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Abstract
The rice blast fungus causes significant annual harvest losses. It also serves as a geneti-

cally-tractable model to study fungal ingress. Whilst pathogenicity determinants have been

unmasked and changes in global gene expression described, we know little aboutMagna-
porthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed dur-

ing infection, vegetative growth and under exogenous wall stress, demand robust choice of

reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We

describe the expression stability of nine candidate reference genes profiled by qRT-PCR

with cDNAs derived during asexual germling development, from sexual stage perithecia

and from vegetative mycelium grown under various exogenous stressors. Our Minimum

Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a

set of robust reference genes used to track changes in the expression of the cell wall remod-

elling geneMGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their

expression stability (M) and report the best gene combination needed for reliable gene

expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and

Global) frequently used inM. oryzae expression studies. We found thatMGG_Actin
(MGG_03982) and the 40S 27a ribosomal subunitMGG_40s (MGG_02872) proved to be

robust reference genes for the Infection group andMGG_40s andMGG_Ef1 (Elongation

Factor1-α) for both Vegetative and Global groups. Using the above validated reference

genes,M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated

three-fold during vegetative growth as compared with dormant spores and two fold higher

under cell wall stress (Congo Red) compared to growth under optimal conditions. We rec-

ommend the combinatorial use of two reference genes, belonging to the cytoskeleton and

ribosomal synthesis functional groups,MGG_Actin,MGG_40s,MGG_S8 (Ribosomal sub-

unit 40S S8) orMGG_Ef1, which demonstrated low M values across heterogeneous tis-

sues. By contrast, metabolic pathway genesMGG_Fad (FAD binding domain-containing

protein) andMGG_Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) performed

poorly, due to their lack of expression stability across samples.

PLOS ONE | DOI:10.1371/journal.pone.0160637 August 25, 2016 1 / 18

a11111

OPEN ACCESS

Citation: Che Omar S, Bentley MA, Morieri G,
Preston GM, Gurr SJ (2016) Validation of Reference
Genes for Robust qRT-PCR Gene Expression
Analysis in the Rice Blast Fungus Magnaporthe
oryzae. PLoS ONE 11(8): e0160637. doi:10.1371/
journal.pone.0160637

Editor: Richard A Wilson, University of Nebraska-
Lincoln, UNITED STATES

Received: May 3, 2016

Accepted: July 23, 2016

Published: August 25, 2016

Copyright: © 2016 Che Omar et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding:We acknowledge funding from Khazanah
Foundation in support of SCO, BBSRC grant BB/
J008923/1 awarded to SG and we thank Eleanor
Jaskowska for her assistance in tissue preparation.
Neither funder played a role in study design, data
collection, analysis, decision to publish or manuscript
preparation.

Competing Interests: The authors have declared
that no competing interests exist.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/83924563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0160637&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Rice blast disease is caused by the ascomycete fungusMagnaporthe oryzae (previously known
asMagnaporthe grisea [1]). Despite active pathogen management strategies, such as the
deployment of disease resistant cultivars and the widespread spraying of antifungals, year-on-
year crop losses occur. Indeed, recent rice blast outbreaks have been seen in USA, Thailand,
China, India and Japan [2–5]. With significant annual yield losses (up to 30%) attributable to
this fungus alone, and as the global demand for rice increases alongside population growth,
better control of this disease is imperative [6–8]. Recent years have seen growing interest in the
fungal cell wall as a potential phylum-specific target for disease mitigation. In this regard, our
quest is to describe the mechanisms which underpin cell wall construction and which endow it
with sufficient plasticity to support expansion, growth and infection [9–11]. To achieve such
plasticity, specialised groups of GPI-anchored glycosyltransferase (GST) proteins such as
Gasp/Gelp, [12–14], Crh1p/Crh2p [15, 16], Dfg1p/Dcw5p [17] and Sps2p (Ecm33p) [18] con-
tinuously remodel synthesised polysaccharides in response to changes in the external environ-
ment or with the developmental clock [12, 13, 16, 17]. Of the various GSTs, the Crh-like family
of Crhp, carrying Crh1p, Utr2p and Crr1p was first described in Saccharomyces cerevisiae [19].
These proteins share a functional domain belonging to the Glycosyl Hydrolase 16 group of
Carbohydrate Active Enzymes (CaZy) and catalyse the hydrolysis of β-(1,4) linkages in the chi-
tin polymer and the transfer of chitin to a glucan acceptor, usually to either β-(1,3) or (1,6) glu-
can chains, and subsequent branch formation with chitin polymers [20, 21]. The cross-linking
of these alkaline-insoluble chitin chains to the soluble glucan polymers is responsible for pro-
viding cell wall rigidity and strength [22, 23] and therefore inactivation of the Crh-like proteins
could potentially influence fungal pathogenicity. In agreement with this, Candida albicans
knockout mutant strain ΔUtr2 was less virulent and unable to colonize mice organs [24]. Fur-
thermore, Pardini et al. [15] then developed a triple mutant which was fully non-pathogenic
even when mice were infected at a lethal dose. Results from the studies above are an important
indication that targeting Crh-like genes has the potential to impair a pathogen’s viability, sub-
sequently affecting its ability to infect and/or colonize a host.

