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Abstract 

 

Climate change, caused predominantly by rising levels of atmospheric carbon 

dioxide, is changing the function and composition of marine communities. This 

thesis considers the past and potential future effects of warming seas, on the 

fish assemblage of the south-west UK. Using fishery-independent data, this 

research aims to identify trends in the abundance and diversity of key fish 

species over the past three decades, and predict how these trends may 

continue over the 21st century, according to forecasted climate scenarios.  

The oceans have absorbed over a quarter of anthropogenic carbon dioxide 

since the Industrial Revolution, as well as over ninety percent of the Earths 

excess heat which has helped to mitigate the impacts of climate change. 

However, carbon dioxide emissions, and the subsequent rise in air and sea 

temperatures, have reached unprecedented levels in recent decades. 

Consequently, oceans are becoming more acidic, sea levels are rising, and 

weather events such as storms are increasing in both frequency and severity. 

Due to the complex and integrated nature of marine ecosystems, climate-

induced changes are likely to affect organisms and communities at all levels, 

both directly and indirectly. This could mean changes to the composition of fish 

assemblages, which consequently will affect human populations reliant on them 

for food and income. Whilst fish stocks are prone to natural fluctuations and 

variability, there is a growing body of literature demonstrating that 

anthropogenic activity is having a significant, and perhaps irreversible effect on 

some fish populations. 

The first part of the research conducted here demonstrates that since the mid-

1980s there has been a significant increase in the species richness and 

diversity of the south-west UK fish assemblage, likely driven by an increase in 

the abundance of warm-water adapted species. In addition, some commercially 

important fish species typically associated with colder waters have decreased in 

abundance. The second part of the research in this thesis uses a data-driven 

predictive modelling approach to forecast how key species of the UK fish 

assemblage may respond (in terms of abundance and spatial distribution) to the 

latest predicted climate scenario. The results demonstrate that, according to a 
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“best case scenario” of carbon emissions, many of the warm water species 

shown to have increased in abundance over the last three decades will continue 

to do so. Similarly, many cold water species will continue to decline, such that 

some economically valuable species may be absent from south-west UK waters 

by the end of the century. The results also suggest that by the end of the 

century, the fish assemblage is likely to be characterised by species that 

currently have a lower latitudinal preference, smaller mean body size and lower 

trophic level.  

The ability to predict and anticipate how fish populations may respond to a 

changing climate will be essential for the successful continuity of the fishing 

industry. As such, management plans and fishing practices will need to be 

adaptive and flexible in order to exploit new opportunities, as well as protecting 

and preserving the stocks most threatened by climate change.  
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1. Background 

 

Climate change affects physical, geochemical and biological processes at many 

levels. Marine-based environmental changes associated with climate change 

include a rise in sea level and average temperatures, ocean acidification, 

varying salinity and oxygen concentrations, and alterations to ocean circulation. 

Studies have demonstrated that climate change, in particular an increase in sea 

temperature, is linked to changes in fish behaviour, physiology, abundance and 

distribution. The seas surrounding the UK have experienced particularly intense 

warming over the last three decades, in some areas up to six times greater than 

the global average (Dye et al. 2013). The response of marine organisms to 

warming has led to compositional changes in fish assemblages (Genner et al. 

2004; Simpson et al. 2011), which in turn has altered community structure and 

trophic dynamics (Cheung et al. 2013). There is strong evidence that warm-

water adapted (Lusitanian) species such as grey gurnard (Eutrigla gurnardus) 

and red mullet (Mullus barbatus) are now found in abundance in the waters 

surrounding the UK (Beare et al. 2004), whereas some cold-water adapted 

(boreal) species such as Atlantic cod (Gadus morhua) and haddock 

(Melanogrammus aeglefinus) have shown a decrease in abundance (Simpson 

et al. 2013). These shifts in distribution may dramatically alter the structure of 

marine ecosystems, and will have consequences for the fishing industry.  

The UK fishing industry’s contribution to the economy, in terms of gross value 

added (GVA), was £426 million in 2014; an increase of 14% over the last 

decade (Marine Management Organisation 2014). In this same year, fishery 

landings totalled 756,000 tonnes, with a value of £861 million; finfish accounted 

for 80% of the tonnage, and 66% of the value. The industry currently comprises 

6,383 vessels, 27% of which are registered to four ports in south-west England 

(Newlyn, Plymouth, Brixham and Poole), of which the majority (~80%) are under 

10m in length. There has been a steady decrease in the number of operational 

UK fishing vessels over the last two decades, attributed to a decline in fishing 

opportunities, as well as the decommissioning of vessels by UK fisheries 

administrations. This sequence of measures, along with quota restrictions set 

by the European Commission, were aimed at reducing fishing pressure to 

enable fish stock recovery. Demersal species in particular have experienced a 
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significant decline in landings; in 2014 landings were less than 20% of the 

quantity landed in 1970 (Marine Management Organisation 2014). Whilst 

landings of pelagic species have fluctuated, they have not experienced the 

same decline as demersal species. Decreasing landings have been attributed to 

a number of causes, including a reduction in fleet size and restricted 

opportunities (Marine Management Organisation 2014), rising fuel prices 

(Abernethy et al. 2010), declining fish stocks (Molfese et al. 2014) and climate 

change (Simpson et al. 2011).  

The increasing trend in sea surface temperature (SST) is expected to continue, 

with a predicted rise of 1.5–2.5°C in open ocean, shelf edge regions and the 

Northern North Sea, and a rise of 2.5–4.0°C for the Celtic Sea, Irish Sea and 

Southern North Sea by the end of the century (Lowe et al. 2009). There is some 

debate over how much of the observed increase is due to natural climate 

variability and how much is a direct result of anthropogenic activity and carbon 

dioxide emissions – some studies have suggested that natural climate variability 

could account for 50% of the observed warming in recent years (Dye et al. 

2013) – but whatever the driver(s) the warming trend is unequivocal. 

A number of studies have assessed both the past and anticipated future 

changes of the North Sea fish assemblage (Beare et al. 2004; Perry et al. 2005; 

Dulvy et al. 2008; Beaugrand & Kirby 2010; Petitgas et al. 2012; Rutterford et 

al. 2015), due, in part, to the substantial quantity of standardised data available 

for this area. In contrast, there is a lack of consistent, standardised data relating 

to fish abundance in other parts of the UK, particularly around south-west 

England. Consequently, few studies have considered the possible implications 

of climate change in this region. This thesis aims to address this knowledge 

gap. This Introduction chapter will review the effects of climate change on the 

different trophic and community levels within marine ecosystems around the 

UK, and explore the implications for commercial fisheries. The subsequent 

chapters of this study will explore how the fish assemblage in south-west 

England has changed in recent decades (Chapter 2), and how it may continue 

to change in the future (Chapter 3) in response to predicted climate scenarios.  
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2. Effects of climate change on fisheries and marine ecosystems 

 

Climate data and models are widely used in research to make predictions about 

the ecological effects of climate change under different climate scenarios. Many 

predictions of species responses to climate change are based on bioclimate 

envelope models (also known as ecological niche models), which consider 

climatic variables as the primary factor influencing a species’ distribution 

(Pearson & Dawson 2003). Many of these models make the assumption that a 

species’ observed distribution is the best indicator of its climatic requirements, 

and that changing climate will directly influence changes in abundance and 

distribution (Pearson & Dawson 2003; Genner et al. 2004). However, due to the 

complex nature of marine ecosystems, these models often fail to take into 

account, or at least underestimate, the effects of other factors such as habitat 

availability and predator-prey interactions. Whilst these models do not account 

for dispersal, they predict a species’ potential range based on the predicted 

climate, which may be inaccurate when habitat availability and biotic 

interactions are also considered (Pearson & Dawson 2003). More recently, 

studies have focused on the use of multiple modelling approaches to generate a 

suite of predictions about the impacts of climate change, which is generally 

considered a more robust method (Araújo & New 2007; Jones et al. 2012; 

2013). The variation between outputs from different models is often due to the 

characteristics and properties of the models themselves, and so comparing 

predictions from multiple models allows the uncertainty of each model to be 

identified, as well as establishing best and worst case scenarios (Jones et al. 

2013). Most studies suggest that projections based on model predictions should 

be applied with caution, since the complexity of marine ecosystems means that 

individual and population responses to climate change may be counterintuitive 

(Genner et al. 2004). 

 

2.1 Primary production 

 

In recent decades the North Sea has experienced changes in phytoplankton 

and zooplankton composition, with many species showing northward 
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distributional shifts (Beaugrand & Reid 2003). Models have predicted a 10% 

increase in productivity in the Celtic Sea and English Channel in response to 

climate change, but a 20% decrease in the central and northern North Sea 

(Simpson et al. 2013). Cheung et al. (2010) estimated that global primary 

production will increase by 0.7–8.1% by 2050, which has implications for 

increases in fish production. However, a study by Steinacher et al. (2010) found 

contradictory results, estimating a reduction in mean global primary production 

of 2–20% by 2100, compared to pre-industrial conditions. Another study 

conducted on the largest marine ecosystems found no large scale consistent 

trend in primary productivity over a 25 year study period, although some 

regional fluctuations were observed (Sherman et al. 2009). Changes to fish 

production have been shown to strongly reflect changes in phytoplankton 

production (Blanchard et al. 2012; Jones et al. 2015), and so an assumption 

adopted by many predictions is that fish production is proportional to net 

primary production. Where fish species may disperse and change in abundance 

in an area due to unfavourable conditions, they will often be replaced by 

functionally similar species, and so fish production and biomass may remain 

relatively unchanged, and the effect on trophic structure may not be as 

significant as expected (Brander 2007). Whilst temperature has been reported 

to be the main driving force behind many climate induced changes to fish 

populations, this may be an indirect effect through its impact on primary 

production; potential fish production has been shown to reflect changes in 

primary production more so than changes in temperature (Blanchard et al. 

2012). 

Atlantic cod is one of the most popular and commercially valuable demersal 

species in the UK; 14,700 tonnes were landed in 2014 with a value of £29.1 

million (Marine Management Organisation 2014). Having been heavily exploited 

by commercially fisheries, Atlantic cod stocks halved between 1980 and 2000, 

which has generally been assumed to be a result of over fishing. However, 

studies by Beaugrand et al. (2003) and Beaugrand and Kirby (2010) showed 

that climate-induced fluctuations in plankton may also be having a significant 

effect on cod stocks. Beaugrand et al. (2003) showed that plankton fluctuations 

in the North Sea were significantly correlated to sea surface temperature, and 

that long-term changes in cod recruitment (the number of individuals surviving 
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to an age at which they can be caught, thus recruit to the fishery) varied 

significantly with changes in plankton, often despite intense fishing pressure. 

An increase in primary production may be expected at higher latitudes in 

response to climate change, particularly in areas where there is seasonal ice 

cover. A contraction of sea ice resulting in greater light penetration could 

enhance primary production (Brander 2007; Hollowed et al. 2013), as well as in 

other areas where warming of the sea lengthens the appropriate season 

(Genner et al. 2004). However, at mid latitudes surface warming of the sea may 

increase stratification of the water column, thereby compressing the mixed layer 

depth and reducing the nutrient supply required for primary production (Harley 

et al. 2006). The predicted increase in global primary production could lead to a 

potential increase in the occurrence of harmful algal blooms (HAB) and range 

expansions of certain HAB species (Peperzak 2003; Hallegraeff 2010), which 

could have significant consequences for fish populations.  

 

2.2 Fish distribution, abundance and community structure 

 

Early research suggested that rising sea temperatures due to climate change 

would result in poleward shifts in species distributions; cold-water species 

moving further north, and warm-water species expanding their range at the 

northerly limit to occupy newly available locations (Stebbing et al. 2002; Perry et 

al. 2005; Dulvy et al. 2008; Hiddink & ter Hofstede 2008). However, many of the 

studies upon which these predictions are based do not account for non-thermal 

dependencies, such as habitat requirements, predator-prey interactions and the 

dispersal abilities of individual species. 

Climate induced changes to distribution, abundance and range have been 

observed in fish populations across the world. As average sea temperatures 

rise, UK waters will become more favourable for species currently occupying 

lower latitudes, but in turn will likely lose species to higher latitudes for which 

the temperatures become less favourable. Stebbing et al. (2002) suggested that 

the warming of the North Atlantic had resulted in warm water species expanding 

their ranges northwards, and were therefore occurring in increasing numbers off 

the Cornish coast. A more recent study by Simpson et al. (2011) showed that 
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72% of common UK demersal fish species were responding in abundance to 

warming seas, with the number of species increasing in abundance with 

warming seas being three times greater than those showing a decline. In 

addition to latitudinal shifts in distribution, some studies have reported fish 

species moving into areas of deeper water in response to temperature change 

(Dulvy et al. 2008; Rijnsdorp et al. 2009). Many fish species are constrained to 

a particular depth by factors such as oxygen requirement, prey availability and 

temperature. A study conducted on the fish assemblage in the North Sea found 

species had deepened by an average of 3.6 m decade-1, with certain species 

(megrim; Lepidorhombus whiffiagonis, and angler; Lophius piscatorius) 

deepening by up to 10 m decade-1 (Dulvy et al. 2008). Where suitable deeper 

environments are available it may not be necessary for fish to move polewards 

to track suitable thermal niches, as they may instead remain at the same 

latitude by moving in to deeper water (Dulvy et al. 2008). Some research has 

suggested that North Sea fish occupying deeper water are likely to be less 

affected by changing sea temperatures (Rijnsdorp et al. 2009), whilst other 

research suggests that these species may be at greater risk, due to the limited 

availability of deep water (>80 m) habitats in the North Sea (Dulvy et al. 2008).  

A fish species’ reliance on specific habitats has been shown to greatly influence 

their ability to respond to climate variation; many species require certain 

habitats for feeding, spawning and nursery grounds (Simpson et al. 2013). For 

some species, the dependence on specific habitats may limit the potential for a 

latitudinal shift (Rutterford et al. 2015). Different life stages of a species may 

also require spatially separated habitats, and so the availability of suitable, well 

connected essential habitat is vital to the success of the species (McHugh et al. 

2011; Hollowed et al. 2013; discussed further in Section 2.3). Demersal and 

pelagic fish species will differ in their responses to climate change; for example, 

demersal species such as cod, haddock and whiting (Merlangius merlangus) 

may be less likely to show a rapid range shift as a result of climate change due 

to their habitat requirements (Rijnsdorp et al. 2009). Pelagic species, which do 

not have the same reliance on benthic habitats and, as adults, have high 

motility, may have greater capacity for range shifts (Montero-Serra et al. 2015). 

Fish occupying semi-enclosed seas are likely to be more greatly affected by 

climatic variation due to the physical barriers preventing them from dispersing to 

more thermally suitable areas (Cheung et al. 2009). The response of a 
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population to climate change will also vary according to whether they are within 

the centre of their latitudinal range and optimum environmental conditions, or 

towards the range limits (Hollowed et al. 2013). It is generally accepted that 

species at the limits of their latitudinal distribution will show a stronger response 

to climate variability (Rijnsdorp et al. 2009); Robinson et al. (2015) suggest that 

species at the trailing edge of their distribution will respond faster to climate 

change than species at the centre or leading edge of their distribution. High 

latitudes generally experience the greatest rates of warming, so species in 

these environments will have limited time in which to adapt, and may be unable 

to do so if they are already occupying an environment close to their thermal 

maximum (Somero 2010). 

All of the possible impacts of climate change detailed above could be 

considered direct effects of climate change on individual fish species. These in 

turn will filter through to the community level, and are likely to dramatically alter 

community structure and richness, through the arrival of novel and loss of 

traditional species, predator-prey interactions and trophic dynamics (Montero-

Serra et al. 2015). Ecosystems with a simple trophic structure are likely to 

display a more rapid responses to climate change than those with a complex 

trophic structure and associated functional redundancy (Rijnsdorp et al. 2009). 

A number of studies have investigated changes in species richness in response 

to climate change. Hiddink & ter Hofstede (2008) found that richness of benthic 

and small pelagic species was positively correlated to average winter bottom 

temperatures, and that whilst the ranges of many species expanded, the ranges 

of some commercially important species had retracted. The observed increase 

in richness was greater than could be predicted by temperature alone; the 

authors suggest this could be due to the exploitation of larger species, releasing 

smaller ones from the pressure of predation, and also that the southern species 

could be expanding northwards at a greater rate than northern species retracted 

further north. It is likely that where large-scale distributional changes are 

occurring, there will be a lag between the influx of warm water species and the 

departure of cold water species; this unbalanced ecosystem could have 

significant impacts on community structure and trophic dynamics. It is likely that 

species richness will only increase where suitable habitat is available, and 

where a species is constrained by dispersal capabilities or habitat requirements, 
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climate change could pose a serious threat (Perry et al. 2005; Hiddink & ter 

Hofstede 2008). 

McHugh et al. (2011) showed that over a period of almost a century there were 

significant changes to the structure and composition of a fish assemblage 

occupying the English Channel, although changes were not consistent between 

taxonomic groups. In general there were significant declines in all 

elasmobranchs, though less evidence of changes to abundances of flatfish. A 

study by Genner et al. (2004) demonstrated that the same species showed 

different responses between geographically separated sites, and suggested that 

local environmental factors and interactions had a significant impact on a 

species’ response to climate change. This will make applying blanket 

predictions to fish assemblages difficult. For many species, the ecological 

mechanisms driving the response are poorly understood (Blanchard et al. 

2012), and whilst statistical correlations may allow inferences to be drawn from 

data, they do not indicate the underlying process behind the correlation 

(Rijnsdorp et al. 2009). 

The observed rise in sea temperature and changes in fish distributions has 

enabled the spread and establishment of new species. An increase in sea 

temperature means that many environments can now support species that they 

may previously not have been suitable for. Warming in the North Sea, Baltic 

Sea and north-east Atlantic has prompted an increase in warm water species 

such as red mullet and anchovy (Engraulis encrasicolus), where previously the 

fish assemblage was characterised by cold water species such as cod and 

herring (Clupea harengus) (Rijnsdorp et al. 2009; Montero-Serra et al. 2015). 

Anchovy populations have historically occurred in the North Sea, but have 

increased in abundance and distribution in recent decades (Petitgas et al. 

2012). Warmer summer temperatures and a lack of severe winters have 

improved survival rates. The study by Petitgas et al. (2012) demonstrates that 

range expansions of remnant populations can occur due to increased 

productivity at the edge of a species distribution, and are not necessarily a 

result of a latitudinal shift. 
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2.3 Fish physiology, phenology and behaviour 

 

Several studies have linked variable sea temperature with the timing of 

spawning events in species such as sole (Solea solea) and plaice 

(Pleuronectes platessa) (Rijnsdorp et al. 2009; McHugh et al. 2011; Pinnegar et 

al. 2013). Genner et al. (2010a) found that for spring spawning fish, appearance 

of larvae was significantly dependent on sea temperatures the previous 

November and December (cooler temperatures result in earlier spawning), 

whereas summer spawning fish were affected by sea temperatures during the 

preceding March (warm temperatures result in earlier spawning). The study 

suggests that for spring spawning fish, the cooler temperatures trigger an earlier 

winter migration of adults, to warm over-wintering habitat, where the increase in 

temperature promotes gonad maturation and earlier spawning. For summer 

spawning fish, it is likely that warm temperatures alone enhance the growth and 

maturation of fish gonads, causing the observed earlier spawning (Genner et al. 

2010a). Whilst warmer seas have been linked to earlier spawning, this does not 

always coincide with earlier phytoplankton blooms (which is generally mediated 

by levels of solar radiation), which in some areas has resulted in mismatch 

between larval appearance and food supply (Harley et al. 2006). This is likely to 

affect larval survival and recruitment success, and therefore the strength and 

viability of the fish stock. The larvae of many south-west fish species feed on a 

varied diet, which primarily consists of the nauplii and copepodite stages of 

copepods (Last 1978a; Last 1978b), and so may be affected indirectly by 

temperature-induced changes in phytoplankton abundance. There is also the 

potential for an increased risk of predation, as warmer temperatures may 

increase metabolism and therefore feeding rates in predator species (McHugh 

et al. 2011). Earlier spawning coupled with an increase in average sea 

temperature could prolong the growing season for many species, which, 

providing temperatures do not exceed the thermal limits of the species, may 

have a positive impact on the population. For many fish, winter survival rates 

are linked to body size; thus, faster growth as a result of prolonged growing 

season could produce more resilient populations (Pinnegar et al. 2013). 

The likelihood of expansion of a species range in response to climate change 

has been linked by many studies to body size and life cycle. Fish species with a 
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smaller body size and faster life cycle (short generation time) have shown rapid 

distributional responses to warming seas (Beare et al. 2004; Perry et al. 2005; 

Hiddink & ter Hofstede 2008; Simpson et al. 2011). Species with slower life 

cycles, which are naturally more vulnerable to overfishing, may not have such 

capacity to shift. Fish body size generally increases with increasing latitude, and 

so some studies have suggested that an increase in average sea temperatures 

may be coupled with a decrease in average fish body size, which may also be a 

result of smaller species being released from predation by removal of larger 

species as a result of exploitation (Hiddink & ter Hofstede 2008; Rijnsdorp et al. 

