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ABSTRACT	

Objectives:	To	establish	the	magnitude	of	deficits	in	working	memory	(WM)	and	short-term	memory	

(STM)	in	those	with	a	moderate-to-severe	traumatic	brain	injury	(TBI)	relative	to	age-matched,	

healthy	controls,	and	to	explore	the	moderating	effects	of	time	since	injury	and	age	at	injury	on	

these	impairments.	Method:	Twenty-one	studies	that	compared	the	WM	and/or	STM	abilities	of	

individuals	with	at	least	a	moderate	TBI	relative	to	healthy	controls	were	included	in	a	random	

effects	meta-analysis.	Measures	used	to	examine	memory	performance	were	categorized	by	

modality	(visuo-spatial,	verbal)	and	memory	system	(WM,	STM).	Results:	Individuals	with	TBI	had	

significant	deficits	in	verbal	STM	(Cohen’s	d	=	.41),	visuo-spatial	WM	(Cohen’s	d	=	.69)	and	verbal	

WM	(Cohen’s	d	=	.37)	relative	to	controls.	Greater	decrements	in	verbal	STM	and	verbal	WM	skills	

were	associated	with	longer	time	post-injury.	Larger	deficits	were	observed	in	verbal	WM	abilities	in	

individuals	with	older	age	at	injury.		Conclusion:	Evidence	for	WM	impairments	following	TBI	is	

consistent	with	previous	research.	Larger	verbal	STM	and	verbal	WM	deficits	were	related	to	a	

longer	time	post-injury	suggesting	that	these	aspects	of	memory	do	not	‘recover’	over	time	and	

instead,	individuals	might	show	increased	rates	of	cognitive	decline.	Age	at	injury	was	associated	

with	the	severity	of	verbal	WM	impairments	with	larger	deficits	evident	for	injuries	that	occurred	

later	in	life.	Further	research	needs	to	chart	the	long-term	effects	of	TBI	on	WM,	and	to	compare	the	

effects	of	injury	on	verbal	relative	to	visuo-spatial	memory.	
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INTRODUCTION	

A	traumatic	brain	injury	(TBI)	is	a	sudden	non-progressive	injury	to	the	brain	caused	by	an	external	

force	resulting	in	sustained	neurological	damage	(e.g.,	road	traffic	accident,	fall,	violence/assault).	It	

is	a	leading	cause	of	death	and	disability	in	children	and	adults	globally	(e.g.,	Rutland-Brown,	Langlois	

&	Thomas,	2006;	World	Health	Organisation,	2008).	Each	year	there	are	approximately	2.5	million	

TBIs	in	the	US	(Faul,	Xu,	Wald,	&	Coronado,	2010)	and	around	200,000	in	the	UK	(Health	&	Social	

Care	Information	Centre,	2010).	The	severity	of	TBI	varies,	with	mild	injuries	making	up	around	80%	

of	all	cases	(e.g.,	Kraus	&	Chu,	2005).	

The	regions	of	the	brain	most	susceptible	to	damage	in	TBI	are	the	frontal	and	temporal	

lobes	and	related	neural	pathways	(e.g.,	Wallesch	et	al.,	2001;	Gale,	Baxter,	Roundy,	&	Johnson,	

2005;	Salmond,	Chatfield,	Menon,	Pickard,	&	Sahakian,	2005).	Reduced	cortical	metabolism	can	

occur	in	the	absence	of	structural	abnormalities,	particularly	in	the	prefrontal	cortex	(PFC)	and	the	

anterior	cingulate	(e.g.,	Fontaine,	Azouvi,	Remy,	Bussel,	&	Samson,	1999).	The	long-term	prognosis	

following	a	mild	TBI	is	relatively	good	(Carroll	et	al.,	2004).	Moderate-to-severe	injuries,	however,	

typically	result	in	difficulties	related	to	fronto-temporal	dysfunction	including	emotional	problems	

such	as	aggression,	depression,	and	anxiety	(e.g.,	Hibbard,	Uysal,	Kepler,	Bogdany	&	Silver,	1998;	

Jorge,	et	al.,	2004)	and	cognitive	impairments	in	memory	and	attention	(e.g.,	Vallet-Azouvi,	Pradat-

Diehl	&	Azouvi,	2012;	Lezak,	1995).		

