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Abstract

Space missions increasingly require sophisticated guidance, navigation and

control algorithms, the development of which is reliant on verification and

validation (V&V ) techniques to ensure mission safety and success. A crucial

element of V&V is the assessment of control system robust performance in

the presence of uncertainty. In addition to estimating average performance

under uncertainty, it is critical to determine the worst case performance.

Industrial V&V approaches typically employ µ-analysis in the early control

design stages, and Monte Carlo simulations on high-fidelity full engineering

simulators at advanced stages of the design cycle. While highly capable,

such techniques present a critical gap between pessimistic worst case es-

timates found using analytical methods, and the optimistic outlook often

presented by Monte Carlo runs. Conservative worst case estimates are prob-

lematic because they can demand a controller redesign procedure, which is

not justified if the poor performance is unlikely to occur.

Gaining insight into the probability associated with the worst case perfor-

mance is valuable in bridging this gap. It should be noted that due to the

complexity of industrial-scale systems, V&V techniques are required to be

capable of efficiently analysing non-linear models in the presence of signif-

icant uncertainty. As well, they must be computationally tractable. It is

desirable that such techniques demand little engineering effort before each



analysis, to be applied widely in industrial systems.

Motivated by these factors, this thesis proposes and develops an efficient

algorithm, based on the cross entropy simulation method. The proposed al-

gorithm efficiently estimates the probabilities associated with various per-

formance levels, from nominal performance up to degraded performance

values, resulting in a curve of probabilities associated with various perfor-

mance values. Such a curve is termed the probability profile of performance

(PPoP), and is introduced as a tool that offers insight into a control sys-

tem’s performance, principally the probability associated with the worst

case performance.

The cross entropy-based robust performance analysis is implemented here

on various industrial systems in European Space Agency-funded research

projects. The implementation on autonomous rendezvous and docking mod-

els for the Mars Sample Return mission constitutes the core of the thesis.

The proposed technique is implemented on high-fidelity models of the Vega

launcher, as well as on a generic long coasting launcher upper stage.

In summary, this thesis (a) develops an algorithm based on the cross entropy

simulation method to estimate the probability associated with the worst

case, (b) proposes the cross entropy-based PPoP tool to gain insight into

system performance, (c) presents results of the robust performance analysis

of three space industry systems using the proposed technique in conjunc-

tion with existing methods, and (d) proposes an integrated template for

conducting robust performance analysis of linearised aerospace systems.
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Chapter 1

Introduction

Space flight has been a significant human achievement in the last century; space mis-

sions have led to paradigmatic advances in science and technology. Space mission fail-

ures, per contra, can be catastrophic, leading to loss of mission, money or even human

life. For example, NASA’s climate orbiter, which was to study the Martian atmosphere

and relay radio signals from two surface probes, was destroyed during orbital insertion.

Subsequent analysis found that the reason for this failure was thruster software that

carried out computations in Imperial units, while the rest of the computation was in SI

units. As a result, the probe was guided to Mars’ upper atmosphere, which led to its

disintegration [1]. Another failure of relevance was the Demonstration for Autonomous

Rendezvous Technology (DART) mission, which was to perform proximity manoeuvres

with a target spacecraft already in orbit. However, inaccurate estimation of distance

and speed resulted in the spacecraft colliding with its target. It failed to meet all 14 of

its mission objectives, and was declared a Type A mishap1 due to the mission incurring

a loss of more than 1 million US dollars [2]. More recently, the CRS-7 Dragon mission

[3], which was to resupply the International Space Station in June 2015, failed due to

an overpressure event and eventual explosion in the Falcon-9 launcher [4].

1This level of mishap requires the most rigorous investigation according to NASA’s protocols
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A recent paper [5] investigates the contribution of software in catastrophic accidents

including several aerospace accidents and mishaps. As part of their recommendations,

the authors argue that testing for unsafe behaviour is as important as testing for ex-

pected performance. They also cite the DART mishap and point out that safety-critical

software should be able to recognise and be unresponsive to inaccurate data.

Unfortunately, there exist several instances of partial or total mission failure, some of

which resulted in deaths. A study [6] of 25 years of on-orbit failures from 1980 on-

wards observes that such failures occur despite the rigorous testing processes in place,

and that each space mission is challenging in unique ways. The study finds that 59%

of all on-orbit spacecraft failures are due to the Attitude and Orbit Control System

(AOCS) and power subsystems. The AOCS is responsible for the guidance, navigation

and control (GNC) of the spacecraft, and for meeting mission objectives in the face of

disturbances and uncertainties arising during flight. In [6] the author notes that 41% of

all on-orbit failures occur within a year of reaching orbit, which suggests “insufficient

testing and inadequate modelling of the spacecraft and its environment.” It is therefore

clear that the critical problem of spacecraft safety is one that is tied to the development

and analysis of safe, reliable and high-performance GNC systems.

In the last few years, space aspirations have grown to include new directions, such as

space tourism, asteroid mining, space structures maintenance, satellite self-assembly in

orbit and human settlements on Mars. Private space companies such as SpaceX, Blue

Origin and MarsOne are looking to rapidly develop novel space technologies, while na-

tional and international space agencies have also set ambitious targets [7]. Safety, an

already critical factor in space flight, takes on even greater importance when such com-

plex missions are partially or wholly autonomous. The development of autonomous
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flight control laws is a complicated and highly multi-disciplinary task, making their

clearance process challenging.

Sophisticated GNC algorithms are key to enabling present and future space missions

[8]. GNC algorithms can steer space missions to success with precision, leveraging

computational resources to achieve ambitious objectives [9]. Such algorithms also save

time, engineering effort, costs and eliminate human errors. The process of synthesising

GNC algorithms ideally consists of iterations of control system design and analysis until

requirements are satisfactorily met, as shown in Figure 1.1 — this figure is adapted

from [10], and is similar to the so-called V model in the broad software testing com-

munity.

Synthesis of GNC algorithms 1 in practical space systems is often carried out on a nom-

inal, linearised system model [11]. In practice, however, spacecraft dynamical systems

are large high-fidelity systems with non-linearities and several uncertainties, as shown

in Figure 2.3. Uncertainty in aerospace systems may exist due to modelling inadequa-

cies (such as roll coupling, fuel sloshing and flexible modes) or external disturbances

(such as wind velocities and disturbance torques).

Therefore, the designed control algorithms need to be assessed for safety and per-

formance under realistic operating conditions — via a process known as Verification

and Validation. Assessing robust performance in the presence of uncertainty, is key

in aerospace verification and validation. The prevalent methodology for robust per-

formance analysis in industrial spacecraft systems is to conduct a µ-analysis [12] on a

simplified model in the early design stage, followed by large-scale Monte Carlo runs [13]

on high-fidelity models. However, µ-analysis methods are known to provide rather pes-

1referred to as control synthesis in the sequel, or simply synthesis. Likewise, the umbrella term
control refers to GNC algorithms.
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Figure 1.1: Control system design cycle including iterations of design and testing
Source: NASA.

simistic values of the worst case performance, meaning that the worst case performance

predicted by it may be catastrophic. Such performances may have low likelihoods of

occurrence. This issue of conservatism has been researched [14], and it is generally

accepted that assigning probabilities to worst case performances, i.e. quantifying con-

servatism, provides a better view of performance. Monte Carlo can provide probabilistic

information, and indeed is a good technique to estimate the expected performance and

the standard deviation, but large computational burdens are incurred in accurately

arriving at extreme values and its probability. This presents a gap between expected

performance and the worst case performance that needs to be filled.

This thesis proposes a new technique, based on cross entropy (CE) simulation, to prob-

abilistically assess the performance of spacecraft under the influence of uncertainty.

The worst-case performance is expected to have a low likelihood of occurrence, and

therefore is interpreted as a rare event. The cross-entropy technique has been estab-

lished in the literature to be an excellent technique for rare-event probability estimation.
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This study considers the robust performance assessment for three space industry mod-

els, at varying levels of system complexity, and each challenging in unique ways. The

models considered are: the autonomous rendezvous of the Mars Sample Return mis-

sion, the Vega launcher in its atmospheric flight phase, and a generic long-coasting

launcher upper stage attitude model. The CE-based methodology is implemented on

these models, often in conjunction with existing techniques.

This section presented the background and motivation behind the research work pre-

sented in this thesis. The contributions of the thesis, and its outline are discussed in

the following section.

1.1 Contributions and Outline of the Thesis

The main contributions of this thesis are:

� The cross-entropy simulation technique is developed as a tool to assess the robust

performance of controllers, and to determine the probability associated with the

worst case performance.

� The probability profile of performance is introduced as a tool to gain insight into

the probabilistic characteristics of control system performance.

� An integrated analysis template is proposed to analyse linearised aerospace con-

trol systems.

� Detailed linear fractional transformation models are developed for the linearised

models of the autonomous rendezvous of the Mars sample return mission.

These contributions will be detailed in the following chapters, which are structured as

follows.
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Chapter 2 provides an overview of existing robust performance analysis techniques

in the literature. The chapter discusses some desirable characteristics of aerospace

V&V techniques, and discusses uncertainty and its representation in aerospace sys-

tems. Subsequently, the chapter touches upon commonly used performance measures,

and proceeds to survey the robust performance analysis techniques. These techniques

are classified as analytical, Monte Carlo based, optimisation-based and probabilistic

robustness analysis techniques. Preliminary implementation details of the µ-analysis

and the Differential Evolution (DE) optimisation method are presented. The crucial

notions of robustness (both in the deterministic and the more recent probabilistic sense)

are explained.

Chapter 3 details the cross entropy-based simulation technique, and develops it into

a tool for probabilistic analysis of aerospace control systems. Some preliminaries on

probability theory are first presented, followed by a detailing on how they fit into the

robustness analysis paradigm. The probability profile of performance is then intro-

duced, followed by a discussion of the probabilistic insights into performance provided

by it. The proposed technique is then implemented on a simple illustrative example.

In Chapter 4, the Mars Sample Return autonomous rendezvous models are detailed.

Linear Fractional Transformation models, crucial for robust analysis using analytical

methods, are developed and validated for a set of linearised models, both from scratch

and using tools available within Matlab. These linearised models when interconnected

form the simplified rendezvous model. A more complex, high-fidelity, non-linear model

is briefly described. Both the simplified and the high-fidelity models are to be analysed

for robust performance.

Chapter 5 presents the results of robust performance analysis on the rendezvous mod-
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els. First, a rigorous early design stage analysis of the simplified model is presented,

so as to analyse the critical sensitivity and complementary sensitivity functions of the

closed loop system. An optimisation-based analysis and a µ-analysis are implemented

to determine the worst case performance and the robust performance margins. In addi-

tion, the CE-based technique developed in Chapter 3 is implemented to determine the

probability profile of performance. It is found that CE complements the more mature

techniques, by confirming the worst case performance, and by assigning a probability

to its occurrence.

In Chapter 6, the CE technique is applied in two industrial launch vehicle models. The

first is an attitude controller for the spinning motion of a long-coasting upper stage.

The implementation is done in conjunction with DE. The unique characteristic of this

analysis is that payload configuration parameters are included in the analysis. This

analysis is in the early design stage. The second part of the chapter analyses the Vega

launch vehicle for robust performance. This is carried out in the late design stage. It

is hoped that such an implementation can increase the technological maturity of CE.

Chapter 7 draws conclusions from the study, and explains the implications of the work

in aerospace safety. Some recommendations for future research are presented.

As seen in the inter-relationship between the chapters, illustrated in Figure 1.2, Chap-

ters 2 and 3 may be considered as background and methods chapters, which provide an

important foundation to the thesis. Chapter 4 is purely focussed on the models, useful

in the analysis presented in Chapter 5, which forms the heart of the thesis. Chapter

6, which presents further results on two industry models, also uses the methods de-

scribed in Chapters 2 and 3 . Finally, the conclusions follow from the results presented

in Chapters 5 and 6, and implicitly from the background and methods Chapters 2 and 3.
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Figure 1.2: Chapters in this thesis and their interrelationships.
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Chapter 2

Robust Performance Analysis

Methods: a State-of-the-Art

Review

The efficient development of advanced aerospace GNC systems is highly dependent on

the availability of reliable V&V techniques. V&V is the step in the design process nec-

essary for assessing and ensuring safety, and for clearing spacecraft missions. One of the

greatest challenges in V&V is accounting for the effects of uncertainty, particularly in

the highly unpredictable environment of space. Uncertainty is accounted for in control

synthesis using robust control methods [15]. Robust controllers are designed to cope

with modelled uncertainties, such that the system’s stability and performance remain

in close vicinity of their desired levels. However, in practice, robust control design is

performed using an assumed viable model, which when plugged in to the high fidelity

model often yields undesirable behaviours. In the worst case this could lead to loss of

mission. There exists a need, therefore, for assessing and quantifying such undesirable

behaviour.
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This chapter presents an overview of robust performance analysis methods in the liter-

ature, with a focus on their application in aerospace V&V . The desirable qualities of

a good V&V technique are first listed in Section 2.1. Then, the concept of uncertainty

is formalised within the robust control context in Section 2.2. Section 2.3 presents

measures of performance, and Section 2.4 formalises the robust performance analysis

problem. The robust performance techniques in the literature, classified as analytical,

Monte Carlo-based, optimisation-based and probabilistic methods, are presented from

Section 2.5 onwards. This chapter establishes fundamental concepts (for example, those

of robust performance, worst case performance, and probabilistic robust performance)

that will be utilised in the rest of the thesis.

2.1 Background

Verification is defined in [16] as: “the process of determining that a model implemen-

tation accurately represents the developer’s conceptual description of the model and

the solution to the model,” while validation is “the process of determining the degree

to which a model is an accurate representation of the real world from the perspec-

tive of the intended uses of the model.” Within the aerospace industria, the process

of V&V is also known as clearance of flight control laws [14], which involves proving

that the designed control laws enable safe flight “under all parameter variability and

failure conditions.” Such a process may consist of several types of tests, such as robust-

ness analysis, worst-case analysis and analysis of statistical measures such as standard

deviation and risk [14], as shown in Figure 2.11. These concepts are discussed in this

chapter in some detail. Note that unlike aircraft controller clearance, an accurate phys-

ical testing environment cannot be created for space mission V&V . Zero gravity and

orbital dynamics must necessarily be mathematically modelled and their effects studied

1This figure is sourced from [17]
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  Figure 2.1: V&V processes for flight clearance. Source: NASA

through simulation. Several physical effects must be accounted for in V&V for space

control systems. A good technique for spacecraft V&V must ideally meet the following

guidelines [11]:

� it should account correctly for parameter uncertainties and unmodelled dynamics

(including couplings in position and attitude);

� it should, implicitly or explicitly, consider accurately the control objectives;

� it should consider the effects of fuel sloshing, flexible modes, bending modes and

other specific physical issues in the specific spacecraft or launcher;

� sensor errors such as noise level and bias should be considered; and

� it should consider disturbance torques, saturation and other effects in the actua-

tors, i.e., the reaction wheels and thrusters.

In addition, some desirable characteristics of V&V methods [18] are as below.

� Easily adaptable to various types of systems: it should ideally apply to nonlinear,

time-varying systems with various kinds of uncertainty descriptions, time delays,

varying initial conditions and other unmodelled effects.
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� Easy implementability within existing industry frameworks, with minimal engi-

neering effort before each analysis.

� High maturity of the available analysis tools: they should have demonstrated high

efficacy in different applications and, possibly, in other space missions. In other

words, the tools should have a high Technology Readiness Level (TRL) [19].

� High accuracy of the technique, with a quantifiable confidence level in the solution.

� Availability of software tools or packages for ease of implementation.

� Applicability to the control synthesis process: solutions obtained should provide

indications on tuning and improving the control design [20].

V&V analysis of the control system is performed at various steps in the design process.

Different models of the plant1 may be used at each step, and consequently the analysis

tools involved are different. In general, the industry considers the following phases of

the synthesis process for the control law analysis:

� Design stage analysis of the controller: Typically, control laws are designed us-

ing low order viable representations of the system. A design stage analysis is

generally conducted in a linear model environment with tools that are specific

to the synthesis domain. In such an environment, only those models relevant to

the control loop are present (without the guidance or navigation loops). At this

stage, the performance of the controller is usually validated against requirements

expressed in the frequency domain (e.g., stability and performance margins) [21].

� Full Engineering Simulator (FES) analysis: the FES for detailed performance

assessment contains high fidelity models. Such models can contain nonlinear dy-

namics, initial conditions and may be in the time domain. This analysis typically

1In this case the plant represents the spacecraft dynamics.
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takes place towards the end of the control development cycle. In this phase, the

control performances can be evaluated against specific mission requirements, de-

fined in the mission domain (e.g., fulfilment of approach corridor requirements or

fuel consumption criteria) [22].The navigation and guidance loops are typically

included at this stage of the analysis.

� Control performance assessment in a Processor-in-the-Loop environment: at this

stage, the criteria are specified in terms of mission completeness, and the fo-

cus is placed on the evaluation of real-time implementation and integrity of the

algorithms on a specific hardware platform. Additional performance indicators

related to CPU load and algorithm footprint are measured in this phase [9].

At every phase of the design process the interest is in determining both whether the

closed-loop control system is stable and whether it fulfils specific performance crite-

ria. Additionally, it is important to assess whether these characteristics are achieved

both for the nominal case and in cases where the plant deviates from the nominal

case inside the allowed (expected) boundaries. Figure 2.2 shows an illustration of a

hypothetical system’s response under uncertainty. The black curve shows the nominal

model response, i.e., with no uncertainties included. In reality, due to the presence

of uncertainty in the plant, the responses lie within the envelope represented by the

green dashed curves. The worst case performance is often far worse in the presence of

uncertainty, and must be studied carefully.

It must be pointed out that in the wider V&V literature, considerations of uncertainty

are primarily included during validation [16], while verification deals with a conceptual

model reminiscent of the nominal model. However, in aerospace systems, uncertainty

is of importance in both verification and validation. The concept of robustness is there-

fore at the core of modern flight control analysis (and indeed, synthesis) to guarantee
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Figure 2.2: Nominal system response and uncertain system response envelopes

both safety and expected performance under all modelled uncertainty [23]. Such re-

quirements are captured by the following properties of a closed-loop control system:

Nominal Stability (NS), Robust Stability (RS), Nominal Performance (NP) and Ro-

bust Performance (RP).

These notions of robustness are elucidated in [15]. The discussion in this thesis is

primarily focused on nominal and robust performance, and excludes nominal and robust

stability for the following reasons:

� Nominal stability is straightforward to determine for the class of plant dynamics

considered in this thesis, and

� Performance degradation occurs long before the onset of instability in most cases,

as stated in [24].
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Figure 2.3: A practical control system representation

2.2 Representing Uncertainty

Uncertainty is at the heart of robustness concepts, and has been researched exten-

sively [15][24]. As stated earlier, the environment of space inherently contains several

uncertainties, e.g., in the form of disturbance forces and torques. In addition, the math-

ematical modelling process introduces uncertainty, for example, when linearisation is

carried out, or when couplings or higher order effects are neglected. Further uncer-

tainties arise due to physical effects too complex to model completely, such as effects

of slosh. Additionally, there exist quantities, such as sensor errors, that are unknown

or immeasurable. All of these must be carefully accounted for during analysis in or-

der to gain insights into realistic performance of the control system. Such a control

system representation, accounting for uncertainty, external disturbances and noise, is

illustrated in Figure 2.3.

Uncertainty is sometimes classified as epistemic and aleatoric [25][26]. Epistemic un-
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certainty is systematic, or knowledge uncertainty, and describes parameters that have

precise values but which are unknown at the time of design. These may or may not

be known with precision on launch day. Examples of such parameters are drag coeffi-

cient or engine efficiency. Aleatoric uncertainty is statistical or luck uncertainty, and

describes parameters that have unavoidable stochastic variability, such as wind gust.

It is important to account for both types of uncertainty in the design and analysis pro-

cess. It is common to lump both types of uncertainty together; however, it may give

rise to overly pessimistic or conservative results, and thus may not be an ideal strategy

[26]. A good approach is, therefore, to attempt to reduce all epistemic uncertainties to

aleatoric uncertainties via rigorous modelling efforts. A third type of uncertainty, error,

is sometimes distinguished, which accounts for numerical effects such as rounding-off

[27]. All of these may be informally called known unknowns. There are also ”unknown

unknowns”, i.e., factors not accounted for because they are neither articulated not ac-

cessible [28].

Within the robust control community, uncertainty is classified into structured and un-

structured uncertainty [15]. Unstructured uncertainty may include perturbations and

uncertainties in different parts of the system. These can be lumped together and ex-

pressed as transfer functions or weights included in the block diagram during analysis.

They often consist of effects in the high-frequency region. Unstructured uncertainty is

also classified as additive and multiplicative [24]. Additive uncertainty includes addi-

tive plant errors, neglected high-frequency effects and uncertain right half plane zeros.

Multiplicative uncertainty includes sensor and actuator errors. Since unstructured un-

certainties may be included as weights, they can be operated on using classical control

methods. Unstructured uncertainty was widely used to represent all model uncertainty

before the development of robust control theory [29], but was found to be insufficient

to account for all the effects necessary for modern control methods.
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Thus, an important class of uncertainty, i.e., parametric uncertainty emerged. Plant

perturbations may be considered as varying within a particular range of values (known

or measurable), i.e., they may be represented as uncertain parameters [30]. Such un-

certainty is consequently known as parametric uncertainty. When such uncertain pa-

rameters are collected from over the entire system and arranged together, they are

observed to have structure [31]. When such uncertainties are analysed using tradi-

tional methods, they yield pessimistic results which exceed their true effects on the

plant. Therefore, it is desirable to leverage the structure. This is done using the linear

fractional transformation-based machinery and the so-called structured singular value

[15], which are formalised in section 2.5. The studies in this thesis, unless stated oth-

erwise, deal with parametric uncertainties, and the term uncertainty is understood to

imply parametric uncertainty.

The modelling of uncertain parameters is now presented. Suppose an uncertainty (say,

in the mass of spacecraft) is represented by δj for some index j, and is known to vary

between [δjmin , δjmax ]. Then, assuming the uncertainty is symmetric [32], its nominal

value is δj0 =
δjmin+δjmax

2 , and its range is rj = 1
2(δjmax−δjmin). The uncertainty is then

represented as δj = δj0 +rjdj , where dj represents a random parameter varying in [-1,1].

k uncertain parameters are represented together in the form of an uncertainty vector

δ = [δ1, ..., δj , ...δk]
T . Formally, then, uncertainties are represented as δ ∈ D ⊂ Rk,

where D is the uncertainty domain bounded1 in [-1,1].

Before proceeding to a discussion of performance analysis techniques in the literature,

the concept of performance is formalised in the following section.

1Uncertainties are normalised to lie in [-1,1] in many applications [33]. This thesis adheres to the
same convention.
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2.3 Performance Functions for Robust Control Analysis

In order for robustness analysis to be carried out, the stability and performance criteria

must be suitably expressed. The performance function is defined for this purpose. For a

closed loop uncertain system, the performance varies as the uncertain parameters vary.

Recall that the uncertainties are δ ∈ D ⊂ Rk. Then the performance is expressed as a

function J (δ) : D→ R. J(δ) is also known as the objective function, the cost function,

or simply as the performance. The performance function is chosen by the engineer, and

may encapsulate different measures of stability or performance. Performance in the

classical control system context usually includes reference command tracking, distur-

bance rejection and noise rejection [15]. Various measures of robust performance exist,

such as:

H∞ norm: The H∞ norm is a widely used measure, given by J(δ) = ‖Fl‖∞, where Fl

is the lower linear fractional transformation defined in the following section. In single-

input single-output (SISO) systems, the H∞ norm coincides with the peak of the Bode

plot magnitude of the transfer function. In multiple-input multiple-output (MIMO)

systems, it is a more general measure that indicates the maximum energy gain of a

system from U to Y [34].

H2 norm: The H2 norm represents the average power of steady state output when

the input is white noise [35]. It is therefore a good representation of the impact of

disturbances on the system gain.

Sensitivity and complementary sensitivity functions: The sensitivity function

represents the transfer function from the disturbance to output, while the complemen-

tary sensitivity function is the transfer function from the noise signal to the output
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[15]. They are, respectively, indicators of disturbance rejection and reference tracking

capabilities. Each of these may be measured by their gains in SISO systems, or singular

values in MIMO systems, e.g., J(δ) = S̄v(S) where S represents the sensitivity function.

Time domain measures: These measures are specified in terms of the trajectory,

and may depend on the problem under consideration [36]. Examples include terminal

velocity, terminal position error and angle of attack.

Stability: Measures of stability are expressed in terms of the stability radius, or in

terms of the gain and phase margin of the system [35]. Note that stability measures

are included here for completeness, but are not utilised in this thesis.

2.4 Problem Formulation

Suppose a system’s dynamical behaviour is represented by the following set of differ-

ential equations:

˙X(t) = F (X(t), U(t)) (2.1)

Y (t) = H (X(t), U(t)) (2.2)

where X ∈ Rn are the states, U ∈ Rm are the inputs, and Y ∈ Rq are the outputs.

The continuous time functions F and H may be linear or non-linear. The effects of

uncertainty on the plant’s behaviour is included in the form of uncertain parameters

as follows:

˙X(t) = F (X(t), U(t), δ(t))

Y (t) = H (X(t), U(t), δ(t)) , δ ∈ D,∀t (2.3)
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The plant (2.3) is said to be robust if ∀δ ∈ D, the plant’s stability and performance

characteristics remain within specified acceptable limits.

Various approaches exist to determine whether plants are robust; some will be dis-

cussed in this chapter. Performance analysis approaches existing in the literature may

be broadly classified as Analytical, Monte Carlo based, Optimisation-based and Prob-

abilistic techniques.

2.5 Analytical Techniques

Analytical techniques are a powerful class of techniques that have a strong theoretical

basis in linear control theory. The simplest analysis is typically one of assessing the

gain and phase margins [37]. These classical metrics are implemented in industry to

gain insight into the system in initial phases of design and analysis [38]. Such metrics

are straightforward for SISO LTI systems, and are implemented channel-by-channel in

MIMO systems.

Another approach is the grid point analysis method, in which the model (linear or non-

linear) is analysed at a number of grid points of the operating region. The stability and

performance measures (such as gain and phase margins) are assessed at every grid point

by locally linearising the model about an equilibrium point. This technique extends

linear analysis methods to nonlinear models, and thus finds application in the aerospace

industry at different stages in the design and analysis cycle. However, it suffers from

some drawbacks. Firstly, the reliability of results from this method heavily depends on

the engineer’s familiarity with the model and the reasoning behind selecting the grid

points. Secondly, there is no guarantee that the worst-case stability or performance

value is obtained since the process occurs on a discrete domain. A finer grid increases
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the confidence in the results. However, this would be at the cost of increased compu-

tational load, while there is still no true guarantee that the result is indeed the worst

case. Further, additional errors are introduced by the process of linearisation.

The above methods, based on classical control and modern control theory, do not by

design include the effect of uncertainty. Historically, uncertainty was included as small

perturbations in the form of weighting matrices or by assuming a white noise input [23].

As a result, a systematic understanding of how uncertainty impacted a controller’s per-

formance was lacking. To overcome these challenges, robust control techniques were

developed in the 1980s and 1990s, with uncertainty occupying a central role in synthesis

and analysis [39]. These techniques, like the gain and phase margins, are predominantly

frequency-domain based; however, unlike their classical control predecessors, they are

well-suited for multivariable system analysis. Such techniques, however, impose re-

quirements on how the model is formulated, however. The model is required to be in

the form of a Linear Fractional Transformation (LFT). This modelling framework is

first introduced, followed by a discussion on the analytical techniques.

2.5.1 LFT Modelling

LFT is a modelling framework associated with modern robust control theory [40].

Nearly all robust control synthesis methods work with LFT models. The primary

role of LFT models is in modelling uncertainty in control systems. For a linear time

invariant (LTI) system, the LFT model of a control system may be arrived at by sep-

arating into a purely uncertain block ∆ and a purely certain block M — a process

known as “pulling out” the uncertainties [24] — and arranging as in Figure 2.4. The

LFT modelling framework has certain benefits: it facilitates manipulation using state-

space like machinery, using constant matrix manipulation. In addition, the effect of

uncertainty on the plant may be explicitly expressed and studied. A useful property is
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Figure 2.4: Control system representation with uncertainties lumped and pulled out

that any interconnection of LFTs is also an LFT [15].

Consider an LTI system expressed in the state space formulation, i.e.:

Ẋ = AX +BU

Y = CX +DU (2.4)

where X ∈ Rn are the states, Y ∈ Rq are the outputs and U ∈ Rm are the controls.

Adhering to standard control theory notation, A is the system matrix, B the input

matrix, C the output matrix and D the feed-through matrix, with each matrix being

of appropriate dimension.

In equations (2.4), Y represents the extraneous output (measurement) and U represents

the extraneous input (such as reference signals and disturbance signals). In addition,

there exist internal inputs W and internal outputs Z that attain significance in the

presence of uncertainty. These appear in the LFT representation, after uncertainties

are lumped together and pulled out using proper algebraic manipulations. They are

related as W = ∆Z. When ∆ is diagonal, W1 = δ1Z1, W2 = δ2Z2, and so on.
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Equations (2.4) may be rewritten including these internal inputs and outputs by par-

titioning the elements of the A,B,C,D matrices depending on how they are affected

by the various inputs and outputs, as follows:

Ẋ = AX +B1W +B2U

Z = C1X +D11W +D12U

Y = C2X +D21W +D22U (2.5)

Equations (2.5) may be rewritten by separating the components of respective inputs

and outputs in the following way:

Z
Y

 =

 M11 M12

M21 M22


W
U

 (2.6)

where M11 =

A B1

C1 D11

, and represents the effects of W on Z, M12 =

 B2

D12

, and

represents the effects of U on Z. M21 =

[
B2 D12

]
, which represents how W impacts

Y , and M22 = D22, which represents how U impacts Y , i.e., similar to the nomi-

nal case. M22 represents a nominal mapping which is perturbed by ∆, while M11, M12

and M21 represent a prior knowledge of how ∆ affects M , where M =

 M11 M12

M21 M22

1.

M is known as the coefficient matrix, and, together with ∆, forms an LFT representa-

tion. Notice that M is entirely certain, while ∆ is the uncertain component. Observe

also that the dimensions of W and Z depend on the dimensions of M11 and M12. LFTs

1Note that the partitioned matrix notation is left ambiguous in the literature [12], and may refer to

a partitioned transfer matrix (as with M in this case), or to state space matrices as

[
A B

C D

]
. Both

meanings are used in this thesis, and it is assumed that the context makes the usage clear.
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Figure 2.5: Upper and lower LFT formulations

are classified depending on their structure as upper LFTs (Fu), such as in Figure 2.5a

or lower LFTs (Fl), such as in Figure 2.5b. Their mathematical expressions, i.e., the

transfer function from W to Z, are as follows:

Fu(M,∆u) = M22 +M21∆u(I −M11∆u)−1M12 (2.7)

Fl(M,∆l) = M11 +M12∆l(I −M22∆l)
−1M21 (2.8)

provided that the inverse terms (I − M11∆u)−1 and (I − M22∆l)
−1 exist. Such a

formulation explicitly gives an idea of the effects of ∆u (or ∆l) on M . Figures 2.5a and

2.5b show the upper LFT and lower LFT interconnections respectively. Further, note

that Fu(Nu,∆u) = Fl(M,∆l) with Nu =

M22 M21

M12 M11

.

If it is assumed that the uncertain parameters do not interact with each other, as is

often the case [30], ∆u (or ∆l) can have a diagonal or block-diagonal structure. A

block-diagonal structure occurs when one of the uncertainties, say δj , occurs more than

once in the ∆ block. If δj occurs twice, for example, the contribution of δj in ∆ is δjI2,

where I2 is the identity matrix with 2 rows and 2 columns. The number of occurrences

of an uncertainty depends on the complexity of the problem; it also depends on the

modelling technique used. For large complicated systems, it is possible to have a non-

minimal representation, i.e., one with more than the required number of occurrences

of uncertainty. In such instances, minimal representations must be found, for which

24



techniques exist [41]. Non-minimal representations of LFTs add to the complexity of

robustness analysis problems [42].

Building on the concepts of structured and unstructured uncertainty in section 2.2, if

∆u (or ∆l) has a diagonal or block-diagonal structure, it is called structured uncertainty.

It takes this form in the case of purely parametric uncertainty. Structured uncertainty

mainly includes physical parameters varying between bounds (usually known or easily

estimated). The variation of these uncertainties follow a distribution, typically a uni-

form or normal distribution. Structured uncertainty may include interval, ellipsoid or

diamond uncertainties [43]. In [29], the author points out that the structure of ∆u de-

pends on the performance objective and the uncertainty present in the system. Defining

the structure consists of specifying the number of uncertainty blocks, the type of each

block and the dimensions of each. If ∆u is a full matrix, it constitutes unstructured

uncertainty, or non-parametric uncertainty [11]. It can include:

� unmodelled dynamics,

� truncated high-frequency modes,

� nonlinearities such as delay, saturation and rate limits,

� initial values, and,

� effects of linearisation and time variation.

