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Introduction

Many hydrolase enzymes including proteases, lipases, 
esterases and cellulases are already used commercially 
in industrial biocatalysis as documented in recent review 
chapters [56, 63, 66]. However, there is still an increas-
ing need for the new enzymes to compliment the existing 
‘Tool Box’ and to make these commercially available. The 
enzyme biocatalysts required for industrial processes need 
to withstand conditions that they are not usually exposed 
to within their natural environments such as high tempera-
tures, extremes of pH, high salt, high substrate concentra-
tions and the presence of organic solvents.

Extremophiles are organisms that have evolved to sur-
vive under many of these conditions and their intracellular 
and exported proteins often possess the desired attributes 
required for industrial applications.

This mini-review will concentrate on specific novel 
enzymes from characterised thermophilic archaeal and 
bacterial species isolated from marine and terrestrial ‘hot’ 
environments. In addition, enzymes sourced from metagen-
omes containing DNA and RNA from un-culturable micro-
organisms and their viruses will be included. Thermophilic 
enzymes from the archaea often offer additional novelty 
when compared to those from the thermophilic bacteria. 
The archaeal enzymes have evolved under different evo-
lutionary pressure and generally represent more primitive 
enzymes. Different archaeal species have novel metabolic 
pathways that are not found in other microorganisms. For 
example, some species have modified versions of the Emb-
den Meyerhof and Entner Doudoroff pathway involving a 
large number of novel enzymes [64] and have unusual pen-
tose degradation pathways. Several archaeal enzymes are 
promiscuous regarding their activity to related substrates 
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when compared to the equivalent enzymes isolated from 
bacteria or eukaryotes [13, 41, 57, 71]. This property to act 
on different structurally related substrates may be advanta-
geous for some industrial processes.

The stability of an enzyme is dependent on mainte-
nance of a functional structure which relies on a number 
of molecular interactions [12]. This property is also the 
case with a thermostable protein where the free energy 
of stabilisation is slightly higher than that of its meso-
philic counterpart [32]. The overall stability of all proteins 
is marginal and they are easily denatured by a variety of 
changes in temperature and pH. The active form of a pro-
tein is held together using a combination of non-covalent 
forces including hydrogen bonds, ion pairs, hydrophobic 
bonds and Van der Waals interactions. When these interac-
tions are disrupted, for example by elevated temperatures, 
both mesophilic and thermophilic proteins unfold into inac-
tive but kinetically stable structures. Once unfolded in this 
manner the protein is prone to aggregation and chemical 
modification. Chemical modifications of the protein can 
also occur under other conditions and include cysteine oxi-
dation, deamination of asparagine and glutamine residues 
and peptide bond hydrolysis. The unfolding of the protein 
when exposed to elevated temperatures may be reversible 
for smaller proteins, but is usually irreversible with larger 
proteins.

Some extremophilic microorganisms are able to grow 
at extremes of pH and are called acidophiles and alkalo-
philes, respectively. It is only the proteins exported from 
the cell that have to be stable under the pH conditions of 
the extreme growth environment. The proteins inside the 
cell do not have to withstand these extreme conditions as 
the intracellular pH is maintained around pH 5.0–6.0.

The use of more thermostable proteins, apart from 
being more cost effective with regard to enzyme use, can 
offer the option to run the process at elevated temperatures 
where non-natural substrates are more soluble. The tem-
perature for operation of the industrial process needs to be 
balanced against the overall economics of the biocatalytic 
conversion. An example of a process which is commer-
cially operated at 50 °C is the production of L-amino acids 
and L-amino acid analogues using a thermophilic archaeal 
L-aminoacylase enzyme that has been cloned and over-
expressed from the archaeon Thermococcus litoralis [72]. 
This enzyme is used for the multi-ton commercial produc-
tion of L-amino acids by Chirotech/Dow Pharma. More 
recently, the process operated by Chirotech/Dr Reddy’s [4] 
uses the addition of a racemase enzyme to convert the iso-
mer not used by the enzyme to the isomer which is used, 
enabling a more efficient process with 100% conversion of 
a racemic substrate to one desired product [28].

