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Abstract

Mutual information is fundamentally important for measuring statistical dependence between variables and for
quantifying information transfer by signaling and communication mechanisms. It can, however, be challenging to
evaluate for physical models of such mechanisms and to estimate reliably from data. Furthermore, its relationship
to better known statistical procedures is still poorly understood. Here we explore new connections between mutual
information and regression-based dependence measures, ν−1, that utilise the determinant of the second-moment
matrix of the conditional mean prediction error. We examine convergence properties as ν → 0 and establish sharp
lower bounds on mutual information and capacity of the form log(ν−1/2). The bounds are tighter than lower bounds
based on the Pearson correlation and ones derived using average mean square-error rate distortion arguments.
Furthermore, their estimation is feasible using techniques from nonparametric regression. As an illustration we
provide bootstrap confidence intervals for the lower bounds which, through use of a composite estimator, substantially
improve upon inference about mutual information based on k-nearest neighbour estimators alone.

Index Terms

Lower bound on mutual information, relative entropy, information capacity, nearest-neighbour estimator, corre-
lation and dependence measures, regression.

I. INTRODUCTION

Mutual information is fundamentally important for measuring statistical dependence between variables [1], [2],
[3], [4], and for quantifying information transfer by engineered or naturally occurring communication systems [5],
[6]. Statistical analysis using mutual information has been particularly influential in neuroscience [7], and is becom-
ing so in systems biology for studying the biomolecular signaling networks used by cells to detect, process and act
upon the chemical signals they receive [8], [9], [10]. It can, however, be challenging to estimate mutual information
reliably with available sample sizes [11], and difficult to derive mutual information and capacity exactly using
mechanistic models of the ‘channels’ via which signals are conveyed. Furthermore, connections between mutual
information and better known statistical procedures such as regression, and their associated dependence measures,
are still poorly understood. In order to address these challenges, the relationship between mutual information and the
error incurred by estimation (or ‘prediction’) using the conditional mean is now receiving attention. The focus has
been on minimum mean square estimation error or, more generally, its average across the elements of the vector
being estimated [12], [13], [14]. Instead, we focus on connections between mutual information and regression-
based dependence measures, ν−1, that utilise the determinant of the second-moment matrix of the conditional
mean prediction error. We examine convergence properties as ν → 0, and establish sharp lower bounds on mutual
information of the form log(ν−1/2). The bounds are tighter than lower bounds based on the Pearson correlation
and ones derived using average mean square-error rate distortion arguments.

The mutual information between 2 random vectors X and Z, written I(X;Z), is the Kullback-Leibler divergence
between their joint distribution and the product of their marginal distributions [15]. Mutual information thus measures
the divergence between the joint distribution of (X,Z) and the distribution in which X and Z are independent but
have the same marginals. I(X;Z) has desirable properties as a measure of statistical dependence: it satisfies (after
monotonic transformation) all 7 of Rényi’s postulates [16] for a dependence measure between 2 random variables,
and underlies the recently introduced maximal information coefficient [4] for detecting pairwise associations in large
data sets. Importantly, mutual information captures nonlinear dependence and dependence arising from moments
higher than the conditional mean.

A decision-theoretic interpretation is indicative of the broad applicability of mutual information as a summary
measure of statistical dependence. It can be shown [17] that I(X;Z) is equal to the increase in expected utility from
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reporting the posterior distribution of either of the two random vectors based on observation of the other, compared to
reporting its marginal distribution—for example, reporting p(Z|X = x) instead of p(Z). This holds when the utility
function is a smooth, proper, local score function—as appropriate for scientific reporting of distributions as ‘pure
inferences’ [18]—because the logarithmic score function is the only score function having all these properties. In
information theory, the supremum of I(X;Z) over the set of allowed input distributions F , termed the information
capacity, equates to the maximal errorless rate of information transmission over a noisy channel when the channel
is used for long times [5].

The above discussion makes clear that, from a rich variety of perspectives, mutual information is fundamentally
important for measuring statistical dependence and for quantifying information transfer by signaling and commu-
nication mechanisms.

Our general setting may be depicted as

X → Y → Z, (1)

with (X,Y, Z) a real-valued random vector. Here Z is conditionally independent of X given Y . The conditional
distribution of Z given X is determined by some physical mechanism, whose ‘internal’ variables are denoted
by Y in Eq. 1. Such a mechanism is often termed a channel in information theory, although we do not restrict
attention to signaling and communication channels here. Often we have in mind situations where X causes Z but
not vice versa, and the conditional distribution of Z given X does not depend on the experimental ‘regime’ giving
rise to the distribution of X [19]. There is always an asymmetry between X and Z in the general setting we
consider. We term X the input or treatment because its marginal distribution can in principle be any distribution
(although we may wish to restrict attention to particular classes thereof). In contrast, the output or response Z
is the realisation of the mechanism given the input X . In general, not all marginal distributions for Z can be
obtained for a given mechanism by appropriate choice of the marginal of X . When analysing the probabilistic
properties of physical models of mechanisms, the distribution (or set of distributions) for the input X is given,
but the marginal distribution of Z is often unknown. In experimental settings, the input distribution is taken not to
affect the conditional distribution of Z given X , or else can sometimes be directly manipulated.

Examples of our general setting include experimental design with X as the treatment and Z the response of
interest; and signaling or communication channels with X as the input signal and Z its noisy representation. An
example of a scientific area of application is the current effort to understand the biomolecular signaling mechanisms
used by living cells to relay the chemical signals they receive from their environment [8]. Here, the interest is both
in understanding why some biomolecular mechanisms perform better than others, and in measuring experimentally
in the laboratory the mutual information between X and Z or the information capacity. Broadly speaking, the first
involves deriving dependence measures between X and Z for different stochastic mechanisms (given a particular
input distribution). The second might involve, for example, nonparametric estimation of the mutual information
between the concentration of a chemical treatment applied to the cells and the level of an intracellular, biochemical
output.