Little is known about this family of genes in plant pathogenic fungi. As a first step, we set
out to capture the expression profile ofM. oryzae MGG_Crh2 (orthologous to Crh1 in S. cerevi-
siae) during fungal development (asexual morphogenesis, sexual structure formation and vege-
tative growth) and when grown under cell wall stress (Congo Red). This undertaking posed
several technical challenges, not least the paucity of pathogen RNA present within the host tis-
sues (often<0.1%). In S. cerevisiae, temporal expression of Crh1 increases by 2-fold as the
yeast enters the budding phase, whilst under cell wall stress, invoked by Congo Red, Calcofluor
White or Zymolyase, expression increases by 2–4 fold [25, 26]. Despite these small fold
changes, yeast Crhmutants exhibit hypersensitivity to these cell wall perturbing compounds, as
well as altered cell surface plasticity [22]. Such small fold changes in protein transcript abun-
dance further re-enforce the need for a sensitive, reliable and robust quantification technique.

A multitude of publications attest to the usefulness of both individual and genome-wide
gene expression studies inM. oryzae. However, whilst large-scale transcript analyses with
microarrays and/or high throughput-SUPERSAGE have captured gross fold-changes over sev-
eral thousand genes [27, 28], such analyses are not sensitive enough to detect small changes in
low abundance genes. Moreover, they are overly challenging or, indeed, impossible to perform
with minute samples of tissue-specific RNA. Quantitative Real-Time PCR provides a low
throughput (ie a restricted number of genes) but highly sensitive technique [29, 30]. Indeed, it
has been shown to be 5-fold more sensitive than microarray data [31]. However, to obtain reli-
able data, qRT-PCR requires stringent preparation strategies, including good quality RNA
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samples and the use of efficient and specific primers [32–34]. In addition, the choice and num-
ber of reference genes used for data normalisation are critical for robust analysis of gene
expression [34, 35]. Studies have shown that expression stability of a reference gene varies
between species, and that expression could also vary across sample tissue type and experimen-
tal conditions [32, 33, 36, 37]. Moreover, using an inappropriate number of reference genes can
adversely affect data reliability–as shown with Drosophila melanogaster head cDNA, where the
relative expression of genes GSTD1, INR and HSP70 differed significantly when the normalis-
ing factor (NF) used either 1, 3 or 13 reference genes [38]. As such, the use of un-validated
and/or single reference genes in qRT-PCR assays, such as, for example,MGG_β-Tubulin,
MGG_Actin,MGG_Gapdh orMGG_Ubiq inM. oryzae is strongly discouraged. In addition,
sample quality control, validation, and assay optimisation prior to running the qRT-PCR in
gene expression assays are important for data reliability. Recognising this, recently there has
been an increase in the number of reference gene validation studies in plant fungal pathogens
such as in Puccinia sp. (wheat rust) [39], Fusarium sp. (wheat head blight) [40], and Aspergillus
sp.(Black mould) [41]. However, prior to the work conducted by Park et al. [27], studies of
gene expression inM. oryzae used only one, un-validated reference gene such asMGG_β-
Tubulin [42, 43],MGG_Actin, orMGG_Gapdh [44]. To redress this, Park et al. [27] recently
attempted to validate seven candidate genes, identifyingMGG_β-Tubulin as the most stably-
expressed gene of their cohort. The work, however, comes short of identifying the appropriate
number of reference genes to use.

Through the emphasis for stringent qRT-PCR preparation, this paper was prepared in
accordance to the guidelines made for the Minimum Information for Publication of qRT-PCR
Experiments (MIQE) [34]. Furthermore, given the need to improve current measurement of
gene expression practices inM. oryzae studies, this paper utilises additional candidate reference
genes as well as genes commonly used in this field of study. Here, nine candidate reference
genes from various functional groups were shortlisted, the stability validated and importantly,
the appropriate number of genes needed for normalisation of gene expression under various
fungal growth conditions were determined in this study. We then used the chosen reference
genes to investigate the expression profile ofMGG_Crh2, a cell wall remodelling protein, dur-
ing various developmental stages and growth under various exogenous stresses. Thus, we
have evaluated and determined the optimal number of reference genes to use, but have also
appraised and added several further candidate genes, from disparate functional groups that
out-perform the expression stability ofMGG_β-Tubulin as the ideal reference gene. We hereby
propose a robust qRT-PCR data normalisation strategy for transcript analysis inM. oryzae that
will improve the confidence and reliability of all future gene expression analysis work related to
this fungus.

