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Abstract

TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal

homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin

(5-HT) has shown to be an essential intestinal physiological neuromodulator that is also

involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation

and the intestinal serotoninergic system remains non-investigated, our main aim was to ana-

lyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression

and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and

TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results

showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by

reducing SERT protein level either in the plasma membrane, after short-term TLR2 activa-

tion or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA

pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38

MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect.

Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells.

Finally, results from in vivo showed an augmented intestinal SERT expression in mice

Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present

work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate

immune role, but also by regulating the intestinal serotoninergic system.
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Introduction

Intestinal epithelium contributes to intestinal physiology and homeostasis, not only by acting

as a physical barrier between the body and the microorganisms present in the lumen (micro-

biota), but also by carrying out an active participation in the mucosal immune response [1, 2].

The intestinal innate immune system recognizes specific microorganism-associated molecular

patterns (MAMPs), in part by involving Toll-like receptors (TLRs). Intestinal epithelial cells

express these receptors, which enable the epithelium to discriminate between commensal and

pathogen microorganisms. Thus, the activation of TLRs generates a response either to tolerate

or to eliminate the microorganism, depending on its recognition as either commensal or path-

ogen, respectively [3]. In addition, TLRs activity deregulation has been described as one of the

main triggering events that cause inflammatory bowel diseases (IBDs) [4, 5].

Immunological activity mediated by TLRs protects and maintains the integrity of the muco-

sal barrier, thus contributing to the homeostasis and intestinal physiology. In this context,

recent results have demonstrated that TLR2 may play an important role in intestinal homeo-

stasis, and variants in the TLR1/2/6 genes have been associated with different phenotypes of

IBDs [6]. TLR2 is localized on the cell surface and recognizes Gram-positive and mycobacterial

MAMPs including bacterial lipopeptide, lipoteichoic acid, peptidoglycan and soluble tubercu-

losis factor [7]. An important feature of TLR2 activity is that it requires the co-expression of

either TLR1 or TLR6, since two heterodimeric forms TLR2/1 or TLR2/6 are responsible for

TLR2 activation [8]. TLR2 has been shown to contribute to epithelial barrier function by dif-

ferent mechanisms, including the organization of tight junction zonula occludens 1 protein

(ZO-1) [9], the inhibition of intestinal epithelial cells apoptosis [10], the increase of intestinal

mucosa repair and renewal [11] or the stimulation of the expression of mucus layer compo-

nents [12]. Considering its activities on epithelial barrier function, TLR2 signaling has been

postulated to ameliorate intestinal injury induced by chronic inflammatory processes.

In addition to the defensive barrier function, an important enteroendocrine activity arises

from intestinal epithelium. In this context, 5-HT, which has been described as an essential

intestinal neuromodulator, is mainly synthesized by enterochromaffin cells located in the

intestinal epithelium. 5-HT regulates the whole intestinal physiology [13–15] and has also

been demonstrated to be involved in intestinal inflammatory processes [16, 17]. 5-HT activity

depends on the extracellular 5-HT availability that is mainly modulated by the serotonin trans-

porter (SERT) expressed in the enterocytes. SERT is responsible for the 5-HT uptake into

these cells, finishing 5-HT effects. Alterations in the activity of the intestinal serotoninergic

system have been demonstrated to contribute to the origin and/or consolidation of chronic

gastrointestinal diseases such as inflammatory bowel diseases (IBDs) [18]. Moreover, the 5-HT

level has been shown to be altered in experimental intestinal inflammation and in IBD patients

[19], and high levels of 5-HT have also been described in several inflammatory and diarrheal

conditions [20]. In this context SERT activity has been described as being regulated by pro-

and anti-inflammatory factors [17, 21, 22].

Recent results have suggested that TLRs may regulate the neuroendocrine activity of the

intestinal epithelium [23, 24]. In relation to TLR2, previous results have shown that TLR2,

TLR1 and TLR6 are co-expressed in human and mouse intestine and co-localize with 5-HT

[25], suggesting a potential role for enteroendocrine cells in innate immune response through

TLR activation. However, the interaction between TLR2 and the serotoninergic system

remains unknown. Therefore, the aim of the present work was to analyze the effect of TLR2

activation on intestinal SERT activity and expression, and, reciprocally, to determine whether

5-HT modulates TLR2 expression. To carry out the present study, the human enterocyte-like

Caco-2/TC7 cell line and intestine from Tlr2-/- mice were used.
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Materials and Methods

Reagents and antibodies

The following drugs and substances were used (respective suppliers in parentheses): Serotonin

(5-hydroxytryptamine, 5-HT), selective p38MAPK inhibitor SB 220025, selective PKA inhibi-

tor KT 5720 and selective inhibitor of ERK pathway PD98059, (Sigma–Aldrich; St. Louis, MO,

USA). Pam3CSK4 and Pam2CSK4, specific TLR2/1 and TLR2/6 agonists respectively (Invivo-

Gen; San Diego, CA, USA). [3H]-5-HT (specific activity 25–30 Ci/mM) (Perkin-Elmer; Bos-

ton, MA, USA). Primary antibodies used were: goat polyclonal antibody anti-human and anti-

mouse SERT (ab130130) and rabbit monoclonal anti-human TLR2 (ab108998) (Abcam, Cam-

bridge, UK); mouse monoclonal anti-human p38 (sc-7972), rabbit polyclonal antibody anti-

human pp38 (sc-7975-R) and secondary antibodies coupled to horseradish peroxidase (Santa

Cruz Biotechnology, Santa Cruz, CA, USA). All generic reagents were purchased from Sigma–

Aldrich and Roche Applied Sciences (Sant Cugat del Vallés, Barcelona, Spain).