	 One	of	the	most	pronounced	of	this	sequalae	is	difficulties	in	working	memory	(WM;	

McHugh	et	al.,	2008),	the	cognitive	system	used	to	simultaneously	process	and	store	information	

over	the	short-term.	WM	provides	crucial	support	for	the	management	and	maintenance	of	goal-

directed	behaviour	(e.g.,	Lehto,	1996;	Curtis	&	D’Esposito,	2003),	enabling	us	to	carry	out	complex	

cognitive	tasks	such	as	reasoning	and	comprehension	(e.g.,	Burgess,	Gray,	Conway	&	Braver,	2011;	

McVay	&	Kane,	2012).	There	are	many	alternative	models	of	WM,	but	the	most	enduring	is	the	

multi-component	model	of	Baddeley	and	Hitch	(1974;	Baddeley	2000;	Baddeley,	Allen,	&	Hitch,	
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2011).	This	consists	of	a	central	executive	responsible	for	attentional	control	within	and	beyond	WM	

and	two	specialized	limited-capacity	stores	for	verbal	and	visuo-spatial	material	(phonological	loop	

and	visuo-spatial	sketchpad,	respectively)	with	a	multi-modal	episodic	buffer	that	integrates	these	

representations	(Baddeley,	2000).	The	capacity	of	the	phonological	loop	and	the	visuo-spatial	

sketchpad	are	measured	by	short-term	memory	(STM)	tasks	that	require	the	temporary	storage	of	

information.	The	central	executive	is	measured	by	WM	tasks	that	require	both	storage	and	

processing,	the	latter	of	which	is	supported	by	the	executive	component.	Thus	the	three	main	

components	of	the	Baddeley	and	Hitch	model	can	be	measured	by	assessments	of	verbal	and	visuo-

spatial	STM	and	verbal	and	visuo-spatial	WM	(e.g.,	Alloway,	Gathercole	&	Pickering,	2006).	The	

episodic	buffer	has	so	far	proven	difficult,	if	not	impossible,	to	reliably	measure	(e.g.,	Nobre	et	al.,	

2013).	

The	WM	impairments	that	are	commonly	reported	in	survivors	of	moderate-to-severe	TBI	(e.g.,	

McDowell,	Whyte	&	D’Esposito,	1997;	Levin,	et	al.,	2002;	Perlstein,	et	al.,	2004;	Phillips,	Parry,	

Mandalis,	&	Lah,	2015)	are	far	from	clearly	understood	due	to	the	complex	interacting	cognitive	and	

neural	systems	that	contribute	to	WM	task	performance	(e.g.,	Oberauer,	2012).	Markedly	distinct	

profiles	of	WM	deficit	have	now	been	identified	across	a	variety	of	developmental	cognitive	

disorders	(see	Gathercole	&	Holmes,	2014	for	a	review),	but	because	most	studies	of	individuals	with	

TBI	have	assessed	only	a	subset	of	components	of	WM,	the	precise	nature	of	deficits	within	the	

complex	WM	system	is	not	as	yet	known.	

The	most	consistent	finding	to	date	is	that	individuals	with	TBI	show	impairments	in	the	central	

executive	(e.g.,	Christodoulou,	et	al.,	2001;	Asloun,	et	al,	2008),	the	component	of	WM	most	strongly	

associated	with	PFC	function	(e.g.,	D'Esposito,	et	al.,	1995;	Goldman-Rakic,	Cools	&	Srivastava,	1996).	

Many	of	these	studies,	however,	include	only	verbal	measures	that	either	embed	processing	

requirements	within	a	storage	task	(e.g.,	backward	recall	that	requires	the	immediate	serial	recall	of	

items	in	reverse-order),	or	require	stored	items	to	be	updated	as	in	Paced	Serial	Order	Addition	and	
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n-back	tasks.	Very	few	studies	have	assessed	both	verbal	and	visuo-spatial	WM	abilities	in	TBI	groups,	

relative	to	healthy	controls,	and	there	are	mixed	findings	in	those	that	have.		For	example,	Vallet-

Azouvi	et	al.	(2007)	report	impairments	in	verbal	but	not	visuo-spatial	WM	in	adults	with	a	severe	

TBI	(see	too	Perbal	et	al.,	2003).	In	contrast,	others	have	observed	a	broader	pattern	of	impairments	

in	TBI	that	extends	across	both	verbal	and	visuo-spatial	WM	(e.g.,	Moran	&	Gillon,	2004;	Chapman,	

et	al.,	2006).			

Similarly	inconsistent	results	have	been	reported	when	the	severity	of	STM	and	WM	

impairments	are	considered	in	moderate-to-severe	TBI	groups	relative	to	healthy	controls.	While	

some	studies	report	equivalent	deficits	in	both	STM	and	WM	abilities	(Leclerq,	et	al.,	2000;	Azouvi,	

et	al.,	2004;	Gorman,	et	al.,	2012;	Carlozzi,	Grech	&	Tulsky,	2013),	others	reveal	greater	decrements	

in	WM	than	STM	(Perbal	et	al.,	2003;	Moran	&	Gillon,	2004).	In	some	cases,	survivors	of	severe	TBI	

are	reported	to	have	an	impaired	WM	with	an	intact	STM	(e.g.,	Chapman	et	al.,	2006).	The	selective	

or	more	pronounced	impairments	in	WM	could	arise	as	a	consequence	of	the	additional	processing	

demands	of	the	WM	tasks	that	are	not	present	in	STM	tasks.	Indeed,	several	studies	have	shown	

that	survivors	of	TBI	have	pronounced	difficulties	in	executive	functioning	(Levin	&	Hanten,	2005;	

Kurowski	et	al.,	2013).	