2009). 

The dependence on specific habitats varies throughout the life cycle of many 

species (Harley et al. 2006; McHugh et al. 2011) and can be linked to a shift in 

temperature tolerance. Earlier life stages of many species occupy shallow and 

surface waters, whereas the adults of the same species may occupy much 

deeper water. As body size increases, the optimum temperature for growth 

decreases, and in some species eggs and larvae have a narrower thermal 

tolerance range, potentially making them more vulnerable to climatic 

fluctuations (Rijnsdorp et al. 2009). Where habitat requirements are very 

specific, bottlenecks can occur in the life cycle, and if habitats are poorly 

connected, the species may not complete its life cycle (Petitgas et al. 2013). 

Where ocean circulation aids larval dispersion, it is likely that climate induced 

changes to circulation will have a significant impact on the success of the 

species, especially if habitat connectivity is disrupted, which in turn may disrupt 

population dynamics (Harley et al. 2006). Some species have been shown to 

occupy suboptimal thermal habitats, even when optimal ones are accessible, 

possibly due to food availability or other environmental factors (Neat & Righton 

2007). Over a prolonged period of time, this is likely to impact growth and 

metabolism (Rutterford et al. 2015). 

A study by Koumoundouros et al. (2002) investigated temperature sex 

determination (TSD) in European seabass (Dicentrarchus labrax); a species of 

growing importance and economic value to the UK fishing industry. This study 

demonstrated that warmer temperatures during egg development resulted in a 

more heavily male dominated population. A more recent study by Ospina-

Álvarez & Piferrer (2008) suggests that TSD is far less widespread than 
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originally believed. For certain species however, the authors predict that warmer 

sea temperature may skew the ratio of male to female from 1:1, to a heavily 

male dominated population, as much as 3:1 in some species, such as the 

Argentinian silverside (Odontesthes bonariensis). 

In addition to the possible climate induced behavioural and physiological 

changes, fish populations may also have to contend with higher prevalence of 

diseases. It is likely that continued rising sea temperatures will facilitate the 

spread and establishment of parasites and pathogens (Harvell et al. 2002; 

Brander 2007), and may also increase the severity of disease; pathogens 

generally have a higher optimum temperature than their host (Harley et al. 

2006). 

The majority of studies have focused on the effects of rising sea temperature, 

as a result of climate change. However, this is likely to be accompanied by a 

wealth of other environmental changes. The main factor causing concern other 

than a rise in sea temperature is a reduction in ocean pH, due to increasing 

atmospheric carbon dioxide (Simpson et al. 2013). For some species, a change 

in ocean chemistry may have greater implications than fluctuating temperature. 

Salinity fluctuations on global and regional scales are likely to be observed, due 

to sea ice melting and changes to precipitation, which will impact fish species, 

particularly those with a narrow tolerance range. Beaugrand et al. (2011) report 

that Atlantic cod cannot reproduce successfully in salinity lower than 11 psu, as 

eggs sink and sperm becomes immobile. A reduction in salinity of ~0.2 psu has 

been predicted for the Northeast Atlantic and the North Sea by the end of the 

century, and a reduction of ~0.1 for the Celtic and Irish Seas (Lowe et al. 2009). 

In addition to salinity fluctuations, oxygen concentration may also vary, 

particularly with increased stratification of the water column, associated with a 

rise in temperature. Whilst low oxygen environments do occur naturally, the 

presence of reduced-oxygen and hypoxic environments are predicted to 

increase in both frequency and duration as a result of climate change (Townhill 

et al. 2017). A reduction in oxygen saturation and expansion of the oxygen 

minimum zone is likely to impact metabolism and behaviour; some species may 

aggregate closer to the surface, making them more vulnerable to predation or 

surface fishing gears, and thus giving false indications of high abundance 

(Stramma et al. 2011). Similarly, a shallowing of the mixed layer depth, due to 
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the rise in temperature and increased thermal stratification, may cause vertical 

habitat compression, resulting in behavioural changes. Prolonged exposure to 

low levels of oxygen may affect egg development, recruitment, body size and 

predator–prey interactions. The varying responses and tolerances of different 

species to low oxygen levels will mean it is difficult to anticipate how 

communities and therefore whole ecosystems will fare in reduced oxygen 

environments (Townhill et al. 2017).  

An increase in sea temperature can affect a number of physiological processes 

within an organism, including organ function and protein synthesis (Harley et al. 

2006). A factor which may affect a species capacity to withstand climate change 

is the potential for genetic adaptation, though there is a paucity of studies 

reporting evidence of this (Pearson & Dawson 2003; Crozier & Hutchings 2014). 

Somero (2010) reported that temperature-adaptive alterations to proteins can 

take place with a substitution of a single amino acid, and so the possibility of 

this seems highly plausible, particularly in species with rapid generation times. 

Population size and the amount of genetic variation within the population will 

determine how likely it is that evolutionary changes will occur (Crozier & 

Hutchings 2014), however for many species it is unlikely that adaptation will 

occur quickly enough to counter the effects of predicted climate scenarios 

(Hoffmann & Sgrò 2011). Some species may have irreversibly lost the capacity 

to adapt to warmer temperatures; due to long periods of highly stable low 

temperatures, some stenothermic species may have lost protein coding genes 

and gene regulatory mechanisms that would be required for coping with a rise 

in temperature (Somero 2010).  

 

2.4 Commercial fisheries 

 

Fishing targets individuals of a certain size within a population and selectively 

removes them, thereby often reducing the number of mature spawning 

individuals, and skewing the age distribution of the population towards younger 

fish (Brander 2007; Beaugrand and Kirby 2010). Intensive fishing can therefore 

make populations more vulnerable to the effects of climate change, by reducing 

its capacity to buffer against added stressors or the occasional poor year class 
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(Rijnsdorp et al. 2009; Pinnegar et al. 2013). Cold water environments, or those 

with low primary productivity, are perhaps more susceptible to the detrimental 

effects of heavy fishing due to relatively low growth rates of the organisms 

within them (Blanchard et al. 2012). 

Whilst many studies have reported an increase in species richness around the 

UK and suggested that species are expanding their ranges, some of those that 

have shown a decrease in abundance and range are among the most 

commercially valuable (Hiddink & ter Hofstede 2008; Simpson et al. 2011). 

Large bodied, cold water species such as Atlantic cod and haddock have shown 

declines in abundance, threatening the sustainability of the stock and reducing 

the value of the fishery. Furthermore, there is mounting evidence that these 

large, slow maturing fish are being replaced by small-bodied species (Hiddink & 

ter Hofstede 2008; McHugh et al. 2011). The observed changes to fish 

populations as a result of climate change have been reflected in landings data, 

and may result in a redistribution of fish production on a global scale. Landings 

of boreal species halved between 1980–2007, whereas landings of Lusitanian 

species increased by 250% (Simpson et al. 2011). Cheung et al. (2010) 

predicted an increase in global catch potential of 30–70% at higher latitudes, 

and a reduction of up to 40% in the tropics; other studies have reported similar 

predictions (see Blanchard et al. 2012 and Barange et al. 2014). As a result, 

catches of warm-water species are likely to increase together with a decrease in 

catches of cold water species (Cheung et al. 2013). 

It is likely that global trends in productivity will mask local and regional 

fluctuations (Worm et al. 2009), influenced by the present environmental 

conditions. Inconsistencies between the responses of different fish populations 

to climate change mean that applying generalised predictions will be difficult. 

The North Sea experienced a rise in sea surface temperature of 0.55°C decade-

1 between 1982 and 2006, which was coupled with a decline in fisheries 

biomass yield, contrary to other large marine ecosystems where an increase in 

yield occurred with warming (Sherman et al. 2009). The authors suggest this is 

a result of heavy exploitation and distributional shifts of target species due to 

the rise in temperature. 

The observed redistribution of fish populations has, in some areas, allowed for 

new fish stocks to be exploited, where previously a fishery may not have been 
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viable (Brander 2007). The change in environmental conditions, primarily 

warming, means that many warm-water adapted species, such as red mullet, 

anchovy, and boarfish (Capros aper) are now found in UK waters in increasing 

abundance (Dulvy et al. 2008; McHugh et al. 2011; Pinnegar et al. 2013). It may 

be that some species have always been present at low abundance, but are now 

benefitting from more favourable environmental conditions, and their presence 

may not necessarily be a result of dispersal; this appears to be the case for the 

recent increase in anchovy around the UK (Petitgas et al. 2012). 

 

3. Future predictions and socio-economic impacts 

 

Recent research has predicted many possible impacts on fish communities as a 

result of changing climate. These range from widespread extinctions (Harley et 

al. 2006), an increase in disease prevalence and severity (Perry et al. 2005), a 

loss in functional diversity (Buisson et al. 2013) and alterations to migration 

routes (Rijnsdorp et al. 2009). There is a wealth of literature describing 

distributional changes of fish species, generally moving towards the poles, 

coupled with an increase in species richness at higher latitudes (Hiddink & ter 

Hofstede 2008). However, applying general predictions may be difficult due to 

local and regional variations. A reduction in species richness, particularly of 

large cold water species, has been observed in northwest Scotland (Simpson et 

al. 2013). Perry et al. (2005) discuss the unusual temperature patterns of the 

North Sea, where at high latitude, an influx of warmer North Atlantic water could 

account for the loss of large cold water species described.  

The predicted effects of climate change will have profound consequences for 

the UK fishing industry. The decrease of traditional, commercially valuable 

species such as cod and haddock will be detrimental to the industry, but may be 

coupled with new exploitation possibilities; warm water species such as boarfish 

and anchovy are now abundant enough in UK waters to sustain a viable fishery 

(Pinnegar et al. 2013). Vessels operating out of Brixham, one the key south-

west UK ports, are already landing large numbers of emerging warm-water 

species (Defra 2013), but adapting to new exploitation possibilities may require 

changing or adapting fishing gear and practices, as well as fishing locations, all 
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of which could require substantial financial investment. In order to target new 

species, fishers would also need to obtain the necessary quota. Some 

commercially valuable species are associated with coastal and inshore 

environments, and as many of these species are predicted to move offshore 

into deeper cooler water (Cheung et al. 2010), it may no longer be practical to 

fish for them, again, requiring a change in fishing tactics and locations. One 

advantage for inshore fishing vessels is being able to provide fresh fish, by 

returning to port generally within 24 hours; this advantage would be lost if they 

were to target areas further offshore (Defra 2013). Redistribution of fish stocks 

has led to, and will continue to cause, disagreements over fishing quotas 

(Pinnegar et al. 2013), and such redistribution is likely to prove difficult for 

fisheries management. Where fish move between fishing areas and across 

boundaries there have been disagreements between different nations regarding 

permissible catches and quotas. One notable recent example is the “Mackerel 

Wars” between Iceland, the Faroe Islands, Norway and the EU. Atlantic 

Mackerel (Scomber scombrus) are now found in abundance around Iceland and 

the Faroe Islands (Pinnegar et al. 2013), where stocks of blue whiting 

(Micromesistius poutassou) have greatly diminished. As a result, mackerel have 

been heavily exploited by Icelandic and Faroese fishing vessels, who are not 

governed by the Common Fisheries Policy (CFP), and can therefore set their 

own quotas (Simpson et al. 2013). The increase in quotas set by these 

countries meant that total landings of mackerel were in excess of the total quota 

advised by ICES, and so in 2012 Atlantic Mackerel lost its Marine Stewardship 

Council (MSC) accreditation, as the stock was no longer deemed to be 

sustainably exploited (British Sea Fishing, 2014). In March 2014 an agreement 

was reached between the EU, the Faroe Islands and Norway, which split quotas 

for mackerel in the North East Atlantic. The MSC status has since been re-

instated (Marine Stewardship Council, 2016). Another example is the increase 

in abundance of anchovy in UK waters; fishing vessels from southern Europe 

where anchovy stocks have been depleted will not automatically be given 

fishing rights in newly exploitable areas, as the fish are from a genetically 

different stock (Petitgas et al. 2012).  

There is a consensus throughout the literature that globally, most fish stocks are 

currently fully or over exploited (Brander 2007; Cheung et al. 2010; Blanchard et 

al. 2012). However, recent years have seen a partial recovery in certain fish 
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stocks surrounding the UK (European Environment Agency 2015), in particular 

haddock and hake, largely due to reduced fishing mortality, contributing to an 

increase in spawning stock biomass (SSB) (see ICES Stock Assessment 

Database, 2014). Despite in many cases, effective precautionary measures, 

natural factors still have a strong influence on recruitment and SSB for some 

fish stocks. As such, the varying predicted effects of climate change are likely to 

exacerbate an already distressed ecosystem, and as fish stocks are prone to 

natural variability and unexpected fluctuations (Beaugrand & Kirby 2010), there 

is a need for effective, cautionary and adaptable fisheries management, that 

considers more than just the most commercially valuable species, and aims to 

sustain the age and geographic structure of the population (Brander 2007). 

Some studies suggest that current ecosystem based fisheries management 

does not consider the effects of climate changes on the ecosystem (Beaugrand 

& Kirby 2010), and that it is unclear how distributional changes of fish are 

accounted for in management plans (Link et al. 2011). However, the difficulty in 

teasing apart the effects of fishing on an ecosystem from the effects of climate 

change suggests that the two should be considered in conjunction with one 

another. This requires an understanding of the different variables affecting the 

response of a fish populations to exploitation and climate variability; some 

studies have suggested strategies for managing fisheries in line with the 

predictions made for future changes (e.g. Link et al. 2011). Climate change is 

likely to have a significant impact on marine global food supply (Cheung et al. 

2010), and aquaculture has been suggested as a viable solution to meeting 

global food demand. Global production from capture fisheries has plateaued 

since the mid-1980s, whereas global aquaculture production has continued to 

rise. In 2014, aquaculture accounted for ~44% of total global fish production, 

almost equalling that of capture fisheries (FAO 2016). However, removing small 

fish from natural ecosystems for fishmeal in aquaculture will affect trophic 

dynamics and could disrupt natural ecosystems if those smaller species are 

heavily exploited (Brander 2007). 

Conservation efforts in the form of Marine Protected Areas (MPA) and no-take 

zones are intended to aid the recovery of fish stocks, increase biodiversity and 

improve ecosystem health and resilience, and have been shown to be 

successful in doing so (Roberts et al. 2001; Micheli et al. 2012). However, these 

measures may be compromised if climatic changes mean that they are no 
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longer an optimum environment for the species they aim to protect or restore 

(Rijnsdorp et al. 2009; Jones et al. 2013). Distributional shifts have been 

observed in many species as a result of climate change. van Keeken et al. 

(2007) reported an offshore shift in distribution of plaice in the North Sea, 

thereby reducing the effectiveness of the ‘Plaice Box’, an area of no-take 

designed to allow juvenile plaice some protection from larger trawling vessels. 

The authors attributed this distributional shift to a rise in water temperatures. As 

such, the designation of MPA status should be flexible and adaptive in order to 

be most effective (Cheung et al. 2012; Pinnegar et al. 2013). 

 

5. Conclusion 

 

Natural fluctuations and variability observed in fish populations are likely to be 

exacerbated by the predicted effects of climate change, and in some cases may 

lead to irreversible changes in fish stock resilience and ecosystem dynamics. 

The capacity for UK fishing fleets to adapt and respond to shifts in fish 

populations will determine whether new opportunities will be exploited 

effectively, and therefore determine how UK fishers will fare in the face of 

climate change. The ability to make accurate predictions about the effects of 

climate change on marine ecosystems is vital to understanding how 

ecosystems as a whole are likely to respond, and to identify which species will 

be the ‘winners or losers’ as a result of warming seas. The literature 

emphasises the importance of predictive models that capture numerous factors 

affecting fish responses, as opposed to those that are purely process-based. A 

flexible, cautious and adaptive approach to fisheries management will be 

required if fish populations are to withstand the environmental pressures 

associated with warming seas, especially where fishing intensity is already high.  

 



27 

 

Chapter 2: Recent impacts of climate change on 

south-west UK fisheries 

 



Chapter 2: Recent impacts of climate change on south-west UK fisheries 

 

28 
 

 

Abstract  

 

Health and stability of marine ecosystems is closely linked to the level of local 

biodiversity. Increased species richness, coupled with a reduction in the 

abundance of key commercial species, has been reported in some waters 

surrounding the UK and throughout the North Sea, however, little research has 

focused on the south-west area of the UK, despite the economic importance of 

this area for commercial fishing.  

This chapter explores how the diversity and richness of the south-west UK fish 

assemblage has changed over the past three decades, and tests for species-

level responses in commercial and non-commercial species.  

Marine biodiversity is essential for the successful functioning of marine 

environments, such that complex and diverse ecosystems with functional 

redundancy are considered to be more robust against environmental stressors.  

The results of this chapter demonstrate that both the richness and diversity of 

the south-west UK fish assemblage have increased significantly in recent 

decades. This is likely to be driven by the changes in abundance of some 

species within the fish assemblage. Many species that are typically associated 

with warmer waters have increased in abundance during the last three decades, 

including anchovy, boarfish and John dory, while there has been a decrease in 

the abundance of many cold-water species such as Atlantic cod, herring and 

blue whiting, that traditionally underpin UK fisheries. These changes in 

abundance correlate closely with warming trends in sea temperature, resulting 

from contemporary climate change. Understanding recent responses in the fish 

assemblage provides valuable knowledge that can be applied to future 

projections of climate-driven changes to the fish assemblage.  
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1. Introduction 

 

The marine realm hosts some of the most diverse ecosystems on the planet, 

however this diversity is threatened by anthropogenic interferences including 

exploitation, climate change and pollution (Worm et al. 2006). Climate change in 

particular has been linked to range shifts in marine organisms (Beare et al. 

2004; Bates et al. 2014), physiological and behavioural changes (Genner et al. 

2010a), as well as local extinctions and invasions (Cheung et al. 2009), all of 

which can alter the functioning and diversity of ecosystems. High levels of 

biodiversity support increased productivity and improved ecosystem function 

and resilience to exploitation (Worm et al. 2006) compared with impoverished or 

degraded environments. A number of studies have investigated how the 

richness and diversity of marine ecosystems and their fish assemblages have 

changed in the past, and how they may continue to change into the future. 

Hiddink & ter Hofstede (2008) found an increase in species richness in the 

North Sea between 1985 and 2006, and attributed this to an increase in sea 

temperature. Similar observations were made by ter Hofstede et al. (2010) for 

the North and Celtic seas, driven by increased richness due to a rise in the 

number of Lusitanian (warm water) species as a result of rising sea 

temperature. 

Predictions of future changes in community composition and diversity vary, but 

there is a general consensus that species richness will increase at higher 

latitudes and decrease at low latitudes, due to range expansions and 

contractions, species invasions and extirpations (Cheung et al. 2009; García 

Molinos et al. 2015). However, studies have shown that community level 

responses are not uniform, such that the same species at different geographical 

locations may respond differently to the same scenario (Genner et al. 2004). 

These differences may be due to local environmental factors and species 

interactions, meaning that applying predictions to different fish assemblages 

may be difficult. 

In addition to the impacts of climate change, pressure from commercial fishing 

has been shown to shape the composition of marine communities (Dulvy et al. 

2008; ter Hofstede et al. 2010; Engelhard et al. 2014). The UK fishing industry 

has experienced significant changes in recent decades, in terms of volume and 



Chapter 2: Recent impacts of climate change on south-west UK fisheries 

 

30 
 

economic value of landings as well as fleet size and structure (Beare et al. 

2004; Marine Management Organisation 2014; Jones et al. 2015). Causes and 

exacerbating factors of this variability include: over-exploitation of fish stocks 

resulting in their decline or collapse (Beaugrand et al. 2011), variations in 

fishing effort due to mitigation measures, such as vessel de-commissioning and 

restricted access to fishing areas (Marine Management Organisation 2014), 

technological advances in fishing practices (Engelhard et al. 2014), impacts 

from climate change (Cheung et al. 2012), as well as the natural variability 

observed in fish stocks (FAO 2016). 

It is important to understand how fish assemblages have changed in the past, 

as well as identifying the possible driving forces behind these changes, in order 

to better understand community level responses to stressors such as climate 

change and exploitation. Given the complex interactions and associations found 

within marine ecosystems, an assessment of net responses of the entire fish 

assemblage can give valuable indications about the state of the ecosystem. The 

importance of considering whole ecosystems in management plans and 

conservation measures is well documented, for the economic benefits seen in 

fisheries, as well as the importance for the health of ecosystems and 

biodiversity. An understanding of past changes in ecosystem dynamics and fish 

assemblage responses can also be valuable in anticipating how they may 

respond in the future.  

A number of studies have considered changes in fish assemblage composition 

in marine environments around the world; in particular the North Sea (Dulvy et 

al. 2008; Simpson et al. 2011; Rutterford et al. 2015), perhaps due in part to the 

substantial amount of uniform, standardised data available, from sources such 

as the International Bottom Trawl Survey (IBTS) co-ordinated by the 

International Council for the Exploration of the Seas (ICES). However, fewer 

studies have focused on the south-west area of the UK (see Stebbing et al. 