Materials and Methods

Fungal Strains and Growth Conditions
Rice blast fungusMagnaporthe oryzae (M. grisea (T.T. Herbert) M.E. Barr) wild type (WT)
strains Guy11 (MAT1-2) and TH3 (MAT1-1) were cultured on complete medium (CM) at
24°C, 14 hour light 10 hour dark cycle. Strain maintenance and media composition were as
described by Talbot et al. [45]. Perithecia were produced by crossing Guy 11 with the opposite
mating type strain TH3: agar plug inocula of the 2 strains were placed 4 cm apart on oatmeal
agar and incubated under constant fluorescent light at 18°C for 29 days. Perithecia were then
harvested using a dissecting microscope and snap-frozen in liquid nitrogen. Guy11 spores were
harvested from 10-day-old CM plates by scraping the surface with 10 mL deionised water with
a glass slide, and poured through triple layered Miracloth (Merck Chemicals Ltd, Padge Rd,
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Nottingham, NG9 2JR, UK). Spore concentrations were adjusted using a haemocytometer
prior to use.

Tissue Preparation for RNA Extraction
Mycelial tissue grown under various stress factors. Two hundred μL of 4 x 105 spores/

mL Guy11 spore suspension was added to 500 mL of various liquid cultures, and incubated at
24°C for 3 days in the dark, under continuous shaking (150 rpm). Mycelia were harvested by
filtering through double-layered Mira-cloth, dried with paper towels and 0.1 g of fungal myce-
lia was snap frozen in liquid nitrogen and stored at -80°C. The process was repeated to gather
three biological replicate samples for each condition assayed.

For control vegetative growth under optimal conditions,M. oryzae Guy11 was cultured in
Complete Medium (CM). Starvation was achieved by culturing in Minimal Medium (MM)
made from 1x nitrate salts, 1% D-glucose, 0.1% ml trace elements solution, 0.1% thiamine solu-
tion, and 0.05% biotin solution. In extreme starvation, glucose was omitted from the Minimal
Medium preparation above (MM-glucose). For cell wall stress, the cell wall perturbant Congo
Red (SIGMA-Aldrich) was prepared in a 1% stock solution, filter-sterilised and added to sterile
Complete Medium buffered with 50 mMHEPES (pH 7.0) at a concentration of 100 μg/mL.
Stress by caffeine was induced by adding 2.5 mM filter-sterilised caffeine (SIGMA-Aldrich) to
sterile Complete Medium (pH 6.5). To impose osmotic stress, 1 M Sorbitol was added to Com-
plete Medium (pH 6.5) prior to autoclaving.

Dormant spores at 0 hours post inoculation (hpi). Spores were harvested from 10-day-
oldWT strain Guy11 grown on Complete Medium agar plates, 25 plates per biological replicate
(three biological replicates harvested separately). The combined spores were centrifuged (5
minutes at 13, 000 rpm, 4°C), the supernatant removed and the pellet snap frozen in liquid
nitrogen.

Germling development at 2, 8, 24, and 48 hours post inoculation (hpi) on host. Barley
seeds (Hordeum vulgare L.) cv. Golden Promise were grown in a 50:50 (w/w) mixture of Erin
Multipurpose Compost and John Innes No. 2 soil-based compost, for 7 days at 25°C, 12/12
light, 70% humidity. Seven-day-old barley leaves were cut and placed onto 1.5% (w/v) water
agar and inoculated with harvested spores (6–7 x 106 spores/mL) re-suspended in 0.4% (w/v)
gelatine. Inoculation procedure: for each time point, 2.5 mL of the spore suspension was
sprayed uniformly onto 24 leaves, which were then covered to maintain high humidity and
incubated at 25°C for 2, 8, 24 or 48 hours post inoculation. The hours post inoculation (hpi)
corresponds to the various infective stages: 2 hpi (germ tube emergence), 8 hpi (immature
appressoria), 24 hpi (penetration and early invasive growth), and 48 hpi (in planta growth).
Prior to harvest, one leaf was selected at random, and its surface viewed by light microscopy to
monitor germling development and formation of appressoria. Approximately 0.1 g of leaf
material was then snap frozen in liquid nitrogen and stored at -80°C, for RNA extraction. The
process was repeated, harvesting three biological replicates.

Perithecia. Guy11 and TH3 were inoculated onto oatmeal (10% (w/v)) agar and incubated
as described previously. Perithecia (0.1 g) were harvested, snap frozen in liquid nitrogen and
kept stored at -80°C prior to RNA extraction. Three biological replicates were harvested
independently.