Cell culture

This study was carried out in the human enterocyte-like cell line Caco-2/TC7 [26]. This cell

line expresses SERT endogenously and has been described as an excellent intestinal model to

study SERT activity and expression [27]. Caco-2/TC7 cells were cultured at 37˚C in an atmo-

sphere of 5% CO2 and maintained in high glucose DMEM supplemented with 2 mM gluta-

mine, 100 U/ml penicillin, 100 μg/ml streptomycin, 1% non-essential amino acids, and 20%

heat-inactivated FBS (Life Technologies, Carlsbad, CA, USA).

For 5-HT uptake assays, cells were seeded in 24-well plates at a density of 4 × 104 cells per well,

and uptake measurements were carried out 14 days after seeding (9 days after confluence). Previ-

ous results have shown that SERT activity reaches a plateau on the fifth day after confluence [27].

Cell medium was free of FBS 1 day before using the cells in the experiments. Pam3CSK4 and

Pam2CSK4 (TLR2/1 and TLR2/6 ligands, respectively), and the different modifiers were added to

the culture medium at different concentrations and periods, depending on the experiment. Pre-

liminary assessment of the cell monolayer morphology was carried out in the cell culture under

the different experimental conditions. The results have shown that none of the assayed treatments

seemed to affect cell morphology, proliferation, and monolayer integrity (data not shown).

Animals

Inbred C57BL/10 (wild type, WT) and a mouse strain deficient for TLR2 (Tlr2-/-) were bred at

the at the Centro de Investigación y Tecnologı́a Agroalimentaria (CITA, Zaragoza, Spain).

Their genotypes were periodically analyzed as described [28]. Mice of 10–12 weeks of age were

used in the experiments (both male and female). All mice were housed under pathogen-free

conditions on a 12-hour light/dark cycle with food and water ad libitum. The experiments

were approved by the Ethic Committee for Animal Experiments of the Zaragoza University.

The care and use of animals were performed accordingly with the Spanish Policy for Animal

Protection RD53/2013, which meets the European Convention for the Protection of Verte-

brate Animals used for Experimental and other Scientific Purposes (Council of Europe No

123, Strasbourg 1985) and the European Union Directive 2010/63/EU on the protection of ani-

mals used for scientific purposes. Mice were euthanized by cervical dislocation. Immediately

after death, the intestinal tract (ileum and colon) was removed and rinsed with an ice-cold

solution of 0.9% NaCl. Tissue samples for RNA analysis were collected and preserved in RNA-

later (Qiagen, Hilden, Germany) 1 day at 4˚C, and then frozen at -80˚C. Tissue samples for

protein analysis were immediately frozen in ice isopropyl alcohol and stored at -80˚C.
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5-HT uptake studies

Uptake measurements were performed on cells attached to 24-well plates either under control

conditions or after treatment with specific TLR2/1 or TLR2/6 ligands. The method used has

been described elsewhere [27]. The transport medium composition was as follows: 137 mM

NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2, 10 mM HEPES pH 7.4,

4 mM glutamine, 0.1% BSA, and both 0.2 μM 5-HT and [3H]-5-HT (1.5 μCi/ml) as substrate.

Before measuring uptake, cells were pre-incubated at 37˚C in an atmosphere of 5% CO2 with

substrate-free transport medium for 30 min. The cells were immediately washed with sub-

strate-free transport medium at 37˚C and then incubated with transport medium at 37˚C for 6

min. Transport was stopped by removing the transport medium and washing the cells twice

with ice-cold, substrate-free transport medium containing 20 μM 5-HT. The cells were solubi-

lized in 0.1 N NaOH, and samples were taken for radioactivity counting (Wallac Liquid Scintil-

lation Counter, Perkin-Elmer), and protein measurement using the Bradford method (Bio-

Rad, Hercules, CA) and BSA as a standard. Results were calculated in pmol 5-HT/mg protein

and were expressed as a percentage of control value (100%). In the kinetic study, 5-HT uptake

was measured in the concentration range 0.05–10 μM, and the kinetic constants Vmax and Kt

were calculated.

5-HT fluxes were measured by a method previously described [23]. Briefly, Caco-2/TC7

cells were seeded in 12 well permeable polyester (PET) membranes with porous size 0.4 μm

and a 1 cm2 growth area (Millipore, Billerica, MA). These inserts established apical (A) and

basal (B) compartments. Apical to basal (A-B) 5-HT fluxes were measured at intervals of

10 min during 1 h, after adding 0.1 μM 5-HT plus [3H]-5-HT (2.5 μCi/ml) to the apical com-

partment. After 20 min of equilibration period, samples were taken from the basal compart-

ment every 10 min, and replaced with fresh medium. The results were calculated in pmol

5-HT/10 min and were expressed as a percentage of the control value (100%). Cell monolayer

integrity and confluence were checked by measuring transepithelial resistance (TER) with an

Epithelial Voltohmmeter (Millicell Electrical resistance system, Millipore) before beginning

each experiment.

