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Abstract

The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of
complex geometry. ER network morphology and dynamics are influenced by a num-
ber of biophysical processes, including filament/tubule tension, viscous forces, Brow-
nian diffusion and interactions with many other organelles and cytoskeletal elements.
Previous studies have indicated that ER networks can be thought of as constrained
minimal-length networks acted on by a variety of forces that perturb and/or remodel
the network. Here, we study two specific biophysical processes involved in remodelling.
One is the dynamic relaxation process involving a combination of tubule tension and
viscous forces. The other is the rapid creation of cross-connection tubules by direct or
indirect interactions with cytoskeletal elements. These processes are able to remodel
the ER network: the first reduces network length and complexity while the second
increases both. Using live cell imaging of ER network dynamics in tobacco leaf epider-
mal cells, we examine these processes on ER network dynamics. Away from regions
of cytoplasmic streaming, we suggest that the dynamic network structure is a balance
between the two processes, and we build an integrative model of the two processes
for network remodelling. This model produces quantitatively similar ER networks to
those observed in experiments. We use the model to explore the effect of parameter
variation on statistical properties of the ER network.

INTRODUCTION

The endoplasmic reticulum (ER) is typically the largest membrane-bound organelle in eu-
karyotes. In plant cells it forms an interconnected network of tubules, which grow and
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connect to form polygons, and flattened sheets. The network is highly complex and highly
dynamic in its geometry [1, 2, 3]. Maintaining a single ER component with possible contact
to a wide range of moving organelles may be critical for cell function [4, 5]. For example, ER
morphology is linked to mitochondria dynamics and biogenesis [6], and chloroplast exten-
sions (stromules) have been reported to align with ER tubules [7]. ER movement is largely
driven by actin-myosin dependent processes[2, 8, 9, 10]. How the ER maintains such a con-
nected and dynamic structure within the cytoplasm in living cell is unclear. It is therefore
important that we are able to quantify morphological changes (including polygon formation)
and underpin the biophysical processes which govern ER network formation.

Various quantitative studies have managed to clarify some aspects of ER network struc-
ture (including tubule dimension, branching properties, etc.) [1, 11, 12, 13, 14]. More re-
cently, attempts have been made to understand ER morphology in terms of optimization.
These have suggested that equilibrium ER morphologies minimize a system energy (e.g. elas-
tic energy of sheet edges and surfaces) depending on concentration of curvature-stabilizing
proteins [15, 16]. In addition, persistent or static elements of the ER network have been
pulled out [2, 4, 17, 18] and these persistent elements may have important roles in anchoring
the network to the plasma membrane [19, 20, 21, 22]. Thus the ER is likely a constrained
minimization of the network attached to these points.

In a previous paper [23] we quantified some properties of instantaneous ER networks in
tobacco leaf epidermal cells. Because the ER in these cells lies within a thin layer of cytoplasm
between plasma membrane and vacuole, the network of ER tubule has been approximated as
a planar graph that connects persistent points which may be embedded within the plasma
membrane. The ER network includes a number of cycles (polygons) that give multiple
paths between points on the network, but in other ways resembles a “Steiner tree”[24] (a
minimal-length tree that joins a fixed configuration of “persistent points” but where junction
points/“non-persistent points” that are “Steiner points” may be added). In particular, live
cell imaging data has suggested that angles at junction points are approximately 120o while
the angles at persistent points are on average larger than 120o. We have proposed that the
observed ER tubular networks can be thought of as perturbed Euclidean Steiner Networks
(ESNs) between persistent points [23].

Briefly, an ESN is a network joining a number of persistent points that is a local minimum
in length, even if additional junction points are added. Moreover, the topology of an ESN
need not to be minimal: it does not need to be a tree, but can include loops. For an ESN,
the angles at junction points are 120o while angles at persistent points are larger. If either of
these conditions are violated then there is a perturbation of the junction points or with an
addition of junction point that reduces network length. Considering only Brownian forces,
we were able in [23] to model the fluctuations of ER junction points for cells treated with
Latrunculin B (LatB), which depolymerises actin. In such cells we assume only Brownian,
viscous drag and ER tubule tension forces are present. However, in the native cell, not only
Brownian forces but many other active motor-cytoskeletal forces are present as well as whole
scale motion (streaming) in parts of the cytoplasm.