RNA Extraction, Quantity, and Quality Test
Tissues were extracted with TRIzol1 Reagent (Ambion1) using the manufacturers’ instruc-
tions, followed by the addition of 50% volume isopropanol, with 5 minutes incubation at room
temperature. Samples were loaded into an RNA Quick Spin column (Qiagen RNeasy Minikit)
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for on-column DNAse digestion and subsequent elution in RNase-free water. RNA sample
concentration was determined using the Thermo Scientific ‘NanoDrop1 ND-1000’ spectro-
photometer. Samples were normalized to the same concentration of 1000 ng/μL (±100 ng).
RNA quality and RIN number for each sample were tested using the ‘Agilent 2100 Bioanalyzer
Instrument’ as per the manufacturers’ instructions to ensure minimal RNA degradation. Sam-
ple RNA was discarded if the RIN value was below 7.5 for samples containing only fungal
RNA, and if the RIN value was below 6.0 for samples containing a mix of plant leaf and fungal
pathogen RNA.

cDNA Preparation
Qiagen ‘Maxima First Strand cDNA Synthesis Kit for RT-qPCR’ kit was used as per manufac-
turers’ instructions. The same amount of template RNA (1.0 μg), was added per 20 μl reactions
for each tissue sample. Three controls were prepared: Non-template control (NTC), minus
Reverse Transcriptase (-RT) and RNA from Barley leaf only (BL). The reaction mix was incu-
bated for 10 min at 25°C, followed by 30 min at 50°C, and the reaction terminated by heating
at 85°C for 5 min. Products were retained at -20°C and used within 2 weeks.

Candidate Reference Gene Selection and Primer Design
Candidate reference genes were selected on the basis of being (a) previously used inM. oryzae
gene expression studies [42, 43, 46–48], and (b) from several essential functional groups (pro-
tein translation, glycolysis pathway, cytoskeleton). These genes were then cross-checked with
the publicly available COGEME high throughput-super SAGE transcript profileM. oryzae
database [49], for an estimation of stability. Stability ratios were calculated using the given base
mean values between samples of the same growth stage (example: Complete Medium against
Minimal Medium, or 4 hpi against 16 hpi). Genes with a ratio less than 10 from the transcrip-
tomic database were then selected for further analysis. Sequences for the respective genes were
obtained from the 8th annotation (MG8)Magnaporthe oryzae strain 70–15 sequenced by
Broad Institute [30]. All primer pairs (Table 1) were synthesized by SIGMA-Aldrich and
designed according to the following specifications: annealing Tm 60°C (±2°C); G-C content
50–60%; no non-specific product amplification; no primer-dimer or secondary structures;
amplicon of 60–110 bp; primer efficiency 80–110%, r2 value 0.98–0.99; either Forward or
Reverse primer to span exon/exon boundary (transcript-specific). Primer specificity: primers
were deemed acceptable if the targeted gene showed an e value less of than 10−3 in NCBI Blast
search. In addition, primer pairs were shown to be pathogen-specific by conducting qRT-PCR
using only host barley leaf cDNA as a negative control (BL). Primers were tested for non-spe-
cific product/s by amplicon separation on 2% (w/v) agarose gel electrophoresis and 10–300 bp
GeneRuler Ultra Low Range DNA Ladder (Thermo Scientific) at the end of a qRT-PCR run.
[50]

Quantitative Real Time PCR (qRT-PCR)
Real time PCR for the Infective group was conducted using an Mx3000P qPCR System (Agilent
Technologies), which was replaced with an ABI 7000 apparatus (Applied Biosystems) for the
Vegetative and Global group. All reactions were conducted in 96-well plates (MicroAmp1
Optical 96-Well Reaction Plate cat N8010560) utilising a sample maximisation arrangement
and the addition of inter-run calibration (IRC) wells for each gene in each 96-well plate [51].
‘Power SYBR Green PCRMaster Mix’ assay (Applied Biosystems) was used in a total volume
of 25 μL per well/reaction. Each 25 μL reaction contained 2.0 μL cDNA, 8.5 μL water, 1.0 μL
(10 μM) forward primer, 1.0 μL (10 μM) reverse primer and 12.5 μL ‘Power SYBR Green PCR
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Master Mix’. All qRT-PCR plate amplifications followed the thermal cycler steps: 50°C for 2
minutes followed by 95°C for 10 minutes; 95°C 15 seconds, followed by 60°C annealing tem-
perature for 1 minute, repeating this final step for 40 cycles. Fluorescence of the ‘SYBR Green I’
dye was calibrated against ROX™. At the end of each reaction, a dissociation curve analysis was
performed, with the following thermal profile: 95°C for 15 seconds; 60°C for 30 seconds fol-
lowed by 95°C for 15 seconds. Data from each group of tissue type (Infective, Vegetative, and
Global) was analysed independently (both geNorm and expression profile).

Primer Efficiency, Specificity, and Genomic DNA Contamination Check
Complementary DNA (cDNA) from all samples was pooled, diluted 5-fold and used as tem-
plates. Cycle threshold (Ct) values were analysed as follows: the primer efficiency (E) was calcu-
lated from the four point slope of the plotted dilution row, using the formula E = 5^(1/S)

whereby S is the slope of the regression line. Primer pairs with slope r2<0.99, E<1.8 or dissoci-
ation curve and gel electrophoresis runs showing non-specific product/s, were rejected and re-
designed, prior to gene stability analysis. Primer efficiency data is shown in Table 1. For further
quality control purposes, samples with technical replicates showing more than 0.8 difference in
Ct value, or occurrence of amplification in non-template and host-only control (BL) with Ct
values less than 35, were rejected.