What makes a protein more stable to elevated tempera-
tures has been identified by studying the biochemical and 

structural features of a range of purified thermophilic pro-
teins [45]. The structural features to increase thermostabil-
ity as used by ‘nature’ include an increase in ionic interac-
tions within the monomeric protein structure and at subunit 
interfaces for multi-subunit proteins. These offer most sta-
bilisation when they occur in clusters as seen in many ther-
mophilic enzymes including a thermophilic alcohol dehy-
drogenase enzyme from the hyperthermophilic archaeon 
Aeropyrum pernix which can be used industrially for chi-
ral alcohol production [24]. The α-helices in the protein 
can be ‘capped’ by introduction of an acidic amino acid to 
neutralise the charge at the amino end of the helix and a 
basic amino acid to neutralise the charge at the acidic end 
of the helix. Many thermophilic proteins are also stabilised 
by hydrophobic interactions within the protein interior and 
at the subunit interfaces. This is often a feature of enzymes 
from thermophilic organisms such as the omega transami-
nase from Sulfolobus solfataricus [58] and pyroglutamyl 
carboxyl peptidase from T. litoralis [67]. The thermophilic 
proteins often have increased internal packing such as 
additional secondary structures and C-terminal extensions 
which can pack into the protein to fill unnecessary voids 
as seen in the glyceraldehyde 3-phosphate dehydrogenase 
from the thermophilic archaeon S. solfataricus [31]. Most 
thermophilic proteins have shorter surface loops and often 
the internal loops can be stabilised by metal ions [45]. An 
increased content of proline residues is seen in some ther-
mophilic bacteria such as Thermus species which have a 
high G-C content in their DNA. Generally there is a reduc-
tion in amino acids that are unstable at high temperatures 
such as asparagines and cysteines except where they play 
an important catalytic role. Some hyperthermophilic aero-
bic archaea such as the A. pernix species use the introduc-
tion of a covalent disulfide bond into the protein to offer the 
necessary stability at high temperatures [24, 46].

Esterase enzymes

The esterase enzymes are widely used industrial enzymes. 
They are able to carry out hydrolysis of an ester bond by 
a hydrolytic reaction using the classic ‘catalytic triad’ of 
three amino acids Ser, His, Glu or Asp [8]. They are rela-
tively stable enzymes in organic solvents and have been 
widely used in both the hydrolytic and the reverse synthetic 
direction to carry out esterification and transesterification 
reactions. A general review on lipases was published by 
Bornscheuer [10]. Most lipolytic enzymes belong to the 
α/β hydrolase protein fold superfamily [53]. The catalytic 
serine residue in the α/β hydrolase fold esterases is usually 
located in a tight nucleophilic elbow with the consensus 
sequence Gly-X-Ser-X-Gly, although deviations from this 
consensus have been reported [9, 51].
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However, esterase activity has also been reported for 
enzymes with a β lactamase fold [74] and an α/β/α hydro-
lase fold [73] or as a side activity for the zinc containing 
carbonic anhydrase enzymes [30]. The ESTHER database 
[42] divides the α/β hydrolase enzymes into over 140 fami-
lies and superfamilies which are further assigned to groups 
C, H, L, and X.

Esterases are used for pharmaceutical intermediates due 
to the stereo-selectivity of their reactions, but also are find-
ing many other uses as bulk enzymes in the healthcare, 
laundry and food industries and for degradation of domes-
tic and agricultural biomass. There is always a demand for 
esterase enzymes with increased stability and selectivity for 
a variety of applications in industrial biotechnology. As part 
of a recent EU project ‘HOTZYME’ new esterase enzymes 
with different structural features and specificities have 
been identified and characterised. The first of these was 
found in the genome of a well characterised thermophilic 
archaeon, Archaeoglobus fulgidus [70]. The Arch. fulgidus 
is an anaerobic heterotrophic sulphate-reducing archaeon 
that grows at temperatures between 60 and 95 °C, with an 

optimal growth at 83 °C. It was isolated at Volcano Island 
in Italy 30 years ago. It was the first sulphur metabolising 
organism to have its genome sequence determined [40]. 
Some esterases and a lipase were earlier characterised from 
this organism including AFEST [47] which is a member of 
a hormone-sensitive lipase family and can be used for the 
biocatalytic conversion of poly δ-valerolactone being ther-
mostable up to 90  °C. The first esterase Est-AF [16] and 
directed mutants of this enzyme have been designed for the 
industrial production of the (S)-enantiomer of ketoprofen 
that acts as an anti-inflammatory drug [37, 38].