RNA extraction, reverse transcription and real-time PCR

Total RNA was extracted from both Caco-2/TC7 cells cultured in 25 cm2 flasks (14 days after

seeding) and mouse intestinal tissue. For intestinal RNA extraction, mouse tissue samples

were thawed in an ice-cold RTL buffer (Qiagen) and homogenized using the Ultra Turrax T25

(IKA, Staufen, Germany). Lysates from intestinal tissue and Caco-2/TC7 cells were transferred

in a QIAshredder column (Qiagen), and RNA was purified using the RNeasy mini kit (Qia-

gen), following the manufacturer’s instructions. Residual DNA was removed by an additional

on-column DNase I digestion step using the Qiagen RNase-free DNase set (Qiagen).

The extracted RNA (1 μg) was used as a template for first-strand cDNA synthesis using

oligo(dT) primers and a reverse transcriptase (Life Technologies). Negative amplification control

was performed in the absence of reverse transcriptase. cDNAs obtained by reverse transcription

(RT) were used to determine SERT and TLR2 mRNA expression levels. In Caco-2/TC7 human

cells, SERT mRNA was measured using hSERT Gene Expression Assay from Applied Biosys-

tems (Life Technologies, Assay number Hs00169010_m1 [SLC6A4]), with hGAPDH (Assay

number Hs99999905_m1) and hHPRT1 (Assay number Hs99999909_m1) housekeeping gene

expression used as calibrators (Life Technologies). Quantification of SERT mRNA in mice and

TLR2 mRNA in Caco-2/TC7 cells was carried out by using SYBR green and the following spe-

cific primers: mSERT sense (5’ GGCAACATCTGGCGTTTTCC 3’), mSERT antisense (5’ ATT
TCGGTGGTACTGGCCCA3’), hTLR2 sense (5’ GAAGCTCCAGCAGGAACATC 3’), and hTLR2
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antisense (5’ GAATGAAGTCCCGCTTATGAAGACA3’). The corresponding housekeeping gene

expression used as calibrators were in human, hGADPH (sense 5’ CATGACCACAGTCCATGC
CATCACT3’ and antisense 5’ TGAGGTCCACCACCCTGTTGCTGTA 3’) and hHPRT (sense

5’ CTGACCTGCTGGATTACA3’ and antisense 5’ GCGACCTTGACCATCTTT3’); and in

mouse, mGADPH (sense 5’ AACGACCCCTTCATTGAC3’and antisense 5’ TCCACGACAT
ACTCAGCAC3’) and mHPRT (sense 5’ CTGGTGAAAAGGACCTCTCGAA 3’ and antisense

5’ CTGAAGTACTCATTATAGTCAAGGGCAT3’).

Each sample was run in triplicate, and the mean Ct was determined from the three runs.

Relative mRNA expression under each experimental condition (control or treatment) was

expressed as ΔCt = Ctgene−Ctcalibrator. Then, relative mRNA expression was calculated as

ΔΔCt = ΔCtcontrol−ΔCttreatment. Finally, the relative gene expression levels were converted and

expressed as fold difference (= 2-ΔΔCt).

Preparation of Caco-2/TC7 brush border-enriched fraction and mouse

intestinal samples for western blotting

Caco-2/TC7 cells were cultured in 75 cm2 flasks and used 14 d after seeding. The enterocyte

brush border membrane-enriched fraction was obtained by divalent cation precipitation and

differential centrifugation procedure described in a previous paper [29]. Briefly, cells were

washed twice with PBS and immediately re-suspended with a cold Tris-mannitol buffer (2

mM Tris, 50 mM Mannitol, pH 7.1) containing protease inhibitors and 0.02% sodium azide.

Mouse intestinal samples (ileum and colon) were thawed and homogenized using ultra-turrax

in Tris-mannitol buffer pH 7.1, containing protease inhibitors and 0.02% sodium azide, and

then the samples were progressively disrupted by using Potter-Elvehjem with a PTFE pestle. In

both cases, the suspension was homogenized and disrupted by sonication (fifteen 1-s bursts,

60W). One sample was taken from the Caco-2/TC7 cells and mouse intestine lysates for total

protein analysis and protein quantification.

For the preparation of brush border-enriched fraction from Caco-2/TC7 cells, 20 mM

CaCl2 was added to the cell lysate and, after standing for 10 min on ice, the mixture was centri-

fuged for 10 min at 950 g. The supernatant was taken and centrifuged at 33500 g for 30 min.

The pellet (brush border-enriched fraction) was re-suspended in phosphate buffer (10 mM

KH2PO4/K2HPO4 pH 6.8), and a sample was taken for protein analysis. Protein concentration

was measured using the Bradford method.

Brush border-enriched fraction and cell lysate from Caco-2/TC7 cells, and ileum and colon

homogenates from WT and Tlr2-/- mice (60 μg of total protein) were electrophoresed on 8%

SDS-PAGE gels and then transferred to PVDF membranes by electroblotting. The membranes

were blocked with 4% non-fat dried milk plus 1% BSA and probed with a goat polyclonal anti-

body anti-human or anti-mouse SERT (1:500), rabbit monoclonal anti-human TLR2 (1:1000),

rabbit polyclonal antibody anti-human pp38-MAPK (1:500), or mouse monoclonal anti-

human p38-MAPK (1:500). Primary antibodies were detected using specific secondary anti-

bodies coupled with horseradish peroxidase and the ECL Plus detection kit (GE Healthcare,

Buckinghamshire, UK) and were visualized with VersaDoc™ (Imaging System, Bio-Rad). After

stripping, membranes were re-probed with goat polyclonal anti-human or anti-mouse β-actin

to determine differences in the sample loading. The SERT/β-actin protein ratio was calculated

in densitometric units from the film using Quantity One Analysis Software (Bio-Rad).