This paper uses live-cell imaging data of ER networks within the cytoplasm of individual
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Figure 1: Some frames of a movie showing ER structural dynamics within the thin flat layer
of cytoplasm between plasma membrane and vacuole for a single tobacco leaf epidermal cell
in native state. The light areas indicate the location of a fluorescent marker within the
ER lumen: dynamic ER tubules can be seen. Paired boxes between neighbouring frames
illustrate two of the processes occurring during network dynamics: “relaxation” (P1) and
“cross-connection” (P2). The solid grey arrow (in the first frame) indicates a region of ER
streaming that is present throughout the movie. The ER within the small grey box remains
unchanged in shape during the movie, probably due to surrounding a stationary organelle.
See Movie S1 in the Supporting Material for the full movie.

tobacco leaf epidermal cells at a higher temporal resolution than [23] and so is able to
identify and quantify some of the processes involved in the dynamic maintenance of this
network. Because the cytoplasm is very thin, the network is effectively two dimensional and
constrained to remain in the focal plane of the microscope. Using spinning disc microscopy
we are able to observe and quantify (P1) “relaxation” processes of the network by ER tubule
tension-driven rearrangements of the network and (P2) “cross-connection” processes where
new tubules are rapidly drawn out to make links across the network. Fig. 1 (and Movie S1)
illustrates an example of ER network dynamics showing these two processes at play as well
as a region of streaming in the top left that we do not attempt to model in this paper. Based
on integrating P1 and P2, we develop a dynamic model of ER networks between persistent
points that seems to be valid away from areas of streaming. In particular there is a balance
between P2 that creates an extensive network and P1 that reduces its length towards a local
minimum, i.e. an ESN.

MATERIAL AND METHODS

Plant cell microscopy

Plant material and sample generation. Nicotiana tabacum (tobacco) plants were
grown and transiently transformed using Agrobacterium infiltration methods as described
in [25]. Competent, transformed Agrobacteria containing either mCherry or GFP-fusion
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(HDEL) ER luminal marker constructs (ER-rk or ER-gk, [26]) were infiltrated into leaf
tissue at an optical density of 0.05. Leaf samples (approximately 5mm2) were taken for
immediate analysis from plants following 2 days of expression.

Spinning disc confocal imaging. Spinning disc confocal imaging of ER in live tobacco
epidermal pavement cells was performed using a VisiScope Confocal Cell Explorer under the
control of VisiView software (Visitron Systems, GmbH Germany), composed of an IX81
motorized inverted microscope (Olympus, Germany), a CSU-X1 Spinning Disc unit (Yoko-
gawa, Japan), a PlanApo UPlanSApo 100 (1.4 NA) oil objective (Olympus, Germany) with
a Photometrics CoolSNAP HQ2 camera (Roper Scientific, Germany). To achieve fluorescent
imaging, GFP was excited with a Sapphire 488nm 70mW laser and mCherry with a Cobolt
Jive 561nm 70mW laser. All movies were taken using a temporal resolution of 200ms/frame,
with a spatial resolution of 0.129µm/pixel.

Image processing and analysis

Extraction of polygons wrapped by ER networks. Regions within a series of
consecutive frames from each ER movie are selected to quantify polygons wrapped by ER.
Each image is then binarized by a global thresholding (any pixel intensity smaller than a
global threshold is set to 0) proportional to the median intensity of pixels in the image and a
local thresholding proportional to the local maximal intensity of the neighboring 5×5 pixels.
Global and local thresholds are chosen manually for each ER movie. The area (in terms of
total number of pixels or µm2) of each polygons is calculated and polygons are recorded for
analysis. Polygons of area less than 20 pixels are excluded as they are strongly affected by
noise. Manual correction of polygon identification is performed when necessary.

Extraction of ER networks. The region and series of consecutive frames from each
ER movie are selected in order to quantify the velocity of the ER junction point and the ER
tension applied on the junction point. Persistent points (and thus the number of persistent
points) within the region are extracted using the method described in [23]. Positions of
junction points as well as the linkages (edges) within ER networks are extracted manually.

Quantification of “cross-connection” rates. Cross-connections are quantified by
counting the number of events (away from streaming) where there is creation of new tubules
that link existing one together, within a regions of 50 × 50 pixels from each movie of 15s
duration.