The new carboxyl esterase, AF-Est2, belongs to the α/β 
hydrolase 6 family and the X group of the ESTHER classi-
fication. It has been cloned, over-expressed in Escherichia 
coli and biochemically and structurally characterised [61]. 
The AF-Est2 has very good solvent and pH stability and is 
very thermostable, showing no loss of activity after incuba-
tion for 30 min at 80 °C making it a good addition to the 
industrial esterase enzyme ‘tool box’. The structure of the 
esterase at high-resolution (PDB: 5FRD, Fig. 1a) revealed 
Coenzyme A (CoA) bound in the vicinity of the active site; 

Fig. 1   A cartoon representa-
tion of the crystal structures of 
the three thermophilic esterase 
enzymes described above. 
The helices are shown as red 
cylinders and the sheets as blue 
arrows. Other selected atoms 
are shown as ball and stick 
representation. a The Archaeo-
globus archaeal esterase, AF-
Est2, showing the larger core 
and smaller cap domains, with 
the bound CoA molecule and 
catalytic residues shown as a 
stick model PDB code 5FRD. b 
The T. terrifontis bacterial ester-
ase, TtEst, showing D-malate 
which maps the alcohol-binding 
pocket of the active site PDB 
code 4UHE. c The second 
bacterial esterase from T. terri-
fontis, TtEst, showing the open 
active site and minimal cap 
domain. The substrate butyrate 
is bound shown in ball and stick 
representation which maps the 
carboxyl-binding pocket of the 
active site PDB code 5AOB. 
Images were generated using 
CCP4 MG [48]
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however, this enzyme has no CoA thioesterase activity as 
described for related enzymes [5]. The pantetheine group 
of CoA partially obstructs the active site alcohol pocket of 
AF-Est2 suggesting that this ligand has a role in regulation 
of the enzyme activity. A comparison of the structure of 
AF-Est2 with the human carboxyl esterase 1 [5] which has 
CoA thioesterase activity, reveals that the cofactor is bound 
to different parts of the core domain in these two enzymes 
and approaches the active site from opposite directions.

Two other interesting thermophilic esterases have been 
characterised from a recently discovered thermophilic 
Planctomycetes species of bacterium named Thermogutta 
terrifontis [59, 60]. The T. terrifontis has been isolated 
from a terrestrial hot spring on Kunashir Island, Russia 
[68]. It is the first thermophilic member of the phylum 
Planctomycetes. This organism grows up to 70 °C, with an 
optimum growth temperature of 55–60 °C. Planctomycetes 
represents a deep distinct phylum in the bacterial domain 
and includes a large group of microorganisms with unique 
features not found in other bacteria such as reproduction by 
budding, presence of intra-cytoplasmic membranes which 
divide the cell into compartments, presence of a primitive 
nucleoid and the lack of peptidoglycan in the cell wall.

The first T. terrifontis esterase, TtEst, has been cloned 
and over-expressed in E. coli [59]. The enzyme is highly 
thermostable retaining 95% of its activity after incubation 
for 1  h at 80  °C. It has been biochemically characterised 
and shown to have activity towards small p-nitrophenyl 
(pNP) carboxylic esters with optimal activity for pNP-pro-
pionate. The structure of the enzyme has been determined 
without ligands bound in the active site (Fig.  1b) and in 
complex with a substrate analogue, D-malate and the prod-
uct acetate (PDBs: 4UHC (native), 4UHD (acetate bound), 
4UHE (malate bound), 4UHF (L37A mutant with butyrate 
bound)).