2002; Genner et al. 2010b), despite its economic importance for commercial 

fishing. Therefore, this study aims to assess how the fish assemblage in this 

area has changed over the last three decades in terms of species richness and 

diversity (by applying the Shannon-Wiener index of diversity), and at the 

individual species level. The study will consider the whole fish community, 

including both commercially valuable species and those that are not currently 
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commercially valuable or viable. In addition, certain species that together make 

up the majority of the fish population will be analysed to look for changes and 

trends in their abundance over the same time period. The key research 

questions this chapter aims to answer are: 

1. How has the fish assemblage in the south-west UK changed over the last 

three decades in terms of species richness and diversity, and what are 

the possible driving forces behind these changes? 

2. How has the abundance of key species within the assemblage changed? 

The fish abundance data used in this study are from scientific surveys, and are 

detailed in Section 2.1.2. The geographical area considered by this study is 

represented by a number of different surveys. As a result, there is an initial 

need to standardise the data to account for the differences between the 

surveys, in order to accurately assess the abundance changes observed in 

certain species. The method is described by Searle et al. (1980) and is detailed 

further in Section 2.3. 
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2. Methods 

 

2.1 Study area and data sources 

 

 A grid-based (Eulerian) approach to data organising and analysis was adopted. 

The study area covered latitude 47–53°N and longitude 12°W–3°E, and was 

divided into 75 1°x1° cells (see Figure 1). The data used, including their 

sources, and the processes by which they were manipulated and analysed, are 

detailed below. 

 

2.1.1 Environmental data 

 

Sea surface temperature (SST) and near bottom temperature (NBT) for the 

study area were obtained from the Met Office Hadley Centre HadCM3-

POLCOMS Shelf Seas model (Tinker et al. 2015). Figure 2 shows that despite 

substantial fluctuations in both, the general trend is an increase in average 

temperature from 1980–2015.  

Figure 1: Grid showing the 75 1°x1° cells used in this study, covering the area 47–52°N, 12°W–3°E.  
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2.1.2 Fish abundance  

 

The fish abundance data used in this study were obtained from scientific 

surveys, which generally provide repeated samples over long time periods, and 

so are ideal for assessing the state of fish communities (Worm et al. 2009). 

These data have the advantage over fishery landings data in that they are 

gathered from a range of sites rather than just those that are optimal for target 

fishery species. Whilst fishery landings can give valuable information regarding 

the state of a target species, they do not provide information about the fish 

assemblage as a whole.  

Figure 2: Mean annual sea surface temperature (SST) and near bottom temperature (NBT) trends 

for 1980–2015 for the geographical area considered by this study. Temperature data were obtained 

from the Met Office Hadley Centre HadCM3-POLCOMS Shelf Seas model.  
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The six scientific surveys are detailed below; these data were obtained from the 

ICES Datras portal (ICES 2004) or with kind permission from the Centre for the 

Environment, Fisheries and Aquaculture Science (Cefas).  

Cefas Eastern English Channel Beam Trawl Survey (EEC): Conducted by 

Cefas, this survey began in 1989 and uses a 4m beam trawl. The survey area 

was extended in 1995 to include the southern North Sea, and additional stations 

have been added in recent years. Generally conducted in summer months, the 

primary purpose was to assess abundance of pre-recruit plaice (Pleuronectes 

platessa) and sole (Solea solea); therefore survey sites are generally in nursery 

ground of these species. This study uses data from the period 1990–2014, 

which amounted to a total of 2,411 hauls.  

Cefas Celtic Sea Groundfish Survey (Celtic): This survey covers the Celtic 

Sea and has experienced a number of gear and spatial changes since 1981 

when it began. For consistency, only data from the period 1987–2004 (total of 

1,119 hauls) are used in this study, during which time a Portuguese high-

headline trawl was used. This survey was usually conducted in the spring.  

Cefas South-western Beam Trawl Survey (Western): Conducted by Cefas, 

this survey covers the western Channel area, uses a 4m beam trawl, and is 

generally conducted in the first quarter of the year. The survey began in 1984 

but experienced a number of vessel changes until 2005, and so for this study 

the period from 2006–2015 is used for consistency, which includes a total of 

792 hauls.  

French Southern Atlantic Bottom Trawl Survey (EVHOE): This survey 

began in 1987, and in 1997 the RV Thalassa was commissioned to replace an 

older vessel of the same name. To avoid inconsistencies in the data, this study 

uses data from the period 1997–2013. The survey covers the Celtic Sea and 

the French portion of the Bay of Biscay, and is conducted in the fourth quarter 

of the year. A Grande Overture Vertical (GOV) trawl is used, and a total of 

1,443 hauls were analysed in this study.  

French Channel Groundfish Survey (FR-CGFS): This survey began in 1988, 

and is conducted in October each year and also uses a GOV trawl. This study 

uses data from the period 1988–2013, including a total of 2,307 hauls.  
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Irish Groundfish Survey (IGFS): This survey is conducted in the fourth quarter 

of each year, and covers the Atlantic shelf regions around Ireland. Data for the 

period 2003–2008 are used in this study; with a total of 510 hauls. 

From each survey, data relating to the study area were extracted, and fish 

abundances were converted to a catch per unit effort (CPUE) in order to 

standardise for sampling effort and haul duration. The surveys record fish 

species by nominal codes which differ between surveys. The coding systems 

used are World Register of Marine Species AphiaID (WoRMS), Taxonomic 

Serial Number (TSN), and Cefas specific codes. These codes were all 

converted to the species common name, identified using the ICES Datras 

species query tool (ICES 2009) and code information obtained from Cefas. 

Where more than one common name was associated with a species, the name 

used by FishBase (FishBase 2012) was used. In some circumstances, codes 

were duplicated between the different coding systems, such that one code 

applied to a particular species under WoRMS code, and also a different species 

under TSN code. In all instances, the alternative species was either: 1) 

terrestrial, 2) tropical, or 3) too small to be caught using the gear types used by 

the surveys (i.e. small polychaetes, diatoms), and so an assumption was made 

about which species the code likely referred to. All non-finfish species, such as 

crustaceans and cephalopods, were removed. Any data entries that contained 

the value “-9” as an abundance were also removed; “-9” is an agreed code used 

by ICES surveys for an instance where there are no data available, for example 

when a species has been observed in a haul but not counted or not confidently 

identified. Data from all six surveys were then combined, which comprised 

8,582 individual survey hauls, and 247 species of fish (see Figure 3 for the 

locations of the hauls from which fish abundance data was used and Appendix 

1 for a full species list).  
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2.2 Changes in community composition 

 

Changes in the composition and richness of the fish community were 

investigated using species richness and the Shannon-Wiener index of diversity. 

Mean species richness (S) was calculated as the average number of species 

caught per haul, per cell, per year. In order to more comprehensively assess the 

diversity of the fish assemblage examined in this study, the Shannon-Wiener 

index was used, allowing diversity to be determined based on the number of 

species present and their relative abundance; this index is also sensitive to 

occurrences of rare species (Kwak & Peterson 2007). The Shannon-Wiener 

index (H) is given by: 

𝐻 = −∑𝑝𝑖 ln(𝑝𝑖)

𝑠

𝑖=1

 

Figure 3: Haul locations from 1987–2015 for the six surveys used in this study; Cefas Eastern English Channel 

Beam Trawl Survey (EEC), Cefas Celtic Sea Groundfish Survey (Celtic), French Southern Atlantic Bottom Trawl 

Survey (EVHOE), French Channel Groundfish Survey (FR-CGFS), Irish Groundfish Survey (IE-IGFS), Cefas 

South-western Beam Trawl Survey (Western).  
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where S = number of species present in the community, pi = proportion of S 

made up by the ith species (calculated from CPUE values). This was calculated 

per haul, and an average was taken from all the hauls conducted per cell, per 

year. The trend of both species richness and Shannon-Wiener index was 

identified for each cell in the study area, and a non-parametric Mann-Kendall 

test was conducted to determine if the change in species richness and 

Shannon-Wiener index over time was significant.(significant results were 

accepted at p<0.05).  

 

2.3 Abundance trends of selected species 

 

The 37 most abundant species (or grouped species in some cases) were 

selected for further analysis; these represented 98% of total CPUE in the 

dataset (see Table 1). Certain groups of species were omitted from this 

analysis, despite occurring in relatively high abundance (in terms of CPUE) in 

the dataset; this includes skates, rays and gobies. The basis of this decision is 

described further in Chapter 3, Section 2.1.4, and also Chapter 3, Section 3; 

these species were deemed unsuitable for analysis in Chapter 3 of this study, 

and in order for the past and future trends of key species to be comparable, the 

same species were used throughout the study. In order to assess the trends 

and changes in abundance of these species, further data standardisation was 

conducted (in addition to that outlined in Section 2.1.2) due to the differences 

and variations between the six sources of data. Variation between surveys can 

arise for a number of reasons, including the location and time of year during 

which the survey is conducted, the vessel and gear type used for sampling, the 

duration of sampling and expertise of the sampling staff (Trenkel et al. 2004). 

Further standardisation was conducted as follows: for each species, an average 

CPUE per decade, per cell, per survey was calculated (cells where a survey 

was not conducted were left blank, and cells where a survey was conducted but 

a species was not caught retained a zero). CPUE was then 4th root transformed 

to reduce skewness and the impact of outliers. A 4th root transformation reduces 

the impact of outliers even more so than the standard log transformation and 

can be readily back transformed if required, see O’Hara & Kotze (2010) for 

further justification of this method.  
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To obtain a standardised CPUE value for each species from the six surveys, a 

least-square mean (LS-mean) was calculated, using the ‘lsmeans’ package 

(Lenth 2016) in R (R Core Team 2016). The use of LS-means allows a group 

mean to be calculated from a linear model (in this case: CPUE 

(4th)~survey+decade+cell) accounting for covariates and other terms in the 

model (Searle et al. 1980). LS-means are less sensitive to missing data 

(compared to a true population mean) because the values are based on the 

linear model, and can therefore be considered a better estimate of the mean 

where data sets have missing values. The new LS-mean estimate of 

abundance was compared to the original survey values, to ensure that there 

was correlation between them and that the LS-mean values were accurate and 

appropriate (figures in Appendix 2A–E). In some circumstances, the LS-means 

method produced a negative value of abundance: ~12% of all LS-mean 

estimates were negative values. This occurred where: 1) all except one survey 

had not sampled that cell in that decade, or 2) when the abundance of a 

species was zero for all surveys. In all instances where a negative value was 

produced, zero was within the 95% confidence interval for that value, and so it 

was deemed reasonable to change these values back to zero, since it is not 

biologically possible to have a negative abundance.  

These data remained as a 4th root transformed CPUE (unless otherwise stated) 

for ease of analysis and comparison between species. From these standardised 

estimates of abundance, the change in abundance over time was calculated for 

each species. 
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Common name Scientific name(s) 

American plaice Hippoglossoides 
platessoides 

Argentine Argentina silus 

Argentina sphyraena 

Atlantic cod Gadus morhua 

Atlantic herring Clupea harengus 

Atlantic mackerel Scomber scombrus 

Blue whiting Micromesistius poutassou 

Boarfish Capros aper 

Common dab Limanda limanda 

Dogfish Galeus melastomus 

Scyliorhinus canicula  

(Lesser spotted dogfish) 

Scyliorhinus stellaris  
(Greater spotted dogfish) 

Squalus acanthias  
(Spiny dogfish) 

Dover sole Solea solea  

Solea vulgaris 

Dragonet Callionymidae spp. 

Callionymus lyra  
(Common dragonet) 

Callionymus maculatus  

(Spotted dragonet) 

Callionymus reticulatus  
(Reticulated dragonet) 

European anchovy Engraulis encrasicolus 

European hake Merluccius merluccius 

European pilchard Sardina pilchardus 

European plaice Pleuronectes platessa 

European seabass Dicentrarchus labrax 

European sprat Sprattus sprattus 

Grenadier Coelorinchus caelorhincus  
(Hollowsnout grenadier) 

Coryphaenoides rupestris  
(Roundnose grenadier) 

Hymenocephalus italicus  

(Glasshead grenadier) 

Macrourus berglax  
(Roughhead grenadier)  

Malacocephalus laevis  
(Softhead grenadier) 

Nezumia sclerorhynchus  

(Bluntsnout grenadier 

Trachyrincus scabrus  
(Roughsnout grenadier) 

Common name Scientific name(s) 

Haddock Melanogrammus 
aeglefinus 

Horse mackerel Trachurus trachurus 

Grey gurnard Eutrigla gurnardus 

John dory Zeus faber 

Lemon sole Microstomus kitt 

Ling Molva dypterygia 

Molva macrophthalma  

Molva molva 

Megrim Lepidorhombus boscii 

Lepidorhombus 
whiffiagonis 

Monkfish Lophius piscatorius 

Norway pout Trisopterus esmarkii 

Poor cod Trisopterus minutus 

Pouting Trisopterus luscus 

Red gurnard Chelidonichthys cuculus 

Red mullet 
 

Mullus barbatus 

Mullus surmuletus 

Seabream Abramis spp. 

Boops boops  
(Bogue) 

Diplodus sargus  

(White seabream) 

Pagellus spp. 

Pagellus acarne  
(Axillary seabream) 

Pagellus bogaraveo  
(Blackspot seabream) 

Pagrus pagrus  

(Common seabream) 

Sparus aurata  
(Gilthead seabream) 

Spondyliosoma cantharus  
(Black seabream) 

Silvery pout Gadiculus argenteus 

Solenette Buglossidium luteum 

Thickback sole Microchirus variegatus 

Weever Echiichthys vipera  
(Lesser weever) 

Trachinus draco  
(Greater weever) 

Whiting Merlangius merlangus 

 

 

Table 1: Species selected for abundance trend analysis. All species, including those where 

several species have been grouped, will be referred to by the common name.  
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3. Results 

 

3.1 Changes in community composition 

 

There was a significant positive correlation over time for both mean species 

richness (tau=0.429, p=0.001) and Shannon-Wiener index (tau=0.626, 

p<0.001)(Figure 4).  

Species richness and Shannon-Wiener index values were tested for correlation 

against SST and NBT in order to identify concurrent trends in temperature and 

community changes (Figure 5). Positive correlations were found between both 

diversity indices and temperature variables, although these correlations were 

quite weak. Species richness and Shannon-Wiener indices appear to have 

slightly stronger correlation to SST (r values of 0.32 and 0.14 respectively) than 

NBT (r values of 0.29 (species richness) and 0.12 (Shannon-Wiener index)). In 

order to explore spatial variation in diversity changes, the rate of change 

(expressed as the gradient of the line between the mean annual values) for 

species richness and the Shannon-Wiener diversity index were mapped using 

Quantum GIS (QGIS 2016) (shown in Figure 6 and 7 respectively). A one 

sample Wilcoxon signed rank test on the rate of change across all cells found 

that for both species richness and the Shannon-Wiener index the rate of change 

was significant (species richness: p=2.659E-07, W=1711, Shannon-Wiener 

index: p=8.141E-05, W=1539). The values of species richness and diversity 

index are mean values from all the hauls conducted in that cell during a 

particular year. However, not all cells were sampled in all years, and for certain 

areas there is a limited number of years during which data were collected. 

Whilst these cells still demonstrate clear trends, these patterns are less robust 

than cells for which there are many years of data. Appendix 3A and 3B show 

the same maps as Figures 6 and 7 with cells highlighted for which there was 

less than 6 years of data.  
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Figure 4: Mean change in species richness (tau=0.429, p=0.001) and Shannon-Wiener diversity 

index (tau=0.626, p<0.001) across the whole study area, from 1987–2015.  

Figure 5: A, Correlation between average sea surface temperature, and average species richness (r=0.32) and 

Shannon-Wiener index (r=0.14). B, Correlation between average near bottom temperature, and average 

species richness (r=0.29) and Shannon-Wiener index (r=0.12).   

 

B A 
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Figure 6: Spatial variation of the rate of change in species richness, from 1987–2015, expressed as the 

gradient of the line through the annual mean species richness value for each cell. Red indicates an increase in 

richness, blue indicates a decrease. Blank cells were not sampled during this time.  

Figure 7: Spatial variation of the rate of change in Shannon-Wiener diversity index, from 1987–2015, 

expressed as the gradient of the line through the annual mean Shannon-Wiener index value for each cell. Red 

indicates an increase in richness, blue indicates a decrease. Blank cells were not sampled during this time. 
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3.2 Abundance trends of selected species 

 

The mean rate of change in abundance was calculated from the LS-mean 

estimates of abundance for each species, across the study area. These trends 

are shown in Figure 8; red indicates an increase in abundance and blue 

indicates a decrease in abundance. This figure demonstrates that during the 

time period investigated, 23 out of 37 species increased in abundance. 

 

  

Figure 8: Change in abundance from 1987–2015, expressed as the slope of the line through the decadal 

mean abundance of each species. Red indicates an increase in abundance and blue indicates a decrease 

in abundance.  
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4. Discussion 

 

This study found that over the last three decades, the fish assemblage of the 

south-west of the UK has increased in both diversity and richness, with some 

key species showing substantial changes in abundance. Since species richness 

simply describes the number of species present in an area, it is a fairly crude 

measure of diversity that can be influenced by a single occurrence of a species. 

The Shannon-Wiener index addresses this by assessing diversity, based on the 

number of species and their relative abundance. Both indices increased at a 

similar rate over the study period (Figure 4), suggesting that the increase seen 

is a genuine increase in the richness and evenness of the fish assemblage, and 

is not driven by the increased dominance of a select few species. The trend-line 

of the Shannon-Wiener index is slightly steeper, indicating a greater rate of 

increase, which could imply that the fish assemblage has become more even, 

being dominated less by a just a few species.  

Average sea temperature has increased in the study area over the last three 

decades (Figure 2), and positive correlations were found between the 

temperature variables (SST and NBT) and species richness and diversity. The 

positive correlations observed here are relatively weak, which may be due to a 

paucity of data early on in the time series used, or due to a relatively moderate 

warming trend in south-west England compared to nearby regions (e.g. the 

North Sea). However, it is highly likely that temperature will have an influential 

role in changing community composition in the future, and given that the effects 

of climate change are predicted to continue and even intensify, this should be 

considered an important area for future study. 

Similar spatial variation was observed between both indices, in terms of the rate 

of increase (Figures 4 and 5). Whilst the overall trend in both species richness 

and diversity increases over time, there are some areas that show a decrease 

over the study period, and these areas differ slightly between the two indices. 

The reasons for this are unclear, although it could be due, in part, to a 

deficiency in survey data.  

Climate change, including elevated sea temperatures, has been attributed to 

causing shifts in species distribution by driving species towards the poles (Perry 
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et al. 2005), or into deeper water (Dulvy et al. 2008), resulting in an increase in 

species richness at higher latitudes and therefore changing community structure 

(Beare et al. 2004; Genner et al. 2004; Hiddink & ter Hofstede 2008; Simpson et 

al. 2011; Montero-Serra et al. 2015). The trends observed in many of the 37 

species analysed in this study (Figure 8) are in accordance with the theory that 

as average sea temperatures warm, species are moving polewards, either away 

from areas that have become thermally intolerable, or towards areas that are 

now thermally suitable. This study shows that many Lusitanian warm water 

species, for example anchovy (Engraulis encrasicolus), John dory (Zeus faber) 

and solenette (Buglossidium luteum) have increased in abundance over the last 

three decades, whereas boreal cold water species such as Atlantic cod (Gadus 

morhua), Atlantic herring (Clupea harengus), and ling (Molva molva) have 

decreased in abundance. The spatial distribution of Atlantic cod has been well 

documented (Beaugrand et al. 2003; Hedger et al. 2004; Beaugrand & Kirby 

2010), and it is reported that this species has been shifting in distribution for the 

past 100 years, although more pronounced changes have been observed in the 

last 2–3 decades (Engelhard et al. 2014).  

Increasing average temperature is just one of many environmental 

consequences of climate change. The relatively shallow, and partially enclosed 

nature of the English Channel and Irish Sea may make these areas more 

susceptible to warming, and may exacerbate the effects of climate change. In 

addition to temperature changes, climate variability will affect salinity, ocean 

chemistry and circulation. Ocean acidification is considered to be the other 

major concern resulting from elevated levels of carbon dioxide, and whilst this is 

not addressed in this study, ocean acidification is known to affect fish 

communities, both directly and indirectly (Pinnegar et al. 2013; Simpson et al. 

2013).  