Euclidean Steiner networks Recall that a Euclidean Steiner network (ESN), as in-
troduced in [23], is a generalization of the notion of Steiner tree (ST). Given a set of fixed
points (terminals) u1, u2, · · · , up on the plane, the total length of a graph that joins these
points may usually be reduced by adding extra junction points, say x1, x2, · · · , xM on the
plane and incorporating these into the graph. Trees whose total length is a local minimum
to perturbations of the xi or splitting of nodes are called STs [24]. However, there may be
graphs that are not trees but are still local minima in length: these are ESNs. In contrast
to a ST, an ESN may have non-trivial cycles but still Steiner points have degree three and
vertex angles exactly 120o. Terminals of an ESN have degree one or two (exceptionally three)
and vertex angles that must be at least 120o. Note that for a given finite set of terminals

4



there may be (finitely) many ESNs with differing topologies. Clearly there will be ESNs of
minimal and maximal length - a minimal length network corresponds to the usual notion of
minimal ST [24].

Modelling ER network dynamics

Biophysical modelling for the movement of ER junctions. The movement of ER
junction points is modelled as a balance between ER surface tension force, Stokes drag force
and Brownian forces using the simple biophysical model described in [23]. More specifically,
the location x(t) ∈ R2 of a junction point surrounded by three persistent points moves
according to the stochastic differential equation

6πηr
dx

dt
+ F∇xf(x) +

√
12kBTπηrξ(t) = 0 (1)

where F := 2πrγ give the tension force of a filement of radius r with surface tension γ, f(x) :=∑3
i=1 |x−pi| is the total edge length of the straight edges linking the corresponding junction

point at position x to three fixed nodes at positions pi, i = 1, 2, 3, kB is the Boltzmann
constant, T is temperature and ξ(t) is white noise with zero mean and autocorrelation
〈ξ(t)ξ(t′)〉 = δ(t− t′). Note that we assume that the tubules connecting the junction points
are straight as in [23], though in reality we see a small amount of curvature in tubules that
join rapidly moving points, presumably due to being dragged through stationary cytoplasm.
Rearranging Eq. 1 gives

dx

dt
= −b∇xf(x) +

√
2σξ(t) (2)

where b = F
6πηr

gives the effective drift coefficient and σ = kBT
6πηr

the diffusion coefficient. By

analysing the mean square displacement [27] of Brownian fluctuations of junction points, we
estimate a diffusion rate σ ≈ 0.002µm2 s−1 (see Supporting Material and Fig. S1), which in
a similar order to that estimated in [23] for LatB treated cells (where σ ≈ 0.008µm2 s−1). If
we ignore Brownian fluctuations, then Eq. 2 becomes

dx

dt
= bΓ (3)

where Γ := −∇xf(x) = −
∑

i ri/|ri| is the resultant geometric force over directions ri =
x − pi ∈ R2 of tubules that connect to x: when multiplied by b this gives the resultant
velocity at the junction point.

Integrative modelling of ER network dynamics. We introduce a model of ER
network dynamics that captures important aspects of remodelling away from regions of
streaming, based on integrating the “relaxation” processes P1 and “cross-connection” pro-
cess P2, between a set of persistent points. The addition of cross connection extends the
biophysical model from [23]. The persistent points in the model are either (a) extracted from
a specified experimental ER movie, or (b) uniformly randomly generated with the estimated
number of persistent points per unit area from experimental ER movies. We ignore Brown-
ian fluctuations so that the junction points evolve according to Eq. 3 with an effective drift
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velocity b for the “relaxation” process P1: the only forces acting are the tubule tension and
viscous drag. The “cross-connection” process P2 is included as a Poisson process with rate
α where links are added instantaneously and at random locations. As the junction points
move they can merge or draw new junction points from persistent points. This dynamically
changes the geometry, and indeed the topology, of the ER network. Movie S2 shows an
example of simulated network dynamics. More details of the implementation are discussed
in the Supporting Material and Fig. S2.

RESULTS

Quantifying network geometry

As noted in [23], ER networks form cycles (that we refer to as polygons) between persistent
points and junction points (non-persistent points). Using the image processing method
described within Methods we extract persistent points and polygons from the ER images.
We characterise the complex topology of the ER network by first looking at the distribution
of persistent points and then exploring the distribution of polygon shape and area between
persistent points.