The bound ligands in the structure have allowed the 
identification of the carboxyl and alcohol-binding pockets 
in the enzyme active site. The results have also contrib-
uted to an understanding of substrate specificity and the 
subtle structural differences between esterase and lacto-
nase enzymes. A comparison has been made of the alco-
hol-binding pocket in TtEst with the equivalent pocket in 
two other structurally related enzymes, a lactonase and a 
γ-lactamase. The 3-oxoadipate-enol lactonase from Bur-
kholderia xenovorans (PcaD) (PDB code 2XUA) [3] has 
only 29% sequence identity to TtEst and the Aureobac-
terium species (−) γ-lactamase (Agl) (PDB code 1HKH) 
[44] with 30% sequence identity has shown that the cata-
lytic triad residues and the position of the oxyanion hole are 
conserved between the enzymes. The PcaD and Agl show 
that the TtEst pocket that forms part of the active site has 
a much more polar and charged environment allowing the 
binding of organic acids such as D-malate where the distant 

carboxyl is coordinated by Arg139 and Tyr105. The PcaD 
and Agl enzymes have more hydrophobic substrate bind-
ing pockets, with the residues Arg139 and Tyr105 in TtEst 
replaced by Trp135 and Ile129 in PcaD and Trp204 and 
Leu125 in Agl. For PcaD and Agl, the active site is suited 
for the binding of structures such as lactone and γ-lactam 
rings. Similarly, the Pseudomonas fluorescens esterase with 
30% sequence identity (PDB code 3HEA) [78] has an alco-
hol pocket which is lined with several hydrophobic pheny-
lalanine side chains that should have affinity for the lac-
tone ring. This would explain its lactonase activity towards 
caprolactone [11] in addition to its esterase activity. This 
enzyme and the Agl enzyme both have perhydrolase activ-
ity. They are able to produce hypochlorous and hyperbro-
mous acid in a side reaction at acidic pH [6] and were orig-
inally named as non-cofactor chloroperoxidases [27].

Mutant enzymes have been constructed to extend the 
substrate range of the TtEst esterase to accept the larger 
butyrate and valerate pNP-esters. The crystal structure of 
the Leu37Ala mutant shows the butyrate product bound in 
the carboxyl pocket of the active site. The structure shows 
an expansion of the pocket that binds the substrate carboxyl 
group which allows the observed activity towards pNP-
butyrate [59].

The second T. terrifontis esterase, TtEst2, shows sub-
stantial differences when compared with the TtEst1. A 
large difference is observed with the absence of the usual 
‘cap’ domain found in most other esterase enzymes which 
results in an open substrate binding site that is solvent 
accessible (Fig.  1c) [60]. This TtEst2 enzyme belongs to 
the α/β-hydrolase family 3 in the Pfam classification [21]. 
It has been characterised biochemically and shown to have 
activity towards small p-nitrophenyl (pNP) carboxylic 
esters with optimal activity for pNP-acetate. The enzyme 
is not as thermostable as TtEst1, but still retains 75% of 
its activity after incubation for 30 min at 70 °C. The struc-
ture of this enzyme has been determined in the native form 
and in complex with the carboxylic acid products propion-
ate, butyrate and valerate. The PDB codes 5AO9 (native), 
5AOa (propionate bound), 5AOb (butyrate bound), 5AOc 
(valerate bound) have been deposited. The structures with 
bound ligands have allowed the identification of the car-
boxyl-binding pocket in the enzyme active site. Since this 
enzyme has a very open active site compared to other ester-
ase enzymes it has the potential to be active towards larger 
substrates.

Lactonases

The specific cleavage of a lactone ring is an important 
activity of interest to many pharmaceutical companies. 
Lactones have been shown to be important communication 
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molecules between microbial cells and the topic has been 
reviewed [75].