The other main driving force behind the trends observed in species abundance 

is likely to be the effect of exploitation by the fishing industry. The industry has 

experienced significant changes over the last few decades, with the 

establishment of the Common Fisheries Policy (CFP) and enforcement of 

quotas and restrictions between Member States. However, attempts to reduce 

fishing effort have been coupled with substantial improvements in fishing 

practices and technology, which, together with government subsidies, may have 
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masked a decline in profitability (Jones et al. 2015). The number of fishers in 

the UK dropped by nearly 48% between 1987 and 2014. A number of fish stock 

collapses have occurred in recent decades, such as the North Sea herring and 

mackerel (Scomber scombrus) stocks in the 1970s (Beare et al. 2004; Marine 

Management Organisation 2014).The effects of fishing could explain the trends 

seen in species that is perhaps not so well explained by climate change. Fishing 

has a direct and drastic influence on the age structure of a fish population, by 

removing large, mature individuals, thereby reducing the populations’ ability to 

withstand other stressors, such as climate change. Some studies have argued 

that fishery exploitation may be more important than climate induced warming in 

defining the abundance and distribution of a species (Dulvy et al. 2008; 

Engelhard et al. 2014). However, this impact is likely to vary regionally, 

depending on the levels of exploitation (ter Hofstede et al. 2010). A number of 

areas within the south-west are closed to certain or all types of fishing, in order 

to protect, or promote recovery of fish stocks. These include the mackerel box, 

which occupies a large area of the Western English Channel and Celtic Sea, as 

well as the Trevose closure, intended to protect Celtic Sea cod, occupying a 

smaller portion of the same area. 

Some of the trends observed in this study are perhaps counter-intuitive, when 

compared to other literature, fishery landings, or when considering the biology 

of the species. For example, horse mackerel (Trachurus trachurus) has been 

increasing in abundance in recent years, in terms of scientific survey recordings 

as well as fishery landings; a fishery for this species has been well established 

in the North Sea since the 1980’s (Beare et al. 2004). However, this study found 

a substantial decrease in the abundance of horse mackerel over the study 

period. The reverse is true for haddock (Melanogrammus aeglefinus); this study 

found an increase in abundance over time, however landings of haddock have 

fallen significantly since the mid-1990s (Marine Management Organisation 

2014). Simpson et al. (2011) conducted a similar study on the fish assemblage 

of the North Sea, and found similar abundance trends for 12 of the 37 species 

analysed in this study. However, certain species did differ between studies in 

the trends observed, including haddock, poor cod (Trisopterus minutus) and 

whiting (Merlangius merlangus).  
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These unexpected trends and variability could be due to a number of factors. 

The spatial distribution of many species can vary annually and seasonally, such 

that the same areas sampled at different times of year may yield high catches of 

a particular species, or none at all (Beare et al. 2004). Given that the fishery 

landings quoted here are total landings for the whole of the UK, they do not give 

any indication about species distributions in the south-west. Spatial distribution 

can vary depending on life stage and environmental factors. Many species, 

such as mackerel, plaice and sole migrate seasonally between optimal feeding, 

breeding and nursery grounds. The Celtic Sea is typically occupied by juveniles 

of certain species, notably blue whiting, and mackerel; hence the establishment 

of the Mackerel Box closure, designed to protect the juveniles of this species 

and increase recruitment levels. The seasonality, life history and behavioural 

traits of a species will therefore determine how well that species will be 

represented by the survey data. Unusual abundance trends could also be 

influenced by exceptionally strong year classes, as has been observed for 

haddock (Marine Management Organisation 2014).  

The fish abundance data used in this study introduces some bias to the results. 

Firstly, the gear types used by the surveys may under-represent certain 

species. A study conducted by Trenkel et al. (2004) assessed differences 

between survey design, and the effect on estimates of species abundance and 

community composition. The study found that both sampling method and survey 

period can have a substantial effect on the results of a survey, and therefore the 

perception of species abundance and community structure. For certain species, 

notably hake, mackerel and horse mackerel, survey period was an important 

factor, however, sampling method contributed more to the variance in 

abundance estimates. Differences in the identification of species between the 

surveys used in the study conducted here, as well as differing catchability of 

species, could affect the abundance and relative proportions of species caught, 

and therefore may affect the estimates of species richness and diversity. For 

example, survey gear that sample on or just above the seabed will primarily 

target benthic and demersal species and may under-represent fast-swimming 

pelagic species. In addition, the timing of the surveys may also over or under 

represent certain species. Whilst there is some overlap between most of the 

surveys, in terms of the geographic area they cover, there are some areas that 

are only sampled by one survey, and therefore only sampled at one time of 
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year, which again, may affect how well certain species are represented by the 

dataset. Finally, there was limited data available for some cells in the study 

area, particularly early on in the time series, which may affect the strength of the 

trends observed.  

 

5. Conclusions and future work  

 

The rising level of richness and diversity found by this study provides further 

evidence to the theory that as average temperatures rise due to climate change, 

many fish species are shifting their ranges, resulting in increased species 

richness at higher latitudes. This study uses fish abundance data from scientific 

surveys, rather than fishery landings. However, a comparison between the two 

would provide an interesting insight into the correlations between them, to see 

how well survey data is reflected in landings. This would provide support to the 

fisheries management plans that are developed based on scientific data. It is 

likely that the changes observed in this study in species abundance and fish 

assemblage diversity will continue and become more pronounced in the future. 

This is the focus in the next Chapter that uses this multiple-survey standardised 

dataset to forecast future changes in the south-west UK fish assemblage. 
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Abstract 

 

Predictive models have become highly complex and sophisticated in recent 

years, and are now used widely in studies to predict species distributions in 

both marine and terrestrial environments. This chapter uses a generalised 

additive modelling approach to predict how the south-west UK fish assemblage 

might respond to a potential anticipated climate scenario, during the course of 

this century.  

Fish populations have responded to changing climatic conditions, through range 

shifts, behavioural changes and in some circumstances, physiological 

adaptations. This has resulted in compositional and functional changes within 

marine communities, which in turn have affected the productivity of fishing 

industries. Given that climate models are forecasting environmental scenarios 

that, in particular areas, are beyond anything that has previously been 

experienced, the response of fish communities to climate change is likely to be 

more pronounced than previously observed responses.  

This study demonstrates that, according to the GAM modelling approach used, 

there are likely to be substantial changes in the composition of the south-west 

UK fish assemblage by the end of the century. Many species typical of warm 

water environments, with more southerly ranges and smaller body size, 

including boarfish, horse mackerel and red mullet are predicted to increase in 

abundance. This is likely to be coupled with a reduction in the abundance of 

cold-water, large bodied species, such as Atlantic cod, haddock and monkfish 

that are currently targeted in UK fisheries. There is also likely to be a decline in 

the mean trophic level of the fish assemblage; a trend that has been apparent 

for the last three decades.  

Strong scientific evidence will support policies and inform the future 

management of our seas and fish stocks, and enable the fishing industry to 

adapt to future changes in commercial fish assemblages. It is hoped that 

predicting and anticipating the responses of fish communities to climate change, 

as explored by this study, could enable management plans to consider future 

changes within fish stocks, rather than be based purely on historic catch data.   
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1. Introduction 

 

Global climate change is affecting the distribution and range of many species, 

especially in marine environments. A rise in average sea temperature, ocean 

acidification, and an increase in sea level are just some of the consequences 

predicted by climate models that could threaten the functioning of marine 

ecosystems. A growing number of studies have predicted how climate change 

is likely to affect fish and marine ecosystems, with varying outcomes, including 

species range shifts (Jones et al. 2013), local extinctions and invasions 

(Cheung et al. 2009), and increased fish production at high latitudes coupled 

with reduced production at mid-low latitudes (Cheung et al. 2010; Blanchard et 

al. 2012; Barange et al. 2014).  

The climatic changes that have been forecasted are also likely to have a 

significant impact on industries that rely on marine resources, including the 

fishing industry. Many different predictions have been made about the future of 

fishing industries, based on different climate scenarios. Cheung et al. (2010) 

predicted an increase (30–70%) in catch potential for high latitude regions, 

coupled with a decrease (40%) in catch potential for the tropics by the middle of 

this century. For the same time period, Jones et al. (2015) forecasted a 10% 

drop in net present value in the UK as a result of decreased maximum catch 

potential of key species. Lam et al. (2016) considered climate change impacts 

in terms of global fisheries revenue, predicting an average reduction of 7.1–

10.4% in Maximum Revenue Potential (MRP), under different climate scenarios. 

The authors state that the anticipated increase in catch potential in high latitude 

regions will not necessarily translate to an increase in revenue, due to greater 

quantities of low value fish. An increase in the abundance of small-bodied, rapid 

turnover species (which are generally lower in economic value), as a result of 

warming seas, has been reported by a number of studies (Perry et al. 2005; 

Dulvy et al. 2008; Simpson et al. 2011). These species are typically at lower 

trophic levels, and their increased prevalence in capture fisheries has been 

attributed to the practice of “fishing down food webs” (Pauly et al. 1998); a 

consequence of unsustainable exploitation of large, long-lived species.  

The impact of climate change on the fishing industry will likely be observed at 

local, regional and global scales. As such, and as observed through a 
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consensus within the literature, fishing practices and the policies and 

management plans that govern them, will need to be dynamic and adaptive to 

ensure the continuity and success of the fishing industry into the future. In some 

areas fishing fleets are already adapting to changing conditions; having a better 

understanding of how the composition of the fish assemblage may change in 

the future will give fishers a greater capacity to adapt to new opportunities. This 

may be done through targeting different species, changing fishing practices and 

gear types as well as targeting new locations (Defra 2013).  

The UK fishing industry landed 756 thousand tonnes of fish in 2014, with a 

value of £861 million (Marine Management Organisation 2014). Whilst the 

contribution made to GDP (Gross domestic product) by fisheries is relatively 

small, the regional importance of fishing varies greatly (Pinnegar et al. 2013); 

many coastal communities are highly dependent on the fishing industry for both 

income and employment. It is therefore not surprising that there is a growing 

number of studies focusing on climate scenarios, impacts and possible 

mitigation measures (Blanchard et al. 2012; Jones et al. 2015). The ability to 

make informed policy decisions will largely depend on the availability of 

predictive models that can make reliable and accurate estimations about the 

impacts of climate change.  

Recent advances in ecosystem modelling have seen a shift from simplistic 

models that use only presence or presence-absence data, towards the use of 

more complex or multi-model approaches (Araújo et al. 2005; Beaugrand et al. 

2011; Jones et al. 2012; Cheung et al. 2013; Jones et al. 2013; Rutterford et al. 

2015), which can account for a multitude of environmental and human-impact 

variables. Models that can describe more complex, often non-linear 

relationships, are arguably better suited to provide robust estimations of a 

species response to climate change (Araújo et al. 2005), and therefore 

contribute to a more comprehensive understanding of how marine organisms 

and even entire ecosystems will fare in a changing climate.  

Climate models are now predicting future environmental conditions that have 

not yet been experienced by the ecosystem for which they are predicted. These 

conditions, together with the shifts they may cause in species distribution and 

abundance, will likely result in the emergence of novel ecosystems (Doney et al. 

2012), bringing together species that do not currently exist together. This could 
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significantly alter ecosystem dynamics in terms of species interactions, 

predation and competition for resources, which in turn will present a number of 

challenges for conservation and management plans (Buisson et al. 2013). It is 

possible that species currently occupying areas of high environmental variability 

will fare better in the face of climate change, than those that occupy very 

environmentally stable habitats (Hollowed et al. 2013). However, anticipating 

the adaptive capacity of a species is just one of a number of challenges faced in 

ecosystem modelling. 

The modelling approach applied in this study uses generalised additive models 

(GAMs), and is developed from the method described by Rutterford et al. 

(2015). A GAM is a generalised linear model (GLM) with the addition of a 

smoothing function that can be applied to each variable, without having to 

specify detailed parametric relationships between the variables (Wood 2006). 

The degree of smoothness can be determined, as can the exponential family of 

distribution (i.e. Gaussian, Poisson, Gamma) used by the model. The addition 

of a smoothing function means that GAMs can account for non-linear 

relationships, as are commonly found between fish abundance data and 

environmental variables (Hedger et al. 2004). In this study GAMs are used 

firstly to assess the importance and influence of different environmental 

variables (detailed in Section 2) on a fish species’ distribution. Secondly, the 

models are used to predict mean decadal fish abundances, from 2010 until the 

end of 2090, according to a specified climate scenario. The climate data used in 

this study are based on levels of carbon emissions that equate to a “best case 

scenario”. This study aims to assess the fish assemblage as a whole, and as 

such, the species used in this study account for a large proportion of the fish 

assemblage of the south-west of the UK, and includes both commercially 

valuable, and non-commercial species. The central research questions that this 

chapter aims to answer are: 

1. How might the key species of the south-west UK fish assemblage respond to 

climate change?  

2. Is there likely to be a significant change in the characteristics of the fish 

assemblage between present day and the end of the century, in terms of body 

size, trophic level or latitudinal preference?  
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2. Methods 

 

2.1 Study area and data sources 

 

The study area for this Chapter is the same as detailed in Chapter 2, see 

Figure 1. Additional environmental data were required for the GAM, in order to 

assess the influence of different variables on the abundance of the selected fish 

species, and ultimately make future predictions based on projected future 

conditions.  

 

2.1.1 Habitat type 

The habitat type within each 1°x1° cell was identified using the European 

Marine Observation Data Network Seabed Habitats project (EMODnet 2015). 

The map layers used were EUSeaMap 2012–13 official top copies: Habitat 

maps (simplified classification). The substrate occupying the majority (>50%) of 

each 1°x1° cell was identified and recorded according to the EUSeaMap key. 

Where two habitat types occupied equal proportions of a cell, both were 

recorded (see Figure 9 for habitat classification used in the GAMs, and 

Appendix 4 for the original EUSeaMap habitat data). Habitat data were not 

available for some cells at the time when this study was conducted but have 

since been updated (discussed further in Section 4). 

 

2.1.2 Fishing effort 

Fishing effort data tables and their associated reports were obtained from the 

Scientific, Technical and Economic Committee for Fisheries (STECF 2014). 

This dataset compiles fishing effort from all countries operating within the 

region, which for this study includes: Belgium, Denmark, France, Germany, 

Ireland, Netherlands, Portugal, Scotland, Spain, Sweden and the UK (England, 

Wales, Northern Ireland, Isle of Mann, Guernsey and Jersey). Fishing effort in 

these tables is given by ICES rectangles, which were converted to 1°x1° cells, 

and averaged across the time period available (2003–2013), to give an average 

fishing effort per cell, in units of “hours fished” (see Figure 10). The data tables 

also list fishing effort by gear type, and for the purpose of this study, certain 



Chapter 3: Predicted future impacts of climate change on south-west UK fisheries  

 

55 
 

gear types were removed because they do not target finfish. These were: pot 

(21.79% of all fishing effort), dredge (7.95% of all fishing effort), and those 

entries where no gear type was recorded (0.14% of all fishing effort). For the 

purpose of this study it was assumed that fishing effort would remain constant 

during the time period for which model predictions are made, an assumptions 

that is discussed further in Section 4.  

 

2.1.3 Depth, salinity and climate data 

Environmental parameters were obtained from the Met Office Hadley Centre 

HadCM3-POLCOMS Shelf Seas model (Tinker et al. 2015). These parameters 

include depth, sea surface salinity (SSS), near bottom salinity (NBS), sea 

surface temperature (SST) and near bottom temperature (NBT) (see Tinker 

2016 for data). These outputs are from the unperturbed ensemble of the model 

(i.e. default parameters), and are based on a scenario of future changes under 

the Representative Concentration Pathway (RCP) 2.6; this assumes a “best 

case scenario” in terms of reducing greenhouse gas emissions, through drastic 

policy intervention and climate mitigation measures, resulting in a mean 

temperature increase of 1.5–2.0°C by the end of the century (Vuuren et al. 

2011). Salinity and depth data were re-gridded1 to give an average value per 

1°x1° cell, per decade (see Figures 11 and 12 respectively). Temperature data 

were manipulated to obtain mean annual SST and NBT, as well as mean winter 

(Jan, Feb, March) and summer (July, Aug, Sep) values for both SST and NBT, 

on a per cell per decade basis. Past and predicted mean SST and NBT can be 

seen in Figure 13. Figure 14 shows anticipated spatial variation in SST for the 

study area, from 2010–2098.  

 

2.1.4 Fish abundance data and standardisation  

See Chapter 2, Section 2.1.2 for fish abundance data sources and manipulation 

processes, and Chapter 2, Section 2.3 for the data standardisation process. 

Certain groups of species were omitted from this analysis, despite occurring in 

relatively high abundance (in terms of CPUE) in the dataset; this includes 

                                            

1 Conducted by Katherine Maltby (PhD researcher, University of Exeter).  
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skates, rays and gobies. This decision was due to these species being poorly 

characterised by all of the models tested for this study (see Section 2.2 for 

further discussion on modelling process). In order to address possible 

inconsistencies in the identification of these species by surveys, all species of 

ray and skate were grouped together, as were gobies. This may have 

influenced how well the model captured trends in the data, and could account 

for the low predictive power and poor fit of the models. Where negative LS-

mean values occurred as a result of the standardisation process, these 

remained as such until post-modelling and predictions had been made by the 

GAM. During analysis of the GAM predictions, any negative values of 

abundance were changed to zero, as it is not biologically feasible to have a 

negative abundance.  
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Figure 9: Habitat types used in the GAM, derived from data available through the European Marine Observation 

Data Network Seabed Habitats project.  

Figure 10: Mean fishing effort per 1°x1° cell in terms of hours fished, from the Scientific, Technical and 

Economic Committee for Fisheries (STECF).  
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Figure 12: Mean depth per 1°x1° cell, from the Met Office Hadley Centre HadCM3-POLCOMS Shelf Seas model. 

Figure 11: Salinity trends from 1980–2098 for the study area, forecasted by the Met Office Hadley Centre 

HadCM3-POLCOMS Shelf Seas model.  
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Figure 14: Spatial variation in predicted SST increase for the study area, from 2010–2098, forecasted by 

the Met Office Hadley Centre HadCM3-POLCOMS Shelf Seas model.  

Figure 13: Mean annual temperature trends for the south-west from 1980–2098, for the 75 1°x1° cells 

used in this study, forecasted by the Met Office Hadley Centre HadCM3-POLCOMS Shelf Seas model.  
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2.2 Modelling 

 

GAMs were developed from the methods described by Rutterford et al. (2015) 

using the ‘mgcv’ package (Wood 2011; 2016) in R (R Core Team 2016). Fish 

species selected for GAM analysis are outlined in Table 1 (see Chapter 2, 

Section 2.4 for species selection process).  

 

2.2.1 Model development, training and selection 

GAMs were developed and trained on data earlier in the time series, in order to 

test their predictive power before making predictions into the future. Data from 

the time period 2001–2010 were used for model training, as this period has the 

most consistent data for all of the surveys. A previous study found no 

substantial improvement in model fit or function as a result of extending the time 

series used to train the models (Rutterford et al. 2015). The following variables 

were included in the full model: depth, habitat, fishing effort, SSS, NBS, annual 

and seasonal (summer and winter) SST and NBT. Subsequent versions of the 

model contained all except one of the variables. The influence and predictive 

power of each variable was assessed, and based on that a decision was made 

as to whether the variable should be included in the model. The basis for the 

smoothing function is determined by a value of k. For this study a Gaussian 

distribution was used, and a k value of 5 for all variables, to limit the degrees of 

freedom and avoid over-fitting the data. All variations of the models were tested 

on all species. The ‘gam.check’ function within the ‘mgcv’ package was used to 

check that the specified distribution was appropriate, and to ensure that the 

smooth function basis was adequate, and not “over-smoothing” the data. GAMs 

were also used to predict the data values upon which they had been trained, in 

order to test the integrity and predictive power of the model (see Figure 15A 

and 15B for correlations between actual and predicted abundance values for 

the chosen GAM). The ‘summary.gam’ function was used to generate model 

statistics, which were assessed to determine the suitability of the model. These 

include: adjusted r2, deviance explained by the model and Generalised Cross 

Validation (GCV). The Akaike Information Criterion (AIC) and hence Akaike 

weight was also calculated. All of these values, together with the correlation 

values, were used to determine which model performed best for each species. 
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In the case of the AIC and GCV values, a lower value is deemed a better fitting 

model. 

The model without the variable for habitat was deemed to be the most suitable 

model based on the criteria described above (see Appendix 5 for all model 

statistics), performing best for 15 out of 37 species. With this model the 

minimum adjusted r2 and correlation values across all species were 0.54 and 

0.79 respectively.  

 

2.2.2 Model predictions  

The selected GAM was then used to predict decadal abundances for each 

species per cell, based on predicted annual and seasonal SST and NBT, as 

well as SSS and NBS forecasted by the Met Office Hadley Centre Shelf Seas 

model (detailed in Section 2.3). The first decade for which predictions were 

made was 2010 (2011–2020 inclusive), and each subsequent decade up to and 

including 2090 (forecasted predictions were only available up to and including 

2098, so the 2090 period covers 2091–2098). The other variables in the model 

(depth and fishing effort) remained the same as used for model testing. The 

predicted abundance values were kept as 4th root transformed CPUE, for ease 

of interpretation and comparison. The trend of change in abundance as 

predicted by the GAM was mapped for each species using Quantum GIS (QGIS 

2016) in order to assess any spatial variation in abundance trends. Abundance 

trends of each species per cell were identified and assessed for normality. 