The distance to n-th order nearest neighbours [28] is used to characterise the distribution
of persistent points: Fig. 2 supports the hypothesis that persistent points are uniformly
distributed in space and any apparent clustering is fortuitous. From the experiments we
take regions of 13µm×13µm in 30s-duration movies of ER within single cells, and measured
on average that there are 0.27± 0.02 (n = 14) persistent points per µm2.

The area as well as the minor and major axis length of each extracted polygon is used to
explore the distribution of polygon shapes and how elongated the polygons are. The ratio
(of minor to major axis length) distribution for extracted polygons within experimental
observed ER networks is shown in Fig. 3(a). Note that this ratio is typically between 1

2
and

1, indicating that the polygons are in general fairly rounded. Moreover, note that larger
polygons are typically more round among observed polygons. Fig. 3(b) demonstrates that
the polygon area is roughly half of the square of the major axis length of polygons, consistent
with the polygons being rounded in shape.

The number, area and shape of polygons changes dynamically during each movie. Away
from regions of streaming, we observed that the loss of polygons is mainly due to the “re-
laxation” process (P1) while the gain of polygons is mainly due to the “cross-connection”
process (P2). We now quantify these processes in more detail in the following.

Quantifying and biophysical modelling of the relaxation process

Dynamics of ER junction points in the living cell results in remodelling of the network
between a number of different topologies that seem to be close to ESNs. Indeed, we observe
the ER network topology changes between different ESNs and a typical example is shown
in Fig. 4(a). Note that ER tubules are approximately straight [23]. Although the tension
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(a) (b)

Figure 2: (a) Persistent point distribution in a space of 13µm× 13µm of ER (51 persistent
points in total) is displaced on one frame of an experimental ER movie (see Movie S3 in
the Supporting Material); the red dots give the identified persistent points. (b) Red dots
show median distance of a persistent point to its nth nearest neighbour from a number of
extracted persistent points from the movie. Black dots and lines show similarly the median
and extremes of the distances respectively, from 300 simulations of a uniform distribution in
the same region with the same number of points.

force may depend on the concentration of particular proteins in the membrane[16], the three-
way ER junctions are well described as Steiner points, suggesting constant tension between
filaments [23]. Thus we simply assume here a constant tension force as in [23] and model
the movement of ER junction points as in Eq. 2.

Ignoring Brownian fluctuations, the movement of junction point is governed by the effec-
tive drift coefficient b and the three-way resultant geometric force Γ, as indicated from Eq. 3.
A symmetric three-way junction has Γ = 0: the junction point sits at a Steiner point giving
a local minimal network. Larger values of |Γ| correspond to more asymmetry at the junction
point and faster movement of that junction point. To further test this biophysical model for
the movement of junction point, we measure instantaneous values of Γ and the velocity v
of the junction point during the network dynamics including moments with fast motion of
junction points. Fig. 4(b) shows that the velocity and tension force are well correlated (Pear-
son correlation test, p < 0.0001) for both horizontal and vertical orientations. Moreover, the
best fitting line gives the slopes b = 1.60 and b = 1.15 for the horizontal and vertical com-
ponents respectively and F test suggests that there is no significant difference (p=0.109) in
the best fitting slope between vertical and horizontal components. These suggest the Eq. 3
with constant drift coefficient b well models the movement of junction points. We remark
here that this estimated effective drift coefficient b ≈ 1µms−1 is of similar order to that
estimated drift coefficient 0.2µms−1 in [23] by considering the Brownian-driven fluctuations
of junction points in LatB treated cells.

The geometric force Γ acts to reduce network length. It may also lead to collisions of
junctions and reduction in the number of polygons through a process of polygon collapse,
where all junction points on the boundary of a polygon meet at one or two points. Fig. 5
shows some examples of polygon collapse during the ER remodelling, and the details of
collapse of one polygon. As each junction point has three edges linking to other points, it
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Figure 3: (a) Distribution of minor/major axis ratio for instantaneous polygons from ER
movies, grouped according to polygon area. The inset shows the major (dashed line) and
minor (dotted line) axes of a polygon. Observe that smaller polygons are typically more
asymmetric than larger ones. (b) Polygon area A plotted against major axis length x length
for the polygons from (a). The curved line shows that the relationship fits well to a quadratic
function A = ax2 with a = 0.5.

will be on the boundary of at most three polygons and so the movement of the junction
point may also enlarge areas of some other polygons. The geometric force Γ will create new
junction points if the motion results in an angle between tubules that is less than 120o at a
persistent point. In a special case of an ER network that is an ESN, the geometric forces on
junction points are all zero and the network is stationary.