Having discussed the LFT modelling framework, some analytical techniques are now

introduced.
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2.5.2 Small Gain Theorem

The small gain theorem [24] states that for ‖∆u‖∞ < 1, and given that M is stable,

the M −∆u system is robustly stable if

S̄v(∆u(s)) <
1

S̄v(M11(s))
(2.9)

where S̄v represents the maximum singular value. For proof and technical details, an

interested reader may refer [24]. The small gain theorem may be understood from the

upper LFT representation in Equation (2.7). Since M is stable1, it follows that the

partitions M22, M12 and M21 are stable. Since every term other than (I −M11∆)−1 is

stable [44], the transfer function may be said to be stable if (I−M11∆u)−1 is also stable.

(I −M11∆u)−1 becomes unstable when M11∆u = I. It follows that the magnitude of

∆u must be smaller than the magnitude of M11, which is what is expressed in Equation

(2.9), since singular values are good measures of MIMO plant stability [31]. However,

this criterion is conservative in the structured case (with many zeroes) [44]. Therefore,

the concept of structured singular value (S.S.V.) is utilised. S.S.V was first introduced

by Doyle in a seminal paper [31]. It provides a framework for both robust control

analysis and synthesis.

2.5.3 µ-analysis

Structured uncertainty involves a diagonal or block-diagonal uncertainty matrix ∆u.

The subscript for upper LFT block are now dropped for readability. Consider a diagonal

1Robustness analysis is not carried out until nominal stability is first established
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∆ matrix:

∆(s) =



δ1

. . .

δj
. . .

δk


(2.10)

with ∆ ∈ D ⊂ Rk×k Then the structured singular value µ1 is defined as follows:

µ(M) =
1

min{S̄v(∆) : det(I −M∆) = 0}
(2.11)

Now, scaling the ∆ block to make S̄v(∆) ≤ 1, we find that µ(M) must be < 1 ∀ ω.

This provides a criterion for stability and performance. The measure µ(M) may intu-

itively be understood as the inverse of the smallest norm of the perturbation matrix ∆

that destabilizes the M −∆ system. The structured singular value may be seen as a

generalization of the maximum singular value. Indeed, it may be observed that µ re-

duces to S̄v in the presence of a single uncertainty. The sufficient condition for nominal

stability (NS) is S̄v(M11) ≤ 1∀ω. Nominal performance is guaranteed iff S̄v(M22) < 1

∀ ω. Robust stability is guaranteed iff µ(M11) < 1∀ ω. Theoretical development of µ

is well-documented in the literature [31],[45],[46]. A detailed treatment of µ-analysis

along with a historical perspective is presented in [29].

The robust performance (RP) problem is usually solved by reformulating as an RS

problem. The solution is then found by introducing a fictitious uncertainty block ∆p,

representing the robust performance criterion, and which serves to interconnect M11 to

the full plant. The fictitious uncertainty block ∆p and the existing structured uncer-

1Note that the structured singular value is denoted as µ, in a different style than the standard
notation, to distinguish it from the mean µ in probability based techniques discussed later.
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tainty block may be combined using LFT interconnections to form a new uncertainty

block ∆′. Then, the robust performance criterion is µ∆′ < 1 ∀ ω [37].

Solving for µ is a difficult problem; in fact, it belongs to a class of problems whose com-

putational complexity is NP-hard (nondeterministic polynomial time) [47]. It has been

found that it is intractable to calculate µ exactly in large industrial systems with several

uncertainties [48]. Thus, the solution is approximated by finding the upper and lower

bounds for µ. In this case, the upper bound of µ gives the sufficient condition for ro-

bust performance, while its lower bound provides the sufficient condition for instability.

The computational complexity of determining these bounds depends on the size of ∆,

and whether ∆ is real, complex or mixed1. Upper bound algorithms are finite frequency

grid-based. Lower bound computation, in general, is harder. For purely complex or

mixed real and complex ∆, polynomial time algorithms exist, such as power iteration

[29]. For purely real systems, calculation of the lower bound of µ is complicated. Sev-

eral algorithms [45] have been proposed, including the gain method, which has better

convergence properties than power iteration. However, the computation cost of the

gain method grows exponentially with dimension of ∆, and so this method is limited

to systems with low dimensional perturbation matrix.

One way to circumvent the issue is to add a small complex value (of the order 10−3 or

smaller) to each uncertainty. This aids the algorithm in converging to a solution. A

caveat is that the resulting solution is usually conservative. Matlab’s Robust Control

Toolbox has a good µ implementation for both robuststab and robustperf. The

computation is done by gridding in the frequency-domain, and determining whether

1Concepts of real and complex uncertainty are of relevance in the problem space, i.e., the when
coefficients of the differential equation describing a system’s dynamics are uncertain. Such coefficients
may be real, complex or mixed [49]
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pole migration occurs across the stability boundary as uncertainty varies[50]. The

toolbox incorporates extensive research on robust control techniques from the literature.

2.5.4 Nonlinear analytical techniques

The above techniques are principally based on linear or linearised systems. Recent

research on nonlinear system analysis has led to the development of techniques with

some capabilities to analyse nonlinear systems. Certain classes of nonlinearities such as

saturation can be incorporated into the LFT and analysed [36]. In such cases methods

such as the Popov criterion [51] and multiplier methods may be employed. Other use-

ful extensions which can handle certain types of nonlinear dynamics have also recently

been developed; this include the Integral Quadratic Constraints (IQCs) [36] and Sum-

Of-Squares programming [52]. In addition, Lyapunov stability theory based methods

such as LMI are also in use [53].

The IQC method is a unifying framework for system analysis that generalises the small

gain theorem and passivity theorem and other results from robust control. This analy-

sis method allows a designer to handle different kinds of uncertainties, time invariant,

time varying, delay and non-linear uncertainties simultaneously. The theory takes into

account time varying uncertainties as well as their variation rates, leading to greater ac-

curacy. The system to be studied is converted into a standard LFT form by pulling out

the uncertainties, which then can be described by IQCs. The multiplier/IQC frame-

work is based on a special modelling method where the analysed system is written

as the LTI interconnection of sub-systems of different natures: i.e, sub-systems that

are time-varying, non-linear, uncertain and those with time delays. Each subsystem is

characterised by a set of multipliers or IQCs. In [36], the IQC-based analysis of NASA’s

HL20 re-entry is detailed. The study accounted for time-varying uncertainties in aero-

dynamic coefficients, apart from time-invarient uncertainties in the centre of gravity,
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mass and inertia. It is reported that IQC analysis is an effective analysis method. An

increase in computational complexity is seen for more complex problems. The authors

point out the need for further research in LFT model reduction, efficient LMI solvers

and computationally light IQC multipliers. Commercial software for IQC-based anal-

ysis is the IQC-β toolbox. The Integral Quadratic Separation (IQS) builds on IQC

theory and converts the constraints into “separators”, and is useful in descriptor sys-

tems.

Sum of Squares (SOS) techniques study the stability or performance of a dynamical

system represented in a polynomial form. The method falls in a class of semi-definite

programming problems which involves solving (linear convex) optimisation problems in

the cone of positive semidefinite matrices. SOS programming can be used to guarantee

stability and performance of control systems including non-linear systems, continu-

ous/discrete hybrid systems, and time delay systems. Polynomial Lyapunov functions,

including those of degrees higher than a quadratic Lyapunov function, are computed

and tagged as certificates associated with the dynamical system. Hence, local stabil-

ity and performance can be ensured in polynomial sub-level sets of the state space.

The robustness analysis of an FA-18 model with a non-linear Dynamic Inversion based

controller is conducted using SOS in [52]. SOS programmes are formulated for differ-

ent characteristics, such as stability, input-output properties and system energy. The

analysis effectively shows that as the uncertainty in the model increases, performance

degrades.

Both robust stability and robust performance analyses can be performed via Linear

Matrix Inequalities (LMI)-based methods. These methods naturally arise from the

application of Lyapunov stability theory. Different approaches exist to define LMI-

based stability and performance tests, which can be applied to uncertain systems:
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� The use of one Lyapunov function for all systems belonging to the uncertain set:

In most cases, the Lyapunov functions employed within this approach are re-

stricted to those that can be expressed by quadratic forms of the state vectors

of specific polynomial class as well polyhedral. Nevertheless, restricting the tests

to quadratic stability implies imposing conservative conditions for robust stabili-

ty/performance analysis.

� Using a parameterized family of Lyapunov functions: If parametric uncertainty

is present in the system, these methods allow employing of parameter-dependent

Lyapunov functions to assess robust stability and performance so that accurate

analysis is possible. Nevertheless, the structure of the parameterization needs to

be such that the resulting conditions are LMI representable.

A common feature of all of the above methods is that certain demands are made on

the closed-loop simulation model under investigation, e.g., simplified versions of the

full simulation model must be developed in order to generate LFT-based models for

IQCs, and polynomial representations for the SOS methodology. These methods are

still preliminary in terms of their application to industry models, although there is

significant research interest in developing them further. However, the major drawbacks

of these methods are the computational feasibility and the modelling effort required in

formulating LFTs (for IQC, SOS and Popov based methods). The next section discusses

Monte Carlo techniques, which are popular in the industry for V&V purposes primarily

because they do not impose requirements on the model structure.

2.6 Monte Carlo Techniques

Monte Carlo methods have been used in various fields for more than a century. In

the scientific literature, the seminal work is the 1949 paper by Metropolis and Ulam

[54]. Monte Carlo-based statistical techniques are the most widely used techniques in
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aerospace industries for verification and validation. They have several advantages: they

can be applied to the full, high-fidelity, nonlinear model, and they can take into account

uncertainties of all types i.e., initial conditions, time-varying, time delays, and so on.

They do not impose any constraints on the structure of the model (or the uncertainty

block). They require very little effort on the part of the engineer analysing the control

design.

Various statistical approaches exist to determine the worst case performance and the

associated combination of uncertain parameters. The gridding technique or vertex

method [14] is one of the primitive techniques, and only evaluates the cost function at

the extremes of the parameter space. This approach relies on the principle that as the

uncertain parameter values increase in magnitude, performance necessarily degrades.

Even presently, the state-of-practice for some some high-fidelity industry analysis is Ver-

tex analysis [55][56]. Vertex approaches can work capably if the performance criterion

and uncertain parameters are related linearly, which is impractical in large nonlinear

systems with complicated performance function spaces. In vertex analysis, each un-

certainty can take values of ±1, and the cost is deterministically computed at every

vertex case, and the worst case found from within the obtained performances. The

computational complexity increases greatly as the number of parameters increase, i.e.

as 2k, and so the method becomes intractable for models where k is large. A more

serious issue is that there is no guarantee that the extremes of the parameters cause

the worst case.

It is often the case that poor performance occurs inside the parameter space, not at the

extremes. Further, [11]. Thus, a widely implemented method is to randomly sample

the parameter space, and to evaluate the cost function at each of these samples. The

cost function values are then analysed, and the worst case, mean and standard devia-
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Figure 2.6: Schematic showing the Monte Carlo principle

tion of the costs computed. This is the basic idea of Monte Carlo-based performance

analysis.

Figure 2.6 is a schematic of randomised Monte Carlo methods. Each uncertain param-

eter δj is assumed to be distributed according to a probability distribution. This could

be, for example, a normal distribution or a uniform distribution. In the Monte Carlo

method, random samples are drawn of each uncertain parameter from its distribution,

which are then combined to form one uncertain parameter vector. Each combination of

these samples is input into the plant, which is simulated with these uncertain vectors.

A cost function is calculated at the end of the simulation and stored. This process may

be carried out a number of times, say Ncmc. At the end of Ncmc evaluations, the cost

function values are analysed. The worst-case cost may be found from these values. In

addition, the empirical mean and standard deviation of these observed cost function
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values may be found. This gives an empirical cost function distribution, which may be

normal if the central limit theorem [57] is satisfied for the plant.

Monte Carlo is based on the weak and strong laws of large numbers. Formally, the prin-

ciple is to generate Ncmc samples from the set D, i.e. δ1, ...δi, ...δNcmc according to their

density function, say δ∼fδ(δ), where each δi is called a multi-sample of cardinality Ncmc.

Next, J1 = J(δ1), ..., Ji = J(δ2), ...JNcmc = J(δNcmc) are evaluated. The worst case is

given by the maximum value of performance, i.e. J∗. It is possible to find the empiri-

cal mean performance EJmean =

∑Ncmc
i=1 Ji
Ncmc

and the empirical standard deviation. It is

also possible to visualise the performance using various data visualisation tools. Monte

Carlo methods are said to break the curse of dimensionality [58], since the number of

samples necessary does not depend on the number of uncertain parameters.

Despite this advantage, a large number of samples — sometimes up to hundreds of

thousands of samples [59] — may be necessary to reach a high degree of statistical con-

fidence in the results. The computational effort increases rapidly as the search space,

desired confidence and accuracy levels increase. This can severely limit the reliability

of such an analysis. In addition, there is no guarantee that the worst case solution

has indeed been found, as the solution may not lie in the set of samples used. For

strong statistical guarantees that a true worst case has been found, a large number of

simulations is required. This is often not feasible within the computational constraints

currently faced by the industry. With high dimensional and complex nonlinear models,

it becomes expensive to conduct evaluations for tens of thousands of combinations.

In [60], MC is applied to simulate a reusable launch vehicle in the terminal area energy-

management mode. The run consists of 22 parameters and 1000 evaluations. The

34



analysis identifies that the mission success rate is 88 percent. In [59], Monte Carlo is

applied to model spacecraft debris re-entry into Earth’s atmosphere. The Monte-Carlo

method is used in conjunction with the Taguchi method [61] to reduce the size of the

parameters. The Taguchi method is a statistical strategy to determine parameters that

have the biggest impact on the results, thereby reducing the computational load. The

study resulted in the development of the Calima tool to simulate space debris re-entry.

The tool accounts for 11 uniformly distributed uncertain parameters. The results are

obtained with 200,000 Monte-Carlo evaluations. It should be noted that several in-

dustrial analysis tools often carry out Monte-Carlo analysis at this scale, which is the

reason that V&V is considered to be an extremely expensive step.

[62] details the analysis of the X-43A flight, which was the first unmanned vehicle to

fly at hypersonic speeds with a scramjet engine. Several performance metrics, such as

acceleration, Mach number and dynamic pressure are analysed. In addition, scramjet

engine thrust and moments are analysed. 286 uncertain parameters uniformly dis-

tributed within the modelled bounds are considered. Stress testing includes simulating

beyond the modelled uncertainty bounds, i.e. it involves the so-called unknown un-

knowns [28]. The objective is to assess vehicle stability in the presence of modelled

uncertainties. Several thousand MC runs are performed, with parameters varied inde-

pendently of each other. Hardware in loop tests are carried out for validation. It is

observed that MC works very well if the model is a good representation of the dynam-

ics, and if uncertainty bounds are modelled correctly. It is pointed out that MC cannot

handle unknown unknowns, i.e. unexpected events that are not modelled. The paper

also discusses the programming challenges faced in carrying out an analysis of the scale

of industry verification studies. Further examples of Monte Carlo-based performance

analysis are [63], the 6DOF METEOR re-entry (consists of 57 uncertainties, and carries

out 3500 simulations), and [64], which discusses the analysis of the Mars Lab entry,
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descent and landing performance.

It must be emphasised that the studies discussed here have arrived at excellent results;

however, the results have often come at the cost of high computational resource usage,

and heavy engineer involvement. Several improvements exist over classical randomised

Monte Carlo, such as Quasi Monte Carlo (Sobol, Halton, Faure and Lattices) [58] to

deterministically generate well-distributed points.

A widely used Quasi Monte Carlo method is Latin Hypercube Sampling (LHS), which

generates samples such that there is relatively good space filling. LHS ensures more

even coverage of the sampling space by first evenly partitioning the cumulative distri-

bution function curve, where the number of partitions equals the number of samples

required, say NLHS . Then, a sample is randomly selected from each partition of the

cumulative density function curve. There are several instances of this implementation

[65]. However, the quasi-random LHS samples need to be generated and stored prior

to the run, which may not be efficient when accounting for data storage and retrieval

considerations. The approach also suffers from the drawback of a lack of guarantee

that the solution indeed lies in the sampled regions (there exists a trade-off between

accuracy and grid size).

Recent research has also investigated the use of surrogate models in determining worst

case performance and risk [18]. In this approach, approximation models are computed,

which mimic the input-output behaviour of the simulation model. Modelling methods

such as Kriging method and multivariate adaptive regression splines may be used to

generate these surrogate models. Notably, the polynomial chaos method is used to

generate first- and second-order surrogate models in [18]. Such models are shown to be

significantly cheaper to evaluate, while also being fairly accurate. Monte Carlo simula-
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tions of these models can then be feasibly carried out. However, the study acknowledges

that higher order (such as third- and fourth- order) surrogate models, which provide

higher accuracy, are computationally challenging to generate.

A powerful class of Monte Carlo algorithms are Markov Chain Monte Carlo (MCMC),

which are widely used in Bayesian Inference of stochastic processes[66]. Such meth-

ods construct a Markov chain (leveraging the state transition matrix to model the

dependence of a random event to the previous random event), such that its equilibrium

probability distribution approximates the target distribution. Iterating over such a

Markov chain at equilibrium, say NMCMC times, can provide an accurate estimate of

probability. Several MCMC algorithms exist, such as the Gibbs sampler, the Metropo-

lis Hastings algorithm, and so on. However, arriving at a reliable approximation of a

Markov chain equilibrium distribution may take several passes of data, particularly in

high dimensional spaces. Further, being a Bayesian method, its performance relies on

the prior distribution specified.

The focus of the MC-based studies discussed in this chapter has primarily been worst-

case analysis, as well as empirical mean and standard deviation calculations. [26] gives

an excellent treatment of Monte Carlo approaches used in spacecraft system require-

ments verification and the considerations involved. The authors introduce order statis-

tics for interpreting the data, and the concepts of consumer risk (CR) and producer

risk (PR).

In the following section, powerful numerical optimisation approaches for V&V are

discussed, which overcome some of the drawbacks of MC.
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2.7 Optimisation-based Techniques

Optimisation algorithms intelligently search the parameter space to find an optimum.

As such, this makes them suitable for worst case analysis problems, with the verifi-

cation problem reformulated as an equivalent distance maximisation or minimisation

problem. Optimisation techniques have a long history in solving engineering problems,

and have been applied to myriad domains [67]. In analysis of flight control systems,

they have garnered interest in the last decade [14],[68],[69], [70], [71].

They have several advantages over traditional robustness analysis methods because

they do not require the plant model to be formulated in a specific way. They can carry

out analysis of systems that are linear or nonlinear, time independent or time-varying,

and with uncertainties belonging to several classes such as time delays, initial condi-

tion uncertainties, and so on. Optimisation algorithms have significant improvements

in computational load as compared to Monte Carlo methods [69]. In addition, they are

straightforward to implement, thus reducing engineering effort. In fact, optimisation

algorithms may be applied with little modification to the existing Monte Carlo analysis

framework.

The general structure of optimisation for WCA is shown in Figure 2.7. In order to

apply optimisation (or indeed, Monte Carlo) strategies, the performance criterion must

be reformulated as an objective function.

Optimisation algorithms are often classified as local optimisation and global optimisa-

tion methods. Local optimisation algorithms are effective within some feasible neigh-

bourhoods, particularly when there is a single optimum. They may consist of gradient-

based methods and non-gradient-based methods, however they necessarily make use of
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Figure 2.7: Schematic of optimisation-based worst-case analysis

knowledge about the parameter space, and solutions often depend on the initial condi-

tions. Local methods converge to the optimum solution quickly. Sequential Quadratic

Programming (SQP) is a highly effective local optimisation algorithm [11], which may

be seen as a generalisation of Newtons method for unconstrained optimisation. In the

SQP algorithm, the objective function is replaced by its quadratic approximation, and

the constraints are replaced by linear approximations. SQP algorithms are capable of

solving smooth and well-scaled non-linear optimisation problems when the functions

and gradients can be evaluated with high precision. If the local gradients are not avail-

able analytically, numerical approximations are computed; this might reduce speed and

accuracy, especially if the function evaluations are noisy. Matlab’s useful fmincon op-

timiser is an implementation of SQP. A drawback of such local methods is that they

may get stuck in a local optimum, particularly when they utilise a gradient to optimise.

Local optimisation algorithms are well suited to convex problems.

Global optimisation methods overcome the local optimum issue. They can find a global
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optimum over all feasible regions even in non-convex problems. They may be either de-

terministic or randomised. Deterministic optimisation methods systematically search

the parameter space and provide guarantees about the solution arrived at. Examples

are nonlinear programming and dividing rectangles (DIRECT). Randomised optimisa-

tion algorithms, on the other hand, rely on random samples of the parameters, and

provide the optima in probabilistic sense. Examples of these are: genetic algorithms,

differential evolution and simulated annealing.

Genetic Algorithms (GA) are stochastic search and optimisation algorithms, based on

the evolutionary principle of “survival of the fittest” in a population that has evolved

over a certain number of generations. A fitness function is defined to assign a per-

formance index to each candidate. In genetic search techniques, a randomly sourced

population of candidates undergoes a repetitive evolutionary process of reproduction

through selection for mating according to a fitness function, and recombination via

crossover with mutation. A complete repetitive sequence of these genetic operations is

called a generation. Genetic algorithms have been applied in flight control clearance

successfully in [69][72][18]

Although global optimisation methods are more capable than local methods, they often

come at the cost of increased computational load. Particularly in the case of determinis-

tic global methods, the computational resources required may be enormous. Stochastic

methods generally fare better, with far fewer function evaluations required for the so-

lution to be found. However, there are no formal convergence proofs1, although they

have been demonstrated to perform well in a wide variety of problems. The compu-

tational resources required, however, are higher for stochastic global methods than for

local methods.

1An exception is the simulated annealing technique, which is proved to converge to the optimum
at the limit [73].
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Hybrid optimisation techniques take advantage of the benefits of both global and local

optimisation methods. They incorporate a local search when the global algorithm fails

to bring an improvement over a certain (pre-selected) number of iterations. Some ex-

amples are hybrid GA, hybrid DE and hybrid DIRECT [18].

Optimisation algorithms are shown to be useful in aerospace control performance anal-

ysis, and a combination of techniques sometimes yields beneficial results [68]. Since

optimisation methods vary in their structure and implementation, they require consid-

erable engineering effort to implement in industry clearance problems. The WCAT-II

is a toolbox developed at the University of Exeter [18], consisting of a pool of optimi-

sation algorithms in a consistent framework well-suited for aerospace control system

analysis. It consists of local algorithms such as SQP, global algorithms such as DE,

GA and DIRECT, and their hybrid counterparts. It has been implemented in several

clearance problems [68],[74],[75]. The structure of WCAT-II is similar to the optimisa-

tion framework shown in Figure 2.7. Its benefits lie in addressing several performance

problems unique to aerospace flight clearance, while being versatile to deal with various

types of industry models.

In this work, the WCAT-II implementation of Differential Evolution is used in the

analysis. DE is discussed in the following section.

2.7.1 Differential Evolution

Differential Evolution (DE) is a global optimisation technique [76] belonging to the

class of evolutionary algorithms. It has been found to be very effective in arriving at

the global optimum in a wide range of fields — [77] provides an overview of its appli-
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cations. It has been used in flight control clearance and found to have a high efficacy.

It has been applied to high-fidelity real life missions and has been effective in comput-

ing instances of failure as well as worst-case scenarios. The DE search consists of the

following four steps: initialization, mutation, crossover and selection.

The scheme of DE used in this work is DE\rand\1\bin, which represents that the un-

certainty vector to be mutated is randomly chosen, and that a single difference vector

is used. A brief description of DE follows, and an interested reader is referred to [76]

for a detailed treatment.

Initialisation: This step generates an initial population with Np members. Each

member is a vector δ = [δ1, δ2, ..., δj ..., δk]
T . Each δi is generated in the following way:

δi = δL + δU + ψi
(
δU − δL

)
, i = 1, 2, ...Np (2.12)

where δU is the upper bound of the parameter, and δL is the lower bound. ψi is a

randomly generated vector with elements in [0,1]. It is noted that this scheme cor-

responds to sampling randomly from a uniform distribution. It is straightforward to

sample instead from any other distribution.

Mutation: In this step, a weighted difference between two randomly selected candi-

dates δr1 and δr2 is added to another randomly selected candidate δr3 to generate the

mutated vector. The difference is Dr12 = δr1 − δr2. If Cm is the mutation coefficient,

then the mutated vector is given by

δ̄′m = δr3 + CmDr12 (2.13)

Observe that the direction of the difference vector Dr12 indicates the current search di-
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rection, while Cm represents the step size. The mutation coefficient is chosen between

0 and 1.

Crossover: This step increases the diversity of the population. The mutated vector

δ̄′m and a chosen parent individual δm are mixed element-by-element to form the trial

vector δ′m, depending on a randomly generated crossover constant ψc.

Selection: The trial vector δ′m and parent vector δm are both used to evaluate the
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value of the cost function. The vector that gives a lower cost is selected to be part of

the new population.

Termination: The algorithm terminates after repeating the above four steps until

the terminating criterion. There are several strategies for selecting the terminating

criterion. An adaptive scheme is one where the algorithm terminates if there is no

improvement over a specified number of iterations. In a fixed scheme, the algorithm

terminates after a maximum number of allowed iterations.

A drawback of optimisation techniques is a lack of information about the probability

associated with the worst case. Often, the worst-case performance computed may be

conservative (due to conservative modelling of uncertainties), and not realistic practi-

cally. Having a knowledge of the probability or risk of the occurrence of worst case,

can provide insight into the performance and guide the designer as to whether tuning

or redesign of the control is necessary. The probabilistic techniques discussed in the

following section aim to compute the risk associated with degraded performance.

2.8 Probabilistic Techniques

In order to complement the above techniques, probabilistic techniques have been re-

searched in recent years. These techniques are centred around the notions of proba-

bilistic robustness [78]. The primary drivers are to quantify conservatism and to reduce

computational load. In addition, these techniques also benefit from being randomised,

and therefore do not impose constraints on the structure of the problem, and may

be readily implemented in existing industry frameworks (of Monte Carlo). These ap-

proaches seek to combine worst-case bounds with probabilistic information, so as to

overcome issues of conservatism associated with the H∞ design paradigm. In this way,
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both probabilistic and deterministic aspects of a system’s performance may be accessed.

Researchers argue that probabilistic methods of synthesis and analysis may lead to con-

trol designs that are safer than those designed using purely deterministic concepts [79].

The first ideas of probabilistic methods in control systems appear in a 1980 paper by

Stengel [80], which dealt with concepts of probability with regard to system stability.

Renewed interest in this direction has gathered in the last two decades [81] [82] [83][84].

There has been some research interest in the subject since then. Some probabilistic

analysis algorithms are: probabilistic µ-analysis, Monte Carlo-based analysis and safe

and unsafe regions[18]. Several algorithms have also been applied for probabilistic con-

trol design synthesis, but these are beyond the scope of this thesis.

In an early paper [81], the treatment primarily involves discussing the applicability of

statistical methods for robustness analysis, and discussion of the number of samples

necessary to generate accurate results. Two bounds are primarily identified for the

purpose. If ε and c are positive scalars representing the accuracy and confidence in the

solution respectively, the Bernoulli bound [81] gives the number of samples required to

achieve the solution to be:

NB ≥
1

4ε2c
, (2.14)

while the Chernoff bound [32] provides the following expression:

NCh ≥
log(2

c )

4ε2
(2.15)

In addition, a third bound called the worst-case bound proposed in [82] is useful.

Compared to the Bernoulli and Chernoff bounds, which deal with expectations, the
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worst-case bound is particularly useful in the estimation of extrema. The worst case

bound is given by:

Nwc ≥
log 1

c

log 1
1−ε

(2.16)

It is pointed out in [81] that the Chernoff bound outperforms the Bernoulli bound in

terms of the number of samples needed. The worst case bound outperforms both of

these by nearly three orders of magnitude. This indicates that the computational load

issue may not be as dire as previously thought, albeit still worthy of consideration. A

comparison of the three bounds is made with c = ε and is shown in Figure 2.10. In

addition, it is noted that the number of samples in all three cases is independent of

the type of distribution, the number of uncertain parameters, and the bounds on the

uncertain parameters. It only depends on the accuracy and confidence levels required.

Some researchers argue that for applying probabilistic methods to rare events, which

the worst case is expected to be, confidence and accuracy are not appropriate, and a

measure known as the relative error should be used instead [66]. This measure will be

utilised in later chapters of this thesis.

Several research studies have since been carried out on probabilistic robustness analysis

with applications to aerospace control systems. It is generally understood that while

there is tremendous benefit to their implementation, the development is still prelimi-

nary with much room for improvement. The book [58] gives an authoritative discussion

on probabilistic robustness analysis and related research directions. It considers prob-

abilistic robust analysis as well as design techniques. Some concepts introduced the

probabilistic counterparts of classical robustness measures, such as probabilistic robust

stability radius, worst-case, performance radius, probability degradation function, and
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safe regions.

The results are developed on the basis of the so-called “good set” BG and “bad set” BB,

which are subsets of the uncertainty domain BD. If the uncertainty set is δ ∈ D, the

performance function is J(δ) and a desired level of performance is γ, the probability of

achieving that level of performance is given by

p(γ) = P [J(δ) ≤ γ] (2.17)

The good set BG is the set of uncertain parameters that satisfy the performance criterion

J(δ) ≤ γ, and is formally defined as

BG = {δ|δ ∈ BD : J(δ) ≤ γ} (2.18)
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Figure 2.11: Good and bad sets

The bad set is complementary to the good set, i.e. it is the set of uncertain parameters

that do not satisfy the performance criterion, i.e.,

BD = {δ|δ ∈ BD : J(δ) > γ}, (2.19)

An example of the good and bad sets is shown in Figure 2.11. For robust performance

(or stability) to be guaranteed, BG = BD, and BB = Φ, where Φ represents the null set.

In the probabilistic sense, the criterion J(δ) ≤ γ is to be fulfilled with some probability

(or risk) p < pcritical. The probability of satisfaction is given in terms of the volumes

of the good and bad sets:

p =
V ol(BG)

V ol(BD)
(2.20)

In this context, the probabilistic worst case problem is written as follows: Determine

a performance γ̄ smaller than the worst case performance γ∗ with a small probability,

i.e., determine:

γ̄ ≤ γ∗ (2.21)

P [J(δ) ≤ γ̄] < pcritical (2.22)
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where pcritical is the acceptable risk threshold of the performance exceeding γ̄. In this

thesis, if a system satisfies the performance criterion in Equation (2.23), probabilistic

robust performance is said to be satisfied. Note that in this thesis, the convention

is that higher performance corresponds to poor performance, and so the performance

inequality is reversed. Additionally, the problem is stated in terms of the desired

performance γdes. Therefore, in this work, the probabilistic analysis problem is to

guarantee that:

P [J(δ) ≥ γdes] < pcritical. (2.23)

It is intuitive that satisfying deterministic robust performance guarantees that proba-

bilistic robust performance is also satisfied. However the inverse is not necessarily true.

Similar interpretations exist for other probabilistic robustness measures.

In [58], the authors caution against arbitrary selection of uncertain parameter probabil-

ity distributions. They demonstrate the issue using a truncated Gaussian distribution

with mean centred at 0, with two different standard deviations, σ = 0 and σ = ∞.

In the former case the distribution tends to an impulse function, while in the latter it

tends to a uniform distribution. Intermediate distributions may vary anywhere between

these extreme values, and therefore may not be meaningful. An interested reader is

referred to [58].

A recent paper [85] discusses the development of probabilistic gain or probabilistic µ

[84] as a method to carry out probabilistic robustness analysis. In the work, analytical

expressions for computing the upper and lower bounds on the cumulative distribution

function of the performance function are derived. The authors argue that although

probabilistic robustness analysis may incur extra computational cost, it provides valu-
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able information regarding the conservatism of worst case bounds, and thus must be

considered. The method developed is applied to NASA’s generic transport model with

both uniform and Gaussian distributions. The results provide convincing insights into

system performance. The analysis is carried out for both SISO and multivariable cases.

The studies on probabilistic µ have typically implemented Monte Carlo analysis [86],

while the need for an efficient algorithm to simulate the system, particularly in the tails

of the distributions, is acknowledged [85]. The studies also comment on the benefit of

probabilistic techniques to complement traditional worst case concepts to lower the

likelihood of missed detections.

Another study [87] considers the probabilistic robustness analysis of an F -16 fighter

plane, with either an LQR and a gsLQR controller. The authors discuss the concept

of “distributional robustness” as opposed to the classical notion of robustness [88],[32].

They discuss the need for probabilistic techniques as a way to deal with the non-linear

models and controllers of the F -16, as well as for time varying uncertainties. The

authors point out that probabilistic models are useful for carrying out analysis with-

out imposing structure in a model. Another work by the same team [89] incorporates

probabilistic methods in a robustness analysis of jump linear systems. They utilise the

Wasserstein distance as a means to compare the outputs of two models. The technique

is demonstrated on an inverted pendulum stochastic jump linear system. The Wasser-

stein distance is not straightforward to compute, however, and is yet to be tested on

high-fidelity systems. In addition, nonlinear models cannot be readily analysed using

the proposed method.

