure 0.46 <0.001 0.52 <0.001 0.24 0.03

BMI 0.08 0.4 −0.15 0.4 -0.17 0.1

Smoking packyears 0.12 0.2 0.15 0.1 0.03 0.8

Total cholesterol (mmmo/L) −0.09 0.3 −0.03 0.8 -0.04 0.7

LDL Cholesterol (mmol/L) −0.1 0.3 −0.06 0.6 -0.03 0.8

HDL Cholesterol (mmol/L) −0.12 0.2 −0.03 0.7 -0.1 0.4

Triglycerides (mmol/L) 0.12 0.3 0.06 0.5 0.1 0.4

Creatinine (mg/mL) 0.12 0.2 0.15 0.1 0.19 0.1

HbA1c (mmol/mol) 0.22 0.1 0.06 0.6 0.03 0.8

LVM 0.14 0.1 0.03 0.8 0.04 0.7

BMI body mass index; BP blood pressure; CAD coronary artery disease; LEAD Lower extremity arterial disease. LVM left ventricular mass
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tape measure as the gold standard while the other
used the aortic root to aortic bifurcation measure-
ment, neither of which reflect the true path of the
pulse wave as measured by carotid-femoral PWV.
One option may be to use large whole body imaging
studies such as the TASCFORCE and SHIP studies
that would allow for the generation of an accurate
aortic pathlength model based on thousands of indi-
viduals [20–22]. While this would require substantial
effort and external validation, the benefits may be jus-
tified in terms of improved inter-centre and inter-
individual reproducibility due to the removal of an
extra step in the process of PWV and its incumbent
potential for human error.
In our study we observed no significant difference be-

tween the groups using either cf.-PWV or MRI PWV.
This is likely due to the relatively small sample size of
our study, as using the same carotid-femoral technique
in a larger population, of which the current group is a
sub-study of, significant differences were observed be-
tween all groups [11]. Our lack of correlation between
PWV and left ventricular mass is interesting as it has
previously been posited that the importance of arterial
stiffening is due to its effects on the afterload of the ven-
tricle resulting in an increased work load with resultant
adverse remodelling [23]. Previous studies demonstrat-
ing a correlation between the two have been performed
in healthy volunteers or those with cardiovascular risk
factors but no overt clinical cardiovascular disease [24,
25]. Thus PWV may have a greater impact on left ven-
tricular mass earlier in the arteriosclerotic disease
process with later left ventricular remodelling being af-
fected by other processes such as coronary atheroscler-
osis, however longitudinal studies will be required to
further elucidate this relationship.
There are several limitations within our current study.

We used a three point technique for measuring the
PWV distance externally, while current ESC guidelines
would advocate the use of a direct carotid-femoral dis-
tance measurement with a correction factor of 0.8 to ac-
count for the shorter internal pathlength of the pulse
wave and the simplicity of this technique [3]. However
this is largely based on a single MRI study of 98 individ-
uals, and other studies have suggested the currently used
technique provides superior correlation with invasive
aortic PWV over a direct distance measurement tech-
nique [18]. Our cf.-PWV and MRI scans were performed
on different days, which is known to affect PWV meas-
urement due to differing haemodynamic states [26], and
may account for the lower correlation between the two
techniques than has been seen in previous studies, but
this does not change the fact that recalculation of PWV
using an accurate distance measurement improves
agreement between techniques. Finally, the MRI PWV

and cf.-PWV use different techniques for determining
wave arrival time which is known to affect the measure-
ment and reproducibility, [27] however each technique
was optimised to maximise its own intrinsic accuracy
and reproducibility.
In conclusion, differences in PWV measurement between

carotid-femoral PWV and MRI measured central aortic
PWV can be predominantly explained by inaccuracies in-
troduced by the use of simple surface measurements to
represent the convoluted arterial path between the carotid
and femoral arteries. Correction for this may in future allow
more direct comparison between the techniques thus
strengthening systematic reviews and meta-analyses.
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