The	reasons	for	the	variability	in	findings	across	studies	are	unclear.	One	possibility	is	that	the	

severity	of	TBI	predicts	WM	ability,	with	more	severe	injuries	leading	to	poorer	performance	

(Hanten	et	al.,	2003;	Perlstein	et	al.,	2004)	while	moderate	injuries	are	associated	with	greater	

variability	in	performance	(Perlstein	et	al.,	2004).		The	age	at	which	the	TBI	occurred	might	also	

predict	WM	ability.	Little	is	known	about	whether	age	at	injury	substantially	impacts	on	WM,	

especially	in	adults,	but	several	studies	with	children	have	demonstrated	poorer	cognitive	outcomes	

in	those	who	are	injured	at	a	younger	age	(Anderson	&	Moore,	1995;	Roncadin,	Guger,	Archibald,	

Barnes	&	Dennis,	2004).	This	is	consistent	with	the	process	of	neurocognitive	stalling	in	which	

cognitive	development	is	slowed	following	injury	causing	children	to	‘lag’	behind	their	same-aged	
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peers	(Chapman,	2006).		Factors	contributing	to	this	might	include	limited	opportunities	for	skill	

attainment	before	injury	(due	to	age),	difficulties	developing	or	acquiring	new	skills,	and	the	

increased	demands	of	new	learning	after	injury	to	compensate	for	lost	function	and	developing	new	

ways	of	coping	(Gamino,	Chapman	&	Cook,	2009;	Savage,	2005).		Importantly,	difficulties	in	

executive	processes	such	as	WM	often	become	most	pronounced	during	adolescence	when	the	

disrupted	maturation	of	the	frontal	lobes	is	most	evident	(Sowell,	Thompson,	Holmes,	Jernigan	&	

Toga,	1999;	Teichner	&	Golden,	2000).		It	is	not	yet	known	whether	an	early	age	of	injury	disrupts	

the	subsequent	development	of	all	cognitive	processes	to	the	same	extent,	though	there	is	some	

evidence	that	aspects	of	WM	might	be	differentially	affected.	For	example,	Gorman	et	al.	(2012)	

found	that	verbal	and	visuo-spatial	STM	and	verbal	WM	abilities	were	not	influenced	by	age	of	injury	

in	children,	whereas	visuo-spatial	WM	ability	was.		

	 Another	potential	moderator	of	WM	performance	following	TBI	is	time	elapsed	since	injury.	

In	a	review	of	acquired	brain	injury	in	children,	Taylor	and	Alden	(1997)	concluded	that	cognitive	

impairments	remained	relatively	constant	or	worsened	over	time	(see	too	Brookshire,	Chapman,	

Song	&	Levin,	2000).	More	recent	research,	however,	suggests	that	time	since	injury	might	interact	

with	the	severity	of	the	TBI.	Levin	et	al.	(2004)	found	that	while	verbal	WM	ability	steadily	improved	

in	the	first	24-months	following	injury	for	children	with	a	mild-to-moderate	TBI,	children	with	more	

severe	injuries	only	showed	improvements	in	the	first	12-months	post-injury	and	then	a	

deterioration	in	the	subsequent	12-months.	Studies	of	adults	with	TBI	suggest	an	increased	risk	of	

dementia	post-injury,	with	prodromal	symptoms	including	cognitive	decline	in	WM	abilities	(Gardner,	

at	al.,	2014;	Godbolt	et	al.,	2014).	In	combination,	this	suggests	that	both	children	and	adults	might	

experience	reduced	cognitive	function	over	time	post-injury.	

The	present	study	aimed	to	resolve	some	of	the	inconsistencies	in	the	literature	and	to	quantify	

the	magnitude	and	nature	of	WM	impairments	in	TBI.	The	primary	goal	of	this	meta-analysis	was	to	

examine	whether	child	and	adult	survivors	of	TBI	show	a	specific	pattern	of	WM	deficits	related	to	
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domain	(verbal,	visuo-spatial)	or	memory	system	(STM,	WM)	when	compared	to	healthy,	age-

matched	comparison	groups.	The	influence	of	time	since,	and	age	at,	injury	on	performance	in	each	

of	these	aspects	of	WM	was	also	investigated.	Due	to	the	limited	number	of	studies	that	have	

compared	WM	performance	between	TBI	groups	relative	to	healthy	controls,	especially	children,	a	

meta-analytical	approach	is	essential	as	it	allows	for	the	aggregation	of	data	across	studies	thus	

providing	greater	statistical	power.	It	also	allows	for	the	detection	of	even	the	smallest	relationships	

between	variables	and	identifies	meaningful	patterns	across	as	few	as	two	studies	(Valentine,	Pigott	

&	Rothstein,	2010).		