The studies discussed show the value of probabilistic robustness analysis in V&V . Such

methods have the ability to quantify the probability of occurrence of worst case, identify

problematic parameter regions, and relax conservative deterministic bounds. However,
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the research area has not attained maturity. The applications covered in this thesis are

high-fidelity industry systems as part of ongoing projects collaborating with industry

engineers. For this reason, it is important to provide “cookbook solutions” that do not

require further engineering effort before being implemented each time. The developed

techniques must fit into the existing frameworks (e.g. the Monte Carlo framework

currently used widely). It must, however, still be flexible enough to be applied to a

variety of plants and controllers, and take into account different types of uncertainties.

2.9 Conclusion

As a vital part of V&V activities, robust performance analysis methods play a crucial

role in the synthesis of spacecraft controllers. This chapter aims to form a foundation

upon which the rest of the thesis builds. It discusses some approaches to robust perfor-

mance analysis in the literature, from the classical analytical techniques to more recent

approaches such as statistical and optimisation-based approaches. It also explores the

recently developed probabilistic robustness analysis methods. This brief survey of the

literature clearly demonstrates a need for performance analysis approaches that are

accurate, efficient and implementable within existing V&V paradigms. Specifically,

the importance of probabilistic measures of worst case performance is discussed. This

thesis offers a methodology for carrying out probabilistic robustness analysis, i.e. using

cross-entropy methods, which is detailed in the next chapter.
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Chapter 3

A Cross Entropy-based

Simulation Technique for

Probabilistic Analysis

3.1 Introduction

Previous chapters have established the importance of assigning probability information

to robust performance analysis results. This chapter develops a methodology for es-

timating such probabilities. In this chapter, the cross entropy technique for efficient

estimation of the probability of rare events is described. An algorithm is developed

to characterise the degradation of the probability of a performance metric of robust

controller exceeding its desired performance threshold level, i.e., to characterise the

probability profile of the system.

The cross entropy based simulation method was first introduced in [90] to compute

the probabilities of rare events in complicated stochastic networks. The algorithm has

since evolved to become the basis of a powerful set of techniques such as combinatorial
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optimisation [91], continuous multi-extremal optimisation [92] and of course, rare event

simulation [93]. It has since been applied to several problems in varied fields such as

network reliability [94], path planning [95], and power systems [96].

The CE algorithm itself is a variance minimising importance sampling method. It

adaptively reduces the “distance” between the parameter distribution and an ideal dis-

tribution. The distance measure is the Kullback-Leibler divergence [97], and is also

called the cross entropy between two distributions.

This chapter describes the technique in some detail. First, some preliminary concepts

of probability are reviewed. Then, the problem formulation is presented. The proba-

bility profile is presented and some of its properties are discussed. The cross entropy

methodology is presented, followed by the algorithm. The algorithm used to generate

the probability profile is then presented.

3.2 Preliminary Concepts

Some fundamental concepts of probability theory are reviewed in this section. Proba-

bility is, in general, expressed in the context of a random experiment, which is an

experiment whose outcomes can differ even though it is performed identically every

time [98]. An event constitutes a particular subset of the set of all possible outcomes

of a random experiment. To an event, a probability of occurrence may be associated.

A rare event is an event which has a low1 probability of occurrence, (10−6 or lower).

A random variable is a measurement (or observation) of a random experiment [13].

In [100] a random variable is defined somewhat intuitively as a variable that “takes

1The exact probability for an event to be defined as rare is not consistent in the literature, with
some researchers [66] stating it is less than 10−9, and some others stating a threshold of 10−3 [99].
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on values by chance”. Random variables are usually denoted by capital letters in the

literature, say X, while their measurements are represented by the corresponding lower

case letter x. However, since this thesis seeks to utilise probability theory concepts

within the robust control analysis paradigm, this standard notation is modified while

respecting the underlying meanings. The notation is introduced in the following section.

3.2.1 Incorporating Random Variables in the Control Analysis Frame-

work

This work treats uncertain parameters of a model as random variables. These random

variables are denoted by δ, while their observations are denoted by d. δ represents the

uncertain parameter vector consisting of the k uncertain parameters [δ1, . . . δj , . . . , δk].

The remainder of the preliminary concepts shall be introduced adhering to this modi-

fied notation.

Figure 3.1: Drawing parallels between the paradigms of probability theory and robust
control analysis

The uncertain parameters are considered to be continuous random variables, mean-

ing that they can take “uncountably infinite” values [98]. Recall that any function of

a random variable is also a random variable. Therefore the performance function is

54



also a random variable. The Probability Density Function (pdf) quantifies how a

continuous random variable is distributed, i.e., what the likelihood of a random vari-

able taking a particular value is. The pdf is denoted by the function f (δ;u), where

u is the parameter of the distribution. The notation δ∼f (δ;u) is used to represent

that δ is distributed according to f (δ;u). u may be a scalar or a vector, depending on

the distribution. For instance, u may represent the rate parameter in the exponential

distribution pdf f (δ;u) = ue−uδ ∀ δ ≥ 0. An example of u being a vector is in the

uniform distribution pdf f (δ;u) = 1
b−a ∀ δ ≥ 0 where a and b are the lower and upper

bounds for the random variable δ.

Briefly reviewing the standard uncertainty representation in the robust control analysis

framework, it is recalled that the uncertain parameters are normalised to lie in [−1, 1]

[15]. For example, say m is one of the uncertain parameters, representing the mass of

a satellite. The mass may be known to vary between 2000kg and 2400kg during flight

— due to fuel mass variation and other considerations known to system experts. Then,

the nominal value of the parameter may be written as m0 = 2000+2400
2 = 2200. The

uncertain parameter can vary by ±200 from m0. This is formulated as m = m0 +rmδm,

where rm is the range of the uncertain parameter (200 in this case), and δm is the nor-

malised uncertain component which lies in [−1, 1].

The random variables are considered to be: (i) independent of each other and (ii) iden-

tically distributed — this is commonly abbreviated as i.i.d. [13]. In other words, all the

δjs are distributed according to the same pdf f with the same mean µ and standard

deviation σ.

In this chapter, the random variables are distributed according to a truncated nor-

mal distribution. The nature of the uncertain parameter distribution is defined by the
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consortium of industry partners. This choice is attractive, because it incorporates ben-

eficial properties of both the normal and uniform distributions, and is briefly discussed

in the following section.

3.2.2 The Truncated Normal Distribution

The normal (or Gaussian) distribution is justifiably the most prevalent distribution

in probability theory and statistics, since a large number of natural phenomena are

observed to be normally distributed [98]. The Central Limit Theorem indicates that

distribution of any average tends to be normally distributed [57]. Normally distributed

random variables have higher probabilities of taking values close to the mean value,

and lower probabilities away from the mean, as illustrated by the bell shaped curve.

The normal distribution is also convenient in the current analysis since it leads to an

elegant analytical result, discussed later in this chapter. The normal distribution is

represented by the pdf in Equation (3.1)

f (δ; [µ, σ]) =
1√

2πσ2
e−

(δ−µ)2

2σ2 (3.1)

However, unless truncation bounds are specified, the resulting worst cases can be ex-

tremely pessimistic (since in the normal distribution the tails extend to ±∞).This

avoids the pitfalls of the Law of Truly Large Numbers — that given a very large sam-

ple, any outrageous event is likely to occur [101]. Moreover, in reality the uncertain

parameters are often limited. Further, the uncertain parameter normalisation already

discussed requires the variability to be between -1 and 1 for each parameter.

Taking these factors into account, the distribution selected has a mean 0, and a standard
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Table 3.1: Error due to truncation of the normal distribution, ft, relative to the normal
distribution ft

δ fo (δ; [µ̄, σ̄]) ft (δ; [µ, σ]) Truncation error = fo−ft
fo

0.2151 0.8631 0.8740 0.0126
0.7336 0.1856 0.1879 0.0126
-0.5231 0.4241 0.4295 0.0126
-0.9035 0.0778 0.0788 0.0126

deviation 0.4, and is truncated at -1 and +1. The industrial rationale for this choice is

the following:

� Despite the truncation, there exists a large probability of samples being drawn

from within the [-1,1] bounds. The bounds corresponds to 2.5 standard deviations

away from the mean on both sides, meaning that 100 - 2*0.6 = 98.78% of the

samples drawn from the normal distribution lie within the bounds.

� Further, the choice still ensures that the probabilities at the extreme values [-1,1]

are not unrealistically low — substituting µ = 0, σ = 0.4 and δ = ±1 in Equation

(3.1) results in a probability of 0.044.

� Moreover, the error in the pdf value due to truncation is small. This is evidenced

in Table 3.1, where calculations of the truncated pdf are done for a few values of

δ. The relative error between the truncated and original densities is calculated,

which is found to be the same value 1.26% for all cases.

These error values are considered by the consortium to be acceptable for the purposes

of the analysis. Additionally, although the multivariate case is dealt with, the distri-

butions reduce to multiple univariate densities since the parameters are independent,

meaning that the interaction between parameters is not accounted for (i.e., the covari-

ance matrix is diagonal).

The formulation of the robust performance analysis problem is done in the next section.
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3.3 Problem Formulation

The optimisation-based worst case analysis problem is first reviewed. For a closed loop

dynamical system, let

J (δ) : D→ R

be a performance criterion, where D ⊂ Rk is the bounded uncertainty domain. A

desired threshold for each criterion may be written as J (δ) ≤ γdes, where J is the

performance criterion (also known as the cost function, or simply the cost) under con-

sideration.

Following the approaches in [74], [102]and [103], the worst case analysis problem can be

formulated as a maximisation problem (typically maximising a distance or norm value)

subject to the dynamics of the model:

max
δ∈D

J (δ)

subject to Ẋ = F (X,U, δ) , δ ∈ D,
(3.2)

where X ∈ Rn are the states, U ∈ Rm are the control inputs, and F represents the

dynamics of the system. Suppose the worst case performance obtained is γ∗.

The objective is to determine the probability that the performance J (δ) exceeds a

given value (or “performance level”) γ, as γ degrades. i.e., the probability of the event

J (δ ≥ γ) is to be calculated for various values of γ, particularly:

� γ = γnom, the nominal performance value, with all parameters set to 0. This

probability is expected to be very high (≈ 1).
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� γ = γdes, the performance criterion. It is desired that this probability is low,

to indicate that there is no violation of this criterion for a majority of cases.

However, in practice this may be quite high.

� γ = γ∗, the worst case performance. This is considered to be a rare-event, and

the probability is expected to be very low, of the order 10−6 or lower [13].

Taking into account the expected trends, a plot of the probability associated with the

event [J(δ) ≥ γ] vs. γ may be constructed — this is shown in Figure 3.2. This curve is

called the Probability Profile of Performance(PPoP), and constitutes one of the central

ideas of the thesis. This curve is similar to several analogous ones such as the survival

curve showing effects of disease in medical science, the titration curve in chemistry, the

phase transition curve of populations in ecology and the survival curve in reliability

science showing machine wear and tear. In the context of robustness analysis, the

PPoP represents the transition from nominal performance to problematic performance

of spacecraft controllers as uncertain parameter values vary. The notion of probabilistic

robustness may be interpreted from Figure 3.2. If the probability that performance is

greater than γdes is below a critical level, probabilistic robust performance is said to

be achieved. The next section examines the PPoP curve further and discusses some of

the insights it offers.

3.4 Properties of the Probability Profile of Performance

Curve

From Figure 3.2, two points of particular interest are identified. Most importantly, the

probability associated with the worst case performance level γ∗ is a small value p∗. This

is the crucial probability associated with the worst case. In addition, the probability

associated with the desired performance level γdes is found to be pf , sometimes called
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Figure 3.2: The probability profile of performance as a tool for robustness analysis

the failure probability, and expected to be small. Suppose the failure probability is

large, two possibilities exist:

� The control design is poor and should be revisited, or

� The desired criterion is selected poorly and should be relaxed. Indeed, relaxation

of the performance criterion is done fairly often in the Industry, usually in a naive

manner. The PPoP provides a probabilistic rationale for such a relaxation.

The blue shaded area in Figure 3.3 illustrates the “Decay Region”, the section of the

curve where the probability varies drastically. If γdes lies within this region, there is a

benefit in relaxing the criterion, since a small increase in performance leads to a large

decrease in the corresponding probability. However, if γdes lies in the green or red

regions, the benefit of bound relaxation would be small.

The three regions in the PPoP are defined by taking inspiration from concepts of rise

time and settling time in step response curves:

� Accepted Performance Region constitutes performances:corresponding to proba-

bilities from 0.9 to 1.
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Figure 3.3: Regions in the probability profile of performance

� Decay Region, where the probability varies rapidly. It constitutes performances

corresponding to probabilities of 0.1 to 0.9.

� Critical Region: where lower probabilities are encountered, but the performance

values are potentially problematic. This region comprises performances corre-

sponding to probabilities lower than 0.1.

Thus, the PPoP curve offers significant insight into a control system’s performance

[104]. So far, it has been established that computing the probabilities associated with

various performance levels is indeed valuable. In the following section, the cross-entropy

based methodology is detailed, which will enable the estimation of such probabilities.
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3.5 Methodology

This section develops a methodology for estimating the desired probability, first for the

general probability distribution, and subsequently for the specific case of the truncated

normal distribution. Let the uncertain parameter vector δ be distributed according to

a family of probability distribution functions (pdf) f(δ; v), where v parametrises the

family. The probability

l := P [J (δ) ≥ γ] (3.3)

relies on the Indicator Function I{J(δ)≥γ}:

I{J(δ)≥γ} =

 1 if J (δ) ≥ γ

0 if J (δ) < γ
. (3.4)

Informally, the events leading to I{J(δ)≥γ} = 1 are called hits. Estimating the prob-

ability in Equation (3.3) requires solving the following NP-Hard integration problem:

P [J (δ) ≥ γ] = E{I{J(δ)≥γ}} =

∫
D
I{J(δ)≥γ}f (δ; v) dδ, (3.5)

which essentially amounts to finding the expectation E that [J(δ) ≥ γ].

A naive stochastic estimator is Crude Monte Carlo (CMC) simulation [92], in which

N samples δ1, δ2, ...δi, ...δN are drawn from the distribution f (δ; v). Recall that each

sample δi consists of a row vector with k uncertain parameters. Therefore, the samples
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may be represented as a matrix with N rows, each consisting of k columns.

δsamp =



δ11, . . . δ1j , . . . , δ1k

δ21, . . . δ2j , . . . , δ2k

...

δi1, . . . δij , . . . , δjk
...

δN1, . . . δNj , . . . , δNk.


(3.6)

Specifically, note that the subscript i indexes each sample of the uncertain parameter

vector, while the subscript j indexes each particular uncertain parameter within the

vector in the mathematical development that follows. Then

l̂CMC =
1

N

N∑
i=1

I{J(δi)≥γ} (3.7)

gives an unbiased probability estimation. This becomes intractable when {J (δ) ≥ γ}

is a rare event i.e., has a small probability of occurrence (say of the order 10−6) [57].

For rare events, an estimator is required that can identify the “important” parameter

regions that cause the performance value to reach extreme values. Importance sampling

(IS) techniques are a promising class of sampling techniques which efficiently bias the

input distributions [26]. For rare events, it is found that the cross entropy (CE) simu-

lation technique is particularly suited [92]. This technique is described in the following

section.

3.6 The Cross Entropy Method for Rare Event Simulation

CE is an adaptive importance sampling algorithm, developed in [90] to determine the

probabilities of rare events. CE adaptively computes the best reference parameter(s),

and biases the initial uncertain parameter distribution so that the rare event becomes
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more likely to occur in the new distribution [92]. Subsequently, an importance sampling

run computes the probability of occurrence of the rare event by scaling back from the

new distribution to the original distribution, with the help of a likelihood ratio. The

principle of CE is illustrated in Figure 3.4.

f δ ;u( ) f δ ;v*( )
Op#mal	  es#mate	  

	  	  

−1 −0.5 0 0.5 1
−1

−0.5
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1

b1

b 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

b1

b 2

l = 0.1l = 0.1

J J

Cross Entropy 
Simulation 

Figure 3.4: Illustration of CE principle. The simulation takes an unbiased input dis-
tribution, and biases it towards regions of the parameter space that cause poor perfor-
mance by finding an optimal reference parameter.

Importance sampling seeks to find an importance sampling density or the instrumen-

tal density [26]. Let g (δ) defined on D be this unknown distribution, to be found.

Suppose that N random samples δ1, ..., δN are drawn from g (δ). Let the initial distri-

bution be f (δ;u), where u is the initial reference parameter. A reference parameter

refers to any parameter that defines the behaviour of the distribution. For instance,

the upper and lower bounds constitute the parameters in a uniform distribution, while

the mean and standard deviation constitute the parameters in a normal distribution.

In this work, reference parameters are considered as vectors in the interest of generality.
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l may be found by modifying equation (3.5) as follows:

E{J (δ) ≥ γ} =

∫
D
I{J(δ)≥γ}

f (δ;u)

g (δ)
g (δ) dδ (3.8)

The stochastic estimator of this is written, similar to (3.7), as follows:

l̂ =
1

N

N∑
i=1

I{J(δi)≥γ}
f (δi;u)

g (δi)
. (3.9)

The optimal estimate is then found by having g∗ satisfying:

g∗ (δ) :=
I{J(δ)≥γ}f (δ;u)

l
(3.10)

which depends on l and so is unknown. The manner in which g(.) is chosen varies across

different IS methods. The particular choice of g(.) in CE is detailed in the following

section.

3.6.1 Estimation of Rare Event Probabilities

CE is particularly effective at estimating rare-event probabilities, i.e., events whose

probabilities of occurrence are smaller than 10−6. CE chooses g from within the same

family of densities f (·, v), with an “optimal” reference parameter v, which is chosen

such that some measure of distance between the densities g∗(.) and f (·; v) is minimum.

In the CE method, the Kullback-Leibler divergence, also known as the cross entropy,

is considered to be the distance between the distributions. For g∗ (δ) and f (δ; v), the

Kullback-Leibler distance is:

D (g∗ (δ) , f (δ; v)) =

∫
g∗ (δ) ln (g∗ (δ)) dδ

−
∫
g∗ (δ) ln (f (δ; v)) dδ (3.11)
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Minimising the Kullback-Leibler divergence for g∗(.) and f (δ; v) is equivalent to min-

imising the second term −
∫
g∗ (δ) ln (f (δ; v)) dδ, which is in turn equivalent to solving

the maximisation problem:

max
v

∫
g∗ (δ) ln (f (δ; v)) dδ. (3.12)

Substituting for g∗(.) from (3.10), the optimisation program becomes

max
v

∫
I{J(δ)≥γ}f (δ;u)

l
ln (f (δ; v)) dδ. (3.13)

If the likelihood ratio W is defined as

W (δ;u, v) =
f (δ;u)

f (δ; v)
(3.14)

the solution to the optimisation program may be found by solving for the optimal

updating factor v∗ in the following equation:

1

N

N∑
i=1

I{J(δi)≥γ}W (δi;u, v)∇ ln (f (δi; v
∗)) = 0. (3.15)

For the normal distribution, v =

[
µ σ

]
and f (δ; v) = f

(
δ;

[
µ σ

])

∫
I{J(δ)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

])
f

(
δ;

[
µ σ

])
∂
∂µ ln

(
f

(
δ;

[
µ σ

]))
∂
∂σ ln

(
f

(
δ;

[
µ σ

]))
 dδ = 0.

(3.16)
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Substituting f

(
δ;

[
µ σ

])
= 1

σ
√

2π
e−

(δ−µ)2

2σ2 in (3.16) and separating the components:

∫
I{J(δ)≥γ}W

(
δ;
[
µ0 σ0

]
,
[
µ σ

])
f
(
δ;
[
µ σ

]) ∂

∂µ

(
ln

(
1

σ
√

(2π)

)
− (δ − µ)2

2σ2

)
dδ = 0.

(3.17)

∫
I{J(δ)≥γ}W

(
δ;
[
µ0 σ0

]
,
[
µ σ

])
f
(
δ;
[
µ σ

]) ∂

∂σ

(
ln

(
1

σ
√

(2π)

)
− (δ − µ)2

2σ2

)
dδ = 0.

(3.18)

The updating rule derivation for the mean µ from 3.17 is now described. First, the

logarithmic term is only expressed in terms of σ, and therefore the partial derivative in

terms of µ is reduced to 0.

∫
I{J(δ)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

])
f

(
δ;

[
µ σ

])(
0− ∂

∂µ

(δ − µ)2

2σ2

)
dδ = 0.

(3.19)

Now, carrying out the partial derivative ∂
∂µ

(δ−µ)2

2σ2 dδ gives

∫
I{J(δ)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

])
f

(
δ;

[
µ σ

])(
2δ − 2µ

2σ2

)
dδ = 0. (3.20)

The left side of the above equation may be written as the expectation

Ev{I{J(δ)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

])
(δ − µ)}, where the subscript v indicates that

it is taken with respect to the density f (δ; v) = f

(
δ;

[
µ σ

])
. This is expressed

stochastically as follows:

1

N

N∑
i=1

I{J(δi)≥γ}W

(
δi;

[
µ0 σ0

]
,

[
µ σ

])
(δi − µ) = 0 (3.21)
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From the above equation, the updating rule for the mean may be found as follows:

µ∗ =

N∑
i=1

I{J(δi)≥γ}W

(
δi;

[
µ0 σ0

]
,

[
µ σ

])
δi

N∑
i=1

I{J(δi)≥γ}W

(
δi;

[
µ0 σ0

]
,

[
µ σ

]) (3.22)

The updating rule for the standard deviation is now derived from (3.18):

∫
I{J(δ)≥γ}W

(
δ;
[
µ0 σ0

]
,
[
µ σ

])
f
(
δ;
[
µ σ

]) ∂

∂σ

(
ln

(
1√
2π

)
+ ln

(
1

σ

)
− (δ − µ)2

2σ2

)
dδ = 0.

(3.23)

i.e.,

∫
I{J(δ)≥γ}W

(
δ;
[
µ0 σ0

]
,
[
µ σ

])
f
(
δ;
[
µ σ

])((−1

σ

)
+

(δ − µ)2

σ3

)
dδ = 0. (3.24)

Separating the additive terms:

∫
I{J(δ)≥γ}W

(
δ;
[
µ0 σ0

]
,
[
µ σ

])
f
(
δ;
[
µ σ

])(−1

σ

)
dδ =∫

I{J(δ)≥γ}W
(
δ;
[
µ0 σ0

]
,
[
µ σ

])
f
(
δ;
[
µ σ

])( (δ − µ)
2

σ3

)
dδ. (3.25)

This gives:

σ2 =

∫
I{J(δ)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

])
f

(
δ;

[
µ σ

])
(δ − µ)2

∫
I{J(δ)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

])
f

(
δ;

[
µ σ

]) (3.26)

Drawing N samples of δ from f

(
δ;

[
µ σ

])
, the stochastic estimator of the above is
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arrived at, as follows:

σ∗2 =

1
N

N∑
i=1

I{J(δi)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

])
(δi − µ)2

1
N

N∑
i=1

I{J(δi)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

]) (3.27)

This gives the updating rule for the standard deviation as:

σ∗ =

√√√√√√√√
N∑
i=1

I{J(δi)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

])
(δi − µ)2

N∑
i=1

I{J(δi)≥γ}W

(
δ;

[
µ0 σ0

]
,

[
µ σ

]) (3.28)

where i = 1, ..., N , j = 1, ..., k. Here, δi,j represents the jth element of the ith sample

δi (recall that each sample of the uncertain parameter belongs to Rk).

The updating rules for the mean and standard deviation are now included in an al-

gorithm to iteratively optimise the parameter distributions so that they yield high

performance values when simulated. Such an algorithm is developed in the following

section.

3.6.2 The CE Algorithm

As discussed, the objective is to adaptively identify narrow parameter distributions

(by computing the best reference parameters, µ∗ and σ∗) such that the KL distance

is minimum. This is carried out in a multi-stage algorithm by finding the sequence

of reference parameters {[µt σt], t ≥ 0} and a corresponding sequence of performance

levels {γt, t ≥ 1} and iterating until the quantile of performance γt ≥ γ. Details of

the generalised algorithm may be found in [57]. The algorithm biases the initial dis-

tribution towards the region in the parameter space that causes higher performances

to occur. Then, this distribution is scaled back using the likelihood ratio to determine
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the probability of occurrence of the performance value in the original performance.

The CE algorithm is shown in Algorithm 1. This is carried out for each performance

level of interest γ. Here, N is the number of evaluations per CE iteration t, ρ is the

rarity factor, maxits represents the maximum number of CE iterations allowed. N1 is

the number of evaluations for the final importance sampling run. Generally speaking

the choice of N and N1 rely on the model under study, and on the computational

budget. In any case both of these are far lower than for naive Monte Carlo. ρ, the

rarity factor is the probability below which a CE updating iteration is carried out. In

our study, ρ is usually set at 0.1, corresponding to the decay region in Figure 3.3. σ∗ is

the threshold standard deviation below which CE updating is terminated. Therefore,

three termination criteria exist at the tth iteration:

� the performance quantile γt ≥ γ, or

� min(σ(t+ 1)) ≤ σ∗, or

� t > maxits

Generally speaking, the parameter distribution f , the mean µ0 and standard deviation

σ0 can be the same for a specific application1. All other input parameters to the

algorithm are based on computational resource considerations. Therefore, the external

“appearance” of CE is similar to that of MC to a system analyst. In other words, the

analyst need only decide the number of samples allowed, by taking into account the

computational budget. The uncertain parameter vector samples are created by CE, and

the output performance values J are output, which can be interpreted post-analysis.

This MC-like appearance is attractive because it implies that CE can straightforwardly

be implemented in existing industry V&V frameworks, most of which are MC-based.

1for instance, in the analysis of launch vehicles, the initial distribution of fuel mass may vary with
a Gaussian distribution with a normalised mean of 0 and a normalised standard deviation of 0.4
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Data: µ0,σ0, maxits, ρ, σ∗, N and N1;

Result: The rare-event estimate l̂;
Set t = 1;
Set µ(t) = µ0 and σ(t) = σ0;
while t ≤ maxits do

1. Generate a sample δ1, ..., δN from the density f (.;µ(t), σ(t));
2. Compute γt, the sample (1− ρ) performance quantile as follows:

2a. Calculate the values of the cost J (δi) for each sample δi.;
2b. Arrange them in ascending order. Then find γt = J[(1−ρ)].;

3. Use the same sample δ1, ..., δN to find the updating parameter as follows:

µj(t+ 1) =

∑N
i=1 I{J(δi,j)≥γ}W (δi,j ; [µ0, σ0], [µ(t), σ(t)]) δi,j∑N
i=1 I{J(δi,j)≥γ}W (δi,j ; [µ0, σ0], [µ(t), σ(t)])

and

σj(t+ 1) =

√√√√∑N
i=1 I{J(δi,j)≥γ}W (δi,j ; [µ0, σ0], [µ(t), σ(t)]) (δi,j − µj(t+ 1))2∑N

i=1 I{J(δi,j)≥γ}W (δi,j ; [µ0, σ0], [µ(t), σ(t)])

if min(σ(t+ 1)) ≤ σ∗ then
µ̂T = µ̂(t+ 1);
σ̂T = σ̂(t+ 1);
Proceed to step 4

end
if γt ≥ γ then

γt = γ;
µ̂T = µ̂t;
σ̂T = σ̂t;
Optimal reference parameter found, proceed to step 4;

else
t = t+ 1;

end

end
4. Estimate the rare-event probability l using the likelihood ratio estimator:

l̂ =
1

N1

N1∑
i=1

I{J(δ)≥γ}W (δi,j ; [µ0, σ0], [µT , σT ]) ;

Algorithm 1: The CE Algorithm for Rare Event Simulation
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3.7 Generating the PPoP

In order to generate the PPoP curve, l̂ = P [J (δ) ≥ γ] is to be computed at various

levels of γ, and a curve fitting is done. Generally speaking, a good starting performance

level is the nominal performance γnom, i.e., the value of performance evaluated at

δ = [0, . . . , 0]T . The rationale for this is that the performance is expected to always

degrade in the presence of uncertainty, and not improve. Since it is expected that

the worst case γ∗ is a rare-event, the stopping level is γ∗, or the next nearest decimal

point depending on the step-size chosen. The step-size ∆γ is a design parameter, which

specifies how fine the gridding is, and hence, how accurate the curve fitting is for the

probability profile.

Then, a vector Γ of performance levels is specified as Γ = [γnom, γnom + ∆γ, . . . , γ∗].

Then, the algorithm is:

for ii = 1 : length(Γ)

[l̂(ii), µT (ii, :), σT ] = call CE(Γ(ii));

end

plot(Γ(ii), (̂l))

3.7.1 Adaptive Initialisation

An adaptive initialisation mechanism is introduced in the algorithm to increase its ef-

ficiency further, where the initial distribution f(δ;µ0, σ0) is adaptively varied. This

scheme takes advantage of the computations already carried out. The initial distribu-

tion is biased towards the mean and standard deviations already found, i.e.,

µ0(ii+ 1) = µT (ii)

Therefore, the search space is shifted towards the region in the parameter space that

already leads to higher costs (or worse performance). The standard deviation is kept
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the same as that of the initial distribution (i.e. 0.4) so as to not excessively restrict the

size of the search space. Such a scheme is illustrated in Figure 3.5

Figure 3.5: CE adaptive initialisation scheme

3.8 Illustrative Example

In this section, the algorithm developed in this chapter is illustrated using a simple

example [105]. Consider the following linear uncertain system

Ẋ =

 0 1

−a0 −a1

X +

0

1

U +

0

1

Wd (3.29)

Z =

[
1 0

]
X (3.30)

with parameters a0 = a0 + q0 and a1 = a1 + q1, where the nominal values of the pa-

rameters are a0 = 1 and a1 = 0.8, and the uncertain parameters q =

[
q0 q1

]T
are in
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the set Q = {q ∈ R2 : q0 ∈ [−0.025, 0.025] , q1 ∈ [−0.025, 0.025]}. These uncertainties

are expressed as q0 = q0nom + 0.025 × δq0 and q1 = q1nom + 0.025 × δq1 , where q0nom

= q1nom=1. Wd are measured inputs and Z are measured outputs. The performance

criterion under consideration is the H∞ norm of the uncertain system. The worst case

is found in [105] to be 1.4, and is achieved when q0 = q1 =-0.025. Figure 3.6 shows the

Bode plot for the system, which illustrates that the maximum H∞ norm obtained, i.e.,

the outer envelope, is at 1.4.
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Figure 3.6: Bode plot showing gain of the illustrative system.

The CE algorithm is applied to this system to estimate the probability associated

with the occurrences of various performance levels. The simulation settings used are

N = 100, N1 = 1000, ρ = 0.01 and initial mean value of u = [0, 0]. These results are

shown in Figure 3.7. It is apparent that the probability of the system with performance

values greater than 1.4 dB is 0. An interesting observation is made at γ = 1.397 dB, at

which the probability of occurrence is very low, of the order of 10−7. This shows the

efficacy of cross entropy for finding the probability of occurrence of rare-events, and
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for finding the probability of occurrence of worst-case values. Further, the probabil-

ity profile at various performance levels is also found by the algorithm. Observe that

there is significant degradation in performance between the levels 1.33 dB and 1.38 dB.

Further, the probability associated with performances greater than 1.33 dB is 1, which

implies that the peak performance is guaranteed to be above 1.33 dB at all parameter

values.

Suppose, for the sake of illustration, that the performance criterion is that the H∞

norm is to remain less than 1.395 units. Clearly, the classical robust performance (or

deterministic robust performance) is not satisfied in this case. However, the probability

associated with γ, i.e., P [J ≥ 1.395] = 3.2 × 10−6, which is low. If the performance

criterion is instead defined probabilistically, for example, “the probability that the per-

formance criterion exceeds 1.395 is lower than 10−5”. This is simply a restatement

of the probabilistic robust performance criterion in Equation (2.23), with γ∗ = 1.395

pcritical = 10−5. It may be found that the system in Equations (3.29) and (3.30) meet

this criterion. Thus, this system does not satisfy deterministic robust performance, but

does satisfy probabilistic robust performance. Such notions are valuable in practical

industry systems, as will be seen in the results in later chapters.

The samples drawn for the IS run carried out at the final iteration are shown for different

values of γ in Figure 3.8. It is clear that the algorithm causes the mean parameter v

to converge towards the region [−1,−1] as performance degrades. Observe that for

γ = 1.3 dB, the algorithm does not change the initial distribution since the occurrence

of the performance level of γ =1.3 is frequent enough. At performances closer to

the worst case value of γ = 1.4, the samples converge towards the problematic [-1,1]

region. The samples drawn in the final IS runs over all γ levels, and their corresponding

performance values are scattered to form a heat map representation of the uncertain
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parameter region, as shown in Figure 3.9. The colour intensities are mapped to the

performance values, thereby creating a plot reminiscent of safe and unsafe regions [18].
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Figure 3.9: Heat map showing uncertain parameter regions corresponding to various
performance values

3.9 Conclusions

This chapter proposes the cross entropy-based simulation technique for estimation of

rare event probabilities. The concept of the probability profile of performance is in-

troduced, and an algorithm based on CE-based methods is developed to generate it.