Since the data were deemed not normally distributed a Wilcoxon signed rank 

test was conducted using R (R Core Team 2016) for each species, to determine 

if the overall rate of change (slope) in abundance was significantly different to 0 

(p<0.05; see Appendix 6 for test results). 

 

2.2.3 Analysis of model predictions 

Values of mean length, central latitude and trophic level were obtained for each 

species from FishBase (FishBase 2012). There are certain limitations 

associated with data relating to trophic level; the values may be based on a 

model output, or analysis of gut content, which gives only a snapshot of the diet 
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consumed and could vary substantially depending on the age and size of the 

fish (Pinnegar et al. 2002). However, this data can provide valuable indications 

about community structure within a fish assemblage. Changes in the 

characteristics of the fish assemblage were assessed by comparing mean 

length, central latitude and trophic level between species that are predicted to 

increase in abundance (winners), and those that are predicted to decrease in 

abundance (losers), using a Mann Whitney U test. In addition, GAM-predicted 

abundance values were used together with historic data for the south-west fish 

assemblage (described in Chapter 2, Section 2.1.2) to calculate and compare 

the mean trophic level of the fish assemblage, for each decade from 1980 to 

2090. Mean trophic level was calculated for each decade as follows: 

∑ (𝑎𝑖𝑡𝑖)𝑖

∑𝑎𝑖
 

where a = abundance and t = trophic level.  

To give an indication of how the composition of the fish assemblage may 

change, and how the predicted abundances relate to present day abundances, 

the values predicted by the GAM for each species were back transformed; from 

4th root transformed CPUE to raw CPUE values.  

 

  



Chapter 3: Predicted future impacts of climate change on south-west UK fisheries  

 

63 
 

 

Figure 15A: Correlation (r) between known abundance (least-square mean estimate of abundance) and GAM-

predicted abundance, for each species, for the 2000 decade.  
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Figure 15B: Correlation (r) between known abundance (least-square mean estimate of abundance) and GAM-

predicted abundance, for each species, for the 2000 decade.  
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3. Results 

 

The selected GAM combined the following variables: depth, fishing effort, SSS, 

NBS, mean annual SST, mean annual NBT, mean winter SST and NBT and 

mean summer SST and NBT. From the abundance values predicted by the 

GAM, an average rate of change was calculated for each species across the 

study area; expressed as the gradient of the line between the mean decadal 

abundances (Figure 16). 32 of 37 species analysed showed a significant 

(p<0.05) change in abundance over the time period used by the model (non-

significant results are represented by grey bars in Figure 16). Of those 32, 20 

showed an increase in abundance, represented by red bars in Figure 16. The 

results of the one-sample Wilcoxon test can be seen in Appendix 6.  

Substantial spatial variation in abundance response was predicted for some 

species; maps for a selection of species is shown in Figure 17, the remaining 

species maps can be seen in Appendix 7, 8, 9 and 10. Table 2 summarises 

the abundance response observed in all species; these are grouped according 

to the spatial variation observed; consistent trends (no spatial variation) and 

majority trends (some spatial variation).  

Based on the abundance trends (Figure 16), species predicted to increase in 

abundance were deemed winners, and those predicted to decrease in 

abundance were considered losers. The metrics obtained from FishBase were 

used to determine mean central latitude, length and trophic level for the winners 

and losers (values in Appendix 11), and these were compared using Mann 

Whitney U tests (Table 3). There was a statistically significant difference 

(p<0.05) between the winners and losers mean central latitude (p=0.0120, 

W=55), as well as mean body length (p=0.0131, W=56). The difference 

between winners and losers mean trophic level was not statistically significant. 

However, there is likely to be a substantial decline in the mean trophic level of 

the south-west UK fish assemblage between 1980 and 2098. A non-parametric 

Mann-Kendall test was performed to assess the trends in trophic level over 

time. The results (tau=-0.545, p=0.016) indicate a significant negative 

correlation between mean trophic level and year (Figure 18).  
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Projected abundances by the GAM models (based on back-transformed CPUE 

values) suggest that the fish assemblage will become dominated by fewer 

species by the end of this century (Figure 19A and 19B), and that the 

abundance of selected species may increase drastically, compared to present 

day (Figure 19A).  

  

Figure 16: Change in abundance from 2010–2098, as predicted by the GAM, expressed as the slope of 

the line through the decadal mean abundance of each species. Red indicates an increase in abundance, 

blue indicates a decrease in abundance, and grey indicates the predicted change is not statistically 

significant (p>0.05).  
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Consistent increase Majority increase Majority decrease Consistent decrease 

Anchovy 

(Engraulis encrasicolus) 

American plaice  

(Hippoglossoides platessoides) 

Atlantic mackerel*  

(Scomber scombrus) 

Atlantic cod 

(Gadus morhua) 

Dover sole 

(Solea solea) 

Argentine 

(Argentina sp.) 

Dragonet 

(Callionymus sp.) 

Dab 

(Limanda limanda) 

European pilchard 

(Sardina pilchardus) 

Atlantic herring* 

(Clupea harengus) 

European hake 

(Merluccius merluccius) 

Grey gurnard 

(Eutrigla gurnardus) 

Horse mackerel 

(Trachurus trachurus) 

Blue whiting 

(Micromesistius poutassou) 

European plaice  

(Pleuronectes platessa) 

Haddock 

(Melanogrammus aeglefinus) 

Pouting 

(Trisopterus luscus) 

Boarfish 

(Capros aper) 

Grenadier 

(see Table 1) 

Norway pout 

(Trisopterus esmarkii). 

Red gurnard 

(Chelidonichthys cuculus) 

Dogfish* 

(see Table 1) 

Lemon sole* 

(Microstomus kitt). 

Monkfish 

(Lophius piscatorius) 

Red mullet 

(Mullus barbatus and M. 

surmuletus) 

European sprat 

(Sprattus sprattus) 

Ling 

(Molva sp.) 
 

Seabass 

(Dicentrarchus labrax) 

John dory 

(Zeus faber) 

Megrim 

(Lepidorhombus sp.) 
 

Weever 

(Echiichthys vipera and 

Trachinus draco 

Poor cod 

(Trisopterus minutus) 
  

 
Seabream 

(see Table 1) 
  

 
Silvery pout 

(Gadiculus argenteus) 
  

 
Solenette 

(Buglossidium luteum) 
  

 
Thickback sole* 

(Microchirus variegatus) 
  

 
Whiting 

(Merlangius merlangus). 
  

 

 Central latitude (°N) Length (cm) Trophic level 

Winners mean value 39 22.83 3.59 

Losers mean value 50.04 47.05 3.84 

p- value 
0.0120 

(W=55) 

0.0131 

(W=56) 

0.2128 

(W=87.5) 

Table 3: Mean values of central latitude, length and trophic level for species predicted to increase in abundance; 
winners, and those predicted to decrease in abundance; losers. Mann-Whitney U tests were conducted, p values 
indicate that differences between the two groups for central latitude and length are statistically significant (p<0.05).   

 

Table 2: Summary of abundance responses, as predicted by the GAM. Grouped according to spatial variation 
observed; consistent trends (no spatial variation) and majority trends (some spatial variation). * indicates species 
for which the results were not statistically significant (p>0.05).  
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E F 

G H 

Figure 17: Spatial variation in the rate of change in abundance (expressed as the gradient of the line through the mean 

decadal abundance values), as predicted by the GAM, for 2010–2098. A, Argentine (Argentina sp.). B, Atlantic cod (Gadus 

morhua). C, Boarfish (Capros aper). D, European plaice (Pleuronectes platessa). E, John dory (Zeus faber). F, Megrim 

(Lepidorhombus whiffiagonis and L. boscii). G, Seabass (Dicentrarchus labrax). H, Thickback sole (Microchirus variegatus).  

A B 

C D 
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Figure 18: Mean trophic level of the south-west UK fish assemblage, based on historic 

abundance data from 1980–2000, and GAM predicted abundance data from 2010–2090, 

Mann-Kendall tau=-0.545, p=0.016.  
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Figure 19: Cumulative abundance (CPUE) of species as predicted by the GAM, back transformed from 4th root 

transformed CPUE to show the anticipated change in abundance from 1980–2098. A, Abundance trends of 

selected species. B, Abundance trends for all species and their relative proportion of the total CPUE.  
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4. Discussion 

 

The results of this study show that, based on the predictions of the GAM used, 

there is likely to be a substantial change in the composition of the fish 

assemblage occupying the waters surrounding the south-west of the UK. Over 

80% of the species analysed showed a significant change in abundance by the 

end of the century. Species that are typically associated with warmer climates 

(Lusitanian species) such as anchovy, boarfish and John dory were all 

predicted to increase in abundance, whereas those species associated with 

colder waters such as Atlantic cod, haddock and monkfish were all predicted to 

decrease in abundance. This suggests that species distributions may shift 

towards higher latitudes as average temperatures increase; a pattern already 

documented in some areas (Perry et al. 2005). The spatial variation observed in 

the predicted abundances of some species also suggests that where deeper 

habitats are available, these species will migrate when the temperature at their 

current location becomes too warm, as has been shown by Dulvy et al. (2008) 

and Rutterford et al. (2015).  

Anchovy, European pilchard and horse mackerel all showed strong, significant 

increases in abundance across the study area, and are all typically associated 

with warm water areas. The increase in anchovy has been documented in other 

literature (Beare et al. 2004; Petitgas et al. 2012; 2013), and fisheries for this 

species are already established in the UK (Simpson et al. 2013). However, the 

appearance of anchovy in UK waters is not a new phenomenon. Studies have 

demonstrated, and fishermen have confirmed, that anchovy has been present 

for many decades, but has increased significantly in recent years. This may not 

necessarily be due to an influx of individuals from further south, rather that 

environmental conditions here (i.e. a rise in average sea temperature) mean 

that this species can now complete its entire life cycle within UK waters 

(Simpson et al. 2013), and so the sub-stock that has been present for many 

decades is now prospering. Boarfish is another species for which there is now a 

viable market, and a successful fishery is well established in Ireland (Pinnegar 

et al. 2013); the results of this study predict that boarfish will continue to 

increase in abundance over the next century. Other species predicted by this 

study to increase in abundance include Dover sole, poor cod, pouting, red 
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gurnard, red mullet, seabass, greater weever and lesser weever. All of these 

species, with perhaps the exception of poor cod and pouting, occur as far south 

as the north west coast of Africa (FishBase 2012), and so if average 

temperature is the primary driver behind their distribution, it is unsurprising that 

the rise in average SST forecasted for the south-west UK will result in an 

increase in the abundance of these species. This study however, does not 

consider species that are not currently present in south-west UK waters that 

may move into this region as environmental conditions become more 

favourable. Recent years have seen the emergence of many “new” species, 

some of which are now found in substantial numbers in UK waters, so it is 

reasonable to assume that this pattern will continue, as sea temperatures 

continue to rise.  

In contrast, many cold-water species, for which there have long been well 

established fisheries in the UK, are predicted to decrease in abundance. These 

include Atlantic cod, dab, haddock, ling, monkfish and megrim, as well as other 

less commercially exploited species such as Norway pout and grenadier. These 

predicted abundance trends will likely result in compositional changes of the 

south-west fish assemblage (Figure 19A and 19B).  

The general trends of change in abundance, as shown in Figure 16, give a 

broad overview of how species may respond to climate change and the other 

environmental factors considered by the GAM. However, there is substantial 

spatial variation seen in the predictions for certain species. Argentine and hake 

both show a clear boundary between areas of increased and areas of 

decreased abundance, and to a lesser extent this is also seen for lemon sole, 

Atlantic herring and thickback sole. This boundary occurs along the continental 

shelf in the Celtic Sea, and so the abundance trends seen are likely explained 

by the biology and ecology of the individual species. Argentine is typically a 

deep, warmer water species, and so although the shallower areas of the 

English Channel are predicted to warm, they may be an unsuitable environment 

for this species, due to the depth constraints. The predicted abundance of hake 

shows a similar pattern; despite having a broad distribution and often 

considered a Lusitanian species, hake is also typically a deep water species, 

and so is unlikely to thrive in the shallow areas of the Channel. The same 

distinct boundaries are seen for American plaice, boarfish, blue whiting, 
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European sprat and John dory except that the abundance trends are reversed, 

indicating that these species are likely to benefit from the warmer conditions 

found in these shallower areas. Shallower and semi-enclosed areas such as the 

English Channel and Irish Sea are likely to experience greater rates of warming, 

and so could provide more suitable environmental conditions, allowing these 

species to prosper (Figure 12).  

The predicted decline in the abundance of grey gurnard is contradictory to the 

trends seen in the abundance of this species in recent years. Simpson et al. 

(2011) demonstrated that the abundance of grey gurnard in the North Sea has 

increased in response to warming; Chapter 2 of this thesis found a similar trend 

for the south-west area of the UK. This increase has been attributed to the 

presence of prey species, such as juvenile cod (Pinnegar et al. 2016). If the 

south-west of the UK is towards the more southerly end of this species’ 

distribution, then any further northward shift in distribution, as has already been 

observed (Perry et al. 2005; Dulvy et al. 2008), could result in reduced 

abundances within the study area. Whilst predator-prey and other biotic 

interactions are not accounted for by the GAM used in this study, they may be 

the underlying reasons for many of the trends seen in past and predicted 

species distribution shifts. 

The results of this study suggest that species likely to benefit from climate 

change will be those that have a lower central latitudinal range and smaller 

body size. These results are in accordance with the findings of a number of 

other studies (Pauly et al. 1998; Perry et al. 2005), and suggest that climate 

change as well as over-exploitation is contributing to the practice of fishing 

down food webs. This study found no statistically significant difference between 

winners and losers mean trophic level. However, there has been a decline in 

the mean trophic level of the whole fish assemblage, and based on the results 

of the modelling approach used in this study, this trend is likely to continue 

(Figure 18). Jennings et al. (2002) found a similar decline in the mean trophic 

level of the North Sea demersal fish assemblage, from 1982–2000, but no such 

trend for pelagic and demersal species combined. Pinnegar et al. (2002) found 

similar trends in the Celtic Sea; a decline in mean trophic level from both survey 

data (from 1982–2000) and fishery landings data (1946–1998), driven by a 

reduction in the abundance of large piscivorous fish, and an increase in smaller 
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lower trophic level fish. Whilst the overall change in mean trophic level observed 

in this study suggests a significant negative correlation over time (tau=-0.545, 

p=0.016), there appear to be two distinct trends, divided by a steep drop in 

mean trophic level around 2030 (Figure 18). This could suggest a regime shift, 

which would have severe consequences for the fishing industry. Further 

investigation of this pattern, considering the relative influence of exploitation and 

climate change, could provide a more thorough insight into the trends observed 

here.  

The economic importance of traditional UK fish species is well documented; in 

2014 landings of cod and haddock alone accounted for 41% of all demersal 

landings in volume, and 36% of the value (Marine Management Organisation 

2014). Declines in the abundance of cold water species, in particular cod, have 

been well documented (Beaugrand & Reid 2003; Engelhard et al. 2014) and are 

predicted to continue, such that some stocks may disappear completely 

(Drinkwater 2005). A decrease in the abundance of these species, as predicted 

by this study, could have significant consequences for the fishing industry; 

fishers may be forced to travel further in order to catch adequate quantities, 

thereby incurring extra fuel costs, or may be forced to direct their efforts towards 

alternative species, requiring a change in gear and tactics. Market prices of fish 

can give valuable indications regarding the demand for a particular species, 

relative to its availability. Large, high trophic level species tend to fetch a higher 

price than small, lower trophic level species. As the abundance of a particular 

species declines the price generally rises, providing demand remains high. 

Pinnegar et al. (2006) demonstrated that over the last 30 years, the price of 

large high trophic level species increased, reflecting the declines in abundance. 

This was coupled with an expansion of pelagic fisheries which flooded the 

market with smaller, lower trophic level species (e.g. the price of horse 

mackerel fell by 92% between 1984–1985). On this basis, the price of large 

traditional species such as cod and haddock could rise drastically, if the 

predictions of this study are realised. If supply of these species cannot meet 

demand, this may lead to a greater quantity of imports. On the other hand, if 

fishers are able to adapt and exploit new fishing opportunities that become 

available, this could facilitate a shift in the focus of south-west UK fisheries, 

towards targeting lower value high volume catches of species such as anchovy 
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and horse mackerel. This in turn may result in an expanding export market for 

the UK.  

In contrast to cod and haddock, seabass is one of the species predicted to 

increase in abundance by the end of the century. This species has experienced 

a surge in popularity in recent decades, with both commercial and recreational 

anglers. Heavy exploitation of seabass has had drastic impacts on the state of 

the stock, such that minimum landing sizes, maximum quantities, and trawling 

bans have been introduced (Pawson et al. 2007; European Commission 2015), 

and a complete ban on fishing seabass has been suggested for 2017 (ICES 

2016). Whilst this species is particularly vulnerable to over-fishing, studies have 

shown strong correlation between recruitment success and average 

temperature (Pawson 1992). If management plans can allow the stock to 

recover, and sustainable levels of fishing activity can be maintained, this 

species could become even more important to UK fishers if the increase in 

abundance predicted by this study is realised.  

The need for a flexible and responsive approach to fisheries management is 

evident from the status of European hake. The successful management of this 

species has seen a drastic increase in abundance in recent years in the North 

Sea. Baudron & Fernandes (2015) describe how the high abundance of hake, 

coupled with low quota for this species and the possible introduction of a 

discard ban, could mean hake become a “choke” species, resulting in the 

premature closure of the mixed demersal fishery in the North Sea. 

The climate data used in this study are based on RCP 2.6, a “best case 

scenario” for carbon emissions. This pathway requires a 70% reduction in 

greenhouse gas emissions between 2010 –2100, to be achieved through 

drastic changes in energy usage, as well as carbon capture and storage 

measures which would result in negative carbon emissions from the middle of 

the century (Vuuren et al. 2011). As such, the results of this study are likely to 

be a highly conservative and provide cautious estimate of species responses to 

climate change. The reality could be far more pronounced, with substantial 

range shifts and abundance changes, more exaggerated than what has been 

suggested by this study. Further work could apply the models used here to the 

broader climate data ensemble of future projections, or compare the results of 

this study with predictions based on RCP 4.5, 6.0 and 8.5.  
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Figure 15A and 15B show correlations for each species, between abundance 

and GAM predicted abundance, and hence test how well each species is 

characterised by the model. In general most species are characterised well by 

the model, however, inconsistencies in the dataset and the patchy distribution of 

certain species may restrict model performance. This is apparent in the 

correlation for each species, between standardised abundance and actual 

abundance from each survey (Appendix 2). Where a particular survey recorded 

high abundances of a certain species, another survey may have recorded none, 

and so the standardised abundance value may not correlate well with either, but 

would still be considered a more appropriate value than a standard mean. The 

inconsistencies between different surveys may be due to the methods and 

sampling gear employed by each of the surveys. Trenkel et al. (2004) assessed 

the differences between Cefas and the French Groundfish surveys, in terms of 

survey design, and their effect on estimates of species abundance and 

community composition. The study found that both sampling method and survey 

period can have a substantial effect on the results of a survey, and therefore the 

perception of species abundance and community structure. This may account 

for some of the discrepancy observed in this study, between abundances of 

species in different surveys, and therefore determine how well that species is 

characterised by the model used.  

One of the benefits of the modelling process used in this study is the ability to 

account for non-linear relationships, such that the abundance of a warm-water 

species will not increase indefinitely with rising temperature, as would be the 

assumption with a linear response. Advances in ecosystem modelling means 

that there are a range of well-developed and complex techniques available for 

assessing species responses to environmental change. Species Distribution 

Models (SDM) are widely used, and whilst these models are all based on 

ecological niche theory and therefore incorporate similar variables, the actual 

algorithms used and therefore the output from the models can vary. A study 

conducted by Jones et al. (2012) compared the performance of three SDM’s; 

Maxent, AquaMaps and Sea Around Us Project. Whilst all produced plausible 

distributions and habitat estimates for species, there was variation between 

models, in terms of test statistics and consistency. A number of studies advise 

that a multi-model ensemble should be used, where the range of projections 

produced by all models can be compared and considered (Araújo & New 2007; 
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Jones et al. 2012). All modelling approaches are based on certain assumptions, 

and their outputs are restricted by the availability and quality of the data upon 

which the models are trained. In addition, where models assume a species 

preferred environmental conditions based upon its current distribution, this does 

not account for biotic interactions, availability of prey, or restricted dispersal 

capacity (Pinnegar et al. 2016). GAMs have been found to produce more 

accurate projections than other modelling techniques (such as GLMs) (Araújo et 

al. 2005), as well as allowing for complex relationships between predictor 

variables (Hedger et al. 2004), and being able to incorporate many different 

variables. The process used in this study however, as with any modelling 

approach, makes a number of assumptions. Firstly, it is assumed that fishing 

effort remains a constant factor, which, given that fish stocks are prone to 

natural fluctuations and management plans and quotas are frequently revised, it 

is unlikely that fishing effort will remain at a constant level over the next century. 