Evaluation of Reference Gene Expression Stability Using GeNorm
Analysis
Analysis of raw Ct data for all candidate reference genes was performed using ‘qBase+ Basic’
licensed software (Biogazelle). Each group (Infective, Vegetative, and Global) was analysed sep-
arately. The Infective group included tissues from dormant spores (0 hpi) and at various time
points corresponding to differentM. oryzae infective stages: germ tube (2 hpi), immature
appressoria (8 hpi), mature appressoria (12 hpi), penetration peg and haustoria (24 hpi), and
extensive in planta growth (48 hpi). The Vegetative group included vegetative stage fungal
mycelia harvested from an optimal growth condition (CM) and under various environmental
stresses such as starvation (MM), extreme starvation (MM-glucose), osmotic stress (Sorbitol),
cell wall stress (Congo Red) and caffeine stress. The Global group included a mixture of the
above: dormant spores, immature appressoria (8 hpi), CM, starvation (MM) and perithecia
(sexual reproductive stage).

For each group (Infective, Vegetative or Global), raw ct values were converted to relative
expression values using the Pfaffl Method [52] and inter-run calibration was performed to cor-
rect for run-to-run variation [51]. The GeNorm algorithm [53] in ‘qBase+ Basic’ licence soft-
ware version 2.5 (Biogazelle) was used to calculate the average expression stability score (M)
for each reference gene, and the pairwise variability score (V) for sequential normalisation fac-
tors, resulting from stepwise inclusion of additional reference genes. Expression stability values
were used to identify the most stably-expressed reference genes at each stage, whilst pairwise
variability scores were used to determine the most appropriate number of reference genes to
use as the normalisation factor.

Gene of Interest (GOI): Orthologue of S. cerevisiae Crh1 gene
The Crh1 gene was first identified in the model yeast S. cerevisiae [19]. The protein sequence was
obtained from the Saccharomyces Genome Database [54] and the corresponding orthologue in
M. oryzaewas obtained from “Magnaporthe comparative Sequencing Project” by the Broad Insti-
tute of Harvard andMIT [30] using the BLASTp search tool [55]. Here, the yeast Crh1 protein
sequence was queried against proteins predicted to be encoded by theM. oryzae 70–15 (MG8)
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sequenced genome. The best hit genes with a cut-off value of e-10, were then reciprocal BLASTp
[55] against S. cerevisiae genome in the NCBI database (www.ncbi.nlm.nih.gov).

Data analysis: Expression Profile ofMGG_Crh2 Across theM. oryzae
life-cycle
The validated combination of reference genes according to tissue types were used as Normalis-
ing Factor (NF) to analyse the expression profile of a cell wall remodelling enzyme,MGG_Crh2
(MGG_00592) under various stages of the life cycle (Infective and Global assay) and growth
conditions (Vegetative assay). In the latter, the expression ofMGG_Crh2 under starvation
(MM), osmotic stress (Sorbitol), extreme starvation (MM-glucose), and cell wall stress imposed
by Congo Red (CR) or caffeine was measured relative to vegetative growth in nutrient-rich
medium (CM). In the Infective assay, expression profile was measured during germling devel-
opment for tissues harvested from 2 hpi (germ tube), 8 hpi (immature appressoria), 24 hpi
(penetration and early invasive growth) and 48 hpi (in planta growth), relative to 0 hpi (dor-
mant spores). Finally, the expression profile ofMGG_Crh2 was captured across all stages of the
life cycle in the Global assay by comparingMGG_Crh2 expression in representative tissues.
These were 8 hpi (immature appressoria), 48 hpi (in planta growth), vegetative growth (CM)
and perithecia, relative to 0 hpi (dormant spores).

Two technical replicates were used per reaction. When possible, the plate design carried all
three biological replicates for target and control sample respectively, on the same plate; and, for
each sample analysed,MGG_Crh2 and two validated reference genes were deposited onto the
same plate. For expression analysis involving more than one 96-well plate, comparison of sam-
ples across different plates was achieved by incorporating inter-run calibration (IRC) wells for
each gene in equivalent wells within each 96-well plate. The generated Ct values for samples
from multiple runs were imported into MxPro QPCR Software or ‘qBase-Plus Basic Version
2.5’ for IRC calibration [51].

The calibrated values from multiple runs and raw Ct values from one well, were exported
into a Microsoft Excel file and analysed separately according to the recommendations by Will-
ems et al. (56). In particular, following their protocol we log transformed, mean centered, and
autoscaled the data from three biological replicates, before evaluating the significance of up/
down regulation at the 0.05 level by observing whether or not the 95% confidence interval for
fold-change increase/decrease in expression contained a fold-change value of 1 (no change).
Significant up/down regulated results are indicated by an asterisk on all graphs.