We note, however, that the formal statements of our results do not require any particular interpretation of X and
Z. Rather, the general setting just described motivates the results and places them in context. A sequential reading
of Equations 2 to 12 inclusive provides a convenient preview of our theoretical results establishing lower bounds
on mutual information and information capacity.

II. SETUP AND NOTATION

For random vectors X and Z, we define ν(Z|X) = det (E{V [Z |X ]})/det (V [Z ]), where V denotes a covariance
matrix. In general, ν(Z|X) is not equal to ν(X|Z). For 2 scalar random variables, ν(Z|X) is equal to the minimum
mean square estimation error or minimum MSEE for estimation of Z using X , normalised by the variance of Z (since
E [Z|X] is the optimal estimator). We denote the optimal estimation or ‘prediction’ error by e(Z|X) = Z−E [Z|X].
In general, ν(Z|X) is the ratio of the determinant of the second-moment matrix of the error e(Z|X) and the
determinant of the variance matrix of Z, that is

ν(Z|X) =
det
(
E
[
e(Z |X )e(Z |X )T

])
det (V [Z ])

. (2)
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We will show that ν(Z|X)−1 provides a generalised measure of ‘signal-to-noise’, applicable to non-Gaussian
settings, that relies on first and second conditional moments of Z given X (via the law of total variance) rather
than on all features of the joint distribution. We make few assumptions about the conditional density describing the
mechanism or channel f(z|x), except that the conditional mean m(x) = E [Z|X = x] is an invertible, continuously
differentiable function of x. A central result of the paper (see Theorem 5 and Corollary 6) is then that

I(X;Z) ≥ log
{
ν(Z|X)−1/2

}
≥ −dZ

2
log

{
d−1Z tr(E{V[Z|X]})

[det(V[Z])]d
−1
Z

}
, (3)

where all terms are evaluated under the joint density for (X,Z) implied by the channel f(z|x) and a Gaussian
density for the transformed input, m(X). Here dZ is the dimension of the vector Z. The second term in Eq. 3 is our
lower bound utilising the determinant of the second-moment matrix of the prediction error of the conditional mean
E[Z|X], while the third term instead utilises the average mean square error of that conditional mean. We discuss
the relation of the third term to rate distortion arguments later in the paper. Notice that characterising the first and
second conditional moments of the mechanism, E[Z|X] and V[Z|X], is enough (via the law of total variance) to
evaluate the lower bound log

{
ν(Z|X)−1/2

}
for a given Gaussian distribution of m(X). Maximising the bound

over such distributions then also yields a useful bound on the information capacity.
As a first step in analysing connections between mutual information and our regression-based measures, we

explore the relationship between the convergence to zero of ν(Z|X) or ν(X|Z), and the convergence of mutual
information. For simplicity, we analyse the bivariate case where the variable X has finite support, for example a
finite collection of treatment concentrations in a cell signaling experiment. We write I for mutual information, H
for discrete entropy and h for differential entropy.

III. CONVERGENCE PROPERTIES

Theorem 1. Let (Xn, Zn) be a sequence of pairs of real-valued random variables, with the support of Xn given by
a finite set Xn (|Xn| ≥ 2 and bounded above by a constant ∀n). Write mn(Xn) for the function E[Z̆n|Xn], where
Z̆n , ZnV[Zn]−

1

2 . Denote its support by Mn = {mn(x);x ∈ Xn} ⊂ R. Let ε∗n be 1/2 of the minimum distance
between any two points in Mn and ε∗ , inf{ε∗n}. Suppose that:

(1) ν(Zn|Xn)→ 0 as n→∞; (2) the functions mn are one-to-one mappings from Xn to the real line; and (3)
ε∗ > 0, so that any pair of points in a supportMn are separated by at least 2ε∗. Then as n→∞ , H(Xn|Zn)→ 0
and therefore H(Xn)− I(Xn;Zn)→ 0.

In Theorem 1, the response variable Z is real-valued and can, for example, be either a continuous or discrete
random variable. Theorem 1 establishes the convergence of the mutual information I(X;Z) to the entropy of X as
ν(Z|X)→ 0, under the condition that the conditional mean E[Z|X] is an invertible function of X . By definition,
I(X;Z) cannot be greater than the entropy of X . The intuition for the result in Theorem 1 is that the convergence of
ν(Z|X) to zero enables construction of a point estimator of X (utilising the conditional expectation E[Z|X]) whose
performance becomes ‘perfect’ in this limit. The condition requiring invertibility of the conditional mean function
would be needed even in the case where Z is a deterministic function of X , otherwise I(X;Z) ≤ H(Z) < H(X).

We have rescaled the output Zn so that V[Z̆n] is constant at 1 for all n. In particular, Theorem 1 does not
require the minimum mean square estimation error, E{(Z − E[Z |X ])2}, to converge to zero as n→∞. A physical
example where the minimum MSEE diverges but Theorem 1 applies is given by a molecular signaling system, with
Z the number of output molecules, which is operating in the macroscopic (or large system size) limit where the
dynamics of chemical concentrations are deterministic, conditional on the input X .