METHOD	
	

A	literature	search	was	carried	out	to	identify	articles	relevant	for	this	review	(up	to	August	2015).	

Initially	three	electronic	databases	(Embase,	Medline,	and	Psychinfo)	were	searched.	The	search	

terms	used	were:	‘working	memory’	or	‘WM’	or	‘short-term	memory’	or	‘STM’	or	‘cognitive	profile’	

and	‘traumatic	brain	injur*’	or	‘TBI’	or	‘brain	injur*’.	The	reference	lists	of	any	relevant	articles	

identified	were	used	to	identify	further	articles	and	a	citation	search	on	author	names	was	also	

conducted.		

Inclusion	criteria	

The	studies	found	were	compared	against	our	inclusion	criteria.	Articles	were	included	if:	they	

assessed	WM	or	STM	in	individuals	who	had	survived	at	least	a	moderate	TBI	(a	list	of	the	studies	

and	how	they	classified	TBI	can	be	seen	in	Table	3,	Appendix	A),	they	compared	performance	against	

that	of	a	healthy,	age-matched	comparison	group	(this	criterion	was	chosen	to	enable	any	evidence	

of	‘atypical’	WM/STM	profiles	to	be	detected	and	to	maintain	a	degree	of	homogeneity	in	the	

comparison	groups),	they	were	from	peer	reviewed	journals	and	were	available	in	English.	In	

addition,	some	studies	were	excluded	if	the	WM/	STM	measure	used	was	conflated	with	another	

cognitive	measure	(e.g.,	general	executive	functioning	was	assessed	rather	than	WM	or	STM)	or	we	

were	unable	to	extract	means	and	standard	deviations	from	the	article	even	after	contacting	the	
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authors.	Twenty-one	studies	met	the	inclusion	criteria,	the	full	references	for	each	of	these	studies	

are	included	in	the	online	supplemental	materials	(Appendix	B).	

Data	abstraction	

For	each	article	included,	the	following	variables	were	recorded:	age	of	sample,	size	of	sample,	

memory	measures	used,	means	and	standard	deviations	for	memory	tasks,	time	since	TBI,	and	age	

at	TBI.	In	several	cases	either	time	since	injury	or	age	at	injury	were	not	reported,	therefore,	these	

were	calculated	(age	at	injury	=	age	at	assessment	minus	time	since	injury;	time	since	injury	=	age	at	

assessment	minus	age	at	injury).		To	assess	the	difference	in	scores	between	the	TBI	group	and	the	

healthy	comparison	group,	effect	sizes	were	calculated	using	Cohen’s	d	(Cohen,	1988).	For	the	

purpose	of	analysis,	information	on	the	type	of	WM	measure	used	was	recorded	and	the	measures	

were	divided	into	the	following	memory	categories:	verbal	STM,	visuo-spatial	STM,	verbal	WM	and	

visuo-spatial	WM	according	to	the	criteria	defined	by	Baddeley	(2000).	In	some	cases	authors	used	

multiple	measures	to	assess	a	single	memory	component;	in	this	instance	a	mean	of	the	effect	sizes	

was	calculated.		

Categorisation	

A	full	list	of	the	measures	used	in	each	study	can	be	found	in	the	online	supplemental	material	

(Table	4,	Appendix	A).	

Verbal	STM.	Ten	studies	were	included	for	analysis.	Vallat-Azouvi,	et	al.	(2007)	used	three	

tasks	to	assess	verbal	STM,	so	twelve	tasks	are	reported	in	total.	Eleven	of	these	were	digit,	letter,	or	

word	recall	tasks	that	involved	the	participant	repeating	a	series	of	aurally	presented	digits,	letters,	

or	numbers	in	serial	order.	The	other	measure	required	the	immediate	non-serial	recall	of	a	list	of	15	

words	presented	orally.		

Visuo-spatial	STM.	Six	studies	met	the	criteria	for	inclusion	in	analysis.	Five	used	spatial	span	

tasks	to	measure	visuo-spatial	STM	that	require	the	repetition	of	a	series	of	locations	(usually	on	a	
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matrix)	in	serial	order.	The	other	study	used	a	task	that	required	the	examinee	to	view	a	series	of	

abstract	symbols	before	having	to	select,	in	the	same	order	as	presented,	the	same	symbols	from	a	

larger	array.	