Results & Discussion
Nine candidate reference genes (Table 1) were selected on the basis of being (a) previously
used inM. oryzae gene expression studies [42, 46, 47], (b) from several essential functional
groups (protein translation, glycolysis pathway, cytoskeleton) and (c) expression data in the
publicly available high throughput-superSAGE transcript profiling COGEME database ofM.
oryzae [49]. A base mean ratio above 10 in the COGEME database was interpreted as indicat-
ing that gene expression was unstable, and the gene was unsuitable to be a candidate reference
gene. Genes with a base mean ratio below 10 were selected for subsequent sensitive analysis
(qRT-PCR using GeNorm calculations) to identify the most stable gene.

Primer Specificity and Efficiency Check
Each primer specificity assay yielded a single amplicon of the expected size for the primer sets
tested (Table 1 and S1 Fig–S2 Fig). There was no amplification, or high Ct values (>35 Ct), for
both non-template controls, minus reverse transcriptase (-RT) and the host-only control (BL).
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This showed that the reagents were free from contamination as there was no amplification of
gDNA and no non-specific amplification of plant cDNA. Calculation of primer efficiencies
using five-fold dilution of pooled complementary DNA (cDNA) for all nine HKG primers and
MGG_Crh2 gave r2>0.99 and 80–110% efficiency (E) values (S3 Fig).

RNA and cDNA Quality and Quantity Check
The RNA Integrity Number (RIN) values derived from pure fungal RNA samples (dormant
spores, perithecia, and vegetatively-grown tissues) were>7.5 (S4 Fig), whilst those containing
a mix of pathogen and host plant tissues had RIN values>6.0 (S5 Fig). The lowered RIN values
from plant-derived RNA were attributable to the presence of both pathogen and host leaf RNA
(contributing cytosolic and chloroplastic ribosomal RNA), giving rise to additional multiple
peaks during electrophoretic separation. Consequently, the slightly lowered RIN number is not
due to actual nucleic acid degradation (RIN<6.0), but due to the presence of additional peaks,
which increases the calculated total area below the electrophoretic graph, a measurement
required for the RIN algorithm [56, 57].

Expression Stability of Candidate Reference Genes
The gene stability (M) values of the nine candidate reference genes, assayed separately for each
group of tissues (Vegetative, Infective, and Global), are shown in Fig 1. Candidate genes with
the lowest M value were the most stably expressed, whilst genes with the highest M value were
least stable. The minimum number of reference genes required for reliable and accurate nor-
malisation for each tissue group was determined as two genes, with a “cut-off” value was set at
0.15 [53] as shown in Fig 2. The gene stability (M) and pairwise variation (V) measurement
data were used to identify the two best-performing reference genes for each group;MGG_Ef1
andMGG_40s for the Vegetative Group;MGG_40s andMGG_Actin for the Infection Group,
andMGG_Ef1 withMGG_S8 orMGG_40s (same M value) for the Global Group.

Reference Gene Validation
Our recommendations for use of the named reference genes for the given tissues are robust but
we advocate caution in extrapolation to untested experimental conditions, such as in the use of
different exogenous stresses (eg. temperature, pH or heavy metal stress). Moreover, inferred
co-regulation is an important consideration in the choice of reference genes and should be
avoided, if possible. Here, we selected at least two candidate genes from key functional classes,
that is, the glycolysis pathway (MGG_Fad &MGG_Gapdh), protein synthesis (MGG_Ef1,
MGG_S8 &MGG_40s), cytoskeleton assembly (MGG_β-Tubulin &MGG_Actin) and protein
degradation (MGG_Ubiq). For the Infective Group, the two most stable genes,MGG_40s, and
MGG_Actin belong to two distinct functional groups. However, for the Vegetative and Global
Groups, genes belonging to the protein synthesis pathway proved most robust in stability,
being unaffected by changes to environmental stressors or fungal growth phases. In this case, it
is more important to use a set of validated stable genes instead of prioritising genes from differ-
ent biological pathways. Furthermore, for the Vegetative Group, the two most stable genes
belong to protein synthesis pathways with exclusive functions:MGG_Ef1 andMGG_40s, there-
fore have little risk of co-regulation [58, 59]. In the Global Group, the most stable genes lie in
the protein synthesis pathway. Here, asMGG_40s and MGG_S8 both form one 40S functional
subunit, we recommend insteadMGG_Ef1 (M = 0.38), used in conjunction withMGG_40s
(M = 0.37) orMGG_S8 (M = 0.37). Here, the M value differences are very small, suggesting
that all three genes are similarly stable and thus this will not significantly affect normalisation
reliability.
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Thus far, a single study has attempted identification and validation ofM. oryzae reference
genes for qRT-PCR [27]. In that study, Park et al. (2013) chose seven candidate genes, three
of which are used herein and can therefore be compared directly, namelyMGG_β-Tubulin,
MGG_Actin andMGG_Gapdh. Based on GeNorm analysis, Park et al. (2013) ranked
their seven genes across tissue sample types that concur with our Global Group, whereby
MGG_Gapdh has lower stability (high M value), withMGG_Actin andMGG_β-Tubulin being
more stably expressed (low M value). Our combined findings also correspond for the Infective
Group, wherebyMGG_Actin is more stable thanMGG_Gapdh andMGG_β-tubulin. This con-
sistency between studies confirms the reproducibility and reliability of qRT-PCR when quality
control practices were adhered to. In addition to the three genes shared by both studies, here
we introduce a validated set of more robust genes, particularly those belonging to the protein
synthesis pathway (MGG_Ef1,MGG_40s, andMGG_S8) that can be used for gene expression
studies inM. oryzae. This study also demonstrates that for accurate and reliable normalisation
ofM. oryzae genes across all tissue groups (Infective, Vegetative, and Global), the optimal