Proof: We have that ν(Zn|Xn) = ν(Z̆n|Xn)→ 0. Since ν(Z̆n|Xn) = E{V[Z̆n|Xn]} = E{(Z̆n − E[Z̆n |Xn ])2},
it follows that Z̆n−E[Z̆n|Xn] converges to zero in mean square (in L2) and therefore Z̆n−E[Z̆n|Xn]→pr 0 (where
→pr denotes convergence in probability). Since H(Xn|Z̆n) = H(Xn|Zn) = H(Xn)−I(Xn, Zn), we must establish
that H(Xn|Z̆n)→ 0 as n→∞. Consider estimating Xn based on observation of Z̆n using the estimator, X̂n(Z̆n),
which is equal to the a point x ∈ Xn that minimises the distance |Z̆n − mn(x)|. Condition (3) applies not to
E[Zn|Xn = x] but to E[Z̆n|Xn = x]. Let z ∈ R,mn∈Mn and notice that if |z−mn| < ε∗, then |z−mn| < ε∗n <
|z−m′n|, that is mn is closer to z than is any other point m′n in Mn. Therefore, if |Z̆n−E[Z̆n|Xn]| < ε∗, then
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E[Z̆n|Xn] is located at the unique point mn∈Mn that minimises |Z̆n−mn| and, using condition (2), X̂n(Z̆n) = Xn,
that is, the estimator recovers Xn without error. The probability of estimation error, perror, satisfies

perror =P
{

X̂n

(
Z̆n

)
6= Xn

}
≤ P

{
|Z̆n−E[Z̆n|Xn]| ≥ ε∗

}
,

and therefore perror → 0 as n→∞. Fano’s Inequality [15] then implies that H(Xn|Z̆n)→ 0 as required.
We have thus shown in the context of Theorem 1 that the limit ν(Z|X) → 0 characterises a regime of large

signal-to-noise for the input X , without the need to impose further conditions on the joint distribution of X and
Z. In [12], the authors consider the opposite regime of low signal-to-noise for non-linear channels with additive
Gaussian noise. They obtain an asymptotic expansion of the mutual information, I(X;Z), whose leading term is a
decreasing function of a variable which, in their setting, is equal to ν(Z|X). In Theorem 2 below, we consider the
case where the conditioning is on the response Z instead of on the input X (see Section V for further discussion
of regression on the response variable).

Theorem 2. Let (Xn, Zn) be a sequence of pairs of real-valued random variables, with the support of Xn given
by a finite set Xn (|Xn| ≥ 2 and bounded above by a constant ∀n). Define X̆n , XnV[Xn]−

1

2 , with support X̆n,
and let ε∗n be 1/2 of the minimum distance between any two points in X̆n. Suppose that ε∗ , inf{ε∗n} > 0. If
ν(Xn|Zn)→ 0 as n→∞, then H(Xn|Zn)→ 0 and H(Xn)− I(Xn;Zn)→ 0.

Proof: Given in the Appendix, using an argument similar to the proof of Theorem 1.
Again, the mutual information I(X;Z) converges to the entropy of X , this time as ν(X|Z) → 0. (We note in
passing that, if both X and Z have finite support, a corollary of Theorem 2 is that: either H(Xn)−H(Zn)→ 0,
or ν(Xn|Zn) and ν(Zn|Xn) do not simultaneously converge to zero).

Theorems 1 and 2 establish connections between regression-based measures of dependence ν−1 and mutual
information, without imposing strong assumptions about the joint distribution of (X,Z). We conjecture that similar
theorems will hold for random variables X and Z having a joint density with respect to Lebesgue measure.
These theorems indicate the possibility, explored below, of lower bounding the mutual information using ν−1. A
consequence of our Theorem 5 is that, for the general multivariate, absolutely continuous case, I(X;Z) → ∞
when ν(Z|X)→ 0 (and E[Z|X = x] is an invertible mapping), and ν is evaluated under the appropriate marginal
distribution for the input X .

IV. LOWER BOUNDS ON MUTUAL INFORMATION AND CAPACITY

Our aim in this and the subsequent section is to establish lower bounds on mutual information, I(X;Z), for an
absolutely continuous random vector (X,Z) with finite dimension d ≥ 2. These bounds will hold under certain
marginal distributions for the input X , and also provide lower bounds on the information capacity. We first show
that the following Lemma holds when the marginal distribution of X is normal. The Lemma relates the mutual
information of X and Z to their variances and covariance.

Lemma 3. Let (X,Z) be a random vector in Rd , d ≥ 2, with joint density f(x, z) with respect to Lebesgue
measure. Suppose the density of X , f(x), is multivariate normal and that (X,Z) has finite variance matrix under
f . Then

If (X;Z) ≥ log

{
det(ΣXX )

det(ΣXX − ΣXZΣ−1ZZΣZX )

}1/2

f

(4)

= log

{
det(ΣZZ )

det(ΣZZ − ΣZXΣ−1XXΣXZ )

}1/2

f

where, for example, ΣZX = Cov(X,Z) = E{(X −E[X])(Z −E[Z])T}, and subscript f indicates that the mutual
information and the covariance matrices are those under the joint density f(x, z).

Proof: Given in the Appendix.
When d = 2 (and, again, f(x) is normal), Lemma 3 simplifies to give the lower bound

I(X;Z) ≥ log{[1− Corr2(X ,Z )]−1/2},
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where Corr denotes the Pearson correlation. This inequality shows how to relate perhaps the best known measure
of association to mutual information. An outline proof is given for the d = 2 case in [20]. The multivariate, d > 2,
case has not to our knowledge appeared previously, although it is a reasonably straightforward generalisation. We
provide a complete proof for d ≥ 2 in the Appendix.