However, the locations of fishing ports are unlikely to change, and therefore 

inshore fishers in particular are constrained to operate in certain areas, given 

their proximity to fishing ports. Habitat, depth and substrate type are also 

relatively constant factors, and so the location of productive fishing grounds are 

also unlikely to change significantly, given that fish are bound to certain depths 

and habitats (in particular benthic and demersal species), for example for food, 

breeding and nursery grounds. With consideration to these factors, it was 

deemed reasonable to assume a constant fishing effort for the purpose of the 

model. An extension of this study could be to use a metric of fishing effort in the 

GAM rather than a constant value, whereby fishing effort responds to biomass, 

to mimic the effect management plans.  

Interestingly, the modelling process found that habitat type did not have a major 

influence on predicting species abundance, and including it as a predictor 

variable did not improve model fit or predictive ability. Biologically, this seems 

counter-intuitive, particularly for benthic and demersal species. The importance 

of habitat to an individual may also depend on the life stage of that individual, 

which was beyond the scope of this study. Given that many fish migrate 

seasonally between feeding, breeding and nursery grounds, the habitat 

requirements of larval stages may differ significantly to that of the mature 

individual. As such, future work that could assess different life stages of the 
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species considered here may find that habitat as a variable has a greater 

influence on abundance.  

Additionally, habitat types within the study area are very patchy (see Appendix 

4 for the original EMODnet Seabed Habitats data, from which the habitat data 

used in the GAM was derived); it could be that the 1°x1° cell classification used 

for the GAM was too coarse-scale and so does not capture the variation 

between habitat types. Since this study was conducted, the EMODnet habitat 

classification system has been updated, with habitat now classified for cells 

where previously there was none. Re-running the models used in this study with 

the new and updated habitat data may be beneficial, but was beyond the scope 

and time-scale of this study.  

As previously discussed, the fish abundance data used here could also 

introduce some bias to the study, through the selectivity of the gear types used 

for sampling, and the time of year during which the sampling is conducted. Most 

cells within the study area are covered by more than one survey, but there are 

some areas only sampled by one of the six surveys, and therefore may only be 

sampled at one time of year. This may not capture the seasonal variation 

observed in the abundance of some species. In addition, most of the gear types 

used by the surveys are demersal trawls, which may under-represent pelagic 

species such as mackerel and blue whiting. 

Conclusions and future work 

 

The abundance shifts and compositional changes described by this study 

should be considered relatively conservative predictions, given that the 

modelling approach used is based on the “best case scenario” for carbon 

emissions. This could imply that the actual abundance responses of fish to 

climate change could be far more pronounced than described here. Future work 

that considered the whole range of possible climate scenarios would provide a 

broader range of potential responses, and perhaps identify key species or 

groups of species most at risk from climate change.  
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Human activities have increasingly influenced the marine environment during 

the past few centuries. In recent decades, unsustainable levels of exploitation 

and the human-induced exacerbation of climate change have resulted in 

substantial changes to the composition and function of marine ecosystems and 

communities. As such, changes in fisheries production have been observed and 

predicted for areas all over the world. This thesis considers the south-west area 

of the UK; an area of high economic importance to the fishing industry, 

characterised by small inshore vessels that typically target high-value, lower-

volume catches.  

Chapter 2 of this thesis demonstrates that the marine fish assemblage around 

the south-west has changed significantly in terms of species richness and 

diversity over the last three decades. Trends in both species richness and 

diversity were positively correlated to rising SST. This chapter also shows that 

many species typically associated with warm water environments, such as 

anchovy and boarfish, have increased in abundance over the last three 

decades, whilst cold water species that are characteristic of UK fisheries, 

including cod and haddock, have decreased in abundance over the same time 

period.  

Chapter 3 of this thesis considers how the fish assemblage of the south-west 

may respond to climate change over the course of this century, using predictive 

models that incorporate a range of environmental factors, and forced according 

to a specified climate scenario. The climate predictions used in this study are 

based on the “best case scenario” for carbon emissions (RCP 2.6). A total of 37 

species were analysed, and of these, 86% were predicted to demonstrate a 

significant abundance response; 54% increased in abundance and 32% 

decreased in abundance. Of the species that were predicted to increase, the 

majority were warm-water species, many of which had already been increasing 

in abundance during recent decades (as demonstrated in Chapter 2 of this 

study and also reported in previous studies; Beare et al. 2004; Simpson et al. 

2011). Additionally, many of the cold water species found in Chapter 2 to have 

decreased in abundance over recent decades were projected to continue to do 

so, such that some of these species including, Norway pout may be absent from 

as much as 90% of the study area by the end of the century.  
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The analysis of central latitude, body length and trophic level found significant 

differences between mean body length and mean trophic level of the winners 

and losers. This adds further evidence to the theory that climate change will see 

a shift from large bodied, cold-water adapted species that are generally long-

lived and at higher trophic levels, towards a fish assemblage that is more 

heavily dominated by small-bodied, rapid turnover species. Whilst the difference 

in trophic level between winners and losers was not statistically significant, 

there is likely to be a substantial decline in mean trophic level by the end of the 

century. The dramatic drop in mean trophic level around 2030 that was 

forecasted by this study could imply a regime shift, which would have severe 

consequences for the fishing industry. This could be driven by the changing 

relative proportions of the fish assemblage predicted by this study. Figure 19B 

shows an increase in the proportion of lower trophic level species such as 

anchovy and sprat around 2030, coupled with a decrease in the proportion of 

higher trophic level species such as poor cod and haddock. Further 

investigation of this pattern, considering the effect of exploitation in addition to 

climate change, could provide a more thorough insight into the trends observed 

here.  

Whilst the data used in this study were standardised to remove, as far as 

possible, any sources of bias there are still some limitations; primarily a paucity 

of data early on in the time series. However, these long term scientific survey 

data sets are becoming invaluable for climate change focussed research. As 

with many studies currently conducted in this field, the predicted changes in 

abundance described in Chapter 3 are constrained by the model that generated 

them, and the data upon which the model were trained. GAMs have a number 

of benefits over other ecological models; they are trained on actual abundance 

data rather than simple presence-absence data, they allow a number of 

environmental variables to be considered, and do not assume linearity between 

variables abundance. However, a key factor affecting a species’ ability to 

respond to climate change through distribution shifts, which was beyond the 

scope of this study, is the interactions it will have with other species. Predator-

prey interactions and competition for food and resources can have a profound 

effect on the success of a species, as it aims to adapt to a changing climate. In 

recent years, more studies have focused on interspecific interactions, and now 

aim to incorporate these into modelling approaches (Blanchard et al. 2012; 
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Fernandes et al. 2013). Fernandes et al. (2013) found that that when species 

interactions were considered, the predicted latitudinal shift was reduced by 

around 20% on average. Incorporating these sorts of interactions into the 

modelling approach used in this study could offer a more robust method of 

predictive modelling.  

The modelling approach used in Chapter 3 of this thesis is based on the RCP 

2.6 climate scenario; a highly conservative and optimistic scenario. Whilst there 

are uncertainties within all modelling approaches and climate predictions 

(Frölicher et al. 2016), the current likelihood of maintaining carbon emissions 

near to RCP 2.6 is unlikely. Future studies should assess relative impacts of 

more severe predicted warming trends on south-west fisheries. 

The abundance data used in this study result from a sampling method that 

primarily targets adult life stages, however the effect of temperature on different 

life stages is likely to be highly variable; for some species temperature may 

have a highly significant effect on larval stages, but less so on adult stages 

(Rijnsdorp et al. 2009). Applying the modelling approach used in this study to 

larval stages may also find a greater influence of habitat as a variable for 

determining a species response to climate change; as explained in Chapter 3, 

habitat was deemed not to be a good predictor of a species response.  

The trends in abundance and fish assemblage composition predicted by this 

study could have profound consequences for the fishing industry. The majority 

of vessels operating out of south-west ports are under 10m in length, and 

generally not equipped for offshore sea conditions, or able to spend many days 

at sea. It is expected that these vessels may have a reduced capacity to adapt 

and respond to changing fishing opportunities, when compared to larger, 

offshore vessels (Defra 2013), and as such, are perhaps more vulnerable to 

substantial changes in opportunities. The changing composition of the fish 

assemblage could see a shift in the south-west fishing industry to become 

increasingly an export market. Adapting to new fishing opportunities will require 

not only a change in fishing tactics and target species, but an adaptable attitude 

from consumers, and a willingness to purchase different species to those 

traditionally associated with UK fisheries. These adaptations will be dependent 

on appropriate sharing of information regarding best fishing practices and 

techniques, as well as scientific data relating to emerging and traditional 
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species. It was beyond the scope of this study to consider crustacean and 

shellfish responses to climate change, but cuttlefish, crabs, scallops and whelks 

make up a large proportion of the volume and value landed in the south-west 

(Marine Management Organisation 2014). These species are perhaps at 

greater risk from the “other climate problem”; ocean acidification, which was not 

considered by this study but is likely to have significant consequences at the 

individual and community level.  

A flexible and adaptive response to fisheries management will be required, if UK 

fisheries are to remain sustainable and successful in the future. The same is 

true for conservation measures such as protected areas; successful 

conservation schemes will likely improve the health and function of ecosystems, 

which in turn will have positive impacts on exploited fish populations. The 

complexity of marine systems means that deciphering the effects of climate 

change from fishing exploitation, pollution, infrastructure and other human 

activities, as well natural variability is a great challenge. As human interactions 

with the oceans are ever-growing, and often increasingly harmful, attempts to 

mitigate the effects of climate change are essential to ensure the health and 

resilience of the oceans.  
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Appendices 

 

Appendix 1: Table of all finfish species from the six surveys used, their common names, 

scientific names, and associated codes. Some survey entries were only identified to genus or 

family name.  

Common name Scientific name/s Cefas  WoRMS TSN 

Alfonsino Beryx decadactylus BER 126394 166155 

Allis shad Alosa alosa AAS 126413 161708 

American plaice Hippoglossoides platessoides PLA 127137 172877 

Arctic sculpin Myoxocephalus scorpioides   127202 167317 

Argentine Argentina sphyraena LSS 126716 162071 

Argentinidae spp. ARG 125508 162057 

Atlantic cod Gadus morhua COD 126436 164712 

Atlantic hagfish Myxine glutinosa HGF 101170 159772 

Atlantic herring Clupea harengus HER 126417 161722 

Atlantic mackerel Scomber scombrus MAC 127023 172414 

Atlantic pomfret Brama brama POA 126783 170290 

Atlantic salmon Salmo salar SAL 127186 161996 

Atlantic saury Scomberesox saurus   126392 165612 

Atlantic torpedo Torpedo nobiliana ECR 157868 160834 

Atlantic wreckfish Polyprion americanus   126998 167914 

Avocet snipe eel Avocettina infans   126304 161619 

Axillary seabream Pagellus acarne SBA 127057 169213 

Baillon's wrasse Symphodus bailloni BLW 273566 614244 

Ballan wrasse Labrus bergylta BNW 126965 170737 

Bennett's flyingfish Cheilopogon pinnatibarbatus   126383 616685 

Big-eyed rockling Gaidropsarus spp. ROL 125743 164764 

Gaidropsarus macrophthalmus AGM 126456 623025 

Black cardinal fish Epigonus telescopus EGT 126858 168298 

Black goby Gobius niger   126892 171850 

Black scabbardfish Aphanopus carbo BSF 127085 172389 

Black scorpionfish Scorpaena porcus SPP 127247 166840 

Black seabream Spondyliosoma cantharus BKS 127066 169229 

Black wing flyingfish Hirundichthys rondeletii   126386 616693 

Black-bellied angler Lophius budegassa WAF 126554 164502 

Black-belly rosefish Helicolenus dactylopterus RBM 127251 166787 

Black-mouth dogfish Galeus melastomus DBM 105812 160034 

Blackspot seabream Pagellus bogaraveo SBR 127059 169212 

Blonde ray Raja brachyura BLR 367297 160880 

Blue ling Molva dypterygia BLI 126459 164761 

Blue whiting Micromesistius poutassou WHB 126439 164774 

Bluntnose six-gill shark Hexanchus griseus SGS 105833 159819 

Bluntsnout grenadier Nezumia sclerorhynchus   126475 165398 

Boarfish Capros aper BOF 127419 166320 

Bogue Boops boops BOG 127047 169218 

Brill Scophthalmus rhombus BLL 127150 172749 

Broadnose pipefish Syngnathus typhle DPF 127393 166467 

Brown trout Salmo trutta   127187 161997 

Butterfly blenny Blennius ocellaris BBY 126761 171126 

Cadenat's rockfish Scorpaena loppei   127244 166836 

Chub mackerel Scomber japonicus SPM 127022 172412 

Clingfish  Gobiesocidae spp. CFX 125477 164457 

Lepadogaster spp.   125781 164475 
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Common Atlantic grenadier Nezumia aequalis SRL 126473 165394 

Common dab Limanda limanda DAB 127139 172881 

Common dentex Dentex dentex   127467 169224 

Common dragonet Callionymidae DTX 125522 171691 

Callionymus lyra CDT 126792 171698 

Common eagle ray Myliobatis aquila   105860 160983 

Common goby Pomatoschistus microps GMG 126927 171982 

Common ling Molva molva LIN 126461 164760 

Common mora Mora moro   126497 164687 

Common pandora Pagellus erythrinus PAC 127060 169215 

Common seabream Pagrus pagrus    127063 169207 

Common skate Dipturus (Raja) batis SKT 105869 564126 

Common smooth hound Mustelus mustelus SMH 105822 160242 

Common stingray Dasyatis pastinaca SGR 105851 160959 

Common torpedo Torpedo torpedo ELR 271691 160836 

Corbin's sand eel Hyperoplus immaculatus ISE 126755 171683 

Corkwing wrasse Symphodus melops CWG 273571 614239 

Cornish blackfish Schedophilus medusophagus   126833 642554 

Crystal goby Crystallogobius linearis CLG 126878 171971 

Cuckoo ray Leucoraja naevus CUR 105876 564143 

Cuckoo wrasse Labrus mixtus CUW 151501 170739 

Dalatias shark Dalatias sp. DCH 105774 160649 

Deepwater ray Rajella bathyphila   105892 564125 

Deepwater sole Bathysolea profundicola   127152 173028 

Dover sole Solea solea SOL 127160 173002 

Solea vulgaris   154712 173001 

Ekströms topknot Zeugopterus (Phrynorhombus) regius EKT 236488 616605 

European anchovy Engraulis encrasicolus ANE 126426 161831 

European conger eel Conger conger COE 126285 161341 

European eel Anguilla anguilla ELE 126281 161128 

European flounder Platichthys flesus FLE 127141 172894 

European hake Merluccius merluccius HKE 126484 164795 

European pilchard Sardina pilchardus PIL 126421 161813 

European plaice Pleuronectes platessa PLE 127143 172902 

European seabass Dicentrarchus labrax ESB 126975 170317 

European smelt Osmerus eperlanus SME 126736 162039 

European sprat Sprattus sprattus SPR 126425 161789 

Five-bearded rockling Ciliata mustela FVR 126448 623023 

Four-bearded rockling  Enchelyopus cimbrius FRR 126450 164748 

Four-spot megrim Lepidorhombus boscii LBI 127145 172834 

Freshwater eel Anguillidae spp. EEL 125425 161125 

Fries's goby Lesueurigobius friesii FSG 126904 172036 

Gadidae  Gadidae spp. GAD 125469 174701 

Garfish Belone belone GAR 126375 165594 

Gilthead seabream Sparus aurata SBG 151523 647901 

Glasshead grenadier Hymenocephalus italicus   158961 165406 

Goby Gobiidae spp. GPA 125537 171746 

Gobius spp. GOB 125988 171833 

Pomatoschistus spp. POM 125999 171977 

Golden grey mullet Liza aurata MGN 126978 170377 

Golden redfish Sebastes norvegicus REG 151324 166781 

Goldsinny wrasse Ctenolabrus rupestris GDY 126964 170733 

Goosefish Lophiidae spp. ANF 125493 164497 

Great sand eel Hyperoplus lanceolatus GSE 126756 171682 

Great torpedo ray Torpedo (Tetronarce) nobiliana   105929 160834 

Greater argentine Argentina silus GSS 126715 162064 

Greater forkbeard Phycis blennoides GFB 126501 164751 



 

 

86 
 

Greater pipefish Syngnathus acus GPF 127387 166464 

Greater spotted dogfish Scyliorhinus stellaris DGN 105815 160067 

Greater weever Trachinus draco WEG 127082 170992 

Grenadier Macrouridae spp.   125471 165332 

Grey gurnard Eutrigla gurnardus   150637 167044 

Eutrigla sp. GUG 150636 150636 

Grey triggerfish Balistes capriscus TRF 154721 173138 

Gurnard  
  

Chelidonichthys spp. GUR 126178 167051 

Trigla spp. GUX 126180 167038 

Trigloporus spp.  GUS 154461 167045 

Haddock Melanogrammus aeglefinus HAD 126437 164744 

Hollowsnout grenadier Coelorinchus caelorhincus HRT 398381   
Hooknose Agonus cataphractus POG 127190 167454 

Horse mackerel Trachurus trachurus HOM 126822 168588 

Imperial scaldfish Arnoglossus imperialis ISF 127124 172806 

Jeffrey's goby Buenia jeffreysii JYG 126872 636752 

Jewel lanternfish Lampanyctus crocodilus LAC 126612 162649 

John dory Zeus faber JOD 127427 166287 

Lancet fish Notoscopelus kroyeri   272728   
Lantern fish Diaphus spp.   125819 162583 

Lampanyctus spp. LNX 125825 162632 

Myctophidae spp. MYX 125498 162575 

Myctophum spp.   125829   
Large-eyed rabbitfish Hydrolagus mirabilis RTF 105826 161017 

Lemon sole Microstomus kitt LEM 127140 172888 

Leopard-spotted goby Thorogobius ephippiatus LSG 126937 172043 

Lesser forkbeard Raniceps raninus LFB 126442 164777 

Lesser sand eel Ammodytes tobianus TSE 126752 171676 

Lesser spotted dogfish Scyliorhinus canicula LSD 105814 160065 

Lesser weever Echiichthys vipera   150630 630409 

Long- nose skate Dipturus (Raja) oxyrinchus LNS 105872 564148 

Longfin gurnard Chelidonichthys obscurus GUL 127263 643891 

Long-nose velvet dogfish Centroscymnus crepidater   105908 160725 

Long-snouted seahorse Hippocampus guttulatus SHE 154776 645018 

Longspine snipefish Macroramphosus scolopax SNI 127378 551497 

Long-spined sea scorpion Taurulus bubalis SSN 127204 167390 

Lozano's goby Pomatoschistus lozanoi   126925 637881 

Lumpfish Cyclopterus lumpus LUM 127214 167612 

Marbled electric ray Torpedo marmorata MER 271684 160838 

Mediterranean bigeye rockling Gaidropsarus biscayensis   126452 550591 

Mediterranean horse mackerel Trachurus mediterraneus HMM 126820 168590 

Mediterranean scaldfish Arnoglossus laterna SDF 127126 172805 

Mediterranean slimehead Hoplostethus mediterraneus   126404 166140 

Megrim Lepidorhombus whiffiagonis MEG 127146 172835 

Monkfish Lophius piscatorius MON 126555 164501 

Montagu's seasnail Liparis montagui MSS 127220 167581 

Moonfish Lampris guttatus OPA 126522 166326 

Mueller's pearlside Maurolicus muelleri PLS 127312 162187 

Mullet Mugilidae spp. MUL 125546 170333 

Nilsson's pipefish Syngnathus rostellatus NPF 127389 166463 

North Atlantic codling Lepidion eques   126493 164690 

Northern cutthroat eel Synaphobranchus kaupii SBK 126328 635794 

Northern rockling Ciliata septentrionalis NNR 126449 164780 

Northern wolffish Anarhichas denticulatus CAJ 126757 550561 

Norway bullhead Micrenophrys sp. NVB 126151 643516 

Micrenophrys lilljeborgii   127201 644150 
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Norway goby Pomatoschistus norvegicus NVG 126929 171983 