Verbal	WM.	Seventeen	studies	that	assessed	verbal	WM	were	identified	with	a	variety	of	

tasks	used.	Two	studies	each	used	three	measures	of	verbal	WM	(Vallat-Azouvi,	et	al.,	2007;	

Sanchez-Carrion	et	al.,	2008)	and	another	used	two	measures	(Gorman,	et	al.,	2012),	so	twenty-two	

tasks	are	reported	in	total.	An	n-back	paradigm	was	used	on	seven	occasions;	in	this	task	the	

participant	was	presented	with	a	sequence	of	verbal	stimuli	(typically	a	letter),	and	had	to	then	

indicate	when	the	current	stimulus	matched	the	one	from	n	steps	earlier	in	the	sequence	(all	of	

these	tasks	were	either	2-	or	3-back	tasks).	Six	studies	used	a	backward	digit	recall	measure	that	

required	the	participant	to	respond	to	a	series	of	auditory	digits	in	the	reverse	order.	Two	studies	

used	letter-number	sequencing	(the	re-ordering	of	an	initially	un-ordered	set	of	auditory	presented	

letters	and	numbers)	and	two	used	paced	auditory	serial	addition/running	span	tasks	(a	series	of	

single	digits	are	presented	and	the	participant	must	add	each	new	digit	to	the	one	presented	prior	to	

it).	The	other	tasks	used	were	a	random	number	generation	task	(the	generation	of	a	random	

sequence	of	single	digits	with	the	sequence	not	including	a	prevalence	of	repetitions	or	adjacent	

number	values),	a	dual-task	digit	span	task	(that	required	the	remembering	of	digits	in	serial	order	

while	carrying	out	a	tracing	task)	and	a	Brown-Peterson	task	(Brown,	1958)	that	necessitated	the	

remembering	of	a	series	of	consonants	interspersed	with	mentally	effortful	interference	to	block	

verbal	rehearsal	(completing	mental	arithmetic	calculations).	Another	study	used	a	reading	span	task	

that	required	the	participant	to	read	aloud	a	series	of	unconnected	sentences	and	then	to	recall	the	

final	word	of	each	sentence;	the	participant	could	recall	the	words	in	any	order	they	chose	with	the	

exception	that	the	final	word	from	the	last	sentence	read	could	not	be	recalled	first.	The	final	

measure	was	a	listening	span	task	requiring	the	serial	repetition	of	the	last	word	from	a	string	of	

words	presented	in	small	blocks	(e.g.,	if	the	words	presented	in	the	first	block	were	“dog,	lock,	water”	

and	then	in	the	second	block,		“pill,	wool,	rice”,	a	correct	response	would	be	“water,	rice”).	
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Visuo-spatial	WM.	Of	the	five	studies	included	in	the	analysis,	two	used	a	backwards	order	

spatial	span	task	that	required	the	remembering	a	series	of	locations	in	the	reverse	order.	Another	

used	a	self-ordered	ordered	pointing	task,	where	a	different	picture	must	be	selected	each	time	

from	a	series	of	visual	arrays,	and	another	required	the	participant	to	remember	a	series	of	locations	

on	a	grid	while	making	judgement	decisions	on	the	positions	of	the	locations	(i.e.,	if	they	were	

presented	vertically,	horizontally,	or	diagonally). In the	final	task,	the	examinee	is	shown	two	grids	in	

sequence	that	contain	blue	and	red	circles	before	adding	or	subtracting	the	location	of	the	circles	on	

an	empty	grid	based	on	a	set	of	rules	(e.g. If	two	blue	circles	appear	in	the	same	cell	on	the	first	two	

grids	then	they	have	to	be	subtracted	from	the	array	when	responding	on	the	empty	grid).		

Analysis	

The	meta-analyses	were	conducted	using	the	Comprehensive	Meta-Analysis	program	version	3	

(Borenstein,	Hedges,	Higgins	&	Rothstein,	2005).	Confidence	intervals	were	calculated	for	the	effect	

sizes,	and	heterogeneity	was	quantified	using	the	I2	statistic.	A	random	effects	model	was	chosen	for	

all	analyses	due	to	the	heterogeneity	of	the	studies	included.		

	 Separate	random-effects	meta-regression	analyses	were	used	to	assess	the	impact	on	

memory	of	two	potential	moderator	variables:	time	since	TBI	and	age	at	TBI.	As	time	since	injury	is	

likely	to	be	confounded	by	age	at	injury	and	visa-versa	(i.e.,	at	time	of	assessment	an	earlier	age	at	

injury	also	leads	to	a	longer	time	since	injury),	age	at	injury	was	covaried	in	the	time	since	injury	

moderator	analysis,	and	time	since	injury	was	covaried	in	the	age	at	injury	analysis.	This	enabled	the	

contribution	of	each	variable	to	be	considered	independently	of	the	other.	To	investigate	if	the	

studies	included	were	representative	of	the	population	of	completed	studies,	publication	bias	was	

investigated	using	a	series	of	Begg’s	funnel	plots.		
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RESULTS	

When	duplicates	were	removed	752	articles	were	identified	of	which	226	were	selected	for	

preliminary	review.	Of	the	226,	21	articles	met	the	inclusion	criteria	and	were	included	in	the	meta-

analysis.	Six	of	these	studies	were	with	children	with	TBI	and	the	remaining	15	were	with	adult	

participants.		Details	of	the	studies	included	in	this	meta-analysis	can	be	in	Table	1,	which	includes	

sample	sizes	of	the	studies	included,	their	effect	sizes	(d),	time	since	injury	(in	months)	and	age	at	

injury	(in	years).		