Fig. 6(a) shows the dynamics of polygon area during examples of collapse. This data
suggests that polygons collapse at an approximately similar linear rate, independent of initial
area and shape, and polygons collapse at finite time. For a special case as shown in Fig. S3 in
Supporting Material where the polygon forms an equilateral triangle between three junction
points linking to three persistent points also in equilateral triangle, one can check that Eq. 3
implies that A(t) collapses quadratically to zero. However as illustrated in Fig. 3(a) typical
small polygons are asymmetric and collapse linearly to zero.

Quantifying the cross-connection processes

Experimental data shows that new tubules are occasionally and rapidly drawn out of the
ER to form links to other tubules. We refer to this as the “cross-connection” process P2:
examples are visible in Fig. 1 and Fig. 5. As the process P2 adds new links to the network,
it increases the network length, the number of polygons and the number of junction points.

The cross-connections appear to be homogeneously distributed in space and time and thus
it makes sense to talk about a rate of cross-connections per unit area that scales linearly
with the area of the space in observation. From a number of experimental ER movies,
we measure the rate of cross-connections per unit area α = 0.0048 ± 0.00085 (n = 20) in
units of s−1µm−2 by manually quantifying the number of observed cross-connection events
as described in Methods.

Note that the experiments in [2] with the addition of LatB which depolymerizes the actin,
such cross connections rarely occurs. Note also the ER network dynamics are largely driven
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Figure 4: (a) Frames from Movie S4 showing an ER junction point that moves past a
sequence of persistent points, remodelling the network in doing so. Frames are overlaid
with abstracted networks where red dots indicate persistent points, blue dots indicate the
ER junction points and lines represent ER tubules. (b) The force-velocity relation for the
ER junction points in both horizontal (left panel) and vertical (right panel) components
from 5 experimental data sets including (a) (shown in black dots). The geometric resultant
force (Γx,Γy) is inferred from the geometry of the links to the ER junction point and the
velocity (vx, vy) is estimated from positions in the movie. Red lines indicate best linear fits
through origin with best fitting slope 1.6 (95% confidence interval: 1.21−1.98) and 1.15 (95%
confidence interval: 0.84− 1.49) for the horizontal and vertical components respectively; an
F test shows there is no significant difference (p = 0.109) in the slope between two vertical
and horizontal components. Some outliers may be due to presence of organelles or other
forces not visible from the images.

by acto-myosin dependent processes [10]. We therefore expect the process P2 to be asso-
ciated with actin-based processes (such as actin polymerisation and depolymerisation, and
actin-based transport). We do not attempt however to determine the biophysical processes
that cause the cross-connections. New ER tubules and cross-connections also presumably
appear in streaming regions. However, in this paper we do not attempt to identify cross-
connections within streaming, as the rapid evolution within cytoplasmic streams makes it
hard to distinguish individual events.
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Figure 6: (a) Polygon areas extracted from experimental ER movies (n = 11) showing
examples of polygons that collapse near t = 0. (b) Polygon areas for simulations of the
integrative model (n = 30) using b = 1µms−1. The straight bold red line in each panel gives
the best fitting line. Note that polygons shrink at a similar rate in a finite time between
experimental data and model simulations. The time axis is translated for visualization
effect. We remark here that Brownian fluctuation which appears in experimental data is not
included in model simulation.