The lactonase enzymes identified to date fall into three 
structurally diverse groups: the enol lactonases, the gluco-
nolactonases and the quorum-sensing lactonases. Phospho-
triesterase-like lactonases were identified in the archaeal 
species S. solfataricus and S. acidocaldarius [1, 49, 50, 
54]. These enzymes catalyse the hydrolytic cleavage of the 
intramolecular ester bond in lactones and acyl-homoserine 
lactones to give the corresponding hydroxyacylic acids. 
This class of lactonases also have a promiscuous phos-
photriesterase activity towards organophosphate com-
pounds and have the potential to be used for remediation 
of contaminated soils. However, the natural role for these 
lactonases is to break down lactones that are thought to 
play a role in quorum sensing between microorganisms 
and are involved in biofilm formation [14, 39] and also in 
the expression of virulence factors that are of interest in 
medicinal and biotechnological applications [25]. There-
fore, the enzymatic degradation of lactones could be used 
to interrupt quorum-sensing signalling pathways and to 
control microbial communication so that they cannot form 
communities.

A lactonase of this class has been identified, cloned, 
over-expressed and characterised [34] from Vulcanisaeta 
moutnovskia a hyperthermoacidophilic crenarchaeon iso-
lated from a solfataric field in Kamchatka (Russia) [23, 55]. 
This lactonase was studied with view to its substrate speci-
ficity for biocatalytic applications of interest to the phar-
maceutical industries. The lactonase converted lactones 
and acyl-homoserine lactones with comparable activities. 
A promiscuous, lower activity was observed with organo-
phosphates and minor activity was observed with carboxyl 
esters. The catalytic activity was strictly dependant on biva-
lent cations (Cd2+ > Ni2+ > Co2+ > Mn2+ > Zn2+) and was 
most active at pH 8.0, and at 80 °C. The enzyme has high 
activity towards linear γ-lactones with hydrophobic side 
chains of variable lengths from γ-butyrolactone (no side 
chain) and γ-valerolactone which has a methyl side chain 
and γ-dodecalactone which had a seven-carbon side chain. 
It was shown that the enzyme has activity to whiskey lac-
tone and δ-dodecalactone. No measurable activity was 
seen for mevalonolactone or δ-decalactone. The lactonase 
enzyme had increased activity towards the D form of these 
substrates [34].

The recent structure of the V. moutnovskia lactonase has 
been carried out in complex with a long chain fatty acid 
which maps the position of the substrate binding pocket 
[26]. This enzyme belongs to the amidohydrolase enzyme 
superfamily which has a (β/α)8-barrel structural fold. The 
two bound cobalt ions in this enzyme that are essential for 
activity are located in at the C-terminus of the β barrel in 
the crystal structure. In the proposed catalytic cycle, the 

metal ions activate a bridging water molecule through pro-
ton abstraction. The resulting hydroxide ion then performs 
a nucleophilic attack on the C1 of the lactone ring resulting 
in hydrolysis [26].

The high thermal stability of this class of lactonase 
enzymes as well as their broad substrate specificity for dif-
ferent lactones makes them interesting new enzyme for the 
biocatalytic ‘tool box’.

The enol lactonases are members of the α/β hydrolase 
superfamily and are closely related to the esterases. The 
3-oxoadipate-enol lactonase from B. xenovorans (PcaD) 
(PDB code 2XUA) [7] has been mentioned above. A ther-
mophilic member of this family has been identified, cloned 
and studied from the archaeon Carboxydothermus hydrog-
enoformans [62].

Epoxide hydrolases from extremophilic 
metagenomes

An important enzyme activity of interest to the pharma-
ceutical industry is the ability to catalyse the hydrolysis 
of an epoxide ring by addition of a molecule of water to 
form a vicinal diol as a product [36, 76]. Enzymes found 
in nature that can carry out this reaction play an important 
role in the detoxification of reactive xenobiotics or endog-
enous metabolites and in the formation of biologically 
active mediators. The so-called ‘epoxide hydrolases’ are 
already used for the production of optically pure epoxides 
and diols which are important synthons for the preparation 
of fine chemicals and drugs, for example the chiral precur-
sors of β-blockers [35, 52]. These enzymes are found in 
two classes which have different structure and mechanisms. 
The most studied class has the α/β hydrolase fold which 
is characteristic of the esterase enzymes described above. 
The other less studied class is called the limonene epox-
ide hydrolases (LEHs) after the substrate, limonene, that 
they were shown to hydrolyse. The LEH enzyme active site 
contains three residues (Asp, Arg, and Asp) that have been 
proposed to act in a concerted fashion to activate a water 
molecule which is able to open the epoxide ring without 
the formation of a covalently bound alkyl-enzyme interme-
diate [2, 29]. A recent review has described the importance 
and industrial interest of these hydrolase enzymes [77].