	 TABLE	1	ABOUT	HERE	

Table	2	shows	the	results	of	the	meta-analysis.	The	effect	sizes	shown	are	the	difference	

between	TBI	groups	and	healthy	comparison	groups,	with	a	positive	effect	size	indicating	that	the	

scores	for	the	healthy	comparison	group	were	higher	than	that	of	the	TBI	group.		Effect	sizes	were	

interpreted	as:	d=.20	being	a	small	effect,	d=.50	a	moderate	effect	and	d=.80	a	large	effect	(Cohen,	

1988).	Forest	plots	for	each	aspect	of	memory	examined	can	be	found	in	the	online	supplemental	

material	(see	Appendix	C,	Figures	1-4).	

Results	(Table	2)	show	that	the	healthy	comparison	groups	performed	significantly	better	

than	the	TBI	individuals	on	all	memory	measures,	apart	from	visuo-spatial	STM.	For	significant	

findings,	effect	sizes	ranged	from	a	small-moderate	.37	to	a	moderate-large	.69.	

TABLE	2	ABOUT	HERE	

	

Publication	bias	

Begg’s	funnel	plots	(online	supplemental	material,	Appendix	D,	Figures	5-8)	showed	publication	bias	

in	verbal	WM	only	(p<0.01).	

Moderator	analyses	



12	
	

To	explore	whether	time	since	injury	and	age	at	injury	explained	variance	in	effect	sizes,	these	

variables	were	examined	in	separate	weighted	meta-regression	analyses.		

Results	showed	that	time	since	TBI	(in	months)	explained	a	significant	amount	of	the	

variance	of	verbal	STM	(β	=	.005,	p	<	.05)	and	verbal	WM	(β	=	.005,	p	<	.01).	Larger	effect	sizes	were	

associated	with	longer	time	since	injury.		

When	age	at	TBI	(in	years)	was	examined,	a	significant	amount	of	the	variance	of	verbal	WM	

(β	=	.018,	p	<	.05)	was	accounted	for,	with	effect	sizes	greater	the	older	the	age	at	injury.		

Neither	moderator	variable	explained	variance	in	visuo-spatial	STM	or	visuo-spatial	WM.	

	

	
DISCUSSION	

	
This	first	meta-analysis	of	WM	and	STM	impairments	in	adult	and	child	survivors	of	moderate-to-

severe	TBI	has	produced	three	main	findings.	First,	individuals	with	moderate-to-severe	TBI	are	

impaired	in	verbal	STM	and	verbal	and	visuo-spatial	WM	compared	to	neurotypical	controls,	with	no	

deficits	in	visuo-spatial	STM.	Second,	time	since	injury	predicts	verbal	STM	and	verbal	WM	abilities.	

In	all	cases,	older	injuries	are	associated	with	greater	deficits.	Third,	age	at	injury	predicts	verbal	WM	

performance,	with	more	pronounced	impairments	observed	in	those	injured	at	an	older	age.	These	

findings	will	be	discussed	in	turn.		

	 Finding	significant	impairments	in	both	visuo-spatial	and	verbal	WM	is	indicative	of	a	

domain-general	WM	impairment	and	is	consistent	with	a	deficit	in	the	central	executive	component	

of	Baddeley	and	Hitch’s	WM	model.	This	pattern	of	deficits	can	be	explained	by	the	prevalence	of	

TBI	affecting	the	PFC	(e.g.,	Oni	et	al.,	2010),	a	region	of	the	brain	associated	with	executive	control	

(Duncan	&	Owens,	2000)	that	is	activated	in	healthy	brains	during	WM	tasks	(e.g.,	Clayton	&	

D'Esposito,	2006).	Deficits	were	also	observed	in	verbal	STM.	This	is	consistent	with	previous	reports	
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of	specific	impairments	in	verbal	aspects	of	STM	(i.e.,	phonological	loop)	in	children	following	TBI	

(Anderson	&	Catroppa,	2005;	Anderson,	Catroppa,	Rosenfeld,	Haritou,	&	Morse,	2000;	Raghubar,	

Barnes,	Prasad,	Johnson	&	Ewing-Cobb,	2013),	which	could	arise	from	damage	to	parts	of	the	ventral	

and	dorsolateral	PFC	that	support	the	storage	of	verbal	information	(Curtis	&	D’Esposito,	2003).		