A simple illustrative example is then presented to demonstrate these concepts. The

algorithm developed in this chapter will be employed in Chapters 5 and 6. The next

chapter details the development of models for autonomous rendezvous of the Mars

Sample Return mission, required for the analysis detailed in Chapters 5.
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Chapter 4

Modelling the Autonomous

Rendezvous System

4.1 Background

This chapter is focussed on the modelling of autonomous rendezvous in the Mars Sam-

ple Return mission. This research activity was undertaken as part of a European Space

Agency project, carried out in collaboration with the aerospace companies GMV, Spain,

and Thales Alenia Space France (TASF)1. The project is the Autonomous Integrated

Robust GNC (iGNC2) for the Mars Sample Return (MSR) mission [106]. The MSR is

an ESA mission to be carried out in the 2020s, with the objective of collecting Martian

soil and rock samples and retrieving them to Earth for scientific research. The results

of the study can potentially answer questions about the possibility of life on Mars, in

the present or the past. The MSR is a complex multi-spacecraft mission that has raised

several engineering challenges. The mission starts with a Mars lander launched from

Earth, which contains the sample container. This container is filled with the sample

1ESA, GMV, TASF and University of Exeter form the iGNC project consortium.
2Although the formal abbreviation is AIRGNC, it has been shortened in publications for brevity’s

sake.

78



 

 

 

 

 

 
 

 
 

 
   

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
   

 
 

 
   

 
 

 

 
 

 
   

Figure 4.1: Mars Sample Return mission scenario. Source: iMARS

upon landing on Mars, and then launched by the Mars Ascent Vehicle (MAV) to Mars

orbit. An Earth Return Vehicle (ERV) launched from Earth then collects the sampling

container by performing a rendezvous manoeuvre in deep space. The ERV returns to

Earth with the container, after which the sample is sent to special facilities for decon-

tamination and the start of scientific study. A mission scenario conceived by iMARs

[107] is shown in Figure 4.1. The stage of the mission focused on in this study is the

rendezvous and docking of the ERV and the Orbiting Sample (OS). It has been docu-

mented [108] that this sub-mission is complicated, due to the autonomous manoeuvres

and safety considerations, showing that its V&V is a critical step contributing to suc-

cess of the entire MSR mission.

The project activities dealt with in this study are (1) to develop LFT formulations of

linear/linearised models for control design, and (2) to conduct a performance analysis

of the designed controller. These are, therefore, the central focus of this chapter and the

next. These activities complement other studies pertaining to control design conducted
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by the project consortium, and fit into the frame of the project. First, a brief overview

of the model is presented. Two levels of modelling are distinguished. The first is a

simplified rendezvous model necessary for robust controller synthesis and design stage

analysis. The next is a full high-fidelity model used for final stage analysis in the

presence of the controller and all possible behaviours and uncertainties included.

4.2 Model Overview

The Finite Element Simulation (FES) real world architecture in Figure 4.2 shows the

systems involved in the rendezvous and docking manoeuvres between the chaser space-

craft (in this case, the chaser is the ERV) and the target (the orbiting sample). The

architecture constitutes the models that must be developed to accurately depict the

behaviours of all systems involved [109]. It is also the environment in which the syn-

thesized GNC algorithm is to be tested. It accounts for the dynamics and uncertainties

across all the systems. It includes the chaser spacecraft (SC) systems, orbital mechan-

ics, communication links to various locations (Earth control centre, Deimos, Phobos

and Mars), telemetry and telecommunication, and camera visibility. It also includes

the MAV environment and OS seperation dynamics, since any uncertainty in the OS

launch window will affect the rendezvous trajectory. The chaser actuators are signifi-

cant sources of uncertainty, particularly misalignment angles in the thrusters. Several of

these models are available internally in the libraries of ESA and GMV. In this chapter,

the models of some relevant chaser spacecraft systems is described, which are important

for controller design and analysis1. The OS model is typically straightforward, and is

modelled by the 6DOF dynamics of a rigid body [109]. In the study it is assumed that

OS orbital insertion is done successfully by the MAV, and only the chaser SC controller

carries out the rendezvous manoeuvres. This is consistent with ESA’s mission scenario.

1All of the rendezvous GNC maneuvers are performed by the chaser, while the OS GNC is limited
to orbiting Mars after its launch by the MAV
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4.2.1 Frames of Reference

Before proceeding to describe the models, it is important to list the frames of reference,

particularly important with the involvement of multiple spacecraft. Since rendezvous in

general involves complex relative manoeuvres, various frames of reference are considered

— a comprehensive list is found in [110]. The following frames of reference are relevant

to this study.

� Fi: The inertial frame Fi has its origin at the centre of earth, with the x-axis

Xi extending from the origin along the vernal equinox line. The z-axis Zi is to

the north along the angular momentum vector of the Earth. Then, Yi = Zi × Xi

completes the triad.

� Fo: The local orbital frame Fo has its origin at the centre of mass of the chaser

SC, with the x-axis Xo along the direction of velocity vector of the spacecraft. In

rendezvous literature this direction is also known as V − bar. The z-axis Zo is

in the orbital plane from the spacecraft centre of mass towards the Earth centre.

This is also known as R− bar. Then, Yo = Zo ×Xo, and is normal to the orbital

plane and in the opposite direction and parallel to the orbital angular momentum

vector. Yo is referred to as H − bar. Fo is known also as the Local Vertical Local

Horizontal (LVLH) frame [111].

� Fbc: The chaser body reference frame. Fbc has its origin at the chaser centre of

mass, and the X-axis Xbc is the longitudinal direction towards the docking port

and normal to the A0 ring plane. Ybc is along the geometrical centre line of the

solar panels in the A0 plane, and Zbc = Xbc × Ybc [9].

� Fbt: The target body reference frame, with origin at the OS centre of mass. Xbt is

along the direction of the orbiting sample’s velocity vector. Ybt is perpendicular

to the surface of the orbiting sample cylinder, and Zbt = Ybt × Xbt.
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Figure 4.2: FES real world architecture of the iGNC mission
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4.3 Simplified Rendezvous Model

The simplified rendezvous model refers to a set of interconnected models used in the

robust controller development. Classically, it usually refers to the linear system envi-

ronment. There exist also simplifying assumptions in the models, such as neglecting

sensor bias values or ignoring higher frequency modes. It includes linearised systems

and a smaller uncertainty subset, mainly consisting of chaser dynamics, actuators and

sensors. It does not include MAV dynamics or orbital mechanics. The control de-

sign and initial analysis is carried out in this environment. For the purposes of LFT

modelling, some of the models are presented in this chapter.

4.3.1 LFT Modelling

LFT models of the chaser spacecraft (the ERV) are vital for designing a robust controller

for the Rendezvous and Docking (RvD) mission. Developing LFT formulations for

a subset of the chaser SC models was Exeter’s responsibility. Some basics of LFT

modelling are reviewed in the Chapter 2. The LFTs are to be developed for linear

and linearised systems, particularly the dynamics including flexible mode and sloshing

effects, sensors and actuators. This section describes the modelling of one of the sensors,

i.e. the accelerometer. This system is chosen for the purposes of illustration as it is the

most straightforward, and will allow the steps to be discussed with clarity.

4.3.2 LFT Modelling of Linearised Accelerometer Model

The chaser spacecraft’s linearised accelerometer is chosen as an example for LFT mod-

elling. The accelerometer is responsible for measuring the spacecraft linear acceleration.

It provides the measurement in the accelerometer axes, which must be transposed to

the chaser body frame, in order for the measured value to be incorporated in calculating

the controller inputs. Two accelerometers are included in the chaser spacecraft. Their
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model is described as follows:

YA = [DA]× αbc (4.1)

where YA is the measured accelerometer deviation vector from the reference chaser ac-

celeration. αbc is the chaser acceleration deviation from the reference value expressed

in the accelerometer frame. DA is the accelerometer direction matrix composed of the

components of the accelerometer measurement axes expressed in the Fbc frame.

A rotation needs to be carried out to compute the acceleration in the Fbc frame i.e.,

DA = RA ∗D′A (4.2)

whereRA is the rotation matrix composed of the uncertain misalignment angles δAx , δAy , δAz

in the x−, y−, and z− axes respectively. For small angle misalignments [112], the ro-

tation matrix may be approximated to:

RA =


1 δAz −δAy

−δAz 1 δAx

δAy −δAx 1

 , (4.3)

The direction matrix D′A of the accelerometer is assumed to be constant. The matrix

is written in the general case as follows:

D′A =


kA1 kA2 kA3

kA4 kA5 kA6

kA7 kA8 kA9

 . (4.4)

The constants kA1-kA9 depend on the specific arrangement of the accelerometer w.r.t
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the spacecraft Fbc frame. The inputs αbc and outputs are represented as UA1 , UA2 , UA3

and YA1 , YA2 , YA3 respectively, in the interest of generality. Generalising the variables

allows easy substitution for similar models. In this study, all of the linearised sensor

and actuator systems have similar models, with the measured signal being transformed

via a misalignment rotation matrix to yield the “true” values. Upon substituting in

Equation (4.2) and multiplying, the equations are expressed as follows:


YA1

YA2

YA3

 =


kA1 − kA2δAz + kA3δAy kA1δAz + kA2 − kA3δAx −kA1δAy + kA2δAx + kA3

kA4 − kA5δAz + kA6δAy kA4δAz + kA5 − kA6δAx −kA4δAy + kA5δAx + kA6

kA7 − kA8δAz + kA9δAy kA7δAz + kA8 − kA9δAx −kA7δAy + kA8δAx + kA9



UA1

UA2

UA3


(4.5)

In order to pull out the uncertainties δAx , δAy , δAz , the internal inputs and outputs W

and Z must be selected. For this purpose, a block diagram interconnection of Equation

(4.5) is drawn and examined, as shown in Figure 4.3. In drawing the block diagram,

care must be taken not to introduce redundancy in the uncertain parameter occurrence.

For example, consider the first occurrence of δAy in Figure 4.3. Two signals U1kA3δAy

and U1kA6δAy are needed in different adders. This could prompt two separate δAy

blocks, such as in Figure 4.4a. However, this leads to two occurrences of δAy simply

on account of different constant multiplicands. Instead, the interconnection may be

modified as in Figure 4.4a by scaling the same uncertain block output to represent two

different signals. As a rule of thumb, if a linear combination between signals exists, this

needs to be taken advantage of in order to avoid redundant repetitions of uncertainty

occurrence. Such basic manipulation prevents the size of the ∆ matrix from being

excessively large. Recall that large dimensioned ∆ blocks make control synthesis and

analysis cumbersome.
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Figure 4.3: Block diagram representation of the linearised accelerometer system
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(a) Redundant δAy interconnection (b) Minimal δAy interconnection

Figure 4.4: Illustration of minimal interconnection of δAy in the linearised accelerometer
model

This type of manipulation is done throughout the block diagram interconnection, and

the most minimal possible representation is arrived at. The inputs W1 −W6 are now

assigned at the outputs of each occurrence of the uncertainties, with the outputs Z1−Z6

at the inputs of the uncertainties i.e.,

W1 = δAyZ1

W2 = δAzZ2

W3 = δAxZ3 (4.6)

W4 = δAzZ4

W5 = δAxZ5

W6 = δAyZ6

This step essentially isolates the uncertainties into the ∆ block, while keeping M a

certain matrix. The system is now formulated such that the outputs YA and Z are

expressed in terms of the inputs UA and W as

 Z
YA

 = M

W
UA

, and is shown in
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UA YA

Δ

M

Z W

Figure 4.5: LFT formulation of the linearised accelerometer system

Equation (4.7). The linearised accelerometer LFT is shown in Figure 4.5.



Z1

Z2

Z3

Z4

Z5

Z6

YA1

YA2

YA3



=



0

kA3 0 0

kA2 0 0

0 kA3 0

0 kA1 0

0 0 kA2

0 0 kA1

1 −1 −1 1 1 −1 kA1 kA2 kA3

kA6
kA3

−kA5
kA2

−kA6
kA3

kA4
kA1

kA5
kA2

−kA4
kA1

kA4 kA5 kA6

kA9
kA3

−kA8
kA2

−kA9
kA3

kA7
kA1

kA8
kA2

−kA7
kA1

kA7 kA8 kA9





W1

W2

W3

W4

W5

W6

UA1

UA2

UA3



(4.7)

In order for this LFT model to be implemented in Matlab, the uncertain parameters
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must first be expressed. These are expressed via the RC toolbox’s ureal1. Recall from

Chapter 2 that uncertain parameters may be represented as, e.g., δAy = δAy0
+ rAydAy ,

with δAy0
being the nominal value, rAy representing the range of variation of the pa-

rameter, and dAy being a random variable in [-1,1]. For a normalised parameter this

may be written in Matlab as a ureal atom.

ureal(‘delta acc x’, 0,‘Mode’,‘PlusMinus’,‘Range’,[-1 1]) specifies a real un-

certain parameter named delta acc x with a nominal value of 0 and a range of [−1, 1]2.

The accelerometer lft is then included simply by specifying the M and ∆ values and

then performing an interconnection, which is shown as a code snippet in Figure 4.6.

First, the partitioned blocks of M are specified, and are constituted into M . The ∆

matrix is then specified in terms of the uncertain atoms. This completes the LFT

M −∆ formulation for the accelerometer. It may be interconnected with other systems

as appropriate.

The modelling technique described so far is a manual derivation from the block diagram

interconnection of the model. A widely used and more straightforward technique is to

simply allow Matlab’s RC toolbox to carry out the uncertain atom interconnection,

and then to use the lftdata command as in Figure 4.7. In this case the matrices RA

and D′A are simply written down as they are and formulated as a state space model.

The M −∆ matrices are then extracted using the function lftdata.

The latter method is clearly more straightforward, less error-prone and takes less effort

to derive. The results of the two LFT methods must be compared. One way to do this

for static gain systems is to subtract one system from another. If the subtraction yields

a zero matrix, it is clear that the two systems are the same. Executing the system

1for real uncertain parameters, and ucomplex for complex uncertain parameters
2Recall that uncertain parameter values are normalized to [−1, 1] in this study.
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Figure 4.6: Code snippet with manually derived M −∆ formulation of the linearised
accelerometer model.

Figure 4.7: Code snippet showing M − ∆ extraction of the linearised accelerometer
model using the RC Toolbox.
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Figure 4.8: Comparison of the manually derived and automatically generated LFT
formulations

subtraction in Matlab’s command window, the result is as shown in Figure 4.8.

Thus, the static gain of zero with no uncertainties, shows that the two systems are

identical. Matlab’s modelling, therefore, gives the same result with far less effort and

without cumbersome block diagram manipulations. For the rest of the study therefore,

a direct Matlab interconnection is done for LFTs, except when specified. Each model

is first created in Matlab, its M −∆ formulation extracted via lftdata, and validated.

The validation strategy is now described.

4.3.3 LFT model validation

It is vital for both controller synthesis and analysis to ensure that the generated LFT

model has a response close to that of the original uncertain system. For dynamical mod-

els, a frequency domain approach was employed to validate the low level LFTs. For

each LFT model, 20 randomly perturbed LTI systems within the uncertainty bounds

are first obtained. The singular values of these systems were computed and plotted

with the uncertain samples of the original LTI models. The MATLAB validation uses

the command usample for generating random samples of an uncertain system. The

code snippet for validating LFTs is shown in Figure 4.9.
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Figure 4.9: Validating dynamical system LFT formulations in Matlab.

Most sensors and actuators are not dynamical systems — instead they are static gain

systems. These are validated similarly to the accelerometer described above in Figure

4.8. Comparison is done by subtracting the original uncertain system and the gener-

ated LFT model. A zero output gain matrix indicates identical systems, while non-zero

systems must be rechecked for modelling errors.

Having discussed how to construct LFT formulations of models, the next sections pro-

ceed to describe the spacecraft dynamics and their LFT modelling.

4.3.4 Integrated Spacecraft Dynamics

The chaser spacecraft dynamical models are presented in this section. These dynamics

are standard for a flexible spacecraft with effects of fuel sloshing included, and can be

found in standard texts on the subject, e.g, [111]. A few simplifying assumptions are

made, which will be mentioned. The LFT modelling of the resulting system is also

presented here. One of the key challenges in spacecraft control law development is the

modelling of flexible appendages, whose effects are difficult to model accurately. The

chaser spacecraft has large solar arrays to supply energy for the long flight from Earth

to Mars. These solar arrays cause forces and torques to act on the spacecraft rigid body.

These are not known accurately, but the dynamics are physically modelled in the form

of flexible modes. Their frequency and damping and difficult to model accurately, and
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so are specified as uncertain parameters. The dynamics for each flexible mode is:

BT
T,nF

v̇sc +BT
R,nF

Ω̇sc +mnF q̈nF + lnF q̇nF + knF qnF = 0 (4.8)

where vsc is the linear velocity of the SC centre of mass, Ωsc is the SC angular velocity.

qnF is the coordinate of each mode, lnF = 2mnF ζnFωnF is the dissipative coefficient,

with ζnF being the mode’s damping ratio, and ωnF is the mode’s natural frequency.

knF = mnFω
2
nF

is the stiffness coefficient. BT,nF is the participation coefficient of

each mode in the spacecraft translational motion. BR,nF is the modal participation

in rotation at the spacecraft centre of mass for mode nF . These parameter values are

estimated using structural analysis via finite element methods [111].

The chaser SC has large propellant tanks to fuel the long journey to Mars. When these

tanks are partially full, the effects of fuel slosh are significant. These effects are diffi-

cult to model accurately, and is an active research area [113]. In the current study, the

effects of slosh may be modelled in the form of a linear pendulum, although different

approaches exist such as the spring-mass model of sloshing [114].

Each propellant tank is assumed to consist of a fixed mass of fuel that does not move

during thrust, and a linear pendulum representing the motion of the propellant mass

that participates in the the slosh motion during thrust. This is shown in Figure below.

Assuming a total of nS modes over all the fuel tanks, each mode dynamics is given by:

BT
T,nS

v̇sc +BT
R,nS

Ω̇sc +mnS θ̈nS + lnS θ̇nS + knSθnS = 0, (4.9)

where θnS is the sloshing mode coordinate. Note that this is similar to the solar ar-
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ray dynamics (4.8), since both are considered as flexible appendages that impact the

rigid body motion. BT,nS is the participation coefficient of each sloshing mode in the

spacecraft translational motion. BR,nS is the modal participation in rotation at the

spacecraft centre of mass for sloshing mode nS . θnS is the coordinate of each mode,

lnS = 2mnSζnSωnS is the dissipative coefficient, with ζnS being the mode’s damping ra-

tio, and ωnS is the mode’s natural frequency. knS = mnSω
2
nS

is the stiffness coefficient.

These parameters are derived using the principles of fluid mechanics via finite element

analysis.

Note that the structure of both (4.8) and (4.9) are similar to that of a second order

spring mass damper model — also known as the MLK model1. Including these in the

spacecraft translation and rotational motion, we obtain:

Fsc = mscv̇G +
∑
nF

q̈nFBT,nF +
∑
nS

BT,nS θ̈nS (4.10)

Tsc = JscΩ̇ +
∑
nF

q̈nFBR,nF +
∑
nS

θ̈nSBR,nS (4.11)

where Fsc and Tsc are respectively the forces and torques acting on the spacecraft.

These equations may be combined and rearranged into a composite MLK model form

as follows:

MscẌ + LscẊ +KscX = BscU, (4.12)

where the states are X =

[
x α q θ

]T
, the inputs are U =

[
Fsc Tsc

]T
and the

1with M represnting mass, L representing damping coefficient and K representing spring stiffness
constant
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input distribution matrix is Bsc =



I3 0

0 I3

0 0

0 0


.

x and α are the displacement and angular displacement of the spacecraft respectively,

while q represents the flexible mode co-ordinate vector over nF modes, and θ represents

the sloshing coordinates vector over nS modes. The matrices Msc, Lsc and Ksc are

analogous to the generalised mass, damping factor and stiffness coefficient taken over

the entire spacecraft rigid body with the effects of solar array flexible modes and sloshing

modes included. These matrices are derived in the literature [110]. The generalised

mass matrix is written as:

Msc =



mscI3 0 BT,F BT,S

0 Jsc BR,F BR,S

BT
T,F BT

R,F ΛF 0

BT
T,S BT

R,S 0 ΛS


, (4.13)

where BT,F and BT,S are the translational participation matrices due to solar arrays and

sloshing respectively, while BR,F and BR,S are the respective rotational participation

matrices. ΛF and ΛS are called the effective mass matrices due to flexible modes and

sloshing respectively. The generalised damping factors including the effects of rigid

body and appendages is:

Lsc =



0 0 0 0

0 0 0 0

0 0 lF 0

0 0 0 lS


. (4.14)
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Figure 4.10: Spring mass damper block diagram interconnection

where lF includes the damping factors from over all the solar array appendage modes,

and lS includes damping factors from over all the sloshing modes in all fuel tanks.

Similarly, the generalised stiffness coefficient is

Ksc =



0 0 0 0

0 0 0 0

0 0 kF 0

0 0 0 kS


. (4.15)

with kF representing the spring stiffness coefficient from the solar array modes, and

kS representing spring stiffness from over all the sloshing modes in all fuel tanks. The

interconnection of the MLK system is the familiar second order state space system, and

is represented in Figure 4.17 below.

Several of the quantities in the integrated spacecraft model are unknown or are incom-

pletely modelled. These are represented as uncertain parameters. In order for robust

control design and analysis to be carried out, the uncertain system must be presented in

the form of LFT. This is done using the physical modelling technique, by specifying the

MLK block diagram equations, and performing their interconnection. Matlab’s robust

96



Figure 4.11: Spring mass damper block diagram interconnection

control toolbox performs uncertain system interconnection using the sysic function.

A code snippet showing the system interconnection of the MLK system is shown in

Figure 4.11.

The resulting system is an uncertain state-space system with 3 inputs and 6 outputs

with 184 occurrences of uncertainties. The number of unique uncertainties is 39. The

model can be expressed in the M − ∆ form using Matlab’s lftdata command, sim-

ply as [Msc,Deltasc] = lftdata(scdyn). The resulting Deltasc matrix is a 184×184

diagonal matrix, and Msc is a 187×190 matrix. The Mass, COG and Inertia (MCI)

elements are not perfectly known due to construction and uncertainty in the mounting

distances and masses of the different elements of the spacecraft. The uncertain param-

eters, their description and the number of their occurrences is shown in Table 4.1.

The LFT is validated by plotting the singular values of the LFT and the original

system, as described in the previous section. This plot is shown in Figure below. It

may be observed that there is a very close matching of the responses based on the 20

random uncertain LTIs generated. The frequency range considered is the frequency
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Table 4.1: Uncertain parameters in the spacecraft dynamics LFT model

Type Description Name Occurrences Nominal Value Range

MCI

Mass of spacecraft [kg] dmass sc 3 2500 230
dCoGx 4 1.55 0.03
dCoGy 4 0.005 0.03Centre of gravity [m]
dCoGz 4 -0.03 0.03
dIxx 1 3810 762
dIyy 1 2500 500Inertia [kg/m/m]
dIzz 1 5540 1108

Solar Arrays

Solar array angle [rad] dangle sa 16 0 2.5
ddamp sa 1 2 0.003 0.002
ddamp sa 2 2 0.003 0.002
ddamp sa 3 2 0.003 0.002

Damping [-]

ddamp sa 4 2 0.003 0.002
domega sa 1 6 0.903 0.1806
domega sa 2 6 4.419 0.8838
domega sa 3 6 6.767 1.353

SA frequency [rad/s]

domega sa 4 6 6.92 1.384
dBRsa 1 x 4 36.64 0
dBR sa 2 y 2 0.06 0.003
dBR sa 2 z 4 -37.01 -1.8505
dBR sa 3 x 4 3.16 0.158
dBR sa 3 y 2 0.23 0.0015
dBR sa 3 z 4 0.03 0.0015
dBR sa 4 x 4 -0.19 -0.0095
dBR sa 4 y 2 3.74 0.187

SA rotation participation[-]

dBR sa 4 z 4 0.02 0.001

Sloshing

dmass sl1 8 180 2
Sloshing Mass [kg]

dmass sl2 8 280 3
ddamp sl1 2 0.01 0.0005

Damping [-]
ddamp sl 2 2 0.01 0.0005
dlength sl1 16 0.29 0.0029

Pendulum length
dlength sl2 16 0.29 0.0029
domega sl1 6 0.8384 0.04192

Slosh frequency [rad/s]
domega sl1 6 0.8384 0.04192
dBT sa 1 y 4 -0.01 -0.0005
dBT sa 1 z 2 6.54 0.327
dBT sa 2 x 4 6.79 0.3395
dBT sa 3 y 4 -0.04 -0.002
dBT sa 4 z 2 3.11 0.1555

SA translation participation [-]

dBT sa 1 z 4 -0.18 -0.009
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Figure 4.12: Singular value comparison between integrated spacecraft dynamics and its
LFT model

range considered in the control design. Observe the peaks in the middle frequency

range, between about 1 rad/s and 100 rad/s. This is expected to be caused due to the

flexible modes and sloshing effects.

Revisiting the LFT model, the mass matrix MSC is the component having the most

impact on the size of the system.in terms of the number of instances of uncertain

parameters. mG, JG, µFA, µSL and the participation factors BT,FA, BR,FA, BT
T,SL and

BR,SL are the uncertain parameters. The flexible appendages uncertain parameters for

BT and BR are specified in terms of the appendage frame. For all computations, they

must be expressed in the spacecraft body frame. They need to be transformed into

the body frame, which involves (i) rotation of the appendage frame with respect to the

main body frame and (ii) translating the origin to the rigid body centre of gravity. For
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example, for the flexible modes:

BT,nF = RnF •BT,A,nF (4.16)

BR,nF = GA×BT,A,nF + RnF •BR,A,nF (4.17)

The rotation from the appendage frame to the chaser body frame carried out via the

rotation matrix. The rotation matrix is written as

RnF =


1 0 0

0 cosψ −sinψ

0 sinψ cosψ

 (4.18)

where ψ is the uncertain appendage angle. ψ can vary in [00, 3600] and hence the rota-

tion matrix model cannot be linearised by a Taylor’s series expansion with a small-angle

assumption. In order to accommodate for this large variation in ψ, a transformation

is done as described in [112]. The sine and cosine terms may be expressed in terms of

tanψ:

sinψ =
2tanψ2

1 + tan2 ψ
2

cosψ =
1− tan2 ψ

2

1 + tan2 ψ
2

(4.19)

The uncertainty in ψ is reported in the tanψ2 term as follows:

tan
ψ

2
= tan

ψ0

2
+ δψ (4.20)
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where ψ0 is 00 and δψ ∈ [0,+∞[. The sine and cosine terms are then transformed to:

sinψ =
2δψ

1 + δ2
ψ

cosψ =
1− δ2

ψ

1 + δ2
ψ

(4.21)

The uncertainties are required to be normalized such that they vary in ] − 1, 1[. This

is done via two transformations. Firstly, δψ =
δ′ψ

1−δ′ψ
so that δ′ψ varies in the range [0, 1]

and next, δR = 2δ′ψ − 1, where δR varies in the ]− 1, 1[ range.

These transformations upon simplification yield:

sinψ =
δ2
R

1 + δ2
R

cosψ =
−2δR
1 + δ2

R

(4.22)

The rotation matrix in Equation (4.3.4) is therefore written as:


Y1

Y2

Y3

 =


1 0 0

0 −2δR
1+δ2

R
−1−δ2

R

1+δ2
R

0 1−δ2
R

1+δ2
R

−2δR
1+δ2

R



U1

U2

U3

 (4.23)

where U1, U2, U3 are the inputs and Y1, Y2, Y3 are the outputs. In order to formulate

this in the M −∆ form, it is necessary to draw the block diagram interconnection as

before, and choose the internal inputs W and internal outputs Z such that W = ∆Z.

Again, these must be chosen carefully - a poor choice of the internal inputs and outputs

can lead to a large LFT with several occurrences of the uncertainty δ2. For large

complicated models such as the one under consideration, it is important to create LFTs

that are as minimal as possible. This is because, upon interconnection of the LFTs,

these uncertainties can add up to a large number, making the model computationally

intensive. Upon examining the block diagram for this system, four internal inputs
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W1,W2,W3,W4 and four internal outputs Z1, Z2, Z3, Z4 are chosen. The resulting LFT

is shown in Equation (4.26).

 Z

Y

 =

 M11 M12

M21 M22


 W

U

 (4.24)

and

W = ∆Z (4.25)

i.e.



Z1

Z2

Z3

Z4

Y1

Y2

Y3



=



0 0 −1 0 0 1 0

0 0 0 −1 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

−2 0 0 2 0 0 −1

0 −2 −2 0 0 1 0





W1

W2

W3

W4

U1

U2

U3



(4.26)

and



W1

W2

W3

w4


=



δ2 0 0 0

0 δ2 0 0

0 0 δ2 0

0 0 0 δ2





Z1

Z2

Z3

Z4


(4.27)

Equation (4.27) represents the required minimal form of the LFT model. This represen-
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Figure 4.13: Star tracker LFT interconnection

tation is now included in the spacecraft dynamics. Similarly, LFT models are created

for several other systems. We report here one example each of sensors and actuators.

4.3.5 Sensor modelling

The sensor system chosen here is the star tracker. The star tracker is an optical sensor

responsible for measuring the attitude of the SC with high accuracy around all three

spacecraft axes, which is crucial for rendezvous.The star tracker assembly consists of

two star trackers for accuracy as well as redundancy purposes.

This model is similar in structure to the accelerometer. Essentially, the measurement

provided by the sensor must undergo a transformation to account for the misalignment

angles.
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4.3.6 Inclusion of Time Delays

The effects of time delays are important, and need to be considered in the analysis,

particularly in sensors and actuators. A time delay not properly considered has a risk of

computing incorrect control inputs. In this system, the sensor and actuator time delays

are not known with precision and hence are to be considered as uncertain parameters.

In the iGNC framework, they are included in the star tracker, Narrow-Angle Camera

(NAC) and for the thrusters.

The Padé first order approximation [15] is made use of for incorporating time delays.

A time delay of τd seconds enters the system as an exponential term e−τds. The Padé

approximation of the exponential rate term gives:

e−τds =
1− τds

2

1 + τds
2

=
2− τds
2 + τds

(4.28)

This time-delay system is represented in the block diagram in Figure 4.14.

1
s

2
τ d

2
+

−
+

−
U t( ) U t −τ d( )

Figure 4.14: Block diagram representation of the approximated time-delay system.
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Them, the time delay dynamics may be represented by the following state equations:

Ẋ =
−2

τd
X +

4

τd
U (4.29)

Y = X − U

This may be written as the plant Gd(s):

Gd(s) =

 −2
τd
I 4

τd
I

I −I

 (4.30)

where the size of the identity matrices I is given by the number of inputs to the plant.

The uncertain time delay is represented as follows:

τd = τ̄ + rτδτ (4.31)

Notice that there is a singularity in τd in the delay system. This means that the time

delay should necessarily only be modelled for cases that require it, since a zero or a

very low delay value could cause ill-conditioning in the model in 4.30. The M − ∆

representations of each of the matrices is derived and presented in the block diagram

in Figure 4.15.

where

MBτ =

−rττ I rτ
τ I

−4
τ I

4
τ I

 , (4.32)

MAτ =

−rττ I rτ
τ I

2
τ I

−2
τ I

 , (4.33)
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where the size of the identity matrices is given by the number of inputs to the plant. The time delay is 

uncertain, and may be represented as  

d rτ ττ τ δ= +

   

Notice that there is a singularity in 

dτ

 in the delay system.  This means that the time delay should 

necessarily be only modelled for cases that require it, since a zero or a very low delay value could 

cause ill-conditioning. We derive the LFT M-Δ representations of each of the matrices, yielding the 

following block diagram: 
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Figure 4.15: Block diagram representation of the state space matrices with uncertain
time delay included.
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Figure 4.16: Series LFT connection of the approximated delay system to an LFT

and ∆τ = δτI. The delay model is included in series with the plant model (say Gp(s)

with uncertain parameter block ∆p), which is a standard LFT operation, and also leads

to an LFT as in Figure 4.16.

This delay model is then connected to the sensor model, in this case the star tracker

model. The star tracker delay is in the range [100,300]ms, i.e., a nominal value of

200ms with a variability of 100ms. Upon interconnecting the delay LFT model, and

substituting these values, the step response is as follows. A small peak of the order

10−17 is observed in all three input-output channels, which settles in about 0.6 seconds.
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Figure 4.17: Star tracker step response with time delay included

This approximation is acceptable for the purposes of designing a controller.

4.3.7 Actuator modelling

In this section, the reaction wheel LFT modelling is described. The reaction wheel

is used as the actuator for small angle attitude control. The reaction wheel assembly

provides the SC angular momentum due to reaction wheel load , expressed in the chaser

body frame.

As in the previous case, the true response of the star tracker is modelled by multiplying

the observed attitude values by a transformation matrix accounting for the misalign-

ment angles on the mounting frame. This is modelled as follows:

DRW = RRW ∗D′RW (4.34)
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Figure 4.18: Reaction wheel LFT interconnection

with D′RW being a 3× 3 matrix with constant values representing the directions. RRW

represents the uncertain misalignment on the mounting frame, similar to the accelerom-

eter case. This gives an LFT M−∆ model of the same structure as the last two systems,

but with different values in the M matrix. This is shown in Figure 4.3.7.