Recently, as part of a thermophilic metagenomic project 
two new thermostable epoxide hydrolases of the limonene 
class have been discovered. The metagenomes were iso-
lated in Russia and China from hot terrestrial environ-
ments growing at 46 and 55 °C, respectively, and at neutral 
pH. The microbial mat which was sampled at the Russian 
Tomsk site is shown in Fig. 2a. A bioinformatic approach 
was used to identify the genes coding for these industri-
ally important enzymes using the mesophilic Rhodococcus 
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LEH as a search. The two new thermophilic LEHs have 
been cloned and over-expressed in E. coli and the resultant 
proteins characterised both biochemically and structurally 
[19]. The atomic coordinates and structure factors of the 
crystal structures obtained have been deposited in the PDB: 
5AIF (Tomsk-LEH native structure), 5AIG (Tomsk-LEH 
valpromide complex), 5AIH (CH55-LEH native structure) 
and 5AII (CH55-LEH PEG complex). The overall structure 
of the Tomsk-LEH from the Russian-sourced metagenome 
is shown in Fig. 2b and the active site showing the catalytic 
water is shown in Fig.  2c. The new LEH enzymes have 
attracted industrial interest since they are more thermosta-
ble than the available LEH and have different stereo-pref-
erence for the different isomers of limonene-1,2-epoxide. 
They have already been used in pilot-scale biotransforma-
tions for efficient epoxide hydrolase-catalysed resolutions 
of (+)- and (−)-cis/trans-limonene oxides which have 
important industrial applications [20].

Carbonic anhydrases

Carbonic anhydrase enzymes (CAs) catalyse the revers-
ible hydration of carbon dioxide to bicarbonate. The bovine 
and human enzymes of the α-carbonic anhydrase class 
have been widely studied and are known to be very effi-
cient catalysts of CO2 hydration. Most of these enzymes 
also have a side activity as an esterase although the mecha-
nism involves a zinc ion and not the catalytic triad found 
in most esterases. The carbonic anhydrase reaction mecha-
nism involves an attack of a zinc-bound hydroxide ion onto 
a CO2 molecule which is bound in a hydrophobic pocket 
of the enzyme. The resulting zinc-coordinated bicarbonate 
ion is removed from the metal ion by water. There is then a 
rate-limiting step where an intramolecular proton is trans-
ferred from the zinc-bound water molecule to a histidine 
amino which serves as a proton shuttle between the metal 
centre and buffer molecules in the reaction medium [43].

Carbonic anhydrase has industrial applications as a cata-
lyst for CO2 capture from the environment and from indus-
trial waste streams. However, the biocatalyst used has to be 
stable to the temperature and other harsh conditions that it 
is exposed to during the process.

The thermophilic bacteria appear to contain high activ-
ity α-carbonic anhydrase enzymes which are related to the 
bovine and human carbonic anhydrase enzymes, whereas 
the archaea have carbonic anhydrases that have different 
structures and mechanisms. There are six distinct fami-
lies of CAs (α, β, γ, δ, ζ, and η) [22, 69]. The amino acid 
sequences are conserved between each family; however, 
there is no sequence or structural similarity between the 
different families. The CA activity always requires the 
presence of a catalytic zinc ion which is coordinated to 