Remark 4. The lower bounds in Eq. 4 are the mutual information of a multivariate normal density, g, with identical
covariance matrix to that of f, the true joint density of X and Z. We want to obtain a lower bound for If (X;Z) in
terms of νf (Z|X). It might appear that one way to do so would be to adopt a similar strategy, attempting to show
that If (X;Z) is bounded below by the mutual information of a multivariate normal, g, having identical ν(Z|X) to
f (and with the marginal density g(x) = f(x)). However, this strategy fails. Although Ig(X;Z) still depends only
on ν(Z|X), the equality Ef {log[g(X,Z)/f(X)g(Z)]} = Eg{log[g(X,Z)/f(X)g(Z)]} no longer holds in general
(see Eq. 13 and subsequent argument in the Appendix).

Our general strategy to obtain lower bounds on mutual information and capacity is as follows. First, we specify
a channel with suitable ‘pseudo-output’ and Gaussian ‘pseudo-input’. These are transformed versions of Z and X
respectively (sometimes we transform X alone). The transformations are given by the conditional mean functions:
for example, the pseudo-input may be m(X) = E[Z|X], as in Theorem 5 below. Second, we apply Lemma 3 with
the pseudo-input and pseudo-output in place of X and Z there. We then make use of the following relationship
that holds for any random vector (U,W ):

Cov(U,E[U |W ]) = E
{
E
[
(U − E[U ])(E[U |W ]− E[U ])T|W

]}
(5)

= V{E[U |W ]}.

We now use this strategy to obtain a lower bound for the mutual information, If (X;Z), in terms of νf (Z|X).

Theorem 5. Let (X,Z) be a random vector in Rd , d ≥ 2. Consider the conditional density (with respsect to
Lebesgue measure), f(z|x), and suppose that m(x) = E[Z|X = x] is a one-to-one, continuously differentiable
mapping (whose domain is an open set and a support of X). Let m(X) be normally distributed and denote by
f(x) the implied density of X . Then

If (X;Z) ≥ log
{
νf (Z|X)−1/2

}
, (6)

where we assume moments are finite such that νf (Z|X) is well defined and that E{V [Z |X ]} is non-singular under
the joint density, f . This lower bound is sharp since If (X;Z) = log

{
νf (Z|X)−1/2

}
when f(x, z) is a multivariate

normal density. Furthermore, the information capacity CZ|X satisfies

CZ|X ≥ log
{
νf (Z|X)−1/2

}
, (7)

provided f(x) is the density of an allowed input distribution, that is a distribution in F .

Proof: Consider the mechanism M → X → Z, where X = m−1(M) and X is then applied to the channel
f(Z|X). Here M = m(X) is the transformed or pseduo-input. Notice that E[Z|M ] = E[Z|X] = M because
σ(X) = σ(M), and therefore Cov(M,Z) = Cov(Z,E[Z|M ]) = V{E[Z|M ]} = V[M ], by Eq. 5 (and using twice
that E[Z|M ] = M ). Under the conditions of Theorem 5, M has a Gaussian distribution, with the distribution of X
that implied by the mapping X = m−1(M). Given the properties of the one-to-one mapping m(x), we also have
that If (M ;Z) = If (X;Z) (see, for example, [21]). Applying Lemma 3 to the Gaussian, pseudo-input M and the
output Z yields

If (X;Z) ≥ 1

2
log

{
det(V[Z])

det(V[Z]− Cov(Z,M)V[M ]−1Cov(Z,M)T)

}
f

=
1

2
log

{
det(V[Z])

det(V[Z]− V{E[Z|M ]})

}
f

,

where the second line again uses Cov(Z,M) = V[M ] = V{E[Z|M ]}. The result then follows directly because
V[Z] = V{E[Z|M ]} + E{V[Z|M ]}, and because we have that V[Z|M ] = V[Z|X] since σ(M) = σ(X). Eq. 7
follows from Eq. 6 and the definition of capacity as the supremum of mutual information over the collection of
allowed input distributions, F .
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Notice that characterising the first and second conditional moments of the mechanism, E[Z|X] and V[Z|X],
is enough (using the law of total variance) to evaluate the lower bound log

{
ν(Z|X)−1/2

}
for a given Gaussian

distribution of m(X). Maximising the bound over such distributions then yields the largest lower bound on the
information capacity. The approach is applicable when experimental data have been generated under some other
input distribution, provided the first and second conditional moments are carefully estimated.

We now discuss the relationship of our lower bounds in Eqs. 6 and 7 to average mean-square error, rate distortion-
type arguments with a Gaussian source.

Corollary 6. Let dZ be the dimension of Z and suppose that the conditions of Theorem 5 apply. It follows from
Eq. 6, scaling by the reciprocal of dZ , that

d−1Z If (X;Z) ≥ 1

2
d−1Z log{νf (Z|X)−1/2} =

1

2
log

{
[det(V[Z])]d

−1
Z

[det(E{V[Z|X]})]d−1
Z

}
f

≥ 1

2
log

{
[det(V[Z])]d

−1
Z

d−1Z tr(E{V[Z|X]})

}
f

, (8)

since Ef{V[Z|X]} is positive definite, where f indicates evaluation under the joint density f(x, z). We have used
that 0 < [det(M)]1/m ≤ m−1tr(M) for a positive definite, m×m matrix, M [15].

Notice that d−1Z tr(E{V[Z|X]}) is the average minimum MSEE given X , the average being across the scalar
components of the vector Z. Eq. 8 establishes that our lower bound, log{νf (Z|X)−1/2}, is tighter than the lower
bound based on the average minimum MSEE, 1

2 log{det(V[Z])d
−1
Z / d−1Z tr(E{V[Z|X]})}f . The two lower bounds

clearly coincide for the bivariate case, d = 2. The bound based on the average minimum MSEE might, at first
sight, appear to have the form that would be obtained by a rate distortion-type argument [22, Section 4.5.2] with
Z as the Gaussian ‘source’. However, this is not the case because the bound would in general be evaluated under
a joint density for (X,Z) different than f . (However, see Lemma 8 and the subsequent discussion for the case of
regression on the response variable). Notice also that in our setting of Eq. 1, we may not be able to adjust the input
distribution in order to obtain a Gaussian marginal for Z.