.

4.4 Linear analysis environment

The above LFT models are useful in control design, and in analysing the effects of spe-

cific subsystems independent of others. The full simplified model for analysis, however,

is created by the consortia and sent to Exeter. The general idea is to create a block

diagram interconnection in Simulink, and then to linearise it using Matlab’s tools. This

is considered to be the design stage analysis, and so only chaser subsystems are con-

sidered. The Simulink interconnection is shown below in Figure 4.19.
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Figure 4.19: Simplified rendezvous model block diagram interconnection in Simulink.

109



Figure 4.20: Creating linearised models and extracting their LFT formulations in Mat-
lab

The linearisation of this plant is then carried out in Matlab. The RC toolbox function

ulinearize linearises a Simulink model consisting of uncertain state space blocks. This

linearisation is done without evaluating the uncertain variables, and so the process is

not affected by uncertainty values or structure. Once the linearised plant is extracted,

its LFT is computed as before, using the lftdata function as in Figure 4.20. The result

is an uncertain state-space system, with 30 inputs and 15 outputs. The uncertainties

present, its system response and detailed performance analysis are presented in the

next chapter.

The analysis in this linear design environment is detailed in Chapter 5. This analysis

is carried out using a combination of classical methods (such as analytical methods

and optimisation methods), as well as the newly developed probabilistic methods. In

the following sections, a performance analysis of the full, high-fidelity nonlinear model

of the rendezvous model is carried out. First, a brief description of this model is

given. Note that this is a black-box system in the true sense, since most of the files

are protected by GMV and cannot be accessed. The access is largely limited to the

uncertain parameter values and output signal values.

4.5 iGNC Real World Model

The high-fidelity real world model used for analysis is described in this section. The

initialisation, set up and analysis is done via GMV’s proprietary software called Guid-

ance, Navigation and Control Development Environment (GNCDE) [115]. GNCDE is

a suite for controller synthesis and analysis, which includes a large library of models of
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Figure 4.21: Block diagram representation of the high-fidelity rendezvous model

spacecraft dynamics, sensors, planetary mechanics and telecommunication.

Specific missions are included in the form of templates [115], whose subsystems, uncer-

tain values or parameters can be modified. The mission template includes nonlinear

models, and is devoted to high fidelity performance assessment activities. The iGNC

mission high-level view of the models is shown below in Figure 4.21. Observe that the

interconnection consists of all relevant models, including the MAV and OS separation,

orbital mechanics of Mars, Earth and Sun1, all sensors and ground communication,

apart from the chaser dynamics.

As a result, a large number of uncertainties are considered in the analysis. Notice

1including effects of all their gravity, which is a significant factor in interplanetary transfer
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that several of the uncertainties are due to thruster misalignment, owing to 6 thruster

assemblies of 4 thrusters each. Every thruster is affected by the misalignment in x−,

y− and z− axes on its mounting frame. The uncertainties considered are shown in the

Table 4.2 below.

Table 4.2: Uncertain parameters in the high-fidelity iGNC simulation model

Uncertainty Description Unit Nominal Value Variation Range

dinit posx m -100 5 [-105; -95]

dinit posy m 0 5 [-5; 5]

dinit posz

Initial relative position

m 0.113 5 [-5.1645; 4.8355]

dinit velx m/s 0.1 0.05 [0.05; 0.15]

dinit vely m/s 0 0.15 [-0.15; 0.15]

dinit velz

Initial relative velocity

m/s 0 0.05 [-0.05; 0.05]

dtotal mass Mass of the SC kg 2300 230 [2070; 2530]

dIxx kg m2 420 20% [336; 504]

dIxy kg m2 -10 20% [-8; -12]

dIxz kg m2 230 20% [ 184; 276]

dIyy kg m2 2330 20% [1864; 2796]

dIyz kg m2 10 20% [8; 12]

dIzz

SC Inertia

kg m2 2040 20% [1632; 2448]

dflex Ixx kg m2 291 20% [232.8; 349.2]

dflex Iyy kg m2 14.6 20% [11.68; 17.52]

dflex Izz

Solar panel inertia

kg m2 306 20% [244.8; 367.2]

dCoGx m 1.57 0.03 m [1.54; 1.6]

dCoGy m 0.006 0.03 m [-0.024; 0.036]

dCoGz

SC centre of mass

m -0.04 0.03 m [-0.07; -0.01]

dBR1 sa 1 x - 36.64 3% [35.54; 37.74]

dBR1 sa 2 y - 0.06 3% [0.0582; 0.0618]

dBR1 sa 2 z - -37.01 3% [-38.12; -35.89]

dBR1 sa 3 x - 3.16 3% [3.0652; 3.2548]

dBR1 sa 3 y - 0.23 3% [0.2231; 0.2369]

dBR1 sa 3 z - 0.03 3% [0.0291; 0.0309]

dBR1 sa 4 x - -0.19 3% [-0.19; -0.18]

dBR1 sa 4 y - 3.74 3% [3.6278; 3.8522]

dBR1 sa 4 z

Rotation participation factors

- 0.02 3% [0.0194; 0.0206]

dBT1 sa 1 y - -0.01 3% [-0.0103; -0.0097]

dBT1 sa 1 z - 6.54 3% [6.3438; 6.7362]

dBT1 sa 2 x - 6.79 3% [6.5863; 6.9937]

dBT1 sa 3 y - -0.04 3% [-0.0412; -0.0388]

dBT1 sa 3 z - 3.11 3% [3.0167; 3.2033]

dBT1 sa 4 z

Translation participation factors

- -0.18 3% [-0.1746; -0.1854]

domega sa1 rad/s 0.903 20% [0.7224; 1.0835]

domega sa2 rad/s 4.419 20% [3.5352; 5.3028]

domega sa3 rad/s 6.767 20% [5.4133; 8.12]

domega sa4

SA frequency

rad/s 6.92 20% [5.5392; 8.3088]

ddamp sa1 - 0.003 0.002 [0.001; 0.005]

ddamp sa2 - 1.003 0.003 [0.001; 0.005]
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ddamp sa3 - 2.003 0.004 [0.001; 0.005]

ddamp sa4

SA damping

- 3.003 0.005 [0.001; 0.005]

dslosh sm k - 2.698 0.1349 [2.5637; 2.8336]

dslosh sm k 2
Slosh stiffness coefficient

- 4.198 0.2099 [3.988; 4.4078]

dslosh sm c - 0.01 0.0005 [0.0095; 0.0105]

dslosh sm c 2
Slosh damping coefficient

- 0.01 0.0005 [0.0095; 0.0105]

dslosh sm mass kg 180 2 kg [178; 182]

dslosh sm mass 2
Slosh mass

kg 280 3 kg [277; 283]

dacc1 Misalign x rad 0 0.0005 [-0.0005; 0.0005]

dacc1 Misalign y rad 0 0.0005 [-0.0005; 0.0005]

dacc1 Misalign z rad 0 0.0005 [-0.0005; 0.0005]

dacc2 Misalign x rad 0 0.0005 [-0.0005; 0.0005]

dacc2 Misalign y rad 0 0.0005 [-0.0005; 0.0005]

dacc2 Misalign z

Accelerometer misalignment angles

rad 0 0.0005 [-0.0005; 0.0005]

dstr1 x rad 0 0.000262 [-0.00026; 0.00026]

dstr1 y rad 0 0.000262 [-0.00026; 0.00026]

dstr1 z rad 0 0.000262 [-0.00026; 0.00026]

dstr2 x rad 0 0.000262 [-0.00026; 0.00026]

dstr2 y rad 0 0.000262 [-0.00026; 0.00026]

dstr2 z

Star tracker misalignment angles

rad 0 0.000262 [-0.00026; 0.00026]

dgyr1 x rad 0 0.0005 [-0.0005; 0.0005]

dgyr1 y rad 0 0.0005 [-0.0005; 0.0005]

dgyr1 z rad 0 0.0005 [-0.0005; 0.0005]

dgyr2 x rad 0 0.000524 [-0.0005; 0.0005]

dgyr2 y rad 0 0.0005 [-0.0005; 0.0005]

dgyr2 z

Gyroscope misalignment angles

rad 0 0.0005 [-0.0005; 0.0005]

25× dTHR x Thruster misalignment angles rad 0 0.0052 [-0.0052; 0.0052]

25× dTHR y Thruster misalignment angles rad 1 0.0053 [-0.0052; 0.0052]

25× dTHR bias Thruster magnitude bias - 0 0.03 [-3; 3]

25× dTHR disp x m 0 0.003 [-0.003; 0.003]

25XdTHR1 disp y m 0 0.003 [-0.003; 0.003]

25XdTHR1 disp z

Thrusters displacement error

m 0 0.003 [-0.003; 0.003]

dRW misalign x deg 0 0.3 [-0.3; 0.3]

dRW misalign y deg 0 0.3 [-0.3; 0.3]

dRW misalign z

Reaction wheels mounting angles

deg 0 0.3 [-0.3; 0.3]

dcss bias alpha rad 0 0.00026 [-0.00026; 0.00026]

dcss bias beta
CSS bias angle

rad 0 1.00026 [-0.00026; 0.00026]

ddop bias orb - 0 0.333 [-0.333; 0.333]

ddop bias os
OS random bias

- 0 0.333 [-0.333; 0.333]

ddop aging orb 0 0.333 [-0.333; 0.333]

ddop aging os
OS aging random bias

- 0 0.333 [-0.333; 0.333]

4.6 Conclusions

This chapter presents the modelling of the rendezvous between the earth return vehicle

(chaser spacecraft) and the orbiting sample in the MSR mission. Some preliminaries
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about the mission, frames of reference and architecture of the mission were first dis-

cussed. The chaser spacecraft simplified models and their LFT formulations were next

presented, with the dynamics of the spacecraft, accelerometer, star tracker (with a time

delay included) and reaction wheel LFT models as examples. Validation of the LFTs

was then discussed for both dynamical and static gain models. These LFT models are

primarily used for control synthesis, and are deliverables to the project consortium. The

simplified rendezvous model considered in the robust performance analysis in Chapter 5

does not include LFTs, and is created by linearising a Simulink uncertain block diagram.

The real world high-fidelity rendezvous model framework used in the study was then

described. It consists of a complex set of interconnected models, and includes all the

systems and subsystems involved in the rendezvous process. The simplified rendezvous

model and the high-fidelity model are analysed using robust performance techniques in

the following chapter.
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Chapter 5

Performance Analysis of the

Autonomous Rendezvous System

In this Chapter, the robust performance analysis of the autonomous rendezvous mod-

els developed in Chapter 4 is detailed. Two stages of analysis are considered in the

study. First, a rigorous design stage performance analysis is carried out using the CE-

based method, alongside optimisation-based methods and µ-analysis. Such an anal-

ysis ensures that the controller requirements are satisfactorily met within the control

synthesis environment first, before proceeding to costly high-fidelity analyses. Subse-

quently, the robust performance of the iGNC high-fidelity FES model is assessed using

optimisation-based methods in Section 5.5. In both stages of the analysis, the critical

Terminal Rendezvous and Docking Control (TRDC) mode is considered.

Typically, the validation can guide controller refinements, which can be conveniently

made at the design stage. The objectives of this study are:

� to assess the properties of degraded performance in the closed loop autonomous

rendezvous linearised system in the presence of the design uncertainties, viz.,
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– to compute the µ- based robust performance margins,

– to assess the worst case performance,

– to ascertain if robust performance is achieved,

– to estimate the probability associated with the worst case (in order to quan-

tify the conservatism of the computed worst case performance),

– to identify any uncertain parameters that drive the performance more than

others, and

– to generate the probability profile of performance discussed in Chapter 3,

and to assess the probabilistic robust performance of the system.

� to determine the efficacy of CE by comparing its results with those of a mature

optimisation method (DE) and a traditional analytical technique (µ-analysis).

� to determine the robust performance of the designed controller on the high-fidelity

FES model of the autonomous rendezvous.

The first two items are considered in the sections starting from 5.1, while the third is

addressed in Section 5.5. To achieve the first two objectives, the optimisation tech-

nique DE, the analytical technique µ-analysis, and the probabilistic technique CE are

employed. Theoretical and implementation details of these methods are presented in

Chapters 2 and 3. Since the quantities of interest are the worst case performance and

the associated probability, it is expected that these chosen techniques complement each

other.

This chapter is structured as follows: a brief description of the model and the controller

is first presented in section 5.1. The two performance objectives — the sensitivity

and complementary sensitivity functions — and the uncertain parameters considered

in the analysis are discussed in section 5.2. The results of the analysis process are
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then detailed for the sensitivity function in section . Based on findings of the study,

section 5.3.2 proposes an integrated template for the analysis of spacecraft systems,

particularly those that are linear. This template is followed for the complementary

sensitivity function and the results presented in Section 5.3.3. Some interpretations of

the results are discussed. This chapter also reports results of an optimisation-based

performance analysis conducted on the high fidelity model, and states some of the

challenges involved in the analysis of a model of this scale.

5.1 iGNC Model Description

Prior to employing the analysis techniques, it is necessary to understand the plant and

controller to be analysed, the uncertain parameters involved, and the performance func-

tions. As is standard in V&V , only preliminary details of the plant and controller are

provided, since they constitute “black boxes” for the purposes of analysis [116]. Since

V&V traditionally requires there to be a clear separation between the model synthesis

and analysis activities, the treatment is superficial. The simplified autonomous ren-

dezvous closed loop system is shown in Figure 5.1. The plant G(s) consists of the

chaser dynamics. Its outputs Y consists of a 3 dimensional attitude vector α and a 3

dimensional position vector x. The term Ym are the measured outputs measured by the

sensors i.e., the estimated attitude and position. The signal vector R constitutes the

reference forces and torques to be followed, and is computed by two separate guidance

algorithms for attitude and translation. The guidance loop typically does not include

the effects of perturbations. The controller K(s) computes the error between the refer-

ence and the measured signal, and generates a control command U consisting of control

torques and control forces. Noise signals enter the closed loop system, usually via sen-

sor measurements. Effects of external disturbance forces and torques are also included

in the loop. The designed K(s) needs to to ensure good performance in the presence
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of these disturbances, noise signals and in the presence of modelling uncertainties.

Controller 
K(s) 

Plant 
G(s) 

R 

dist 

noise 

U

Ym
- 

+ 

+ 

+ 

Y 

Figure 5.1: Block diagram showing the linearised autonomous rendezvous closed loop
system

5.1.1 Linearised Rendezvous Model

The details of the MSR mission description and the development of the dynamical

models of autonomous rendezvous and docking are presented in Chapter 4. Several of

the dynamical systems involved in the RvD problem are inherently nonlinear. These

are to be linearised in order for robust controllers to be developed using principles

of linear control theory. The linearisation of these nonlinear systems is performed by

industry partners GMV in an informed manner, such that the effects of the dynamics

are preserved, but the equations are linear and suitable for linear systems synthesis and

analysis. The general methodology employed by GMV is shown in Figure 5.2.

The resulting linearised models are interconnected to yield the plant, which is a 6 degree

of freedom coupled dynamics with flexible modes and fuel sloshing modes included.

There exists a coupling between the position and attitude due to the effects of flexible

modes and fuel sloshing modes. In addition, there exists a kinematics coupling which

becomes particularly relevant during the TRDC mode, when the spacecraft size is no
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Figure 5.2: Procedure for linearisation of the iGNC model followed by GMV

longer negligible with respect to the distance from the Target. The resulting plant is

an uncertain 6-input, 6-output linear system with 69 states and 14 uncertainties. The

inputs are the 3×1 torque vector in the chaser body frame TC , and the 3×1 force vector

in the target orbital frame FT . The outputs of G(s) are the 3 × 1 estimated chaser

attitude vector expressed in the inertial frame (J2000 earth centred inertial frame) αC ,

and the 3× 1 relative position expressed in the target orbital frame xCT . The singular

value plot of the plant w.r.t. frequency is shown in Figure 5.3. The frequency region

from about 10−1.5 to 101.5 rad/s reflects problematic regions, possibly attributable

to flexible mode and fuel sloshing dynamics. Of particular importance are the peaks

above 0dB, at approximately 10−1 rad/s, as they reflect system gains greater than

1 in absolute terms. The effect of uncertainties may be particularly detrimental in

these frequency regions, and they must therefore be studied carefully. The nominal

plant’s poles and zeros are shown in Figure 5.4. All the poles are on the left hand

side of the imaginary line, and so the nominal system is stable. Note that some of

the poles lie close to the imaginary axis, which could mean that certain disturbances

or uncertain parameter values may cause the poles to shift to the right hand side,

implying instability. The SISO gain margin is just 2.46dB in the 5th input to 5th

output direction, and 3.13dB from the 6th input to the 6th output, further reflecting

this issue. An effective robust controller should not only improve stability margins for
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the nominal plant, but should ensure that performance is guaranteed even under the

influence of uncertainty.
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Figure 5.3: Singular values of the linearised plant

5.1.2 Controller

The controller K(s) considered is for the critical TRDC mode, which was made avail-

able by TASF. The TRDC mode is activated during the final forced control leading

up to docking of the chaser spacecraft with the sampling cannister. K(s) is a thruster

based, 6 degree of freedom forced control for both the position and attitude. It is a

H∞ design in a single input single output (SISO) structure, with three channels each

for translation and attitude. The singular values of the controller are shown in Figure

5.5.

The controller design does not account for attitude-position coupling due to propellant

motion in the tanks. The controller requirements for the TRDC mode are stringent,

and are expressed as follows:

� robustness to uncertainty on chaser spacecraft parameters (centre of mass, iner-
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Figure 5.4: Pole-zero map of the linearised plant

tia),

� robustness to effects of flexible appendages and fuel sloshing on attitude and

translation, and

� attenuation of exogenous disturbance.

As stated in chapter 2, the focus is on robust performance requirements. Although

stability is critical, often performance degradation occurs before the onset of instability.

Thus it is vital to study the degradation of performance, and the uncertain parameter

values responsible for it.

5.1.3 Uncertain Parameters

This section lists the design uncertainties considered in the controller synthesis. These

will be considered in the simplified analysis, thus verifying that the controller achieves

the objectives it was designed to. These uncertain parameters are shown in Table
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Figure 5.5: Singular values of the controller

5.1, along with their names and physical meaning. In the interest of readability, the

parameters are not referred to by their names in the sequel. Instead, δj is used, where

j indexes the parameter.

In this work, CE and DE implementations consider the parameters to be distributed

according to a truncated Gaussian distribution with a mean 0, and a standard deviation

0.33. Such a selection ensures that the 3-σ values of the normal distribution fall at

the [+1,-1] truncation bounds. This ensures that the parameter space in [+1,-1] is

sufficiently explored, yet the space is largely Gaussian in nature.

5.2 Performance Objectives

The performance objectives are chosen such that they encapsulate the TRDC controller

objectives enumerated in section 5.1. Disturbance rejection and reference tracking in

the frequency domain are associated with the sensitivity function S and the comple-

122



Table 5.1: iGNC design uncertain parameters

Uncertain
Parameter

Parameter Name Description

δ1 dBR sa y mode 1 Rotational participation along y−axis

δ2 dBT sa x mode 1 Translational participation along x−axis

δ3 dIxx SA Inertial participation along x−axis due to solar arrays

δ4 dIxx body Inertia of central body along x−axis

δ5 dIyy SA Inertial participation along y−axis due to solar arrays

δ6 dIyy body Inertia of central body along y−axis

δ7 dIzz SA Inertial participation along z−axis due to solar arrays

δ8 dIzz body Inertia of central body along z−axis

δ9 dfreq sa mode 1 Natural frequency of first mode of solar array

δ10 dmass Mass of the spacecraft

δ11 dslosh mass sm1 Fuel slosh mass in tank 1

δ12 dslosh mass sm2 Fuel slosh mass in tank 2

δ13 dslosh stiffness sm1 Fuel slosh stiffness constant in tank 1

δ14 dslosh stiffness sm2 Fuel slosh stiffness constant in tank 2

mentary sensitivity function T [15], as already stated in Section 2.3. The sensitiv-

ity function (sometimes also called the sensitivity matrix)[24] is the transfer function

from the disturbance to the output, given by S = (I + G(s)K(s))−1, and the com-

plementary sensitivity function is the transfer function from the noise to the output

T = G(s)K(s)(I + G(s)K(s))−1. In the MIMO sense, the maximum singular value

of the sensitivity function describes the disturbance rejection ability of the closed loop

system (recall that the maximum singular value is a generalisation of SISO gains, and

gives the maximum gain in any input direction [15]). This measure needs to be assessed

in the presence of uncertainty. Note that disturbance rejection is particularly crucial

when the control is thruster based (such as in the TRDC control mode), since such

controllers are more subject to thrust magnitude and direction errors (due to distur-

bance torques from the environment).

The criteria are defined by the iGNC project industrial consortium to be S̄v(S) < 6dB

and S̄v(T ) < 6dB. The criteria are in keeping with the industry standard, and

corresponds to a gain that is approximately 2 (interpreted as a doubling in magni-

tude from disturbance to outputs). The performance criterion is formally stated as
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J = S̄v(S) < 6dB. A probabilistic performance criterion is also formulated, as in

Equation (2.23). The criterion is P [J ≥ 6dB] < 10−6.

5.3 Results of the Analysis

Having defined the performance function J(δ) and the uncertain parameters δ to be

considered, what follows is an account of the performance analysis procedure and the

results obtained. Each result eventually builds towards an integrated approach to

performance analysis of the linearised iGNC system. The procedure consists of imple-

menting algorithms described in chapters 2 and 3. All implementations are done in

Matlab version 8.2 on a 64-bit Intel Core-i7 computer with 8 gigabytes of RAM.

5.3.1 Sensitivity Function

The verification process for the sensitivity function S is commenced by observing its

singular value plot w.r.t frequency (obtained using the Matlab function sigma) shown

in Figure 5.6. The blue lines show all the singular value responses obtained, while the

green dashed line shows the response corresponding to the nominal S function, whose

peak singular value is S̄v(S(δ)) = 4.658dB at 0.1528rad/s, and the peak singular value

over 100 random samples of S is 5.423dB, which occurs at 0.1239rad/s. It is observed

here that the frequencies lying in the range 10−1 − 10−1.2 are particularly important,

as indicated by Figure 5.6, since the response in this region is close to the red 6dB

line. Figure 5.7 shows this frequency range in further detail, where it may be observed

that although there is a distinct peak at 0.1236rad/s, other frequency points in the

vicinity also have high responses. This is important because certain combinations of

uncertainty parameters can cause the response to grow high in the regions to the right
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of the observed peak. It is noteworthy that this region corresponds directly to the

problematic frequency region in the open loop plant shown in Figure 5.3, with singular

value peaks above 0dB .
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Figure 5.6: Singular values of the sensitivity function

Having had a preliminary understanding of the performance function behaviour, it is

desired to rigorously determine its worst case value, and to check if the 6dB threshold

is respected for all combinations of the uncertain parameters. With this objective, an

optimisation-based analysis is set up using the DE algorithm available in the Worst

Case Analysis Toolbox - II (WCAT-II), which has been successfully used to in worst

case analysis [68]. DE is observed to have excellent capabilities in performance analysis

of spacecraft systems [11] [18] [72]. The principle and working of DE are discussed

in chapter 2. The DE run is set up with the algorithmic parameters listed in Table

5.2, which are originally suggested in [75]. With the chosen population size and max-

imum iterations allowed, the total number of evaluations of the performance function
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Figure 5.7: View showing peak singular values of the sensitivity function

Table 5.2: DE algorithmic parameter values used in the analysis

DE Parameter Parameter Value

Population size 25

Maximum iterations 100

Crossover ratio 0.8

Step size 0.8

is 100× 25 = 2500, while a single performance evaluation takes approximately 0.239s.

Therefore, the total time taken for the run is about 10 minutes.

This DE optimisation run resulted in a worst case performance value J∗DE = 5.6413dB.

This value, higher than the one obtained from the singular value plot but still lower

than the 6dB threshold, shows that the designed controller achieves robust performance

in terms of disturbance rejection to the design uncertainties. The worst case uncertain

parameter combination ∆∗DE obtained is shown in Table 5.5. Note that the worst case

parameter combination includes values pushed towards the extremes [-1,1], e.g. param-
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eters δ11 and δ12. However it also includes parameters that lie towards the middle of

the parameter space, e.g. δ6. This supports the reasoning that rigorous verification and

validation approaches are necessary, since examining only combinations of the extreme

values of the uncertainties (such as in vertex analysis [117] [56]) would not give an

accurate solution.

The evolution of the performance values as the DE iterations progress is shown in

Figure 5.8. The solid red lines show the maximum cost values obtained among the

population in each iteration, while the blue dashed lines show the mean values of the

performances obtained in the population. It is observed empirically that a close con-

vergence between the mean value plot and the maximum value plot indicates that the

optimisation solution has reached close to the true maximum. In addition, the jumps

in the maximum cost reduce to relatively small increments after the first 300 evalu-

ations, which also suggests that the optimisation has reached a good estimate of the

true maximum, beyond which there is only minor improvement possible. Therefore,

the analysis strongly indicates that the worst case performance is smaller than 6dB

in the presence of the design uncertainties. Proceeding further in the analysis, it is

now desired to find the probability associated with the performance, particularly the

worst case performance value. A CE-based analysis is carried out. The concepts of

probability profile of performance and the CE algorithm are introduced in Chapter 3.

The algorithmic parameters used in the run are shown in Table 5.3, and CE is run

in the adaptive mode. A large number of maximum CE iterations tmax is allowed in

this case as each performance function evaluation takes only 0.2 seconds. Recall that

CE by default evaluates the performance function N + t ∗ N1 times, where t is the

number of iterations taken to arrive at an optimal estimate of the mean and standard

deviation. Thus, at every value of γ, the minimum allowed evaluations is 1500 (with

t = 1) and a maximum of 16000 (with t = 30). The rarity factor is set at ρ = 0.1,
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Figure 5.8: Results of the DE optimisation run: evolution of performance values with
the iteration count

so that t > 1 only for those performances that have a probability of occurrence lower

than 0.1 The threshold standard deviation value means that the standard deviation of

each uncertain parameter is at most 10−6, ensuring that a very tight IS distribution is

arrived at, particularly for rare events.

The performance levels γ at which the probability is to be estimated are chosen from

4.2dB to 5.7dB. A two-level step size strategy is adopted, with a step-size of 0.1dB

from 4.2dB to 5.4dB, and a finer step-size of 0.05dB thereafter in the more critical

performance range (i.e., performances close to the worst case found by DE). Recall that

the nominal performance value is 4.66dB, however, in this system it has been observed

that with certain combinations of uncertain parameters, the performance function value

reduces from the nominal value γnom. Hence, the initial performance level is set below

γnom, at 4.2dB.
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Table 5.3: CE Algorithmic Parameter Values

CE Parameter Parameter Description Parameter Value

N Evaluations at each CE cycle 500

N1 Final IS run evaluations 1000

ρ Rarity factor 0.1

tmax Maximum number of CE iterations allowed 30

σ∗ Threshold standard deviation 10−6

Table 5.4: Probabilities associated with various performance levels in the linearised
iGNC model.

γ [dB] P [J(δ) ≥ γ] Evaluations

4.3 1 1500

4.4 1 1500

4.5 0.983 1500

4.6 0.771 1500

4.7 0.394 1500

4.8 0.119 2000

4.9 0.031 1500

5 0.019 1500

5.1 0.010 2000

5.2 0.007 1500

5.3 0.004 1500

5.4 0.001 1500

5.45 2.837*10−3 1500

5.5 3.723*10−4 2000

5.55 8.046*10−6 2000

5.6 7.822*10−09 2500

5.65 0 16000

5.7 0 1500

Remark: In this section, the terminology is modified, to enable convenient and concise

discussion of the results. The estimated probability found by CE is simply referred to as

the probability. The author assumes that the non-deterministic sense of the technique

has been established to a sufficient extent in Chapter 3.

Figure 5.9 shows the probability profile of performance generated by CE, i.e., P [J(δ) ≥

γ] plotted against γ. The precise values of probability associated with each performance

level are shown in Figure 5.4. The following interpretations are now derived:

� The probability remains 1 for γ values up to 4.4 dB. This implies that the peak
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value of singular value is always greater than 4.4dB, which corresponds to an

absolute gain of about 1.66 from the disturbance to the plant output.

� As γ increases, the associated probability steadily falls from 0.983 at γ = 4.5dB

to 0 at γ = 5.65dB, implying that the maximum possible performance does not

exceed 5.65 dB. This supports the result found by DE, with a worst case value of

J∗DE = 5.6442dB.

� Interestingly, the probability associated with the nominal performance value 4.66dB

is not 1 as expected, showing that some uncertain parameter combinations may

in fact reduce performance from the nominal performance.

� The probability associated with γ = 5.6 is of the order 10−9, which roughly is a

one in one billion likelihood that a performance greater than 5.6 is achieved. This

implies that the worst case performance lies between 5.6dB and 5.65dB, which is

indeed confirmed by the worst case found by DE.
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Figure 5.9: Probability profile of performance generated by CE

Before proceeding to a discussion on the insights that may be obtained from the PPoP,
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it is important to investigate the performance of the CE-based algorithm over multiple

runs. Therefore, the CE algorithm run is repeated ten times, preserving the parameter

values in Table 5.3. Any changes in the estimated probability P [J(δ) ≥ γ] at a given

level of γ are therefore due only to the importance sampling distribution computed by

CE (and the inherent randomness associated with sampling from such a distribution).

The estimated probabilities P [J(δ) ≥ γ] computed over these ten runs are plotted in

the form of errorbars as in Figure 5.10. The largest errorbars (implying the highest vari-

ations in the results) correspond to the decay region introduced in Chapter 3. Indeed,

the largest deviation occurs at γ = 4.7dB, with the estimated probability varying in the

range [0.365,0.417]. Such variations are expected in the decay region, since the impor-

tance sampling distribution found by CE at these γ values has a fairly high standard

deviation, due to which the selected samples cover a large area of the parameter space.

In the current study, the critical region of the PPoP (referred to in Chapter 3 as the

performance values corresponding to probabilities lower than 0.1) assumes importance.

Notice that the errorbars diminish in size as γ becomes rarer. For example, the error

between the maximum and minimum values found at γ=5.6 is 4.34×10−08. This con-

firms that CE is highly accurate for estimating probabilities associated with rare-events.

Returning now to discussing the insights that may be gained from the PPoP, Figure 5.9

is revisited. As discussed in Chapter 3, the PPoP can be a useful tool to gain insight into

the probabilities associated with various performance levels. However, in the current

form of the probability profile of performance, the drawing of such inferences is limited

only to the specific performance levels γ considered in the CE analysis, which leaves

gaps in the plot. However, it is infeasible to run CE for very small step sizes in reality.

Therefore, in order to enhance the capabilities of the PPoP, a curve fitting is done

using a Piecewise Cubic Hermite Interpolating Polynomial, also known as ‘PCHIP’.
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Figure 5.10: Error bars of the probability profile of performance generated by CE over
ten runs

Matlab’s Curve Fitting Toolbox [118] is utilised for this, and the resulting probability

profile of performance fitted curve is shown in Figure 5.11. Such a curve is suitable

for making inferences about performance values and the associated probabilities. For

instance, the probability associated with γ = 4.75dB is 0.26. Conversely, it is possible

to infer the performance associated with a given probability. For example, a probability

of 0.3 is associated with a performance of 4.735dB. In other words, roughly 30% of the

sampled parameters result in a performance value greater than 4.735dB). This affords

an intuitive understanding of a system’s performance. Recall that this curve is similar to

the PPoP curve predicted in Figure 3.3. Adhering to the terminology, the performances

from 4.55dB up to 4.8dB corresponds to the decay region, while performances beyond

4.8dB corresponds to the critical region. Since all of these regions are well within the

6dB bound, it is clear that both deterministic and probabilistic robust performance is

guaranteed.

The final importance sampling run evaluates the S performance function N1 = 1000
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Figure 5.11: Curve fit of the probability profile of performance

times, with the normal distribution with mean µT and standard deviation σT . The

performance values obtained at each value of performance level γthe performance in-

creases as γ increases, while the variance of these performances reduces. This indicates

the final IS distribution f(µT , σT ) gets closer to the optimal worst case distribution as

γ progresses closer to the worst case performance. At γ = 5.6 and γ = 5.65, the cost

converges to a value of 5.627dB over all 1000 evaluations, indicating that a very tight

optimal distribution is arrived at by CE. This final value is termed the CE-based worst

case performance J∗CE = 5.627dB. The performance values at each IS run are scattered

and shown in Figure 5.12, which shows how CE effectively reduces their variance.

A note on the number of evaluations: at each performance level the CE algorithm only

evaluates the performance function 1500-2500 times, due to the adaptive mode of CE.