Statistical analysis

All results are expressed as means ± the standard error of the mean (SE). Statistical compari-

sons were performed using one-way ANOVA, followed by the Bonferroni post-test with a
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confidence interval of 95% (p< 0.05). Normal distribution was previously confirmed with the

D’Agostino-Pearson test. Analysis of the transport values obtained in the kinetic study of the

5-HT transport was performed by non-linear regression, fitting the results to an equation con-

taining a saturable (Michaelis-Menten) plus a non-saturable (diffusion) component. The equa-

tion used was as follow: V = ((Vmax [5-HT]) / (Kt + [5-HT])) + (Kd [5-HT])). Statistical

analysis was carried out with the computer-assisted Prism GraphPad Program (Prism version

4.0, GraphPad Software, San Diego, CA).

Results

The effect of TLR2 activation on 5-HT-uptake

Preliminary analysis has demonstrated that Caco-2/TC7 cells expressed TLR2, TLR1, and

TLR6 (data not shown). In order to analyze the effect of TLR2 activation on SERT activity,

5-HT uptake in Caco-2/TC7 cells was measured in cells treated with Pam3CSK4 (TLR2/1

ligand) or Pam2CSK4 (TLR2/6 ligand) at different concentrations and periods of treatment

(30 min and 1 day). As shown in Fig 1, both TLR2/1 and TLR2/6 activation yielded a signifi-

cant decrease (about 25% of reduction) of 5-HT uptake under the different conditions assayed.

In order to characterize these TLR2 effects on SERT, the kinetic study of the 5-HT transport

was carried out, and kinetic constants Vmax and Kt, which indicate the capacity and affinity of

SERT respectively, were calculated. 5-HT uptake was measured at different 5-HT concentra-

tions (ranged 0.05–5 μM) in Caco-2/TC7 cells treated with 5 μg/ml Pam3CSK4 or 50 ng/ml

Pam2CSK4 for 30 min or 1 day. The results have shown that the treatment of cells with either

TLR2/1 or TLR2/6 ligands inhibited 5-HT uptake by mainly affecting Vmax (SERT capacity) at

both short (30 minutes) and long-term (1 day). However, none of the treatments seemed to

affect transport affinity (Kt) (Table 1).

The results reported above have shown that apical activation of TLR2 inhibits SERT activity in

the apical membrane; however, whether basal TLR2 may act on apical SERT activity remained

unknown. To assess this possibility, cells cultured in transwell plates were treated from either

the apical or the basal compartment with 5 μg/ml Pam3CSK4 (TLR2/1 ligand) or 50 ng/ml

Pam2CSK4 (TLR2/6 ligand) for 30 min and 1 day, and 5-HT apical to basal (A–B) flux was mea-

sured. As the results show, apical activation of TLR2/1 and TLR2/6 diminished significantly 5-HT

A–B flux; however, basal activation of either TLR2/1 or TLR2/6 did not affect A–B flux (Fig 2A).

The effect of TLR2 activation on transepithelial resistance was also analyzed in the cell monolayer

under the same conditions as in the experiments of 5-HT fluxes measurement. The results have

shown that TLR2/1 and TLR2/6 activation did not alter transepithelial resistance (Fig 2B).

TLR2/1 and TLR2/6 activation decrease SERT mRNA and protein levels

in Caco-2/TC7 cells

From the previous results, it may be inferred that TLR2 activation inhibits SERT activity. In

order to gain an in-depth knowledge of this TLR2 effect, SERT expression was analyzed by

measuring SERT mRNA and protein levels in Caco-2/TC7 cells treated for 30 min and 1 day

with 5 μg/ml Pam3CSK4 or 50 ng/ml Pam2CSK4.

The results showed that long-term (1-day) activation of TLR2/1 or TLR2/6 decreased the

SERT mRNA level; however, short-term (30 min) treatment did not seem to affect it (Fig 3A).

The analysis of SERT protein level revealed that it was significantly diminished in the apical

membrane of cells treated with TLR2/1 or TLR2/6 ligands either at short- or long-term peri-

ods. In contrast, SERT protein level in cell homogenate (total SERT) was only diminished after

long-term treatment with either TLR2/1 or TLR2/6 ligands (Fig 3B and 3C).
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Analysis of SERT expression in Tlr2-/- mice

To confirm the effect of TLR2 on SERT expression, SERT mRNA and protein levels in both

ileum and colon of Tlr2-/- mice were measured. As the results show, the levels of SERT mRNA

Fig 1. Effect of Pam3CSK4 (TLR2/1 ligand) and Pam2CSK4 (TLR2/6 ligand) on 5-HT uptake. Uptake was

measured after 6 min incubation of 0.2 μM 5-HT. (A) Pam3CSK4 concentrations assayed were 1, 5, 10, 15, and

20 μg/ml. (B) Pam2CSK4 concentrations were 1, 10, 50, 100 and 1000 ng/ml. The treatment periods were 30 min

(short-term) or 1 day (long-term). The results are expressed as the percentage of the uptake control (100%) and are

the mean ± SEM of 5 independent experiments. Absolute control values were 11.05±0.50 and 10.90±0.63 pmol

5-HT/mg protein at 30 min or 1 day, respectively. ***P<0.001, **P<0.01, and *P<0.05 compared with the control

value (untreated cells).

doi:10.1371/journal.pone.0169303.g001
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(Fig 4A) and protein (Fig 4B and 4C) were significantly higher in the intestinal tract of Tlr2-/-

than in WT mice, suggesting that TLR2 may act as a repressor of SERT expression in the intes-

tinal tract.