Instead, one might treat M = E[Z|X] as the Gaussian source in a rate distortion-type argument. Consider
the case d = 2. One obtains the result If (X;Z) ≥ 1

2 log(V{E[Z|X]}/E{V[Z|X]})f , where the numerator is the
variance of the source and the denominator is the expected square-error distortion between the source and its
estimate, here Z. The right-hand side of this inequality is strictly less than our lower bound, log{νf (Z|X)−1/2} =
1
2 log(V[Z]/E{V[Z|X]})f , since V[Z] − V{E[Z|X]} = E{V[Z|X]} > 0. An analogous argument applies to the
case d > 2, since det(V[Z]) > det( V{E[Z|X]}). (For the case where X itself is Gaussian, see Lemma 8). We
conclude that our lower bounds in Eqs. 6 and 7 are tighter than lower bounds derived using average mean-square
error rate distortion-type arguments with a Gaussian source.

V. REGRESSION ON THE RESPONSE VARIABLE

We have so far considered lower bounds on mutual information that rely on the error in estimation of the
response variable Z, using the conditional mean of Z given X . In this section we instead consider lower bounds
that utilise the regression of X on the response variable, Z. Using the novel proof strategy adopted for Theorem
5, we can show that the lower bound log{νf (X̃|Z)−1/2} improves upon the one based on the Pearson correlation,
log{[1− Corr2f (X̃ ,Z )]−1/2}, where X̃ is the result of transforming the input to have a Gaussian marginal distri-
bution. We can thus always (weakly) improve upon the lower bound for the bivariate case given by Lemma 3.
Intuitively, the improvement arises because νf (X̃|Z)−1 captures dependence from non-linearity in the conditional
mean, E[X̃|Z], whereas the Pearson correlation does not.

Theorem 7. Let (X,Z) be a random vector in R2 with joint density f(x, z) with respect to Lebesgue measure.
Suppose there exists a one-to-one mapping s : X → X̃ (whose domain is an open set and a support of X) such
that X̃ has a Gaussian density. We assume that the mapping s is continuously differentiable with derivative that is
everywhere non-zero, and that νf (X̃|Z)−1/2 exists. Then

If (X;Z) ≥ log{νf (X̃|Z)−1/2} ≥ log{[1− Corr2f (X̃, Z)]−1/2}, (9)
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where the third term is the lower bound on If (X̃;Z) = If (X;Z) given by Lemma 3 in the case d = 2. We assume
Corrf (X̃ , Z) is well defined and less than 1. Subscript f indicates evaluation under the joint distribution implied
by f(x, z).

As we show in the proof below, the lower bound log{νf (X̃|Z)−1/2} can be understood as the result of first
transforming Z to the ‘pseudo-output’ t(Z) = E[X̃|Z], and then basing the bound on Corr2f (X̃, t(Z)), using Lemma
3. We then establish that using another (measurable) transformation, t(Z), cannot yield a greater bound (given some
choice of the Gaussian variable X̃). This includes, in particular, the lower bound based on the squared correlation
of X̃ and Z itself. Notice that we cannot construct a lower bound using the maximal correlation of (X,Z) [23],
[16], because the implied transformation of X need not result in the Gaussian distribution needed to apply Lemma
3.

Proof: Given the properties of the one-to-one mapping s(x), we have that If (X;Z) = If (X̃;Z). Consider
the mechanism X̃ → X → Z → E[X̃|Z], in which we first transform X̃ to X and then apply X to the ‘channel’
f(Z|X). The pseudo-output here is E[X̃|Z]. By the data processing inequality, If (X̃;Z) ≥ If (X̃;E[X̃|Z]).
Applying Lemma 3 to the Gaussian pseudo-input X̃ and the pseudo-output E[X̃|Z] yields

If (X̃;E[X̃|Z]) ≥ 1

2
log{[1− Corr2(X̃,E[X̃|Z])]−1/2}.

By Eq. 5, Cov(X̃,E[X̃|Z]) = V{E[X̃|Z]}. Hence Corr2(X̃,E[X̃|Z]) = V{E[X̃|Z]} /V[X̃], and

If (X̃;E[X̃|Z]) ≥ 1

2
log
{
E
{
V
[
X̃ |Z

]}
/V
{

X̃
}}

= log{νf (X̃|Z)−1/2},

since V[X̃] = V{E[X̃|Z]}+ E{V[X̃|Z]} by the law of total variance. This establishes the first inequality in Eq. 9
and, importantly, does so in a way that enables us to establish the second. It is a direct consequence of [16] that
V{E[X̃|Z]}/V[X̃] is equal to suptCorr2(t (Z ) , X̃ ), where the supremum is over all Borel measurable functions t
such that Corr(t (Z ) , X̃ ) is well defined. It follows that

1− νf (X̃|Z) = V{E[X̃|Z]}/V[X̃] ≥ Corr2(t(Z ), X̃ ) ≥ Corr2(Z , X̃ ), (10)

for all t(·), which implies the second inequality in Eq. 9.
An analogue of Theorem 5 when the conditioning is on the response variable Z is given by the following Lemma.

The proof is straightforward. A related lower bound is given without proof in the frequency domain by [24], the
bound being on the mutual information rate in continuous-time.