Norway pout Trisopterus esmarkii NOP 126444 164756 

Norway redfish Sebastes viviparus REV 127255 166779 

Norwegian skate Dipturus (Raja) nidarosiensis RNS 105762 160886 

Norwegian topknot Phrynorhombus norvegicus NKT 127147 172831 

Painted goby Pomatoschistus pictus PTG 126930 171980 

Pearlfish Echiodon drummondii PRL 126663 165116 

Pike- perch  Sander lucioperca   151308 650172 

Pipefish Syngnathidae spp. PFX 125606 166443 

Piper gurnard Trigla lyra PIP 127266 167041 

Pollack Pollachius pollachius POL 126440 164728 

Pollock Pollachius virens POK 126441 164727 

Poor cod Trisopterus minutus POD 126446 164754 

Porbeagle shark Lamna nasus POR 105841 159911 

Porgies Sparidae spp. SBZ 125564 169180 

Pouting Trisopterus luscus BIB 126445 164755 

Rabbit fish Chimaera monstrosa RBF 105824 161022 

Raitt's sand eel Ammodytes marinus MSE 126751 171677 

Red bandfish Cepola macrophthalma RPF 126835 170281 

Red gurnard Chelidonichthys cuculus   127259 692071 

Red mullet Mullus spp. MUX 126034 169416 

Mullus barbatus   126985 169419 

Red scorpionfish Scorpaena scrofa SCS 127248 166839 

Rendezvous fish Polymetme corythaeola   127300 162191 

Reticulated dragonet Callionymus reticulatus RDT 126795 171712 

River lamprey Lampetra fluviatilis LAR 101172 159719 

Rock goby Gobius paganellus RKG 126893 171854 

Rock gunnel Pholis gunnellus BTF 126996 171645 

Rooster hind Epinephelus acanthistius   273832 167749 

Rosy dory Cyttopsis rosea   127425 166280 

Roughhead grenadier Macrourus berglax RHG 126472 165421 

Roughsnout grenadier Trachyrincus scabrus   126482 550660 

Roundnose grenadier Coryphaenoides rupestris RNG 158960 165350 

Sand goby Pomatoschistus minutus SDG 126928 171978 

Sand lance Ammodytes spp. SAN 125909 171671 

Ammodytidae spp. SAX 125516 171670 

Sand smelt Atherina presbyter SMT 272030 166025 

Sand sole Pegusa lascaris   127156 173051 

Sandy ray Leucoraja circularis SAR 105873 564128 

Sar's wolf eel Lycenchelys sarsii LCS 127101 631033 

Scale-rayed wrasse Acantholabrus palloni SRW 126957 170742 

Sea lamprey Petromyzon sp. LAM 101169 159721 

Petromyzon marinus SLY 101174 159722 

Sea tadpole Careproctus reinhardti CSR 127212 167522 

Seabream Abramis spp. FBR 154271 163665 

Pagellus spp.   126079 169211 

Seaweed pipefish Syngnathus spp.   126227 166444 

Shagreen ray Leucoraja fullonica SHR 105874 564134 

Shore clingfish Lepadogaster lepadogaster  SCF 126518 164478 

Shore rockling Gaidropsarus mediterraneus SRR 126457 164766 

Short silver hatchetfish Argyropelecus hemigymnus   127309 162219 

Shorthorn sculpin Myoxocephalus scorpius BRT 127203 167318 

Shortnose greeneye Chlorophthalmus agassizi   126336 162430 

Short-snouted seahorse Hippocampus hippocampus SNH 127380 166497 

Silver hatchetfish Argyropelecus olfersii HTF 274967 622706 

Silver scabbardfish Lepidopus caudatus SFS 127088 172391 

Silvery pout Gadiculus argenteus SYP 126435 164772 
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Slender codling Halargyreus johnsonii HGA 126489 164692 

Slickhead Alepocephalidae spp. SMY 125507 162303 

Small-eyed ray Raja microocellata PTR 105885 160882 

Small-headed clingfish Apletodon dentatus SCL 126510 642604 

Small-mouthed wrasse Centrolabrus exoletus SMW 126961 170730 

Smooth sand eel Gymnammodytes semisquamatus SMS 126754 171680 

Snailfish Liparis liparis   127219 167578 

Liparis liparis  SSL 293624   
Snake blenny Lumpenus lampretaeformis SBY 154675 631023 

Ophidion barbatum OPB 126675 164846 

Snake pipefish Entelurus aequoreus SKP 127379 644927 

Softhead grenadier Malacocephalus laevis SRT 272392 165389 

Solenette Buglossidium luteum SOT 127153 173021 

Spanish ling Molva macrophthalma SLI 126460 623033 

Spiny dogfish Squalus acanthias DGS 105923 160617 

Splendid alfonsino Beryx splendens LWB 126395 166156 

Spotted dragonet Callionymus maculatus SDT 126793 171699 

Spotted lantern fish Myctophum punctatum SLF 126627 162723 

Spotted ray Raja montagui SDR 105887 160883 

Starry ray Amblyraja radiata SYR 105865 564149 

Starry smooth-hound Mustelus asterias SDS 105821 160240 

Steven's goby Gobius gasteveni GSV 126890 171859 

Streaked gurnard Trigloporus lastoviza   154462 167046 

Striped red mullet Mullus surmuletus MUR 126986 169418 

Sturgeon Acipenseridae spp.   125424 161064 

Sunfish Mola mola   127405 173414 

Thickback sole Microchirus variegatus TBS 274304 173026 

Thick-lipped grey mullet Chelon labrosus   126977 170371 

Thin-lipped grey mullet Liza ramada MTN 126980 170376 

Thornback ray Raja clavata THR 105883 160901 

Thor's scaldfish Arnoglossus thori ART 127128 172809 

Three-bearded rockling Gaidropsarus vulgaris TBR 126458 164765 

Three-spined stickleback Gasterosteus aculeatus   126505 166365 

Tompot blenny Parablennius gattorugine TBY 126770 636467 

Tope shark Galeorhinus galeus GAG 105820 160181 

Topknot Zeugopterus punctatus TKT 127151 172829 

Transparent goby Aphia minuta TPG 126868 172033 

Tub gurnard Trigla (Chelidonichthys) lucerna TUB 127262 643890 

Turbot Scophthalmus maximus TUR 127149 172748 

Zeugopterus spp.   126125 172828 

Twaite shad Alosa fallax TAS 126415 161716 

Two-spotted clingfish Diplecogaster bimaculata bimaculata TSC 236458 164483 

Two-spotted goby Gobiusculus flavescens TSG 126898 171974 

Undulate ray Raja undulata UNR 105891 160900 

Velvet belly lantern shark Etmopterus spinax VBY 105913 160670 

Viviparous eelpout Zoarces viviparus ELP 127123 165324 

Wedge sole Dicologlossa cuneata   127154 173031 

White Seabream Diplodus sargus   127053 169194 

Whiting Merlangius merlangus WHG 126438 164758 

Witch flounder Glyptocephalus cynoglossus WIT 127136 172873 

Yarrell's blenny Chirolophis ascanii YBY 127071 171571 
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Appendix 2A: Correlation (r) between least-square mean estimate of abundance (4th root transformed CPUE), and 

average abundance (4th root transformed CPUE) from each survey, for each species between 2000–2010.  
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Appendix 2B: Correlation (r) between least-square mean estimate of abundance (4th root transformed CPUE), and 

average abundance (4th root transformed CPUE) from each survey, for each species between 2000–2010. 
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Appendix 2C: Correlation (r) between least-square mean estimate of abundance (4th root transformed CPUE), and 

average abundance (4th root transformed CPUE) from each survey, for each species between 2000–2010. 
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Appendix 2D: Correlation (r) between least-square mean estimate of abundance (4th root transformed CPUE), and 

average abundance (4th root transformed CPUE) from each survey, for each species between 2000–2010. 
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Appendix 2E: Correlation (r) between least-square mean estimate of abundance (4th root transformed CPUE), and 

average abundance (4th root transformed CPUE) from each survey, for each species between 2000–2010. 
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Appendix 2F: Correlation (r) between least-square mean estimate of abundance (4th root transformed CPUE), and 

average abundance (4th root transformed CPUE) from each survey, for each species between 2000–2010. 
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Appendix 2G: Correlation (r) between least-square mean estimate of abundance (4th root transformed CPUE), and 

average abundance (4th root transformed CPUE) from each survey, for each species between 2000–2010. 
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Appendix 3: Spatial variation of the rate of change in species richness (A) and Shannon-Wiener diversity index (B), 

from 1987–2015, expressed as the slope of the line through the annual mean species richness value for each cell. 

Red indicates an increase in richness, blue indicates a decrease. Blank cells were not sampled during this time and 

hashed areas indicate cells that were sampled 5 or fewer years during the 1987–2015 period.  

A 

B 
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Appendix 4: EUSeaMap data layer available through the European Marine Observation Data Network Seabed 

Habitats project, from which a representative habitat type was derived per 1°x1° cell, to be used in the GAM.  
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Species Variable 

Depth, 

fishing effort, 

habitat, 

salinity, 

temperatures 

Depth, 

habitat, 

salinity, 

temperatures 

Depth, 

fishing effort, 

habitat, 

temperatures 

Depth, 

fishing 

effort, 

habitat, 

salinity 

Depth, 

fishing effort, 

salinity, 

temperatures 

Fishing 

effort, 

habitat, 

salinity, 

temperatures 

Depth, 

fishing effort, 

habitat, 

salinity, just 

annual 

temperatures 

Depth, 

fishing effort, 

habitat, 

salinity, just 

seasonal 

temperatures 

American plaice AIC 67.3147 50.0728 63.4063 157.5612 30.6481 25.5490 108.0307 79.8303 

American plaice Akaike weight 0.0000 0.0000 0.0000 0.0000 0.0725 0.9275 0.0000 0.0000 

American plaice Adjusted r2 0.8765 0.9065 0.8839 0.4457 0.9316 0.9358 0.7529 0.8488 

American plaice Deviance Explained 0.9350 0.9544 0.9373 0.6233 0.9640 0.9734 0.8367 0.9269 

American plaice GCV 0.2385 0.1952 0.2188 0.8298 0.1320 0.1577 0.3804 0.3181 

American plaice Correlation 0.9671 0.9771 0.9683 0.7897 0.9819 0.9867 0.9149 0.9629 

Anchovy AIC 79.8324 66.8417 65.9942 137.8919 84.7169 76.6602 78.5186 91.8717 

Anchovy Akaike weight 0.0006 0.3938 0.6015 0.0000 0.0001 0.0029 0.0011 0.0000 

Anchovy Adjusted r2 0.8643 0.8906 0.8928 0.6218 0.8450 0.8711 0.8663 0.8345 

Anchovy Deviance Explained 0.9193 0.9373 0.9475 0.7076 0.8886 0.9232 0.9178 0.8989 

Anchovy GCV 0.2617 0.2191 0.2509 0.5612 0.2475 0.2484 0.2494 0.3111 

Anchovy Correlation 0.9589 0.9682 0.9734 0.8412 0.9428 0.9610 0.9582 0.9483 

Argentine AIC 61.1927 58.6899 58.8162 110.4900 57.0751 61.1476 92.3115 84.5718 

Argentine Akaike weight 0.0601 0.2101 0.1972 0.0000 0.4711 0.0615 0.0000 0.0000 

Argentine Adjusted r2 0.8665 0.8714 0.8702 0.6878 0.8682 0.8658 0.7710 0.8032 

Argentine Deviance Explained 0.9232 0.9245 0.9208 0.7786 0.9067 0.9196 0.8449 0.8793 

Argentine GCV 0.1994 0.1881 0.1825 0.3780 0.1599 0.1925 0.2903 0.2755 

Argentine Correlation 0.9609 0.9616 0.9597 0.8827 0.9523 0.9590 0.9192 0.9379 

Atlantic cod AIC 37.1103 35.0259 36.4794 82.6257 37.4921 38.8675 53.5330 54.0284 

Atlantic cod Akaike weight 0.1551 0.4397 0.2126 0.0000 0.1281 0.0644 0.0000 0.0000 

Atlantic cod Adjusted r2 0.7016 0.7099 0.7013 0.3293 0.6750 0.6912 0.5928 0.5913 

Atlantic cod Deviance Explained 0.8179 0.8185 0.8086 0.4898 0.7510 0.8065 0.7100 0.7123 

Atlantic cod GCV 0.1287 0.1220 0.1227 0.2320 0.1116 0.1296 0.1505 0.1528 

Atlantic cod Correlation 0.9048 0.9052 0.8996 0.7003 0.8669 0.8985 0.8427 0.8440 

Atlantic herring AIC 149.6210 159.7501 157.5426 185.1737 165.0698 149.7462 154.1944 147.6567 

Atlantic herring Akaike weight 0.2111 0.0013 0.0040 0.0000 0.0001 0.1983 0.0214 0.5637 

Atlantic herring Adjusted r2 0.6669 0.6024 0.6154 0.3589 0.5417 0.6656 0.6316 0.6751 

Atlantic herring Deviance Explained 0.8073 0.7519 0.7578 0.5156 0.6621 0.8038 0.7582 0.8040 

Atlantic herring GCV 0.8257 0.9141 0.8757 1.2170 0.8915 0.8176 0.8050 0.7723 

Atlantic herring Correlation 0.8989 0.8683 0.8708 0.7186 0.8152 0.8975 0.8718 0.8970 

Atlantic mackerel AIC 171.3942 171.4521 193.3610 211.6305 181.9459 193.1165 216.1899 202.8729 

Atlantic mackerel Akaike weight 0.5059 0.4915 0.0000 0.0000 0.0026 0.0000 0.0000 0.0000 

Atlantic mackerel Adjusted r2 0.6835 0.6826 0.5322 0.3490 0.6057 0.5371 0.3054 0.4555 

Atlantic mackerel Deviance Explained 0.8288 0.8242 0.6903 0.5249 0.7283 0.7003 0.5036 0.6413 

Atlantic mackerel GCV 1.2466 1.2204 1.5049 1.9000 1.2186 1.5230 2.0698 1.7606 

Atlantic mackerel Correlation 0.9106 0.9081 0.8313 0.7254 0.8541 0.8374 0.7104 0.8018 

Blue whiting AIC 157.5422 157.3585 142.8428 206.3909 202.6624 155.7481 181.7351 173.2837 

Blue whiting Akaike weight 0.0006 0.0007 0.9971 0.0000 0.0000 0.0016 0.0000 0.0000 

Blue whiting Adjusted r2 0.9006 0.9009 0.9208 0.7674 0.7740 0.9034 0.8524 0.8689 

Blue whiting Deviance Explained 0.9502 0.9495 0.9651 0.8350 0.8280 0.9504 0.9174 0.9183 

Blue whiting GCV 1.0747 1.0538 0.9738 1.7752 1.6078 1.0175 1.4269 1.1375 



 

 

99 
 

Blue whiting Correlation 0.9748 0.9745 0.9824 0.9138 0.9101 0.9749 0.9578 0.9585 

Boarfish AIC 213.1609 210.9340 225.3267 231.6004 217.5399 212.3222 218.7746 220.5603 

Boarfish Akaike weight 0.1734 0.5281 0.0004 0.0000 0.0194 0.2638 0.0105 0.0043 

Boarfish Adjusted r2 0.8523 0.8569 0.8160 0.7927 0.8279 0.8555 0.8367 0.8306 

Boarfish Deviance Explained 0.9041 0.9056 0.8714 0.8487 0.8637 0.9091 0.8904 0.8836 

Boarfish GCV 2.1002 2.0036 2.4321 2.6218 2.0056 2.1211 2.2461 2.2758 

Boarfish Correlation 0.9509 0.9517 0.9335 0.9213 0.9294 0.9535 0.9437 0.9400 

Dab AIC 144.2398 145.6818 144.6722 151.4338 135.1354 141.8774 149.1748 138.8077 

Dab Akaike weight 0.0086 0.0042 0.0070 0.0002 0.8203 0.0282 0.0007 0.1308 

Dab Adjusted r2 0.6947 0.6879 0.6869 0.6338 0.7201 0.7051 0.6586 0.7209 

Dab Deviance Explained 0.8055 0.8023 0.7879 0.7215 0.7896 0.8098 0.7594 0.8239 

Dab GCV 0.7007 0.7201 0.6755 0.7039 0.5445 0.6683 0.7083 0.6466 

Dab Correlation 0.8977 0.8959 0.8877 0.8496 0.8888 0.9001 0.8715 0.9078 

Dogfish AIC 80.8782 81.1712 104.1133 106.2558 73.8337 81.0451 106.7029 81.9692 

Dogfish Akaike weight 0.0269 0.0232 0.0000 0.0000 0.9096 0.0247 0.0000 0.0156 

Dogfish Adjusted r2 0.5700 0.5658 0.3656 0.3097 0.5999 0.5689 0.3246 0.5629 

Dogfish Deviance Explained 0.7422 0.7328 0.5944 0.4913 0.7210 0.7418 0.5372 0.7399 

Dogfish GCV 0.2645 0.2602 0.3658 0.3453 0.2115 0.2653 0.3634 0.2708 

Dogfish Correlation 0.8620 0.8566 0.7741 0.7019 0.8504 0.8616 0.7343 0.8610 

Dover sole AIC -0.3874 11.6027 16.9888 22.8905 13.3880 -2.2935 15.7561 6.5754 

Dover sole Akaike weight 0.2756 0.0007 0.0000 0.0000 0.0003 0.7148 0.0001 0.0085 

Dover sole Adjusted r2 0.8272 0.7856 0.7725 0.7257 0.7644 0.8319 0.7641 0.8028 

Dover sole Deviance Explained 0.9023 0.8633 0.8818 0.7919 0.8208 0.9026 0.8352 0.8753 

Dover sole GCV 0.0750 0.0824 0.1073 0.0886 0.0759 0.0711 0.0828 0.0765 

Dover sole Correlation 0.9501 0.9294 0.9397 0.8900 0.9061 0.9502 0.9141 0.9358 

Dragonet AIC 90.0251 88.8081 106.7452 117.1096 97.5431 91.7799 111.9091 87.7587 

Dragonet Akaike weight 0.1567 0.2879 0.0000 0.0000 0.0037 0.0652 0.0000 0.4866 

Dragonet Adjusted r2 0.6392 0.6444 0.5152 0.4043 0.5594 0.6247 0.4808 0.6486 

Dragonet Deviance Explained 0.7827 0.7804 0.6762 0.5597 0.6647 0.7620 0.6709 0.7781 

Dragonet GCV 0.3053 0.2934 0.3699 0.4108 0.2950 0.3017 0.4175 0.2836 

Dragonet Correlation 0.8852 0.8839 0.8232 0.7485 0.8155 0.8735 0.8204 0.8826 

European hake AIC 83.5789 81.5285 113.4830 103.9585 82.6937 89.2787 107.8290 68.4779 

European hake Akaike weight 0.0005 0.0015 0.0000 0.0000 0.0008 0.0000 0.0000 0.9972 

European hake Adjusted r2 0.8655 0.8695 0.7821 0.8087 0.8604 0.8514 0.7952 0.8955 

European hake Deviance Explained 0.9221 0.9226 0.8733 0.8758 0.9013 0.9096 0.8644 0.9489 

European hake GCV 0.2843 0.2697 0.4590 0.3608 0.2419 0.2994 0.3786 0.2621 

European hake Correlation 0.9603 0.9606 0.9347 0.9359 0.9494 0.9538 0.9298 0.9742 

European pilchard AIC 100.3310 115.3402 129.8159 158.1312 116.6696 101.9843 119.5856 112.9894 

European pilchard Akaike weight 0.6943 0.0004 0.0000 0.0000 0.0002 0.3038 0.0000 0.0012 

European pilchard Adjusted r2 0.8493 0.8058 0.7540 0.5985 0.7963 0.8452 0.7917 0.8148 

European pilchard Deviance Explained 0.9223 0.8853 0.8520 0.7260 0.8651 0.9186 0.8758 0.8991 

European pilchard GCV 0.4149 0.4668 0.5807 0.8352 0.4367 0.4178 0.4959 0.4827 

European pilchard Correlation 0.9606 0.9411 0.9233 0.8525 0.9305 0.9586 0.9363 0.9485 

European plaice AIC 80.3903 96.6994 97.4251 130.2695 84.9665 79.5362 108.9820 79.8481 

European plaice Akaike weight 0.2534 0.0001 0.0001 0.0000 0.0257 0.3884 0.0000 0.3323 

European plaice Adjusted r2 0.8058 0.7447 0.7418 0.5372 0.7770 0.8075 0.6887 0.8073 

European plaice Deviance Explained 0.8814 0.8367 0.8351 0.6563 0.8341 0.8796 0.8009 0.8818 

European plaice GCV 0.2584 0.3244 0.3287 0.5066 0.2438 0.2503 0.3955 0.2553 
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European plaice Correlation 0.9390 0.9151 0.9141 0.8102 0.9136 0.9380 0.8955 0.9394 

European sprat AIC 149.5022 204.7538 218.8024 239.3103 205.4810 141.7540 213.9105 163.1291 

European sprat Akaike weight 0.0203 0.0000 0.0000 0.0000 0.0000 0.9796 0.0000 0.0000 

European sprat Adjusted r2 0.9254 0.8161 0.7740 0.6568 0.8063 0.9343 0.7894 0.9078 

European sprat Deviance Explained 0.9671 0.8863 0.8867 0.7424 0.8631 0.9707 0.8783 0.9553 

European sprat GCV 1.0802 1.9022 2.8839 2.9239 1.7535 0.9424 2.3321 1.2140 

European sprat Correlation 0.9835 0.9416 0.9418 0.8618 0.9292 0.9853 0.9374 0.9774 

Grenadier AIC -51.2858 -50.2621 -53.5136 28.5692 8.4676 23.1737 -53.2331 -17.8186 

Grenadier Akaike weight 0.1371 0.0822 0.4177 0.0000 0.0000 0.0000 0.3630 0.0000 

Grenadier Adjusted r2 0.9225 0.9207 0.9248 0.6986 0.7915 0.7436 0.9239 0.8671 

Grenadier Deviance Explained 0.9553 0.9526 0.9552 0.7782 0.8640 0.8587 0.9529 0.9241 