Intracellular signaling pathways involved in the TLR2 effect on SERT

activity

In order to analyze TLR2 effects on SERT activity more in depth, the intracellular signaling

pathways involved were assessed. To do so, 30 min before treatment of Caco-2/TC7 cells with

either 5 μg/ml Pam3CSK4 or 50 ng/ml Pam2CSK4 (TLR2/1 and TLR2/6 ligands, respectively)

during 30 min or 1 day, the cells were treated with or without different inhibitors of the path-

ways studied. Then, SERT activity was analyzed by 5-HT uptake measurement. Firstly, the

ERK signaling pathway, which has been described as mediating TLR2 activity in epithelial cells

[30], was studied. Caco-2/TC7 cells were treated with TLR2/1 or TLR2/6 ligands, with or with-

out 40 μM PD98059, a selective inhibitor of the ERK pathway. The results showed that TLR2/1

and TLR2/6 effects on SERT were not reverted by PD98059 treatment, either at 30 min or 1

day treatment (Fig 5A). Therefore, ERK signaling pathway did not seem to be involved. Next,

cAMP/PKA pathway was assessed by treating Caco-2/TC7 cells with TLR2/1 or TLR2/6

ligands, with or without 1 μM KT 5720, a selective PKA inhibitor, for 30 min or 1 day. The

results obtained have shown that only short-term (30 min) TLR2/1 and TLR2/6 effects on

SERT were reverted by KT 5720 (Fig 5B). Finally, p38 MAPK pathway was assessed; thus,

Caco-2/TC7 cells were treated for 30 min or 1 day with TLR2/1 or TLR2/6 ligands, with or

without 1 μM SB 220025, a selective inhibitor of p38 MAPK. The results show that SB 220025

reversed the effect of TLR2/1 and TLR2/6 on SERT at both short and long-term treatment

(Fig 5C).

The results obtained have suggested that long-term treatment (1 day) of Caco-2/TC7 cells

with TLR2/1 and TLR2/6 ligands induces a reduction of SERT expression (mRNA and protein

levels). In order to confirm the role of p38 MAPK pathway in long-term TLR2 effects, firstly,

SERT mRNA level was measured by real-time PCR in cells treated for 1 day with TLR2/1 or

TLR2/6 agonists with or without p38 MAPK inhibitor SB 220025. The results showed that the

reduction of SERT mRNA induced by TLR2/1 and TLR2/6 ligands treatment disappeared

when the cells were simultaneously treated with SB 220025. Moreover, SB 220025 alone did

not appear to affect the level of SERT mRNA (Fig 6A). Secondly, as the phosphorylated form

(p-p38 MAPK) mediates p38 MAPK activity, the levels of both p-p38 MAPK and p38 MAPK,

and the ratio p-p38 MAPK/p38 MAPK were determined by western blot using specific anti-

bodies. The results showed that long-term activation of both TLR2/1 and TLR2/6 induced an

increase of the ratio p-p38 MAPK/p38 MAPK, suggesting the involvement of p38 MAPK path-

way in long-term TLR2/1 and TLR2/6 effects (Fig 6B and 6C).

Table 1. Kinetic constants of 5-HT uptake in Caco-2/TC7 cells after TLR2 activation. The results are the

mean ± SEM of four experiments. *p<0.05 compared with control (untreated cells).

Time Conditions Vmax (pmol 5-HT/mg protein) Kt (μM)

30 minutes Control 22.36±0.08 0.64±0.08

TLR2/1 17.55±0.80* 0.72±0.02

TLR2/6 11.5±0.01* 0.64±0.06

1 day Control 29.5±0.96 0.75±0.08

TLR2/1 20.26±0.61* 0.61±0.06

TLR2/6 20.25±0.74* 0.74±0.07

doi:10.1371/journal.pone.0169303.t001
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Fig 2. Effect of Pam3CSK4 (TLR2/1 ligand) and Pam2CSK4 (TLR2/6 ligand) on 5-HT transepithelial flux and

resistance. (A) 5 μg/ml Pam3CSK4 or 50 ng/ml Pam2CSK4 were added to the apical or basal side for 30 min or 1

day and 5-HT apical-to-basal (A–B) flux was measured. The control condition corresponds to untreated cells. 5-HT

concentration was 0.1 μM, and samples were taken every 10 min. The results are expressed as the percentage of

the control value (100%) and are the mean ± SEM of 3 independent experiments. Absolute control values in pmol 5

HT/10 min were 0.53±0.06 and 0.63±0.06 (apical, 30 min, and 1-day treatment, respectively); 0.42±0.04 and 0.48

±0.03 (basal, 30 min, and 1-day treatment, respectively). ***P<0.001, **P<0.01, and *P<0.05 compared with the

control value. (B) Transepithelial resistance (TER) values under the same experimental conditions as in flux

measurement are represented. Results are expressed as the percentage of control value (100%) and are the

mean ± SEM of 3 independent experiments. Absolute control values inΩ/cm2 were 323.22±25.30 and 275.33

±18.50 (apical, 30 min, and 1-day treatment, respectively), 301.56±31.07 and 280.50±30.10 (basal, 30 min, and

1-day treatment, respectively). No differences were observed.

doi:10.1371/journal.pone.0169303.g002
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5-HT feedback regulation of TLR2 expression

The results described above demonstrate that long-term TLR2/1 and TLR2/6 activation inhibit

SERT activity and expression. This effect may trigger an increase of the 5-HT extracellular

availability, which in turn might yield a feedback effect on TLR2 expression. In order to con-

firm this hypothesis, TLR2 mRNA and protein levels were measured in Caco-2/TC7 cells

treated during 1 day with different 5-HT concentrations, simulating intestinal physiological

(10−8 M) or inflammatory (10−4 M) conditions [31, 32]. A significant increase in the TLR2

mRNA (Fig 7A) and protein (Fig 7B and 7C) levels compared with the control (untreated

cells) was found. This effect was higher at the lower 5-HT concentration (10−8 M), and was

progressively decreasing as 5-HT concentration was increasing (Fig 7).