Lemma 8. Let (X,Z) be a random vector in Rd , d ≥ 2, with joint density with respect to Lebesgue measure,
f(x, z). Suppose there exists a one-to-one mapping s : X → X̃ (whose domain is an open set and a support of X)
such that X̃ has a Gaussian density. We assume that the mapping s is continuously differentiable with a Jacobian
that is everywhere non-zero, and that νf (X̃|Z)−1/2 exists. Then, scaling by the reciprocal of the dimension of X ,

d−1X If (X;Z) ≥ 1

2
d−1X log{νf (X̃|Z)−1/2} ≥ 1

2
log

{
[det(V[X̃])]d

−1
X

d−1X tr(E{V[X̃|Z]})

}
f

, (11)

and
CZ|X ≥ If (X;Z) ≥ log

{
νf (X̃|Z)−1/2

}
, (12)

provided f(x) is the density of an allowed input distribution, that is a distribution in F .

Proof: A concise proof of the first inequality in Eq. 11 uses that h(X̃|Z = z) ≤ 1
2 log[(2πe)dXdet(V[X̃|Z =

z])], which follows from the maximum entropy property of the multivariate Gaussian distribution for a given
covariance matrix. Then h(X̃|Z) ≤ 1

2 log[(2πe)dXdet(E{V[X̃|Z = z])}], where we have applied Jensen’s inequality,
using the concavity of the function log{det(Σ)} for symmetric, non-negative definite matrices, Σ [25]. The
result follows since If (X;Z) = If (X̃;Z) = h(X̃) − h(X̃|Z) and the entropy of the Gaussian X̃ is given by
h(X̃) = 1

2 log[(2πe)dXdet(V[X̃])]. The second inequality in Eq. 11 follows because we take the covariance matrix
E{V[X̃|Z]} to be positive definite and 0 < [det(M)]1/m ≤ m−1tr(M) for a positive definite, m×m matrix, M .
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The existence of the mapping s(x) in Lemma 8 is not unduly restrictive. For example, when d = 2 and the input
X has a strictly increasing distribution function taking values in (0, 1), then FX(X) is uniformly distributed and
can be invertibly transformed to a Gaussian random variable. Similar comments apply when d > 2, using the
multivariate transformation of [26] to independent uniform r.v.’s on (0, 1).

Rate distortion-type arguments using average mean-square error distortion and X̃ as the Gaussian source can-
not establish Eq. 11 for dX > 1. Such arguments [22, Section 4.5.2] show only that 1

2 log{det(V[X̃])
d−1
X /d−1X

tr(E{V[X̃|Z]})}f is a lower bound for d−1X If (X;Z) under the conditions of Lemma 8. As we have shown, our
lower bound in Eq. 11, log{νf (X̃|Z)−1/2}, is tighter than this one derived using average mean-square error rate
distortion arguments with Gaussian source.

VI. APPLICATIONS

The lower bounds on mutual information and capacity derived in previous sections will prove useful in at
least two types of application: analysing the dependence between input and response vectors using empirical data;
and analysing the information capacity of signaling and communication mechanisms for which physical models
are available. An illustration of the first type of application using simulated data and further discussion are given
immediately below. An existing example of the second type is given in [20] which examines the information capacity
of optical fiber communication by employing a lower bound based on the Pearson correlation. Indeed, physical
models of a communication mechanism can often be solved for their moments when distributional results are not
feasible. For example, models of biomolecular signaling mechanisms are stochastic kinetic models of biochemical
reaction networks [27] that can be solved approximately using system-size expansions of the master equation [28].
Such expansions can be used to provide fast, computational evaluation of E[Z|X] and V[Z|X] for many (rate)
parameter vectors describing the network [29]. Theorem 5, Eq. 7 can then be used to approximate the capacity of
the signaling mechanism and explore its parameter sensitivity.

A. Lower bound estimation

Estimation of mutual information rapidly becomes problematic as the dimension, d, of (X,Z) grows. A distinct
advantage of the lower bounds in Eqs. 6 and 11 based on log(ν−1/2) is that they are amenable to inference by
using nonparametric regression to estimate the relevant conditional mean. Nonparametric regression and covariance
matrix estimation methods for higher dimensions [30], [31] should break down more slowly than mutual information
estimation methods as d grows. This is valuable for applications, including those in systems biology where multiple
inputs and outputs often need to be considered. Estimation of our lower bounds should therefore prove useful for
analysing the dependence between input and response in higher dimensions.

The following simulation study demonstrates that use of the lower bounds can substantially improve inference
about mutual information when the sample size becomes limited for a given value of d. Here we use d = 2.
Inferential procedures for the d > 2 setting lie beyond the scope of the present paper and will be explored in
future work. The k-nearest neighbour point estimator [21], Îknn, is widely regarded as the leading method for
estimation of mutual information using continuously distributed data. We employ a composite estimator defined
as the maximum of Îknn and the lower limit of our bootstrap confidence interval for log(ν−1/2). This composite
estimator makes use of our lower bounds to correct erroneous point estimates. We find that the lower bounds are
able to provide substantial improvements to the downward bias and root mean square error (rmse) we report for
the nearest-neighbour estimator.

