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ABSTRACT

The comparative ability of transcriptional and small
RNA-mediated negative feedback to control fluctu-
ations or ‘noise’ in gene expression remains unex-
plored. Both autoregulatory mechanisms usually
suppress the average (mean) of the protein level
and its variability across cells. The variance of the
number of proteins per molecule of mean expres-
sion is also typically reduced compared with the
unregulated system, but is almost never below the
value of one. This relative variance often substan-
tially exceeds a recently obtained, theoretical lower
limit for biochemical feedback systems. Adding the
transcriptional or small RNA-mediated control has
different effects. Transcriptional autorepression
robustly reduces both the relative variance and
persistence (lifetime) of fluctuations. Both benefits
combine to reduce noise in downstream gene
expression. Autorepression via small RNA can
achieve more extreme noise reduction and typically
has less effect on the mean expression level.
However, it is often more costly to implement and
is more sensitive to rate parameters. Theoretical
lower limits on the relative variance are known to
decrease slowly as a measure of the cost per
molecule of mean expression increases. However,
the proportional increase in cost to achieve sub-
stantial noise suppression can be different away
from the optimal frontier—for transcriptional
autorepression, it is frequently negligible.

INTRODUCTION

In order to understand life at the level of individual cells
we must understand how cells control and exploit the
stochasticity inherent in biochemical mechanisms (1).
Feedback control is often proposed as an important
means of suppressing biochemical fluctuations (2,3),
although a stochastic negative feedback system can in

theory suppress or amplify fluctuations. Recent work (4)
has derived limits on the extent to which biochemical
feedback control mechanisms could suppress fluctuations
by characterizing their magnitude when the control is
mathematically optimal. However, very little is known
about how close biochemical systems come in practice to
achieving such lower bounds.

Negative autoregulation of gene expression is wide-
spread in both prokaryotes and eukaryotes (5). Such regu-
lation occurs both transcriptionally at the level of mRNA
synthesis and post-transcriptionally due to the action of
small non-coding RNAs (termed sRNAs in bacteria and
microRNAs in eukaryotes) (6–9). Approximately 40% of
known transcription factors in Escherichia coli are subject
to negative transcriptional autoregulation (NTAR)
(10,11). Several functions have been proposed for the
widespread NTAR motif, including speeding up the
response time of transcription networks to reach
steady-state (11), linearizing the dose–response relation-
ship of a downstream gene (12), and the control of noise
(13,14). The noise properties of regulation by small RNAs
are still poorly understood (15), especially so in the case of
negative autoregulation (termed NSAR here). Incoherent,
microRNA-mediated feedforward loops can couple
finetuning of protein means and noise control (16).

Previous theoretical work has reported that NTAR can
suppress intrinsic noise (17,18). As we will see, relying
exclusively upon one of the two commonly encountered
summary noise measures would result in finding either
noise ‘suppression’ or ‘amplification’ due to both NTAR
and NSAR, depending on the choice of measure. The
reason is that the autorepression typically reduces both
the variance and the average (or mean) of protein levels,
making it important to consider both effects individually.
We find that the variance usually decreases strongly
enough compared with the simultaneous decrease in the
mean to decrease the relative variance of the number of
protein molecules (RV) but not the coefficient of variation
(CV). Experiments measuring the CV for expression levels
from plasmid-borne genes observed U-shaped dependence
of the CV on the strength of repressor binding (19,20).
This was not explained by intrinsic noise alone but by
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the presence of extrinsic processes and, in particular, the
variability of plasmid segregation at cell division.

What then do we expect to happen to gene expression
noise when an autoregulatory negative feedback loop is
added to an unregulated gene expression system? For
example, the promoter of the gene may acquire the prop-
erty of autorepression by the protein or the promoter for a
complementary sRNA may acquire the property of acti-
vation by the protein (Figure 1). Such changes arise during
evolution, during the lifetime of a cell due to a modifica-
tion of the protein such as phosphorylation, or as the
result of deliberate engineering of the gene circuit in
synthetic biology and in experiments studying noise. To
investigate the question, we must study the noise
properties of negative autoregulation compared with the
noise properties of the system that is identical except for
the absence of the negative feedback loop—the system
with all other rate parameters unchanged. Results
holding the mean protein expression level constant are
also given to facilitate comparison with some previous
work. We provide results that are valid when all param-
eters are allowed to vary within broad, biologically plaus-
ible ranges and that are exact (up to Monte Carlo
sampling error). By contrast, the accuracy of analytical
approximations deteriorates for low numbers of molecules
when reaction kinetics are non-linear due to the presence
of bimolecular reactions such as promoter binding and
complex formation by sRNA with mRNA.