Discussion

The intestinal activity of TLR2 is crucial for intestinal homeostasis [9, 10]. 5-HT, a key intesti-

nal neuromodulator, has been found altered in inflammatory conditions [18, 20, 31]. As SERT

is the major target to manage 5-HT levels, we studied the effects of TLR2 on intestinal SERT.

Fig 3. Effect of Pam3CSK4 (TLR2/1 ligand) and Pam2CSK4 (TLR2/6 ligand) on SERT mRNA and

protein expression level. (A) Real-time PCR analysis of SERT mRNA expression level in cells treated for

30 min or 1 day with 5 μg/ml Pam2CSK4 or 50 ng/ml Pam3CSK4. Relative quantification was performed

using comparative Ct method (2–ΔΔCt). Results are expressed as arbitrary units (control = 1) and are the

mean ± SEM of 5 independent experiments. **P<0.01 and *P<0.05 compared with the control value. (B)

Immunodetection of SERT by western blot in cell lysate and apical membrane from Caco-2/TC7 cells treated

with 5 μg/ml Pam3CSK4 or 50 ng/ml Pam2CSK4 for 30 min or 1 day. (C) Quantitation of SERT protein in

both cell lysate and apical membrane using β-actin as an internal control of the protein load (SERT/β-actin

ratio). The results are expressed as a percentage of the control value and are the mean ± SEM of 5

independent experiments. **P<0.01 and *P<0.05 compared with the control value.

doi:10.1371/journal.pone.0169303.g003

Fig 4. SERT mRNA and protein levels in the intestine from Tlr2-/- mice. (A) Real-time PCR analysis of

SERT mRNA expression level in ileum and colon. Relative quantification was performed using comparative Ct

method (2–ΔΔCt). Results are expressed as arbitrary units (WT = 1) and are the mean ± SEM of 10 animals.

***P<0.001 compared with the control value. (B) Immunodetection of SERT by western blot in lysate from

ileum and colon. (C) Quantitation of SERT protein in lysate from ileum and colon using β-actin as an internal

control of the protein load (SERT/β-actin ratio). The results are expressed as a percentage of the control value

(100%) and are the mean ± SEM of 10 animals. ***P<0.001 and **P<0.01 compared with WT.

doi:10.1371/journal.pone.0169303.g004
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The present work has analyzed the effect of TLR2 activation, under the two-heterodimeric

forms (TLR2/1 and TLR2/6) on intestinal SERT activity and expression. Reciprocally, the

modulation of TLR2 molecular expression by 5-HT has also been assessed. The human entero-

cyte-like Caco-2/TC7 cells, which were used to carry out this study, have been previously

shown to express SERT [27] as well as TLR2, TLR1, and TLR6 [1, 33]

We demonstrated that the activation of either TLR2/1 or TLR2/6 by specific ligands

(Pam3CSK4 and Pam2CSK4, respectively) inhibits SERT activity. This effect of TLR2 was

obtained at both short (30 min) and long-term (1-day) treatment of the cells by acting from

the apical compartment, confirming the role of TLR2 as a transducer of microbiota apical

information. The transepithelial resistance of the cellular monolayer did not seem to be af-

fected by TLR2 activation. Therefore, monolayer paracellular permeability did not seem to

interfere with the effect of TLR2 on 5-HT transport. This result is in agreement with a previous

study suggesting that TLR2 stimulation maintains tight junction-associated barrier assembly

of the intestinal epithelium [9].

TLR2 inhibition of SERT activity seems to be due to the diminution of the capacity of the

transporter (Vmax), which may be the consequence of a reduction of SERT availability in the

cell membrane. This result was confirmed by a decrease of SERT protein level in the apical

membrane yielded by both TLR2/1 and TLR2/6 at short- and long-term treatment. Interest-

ingly, TLR2/1 and TLR2/6 long-term treatment reduced SERT mRNA and cell lysate SERT

protein levels, whereas short-term treatment did not appear to alter them. These results suggest

that the activation of TLR2 at short-term treatment might reduce SERT expression by post-

translational mechanisms; however, at long-term treatment, TLR2 might diminish SERT

expression by acting on transcriptional or post-transcriptional processes.

It is clear that microbiota could play a key role in intestinal homeostasis, not only through

activation of TLRs but also as a producer of metabolites as butyrate or serotonin. Thus bacteria

could interfere directly on intestine homeostasis [34]. Previous results from our group demon-

strated that serotonin has an inhibitory action on SERT [29], therefore, either through activa-

tion of TLRs or by their own serotonin, intestinal microbiota could inhibit SERT function, in

turn increasing 5-HT levels.