We assume that we are given data {(Xi, Zi); i = 1, ..., N} for independent and identically distributed units and
that the distribution of the input X is known (see the discussion following Eq. 1). We obtain confidence intervals,
for example, for the lower bound in Eq. 9 based on ν(X̃|Z) as follows. (1) Obtain fitted values, X̂i, for the
transformed, Gaussian input X̃ by nonparametric estimation of E[X̃|Z] using a smoothing spline; (2) Obtain the
estimate 1− ν̂X̃|Z as the ratio of the sample variance of X̂i to the known variance of X̃i (see Eq. 10); (3) Obtain
bias-corrected, accelerated (BCa) bootstrap confidence intervals [32] using the estimator log(ν̂

−1/2
X̃|Z ). Details of the

proposed procedure are given in the Appendix.
Figures 1 and 2 present simulation results for a range of true values of the mutual information and for two types

of data generation mechanism: a bivariate normal distribution and a mixture model. In both, Z = α+βX+ ε, with
ε normally distributed conditional on X (with constant variance independent of X). In the first, X has a marginal
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Fig. 1. Bootstrap confidence intervals of the lower bounds log(ν−1/2) can substantially improve inference about mutual information
through use of a composite estimator. Simulation results are shown for the bivariate normal (a–c), and for a mixture model incorporating
the same linear regression model but with a mixture of normals distribution for X (d–f). N is the number of i.i.d. observations. a) and
d): for N = 25, the BCa, nominally 90% confidence intervals for our lower bounds in Eqs. 6 and 9 resp., together with the k-nearest
neighbour estimates, Îknn, with k = 3. (Analogous confidence intervals for the lower bounds based on Corr(X̃, Z)2 are shown in d) for
the mixture model when I(X;Z) > 4 bits). Parameter vectors for each model were sampled independently from their parameter spaces. A
single data set is generated for each parameter vector in a) and d). Coverage probability (grey crosses, b) and c)) gives frequency with which
the BCa interval covers the true I(X;Z); Exceedance probability (grey crosses, e) and f)) gives frequency with which I(X;Z) exceeds the
lower limit of the BCa interval (nominally > 0.9). Root mean square errors (rmse) are plotted for Îknn (filled circles), and the composite
estimators (see text) based on ν−1

Z|X or ν−1
X̃|Z (black crosses) and Corr(X̃, Z)2 (diamonds). Results based on 500 Monte Carlo replications.

normal distribution (under the data generating density, f ), hence (X,Z) has a bivariate normal distribution, X = X̃ ,
and the bounds log(ν−1/2) in Eqs. 6 and 9 hold with equality. In the second, X is specified to be an equally-weighted
mixture of 2 normals, and we obtain the pseudo-input X̃ by first transforming to uniformity using the probability
integral transform and then transforming to normality. We adopt the second specification because E[X̃|Z] becomes
non-linear (and sigmoidal), but the true value of I(X;Z) is still known with precision through the use of a Monte
Carlo average for h(Z) (see Appendix). Details of the parameterisations of the models used are also given in the
Appendix.

Panels a) and d) of Fig. 1 show our BCa confidence intervals for the lower bounds based on Eq. 6 and 9
respectively, together with the point estimates Îknn, for independently generated data sets corresponding to different
true values of I(X;Z) and for sample size N = 25. In [21], the authors recommend in practice to use values of k
between 2 and 4. We therefore calculate Îknn using k = 3 nearest neighbours (Îknn = I(2)(X,Z; k = 3) in [21]).
The poor performance of Îknn with this sample size is evident for both models, particularly for mutual information
in excess of 3 bits, where substantial, growing bias and rmse are evident (see Fig. 2 for plots of bias). Higher values
of k result in worse bias and rmse of Îknn (not shown). The remaining panels of Fig. 1 depict, for sample sizes
N = 25 and N = 50, various properties under repeated sampling: the frequency with which the BCa interval for
the lower bound covers [b) and c)] and has a lower limit exceeded by [e) and f)] the true mutual information; the
rmse of Îknn; and the rmse of our composite estimator, given by the maximum of Îknn and the lower limit of the
BCa interval. For both sample sizes, the nonparametric confidence intervals perform well under repeated sampling
and provide substantial reductions in bias and rmse when comparing Îknn to the composite estimator (see also Fig.
2). Finally, in the mixture model where E[X̃|Z] is non-linear in Z, the lower bound based on Corr(X̃, Z)2 performs
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Î knn composite est imator, ν−1 composite est imator, Corr(X̃, Z )2

d) e) f )

a) b) c)

Mixture model

Bivariate normal

Fig. 2. The lower bounds log(ν−1/2) can substantially reduce bias through use of a composite estimator. The lower bounds based
on the Peason correlation do not reduce estimation bias for the mixture model with non-linear conditional mean. Biases are plotted for
the k-nearest neighbour estimates, Îknn, with k = 3 (filled circles), and for the composite estimators (see text) based on ν−1

Z|X or ν−1
X̃|Z

(bivariate normal and mixture models respectively; crosses) and Corr(X,Z)2 (diamonds). Parameter vectors for each model were sampled
independently from their parameter spaces. Results are shown for the bivariate normal (a–c), and for the mixture model (d–f). N is the
number of i.i.d. observations in each data set. All results based on 500 Monte Carlo replications.

considerably worse than that based on νX̃|Z , as shown in panels d) to f) of Figs. 1 and 2. The corresponding BCa

intervals lie well below those based on νX̃|Z and have lower limits below Îknn in all cases shown in panel d). The
associated composite estimator consequently fails to reduce either the bias or the rmse of estimation.