Grenadier GCV 0.0324 0.0320 0.0304 0.0987 0.0771 0.1122 0.0296 0.0561 

Grenadier Correlation 0.9774 0.9760 0.9774 0.8822 0.9299 0.9269 0.9762 0.9614 

Grey gurnard AIC 111.4699 121.2460 103.2777 127.6410 114.1857 110.3423 122.8904 118.7214 

Grey gurnard Akaike weight 0.0158 0.0001 0.9517 0.0000 0.0041 0.0278 0.0001 0.0004 

Grey gurnard Adjusted r2 0.6602 0.5945 0.7029 0.5268 0.6081 0.6644 0.5717 0.6054 

Grey gurnard Deviance Explained 0.7855 0.7262 0.8141 0.6385 0.6846 0.7833 0.6886 0.7234 

Grey gurnard GCV 0.4159 0.4640 0.3668 0.4785 0.3760 0.4015 0.4550 0.4348 

Grey gurnard Correlation 0.8864 0.8523 0.9026 0.7992 0.8275 0.8851 0.8299 0.8506 

Haddock AIC 130.5101 128.4592 142.8370 204.9356 166.3543 145.0045 158.0782 134.0899 

Haddock Akaike weight 0.2526 0.7045 0.0005 0.0000 0.0000 0.0002 0.0000 0.0422 

Haddock Adjusted r2 0.8526 0.8570 0.8199 0.4735 0.7142 0.8143 0.7647 0.8420 

Haddock Deviance Explained 0.9163 0.9166 0.8963 0.6113 0.7838 0.8972 0.8489 0.9033 

Haddock GCV 0.6163 0.5833 0.7431 1.6945 0.8979 0.7967 0.8706 0.6134 

Haddock Correlation 0.9574 0.9576 0.9470 0.7822 0.8858 0.9475 0.9218 0.9506 

Horse mackerel AIC 219.5894 218.3065 216.7731 249.0903 205.6293 221.3516 220.1483 224.7812 

Horse mackerel Akaike weight 0.0009 0.0018 0.0038 0.0000 0.9924 0.0004 0.0007 0.0001 

Horse mackerel Adjusted r2 0.5449 0.5495 0.5565 0.2260 0.6056 0.5270 0.5257 0.4970 

Horse mackerel Deviance Explained 0.7018 0.6946 0.6916 0.4150 0.6863 0.6799 0.6593 0.6534 

Horse mackerel GCV 2.3139 2.2142 2.1246 3.4113 1.6519 2.3282 2.1996 2.4318 

Horse mackerel Correlation 0.8381 0.8337 0.8319 0.6453 0.8289 0.8250 0.8127 0.8089 

John dory AIC 7.5548 14.8552 1.6771 56.7472 19.3815 30.1410 51.8355 13.8597 

John dory Akaike weight 0.0501 0.0013 0.9463 0.0000 0.0001 0.0000 0.0000 0.0021 

John dory Adjusted r2 0.8248 0.7989 0.8410 0.5998 0.7694 0.7432 0.6345 0.8040 

John dory Deviance Explained 0.9000 0.8723 0.9113 0.7339 0.8255 0.8381 0.7667 0.8805 

John dory GCV 0.0845 0.0871 0.0784 0.1657 0.0839 0.1121 0.1576 0.0885 

John dory Correlation 0.9489 0.9342 0.9549 0.8574 0.9088 0.9159 0.8764 0.9385 

Lemon sole AIC 59.8996 88.8622 73.6192 125.7437 46.4579 56.5367 70.5296 62.3891 

Lemon sole Akaike weight 0.0012 0.0000 0.0000 0.0000 0.9920 0.0064 0.0000 0.0003 

Lemon sole Adjusted r2 0.7953 0.6671 0.7401 0.3571 0.8293 0.8067 0.7536 0.7847 

Lemon sole Deviance Explained 0.8830 0.7889 0.8365 0.5148 0.8855 0.8928 0.8473 0.8687 

Lemon sole GCV 0.1962 0.2878 0.2264 0.4669 0.1395 0.1910 0.2179 0.1936 

Lemon sole Correlation 0.9399 0.8885 0.9150 0.7180 0.9410 0.9450 0.9212 0.9323 

Ling AIC -2.6932 -0.9831 -3.6560 23.3410 3.0840 -6.2853 18.7677 15.5153 

Ling Akaike weight 0.1096 0.0466 0.1773 0.0000 0.0061 0.6603 0.0000 0.0000 

Ling Adjusted r2 0.6316 0.6168 0.6300 0.3975 0.5464 0.6540 0.4542 0.5035 

Ling Deviance Explained 0.7647 0.7447 0.7474 0.5356 0.6233 0.7833 0.6006 0.6772 

Ling GCV 0.0654 0.0652 0.0614 0.0886 0.0619 0.0626 0.0846 0.0866 
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Ling Correlation 0.8746 0.8630 0.8646 0.7320 0.7895 0.8853 0.7753 0.8234 

Megrim AIC -7.5239 -8.9496 9.5864 94.3392 -9.8913 9.1172 57.7836 15.3740 

Megrim Akaike weight 0.1586 0.3234 0.0000 0.0000 0.5179 0.0000 0.0000 0.0000 

Megrim Adjusted r2 0.9728 0.9734 0.9642 0.8565 0.9734 0.9644 0.9201 0.9607 

Megrim Deviance Explained 0.9861 0.9860 0.9816 0.9109 0.9838 0.9809 0.9496 0.9804 

Megrim GCV 0.0735 0.0698 0.0963 0.3194 0.0604 0.0918 0.1750 0.1090 

Megrim Correlation 0.9930 0.9930 0.9908 0.9544 0.9919 0.9904 0.9745 0.9902 

Monkfish AIC -33.5807 -29.0423 -27.7160 48.0537 -36.9909 -35.2069 0.4298 -36.4027 

Monkfish Akaike weight 0.0768 0.0079 0.0041 0.0000 0.4228 0.1733 0.0000 0.3151 

Monkfish Adjusted r2 0.9008 0.8915 0.8892 0.6107 0.8983 0.9030 0.8289 0.9045 

Monkfish Deviance Explained 0.9424 0.9312 0.9299 0.7253 0.9234 0.9420 0.9028 0.9419 

Monkfish GCV 0.0429 0.0430 0.0440 0.1385 0.0339 0.0408 0.0756 0.0394 

Monkfish Correlation 0.9709 0.9650 0.9644 0.8519 0.9609 0.9706 0.9503 0.9706 

Norway pout AIC 148.6280 146.3448 156.7800 216.6031 161.9409 136.8661 165.2560 157.6797 

Norway pout Akaike weight 0.0028 0.0086 0.0000 0.0000 0.0000 0.9885 0.0000 0.0000 

Norway pout Adjusted r2 0.8820 0.8866 0.8639 0.6374 0.8520 0.9029 0.8424 0.8630 

Norway pout Deviance Explained 0.9337 0.9387 0.9177 0.7659 0.9103 0.9506 0.9003 0.9209 

Norway pout GCV 0.8337 0.8330 0.8928 2.2286 0.9690 0.7581 0.9881 0.9426 

Norway pout Correlation 0.9663 0.9690 0.9580 0.8753 0.9542 0.9751 0.9490 0.9598 

Poor cod AIC 163.3034 167.9625 161.6210 194.3177 169.9364 166.9927 184.4204 167.1141 

Poor cod Akaike weight 0.2660 0.0259 0.6169 0.0000 0.0096 0.0420 0.0000 0.0396 

Poor cod Adjusted r2 0.7168 0.6938 0.7245 0.4965 0.6635 0.7008 0.5909 0.7001 

Poor cod Deviance Explained 0.8255 0.8089 0.8307 0.6158 0.7482 0.8198 0.7217 0.8192 

Poor cod GCV 0.9774 1.0431 0.9534 1.4033 0.9568 1.0568 1.2788 1.0575 

Poor cod Correlation 0.9091 0.9002 0.9121 0.7849 0.8656 0.9058 0.8505 0.9055 

Pouting AIC 71.6168 73.3427 129.5191 115.7550 68.3034 69.6847 85.4361 92.7377 

Pouting Akaike weight 0.1076 0.0454 0.0000 0.0000 0.5641 0.2828 0.0001 0.0000 

Pouting Adjusted r2 0.8889 0.8853 0.7159 0.7678 0.8893 0.8919 0.8574 0.8403 

Pouting Deviance Explained 0.9341 0.9304 0.8267 0.8465 0.9213 0.9343 0.9052 0.8955 

Pouting GCV 0.2297 0.2319 0.5714 0.4307 0.1912 0.2183 0.2631 0.2993 

Pouting Correlation 0.9665 0.9646 0.9097 0.9201 0.9599 0.9666 0.9515 0.9464 

Red gurnard AIC 76.3653 76.8246 86.3354 93.9244 84.1377 71.7255 83.5359 72.2662 

Red gurnard Akaike weight 0.0505 0.0402 0.0003 0.0000 0.0010 0.5141 0.0014 0.3924 

Red gurnard Adjusted r2 0.7198 0.7128 0.6724 0.6176 0.6535 0.7420 0.6695 0.7378 

Red gurnard Deviance Explained 0.8254 0.8091 0.8002 0.7374 0.7282 0.8450 0.7600 0.8367 

Red gurnard GCV 0.2384 0.2291 0.2848 0.2953 0.2343 0.2278 0.2414 0.2233 

Red gurnard Correlation 0.9086 0.8996 0.8950 0.8591 0.8535 0.9194 0.8719 0.9149 

Red mullet AIC 77.7528 88.7001 75.4726 88.4812 66.5518 76.4489 74.7994 81.0800 

Red mullet Akaike weight 0.0036 0.0000 0.0111 0.0000 0.9622 0.0068 0.0156 0.0007 

Red mullet Adjusted r2 0.6082 0.5290 0.6173 0.5337 0.6415 0.6133 0.6235 0.5809 

Red mullet Deviance Explained 0.7366 0.6761 0.7325 0.6853 0.7060 0.7337 0.7410 0.7069 

Red mullet GCV 0.2307 0.2712 0.2169 0.2736 0.1731 0.2224 0.2167 0.2373 

Red mullet Correlation 0.8583 0.8223 0.8559 0.8283 0.8403 0.8566 0.8610 0.8409 

Seabass AIC -14.4961 -16.2951 -20.3797 29.5660 -11.2814 -16.3730 24.3502 -2.3529 

Seabass Akaike weight 0.0397 0.0977 0.7530 0.0000 0.0080 0.1016 0.0000 0.0001 

Seabass Adjusted r2 0.7377 0.7440 0.7617 0.4217 0.6840 0.7445 0.4761 0.6806 

Seabass Deviance Explained 0.8443 0.8441 0.8594 0.5608 0.7358 0.8447 0.6143 0.8090 

Seabass GCV 0.0572 0.0545 0.0523 0.0987 0.0490 0.0545 0.0922 0.0692 
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Seabass Correlation 0.9190 0.9189 0.9271 0.7495 0.8578 0.9193 0.7840 0.8999 

Seabream AIC 103.4766 101.8574 126.4322 154.8824 93.2764 101.6394 129.8567 102.4373 

Seabream Akaike weight 0.0058 0.0131 0.0000 0.0000 0.9566 0.0146 0.0000 0.0098 

Seabream Adjusted r2 0.7753 0.7797 0.6701 0.4521 0.7952 0.7804 0.6495 0.7770 

Seabream Deviance Explained 0.8569 0.8561 0.7794 0.5862 0.8423 0.8566 0.7616 0.8529 

Seabream GCV 0.3631 0.3473 0.5078 0.7468 0.2738 0.3462 0.5305 0.3482 

Seabream Correlation 0.9258 0.9253 0.8830 0.7661 0.9178 0.9256 0.8732 0.9236 

Silvery pout AIC -0.8126 4.9147 42.8150 137.7427 45.6447 26.9840 91.0197 24.4913 

Silvery pout Akaike weight 0.9460 0.0540 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Silvery pout Adjusted r2 0.9498 0.9456 0.9022 0.5145 0.8975 0.9239 0.7856 0.9273 

Silvery pout Deviance Explained 0.9809 0.9783 0.9482 0.6471 0.9442 0.9652 0.8759 0.9632 

Silvery pout GCV 0.1139 0.1180 0.1599 0.5783 0.1631 0.1442 0.3209 0.1242 

Silvery pout Correlation 0.9904 0.9891 0.9739 0.8050 0.9719 0.9826 0.9363 0.9816 

Solenette AIC 100.0243 104.7059 131.2198 118.0360 84.2967 98.0339 108.2442 101.7667 

Solenette Akaike weight 0.0004 0.0000 0.0000 0.0000 0.9984 0.0010 0.0000 0.0002 

Solenette Adjusted r2 0.6887 0.6615 0.4837 0.5682 0.7495 0.6967 0.6417 0.6754 

Solenette Deviance Explained 0.8067 0.7827 0.6755 0.6969 0.8244 0.8070 0.7700 0.7875 

Solenette GCV 0.3502 0.3681 0.5738 0.4297 0.2495 0.3327 0.3898 0.3461 

Solenette Correlation 0.8987 0.8853 0.8235 0.8352 0.9085 0.8988 0.8779 0.8877 

Thickback sole AIC 131.7327 132.2976 132.7826 149.9281 119.1938 127.3137 143.5509 125.4315 

Thickback sole Akaike weight 0.0018 0.0013 0.0011 0.0000 0.9382 0.0162 0.0000 0.0415 

Thickback sole Adjusted r2 0.6505 0.6451 0.6461 0.5107 0.7005 0.6769 0.5699 0.6851 

Thickback sole Deviance Explained 0.7827 0.7736 0.7847 0.6508 0.7836 0.8063 0.7148 0.8065 

Thickback sole GCV 0.5834 0.5772 0.6035 0.7115 0.4303 0.5592 0.6732 0.5319 

Thickback sole Correlation 0.8850 0.8798 0.8865 0.8072 0.8856 0.8987 0.8458 0.8985 

Weever AIC 72.6478 84.9070 76.4027 77.6278 61.9287 70.7690 70.3579 74.1550 

Weever Akaike weight 0.0045 0.0000 0.0007 0.0004 0.9663 0.0116 0.0143 0.0021 

Weever Adjusted r2 0.5860 0.4827 0.5484 0.5298 0.6281 0.5962 0.5898 0.5690 

Weever Deviance Explained 0.7395 0.6455 0.6893 0.6591 0.7191 0.7404 0.7168 0.7126 

Weever GCV 0.2229 0.2557 0.2223 0.2196 0.1667 0.2128 0.2012 0.2189 

Weever Correlation 0.8602 0.8035 0.8304 0.8125 0.8483 0.8607 0.8470 0.8445 

Whiting AIC 133.6177 133.3212 169.5490 208.3723 114.2894 133.5168 176.8327 145.9367 

Whiting Akaike weight 0.0001 0.0001 0.0000 0.0000 0.9998 0.0001 0.0000 0.0000 

Whiting Adjusted r2 0.8863 0.8863 0.7937 0.5869 0.9147 0.8860 0.7679 0.8608 

Whiting Deviance Explained 0.9339 0.9321 0.8696 0.6857 0.9444 0.9321 0.8533 0.9173 

Whiting GCV 0.6357 0.6180 1.0602 1.7629 0.4248 0.6211 1.1921 0.7610 

Whiting Correlation 0.9665 0.9655 0.9328 0.8284 0.9719 0.9655 0.9242 0.9578 

 

Appendix 5: Table of results of GAM testing. Each model was tested on each species; the highlighted column (model with 

all variables except ‘habitat’ variable), performed best for most species.  
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Species Z p-value 

American plaice 1664 4.20E-09 

Anchovy 2775 7.89E-14 

Argentine 2132 4.48E-06 

Atlantic cod 17 1.66E-12 

Atlantic herring 1543 2.91E-01 

Atlantic mackerel 912 1.11E-01 

Blue whiting 2215 1.74E-09 

Boarfish 2690 2.31E-12 

Dab 71 1.44E-10 

Dogfish 1413 4.41E-01 

Dover sole 2555 3.61E-11 

Dragonet 972 2.54E-02 

European hake 856 6.61E-03 

European pilchard 2775 7.89E-14 

European plaice 825 2.46E-03 

European sprat 1941 5.54E-07 

Grenadier 350 1.56E-04 

Grey gurnard 0 5.33E-13 

Haddock 12 9.01E-13 

Horse mackerel 2775 7.89E-14 

John dory 2311 6.61E-07 

Lemon sole 1093 1.13E-01 

Ling 34 4.66E-13 

Megrim 310 4.14E-05 

Monkfish 60 4.60E-12 

Norway pout 0 5.36E-09 

Poor cod 2681 3.27E-12 

Pouting 2774 8.22E-14 

Red gurnard 2773 8.57E-14 

Red mullet 2775 7.89E-14 

Seabass 2775 7.89E-14 

Seabream 1731 1.93E-09 

Silvery pout 1981 3.81E-06 

Solenette 2410 5.82E-09 

Thickback sole 1408 6.00E-01 

Weever 2775 7.89E-14 

Whiting 1586 4.47E-02 

 

Appendix 6: One-sample Wilcoxon signed rank test results for the rate of change in abundance (as 

predicted by the GAM), for all species, from 2010–2090. Significant results accepted at p<0.05.  
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  Appendix 7: Spatial variation in the rate of change in abundance as predicted by the GAM, for 2010–2098. A, American 

plaice (Hippoglossoides platessoides). B, Anchovy (Engraulis encrasicolus). C, Atlantic herring (Clupea harengus). D Atlantic 

mackerel (Scomber scombrus). E, Blue whiting (Micromesistius poutassou). F, Dab (Limanda limanda). G, Dogfish (see 

Table 1). H, Dover sole (Solea solea and S. vulgaris).  
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Appendix 8: Spatial variation in the rate of change in abundance as predicted by the GAM, for 2010–2098. A, Dragonet 

(see Table 1). B, European hake (Merluccius merluccius). C, European pilchard (Sardina pilchardus). D, European sprat 

(Sprattus sprattus). E, Grenadier (see Table 1). F, Grey gurnard (Eutrigla gurnardus). G, Haddock (Melanogrammus 

aeglefinus). H, Horse mackerel (Trachurus trachurus). 
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Appendix 9: Spatial variation in the rate of change in abundance as predicted by the GAM, for 2010–2098. A, Lemon sole 

(Microstomus kitt). B, Ling (Molva sp.). C, Monkfish (Lophius piscatorius). D, Norway pout (Trisopterus esmarkii). E, Poor 

cod (Trisopterus minutus). F, Pouting (Trisopterus luscus). G, Red gurnard (Chelidonichthys cuculus). H Red mullet (Mullus 

barbatus and M. surmuletus).  
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Appendix 10: Spatial variation in the rate of change in abundance as predicted by the GAM, for 2010–2098. A, Seabream 

(see Table 1). B, Silvery pout (Gadiculus argenteus). C, Solenette (Buglossidium luteum). D, Weever (see Table 1). E, 

Whiting (Merlangius merlangus).  
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 Species Central latitude Common length Trophic level 
W

in
n
e
rs

 
American plaice 59 30 3.8 

Anchovy 12.5 13.5 3.12 

Argentine 47.5 20 3.62 

Blue whiting 52.5 22 4.03 

Boarfish 36 13 3.135 

Dover sole 42 35 3.165 

European pilchard 41 20 3.05 

European sprat 48 12 3.01 

Horse mackerel 24 22 3.64 

John dory 13 40 4.455 

Poor cod 47 20 3.715 

Pouting 43.5 30 3.655 

Red gurnard 20.5 27.6 3.81 

Red mullet 38 20 3.29 

Seabass 41.5 50 3.63 

Seabream 41.5 30 3.34 

Silvery pout 49 10 3.6 

Solenette 30.5 8 3.31 

Weever 39.5 10 4.2 

Whiting 53.5 23.5 4.265 

L
o
s
e
rs

 

Atlantic cod 59 100 4.215 

Dab 57.5 25 3.29 

Dragonet 40.5 15 3.27 

European hake 47 45 4.4 

European plaice 54 40 3.245 

Grenadier 22 30 3.465 

Grey gurnard 45 30 3.71 

Haddock 57 35 4.035 

Ling 55 106 4.4 

Megrim 47.5 25 4.34 

Monkfish 52.5 100 4.45 

Norway pout 63.5 19 3.22 

N
o
n

-

s
ig

n
if
ic

a
n

t 

Atlantic herring 56.5 30 3.29 

Atlantic mackerel 47.5 30 3.57 

Dogfish 37.5 60 3.72 

Lemon sole 57.5 30 3.215 

Thickback sole 37.5 14 3.28 

 

Appendix 11: Central latitude, common length and trophic level for each species, grouped according to winners 

(species predicted to increase in abundance) losers (species predicted to decrease in abundance), and those 

species without statistically significant responses. All data obtained from FishBase (FishBase 2012), except for 

common length values for dab and lemon sole; obtained from the Marine Life Information Network (MarLIN 2014) 

and american plaice common length, obtained from the FAO FishFinder (FAO 2010).  
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