Visuo-spatial	STM	abilities	(i.e.,	the	visuo-spatial	sketchpad	of	the	Baddeley	and	Hitch	model)	

were	spared	following	TBI,	possibly	because	the	majority	of	visuo-spatial	information	storage	occurs	

in	posterior	regions	of	the	cortex	(i.e.,	parietal	and	inferior	temporal	cortices)	that	are	less	often	

affected	by	TBI	than	prefrontal	regions	that	are	important	for	WM	and	verbal	STM	tasks	(Curtis	&	

D’Esposito,	2003).	In	this	context,	difficulties	occurring	in	visuo-spatial	WM	in	the	absence	of	visuo-

spatial	STM	deficits	may	arise	due	to	the	additional	executive	demands	of	WM	tasks	that	rely	on	the	

same	prefrontal	areas	of	the	brain	that	are	most	susceptible	to	damage.	It	should	be	noted	that	this	

interpretation	is	speculative	as	very	few	of	the	studies	reported	detailed	analysis	of	the	brain	

networks	affected	by	the	TBI.		

Time	since	injury	moderated	the	severity	of	deficits	in	verbal	STM	and	verbal	WM,	with	a	longer	

period	of	time	since	injury	associated	with	greater	difficulties.	This	is	consistent	with	previous	

studies	showing	that,	particularly	in	the	case	of	childhood	TBI,	some	cognitive	deficits	increase	over	

time.	For	example,	perceptual	skills	have	been	reported	to	differ	more	than	16-years	post-injury	in	

young	adults	(Ryan	et	al.,	2014).	Similarly,	Nadebaum,	Anderson,	and	Catroppa	(2007)	found	that	

five	years	after	injury	only	children	with	severe	TBIs	still	had	executive	difficulties	with	children	with	

mild-to-moderate	injuries	returning	to	age-appropriate	levels.	Severe	childhood	TBI	can	result	in	

deficits	that	a	child	‘grows	into’	over	time	and	can	lead	to	a	negative	cascade	of	effects	on	

development	(Anderson	&	Moore,	1995;	Anderson	et	al.,	2009;	Mazzola	&	Adelson,	2002).	By	this	

account,	a	TBI	can	result	in	an	individual	failing	to	reach	the	appropriate	cognitive	milestones	

resulting	in	impairments	that	extend	beyond	those	seen	at	the	time	of	injury	to	later	developmental	

time	points.		
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Age	at	injury	was	associated	with	the	extent	of	verbal	WM	impairments,	with	more	pronounced	

deficits	present	when	injuries	occurred	later	in	life.	This	provides	support	for	the	plasticity	

hypothesis	(e.g.,	Huttenlocher	&	Dabholkar,	1997)	that	a	younger	age	at	injury	is	associated	with	

better	recovery	due	to	neural	plasticity	and	functional	reorganization	(see	Kolb,	2013).	It	might	also	

suggest	that	typical	age-related	decline	in	memory	capacity	in	adults	(e.g.,	Salthouse	&	Babcock,	

1991)	is	exacerbated	by	a	TBI,	at	least	for	verbal	WM.	Indeed	it	has	been	shown	that	TBI	is	a	risk	

factor	for	the	later	development	of	neurodegenerative	diseases	such	as	Alzheimer’s	disease	and	

dementia	(see	Jellinger,	2004;	Van	Den	Heuvel,	Thornton,	&	Vink,	2007,	for	reviews).	

	Before	concluding,	however,	that	these	data	are	therefore	inconsistent	with	the	early	

vulnerability	hypothesis	of	TBI	(e.g.,	Anderson	&	Moore,	1995),	which	predicts	poorer	outcomes	for	

individuals	who	are	injured	in	childhood	(e.g.,	Farmer,	et	al.,	1999;	Conklin,	et	al.,	2008;	Anderson	et	

al.,	2000;	2004),	it	is	important	to	note	that	the	scope	of	this	meta-analysis	is	constrained	by	the	

studies	available.	All	studies	collected	data	at	a	single	time-point,	and	in	the	absence	of	longitudinal	

data	that	tracks	cognitive	function	across	development	it	is	not	possible	to	draw	strong	conclusions	

about	how	cognitive	impairments	manifest	over	time	(see	Anderson	et	al.,	2011).	The	analysis	of	age	

at	injury	is	also	confounded	by	the	age	of	the	participants	at	time	of	assessment	in	that	individuals	

with	older	injuries	were	also	older	at	the	time	of	assessment	(i.e.,	no	studies	examined	WM/STM	

performance	in	adult	survivors	of	childhood	brain	injury,	or	matched	age	at	assessment	despite	

differences	in	age	at	injury).	Finally,	the	studies	available	were	predominantly	conducted	with	adult	

groups,	which	may	have	biased	the	results. 	