Fig 1. Ranking of nine candidate reference genes inM. oryzae according to the calculated average
expression stability (M). Sequential removal of the least stable reference gene improves average
expression stability, indicated by lower values of M. The cut-off for an unstable gene was taken to be M� 1.
The analysis was repeated for three groups of tissues: A) Gene stability (M) values for genes in the
Vegetative group; B) Gene stability (M) values for genes in the Infective group and; C) Gene stability (M)
values for genes in the Global group.

doi:10.1371/journal.pone.0160637.g001

Fig 2. Determination of the optimal number of reference genes for accurate normalisation.Graphs
show calculated pairwise variation, Vn/(n+1), between normalisation factor NFn andNFn+1 for a total of nine
candidate reference genes. The optimal number of reference genes for accurate normalisation was taken to
be the smallest number for which V was less than a cut-off of 0.15 [53]. The analysis was repeated for the
three designated groups: A) Infective; B) Vegetative, and; C) Global.

doi:10.1371/journal.pone.0160637.g002
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number of reference genes to use is two and not one as used in manyM. oryzae gene expression
analysis studies hitherto.

Gene of Interest (GOI):MGG_Crh2 Expression Profile
Reciprocal blast search using the S. cerevisiae gene Crh1 protein sequence revealed
MGG_00592 as the best-hit gene and most probable orthologue, with a cut-off value of e-10.
It is hereby namedMGG_Crh2. We exploited the stable pairs of recommended reference
genes as normalising factors to trace the expression profile of the cell wall remodelling gene
MGG_Crh2, an orthologue of S. cerevisiae Crh1 gene (S1 Dataset). In the vegetative assay, we
usedMGG_40s andMGG_Ef1 as reference genes and observed thatMGG_Crh2 expression
responded to cell wall stress imposed by Congo Red, being elevated some 2-fold (p<0.05), and
was downregulated under extreme starvation (MM-glucose) (Fig 3, Graph A and B) but was
not affected by growth under cell wall stress imposed by caffeine, hyperosmotic stress (Sorbi-
tol), or by moderate starvation (MM).

In S. cerevisiae, Crh1 has previously been reported to be upregulated 2–4 fold in the presence
of Congo Red [26], and cell wall stress caused by Congo Red was shown to activate the cell wall
integrity pathway directly via the phosphorylation of Rlm1 [26]. Additionally, the lack of
response to cell wall stress induced by caffeine is an interesting observation. Caffeine is a com-
pound known to activate the cell wall integrity pathway leading to phosphorylation of the S.
cerevisiaeMpk1 and shown to alter yeast cell wall architecture upon transient exposure to caf-
feine [60]. Further studies need to be conducted to investigate whether MoMig1p [61], an
orthologue of S. cerevisiae Rlm1p, indeed regulates the expression ofMGG_Crh2 under cell
wall stress and if so, whether it is selective to certain types of stressors.

In the infective assay,MGG_40s andMGG_Actin were used as the normalising factor
with expressions measured relative to 0 hpi (dormant spores). Results in Fig 3 (Graph C)
showed thatMGG_Crh2 is not regulated during germling development as its expression in
each tissue type (germ tube, immature appressorium, penetration and early invasive growth
as well as in planta growth) was not significantly different from dormant spores. This is an
interesting outcome, given that in otherM. oryzae cell wall protein studies cell wall biosyn-
thesis and remodelling enzymes such as the chitin synthase Chs7 gene [62] and two Gel
orthologues (MGG_11861 and MGG_08370) [63] were found to be upregulated during
appressorium development and for the former, mutants were non-pathogenic. Interestingly,
studies of the human fungal pathogens Candida albicans and Aspergillus fumigatus showed
that the orthologues of S. cerevisiae Crh1p (Crh11p and Crf1p respectively) are specifically
detected by the mammalian host immune response system [64–67]. It is therefore conceiv-
able that the lack of upregulation ofMGG_Crh2 in infective structures aidsM. oryzae in
evading detection. The literature is currently devoid of information on plant immune
responses elicited by recognition of secreted fungal cell wall remodelling enzymes. There is
however, evidence showing that the cell wall ofM. oryzae is remodelled during infection to
‘mask’ the fungi with α-1,3 glucan [68], suggesting that the fungi is indeed under selection to
evade detection. This unexplored area of plant-pathogen interactions is worth exploring in
future work.