VII. APPENDIX

A. Additional proofs

Proof: (Lemma 3) Let g(x, z) be the multivariate Gaussian density with the same unconditional first and
second moments as f(x, z), and with marginal Gaussian density g(x) = f(x). Thus, Vg [(X,Z)] = Vf [(X,Z)].
We use subscripts to identify the relevant joint density throughout. Notice that

If (X;Z) = Ef

{
log

g(X,Z)

f(X)g(Z)

}
− Ef

{
log

g(X,Z)f(Z)

f(X,Z)g(Z)

}
≥ Ef

{
log

g(X,Z)

f(X)g(Z)

}
,

where the second expectation of the equality is seen to be non-positive by applying Jensen’s inequality and then
integrating first with respect to x. Furthermore,

Ef

{
log

g(X,Z)

f(X)g(Z)

}
= Eg

{
log

g(X,Z)

f(X)g(Z)

}
= Ig(X;Z), (13)
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because Ef [log{g(·)}] = Eg[log{g(·)}]. For example, Ef [log{g(X,Z)}] = Eg[log{g(X,Z)}] because

Ef

{(
X − E[X]
Z − E[Z]

)T

Vg [(X,Z)]−1
(
X − E[X]
Z − E[Z]

)}
=

tr

{
Vg [(X,Z)]−1Ef

[(
X − E[X]
Z − E[Z]

)(
X − E[X]
Z − E[Z]

)T
]}

= d,

since Vg [(X,Z)] = Vf [(X,Z)]. Evaluating Ig(X;Z)=hg(X) + hg(Y ) − hg(X,Y ) is straightforward since the
marginal and joint densities under g are all Gaussian. We find

Ig(X;Z) =
1

2
log

{
det(Vg [X])det(Vg [Z ])

det(Vg [(X,Z)])

}
=

1

2
log

{
det(Vf [X])det(Vf [Z ])

det(Vf [(X,Z)])

}
,

since g and f have identical second moments by construction. The stated results are then obtained by partitioning
of the matrix Vf [(X,Z)] .

Proof: (Theorem 2). We have that ν(Xn|Zn) = ν(X̆n|Zn) → 0. Since ν(X̆n|Zn) = E{V[X̆n|Zn]} =
E{(X̆n − E[X̆n |Zn ])2}, it follows that X̆n − E[X̆n|Zn] converges to zero in mean square (in L2) and therefore
X̆n − E[X̆n|Zn] →pr 0. Consider estimating X̆n based on observation of Zn as follows: the estimator X̂n(Zn) is
equal to a point in the support of X̆n which minimises the Euclidean distance from E[X̆n|Zn]. Let x ∈ R, x̆n∈ X̆ n
and notice that if |x̆n − x| < ε∗, then |x̆n − x| < ε∗n < |x̆′n − x|, that is x is closer to x̆n than to any other point
x̆′n in X̆n. Therefore, if |X̆n−E[X̆n|Zn]| < ε∗, E[X̆n|Zn] is closer to X̆n than to any other point in the support,
the estimator X̂n(Zn) is uniquely defined, and that estimator recovers X̆n without error

(
X̂n(Zn) = X̆n

)
. Thus,

the probability of estimation error, perror, satisfies

perror = P
{

X̂n (Zn) 6= X̆n

}
≤ P

{
|X̆n−E[X̆n|Zn]| ≥ ε∗

}
.

Since X̆n − E[X̆n|Zn]→pr 0, perror must therefore tend to zero as n→∞. Fano’s Inequality gives

H(perror) + perrorlog|Xn | ≥ H(X̆n|Zn) = H(Xn|Zn),

since |X̆n | = |Xn | and the rescaling does not change the conditional entropy. Therefore H(Xn|Zn)→ 0 as n→∞.

Models, parametrisations and algorithms used in the simulation study of Section VI-A

Figures 1 and 2 present simulation results for two data generation mechanisms. In both, Z = βX + ε with
ε ∼ N(0, σ2ε) and ε independent of X. The two models, together with the schemes used to generate parameter
vectors for the results shown in Figures 1 and 2, are as follows:

1) Bivariate normal model: X ∼ N(0, σ2
X

). Model parameters were sampled as follows: i) β uniformly distributed
on (1, 10); ii) σ2ε = 10θ1 with θ1 uniformly distributed on (−2, 2); and iii) σ2

X
= 10θ2 with θ2 uniformly

distributed on (−2, 2).
2) Mixture model: X is an equally-weighted mixture of 2 normal distributions, that is fX(x) = 1

2N(µ1, σ
2
1) +

1
2N(µ2, σ

2
2). Model parameters were sampled as follows: i) β = 10θ1 , with θ1 uniformly distributed on (−1, 1);

ii) σ2ε = 10θ2 with θ2 uniformly distributed on (−2.5, 2.5). We set µ1 = −µ2 = 5 and σ21 = σ22 = 25/4.

The mixture model allows precise evaluation of I(X;Z) = h(Z)−h(Z|X) via Monte Carlo sampling. We have
h(Z|X) = 1

2 log(2πeσ2ε). Note that the marginal density f(Z) is also an equally-weighted mixture of 2 normals
which we can express in closed form. Hence, we can also estimate h(Z) = −E[logf(Z)] as the Monte Carlo
average of logf(Zm) where Zm (m = 1, ...,M ) is a draw from the mixture model. For our numerical calculations
we set M = 105, and monitored convergence of the Monte Carlo average.

Computations were implemented in R (version 2.12.2). The non-parametric estimation of E[X̃|Z] was performed
using the ‘smooth.spline’ function (an implementation of smoothing splines [33]) with the number of knots set to
10; the smoothing parameter was chosen using cross-validation on the original dataset; all other parameters were
set to their default values. 90% BCa confidence intervals were calculated from B = 2000 bootstrap replications
(using the ‘boot’ package). For the k-nearest neighbour estimation of mutual information [21] we used the authors’
‘MIxnyn’ function within their MILCA suite (available at http://www.klab.caltech.edu/∼kraskov/MILCA/).

http://www.klab.caltech.edu/~kraskov/MILCA/
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