SERT is considered a critical pharmacological target to control 5-HT levels, in fact, selective

serotonin reuptake inhibitors (SSRIs) are being widely used in treatments for depression or

mental disorders. SSRIs, in addition to their antidepressant effects, have been reported to have

anti-inflammatory effects, being able to reduce pro-inflammatory cytokine levels in several

inflammatory diseases as arthritis [35] or chronic colitis [36]. However SSRIs efficacy in IBD

patients is still unclear [37, 38]. Fluoxetine and citalopram, two important SSRIs, have shown

to inhibit the signalling of TLRs 3, 7, 8, and 9, providing a potential mechanism for their anti-

inflammatory action [35]. Fluoxetine was also demonstrated to reduce LPS-induced pro-

inflammatory IL-6 and TNF-α in human peripheral blood mononuclear cells [39]. However,

Fig 5. Intracellular mechanisms involved in Pam3CSK4 (TLR2/1 ligand) and Pam2CSK4 (TLR2/6

ligand) effect on SERT activity. Cells were treated for 30 min or 1 day with 5 μg/ml Pam3CSK4 or 50 ng/ml

Pam2CSK4, and/or the different modifiers. Uptake of 5-HT was measured after 6 min of incubation, and 5-HT

concentration was 0.2 μM. The results were compared with untreated cells (control). (A) ERK pathway. Cells

were treated with Pam3CSK4, Pam2CSK4, and/or 40 μM PD98059. Absolute control values were 10.73±0.33

and 10.54±0.11 pmol 5-HT/mg protein for 30 min and 1 day, respectively. (B) cAMP/PKA pathway. Cells were

treated with Pam3CSK4, Pam2CSK4, and/or 1 μM KT 5720. Control absolute values were 9.00±0.16 and

8.61±0.29 pmol 5-HT/mg protein for 30 min and 1 day, respectively. (C) p38 MAPK pathway. Cells were

treated with Pam3CSK4, Pam2CSK4, and/or 1 μM SB 220025. Absolute control values were 7.11±0.26 and

7.93±0.12 pmol 5-HT/mg protein for 30 min and 1 day, respectively. The results, in all cases, are expressed

as the percentage of the uptake control and are the mean ± SEM of four independent experiments.

***P<0.001, **P<0.01, and *P<0.05 compared with the corresponding control value.

doi:10.1371/journal.pone.0169303.g005
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Fig 6. Involvement of p38 MAPK on TLR2 effect on SERT mRNA expression. (A) Real-time PCR analysis of

SERT mRNA expression in cells treated with 5 μg/ml Pam3CSK4, 50 ng/ml Pam2CSK4, and/or 1 μM SB 220025.

Relative quantification was performed using comparative Ct method (2–ΔΔCt). Results are expressed as arbitrary

units (control = 1) and are the mean ± SEM of 5 independent experiments. ***P<0.001 compared with the control

value; ###P<0.001 compared with corresponding values without SB 220025. (B) Immunodetection of p38 MAPK

and p-p38 MAPK protein levels by western blot in cell homogenate of Caco-2/TC7 cells treated with 5 μg/ml

Pam3CSK4 or 50 ng/ml Pam2CSK4. (C) Quantification of p-p38 MAPK and p38 MAPK relative expression in Caco-

2/TC7 cells treated with Pam3CSK4 or Pam2CSK4. Results are expressed as p-p38 MAPK/p38 MAPK ratio and

are the mean ± SEM of 4 independent experiments. ***P<0.001 and **P<0.01 compared with the control value.

doi:10.1371/journal.pone.0169303.g006
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the effect SSRIs on TLR2 remain unexplored, which would be an additional way of regulation

of 5-HT levels.

The effect of Pam3CSK4 and Pam2CSK4 is considered to be mainly due to the activation of

TLR2; however, a TLR2-independent effect cannot be discarded. To confirm the role of TLR2

on SERT expression, both ileum and colon from Tlr2-/- mice were used to measure the level of

SERT mRNA and protein. The results showed that SERT expression in the intestinal tract was

significantly higher in Tlr2-/- than in WT mice, corroborating our results obtained in vitro.

From these results, it might be inferred that TLR2 may act as a repressor of intestinal SERT

expression. The results obtained in the intestinal tract from Tlr2-/- mice are assumed to be due

to TLR2 deficiency; however, alteration of expression of another TLRs cannot be dismissed as

it has been recently reported in macrophages [40].

Further, we intended to investigate the underlying intracellular pathways. Firstly, the

involvement of ERK was analyzed since recent studies carried out in neuronal cells [30] and

macrophages [41] have demonstrated that this pathway mediated TLR2 effects. However, the

results obtained have shown that ERK pathway did not seem to mediate TLR2 effects in our

cell model. Following this analysis, the role of the cAMP/PKA pathway was analyzed since it

has been stated that it is involved in the immune response of TLR2 [42] and in SERT regula-

tion [43]. Our results suggest that cAMP/PKA may mediate TLR2/1 and TLR2/6 effect, but

only at short-term treatment. A previous study has demonstrated that cAMP/PKA system

inhibits SERT activity in intestinal epithelial cells by post-translational regulation [27], which

may confirm the involvement of cAMP/PKA in TLR2 short-term effect. Finally, p38 MAPK

Fig 7. TLR2 mRNA and protein expression in 5-HT treated cells. (A) Real-time PCR analysis of TLR2

mRNA expression level. Relative quantification was performed using comparative Ct method (2–ΔΔCt). Results

are expressed as arbitrary units (control = 1) and are the mean ± SEM of 4 independent experiments.