It is only at γ = 5.65dB that the maximum allowed evaluations (500*30+1000) are car-

ried out, as the mean and standard are refined aggressively to seek an IS distribution

that would obtain a performance value greater than 5.65dB. Since such a distribution

does not exist (at least within a standard deviation of 10−6), the final probability of
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Figure 5.12: Performance values found at each CE performance level

zero was obtained with a high confidence. The current run took nearly 2 hours con-

sidering all γ values, which is reasonably low. If the system under consideration is

computationally intensive, it is recommended for tmax to be lower. Generally speaking,

this is the exploration vs exploitation issue faced by most optimisation methods. A

preliminary understanding of the problem complexity can guide tmax selection.

Having gained information on the performance, it is of interest to understand the un-

certain parameter regions associated with poor performance. Figure 5.13 shows the

evolution of the final mean and standard deviation values arrived at by CE as γ in-

creases. Recall that these mean and standard deviation values (µT and σT respectively)

specify the distribution used for the subsequent IS run. Therefore, they are indicators of

the uncertain parameter regions which yield various performance levels γ. It is appar-

ent that towards the higher performance values, the standard deviations σT reduce to

very small values (necessarily lower than σ∗ = 10−6, as set). Thus, the IS distributions

are extremely narrow, with a large peak at the corresponding mean values. Conse-

quently, µT at the worst case performance γ∗ may be considered as the CE worst case

134



parameter values δ∗CE The uncertain parameter values are listed in Table 5.5. Again,

note that there are some parameters that are pushed towards ±1, and others that have

intermediate values.
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Figure 5.13: Final mean and standard deviation values vs γ

These initial runs of DE and CE provide useful information, which will be revisited

shortly. In the next part of the section, the robust performance analysis problem

is approached from a more traditional, analytical viewpoint using µ-analysis, which

has been alluded to in the previous chapters. Since the sensitivity function of the

linearised RvD plant is linear, µ-analysis is readily applicable. The implementation

presented here uses µ-analysis to study robust performance, and is performed using

Matlab’s Robust Control Toolbox. The function robustperf is used to carry out the

analysis, which computes upper and lower bounds on the robust performance margin

[50]. It also provides information on the critical frequency and the uncertain parameter

values associated with the worst case performance. A code snippet showing the robust
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performance function call is shown in Figure 5.14.

Figure 5.14: Code snippet showing µ-analysis based robust performance

In order to make the system S suitable for µ-analysis, the performance objective must

be incorporated, which is done by introducing a diagonal scaling matrix Ws = 1/6dB ∗

I6 where I6 represents the 6 × 6 Identity matrix. Thus the system is Ws(I + KG)−1.

Note that the full block complex uncertain matrix often included in robust performance

studies is included implicitly in Matlab’s robustperf function [50].

Results of the µ-analysis are shown in terms of the upper and lower bounds of the robust

performance margin in Figure 5.15. The upper bound of the robust performance mar-

gin is 1.0754 and the lower bound is 1.006, at a critical frequency of 0.124 rad/s. The

robust performance margin indicates the minimum amount of (normalised) uncertainty

in the system for performance to degrade beyond the threshold. This would mean that

having these margins lower than 1 would cause an uncertain system to degrade beyond

the threshold, at smaller uncertainty values. Since in this analysis, both the upper

and lower bounds are greater than 1, this effectively guarantees robust performance.

The performance margin is guaranteed to be below the upper bound, and above the

lower bound performance. In other words, the S loop can tolerate between 100.6% and

107.54% of the modelled uncertainty. The algorithm also returns an uncertain parame-

ter vector associated with poor performance. A model uncertainty of corresponding to

107.54% can lead to a scaled gain of 0.94. This combination of uncertain parameters is

listed in Table 5.5. Substituting this uncertainty in the sensitivity function, the worst
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case performance is found to be 5.63dB (≈0.94*6dB).
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Figure 5.15: Upper and lower bounds found by the slow method of µ-analysis

Understanding how these three powerful techniques complement each other also in-

volves comparing the resulting worst case uncertain parameter values. In addition,

this exercise may also provide information on driving uncertainties. Table 5.5 shows

the worst case uncertain parameters as given by DE, CE and µ-analysis. These val-

ues are shown in the bar plot in Figure 5.16. It is observed that there are striking

dissimilarities between the obtained worst case values of several uncertainties in their

magnitudes, and even in the directions between the analyses. This could suggest the

following possibilities:

� The non-matched uncertain parameters do not impact the performance function

greatly.

� Separate regions exist in the parameter space that yield poor performance.

� One or more of the methods is not effective in finding the true worst case param-
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Table 5.5: Worst case uncertain parameter values and performances obtained by the
DE, CE and µ analyses

Uncertainty Uncertainty Name δ∗DE δ∗CE δ∗
µ

δ1 dBR sa y mode 1 -0.4969 0.1040 0.07969

δ2 dBT sa x mode 1 -0.5538 0.1204 0.03766

δ3 dIxx SA -0.2638 -0.1007 0.1667

δ4 dIxx body 0.6757 -0.2983 -0.0069

δ5 dIyy SA 0.6361 0.1378 -0.5730

δ6 dIyy body 0.7609 -0.9939 -1.0930

δ7 dIzz SA -0.3128 -0.7293 0.04173

δ8 dIzz body -0.7666 0.07266 0.2581

δ9 dfreq sa mode 1 0.8354 -0.1564 -0.1179

δ10 dmass -0.2985 -0.1555 1.0930

δ11 dslosh mass sm1 -0.9716 -0.9954 -1.0930

δ12 dslosh mass sm2 0.9213 0.1379 1.0930

δ13 dslosh stiffness sm1 0.9877 0.9991 1.0930

δ14 dslosh stiffness sm2 -0.8112 -0.6968 -1.0930

Worst case values [dB] 5.6413 5.6266 5.631

Frequency [rad/s] 0.125 0.125 0.124

eter combinations.

Based on the first point, it is postulated that only a subset of the uncertainties drive

the performance to a large extent. It may be tempting to conclude prima facie that

only the parameters δ11, δ12, δ13 and δ14 drive the performance the most, since these

uncertainties match in their directions across the 3 analysis methods. However, further

study is required to accurately determine which of these parameters drive the perfor-

mance.

A local sensitivity analysis is therefore carried out to assess the impact of each of the

design uncertainties on the performance function. The analysis is done by fixing the

parameter vector at the worst case value1. Then, each parameter is varied one at a

1A local sensitivity analysis, i.e., with parameters taken one at a time, is usually insufficient to
discover relationships between parameters and the performance function. Global sensitivity analysis is
carried out when higher accuracy is needed, and will be considered in future work.
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Figure 5.16: Comparison of the worst case parameter values found by DE, CE and
µ-analysis.

time from its minimum to its maximum value (i.e., from -1 to +1 in steps of 0.1), and

the costs are recorded and plotted. This exercise is carried out for the following cases:

� DE worst case parameter value δ∗DE

� CE worst case parameter value δ∗CE

Table 5.6 presents the results of the sensitivity analysis in terms of the maximum per-

formance (or cost), the minimum cost, and the relative percentage difference between

the two, which is calculated as |MaximumCost−MinimumCost|
|MaximumCost| ∗100. Figure 5.17 shows the

trend followed for the DE based sensitivity analysis.

Clearly, some parameters cause a far greater variation in the performance than others.

If a parameter causes at least a 1% variation in cost, it is considered to be a driving

parameter. The blue highlighted rows in the table show the parameters for which the
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Table 5.6: Sensitivity analysis results showing driving uncertainties

Parameter Maximum Cost Minimum Cost % Variation
DE CE DE CE DE CE

δ1 5.6413 5.6266 5.6412 5.6266 0.0026 2.75e−4

δ2 5.6413 5.6266 5.6413 5.6266 2.78e−4 2.71e−5

δ3 5.6420 5.6266 5.6346 5.6266 0.1307 0.0699
δ4 5.6420 5.6269 5.6411 5.6260 0.0156 0.0174
δ5 5.6413 5.6269 5.6413 5.6263 1.14e−7 0.0107
δ6 5.6413 5.6267 5.527 5.5433 2.067 3.5602
δ7 5.6417 5.6268 5.6406 6.6255 0.0204 0.0233
δ8 5.6419 5.6266 5.525 5.5686 2.1064 1.0414
δ9 5.6414 5.6266 5.6390 5.6263 0.0421 0.0050
δ10 5.6414 5.6268 5.6319 5.6186 0.1686 0.1774
δ11 5.6419 5.6267 5.4801 5.4016 2.9519 4.1674
δ12 5.6413 5.6265 5.5485 5.5641 1.6725 1.1212
δ13 5.6425 5.6267 4.4852 4.8135 25.8006 16.8922
δ14 5.6412 5.6265 4.6898 5.1173 20.2872 9.9515

Table 5.7: Driving uncertain parameters for the sensitivity function

Driving Uncertainty Uncertainty Uncertainty Name

δS1 δ6 dIyy body

δS2 δ8 dIzz body

δS3 δ11 dslosh mass sm1

δS4 δ12 dslosh mass sm2

δS5 δ13 dslosh stiffness sm1

δS6 δ14 dslosh stiffness sm2

% variation is 1% in both CE and DE. It is interesting to note that these do not exactly

match the initial hypothesis, since δ6 and δ8 also drive the performance in addition to

δ11, δ12, δ13 and δ14. Table 5.7 lists these driving uncertainties. The driving uncer-

tainties are represented as δS1 -δS6 , where the superscript S, stands for the sensitivity

function. It is not necessary for the driving uncertainty set δS to drive other cost func-

tions.

The driving uncertainties obtained are sensible from a physical perspective in the sys-

tem, since the sloshing dynamics, which constitute 4 of the 6 driving uncertainties,

have the most impact on the sensitivity function. It is also noteworthy that the param-

eters δ13 and δ14, which are the slosh stiffness parameters, drive the performance the

most, as evidenced by Figure 5.17 and Table 5.6. This implies that under high effects

140



4

5

δ
1

4

5

6

δ
2

4

5

δ
3

4

5

δ
4

4

5

δ
5

4

5

δ
6

4

5

δ
7

4

5

δ
8

4

5

δ
9

4

5

δ
1

0

4

5δ
1

1

4

5

δ
1

2

-1 -0.5 0 0.5 1
J(δ)

4

5δ
1

3

-1 -0.5 0 0.5 1
J(δ)

4

5

δ
1

4

Figure 5.17: Sensitivity analysis with DE worst case values

of sloshing, the gain from disturbance to plant input is maximised. Interestingly, the

behaviour of δ13 and δ14 appear to be in opposite directions, i.e., the stiffness param-

eter for both of the tanks affect S in opposite directions. One possible explanation

for this would be spacecraft symmetry characteristics. Similarly, the lateral inertia of

the system (dIyy body and dIzz body) drive the cost as well. However, this analysis

shows the effects of each uncertainty in isolation. It is important to study the effects

of the driving uncertainties combined together, with the eight redundant uncertainties

removed.

Identifying the driving uncertainties is an important result in itself. It informs the

designer of which uncertain parameters could be most problematic, and therefore gives

an indication of where modelling effort is most useful. In addition, the driving un-
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certainties are helpful in performance analysis, since the non driving uncertainties can

be effectively eliminated from the system, potentially making it a more focussed and

effective exercise. Therefore, further analysis is now done with only the driving uncer-

tain parameters included. As with Figure 5.8, a DE based optimisation analysis, a CE

based analysis, and a µ-based Robust Performance analysis are carried out.

The DE run is carried out with algorithmic parameters identical to the ones for the

run with the full design uncertainty set, shown in Table 5.2. It results in a worst case

performance of JS∗DE = 5.6382dB, where the S superscript indicates the driving un-

certainty set for S. This result is very close to the worst case performance found by

DE for the full design uncertainty set is J∗DE = 5.6413dB, with a relative percentage

error of 5.6413−5.6382
5.6413 ∗100 = 0.054%. This small relative error indicates that the driving

uncertainty set is found correctly, and that the non-driving uncertainties collectively

account only for 0.054% of the performance function. The relative error may be re-

ported as a margin of error when only the driving uncertainty result is presented. A

plot showing the evolution of the maximum and mean performance values at every

iteration of DE is shown in Figure 5.18. As previously done, note that the mean and

maximum performance plots converge towards the end, and that there are no large

jumps in performance after the 500th evaluation — both these factors suggest that the

worst case found is close to the true worst case.

Next, a CE-based analysis is performed considering the driving uncertainty set. The

algorithmic parameters chosen are kept identical to those in Figure 5.3. The values

of γ considered for the analysis are also identical to the design uncertainty case. The

probability profile of performance generated is shown in Figure 5.19. It is interesting to

note that the worst case is again expected to lie between γ = 5.6 and γ = 5.65, as be-

fore with the CE analysis considering all design uncertainties. However, the probability
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Figure 5.18: Results of the DE optimisation run considering only the driving uncertain
parameters. Plot shows the evolution of performance values as iterations progress.

associated with γ = 5.6 is 3.738×10−8, higher than that in the design uncertainty case,

implying that when only the driving uncertainties are involved, the probability of Sv(S)

exceeding 5.6dB is just 4 in 100 million (up from 1 in a billion with all uncertainties

considered). The final mean and standard deviation values found by CE at different

values of γ are shown in Figure 5.20.

A µ-analysis run is now carried out. The slow algorithm is implemented, with the gain

based method in robustperf. The upper and lower bounds computed are shown in

Figure 5.21. The lower and upper bounds of the robust performance margin are 1.0069,

and 1.00835 respectively. These bounds are fairly tight, and since the lower bound is

above 1, robust performance is guaranteed. The worst case performance is 5.63dB at

0.125 rad/s, which is identical to that obtained with the full design uncertainty set.

Taking together the results of CE, DE, and µ-analysis , it is concluded that both de-
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Figure 5.21: Upper and lower bounds computed by µ-analysis considering only the
driving uncertainty set

terministic and probabilistic robust performance are guaranteed (since the worst case

performance J is less than 6dB for all uncertain parameter values). A comparison of

the worst case values found by CE, DE and µ-analysis for the driving uncertainties is

shown in Figure 5.22. The three methods are comparable in terms of uncertain param-

eter directionality, implying that all three methods have identified the same parameter

regions that lead to poor performance. The three methods have different internal me-

chanics, arrive at the same result, yet provide different insights into the performance

of S. Hence these methods are complementary to each other.

The CE analysis affords an interesting insight into the parameter space and the per-

formance function’s behaviour in it. The final IS samples and costs are scattered, with

two parameters taken at a time, as shown in Figure 5.23. The performance values are

mapped to the colours, with dark red representing the highest values. This creates a

heat plot-type representation of the parameter space, reminiscent of the safe and unsafe

145



δ
S

1
δ

S

2
δ

S

3
δ

S

4
δ

S

5
δ

S

6

Driving Parameters

-1.5

-1

-0.5

0

0.5

1

1.5

W
C

 P
a

ra
m

e
te

r 
V

a
lu

e
s

µ
CE
DE
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Performance run using µ-analysis

region concepts [18]. The 3-dimensional plots at the top show the performance value

with respect to two uncertain parameters. Beneath each three dimensional plot are the

x−z and y−z views showing how each parameter impacts the performance value. Since

the colours maps the performance values, all of the information retained in the three

dimensional plots are retained, while affording a clear view of problematic parameter

regions. The plots are particularly striking in the case of slosh stiffness parameters

δS5 and δS6 . As their worst case regions are approached, there exists a high density of

performances at and above 5.6dB.
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Figure 5.23: Heat plots showing performance function values in various uncertain parameter regions
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Figure 5.24: Results of a classical Monte Carlo run, with Ncmc = N +N1 samples.

The CE-based analysis results so far are compared with the results of a Monte Carlo

run with Ncmc = N + N1 evaluations at each value of γ. Since the true benefits of

CE lie in the tail performances (the so-called critical region of the PPoP), Figure 5.24a

shows the tail of the probabilities computed by MC, and 5.24b shows a scatter heat

plot, generated in a similar way as 5.23. Clearly, the number of evaluations is not

sufficient to create a clear idea of performance. In addition, the tail of the probability

profile converges to zero at just 5.55dB. Therefore, MC is far less capable at arriving

at extreme performances than CE.

Apart from this preliminary comparison in terms of computational efficiency, it is noted

that the formal comparison of MC and CE w.r.t. computational complexity and accu-

racy is out of the scope of this thesis. However, the literature on the subject is rich in

both theoretical and practical details [66][94][92].

Having analysed the sensitivity function of the linearised autonomous rendezvous con-

troller, and gained significant insight into its performance, the interest is in doing the
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same for the complementary sensitivity function T . Before proceeding, an integrated

analysis template for performance analysis of linearised systems is explored in the fol-

lowing section.

5.3.2 An Integrated Analysis Template

A theme emerges from the the analysis conducted, and the results obtained so far. The

sequence of analyses carried out may be summarised in Figure 5.25, which is proposed

as an integrated analysis template. By following such a template for performance

analysis of a linearised system, the following values may be computed:

� the worst case performance,

� the probability associated with the worst case performance,

� the probability profile of performance (showing whether probabilistic robust per-

formance is satisfied),

� the robust performance margins, and

� the driving uncertain parameters.

Depending on the need, the entire template may be followed, or only a part of it.

For instance, it may be sufficient for some control systems to compute the worst case

performance, the associated probability, and to identify the driving uncertainties. This

may be considered for when the analysis must inform further design refinements. In

another instance, it may be appropriate to start with a sensitivity analysis and arrive

at the driving parameters first, and omit the entire first half of the analysis. However,

this may result in not knowing with certainty the error in reducing the uncertainty set.

In yet another case, the analytical µ-analysis may be omitted throughout the analysis,

e.g., for industry projects whose requirements rely on statistical guarantees rather than

149



Closed Loop 
Control System ⋮ 

Design Uncertainties 

Optimisation Analysis Cross Entropy Analysis -Analysis 

Driving Uncertainties 

Comparison of WC Values Sensitivity Analysis 

Optimisation Analysis Cross Entropy Analysis  -Analysis 

Comparison of WC Values 

δ J δ( )

µ

µ

Figure 5.25: Integrated analysis template for performance analysis of linearised space-
craft systems

150



robust performance margins. The following section illustrates the use of the entire

template for analysing the system w.r.t the second performance criterion.

5.3.3 Complementary Sensitivity Function

The template in Figure 5.25 is now followed sequentially for the Complementary Sen-

sitivity Function T . The cost function considered here is the maximum singular value

of the complementary sensitivity function T , which is desired to be less than 6dB.

Technique

Settings
Remark Plot

Singular

values

10
-2

10
-1

10
0

10
1

10
2

-300

-250

-200

-150

-100

-50

0
T
6dB threshold

Frequency (rad/s)

S
in

g
u

la
r 

V
a
lu

e
s
 (

d
B

)

Singular

values

5.2294dB at

0.1236 rad/s

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

-20

-15

-10

-5

0

5

T
6dB threshold

Frequency (rad/s)

S
in

g
u

la
r 

V
a
lu

e
s
 (

d
B

)

System: T(:,:,21)
Frequency (rad/s): 0.124
Singular value (dB): 5.29

151



DE

iterations=100,

pop = 25,

crossover = 0.8,

stepsize = 0.8

5.5750dB

0 500 1000 1500 2000 2500

Number of evaluations

4.4

4.6

4.8

5

5.2

5.4

5.6

C
o

s
t 

fu
n

c
ti

o
n

 v
a

lu
e

 [
d

B
]

Maximum value of population
Mean value of population

CE N=500,

N1=1000,

ρ=0.1,

σ∗=10−6,

tmax=30

5.5641dB

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

γ Values: Total number of actuations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
[J
≥
γ

]

5.2 5.3 5.4 5.5 5.6

0

2

4

6

8

10

×10
-3

X: 5.55

Y: 2.839e-09

CE µT and σT
4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

-1

-0.5

0

0.5

1

F
in

a
l 
µ

 v
a

lu
e

s δ
1

δ
2

δ
3

δ
4

δ
5

δ
6

δ
7

δ
8

δ
9

δ
10

δ
11

δ
12

δ
13

δ
14

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

γ Values

0

0.1

0.2

0.3

0.4

0.5

F
in

a
l 
σ

 v
a

lu
e

s

152



µ-analysis

UB=1.1728,

LB=1.0043,

freq=0.126rad/s,

WC=5.5755dB

10
-2

10
-1

10
0

10
1

10
2

Frequency [rad/s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
c
a
le

d
 M

a
g

n
it

u
d

e
 [

d
B

]

Lower bound
Upper bound
Threshold

Uncertainty

Comparison

δ
1

δ
2

δ
3

δ
4

δ
5

δ
6

δ
7

δ
8

δ
9

δ
10

δ
11

δ
12

δ
13

δ
14

Uncertainties

-1.5

-1

-0.5

0

0.5

1

1.5

W
C

 p
a
ra

m
e
te

r 
v
a
lu

e
s

µ
CE
DE

Sensitivity

Analysis

4

5

6

δ
1

4

5

6
δ

2

4

5δ
3

4

5 δ
4

4

5δ
5

4

5 δ
6

4

5δ
7

4

5 δ
8

4

5δ
9

4

5

δ
1

0

4

5

δ
1

1

4

5

δ
1

2

-1 -0.5 0 0.5 1

J(δ )

4

5

δ
1

3

-1 -0.5 0 0.5 1

J(δ )

4

5

δ
1

4

153



Driving

Uncertainties

Driving Un-

certainties

Percentage

Contribution

to Cost

Uncertainty Name

δT1 = δ8 7.4211 dIzz body

δT2 = δ10 2.4560 dmass

δT3 = δ11 12.2615 dslosh mass sm1

δT4 = δ12 10.1675 dslosh mass sm2

δT5 = δ13 30.2551 dslosh stiffness sm1

δT6 = δ14 23.8092 dslosh stiffness sm2
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CE µT and σT
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Summary

Robust performance guaranteed

WC Performance = 5.575dB

P[5.55 ≥ γ > 5.6] ≈ 6× 10−8

RP margins = 1.0046 and 1.1355

Driving Uncertainties: δ8, δ10, δ11, δ12, δ13, δ14

5.4 Discussions

In this section, potential interpretations of the probability profile of performance are

discussed. Specifically, it briefly explores the use of the probability profile of perfor-

mance as a tool for spacecraft control systems design and analysis. The first step is to

take the complement of this curve, i.e., 1−P [J(δ) ≥ γ] ∀γ. This gives the familiar cu-

mulative distribution function (c.d.f., or simply cdf) of the performance, and is shown

by the blue curve in Figure 5.26b.
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Figure 5.26: Estimated cumulative distribution function and probability density func-
tion of the iGNC sensitivity function.

The cdf is a plot of P [J(δ) ≤ γ] vs γ. Another curve of interest is the probability
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density function (pdf), which shows the relative likelihood of the performance taking a

particular value [100]. This curve is denoted fγ . Computing fγ from CE data is done

by integrating the cdf curve, and is shown in Figure 5.26a. A normal pdf is then fitted

using the matlab function normfit, which is shown by the red dashed curve in Figure

5.26b. This fitted pdf has a mean of 4.72 and a standard deviation of 0.09. The exact

probability associated with a probability may be found by computing the area under

fγ . For instance,

P{γ1 < γ ≤ γ2} =

∫ γ2

γ1

fγdγ (5.1)

The curve fγ gives an indication of the mean performance levels. A measure often used

in the space industry (and several others) is the 3-sigma measure, which looks at 3

standard deviations away from the mean value. Here, this is 4.72− 3× 0.09 = 4.45 and

4.72 + 3 × 0.09 = 4.99. This implies that when the uncertain parameters are sampled

from the specified distributions (in this case the truncated normal distributions), a ma-

jority of the sensitivity function maximum singular values lie in the range [4.45,4.99]

dB. This fact may be confirmed by looking at the probability profile of S in Figure

5.9. Having such a range of 3-σ performances could be useful in choosing the design

criterion, and in relaxing it if there has been a violation of criteria. For instance, if the

threshold was lower at 4.9dB in this study, it is clear that there would be a probability

of violation of 0.031. If it is decided to relax the threshold, it would be recommended

to be at 4.99dB .

A caveat however, is that since the normal fit is not an exact match, the 3-sigma esti-

mate is only a rough indicator. Indeed, the pdf curve shown in Figure 5.26 is fat-tailed,

meaning that its tails are fatter than the tails of a normal distribution. Therefore, the
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probabilities under the tails will in fact be greater than predicted. The curve fitting

may be improved by having more γ points in the CE analysis, which comes at a higher

computational cost.

So far, the performance analysis of the simplified rendezvous system comprising lin-

earised models has been presented. The rest of this chapter presents a performance

analysis of the designed controller on the high-fidelity FES model.

5.5 Performance Analysis Results for Nonlinear iGNC

Model

The performance analysis of the real world model with the integrated GNC algorithms

are detailed in this section. As before, the crucial TRDC mode is considered for this

analysis. This controller is used in the final forced translation motion, and starts when

the chaser is about 1000m away from the target. The controller is a full 6 degree of

motion control, designed by accounting for the simplified linearised model described

in the previous section. In this mode, robustness properties are critical to determine.

Indeed, the success of the entire MSR mission depends on the final forced motion to-

wards the OS, and any deviation outside bounds of expected performance can cause

damage to the chaser, the OS, or both. Therefore, the performance analysis is critical

to determine (a) whether the controller, designed according to the simplified model

performs satisfactorily under nominal conditions, and (b) whether robust performance

may be guaranteed in the presence of uncertainties in the real world model.

The performance criteria for the controller are determined by the consortium to be

specified in terms of the relative positions and velocities at the time of capture (terminal

time). The criteria are as follows:
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� Lateral position error < 50mm

� Longitudinal velocity error < 10mm/s

� Lateral velocity < 2.8 mm/s

The cost function J(ne) at evaluation count ne is therefore chosen such that it represents

appropriately the deviation in terminal positions and velocities from those obtained in

the nominal trajectory. J(ne) is expressed as follows:

J(ne) = wJ1

∥∥∥∥∥∥∥
vy(nom)− vy(ne)

vz(nom)− vz(ne)


∥∥∥∥∥∥∥+ wJ2 ‖vx(nom)− vx(ne)‖

+ wJ3

∥∥∥∥∥∥∥
xy(nom)− xy(ne)

xz(nom)− xz(ne)


∥∥∥∥∥∥∥+ wJ4

∥∥∥∥∥∥∥
αy(nom)− αy(ne)

αz(nom)− αz(ne)


∥∥∥∥∥∥∥ (5.2)

where xy, xz are the lateral positions of the chaser spacecraft, and vx, vy, vz are its

velocity values in the x-, y- and z- directions. αy and αz are the SC lateral angular

displacements. The nom in parentheses indicates the nominal trajectory values, and its

difference from the value at evaluation count ne expresses the error. The second norm

is utilised as a measure of the error. The weights wJ1 to wJ4 express the relative im-

portance of each term in the cost function. In this study the weights are all considered

to be equal to 0.251. This cost function is a measure of the deviation from nominal

in the position, velocities and angular positions. It effectively encapsulates all of the

performance criteria.

The nominal values of the terminal trajectory are calculated with all uncertain param-

eter values set at 0. The nominal trajectory terminal values are listed below.

1It is good practice to ensure that the weights wJ1 to wJ4 sum to 1
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� Longitudinal Velocity Accuracy is 9.4646× 10−5 m/s,

� Lateral Position misalignment is 0.0053 m, and,

� Lateral Velocity Error is 2.2328× 10−4 m/s

The allowed deviation due to effects of uncertainty are 0.1 m/s in the longitudinal ve-

locity, 0.050 m in the lateral position, and 0.005 m/s in the lateral velocity error.

Having defined the cost function, the performance analysis of the TRDC controller is

now presented. Ideally, a combination of the methods discussed in Chapter 2 could

be applied. However, the real world iGNC model is complicated, making most of the

methods unsuitable. The first constraint is the structure of the system — since it de-

scribes high-fidelity models, it is highly nonlinear, and includes stochastic factors to

account for disturbances. Consequently, the model cannot be reformulated in the form

of LFTs. This renders analytical robust control techniques unsuitable.

Further, due to the large number of uncertainties, techniques relying on likelihood ratios

cannot be applied. The likelihood ratio rapidly degenerates for higher-order problems

[13], since the likelihood ratios of each uncertainty is multiplied. This implies that

methods such as CE cannot be directly applied in this instance.

Additionally, a single evaluation of the model takes about 7 minutes. This leads to

very large computational demands, with even 100 evaluations — a considerably small

number of evaluations, especially in the case of large-dimensional systems such as the

one under study — taking nearly half a day to complete. Applying MC simulation

methods in this scenario is therefore not a reliable option, since reasonable levels of

confidence and accuracy demand large numbers of evaluations (e.g., a reasonable level

of confidence and accuracy of 0.0 each requires nearly 1000 samples according to the
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Chernoff bound, and nearly 10000 samples according to the Bernoulli bound. Such a

run would take between 5 days to a month and a half to complete). Further, a high

dimensional parameter space necessitates a large number of evaluations for classical

Monte Carlo methods.

Due to the above constraints, it is clear that several of the available WCA techniques

are ruled out. Optimisation algorithms remain a good choice for such challenging prob-

lems, since they intelligently search the parameter space for optima. For this reason, a

very large number of samples is often not necessary, unlike with brute force methods

such as the Monte Carlo or deterministic methods such as µ-analysis. A previous study

describing the performance analysis of rendezvous and docking controller analysis [68]

adopts a similar strategy.

Exeter’s WCAT-II framework is used to carry out the analysis in the current study.

An interface is designed between the GNCDE and WCAT-II for this purpose. This

interface is tailored such that WCAT-II can access the simulation parametrisation and

scattering, in the GNCDE environment, and then run the simulator. The GNCDE data

files contain the scenario and system parametrization, which are used for the synthesis

of uncertain state space (USS) models and the GNCDE template with the non-linear

simulator.

The WCAT iterates with the GNCDE to carry out evaluations of the nonlinear sim-

ulator, setting the initialization of the parameters subject to the optimisation search.

The process is iterative, with the chosen optimisation method evaluating the outputs of

the simulation through a cost function defined for each campaign, and the optimisation

search being tailored according to the resultant value. Such a V&V strategy combing

analytical and optimisation-based methods is detailed in [11].
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The rendezvous model is simulated from the Forced Motion (FM) to capture (CA)

stages. A nominal circular target orbit is assumed, and it is assumed that the MAV

orbit insertion has been successful. In this analysis, the optimisation algorithm selected

is DE, whose working is described in Chapter 2, along with an added local optimisation

search at the end. The uncertain parameters are scattered as per a uniform distribu-

tion, with the bounds at ±1 for each normalised uncertain parameter.

The optimisation algorithm searches for the maximum value of the cost function (5.2),

i.e, it maximises the error from the nominal value. This maximum constitutes the

worst case cost, and the corresponding uncertain parameter vector is the combination

of parameters that leads to the worst case. The simulation was carried out with the

DE parameter values of crossover ratio 0.8, step-size 0.8, number of iterations as 20,

and population size in each iteration as 10.

The optimisation run therefore spanned 200 evaluations, taking about 23 hours. Over

each iteration, the cost function values of the population members are collected, and

the highest cost values until that point are plotted as iterations progress — this plot

is shown in Figure 5.27. The mean values of the population at each iteration is rep-

resented by the green dashed line. The maximum value and the mean values follow

a similar trend. The plot reveals a steady rise in the cost until the 4th iteration, at

which the maximum was arrived at. In fact, the 38th function evaluation found this

worst case value. The strength of randomised optimisation methods such as DE lie

in exploring the search area using intelligent strategies and arriving at the optimum

rapidly.

The worst case value is found to be 0.0685, which represents the maximum weighted
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Figure 5.27: Best performance function values obtained by DE when implemented on
the high-fidelity iGNC model

error from the nominal trajectory. The individual terms consisting of chaser position,

attitude and velocity corresponding to this cost are as follows:

� Longitudinal position: 5.7209m

� Lateral position along y-: 0.01826m

� Lateral position along z- : 0.1113m

� Longitudinal velocity: -0.1072m

� Lateral velocity along y-: -0.0006m

� Lateral velocity along z-: 0.0024m

� Angular displacement along y-:-0.0061 deg

� Angular displacement along z-: -0.0232 deg
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Figure 5.28: Lateral position and velocity responses

It is observed that these performances remain within the required bounds. The lateral

position capture performance is depicted in Figure 5.28a, while Figure 5.28b shows the

lateral velocity performance. These figures show the values of chaser SC positions and

velocities at the final time, across all the valuations. Observe that the lateral misalign-

ments are within the bounds in most cases, except for a few violations of the bound.

These violations, and the corresponding uncertain parameter values are reported to the

consortium, and are taken as inputs for any further controller retuning. There appears

to be a small bias towards the positive Z direction in the terminal relative velocity, and

indeed the nominal value is at the bound. One possible explanation for this is that

effects such as flexible modes and sloshing cause a vertical disturbance not sufficiently

accounted for in the controller. In addition, the controller itself may allow for a vertical

movement, since the nominal value also is biased vertically.

The longitudinal velocity values at the final time are shown in Figure 5.29. Both the

nominal value and the perturbed trajectory values are well within the required bounds,

implying that the controller behaves desirably with regard to the longitudinal direction.
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Figure 5.29: Longitudinal position misalignment

The position trajectory histories show that the entire trajectory in Figure 5.30 are close

to the nominal trajectory (shown in the thick red line) across all the evaluations. The

velocity histories of all the perturbed trajectories are shown in Figures 5.31. In both

cases, some perturbed trajectories deviate significantly until about the 500th second,

which are attributed to uncertainties, since the nominal trajectory (shown in thick red

line) does not deviate greatly. However, from the 500th to 1000th second, the behaviour

is close to nominal.