Validating the integrative model of ER network dynamics

With the quantification of “relaxation” process P1 and “cross-connection” process P2 from
image analysis in previous sections, we develop an integrative model (see Methods section)
of the two processes. This extends the biophysical model to include the “cross-connection”
process that generates new tubules and allows to explore dynamical changes of network
morphological. For simplicity, we ignore the Brownian fluctuation (i.e. σ = 0 in Eq. 2 in
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“relaxation” process P1).
We first test if network quantities in equilibrium state are independent of initial states in

the dynamics model. With a given set of persistent points, we initialize networks from either
(a) a minimal spanning tree or (b) a Delaunay triangulation between the set of persistent
points (see Fig. S4 in Supporting Material). After an initial transient, we show in Fig. 7(a)
that the network dynamics settles into the same statistically stationary behaviour for both
average and maximal network length among simulations. Fig. S5 in Supporting Material
shows an example of time series of various network quantities from the model, and illustrates
how the number of junction points and maximal speed of junction points increase once a new
link is created, and how the network relaxes back towards an ESN configuration until the
next cross connection is added: the network is close to ESNs when the maximal speed among
junction points is close to zero. Fig. 7(a) and Fig. S5 also demonstrates that the network
length oscillates between a wide range of ESNs connecting the same set of persistent points.

Next, we validate our dynamical model in the following ways. As in the experiment,
we observe that small polygons usually collapse in finite time from the model simulations.
Fig. 6(b) shows some collapsing polygons in the model and finds good quantitative similarity
in the profiles of the collapsing polygons: there is a comparable linear collapse rate to that
observed in experiments shown in Fig. 6 (a). In addition, using an experimentally measured
initial network, persistent points and cross-connection events, the integrative model can
reproduce detailed dynamical behaviour; see Fig. 8 (and Movie S5 in Supporting Material).
Propagating the junction points leads to dynamic rearrangements of the network in the
integrative model that closely parallel those seen in the experimental data.

ER network properties from the integrative model

This integrative model allows exploration of how the network behaviour depends on pa-
rameters. Fig. 7(b) shows averages of various network quantities as a function of the cross-
connection rate α and effective drift coefficient b for a given set of persistent nodes. Since the
model is invariant under an identical scaling of α and b and time, these averaged quantities
depend only on the ratio α/b. This can be viewed as a “temperature” of the network per-
turbations caused by cross connections: larger α/b leads to a more complex transient graphs
with more polygons per unit area, more points per unit area, and a longer mean network
length per unit area at statistical equilibrium.

We estimate the mean node density ρ (i.e. the number of points per unit area) in the
dynamic network given the ratio α/b, at least for small values of this quantity in a heuristic
way. For a given density ρp of persistent points, the node density increases as cross-connection
links are generated and decreases as polygons collapse and their vertices merge. At statistical
equilibrium these rates will balance. Let ρ0 be the average node density with density ρp of
persistent points at the limit α/b→ 0; note that ρ0−ρp > 0 is the (fixed) density of junction
points for the ESNs. The rate of increase of node density is twice the cross-connection rate,
i.e. 2α, as each new link generates two additional junction points. The rate of decrease of
node density, as noted from Fig. 6, is associated with polygon collapse. This occurs at a
rate given by the effective drift coefficient b divided by the mean diameter c of a collapsing
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polygon, times the excess density of polygons. If we assume that on average m vertices are
lost when a polygon collapses and this is constant then the excess density of polygons is
1
m

(ρ− ρ0) but we also lose m points at collapse, and so

dρ

dt
= 2α− b

c
(ρ− ρ0) (4)

After transients have decayed, this gives linear dependence in the mean node density

ρ(α, b) = ρ0 + 2c
α

b
(5)

where ρ0 and c can be fitted. Fig. 7(b) shows a good fit to Eq. 5 at least for small α/b. This
predicts that for higher cross-connection rate or slower effective drift the mean polygon area
will be smaller, a prediction confirmed by simulations in Fig. 7(b).

DISCUSSION

Spinning disc confocal imaging of live cell ER is a powerful tool for investigation of many
processes involved in the dynamic maintenance of an ER network. Conversely, the integrative
model allows us to understand emergent organization of the ER network (such as polygon
collapse) and to see how the network dynamics is dependent on parameters. Using only the
“relaxation” process P1 and “cross-connection” process P2 we give insight into maintenance
of ER dynamics, though even in this case we highlight that large number of local minimum
apparently present even for a moderately small number of persistent points. Although we
have predicted some of mean network quantities such as node density from Eq. 5, it will be
a challenge to quantify the variety of topologies and the ESNs that are approached under
the action of P1 and P2. Also, Fig. 7 and Eq. 5 predict that either faster cross connection or
slower tension drift will give statistically smaller polygons. In principle, this prediction can
be experimentally tested by analysis of the ER when manipulating molecular factors that
control ER geometry and dynamics [2, 8, 9, 29, 30, 31, 32, 33, 34, 35, 36].