***P<0.001 compared with the control value; ###P<0.001 compared with 5-HT 10−4 M condition. (B)

Immunodetection of TLR2 by western blot in cell lysate of Caco-2/TC7 cells treated with 10−8, 10−6, and 10−4

M 5-HT for 1 day. C: Quantification of TLR2 protein expression in cell lysate using β-actin as an internal

control of the protein load (TLR2/β-actin ratio). The results are expressed as a percentage of the control value

(100%) and are the mean ± SEM of 8 independent experiments. **P<0.01 and *P<0.05 compared with the

control value. #P<0.05 compared with 10−4 M 5-HT condition.

doi:10.1371/journal.pone.0169303.g007
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pathway, which has been demonstrated to mediate TLR2 activity in different cell types [44,

45], was analyzed. The results have shown that p38 MAPK seemed to mediate TLR2/1 and

TLR2/6 effect on SERT at both short and long-term treatment. The involvement of p38 MAPK

in the regulation of SERT has been shown to be controversial; thus, in rat brain, p38 MAPK

did not appear to affect SERT activity [46], and, in contrast, results in neural cells have sug-

gested that p38 MAPK enhances SERT activity [47]. Our results agree with a previous study in

intestinal epithelial cells, in which p38 MAPK activation seemed to mediate SERT activity inhi-

bition [24].

TLR2 has been shown to be able to discriminate triacylated from diacylated lipopeptides by

the heterodimerization with TLR1 or TLR6, respectively. Our results show that both TLR2/1

and TLR2/6 yielded an inhibitory effect on SERT by triggering the same mechanism. These

results may suggest a redundant effect of TLR2 in intestinal epithelial cells; this feature of

TLR2 has also been found in other cell types [48], although recent results have concluded that

TLR2/1 and TLR2/6 could exhibit specific signaling transduction [49]. In relation to the ability

shown by TLR2 to inhibit SERT activity and expression by different pathways depending on

the period of treatment, it might be considered an advantageous way of specialization to mod-

ulate 5-HT in different situations. Since TLR2 has been described to activate additional cellular

signaling pathways that have not been analyzed in the present work [9], their mediation in the

effects on SERT cannot be fully discarded.

In agreement with our results, previous studies carried out in intestinal epithelial cells have

shown that several TLRs are able to regulate intestinal SERT activity by different mechanisms.

Thus, TLR4 activation by LPS inhibited SERT activity by posttranscriptional mechanisms

involving PKC [23], and TLR3, which is an intracellular TLR activated mainly by viral compo-

nents, was also shown to modulate SERT activity by activating the p38-MAPK pathway [24];

however, in this case, TLR3 did not affect SERT molecular expression. Moreover, a recent

study has demonstrated that TLR2 may regulate the expression of 5-HT receptors in intestinal

tract [50]. These results confirm the essential role of intestinal microbiota in the regulation of

intestinal serotoninergic system by acting through different microorganism-associated molec-

ular patterns.

Our results show that TLR2 activation inhibits SERT and, consequently, it may induce an

increase of extracellular 5-HT availability in the intestine, which in turn might regulate TLR2

expression in the intestinal epithelium by a negative feedback mechanism. The results have

shown that 5-HT, at any concentration tested, increased TLR2 expression, with maximum

effect at physiological concentration and gradually reduced as 5-HT concentration was in-

creased. This result demonstrates a feedback regulation between TLR2 and 5-HT and suggests

that 5-HT under physiological conditions may maintain an elevated level of TLR2 expression

to guarantee TLR2 activity as a microbiota transducer. However, under high 5-HT concentra-

tion, which is a condition that occurs in inflammatory bowel diseases [18], the level of TLR2

expression decreases, thus reducing TLR2 responses. Previous studies have inferred that a

prolonged and excessive activation of TLRs can lead to uncontrolled inflammation in the

host [51]. Our results demonstrate that 5-HT, an intestinal non-immunological modulator,

down-regulates TLR2 expression, which added to different pro-inflammatory effects concur-

ring in inflammatory processes may contribute to modulation of the intestinal response to

inflammation.

Overall, the results of the present work demonstrate for the first time that TLR2, under

both heterodimeric forms TLR2/1 and TLR2/6, inhibits intestinal SERT activity and expres-

sion. This effect seemed to be mediated by cAMP/PKA and p38 MAPK pathways that might

trigger post-translational and/or post-transcriptional regulation of SERT expression. In addi-

tion, 5-HT feedback regulation of TLR2 has also been demonstrated. Previous studies support
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the TLR2 contribution to the intestinal homeostasis [9]. Moreover, recent results reveal that

TLR2 seems to be essential for the development of inflammation [10] and oncogenesis [52].

From our study the involvement of TLR2 in both, intestinal homeostasis and intestinal pathol-

ogy, may be inferred, not only by its inherent innate immune role, but also by regulating the

intestinal serotoninergic system. The present work may also clarify intestinal serotoninergic

responses induced by the microbiota. Understanding host-microbiota interaction in the intes-

tinal tract may provide new insights into intestinal homeostasis and inflammation.

Supporting Information

S1 Fig. Kinetic study of SERT activity after TLR2 activation. The cells were treated during

30 min or 1 day with 5 μg/ml Pam3CSK4 or 50 ng/ml Pam2CSK4. The 5-HT range concentra-

tion was 0.05–5 μM. The uptake conditions are described in Material and Methods. The results

are the mean of 4 experiments.
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