The incidence angle of the chaser SC w.r.t the target is important — a large angle of

incidence can potentially damage the OS or the SC, particularly if the impact velocity

is high. Figure 5.32 shows the incidence angle performance at the final time. The

two-degree bound is violated several times. Interestingly, some of the cases have high

incidence angles of upto 3.5 degrees. This effect does not register in the worst case

value, however, possibly due to being outweighed in the cost function by favourable
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Figure 5.30: Position trajectory histories

Figure 5.31: Velocity trajectory

166



-2 -1 0 1 2

spacecraft Y axis (deg)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

s
p

a
c
e
c
ra

ft
 Z

 a
x
is

 (
d

e
g

)

Nominal incindent angle
2 deg bound

Figure 5.32: Lateral incidence angle performance

performance in the other effects.

Such effects may also be detected in the early parts of the attitude trajectory histories,

shown in in Figure 5.33, and the angular velocity trajectory histories in 5.34. Note the

large deviation from the nominal trajectories for the first 200 seconds in both plots.

Such effects could be attributed to disturbance torques and rotational participation due

to sloshing and flexible modes. The angular velocity trajectories (including nominal

trajectories) continue to vary slightly until the end, while the attitude settles after

about the 500th second. Since the controller performance is only evaluated in terms of

terminal performance, the initial variations are not in the scope of the current analysis.

However, it is possible that larger deviations at the start of the trajectory carry over

into terminal velocities due to not being damped sufficiently.

The performance analysis results presented so far have provided sufficient insight into
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Figure 5.33: Lateral position trajectory

Figure 5.34: Angular velocity trajectory histories
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the TRDC controller performance, especially problematic performance cases. These

results demonstrated that the designed controller performed reasonably well, with a

few violations of the requirements. A question arises as to whether the worst case value

obtained may be improved upon. However, due to the heavy computational constraints,

a more rigorous optimisation run is infeasible.

A strategy used to improve the worst case results is to include µ-analysis results con-

ducted during the controller synthesis, introduced in previous ESA projects conducted

at Exeter [11]. In the iGNC project, µ−analysis is carried out as part of the controller

synthesis, for the 14 design uncertain parameters accounted for in the process. Dur-

ing the subsequent optimisation-based worst case analysis, the nominal values of these

parameters are fixed at the uncertain parameter values provided by the analysis. This

way, the optimisation effectively searches in their neighbourhood.

The values of uncertain parameters obtained during the synthesis process are provided

to Exeter by TASF. The computed worst case parameter values are in the second

column in Table 5.9. The values outside of the parameter bounds [-1,1] are rounded

down to ±1. It is important to bear in mind that the worst case parameter values

found by µ−analysis are different in at least two major ways:

� The results depend on the linearisation points of a simplified system — for the

dynamics, sensors and actuators, and the GNC.

� The analysis is carried out in the frequency domain, and so neglect time domain

uncertainty effects such as initial conditions.

Nonetheless, the parameter values can be good indicators of the direction of worst case,

along which a search can reveal worst cases more efficiently. Further, incorporating

them as initial values in the optimisation-based analysis is certainly not detrimental
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Table 5.9: µ-analysis values to enhance performance of optimisation-based WCA

Parameter Analytical WC Value Bound for DE initial value

dBR sa mode y 1 +1.0641 +1

dBT sa mode x 1 +1.0641 +1

dIxx SA -1.0641 -1

dIxx body -1.0641 -1

dIyy SA 1.0641 1

dIyy body 1.0641 1

dIzz SA -1.0641 -1

dIzz body -1.0641 -1

dfreq sa 1 -1.0641 -1

dmass -1.0641 -1

dslosh mass sm1 -1.0641 -1

dslosh mass sm2 1.0641 +1

dslosh stiff sm1 0.7180 0.7180

dslosh stiff sm2 -1.0641 -1

Table 5.10: Worst case costs and terminal position and velocities for purely optimisation
based WCA and enhanced optimisation based WCA.

Simulation Cost y [m] z [m] vx [m/s] vy [m/s] vz [m/s] αy [deg] αz [deg]
Optimisation 0.0685 0.01826 0.1113 -0.1072 -0.0006 0.0024 -0.0061 -0.0232
Enhanced 0.09916 -0.0018 -0.0957 -0.1005 0.0015 -0.0037 0.8624 2.0969

to the analysis, as the can move the values if there are more favourable values found

during analysis.

The optimisation strategy, the DE settings used, the orbit considered and initial values

are identical to the above case. The results obtained are in Table 5.10. It is observed

that the enhanced scheme gives a worst case cost value of 0.09916, an improvement

of 44.7% over the purely optimisation strategy. Note that even at this higher cost,

all of the positions and velocities are within the required bounds. Only the incidence

angle along the chaser z-axis marginally exceeds the 2 degree requirement. This term

contributes to the high cost obtained.

It must be noted that the project partner GMV carried out an extensive Monte Carlo
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campaign [119] consisting between 500 and 1000 evaluations with the uncertain param-

eters scattered as per Table 4.2. The worst case value found was 0.0854, lower than

the one found via the enhanced scheme. This suggests that the enhanced analytical-

optimisation strategy is very effective in finding worst cases. The Monte Carlo scheme

is useful when computational constraints are not tight as in this problem.

The performance analysis results shown in this section suggest that the designed con-

troller satisfies many of the performance criteria satisfactorily. Although a gentle ver-

tical bias is discerned in the position and velocity, it is within the specified bounds and

thus acceptable. The attitude performance showed the most number of violations, and

must be investigated further.

5.6 Conclusions

The results of robust performance analysis of the crucial TRDC mode closed loop con-

trol system of iGNC is described in this chapter. The robust performance analysis

of both the early design stage simplified rendezvous model, and the high fidelity FES

model is carried out.

In the first part of the chapter, the designed controller is assessed for robust perfor-

mance on the simplified rendezvous model. The performance objectives are expressed

in terms of the crucial sensitivity and complementary sensitivity functions. The anal-

ysis is carried out using DE, CE and µ-analysis. The study finds that the designed

controller achieves robust performance in the presence of modelled uncertainties, w.r.t

both the sensitivity and complementary sensitivity functions. In addition, it is also

found that results computed by CE tie in with technologically mature tools such as

µ-analysis and DE, confirming its accuracy. Further, it is found that CE is capable of

171



providing rich insight into controller performance, in terms of probabilities associated

with performance as well as its dependence on the parameter space. The important

problem of quantifying conservatism may be addressed by applying CE. CE-based anal-

ysis is, therefore, a good choice for probability based performance analysis of spacecraft

controllers.

The CE-based method is not without limitations, however. It has been observed that

for problems greater than 30 parameters, the likelihood ratio degenerates, which is also

termed the “curse of dimensionality” [92]. In addition, the run can take significantly

longer than a DE analysis, depending on the number of performance levels considered

and the standard deviation threshold. However, it may be argued that this increase in

computation effort is justified by the extra insight the technique provides.

A performance analysis of the nonlinear model in the crucial TRDC mode with the

closed loop controller designed by the project partners is carried out using optimisation

based methods, and it is found that the controller performance is mostly satisfactory.

The worst case performance is within acceptable bounds, and the effect of uncertainty

does not lead to troublesome behaviour. An enhanced optimisation analysis with µ-

analysis worst case parameters included as initial values is performed, and is observed

to be effective in finding higher values of the worst case. Further, both strategies, i.e.,

the optimisation-only and enhanced analytical-optimisation schemes arrive at worst

case values much quicker than Monte Carlo analysis.

However, it is worth emphasising that the model has a large number of uncertain-

ties (over 200) in the system, and each function evaluation taking several minutes for

computation. Due to this, the performance analysis is complicated by computational

constraints. For this reason, neither analytical methods such as µ-analysis, nor prob-
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abilistic methods or Monte Carlo can be reliably applied. The simplified rendezvous

model introduced in this chapter, however, is suitable for analysis using various meth-

ods.

In the first part of this study, a simplified system is deliberately chosen to establish CE

as an effective technique for analysis. In the following chapter, contributions made to

two space industry projects using cross-entropy based analysis are described.
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Chapter 6

CE Applications in Launch

Vehicle Performance Analysis

Previous chapters have introduced the CE-based simulation method to estimate the

probability associated with rare events. The method has then been implemented on

the linearised autonomous rendezvous controller to generate its probability profile of

performance and identify the probability associated with the worst case. In this chapter,

CE is implemented in two industrial launcher models. The first model is an attitude

controller in the long coasting phase of a launcher upper stage. This analysis, car-

ried out in the early stage of controller synthesis, investigates the performance of a

Dynamic Inversion (DI) controller designed to maintain the attitude during spinning

motion necessary in long-coasting upper stages. This study, although carried out in

a nearly linear environment, is nonetheless interesting for two reasons. Firstly, it ac-

counts for launcher payload configurations as configuration parameters in the analysis,

along with the modelling uncertainties typically included in robust performance anal-

ysis. In addition, the performance function - the total number of thruster actuations

commanded by the controller - is restricted to integer values. Both these factors are

important for launch vehicle analysis, in general, and a V&V method that can account
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for these is useful [120].

The second model is that of Vega, a commercial launch vehicle developed by the Eu-

ropean Launch Vehicle (ELV). The dynamics of Vega are emulated by a high-fidelity

non-linear simulator. In this study, the objective is to verify that, in the first 60 sec-

onds of flight, the aerodynamics do not exceed safe limits. Two investigations are

undertaken: first, a small subset of four critical parameters is considered, in order to

compute the probability associated with various γ levels, from satisfactory to degraded

performance. A real wind model is included in the assessment. The second investiga-

tion studies the effects of wind on the structural loads experienced by the launcher first

stage. This part of the study compares effects of four real wind models and accounts

for a larger uncertainty set with 28 parameters.

The investigations have the following objectives:

� to assess whether the controller performances of the two industrial systems meet

the desired performance criteria,

� to increase confidence in the CE method for robust performance analysis in in-

dustrial spacecraft models, and

� to standardise the CE algorithm by integrating it into WCAT-II and make it

suitable for future applications in aerospace industrial V&V .

Note that the results presented in this chapter are not comprehensive, and require

deeper analysis to gain insightful understanding of both systems’ performances. The

two studies do, however, improve the technological maturity of CE (an important re-

quirement in safety-critical applications). The investigations aim to serve as further

evidence for the efficacy of CE.
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The chapter begins with a brief description of the long coasting launcher upper stage dy-

namics, and the designed controller. The parameters included in the study, the perfor-

mance function considered, and the Simulink model employed are then described. The

results of optimisation- and CE-based robust performance analysis are subsequently

presented. The implications of performance-bound violation are then discussed, with

the aid of probability information found by CE. The next part of the chapter intro-

duces the Vega launcher model and states the aims of its performance analysis. The

performance criterion and the uncertain parameter set is then described. The results

of the analysis are then presented.

6.1 Launcher barbecue mode attitude control system model

Future geostationary launchers (such as the Ariane-6 currently under development)

are expected to fly payloads directly into the geostationary orbit. Due to this, a long

coasting phase lasting up to 5 hours is included, in which the upper stage drifts with

its payloads towards the point on the orbit where separation takes place. A long drift

phase exposes the upper stage to dangers of thermal stresses, since one side of the

launch vehicle’s body faces the sun and the other faces away. To prevent such thermal

stresses, the stage slowly rotates around its roll axis with a spin rate of 1-5 deg/sec.

An attitude controller mode known as the barbecue mode is invoked [121]. This sec-

tion presents the robust performance assessment of a conceptual control design for the

barbecue mode.

The study presented in this section was carried out during an on-site collaboration with

Airbus Defence and Space, Bremen in the frame of the project “Upper Stage Attitude

Control Design Framework — USACDF”[121] contracted by ESA. An objective of the

project is to incorporate a high level of mission autonomy[120]. Towards this end, the
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controller development process relies on auto-coding and auto-reporting, and is done

in a unified, multidisciplinary environment. An advantage of high mission autonomy

is that human involvement is minimised, therefore reducing development time, costs

and manual errors. Consequently, V&V is all the more crucial in this context, since

undesirable effects may be introduced by auto-coding, which need to be detected before

flight. Note that the author of this thesis participated in one of the activities in the

project, and the CE Matlab code remains with the team at Airbus Defence and Space,

where it is currently being used in the rest of the project activities.

The launch vehicle upper stage controller is responsible for orbital injection, and for

the first stage separation. The control is thruster actuated. Depending on the types of

payloads an operational upper stage can have a wide range of allowable configurations

in terms of MCI parameters and spin rates, all of which change after each separation.

The implemented control algorithm must ideally adapt to change in payload configura-

tions in real-time, because it is desirable to avoid retuning controller gains prior to each

launch. Therefore, it is important to validate that the designed control law fulfils the

performance requirement for all configurations. If challenging configurations exist, it is

advantageous to identify them early in the design stage, so as to direct future control

design and tuning iterations. In addition to these configuration parameters, there exist

the classical uncertain parameters due to modelling inaccuracy. In this study, uncertain

parameters whose nominal values are themselves configuration parameters are known

as dependant parameters. These classes of parameters are explained in Section 6.1.2.

6.1.1 Description of the Model

A spinning upper stage, when acted upon by disturbance torques, oscillates in accor-

dance with dynamics known as precession and nutation. Precession occurs when the
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spin axis deviates from the roll axis of the upper stage, due to which the upper stage

may exhibit a conic spinning behaviour. Nutation is the swaying oscillation that occurs

along the circle described by the conic movement. These two effects are illustrated in

Figure 6.1. If the disturbance torques are large, such motions can lead to instability.

It is desired to avoid these effects, and to maintain the attitude angles at a pre-defined

reference.

Figure 6.1: Illustration of precession and nutation of a launcher upper stage. Source:
Airbus Defence and Space.

A designed barbecue mode controller should meet the following objectives:

� the attitude spin rate requirement should be met in the presence of disturbance

torques,

� modelling uncertainties should be accounted for, such as the uncertainty in knowl-

edge of lateral moments of inertia,

� the total number of thruster actuations must be maintained below a desired

bound, and,

� these requirements should be satisfied for all possible payload configurations.
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The model of the spinning upper stage dynamics in the barbecue mode can be found

in standard texts on spacecraft dynamics such as [122], and is written as:



θ̇y

θ̇z

ω̇y

ω̇z


=



0 ωs 1 0

−ωs 0 0 1
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(6.1)

where θy is projection of the body y axis onto the commanded spin axis direction and

θz the corresponding projection of the body z. θy and θz define the precession cone,

about which the spacecraft performs a nutating motion. In ideal conditions, θy, θz=0,

and the precession cone is non-existent. Observe that when the spin rate ωs = 0, the

MIMO system reduces to two decoupled double integrators. The pointing requirement

is given by:

(
θ2
y + θ2

z

) 1
2 < αr (6.2)

where αr is usually in the range of 10− 20 deg. ωy and ωz are the lateral angular rates

in the upper stage body axis. N2 and N3 are the lateral torque inputs along y- and

z-axes respectively. ωs is the x-axis spin rate, and ωn is the nutation frequency defined

as:

ωn =

(
1− Ixx0

Iyy0+Izz0
2

)
ωs (6.3)
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Ixx0 is the nominal longitudinal moment of inertia, while Iyy0 and Izz0 are the nominal

lateral moments of inertia of the upper stage. The parameter Ixx0 is payload dependent,

and can range from about 0.2 to 0.8. The nominal value Ixx0 is considered to be a con-

figuration parameter. In addition, Ixx is considered a modelling uncertainty to account

for measurement inaccuracies. Ixx0 along with the spin rate ωs and the lateral inertias

Iyy and Izz, are different at each launch, and all of these change after a separation event.

This section now describes the barbecue mode attitude controller. The control law is

implemented based on Dynamic Inversion (DI) [121]. Details of DI are not relevant

to this analysis, but the idea is that some transformation of the dynamics leads to an

analytical expression for a state feedback law. The state feedback controller gain is

derived in [121], and is given by:

KG =

KG1 − ω2
s KG2ωs KG2 ωs + ωn

−KG2ωs KG1 − ω2
s − (ωs + ωn) KG2

 (6.4)

where KG1 and KG2 are the controller gains, to be specified and tuned by the control

designer. The rationale for using DI is that it produces an analytical expression for the

control, instead of intensive techniques such as linear quadratic controllers1. Further,

it is assumed that the inertial measurement units (IMU) of launchers are usually quite

good for the phase under study [121]. Therefore the state vector may be assumed to be

accessible. However, DI is known to have rather poor robustness properties[123], and

so the performance must be carefully assessed.

The controller is connected in feedback with the dynamics in Equation (6.1), and the

resulting time response is shown in Figure 6.2. Notice that the open loop response has

1In these methods, the solution of the Ricatti equation is to be calculated offline and stored prior
to each launch
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an increasing oscillatory behaviour, which if left uncontrolled decays to infinity. As

seen in Figure 6.2, closing the loop with the designed controller regulates the nominal

plant’s attitude at 0 degrees.
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Figure 6.2: Time domain responses of the open loop and closed loop systems.

The control law KG in Equation (6.4) can be used for a spinning payload release (which

can be as high as ωs = 30deg/sec in certain cases). However, such an unmodified

control law based on Equation (6.4) would command a very high number of thruster

actuations over a couple of hours. This could be reduced by selecting a very low

controller bandwidth, but there exists a trade-off between the control bandwidth and

speed of response. Instead, an actuator threshold is introduced as follows:

Ncmd =

 0 : if NG ≤ Nthr

NG : if NG ≥ Nthr

 , (6.5)

where NG is the torque calculated from Equation (6.4), and Nthr is the threshold above

which the thruster is turned on. Ncmd is the finally commanded torque. Such a thresh-
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old is called the thruster minimum impulse bit (MiB), and models the smallest control

torque that can be commanded to the thruster, and avoids commanding for small at-

titude errors. This essentially introduces a dead zone non-linearity into the system.

Further, Nthr is considered a design parameter for the control law.

Figure A.1 in the Appendix shows the Simulink model of the closed loop attitude con-

trol system of the long coasting upper stage. So far, the plant and controller described

have been treated as continuous. However, to account for the sampling rate of sensors,

a zero-order hold is introduced in the model. This renders the dynamics behaviour

discrete. In addition, the thruster MiB is included separately in N2 and N3 control

computations.

Taking these effects into account, the computed control input N2 is as shown in Fig-

ure 6.3. Observe the discrete behaviour of the control inputs. These inputs are in the

form of short torque impulses, which are delivered by the thrusters via on/off responses.

Each distinct spike in the control is delivered by a single thruster actuation. There exist

several instances of zero control, reflecting the actuation threshold. The magnitude of

the control is between 0.05 and 0.1Nm in all cases. Although the N3 plot is not shown,

the behaviour is similar. The total number of actuations of N2 and N3 together must be

within safe bounds, to ensure that thrusters are undamaged. Indeed, the performance

criterion in this study is the total number of actuations of the thrusters delivering the

N2 and N3 commands.

Before proceeding to investigate whether the controller meets its objectives, the param-

eters included in the model and the performance criterion need to be specified. The

following section describes the three classes of parameters.
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Figure 6.3: Control inputs computed by the dynamic inversion-based barbecue mode
attitude controller.

6.1.2 Uncertain, configuration and dependent parameters

In order to account for the different types of parameters in this model, three classes

of parameters are distinguished: configuration parameters, dependant parameters and

uncertain parameters. Several of these parameters have already been mentioned in

Section 6.1.1. Configuration parameters comprise the variations caused by payloads,

which vary at every launch. Considering such parameters in V&V enables the control

design team to anticipate and design for challenging configurations. The nominal value

of the payload inertia, i.e., Ixx0 is an important configuration parameter, as its value

directly affects the nutation behaviour, as observed in Equation (6.3). The second con-

figuration parameter is xcom0, the longitudinal distance from the centre of mass to the

thruster. This distance is the lever arm which, when multiplied by the thruster force,

delivers the control torques to the upper stage. xcom0 is payload dependent because the

centre of mass shifts for different payload sizes. The third payload dependant configu-

ration parameter is the moment of inertia of the thruster mount Imib. The MiB Nthr

is inversely proportional to Imib.
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In addition to payload-dependant variations, there also exists an uncertainty in mea-

suring Ixx and xcom. Since their nominal values are configuration parameters, these two

uncertain parameters are called dependant parameters. In addition to the configuration

and dependant parameters, there exist the familiar modelling uncertain parameters, i.e.

parameters whose values are not known with precision. The lateral inertia Iyy and Izz

are uncertain, as is the spin rate ωs. The misalignment of the thrusters can result in

uncertain cross coupled torques, expressed as byzcoup and bzycoup. The actuation to

deliver the input torques N2 and N3 is generated by a thruster force Fmax, which is

considered to be an uncertain parameter.

The parameters described above are listed in Table 6.1, along with their nominal values,

ranges and units. The values are established from system expertise. The configuration

parameters depend on the payload, and are typically known with precision on launch

day. Incorporating these parameters into the analysis ensures that all payload config-

urations are accounted for systematically, and so that challenging configurations may

be identified.

Table 6.1: Uncertain, configuration and dependent parameters accounted for in perfor-
mance analysis of upper stage barbecue mode.

Parameter Type Name
Nominal

Value
Range Units

Uncertain
Parameters

Iyy 1 ±0.2 kgm2

Izz 1 ±0.2 kgm2

byzcoup 0 ±0.1 Nm
bzycoup 0 ±0.1 Nm
ωs 5 π

180 ±0.5 π
180 rad.

Fmax 400 ±40 N
α π ±pi rad.

Configuration
Parameters

Ixx0 0.5 ±0.3 kgm2

xcom0 6.25 ±5.75 m
Imib 1000 ±500 kgm2

Dependent
Parameters

Ixx Ixx0 ±0.1 kgm2

xcom xcom0 ±0.1 m
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The next section briefly formalises the performance function employed in this study.

6.1.3 Performance function

As previously stated, the performance function considered in this study is the total

number of thruster actuations, which may be written as follows:

J(δ) = size(N2 6= 0) + size(N3 6= 0) (6.6)

Since N2 and N3 are control vectors consisting of impulses corresponding to each

thruster actuation, computing the size of their individual non-zero elements and adding

them together gives the total number of thruster actuations corresponding to parame-

ter vector δ.

The performance function value for the nominal plant is 130 actuations. A previous

study [121] used a combination of Monte Carlo and optimisation to find the performance

for a previous version of the controller. The worst case performance found was 202

thruster actuations, and is considered rather high. The performance criterion is set

as J(δ) ≤ 200 actuations in this analysis. The probabilistic criterion is stated as in

Equation (2.23), i.e.,

P [J(δ) ≥ 200] < pcritical (6.7)

where pcritical is 10−6, decided in consultation with the control design team. What

follows in the next section is an account of the performance analysis carried out on

the barbecue mode attitude controller, considering the parameters specified in Section

6.1.2.
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6.1.4 Results

Before carrying out the analysis, the CE code was integrated into WCAT-II. This pro-

vides a single framework for industry partners to carry out optimisation-based and

probabilistic-based analysis. Turning now to the barbecue mode performance analysis,

it is noted that an evaluation of the performance function involves setting the uncer-

tain parameter values as dictated by the WCAT-II algorithm (DE or CE), simulating

the closed loop model in Simulink, and computing the total number of actuations. A

single evaluation takes about 12 seconds. A DE run is set up with 100 iterations, and

25 population members (all of the settings are identical to those in Table 5.2). The

resulting worst case performance is 406 actuations, and is found in the 68th iteration

of DE. The evolution of the maximum and mean costs of the DE population in every

iteration is shown in Figure 6.4.
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Figure 6.4: DE performance value evolution as iterations progress.
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Clearly, 406 thruster actuations is a very serious violation of the performance criterion

that places a safety bound of just 200 actuations. In order to understand how severe

the threat of such a violation is, it is vital to determine the probability associated with

this worst case value. It is also desired to find the probability associated with violation1

of bound, i.e. P [J ≥ 200]. A CE run is set up according to the parameters in Table

5.3. In this particular problem, a fairly empirical approach is needed to arrive at the

performance levels γ at which probability is measured. Since in general, it is interesting

to study the curve starting from a probability of 1 going down to a probability of 0,

the performance levels are to be chosen appropriately. Finding the upper limit of γ is

fairly straightforward — the figure closest to the DE worst case is selected. The lower

limit of γ is typically chosen close to the nominal performance, however, that provided

probability values lower than 1. It is found that starting at γ = 60 yields a visually

complete probability profile of performance, which is shown in Figure 6.5.

The first observation is that the minimum number of actuations is always above 80.

Secondly, there is a drastic fall in the probability while going from 180 actuations to 190

actuations. While the probability of achieving 180 actuations is 0.122, the probability

of achieving 190 actuations is of the order 10−8, which is a rare event. Thirdly, the

probability decreases gradually from there until γ = 410, when the probability is of the

order 10−25. This curve, therefore, constitutes a long tail distribution. Because of such

behaviour, the curve fitting does not create an elegant curve like those in Chapter 4.

The probability values associated with the performance levels γ are provided in Table

6.2.

The most important observation is that P [J ≥ 400] is small, of the order 10−19, which

constitutes a rare event. Therefore, the worst case performance found by DE, although

1Such a measure is called a failure probability in some applications[99]
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Figure 6.5: Probability profile of performance for attitude controller of long coasting
upper stage

alarming, has a very low likelihood of occurrence. Interestingly, CE computes a higher

worst case performance, at 418 actuations. CE P [J ≥ 410] is of the order ×10−251.

These small numbers reinforce that CE is effective in estimating probabilities of ex-

tremely rare events.

In addition, Table 6.2 reveals that the probability of violating the performance bound

is P [J ≥ 200] = 3.12 × 10−8, which is a rare event. This is a significant result, and

proves that the barbecue mode controller is probabilistically robust, as per the criterion

in Equation (6.7). In contrast, robust performance in the classical deterministic sense

is not satisfied. This forms the crux of the conservatism issue as pertains to worst case

analysis techniques. Practitioners are normally only concerned with events that occur

with a probability of 10−6 or greater, and so decision makers may accept such a risk

1One interpretation of such a probability is that a classical Monte Carlo run would need at least
1025 samples to arrive at a performance greater than 410 actuations.
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Table 6.2: Probability values associated with various performance levels

γ 60 70 80 90 100

P[J ≥ γ] 1 1 1 0.99 0.97

γ 110 120 130 140 150

P[J ≥ γ] 0.86 0.68 0.57 0.44 0.34

γ 160 170 180 190 200

P[J ≥ γ] 0.24 0.18 0.12 3.12×10−8 2.18×10−8

γ 210 220 230 240 250

P[J ≥ γ] 1.67e-08 1.23×10−8 1.06×10−8 2.78×10−9 4.15×10−9

γ 260 270 280 290 300

P[J ≥ γ] 6.97×10−9 2.1×10−9 2.34×10−9 1.56×10−9 7.95×10−10

γ 310 320 330 340 350

P[J ≥ γ] 2.8×10−10 1.11×10−10 .50×10−11 2.48×10−11 1.08×10−11

γ 360 370 380 390 400

P[J ≥ γ] 7.49×10−12 2.87×10−12 1.01×10−13 2.24×10−14 3.43×10−19

γ 410 420

P[J ≥ γ] 3.90×10−25 0

of violation. Interestingly, the CE analysis both confirms and rejects the worst case

performance found by DE.

The uncertain parameters associated with poor performance are now investigated. The

final mean and standard deviation values µT and σT at each γ are shown separately for

uncertain parameters in Figure 6.6, for the configuration parameters in Figure 6.7 and

for the dependent parameters in Figure 6.8. One striking observation in all the three

cases is that the standard deviation values oscillate for the initial few γ values. Inter-

estingly, the µT values of all parameters are close to their initial values of 0 when this

occurs. Such an effect has not been observed in other studies, and may be attributable

to the fact that the performance value takes only integer values.

Since at the final values of γ, σT is very low (often smaller than σ∗ = 10−6), the dis-
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cussion in the rest of this section treats the µT values at γ = 420 as the worst case

parameter values. With regards to the worst case parameter values, some clear trends

are observed in Figure 6.7. xcom0 settles at its extreme value. This may be readily

explained, because when the lever arm is high, the value of torque is high, and so the

number of actuations needed will be high. In addition, Iabs is at its minimum, and

since it is inversely proportional to Mib, Mib is high. Then the torque threshold in-

creases. This is counter-intuitive, but could trigger a compound effect and increase the

actuations. The nominal longitudinal inertia Ixx0 is also close to its minimum. These

parameter regions are clearly problematic, and this behaviour may also be observed in

the heat plots 6.9 and 6.10.

The uncertain parameter final mean values in Figure 6.6 reveal that the two lateral

inertias Iyy and Izz tend to the extremes in opposite directions, with Iyy being close to

its maximum and Izz close to its minimum. In addition, the spin rate frequency tends

towards the maximum (although the µT evolution appears to oscillate as γ increases).

This is expected, because the nutation frequency is proportional to the spin frequency,

and higher torques need to be generated when nutation is higher.
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Figure 6.8: Final CE mean and standard deviations of the configuration-dependant
parameters for upper stage barbecue mode

With regards to the dependant parameters, the longitudinal inertia component remains

close to its nominal value for most performances, and increases towards its maximum

close to the worst case performance. The lever arm remains close to its nominal. Recall

that the nominal values of these two parameters are themselves configuration parame-

ters, and varied by CE. The lever arm uncertainty xcom remaining close to its nominal

value implies that the configuration value xcom0 is already close to its worst case.

A deeper insight into how the parameter regions impact the performance values may

be achieved from the heat plots in Figure 6.9. These heat plots are created by scat-

tering each parameter’s IS run samples, and plotting against the performance values

obtained. Since there are 11 parameters, the data is plotted taking 2 parameters at

a time, with the z-axis showing the performance obtained. In Figure 6.10, the plot is

collapsed to two dimensions. Because the colours of each sample are mapped to the

performance value, this 2 dimensional plot retains all the information from Figure 6.9,

while revealing a clearly how each parameter varies.
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Figure 6.9: Heat plot of the number of actuations, taking into account two uncertain
parameters at a time.

Figure 6.10: Heat plot showing XY views
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The first plot in Figure 6.9 shows the two lateral inertias Iyy and Izz plotted against the

performance. As previously observed, the performance gets degraded as Iyy approaches

1 and Izz approaches -1. An observation from the corresponding plot in Figure 6.10

shows that the performance is safe (less than 200 actuations) in a large portion of the

parameter space. However, the other five plots show a larger proportion of the param-

eter space being covered by larger performances. These plots appear to have a large

probability associated with bounds violation. Recall, however, that the probabilities

associated with achieving such performances are very small (smaller than 10−7), and

these high performances are attributable to CE sampling in a biased way in problematic

regions in order to find the worst possible performance values. The probabilities finally

computed by CE are scaled back via the likelihood ratios, and these probabilities reflect

accurately the true probability of violation. As mentioned in Chapter 4, such plots may

be plotted in a lucid and straightforward way using data from CE’s final runs, because

CE samples from the poor performance regions of the parameter space rather densely.

This concludes the section on the attitude control system of a long-coasting launcher

upper stage in the barbecue mode. This section described the dynamics of the upper

stage in the barbecue mode, and briefly presented the designed controller, the param-

eters considered, and the results of its performance analysis using CE. This study was

significant in that the conservatism of worst case performance was quantified. Although

the worst case was a serious violation of the performance criterion, the probability as-

sociated with such a performance is very low.

In the following section, CE is implemented on a far more complicated launcher model,

i.e. the Vega launcher model[124]. This analysis is carried out in the post-design stage

on a high-fidelity simulator1.

1As a result, the treatment is not as transparent as in the barbecue mode

193



6.2 VEGA Launcher Model

Vega is a four stages, multi-payload, expendable launch vehicle developed by European

Launch Vehicle, Italy under the contract of ESA. The commercial debut of the launch

vehicle, shown in Figure 6.11, occurred in February 2012. The launch vehicle is 30m

in length and 3m in diameter, and is meant to cater to the small launcher requirement

in industry. In this study, carried out in the frame of the research project “Robust

Flight Control System Design Verification and Validation Framework” (ESA AO/1-

6322/09/NL/JK), the launch vehicle controller performance is analysed. Previously,

deterministic worst case analysis techniques were assessed by measuring the validation

gap between traditional Monte Carlo outcomes and worst case analysis results. Subse-

quently this research activity aims at narrowing down the previously determined gap by

using probabilistic worst case analysis techniques while associating tight probabilistic

risk levels to the requirements under investigation. The project seeks to industrialise

promising approaches to V&V , emphasising that there is no room for errors due to

reduced testing. The project is contracted by ESA, and is carried out in collaboration

with ELV, University of Bristol and University of Exeter.

The primary objective of the project is systematic uncertainty quantification. The

analysis aims to occur at the intersection of TVC performance assessment, and loads

analysis 1. The aerodynamic load must be analysed since the structure of the launch

vehicle, and therefore the mission success, depend on it. In this study, Vega’s 1st stage,

known as the P802, is analysed. The main functions of P80 are the lift off and pitch

over, the gravity turn (where the maximum dynamic pressure is experienced) and the

first separation event. The first flight phase, i.e. the atmospheric flight phase from

35km and 60km is considered.