A more sophisticated model will take other biophysical processes into account. One
such process is the Brownian force included in Eq. 2: Movie S6 in Supporting Material
shows the network dynamics including Brownian fluctuation with the estimated diffusion
rate σ = 0.002µm2 s−1. A higher diffusion rate can enhance “cross-connection” process and
the network dynamics and generate more polygons. However a more efficient algorithm and
possibly resolution of tubule curvature will be needed to accurately model the effects of Brow-
nian motion on network remodelling. Other processes include organelle interactions with ER
[4], cytoplasmic streaming (as shown in Fig. 1), “pinning/unpinning” of the network to per-
sistent points in the plasma membrane (as suggested in [23]). Of these, pinning/unpinning
places/removes constraints on the networks and any rearrangements thereof; this is generally
observable in conjunction with streaming and otherwise seems to occur very rarely. Stream-
ing remains the most difficult process to quantify as it occurs on fast time scales that are
hard to resolve, and it appears to randomly rotate and reorient within the cortex. Better
temporal and spatial resolutions of ER microscopy may help to resolve these processes.
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Figure 7: (a) Network length l(G) per unit area from a simulation of the integrative model
with α = 0.0048s−1µm−2 and b = 1µms−1 for a set of 30 uniformly distributed persistent
points in a 10µm×10µm region, starting at two different initial topologies. Black/grey (resp.
blue/light blue) curves show averages/maxima over 100 simulation starting with a minimal
spanning tree (resp. Delaunay triangulation). The red curve shows a typical realization
starting at a minimal spanning tree. There is a rapid transient decay to a statistically
stationary state. (b) Averages of network quantities as a function of α/b from the integrative
model with the same set of persistent points as in (a). Quantities include network length per
unit area l(G) (◦, µm−1), density of junction points (non-persistent points) ρnp and all points
(ρ) per unit area (5, 4 respectively, µm−2), no. of polygons Np per unit area (·, µm−2) and
mean polygon area A (+, µm2). The best fit of ρ to Eq. 5 has parameters ρ0 = 0.456µm−2,
c = 1.37 µm. Each quantity is averaged over 500− 2000s and 100 simulations.
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t=0 s t=35.4 s t=39.8 s

2um

Figure 8: Example of ER network dynamics in the experiment (top panels) and the model
(bottom panels). Black dots in the lower panels are persistent points extracted from the
experimental ER movie while black squares are junction points in the model. We use an
estimated effective drift coefficient b = 1µms−1. One cross connection is created at t = 35.4s,
comparable to that in the experiment. After a few seconds, the network configuration in
the model reaches a steady state which is similar to observed ER network in experiments
(right two panels). The small mobile polygon in the experiments is probably due to the
ER wrapping around an organelle (not included in the model). See Movie S5 in Supporting
Material for a comparison between model and experimental data during the evolution.
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For a more detailed model of ER structural dynamics, one will need to model not only ER
tubules as filaments whose tension is determined by the ER membrane surface tension but
also ER sheets, more complex (e.g. helicoidal) structures as well as viscoelastic properties of
the ER membrane. Bending and curvature of ER membrane in 3D will occur when tubules
link or are drawn out during ER dynamics. We note that when ER junction points move
rapidly through stationary cytoplasm, ER tubules can be observed to be transiently curved
as a result of viscous drag along the tubule filament (slight bending can be observed in some
tubules of Fig. 4). In terms of viewing ER as an optimal structure for system energy, instead
of simply minimizing the ER membrane surface energy (subject to constraints of persistent
anchoring points), a more realistic model will need to take into account other contributions
to system energy (e.g. bending energy [15, 16]). Modelling the dynamics of such more
realistic structures in future will help to build a more complete model and understand more
of the critical biophysical process in play for ER dynamics.

SUPPORTING MATERIAL

Supporting Material includes detailed descriptions of the mean square displacement analysis
and the model simulation of network dynamics, 5 supporting figures and 6 supporting movies.
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