Limitations	

This	study	included	a	comprehensive	search	of	the	literature,	however,	despite	our	requests	to	

authors	for	unpublished	studies	this	review	is	constrained	by	the	use	of	published	data	only.	This	

introduces	the	possibility	of	publication	bias,	which	was	indeed	present	in	the	category	of	verbal	

WM.	Inclusion	of	unpublished	data	would	likely	have	resulted	in	smaller	effect	sizes	due	to	the	
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tendency	against	publishing	research	where	the	results	are	not	statistically	significant	(Rosenthal,	

1995;	Rosenberg,	2005).		

	 Other	limitations	include	the	under-representation	in	our	analyses	of	both	studies	

comparing	visuo-spatial	abilities	between	TBI	survivors	and	healthy	controls	and	studies	

investigating	WM	performance	in	children	with	TBI.	This	increases	the	chances	of	finding	both	false	

positives	and	false	negatives.	Related	to	this,	well-validated	and	widely	used	measures	were	used	

across	the	studies	to	assess	verbal	memory	(e.g.,	digit	recall	was	used	by	9	of	the	11	studies	

examining	verbal	STM),	yielding	relatively	consistent	effect	sizes.	The	assessment	of	visuo-spatial	

memory,	however,	was	more	variable.	For	example,	5	out	of	6	studies	assessed	visuo-spatial	STM	

using	a	well-validated	task,	spatial	span,	which	yielded	a	small	effect	size.	In	contrast,	the	effect	size	

for	the	single	study	employing	a	less	established	measure	(symbol	span)	yielded	a	large	effect	size	

(see	Table	4,	Appendix	A	of	supplemental	material	for	a	meta-analysis	of	the	tasks	included	in	this	

study).	Future	research	will	benefit	from	the	consistent	use	of	WM/STM	tasks	across	studies	

improve	the	signal-to-noise	ratio	(McCauley	et	al.,	2012).	

		 To	maintain	a	degree	of	homogeneity	only	studies	using	healthy	comparison	groups	were	

included.	Several	studies	were	therefore	excluded	as	their	controls	were	individuals	with	orthopedic	

injury	(e.g.,	Newsome	et	al.,	2007; Schwartz	et	al.,	2003; Raghubar	et	al.,	2012).	Although	this	choice	

of	control	group	is	common	in	TBI	research	as	it	provides	a	suitable	control	for	nonspecific	risk	

factors	(e.g.,	pre-injury	risk	factors;	Taylor,	et	al.,	2002)	we	chose	to	include	studies	with	healthy	

controls	to	enable	us	to	quantify	impairments	in	TBI	survivors	relative	to	individuals	with	‘typical’	

brain	development.		

A	related	complication	is	the	general	heterogeneity	of	TBI,	which	introduces	between-

participant	variability.	To	minimize	this,	we	only	included	studies	with	participants	with	moderate	or	

severe	TBI,	however,	it	would	have	also	been	useful	to	include	injury	severity	as	a	moderator	

variable,	particularly	as	it	may	be	related	to	memory	ability	(e.g.,	Perlstein,	et	al.,	2004).	This	was	not	
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possible,	however,	as	very	few	studies	reported	mean	injury	severity	data	(e.g.,	Glasgow	Coma	Scale	

scores,	see	Table	5,	appendix	A).	Finally,	in	the	case	of	the	adult	studies,	it	is	possible	that	the	

participants	included	were	those	still	known	to	services	(i.e.,	those	with	on-going	difficulties).	This	

potentially	excludes	those	with	good	outcomes	and	may	have	negatively	skewed	the	findings.		

Conclusion		

The	outcomes	of	this	meta-analysis	clearly	show	that	a	moderate-to-severe	TBI	results	in	deficits	

in	verbal	and	visuo-spatial	WM	and	verbal	STM	abilities.	In	addition,	the	more	time	elapsed	since	

injury	and	the	older	the	age	at	which	the	injury	occurred	both	have	a	potentially	negative	effect	on	

WM.	The	clinical,	educational,	and	vocational	implications	of	these	deficits	in	individuals	with	TBI	is	

not	yet	well	understood;	however,	the	findings	suggest	that	WM	should	be	assessed	in	routine	

clinical	practice	in	individuals	following	a	TBI,	and	considered	when	developing	an	understanding	of	

the	individuals’	everyday	difficulties	and	developing	plans	for	intervention	(e.g.,	WM	training;	

Lundqvist,	Grundström,	Samuelsson,	&	Rönnberg,	2010;	Hellgren,	Samuelsson,	Lundqvist,	&	Börsbo,	

2015).	Future	research	should	focus	on	longitudinal	studies	of	WM	and	STM	following	TBI	in	both	

children	and	adults,	using	common	data	elements,	to	further	delineate	the	impact	that	time	since	

injury	and	age	at	injury	have	on	memory	performance.		
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