1which typically has its own rigorous analysis process with structural and fluid mechanics engineers
2so called because the first stage carried 80 tonnes of propellant in the early versions
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Figure 6.11: Vega launcher. Source: ESA

The controller design is challenging because Vega is inherently aerodynamically unsta-

ble in the atmospheric phase [125]. The centre of pressure is above the centre of gravity.

The system parameters such as the aerodynamic coefficients, bending mode effects and

the crucial Mass, Centre of Gravity and Inertia (MCI) parameters vary significantly

throughout the launch timeline. This is because flight and experimental data is lacking.

The TVC must therefore ensure stable response while not deviating from the reference

trajectory.

The major challenges of P80 control in atmospheric flight are:

� Significant wind gust disturbances

� The mechanical loads are to be limited due to structural issues

� Roll coupling [125]

� Control minimisation

� High level of scattering and variation of parameters

� Coupling control with the elastic modes
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� Following guidance command under the above challenging conditions.

The control architecture is a Thrust Vector Control (TVC) architecture, as is typical for

launch vehicles. The control law is a PID controller with gains scheduled over all four

stages to accommodate changing flight conditions [126]. The PID gains on the attitude

are designed for rigid body performance and stabilization, but also to provide large fre-

quency separation between the rigid body and the first bending mode frequencies. For

the P80 phase the bending filters are designed to phase stabilize the first bending mode

and gain stabilize the upper modes. Due to axial symmetry of launchers, the control

is assumed to be the same in the yaw and pitch channels. A coupling term between

pitch and yaw is introduced to account for roll coupling,and this is done via gyroscopic

compensation. As already mentioned, the controller gains are scheduled over the flight

phases to accommodate variations of flight parameters, especially in P80 phase where

dynamic pressure, MCI, thrust and structural properties vary greatly.

The actuators are 6 thrusters with on/off responses. The tuning parameters are the

PID and PD controller gains, and the actuator MiBs [126]. Basic controller V&V tests

are carried out in the frequency domain during the design. This consists of checks on

low and high frequency gain and phase margins, as well as Nichols plots, to ensure that

nominal stability and performance is satisfied. The performance must then be analysed

in the time domain. The current study aims to assess the robust performance of the

TVC controller. It is a post-design V&V and is carried out on a high-fidelity nonlinear

simulator in the time domain. The study seeks to answer the following questions, many

of which overlap the overall study questions:

� What performance values occur for “most” of the cases?

� What is the probability of violation of the performance bound?

� How abrupt is the degradation towards poor performance?
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� If violations exist with a non-zero probability, how much of the performance

requirement may be relaxed?

� What region of the parameter space is problematic?

Since the Vega is a commercial vehicle, it has already undergone significant pre-flight

and post-flight analysis [127],[128], [129]. In the study [129], an MC analysis is car-

ried out on a simplified LTI system, and the analysis points to the performance bound

being fulfilled. However, a µ-analysis on the same system shows violations [125]. All

of these studies repeatedly highlight the need for more reliable techniques. Studies

also emphasise that the worst cases computed must not be conservative, and must not

direct onerous redesigns when not necessary. Even controller gain retuning is justified

only if the probability of occurrence is not too low. This is an important practical

consideration because resources and launch constraints often are unavailable, and de-

laying a launch for retuning purposes is not usually feasible. This knowledge will aid

ESA decision makers by giving them quantitative means for relaxation of performance

bounds when justified. This essentially shifts the role of decision makers from before

the analysis (expert knowledge elicitation etc) to after the analysis, where the physical

interpretations of worst case combinations can be analysed with their system expertise.

The aim is also to improve and shorten the current V&V process for GNC. The focus

is on reconciling the probabilistic and deterministic nature of the parameters.

An initial V&V campaign [126] uses Monte Carlo simulation to identify worst cases.

A large number of samples, 2×105, are evaluated. It identified a performance criterion

(Q*alpha) that is particularly critical. An inference drawn in the previous study is that

MC is good for finding empirical mean and variances, but potentially unreliable for

computing extreme values. The study also identified a small parameter set consisting

of 4 uncertainties that is particularly important. Additionally, a separate emphasis is
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on the impact of winds on performance. Particularly for Qα, wind is found to impact

the cost significantly. Therefore, the analysis is divided into two parts: the first part

assesses the four uncertain parameters and their effect on performance, while the second

part assesses the impact of wind on performance. Before proceeding to the performance

analysis, details on the high-fidelty simulation model of Vega, i.e., VEGACONTROL

are presented.

6.2.1 Description of the VEGACONTROL3 model

The ELV VEGA CONTROL simulator is a Matlab C-coded simulator used in industry

to prepare and validate the VEGA fight management and flight control system. The

model includes the full set of non-linear equations of motion. The simulator includes a

non-linear model of the eletro-mechanical actuator dynamics with associated backlash

and delays. The simulator also implements a QUASAR Inertial Sensor Unit with its

noise and bias characteristics. The propulsion model reflects the dynamics of the P80

solid propulsion system with validated thrust curves that include thrust oscillation ef-

fects to assess proper execution of the separation dynamics. The flight mechanic model

assembles a fully validated non-linear aerodynamic model for normal force, drag and

tree axis moments curves that depends on Mach and angle of attack.

Kinematic coupling in all axes are implemented to reflect pitch yaw roll couplings.

A high fidelity structural flexible mode model describing the launcher deformation is

included to assess proper filtering and stability properties. The atmosphere model in-

cludes also a set of measured wind-gust input models representative for the launch site

Kourou. The launcher dynamics are driven by the FPSA ADA/C-flight code reflecting

the flight management system for the time line sequence command and execution of

associated guidance navigation and control system for Thrust Vector Control (TVC)

and roll and attitude control and other support functions such as acceleration threshold
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detection and pyro-valve command for stage separation.

Note that the core controller and simulators are p-coded, and the verification team

has no access to any internal workings. Only the uncertain parameters may be ma-

nipulated, and the Q-alpha is plotted. This is a black-box philosophy which creates a

separation between design and analysis so that no inadvertent assumptions are made.

The Simulink model of Vega launcher with flexible modes is shown in Appendix B.

6.2.2 Performance Criteria and Uncertain Parameters

The main requirement is the load Q-alpha, which is particularly important for the first

stage as it performs a gravity turn1. The criterion for Q-alpha is dynamic, and varies

with the Mach number. In the atmospheric flight phase the P80 accelerates upto 5.6

Mach. The maximum structural loads that the launch vehicle can withstand as the

Mach number increases are determined experimentally [126] and shown in the form of

a safety envelope in Figure 6.12. The critical phase, i.e. the gravity turn, occurs with

the first 20 seconds after lift-off. The gravity turn manoeuvre is newly designed for

every mission, so the worst case is mission dependent.

The criterion is also defined probabilistically by the consortium. It is stated that Qα

must be within the safety envelope for 99% of the cases, i.e., P [J > γdes] < 0.01, where

γdes is dynamically defined by the safety envelope. This criterion is verified in [126]

with 3700 MC runs, with a synthetic wind included. With these conditions, the per-

formance is satisfied for 100% of the 3700 cases.

Two uncertainty sets are considered. Table 6.3 shows a larger uncertainty set including

some critical uncertainties (identified through system expertise). The relative impor-

1the launch vehicle manoeuvre after the initial vertical ascent, in order to reach a horizontal position
at burnout, the vehicle has to turn and this is automatically done by dynamics, in what is also sometimes
called the pitch over manoeuvre
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Figure 6.12: Safety envelope for Qα w.r.t Mach number

tance of these uncertainties is found to be high using methods. In the second analysis

where wind effects are to be considered, a larger uncertainty set is considered, with

aero parameters etc.

Note that the exact parameter nominal values and ranges are in p-code files and not

accessible. All of the parameters are normalised in [-1,1], and CE is interfaced with the

algorithm through a set of FLAGS. Each uncertain parameter has an associated flag,

which CE can assign a value to. The first set includes only four of the parameters, two

of which are listed in the table, viz., dTc, air density scat and two that are not - they

are the roll torque contribution by the solid rocket motor SRM roll and the lateral

mounting misalignment of the inertial reference system IRSMounting Y 1.

The analysis accounts for real wind models. A brief description of these models is

presented in the following section.

1The variable names of the VEGACONTROL model are preserved.
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Table 6.3: Uncertain parameters in Vega P80 model considered in the CE analysis.

Parameter
Type

Name Physical Meaning

Aero and
Atmospheric

unc CN , disp CN
Normal lift force coefficient, and associated
dispersion

unc CA, disp CA Axial coefficient, and associated dispersion

unc Xcp, disp Xcp
Longitudinal centre of pressure coordinate,
and associated dispersion

air density scat Air density

Propulsion
dIsp Specific impulse
dTc Burn time

TVC

TV C SF A,
TV C SF B

Thruster gains

TV C bias A,
TV C bias B

Thruster biases

TV C mis A,
TV C mis B

Thruster misalignments

MCI

P80dM P80 Total mass
P80dMprop P80 Propellant mass

P80dJx, P80dJy,
P80dJz

P80 Moments of inertia

P80dJx S,
P80dJy S,
P80dJz S

P80 Structural (non-rigid) moments of inertia

P80dxCOG,
P80dzCOG

Centre of gravity

P80dxCOG S,
P80dyCOG S,
P80dJzCOG S

P80 Structural (non-rigid) Centre of gravity

PV P offsetZ TVC pivot point lateral offset
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Table 6.4: Wind models included in analysis of Vega launcher P80

Wind file name

Wind model 1 01 1993 09 12 005.wind

Wind model 2 02 1991 26 12 005.wind

Wind model 3 07 2005 03 12 004.wind

6.2.3 Wind descriptions

In order to account for real winds (rather than synthetic ones), a set of wind models is

available in VEGACONTROL. The names of the wind models included in the analysis

are listed in Figure 6.4. The wind files are recorded on particular days, and at every

attitude the wind magnitudes, gradients and directions are saved as a .wind file which

is accessible. The wind-gust input models are representative of the launch site Kourou.

The development of these wind models is detailed in [130].

This section has so far presented details on the simulation model, the controller, the

uncertain parameters and performance criteria. The next section now details the two

part performance analysis for the Vega P80 stage in its atmospheric flight phase.

6.2.4 Results

The implementation of CE on VEGACONTROL is now detailed. The first part of

the analysis considers the reduced uncertainty set consisting of four parameters, i.e.,

IRSMounting Y , SRM roll , dTc, and air density scat. The probability profile of

performance is generated, with the CE parameters as shown in Table 6.5. Observe

that at each iteration of CE, N = 50 performance function evaluations are allowed,

and N1 = 100 performance evaluations are allowed in the final IS run. In order to find

the probability in such a way that high computation costs are not incurred, the com-

putational budget is reduced. Contrast this with Chapter 5, where 500 evaluations are

allowed each time for the linearised iGNC system. Such a reduction in computational

resources is justified because each performance function evaluation takes about 7.8 sec-
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Table 6.5: CE Algorithmic parameter values for Vega launcher analysis

CE Parameter Parameter Description Parameter Value
N Evaluations at each CE cycle 50
N1 Final IS run evaluations 100
ρ Rarity factor 0.1

tmax Maximum number of CE iterations allowed 30
σ∗ Threshold standard deviation 10−6

onds. The industry partners desire an analysis that can be completed in the matter of

a few hours ,rather than a few days (assuming N = 500, N1 = 500 evaluations for each

γ and a modest 10 values of γ, the time taken for computation would be about 1 day

and 5 hours, which is an optimistic estimate since it does not account for additional

CE iterations to update the IS distributions).

Each evaluation of the Vega simulator takes about 7.8 seconds on a Windows com-

puter. The CE initial distributions of these 4 uncertainties are Gaussian distributions

with mean 0 and standard deviation 0.4, truncated at [-1,1]. The standard deviation

chosen is such that the selected region corresponds to approximately 98.5% of the entire

Gaussian (2.5σ). The rationale for such a choice of µ0 and σ0 is to obtain a distribution

with nominal value at 0 and such that a large number of values lie in the interval [-1,1].

The probability estimation algorithm is applied to find P [J(δ) ≥ γ] for every 10,000

Padeg of max(Qα) from 1.8∗105 Padeg onwards, until a probability of 0 is encountered.

The probability profile of performance generated by CE is as shown in Figure 6.13,

along with the final mean and standard deviations in the importance sampling distri-

butions at each value of γ. At the start of the curve, i.e., at performances of 1.8, 1.9 and

2× 105 Padeg, the associated probability is 1. This indicates that the maximum of Qα

will always be at least 2 × 105Padeg. From here, the probability gradually decreases

until a probability of zero occurs at 3.1 ∗ 105Padeg. The tail end of this probability

profile is especially interesting, as it provides information about the worst case and
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performances close to the worst case. A small probability of 1.13 ∗ 10−6 is observed to

occur at 3×105 Pa.deg. We can infer, therefore, that the worst case value of max(Qα)

lies between 3 ∗ 105 and 3.1 ∗ 105Padeg, which is clearly a violation of the maximum

allowed value of Qα, i.e., 2.75× 105 Padeg. In order to further narrow this region, the

algorithm was applied to the performance levels 3.06×105 and 3.07×105Padeg. These

cases gave probabilities of 1.044 × 10−7 and 0 respectively. The true worst case may

therefore can be said to lie in [3.06× 105, 3.07× 105]Padeg. Further, the probability of

its occurrence is a rare event, i.e., one with a probability lower than 10−6. This agrees

with the expectation that the worst case be a rare event.
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Figure 6.13: Probability profile of performance shown with the final mean and standard
deviations as γ increases.

Apart from the worst case probability, the probability profile offers information on the

intermediate performance levels between 2 and 3∗105Padeg, corresponding to the decay

region in Figure 3.3. As the performance degrades, the probability gradually reduces.
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The spline fitted curve in Figure 6.13 is useful in determining probability values at any

performance level of interest. With regards to the performance bound γdes = 2.75×105

Pa.deg, the PPoP curve reveals that the associated probability is 0.006, which is lower

than pcritical. Hence, although deterministic robustness is not satisfied due to bound

violation, probabilistic robust performance is satisfied. This also serves to identify how

realistic a performance requirement is. In the current scenario, for example, imposing

that the maximum dynamic pressure must be lower than 2.3∗10−5Padeg is not a good

choice, since there is a 78% probability that the requirement will be violated. A good

requirement is one that has a small probability of violation.

The following plots show some results for γ = 3.06∗105 Pa.deg, in order to gain insight

into the parameters that contribute to such a large performance. Figure 6.14 shows the

final pdfs of the four parameters, optimised by the cross entropy algorithm. Observe

that the resulting variance has been reduced significantly as compared to the initial

value.
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tainties

Figure 6.15 shows the tail of the probability profile of performance, corresponding to
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the PPoP critical region in Figure 3.3, along with the means µT of the four uncertain

parameters shown as bar plots. The bar plots provide a clear sense of the directionality

of the parameters that lead to poor performance. It is also interesting to study how

Qα varies with the Mach number, and also with γ. Figure 6.16 shows how Qα varies

with the Mach number over the 17 γ levels. The scatter plots in Figure 6.17 show the

performance distribution as well as the distribution of each of the uncertain parameters.
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Figure 6.15: Probability profile critical region, shown with final means of the uncertain
parameters

The second part of the analysis focuses on the effect of winds on the probability profile.

It is expected that there is no violation of bounds in the absence of wind, and that some

wind profiles affect the performance more adversely than others. The winds considered

are representative winds measured at various altitudes on different dates. An in depth

explanation is in [130].
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Before proceeding, the cost function is modified to the ratio Qα
Qαmax

. This makes it more

convenient to compare the probability profiles of performance for all wind cases. It also

makes the cost function static, and more convenient to detect violations of the bound.

The probability profile of performance is generated for each wind model, one at a time,

using the CE parameters in Table 6.5. The four curves representing the probability

profiles of performance are shown in Figure 6.18.

Table 6.6 shows some salient data regarding the tail performances for all four wind

cases. The no wind case shows there are no instances of performance exceeding 55% of

the safety envelope, and so the system satisfies robust performance. This is also clear

from the Qα versus Mach number plot shown in Figure 6.20. However, it is practically

impossible to have the launch vehicle subject to no winds in the entire atmospheric
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Figure 6.17: Final run with the importance sampling parameter distributions. The costs
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Figure 6.18: Probability profiles of performance for all wind cases and no wind case

flight time line, so the other three wind model analyses are crucial. Further, the worst

case uncertain parameters associated with each wind case are shown in the bar plots

in Figure 6.19.
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Figure 6.19: CE worst case uncertain parameter combinations for all wind cases

Considering wind model 1 (i.e., 01 1993 09 12 005), the safety bound is violated with a

probability in the order of 10−24. The CE worst case (i.e., the maximum performance
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found in the final importance sampling run) shows about a 2% violation of the safety

bound, and this violation occurs at around 2.5 Mach, as seen in Figure 6.21. Although

the probability associated with this violation is small, the magnitude of the structural

load is high, at 2.55×105 Pa.deg. The second bar plot in Figure 6.19 show the uncertain

parameter combinations that lead to this high performance. It is concerning to note

that several of the MCI parameter values lie in the middle of the parameter region,

close to their nominal values. This implies that even small deviations in this crucial

class of parameters, when combined with other effects, could lead to poor performance.

With regard to wind model 2 (i.e., 02 1991 26 12 005), Table 6.6 reveals that the per-

formance bound is also violated in this case, with a moderately high probability of

2×10−2. The worst case performance is found to be nearly 10% greater than the al-

lowed value, and Figure 6.22 shows a distinct peak associated with this violation, which

occurs between 1.25 and 1.35 Mach. These Mach numbers are expected to be achieved

shortly after 25 seconds after lift-off. Figure 6.19 shows that most of the worst case

aerodynamic parameters are less than nominal, with the air density close to its mini-

mum value. This is rather counter-intuitive, as the performance is directly proportional

to the air density, since Q = 1
2ρaV

2, where ρa is the air density. Several parameter

values are also close to their nominal values, particularly the MCI parameters, the burn

time dTc and the two thruster misalignments. The specific impulse is at the minimum

value, as is the first thruster gain TV CSFA.

The wind model 3 performance violates the safety bound with the maximum violation

lying about 18.5% beyond it. Table 6.6 shows that the probability of the performance

being greater than 1.15 is low, at 8.2×10−21. However, the probability of the perfor-

mance being greater than 1 is 1.385×10−6, which is relatively high. It can be seen

from Figure 6.22 that the problematic behaviour occurs between 0.3 and 0.4 Mach, i.e.
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shortly after lift-off. Observe that the magnitude of Qα is close to 105 Pa.deg, which is

relatively small. However it is experimentally determined that at lower Mach numbers,

even such a magnitude can cause structural issues [126]. In fact, this wind model causes

the highest violation of bounds in terms of percentage above the safety envelope. The

uncertain parameters associated with the worst case performance in the fourth bar plot

in Figure 6.19 reveal that the MCI parameters deviate moderately from their nominal

values (certainly when compared to the other wind cases). In particular, it is seen that

the longitudinal structural COG is nearly at its maximum, while the lateral structural

COG is beyond 50% to its minimum. Structural COG deviations indicate elastic mode

effects, which could explain the poor performance.

It is interesting to note how the different wind models affect the performance, and how

the different uncertain parameters are “activated” by different wind models. One strik-

ing observation is the propulsion parameters effectively change direction when wind

model 4 is considered. The fourth wind model also appears to occur when the MCI pa-

rameters deviate farther from their nominal values, while the aerodynamic coefficients

lie close to their nominal values. Note that analyses of how each uncertain parameter

impacts the performance value is studied earlier, notably in [129], which inferred that

the effect of single parameters do not cause performance bound violations.

Since these wind models are representative of real winds experienced at the launch

site, their effects are crucial, and the fact that they cause aerodynamic loads beyond

the safety envelope is concerning. One striking observation is that the propulsion

parameters change directions. The uncertainty in the specific impulse dIsp and the

burn time dTc are both negative (i.e. lower than their nominal values) for the first

two wind cases. However, for the wind case 02 1991, dTc reverses direction, and for

07 2005 both dTc and dIsp reverse directions.
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Table 6.6: Salient results of the CE-based analyses of the P80, comparing three wind
models

No wind
Wind

model 1:
01 1993

Wind
model 2:
02 1991

Wind
model 3:
07 2005

Smallest
non-zero

probability

2.52×10−23

at γ=0.5
1.206×10−24

at γ=1
2×10−2 at

γ=1
8.2×10−21

at γ=1.15

γ|P[J≥γ] 0.55 1.05 1.1 1.2

CE Worst case 0.5263 1.0226 1.0951 1.1841

Figure 6.20: Qα versus Mach number trajectories considering no winds in the atmo-
spheric flight phase. The performance does not exceed 55% of the safety bound, and
thus robust performance is guaranteed.

It is seen that the presence of any wind model leads to a violation of performance

bounds. The results of this study are significant because the Vega launcher is found

to satisfy probabilistic robust performance in all cases, despite not satisfying the de-

terministic robust performance criterion. Unlike in previous industrial models, CE is

applied in isolation, without the support of optimisation-based analysis. It is seen that

CE performs well in finding the worst case performances, and in assessing the associ-
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Figure 6.21: Qα versus Mach number trajectories considering wind model 1 in the
atmospheric flight phase, showing a violation of the safety envelope close to 2.5 Mach.

ated probabilities.

Some limits to this approach do exist, particularly when applied in the post-flight or

post-design phases. The principal limitation, as previously discussed, is that CE cannot

consider a large number of uncertain parameters. In the context of VEGACONTROL,

an even larger uncertainty set of upto a hundred parameters can be varied. However

CE is unable to account for these in its analysis. In addition, the system parameters

are considered independent, even if a correlation exists between them. This may result

in some worst cases that are not physically feasible. At the current time, the worst

cases are discussed and screened for feasibility post analysis, in a meeting with system

experts. It may be possible to involve system expert’s knowledge before analysis as

well in a systematic way (not as currently done, using vertex type methods). This

involves expert elicitation, and could be considered for future work using Bayesian

type methods.
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Figure 6.22: Qα versus Mach number trajectories considering wind model 2 in the
atmospheric flight phase, showing a significant violation of the safety envelope near 1.3
Mach.

Figure 6.23: Qα versus Mach number trajectories considering wind model 3 in the
atmospheric flight phase, showing a violation of the safety envelope close to 0.5 Mach.

6.3 Conclusions

In this chapter, CE is applied to two space industry control systems at different ends

of the control synthesis cycle. The rationale for this is to increase the technological

maturity of CE as a robust performance assessment tool for space industry models.
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CE is first applied to a control system modelling the so-called barbecue mode of a long

coasting upper stage of a launcher, where the performance criterion is the total number

of thruster actuations. Apart from the modelling uncertainties, configuration parame-

ters related to the upper stage payload are also included in the analysis. The analysis

identifies that the worst case found using optimisation is indeed a rare event, with a

very low probability of occurrence (of the order 10−25). Although the performance

bound is violated, the probability associated with such a violation is also rare, of the

order 10−8. In other words, the barbecue mode controller satisfies probabilistic robust

performance, but not deterministic robust performance. In this way, CE overcomes the

pitfalls of conservatism generally associated with worst case analysis methods.

CE is then applied to a high-fidelity, nonlinear simulator of the Vega launcher model.

This implementation is done post-synthesis. The performance criterion is the aero-

dynamic loads experienced by the P80, Vega’s first stage, in atmospheric flight. The

structural loads in atmospheric flight is known for being particularly sensitive to wind

gust, and a safety envelope for the structural load is generated from experimental data.

Two different cases are studied: first, a critical subset consisting of 4 uncertain param-

eters to investigate their impact on the structural load in the presence of wind gust.

The second case is that of implementing various real wind models to assess their effect

on the structural loads. In both cases, CE successfully identifies violation of perfor-

mance, generates the probability profile of performance and computes the probability

associated with the worst case.

This chapter demonstrates the capabilities of CE in industry models of two different

sizes in different parts of the control synthesis cycle. The following chapter summarises

the previous chapters and provides a conclusion to this thesis.
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Chapter 7

Conclusions

This thesis proposes a cross entropy simulation-based technique to probabilistically as-

sess the robust performance of spacecraft control systems, and to complement existing

robust performance analysis techniques. This research study is motivated by the in-

creasing importance of accurate V&V in ensuring space mission safety and success, in

the light of greater GNC autonomy required in future missions. The most critical stage

of V&V for spacecraft safety is worst case analysis, currently performed in the industry

using Monte Carlo or increasingly, using optimisation methods. The worst case anal-

ysis of high-fidelity spacecraft dynamics is challenging, because they are described by

complex, non-linear, high-order models with a large number of modelling uncertainties.

The analytical robust performance method µ-analysis, rooted in rigorous linear alge-

braic principles, is attractive in the early design stages in both performance analysis

and synthesis. However, it cannot be applied on high-fidelity industry models for

three reasons. Firstly, its computational complexity does not scale polynomially with

the problem order. Secondly, µ-analysis operates on linear or nearly linear models.

Thirdly, the worst case performance reported by µ-analysis is often highly conserva-

tive. In addition, modelling high-order industrial systems as LFTs is cumbersome.
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The state-of-practice in the space industry is to carry out large-scale classical Monte

Carlo simulations, which incur significant computational costs. It is widely accepted

that MC is better suited to determining the average performance and the associated

standard deviation, rather than extreme performance. Consequently, optimisation-

based methods are now being employed for V&V , as they are highly efficient at com-

puting extrema. However, such analyses are also plagued by the issue of conservatism,

since the worst case often has a low likelihood of occurrence, and may thus be regarded

as a rare-event. Hence, assigning probabilistic measures to the degraded performance

is vital. Therefore, this research work aims to bridge the critical gap between the pes-

simistic worst case performance and the optimistic view of performance often presented

by Monte Carlo simulations.

The proposed methodology relies on CE, an adaptive importance sampling technique

whose principle is centred in minimising the Kullback-Liebler divergence. CE, well-

established in the literature as being effective at estimating rare-event probabilities, is

applied in an aerospace performance analysis problem for the first time in this work.

Based on CE, a probability profile of performance curve of a closed-loop system, is

introduced as a tool for robust performance analysis in this thesis1. This tool enables

decision makers to determine the expected levels of performance, the probability of

bounds violation if any, the worst case performance and the associated probability.

The CE-based PPoP generation algorithm is part of a rigorous performance analysis of

the iGNC rendezvous model, alongside µ-analysis and DE-based worst case analysis.

Together, these methods compute the worst case performance (all three methods), the

deterministic robust performance margins (µ-analysis), and the probability associated

with various performance levels, including the worst case performance. When imple-

1Although several analogous curves do exist in myriad fields, such as the survival curve, phase
transition curve or titration curve.
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mented together, these form an integrated analysis template, proposed in this thesis

for characterising both deterministic and probabilistic robustness properties of a linear

(or linearised) aerospace model.

Implementing CE alongside relatively mature techniques such as µ-analysis and DE

also enables verification of its accuracy and reliability on the type of problems of inter-

est in aerospace robust performance analysis. The comparison reveals that the worst

case performances arrived at by CE are a close match to those found by the more

established techniques. In addition, the worst case uncertain parameters tend towards

the same directions in all three cases, implying that the same problematic parameter

region is identified by all the methods. These results provide strong evidence that CE

may be reliably employed as a robust performance analysis technique, either alone or

in conjunction with existing techniques.

CE-based analysis is conducted to assess the robust performance of an attitude con-

troller for a launcher upper phase in the barbecue mode in an early design stage, in

which it accounts for payload configuration parameters alongside uncertain parameters.

Despite initial oscillation in the means and standard deviations of the parameters, pos-

sibly attributable to the integer-value performance function, the analysis successfully

identifies a worst case that constitutes a severe violation of its performance bound (this

worst case is higher than that found by DE). The strength of the CE-based analysis is

that it identifies a very low probability associated with bounds violation, and with the

worst case. CE successfully quantifies conservatism, thereby avoiding cumbersome and

costly redesign of the controller. With insights from the CE-based analysis, it is deter-

mined that the system satisfies probabilistic robustness, even though deterministically

speaking, the robust performance is not satisfied.
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The Vega launch vehicle’s first stage controller is analysed for structural loads violation

during atmospheric flight. The CE-based analysis successfully identifies problematic

parameter regions. In addition, the probability profile of performance curves are gen-

erated considering different wind models. This implementation is significant because

the simulator consists of extremely complex non-linear models, with stochastic factors

and a moderate number of uncertain parameters (28, to be exact), and so is an excel-

lent benchmark for the complexity of models to be analysed in the space industry. It is

noted that CE provides good insight into the performance in both parts of the analysis,

identifying where the performance bounds are not robustly satisfied. In addition, CE

demands a fraction of the computational time that MC run does, while still identifying

poorer performances.

Apart from the CE analysis paradigm, this thesis makes other contributions, which

include the development of a set of LFT models of the simplified rendezvous system

for MSR, and guaranteeing robust performance of the designed controller. Further, the

high-fidelity non-linear iGNC model is analysed using DE to guarantee the designed

controller performance in the presence of over 200 uncertainties. Unfortunately, CE is

incapable of working with such a large uncertain parameter dimension, and could not

be applied.

Taken together, the results presented in this thesis suggest that the CE-based analysis

technique is an excellent candidate for determining probabilistic robustness in aerospace

systems. The most important strength of this technique is its ability to determine prob-

abilistic robustness of a system, and to quantify conservatism of worst case performance.

Further, the CE-based method is attractive in the industrial V&V context because it

is applicable in existing V&V frameworks — in terms of the inputs and outputs, its

behaviour appears reasonably similar to classical Monte Carlo, and analysts do not
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need to apply engineering effort before each analysis. In most cases, the only engineer-

ing decisions needed before a CE analysis are the number of samples allowed in each

iteration, and the total number of CE iterations allowed. These values depend on the

time taken for a single evaluation of the model, and the computational budget available.

The most important limitation of the CE-based technique developed in this study is

that the uncertain parameter it can handle is (relatively) modest, due to the effect of

likelihood ratio degeneracy. In the process of implementing the technique, the most

number of parameters that was successful was in the dozens, rather than in the hun-

dreds (as demanded by the iGNC nonlinear model, for example). Another limitation is

that CE implementation is not readily applicable in the case of parameter distributions

not belonging to the exponential distribution family. In the current work, the models

required truncated Gaussian distributions, and hence it is convenient. For cases where

a uniform distribution is more appropriate, for example, the Kullback-Liebler diver-

gence based updating law must be modified. This will be explored in future work.

The work presented in this thesis has direct application in flight clearance of aerospace

control systems. V&V is the most crucial step of the control design cycle, and is also

the most expensive. CE can efficiently determine whether performance criteria are

met, and if they are not, it can determine whether costly retuning or redesign of the

controller is justified. The integrated analysis template proposed in the thesis is rig-

orous, yet does not make highly pessimistic recommendations, simply by virtue of the

conservatism being quantified. Such an approach to V&V has the potential to truly

balance the crucial aspects of flight safety with the speed demanded by commercial

operations to be efficient, and ultimately, profitable.
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7.1 Future Work

Future research directions created by the research in this thesis are now identified.

The CE-based analysis technique presented may be implemented to determine the

so-called safe and unsafe parameter regions. Although the scattered heat maps pre-

sented in the thesis indirectly allude to these concepts, a systematic treatment and

mathematical formalisation may be beneficial. The advantage of CE over MC in such

applications, is that CE samples more densely from the unsafe parameter regions, thus

providing richer data and clearer boundaries.

Further research work is needed to fully develop the CE-based technique into a power-

ful, self-contained probabilistic analysis technique that can be readily implemented by

the space industry. Importantly, it is important to increase the number of uncertain

parameters the technique can reliably consider. In order to overcome its limiting cause,

i.e., likelihood ratio degeneracy, it may be possible to use principles of optimisation,

or Gaussian processes while updating the parameter distributions. It is believed that

combining these powerful approaches can also enable CE to improve its computation

efficiency even further. Another improvement with regard to computational efficiency

that can be implemented more readily, is in parallelising function evaluations, both

during CE updating and during the final IS run.

The implementation of CE techniques in control design may be investigated. Informa-

tion of robust performance being satisfied incrementally from the initial design stage to

the final high-fidelity model can be considered right from the beginning of the analysis.

This constitutes randomised control design, which is a research area that CE can cer-

tainly contribute to. Inspecting the PPoP curve for satisfactory performance in every

stage of the design cycle can provide direction for tuning or control.
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In view of longer term perspectives, the probabilistic approach to V&V can be greatly

expanded. Expert elicitation techniques may be used to intelligently determine effective

prior distributions. For example, the physics of a problem may dictate that a param-

eter is likely to cause poor performance due to being associated with a singularity in

the dynamics. The prior mean parameter can then be biased towards the singularity

point, to truly investigate degraded performances. In this way, the human involvement

in V&V may occur at higher levels of cognition, and much of the human engineering

effort currently being conducted may be phased out. Such levels of autonomy can fa-

cilitate faster, more efficient V&V in lesser time, and can ultimately greatly enhance

space system safety and performance.
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