The theory is further supported by results in the Global assay (Fig 3 graph D). In this assay,
MGG_Crh2 gene expression in tissues representative of each stage of the life cycle was each
measured relative to dormant spores (0 hpi). Data analysis showed that this gene is most highly
expressed during vegetative growth by up to 3-fold higher (p<0.05), followed by 2.4-fold
higher in perithecia and lowest expression during the infective stages, as shown in Fig 3, during
appressorium development (8 hpi) and in planta growth (48 hpi).
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In summary, this expression study has shed light into the regulatory profile of the transgly-
cosylase cell wall remodelling gene,MGG_Crh2, which was found to be most highly expressed
during vegetative growth with down-regulation during the development of infective structures
and in planta growth. We also have identified an optimum set of control genes for studying
gene expression across the life-cycle ofM. oryzae using qRT-PCR. Further work is required to
expand this gene-set to cover a broader range of growth conditions, such as varied exogenous

Fig 3. The expression profile ofM. oryzaeMGG_Crh2 cell wall remodelling gene measured by qRT-PCR. A total of 12 different tissue
samples were assigned into three distinct tissue groups: Vegetative, Infective, and Global group each containing 5–6 tissue types. Each graph
was assayed and analysed separately. Each bar corresponds to three biological replicates of the same tissue. Error bars are at 95% confidence
interval. Panel A. Vegetative group. The expression ofMGG_Crh2 when vegetatively grown under cell wall stress induced by Congo Red (100 μg/
mL) and caffeine (25 mM) relative to growth under optimal conditions in CM. Reference genesMGG_Ef1 andMGG_40s were used as the
normalising factor. Panel B. Vegetative group. The expression ofMGG_Crh2when vegetatively grown under starvation (MM), osmotic stress
(Sorbitol 1M) and extreme starvation (MM-glucose), relative to growth under optimal conditions (CM). Reference genesMGG_Ef1 andMGG_40s
were used as the normalising factor Panel C. Infective Group. The expression ofMGG_Crh2 at 2 hpi (germ tube), 8 hpi (immature appressorium),
24 hpi (penetration and early invasive growth), and 48 hpi (in-planta) relative to 0 hpi (dormant spores). Reference genesMGG_Actin and
MGG_40swere used as the normalising factor Panel D. Global group. The expression ofMGG_Crh2 at 8 hpi (immature appressorium), 48 hpi (in-
planta), vegetative mycelium (CM) and in perithecia, relative to dormant spores (0 hpi). Reference genesMGG_Ef1 andMGG_40swere used as
the normalising factor.

doi:10.1371/journal.pone.0160637.g003
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stresses, but this robust approach sets a standard of practice for qRT-PCR gene analysis which
can only increase our understanding of this devastating rice pathogen.

Supporting Information
S1 Dataset. Data analysis for the expression profile ofMGG_Crh2.
(XLSX)

S1 Fig. Primer specificity analysis by PCR and subsequent size separation by gel electro-
phoresis for each targeted gene. Products were PCR amplified using pooled cDNA template
from all samples and size separated alongside GeneRuler Ultra Low Range DNA Ladder (10–
300 bp). Gel electrophoresis was conducted in 2% agarose (SIGMA-Aldrich).
(TIF)

S2 Fig. Primer specificity analysis by melt-curve graphs for each targeted gene. Graphs
show PCR product dissociation curves for ten primer pairs used in this analysis using pooled
cDNA of WT from all samples used. The melt curve data was obtained from the denaturation
of amplified PCR product executed at the end of a qRT-PCR run, by temperature increment.
(TIF)

S3 Fig. Real-Time PCR primer efficiency analysis. The cycle threshold (ct) of ten primer
pairs for candidate reference genes plotted against a five-fold dilution of pooled cDNA from all
samples analysed. Each qRT-PCR reaction had two technical replicates, therefore the cycle
threshold (ct) value above is an averaged data. All reactions conducted on the same 96-well
plate. The slopes and r2 values were calculated using a regression line across four-points.
(TIF)

S4 Fig. Sample RNA quality analysis by electrophoretic separation for samples containing
only pathogen RNA. Each electrophoregram comprise of RNA of fungal tissue grown vegeta-
tively under various conditions, dormant spore (0 hpi) or perithecia. Each graph showed the
presence of two sharp peaks, corresponding to two bands on the right side of each graph, indi-
cating good quality RNA.
(TIF)

S5 Fig. Sample RNA quality analysis by electrophoretic separation for samples containing
RNA from both host and pathogen. Each electrophoregram comprise of RNA taken from
host leaf tissue inoculated with fungal spores (in 0.2% gelatine) at various hours post inocula-
tion (hpi). Control leaf comprise of plant leaf sprayed with 0.2% gelatine. Each graph above
showed the presence of two sharp peaks, corresponding to two bands on the right side of each
graph, indicating undegraded RNA. Additional peaks correspond to chloroplastic ribosomes
abundant in samples derived from host leaf tissues.
(TIF)
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