Fig. 2   a The microbiological mat at the Tomsk sampling site, Para-
bel, Tomsk Region, West Siberia, Russia, which provided the metage-
nome DNA sample where the LEH was identified. Picture kindly 
provided by Prof. Elizaveta Bonch-Osmolovskaya. b A cartoon rep-
resentation of the dimeric Tomsk-LEH structure in complex with an 
inhibitor valpromide shown in ball and stick representation which 
is bound at the active site. PDB code 5IG. c A close-up representa-
tion of the active site of Tomsk-LEH with the active site residues and 
inhibitor highlighted. The red sphere represents the active site water 
molecule. Images were generated using CCP4 MG [48]
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either histidine or cysteine amino acids depending on the 
class of the enzyme [65]. A stable robust α-carbonic anhy-
drase has been identified in the thermophilic bacterium 
Thermovibrio ammonificans. The enzyme has been cloned 
and over-expressed in E. coli. This protein has been char-
acterised both biochemically and structurally [33]. The 
crystal structure of this enzyme has been determined in 
its native form and in two complexes with bound inhibi-
tors. The overall structure of the enzyme is unique since it 
forms a tetrameric structure rather than the dimer reported 
for related enzymes. The Thermovibrio carbonic anhydrase 
is stabilised by a unique core in the centre of the tetramer 
which is formed by two intersubunit disulfide bonds and 
a single lysine residue from each monomer (Fig. 3a). The 
structure of this central core region protects the intersubunit 
disulfide bonds from reduction. The catalytic zinc ion coor-
dinated to histidine residues that is observed in the active 
site of the Thermovibrio enzyme is shown in Fig. 3c.

Another thermophilic bacterial α-carbonic anhydrase has 
been described from Sulfurihydrogenibium yellowstonense. 
This carbonic anhydrase is also thermostable and is a dimer 
stabilised by ionic networks [17]. A review of the differ-
ent types of thermophilic carbonic anhydrase enzymes has 
recently been published [18].

Summary

This mini-review has provided a selection of examples 
demonstrating the use of ‘Natures Catalysts’ to provide a 
‘tool box’ of biocatalysts for sustainable applications in 
industrial biotechnology. This has been highlighted using 
different thermophilic hydrolase enzymes identified in ther-
mophilic genomes and metagenomes from both bacterial 
and archaeal sources. These enzymes are robust to the con-
ditions required for their different industrial applications. It 
is expected that the number of these enzymes used com-
mercially will increase due to their inherent stability and 
novel specificities. The enzymes can be cloned and over-
expressed in easily growing hosts such as E. coli which can 
provide sufficient quantities of the purified enzymes for dif-
ferent biocatalytic applications. For larger scale industrial 
applications, where the enzyme is required in kg quantities, 
an alternative fungal host system that exports the enzyme 
into the growth media could be developed.

The stability of the biocatalyst is an important issue 
since to be economically viable the enzyme needs to be 
reused for several biocatalytic cycles. Immobilisation of the 
enzyme can often increase its stability and will also allow 
it to be easily recovered for reuse. The cost of the enzyme 
biocatalyst is usually the most expensive component of the 
industrial biotransformation and this must be matched to 
the value of the end product or process.

The use of enzymes is expected to grow in the next year 
with bio-based materials, chemicals and sustainable pro-
cesses predicted to rise globally to over 7.4 million metric 
tons in 2018 (Lux Research analysts). The time required 
to source the best enzyme catalyst and its optimisation for 
the desired process, is still a limiting factor for a cost-effec-
tive biocatalytic route. There is, however, a large natural 
resource available to search for novel enzymes to add to the 
currently available ‘tool box’.

The adoption of new commercial biocatalytic pro-
cesses will be important to achieve the goal of a 

Fig. 3   a A cartoon representation of the tetramer structure of the 
α-carbonic anhydrase from T. ammonificans showing each subu-
nit in a different colour. The active site zinc is shown as a sphere in 
each subunit together with an inhibitor in ball and stick representa-
tion bound at each active site. The disulfide bonds at the centre of the 
tetramer which add stability to the enzyme are shown in yellow. b A 
close-up representation of the active site of the enzyme showing the 
catalytic zinc molecule and the inhibitor acetazolamide bound to the 
active site. Side chain residues co-ordinating the zinc ion and residues 
making up the active site are highlighted. PDB code 4COQ. Images 
were generated using CCP4 MG [48] and PyMOL [15]
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sustainable ‘circular economy’ and to address important 
global challenges.
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