We find that NTAR and translational, small RNA-
mediated autoregulation (NSAR) affect noise properties
very differently. Transcriptional autorepression robustly
reduces both the relative variance and persistence (or life-
time) of fluctuations. We explain how both benefits
combine to reduce noise in downstream gene expression.
Autorepression via small RNA can achieve more extreme
noise reduction and typically has less effect on the mean
expression level. However, it is often more costly to im-
plement and is more sensitive to rate parameters.
Theoretical lower limits on the relative variance are
known to decrease slowly as a measure of the cost per
molecule of mean expression increases (4). However, it
should not be concluded that biochemical noise suppres-
sion is always a costly business. The proportional increase
in cost to achieve substantial noise suppression can be
different away from the optimal frontier. Such settings
are relevant because both naturally occurring and syn-
thetic networks may be far from currently achieving the
fundamental mathematical limits. Substantial noise
control could then be implemented although incurring a
negligible increase (or even a decrease) in the average cost
per molecule of mean expression. We report that this is
frequently the case for transcriptional autorepression.

METHODS

We study the stationary NTAR, NSAR and unregulated
systems using standard Monte Carlo methods (21), as
described in the Supplementary Data. The NTAR and
NSAR reaction mechanisms we consider are depicted in
Figure 1 A and B and detailed in Supplementary Table S1.

Definition of summary noise measures

We consider two summary measures of noise magnitude:
the coefficient of variation (CV) of the protein level X and
the relative variance (RV) or ‘Fano factor’ of X. They are
related as follows:

CV2
x ¼

VarðXÞ

EðXÞ2
¼ RVx � EðXÞ

�1; ð1Þ

which indicates that the CV can increase when the mean
decreases if the RV does not decrease sufficiently strongly.
We recommend that when the RV is used to compare two
systems, the dimensionless ratio of the two RVs is
reported.
We define the autocorrelation time of the protein level

X as:

�x ¼

Z 1
0

CovðXt;XtþuÞ

VarðXtÞ
du ¼

Z 1
0

ACFxðuÞdu: ð2Þ

In practice, the upper limit of the integral was chosen to be
�=105s. This value is almost one order of magnitude
larger than any timescale we considered in our simula-
tions. We expect the contributions to the integral
beyond this time to be small. Futhermore, � is small
enough compared with the total simulation time that
accurate estimation of the autocorrelation function
(ACF) is possible from the simulated data.

Lower bound on coefficient of variation and relative
variance

We can apply the results of Lestas et al. [see (4), Box 1] to
obtain the following lower bound on the coefficient of
variation (squared) for any NTAR or NSAR system:

CV2
x �

�
EðXÞ � ð1þNlog

Nmax

N
Þ
��1

; ð3Þ

where N is the expectation of the number of ‘signalling’
molecules synthesized during a time interval equal to the
inverse of the protein degradation rate, dx. It should be
noted that, while the squared CV is dimensionless, this
lower bound has the same units as the reciprocal of
protein levels. The bound is only valid when these units
are numbers of molecules. Fluctuations in the signalling
molecule convey information about the level of protein:
this molecular species is the mRNA for the NTAR system
and the sRNA for the NSAR system. Nmax is the product
of the inverse of the protein degradation rate and an upper
bound on the intensity of the counting process for the
birth of the signalling molecule. Nmax is therefore given
by km/dx for NTAR and ks/dx for NSAR, where km and ks
are the rates of transcription from the active promoters for
mRNA and sRNA, respectively.
Other bounds provided in (4) do not apply to our

reaction networks because, rather than implicitly making
assumptions about relative timescales, we include the
reactions for the binding and unbinding of the signalling
molecule to the promoter. Each of the promoters (for
mRNA or sRNA) switches between two states corres-
ponding to whether or not the signalling molecule is
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bound. We avoid modelling transcriptional regulation
using Hill functions, preferring to specify the reaction
networks in terms of the underlying reactions.
Notice that Equation 3 implies (using Equation 1) a

lower bound for the relative variance of X that does not
depend on E(X):

RVx �
�
1þNlog

Nmax

N

��1
: ð4Þ

Average cost measure

In order to take into account the cost of mRNA, sRNA
and protein synthesis, we define the average cost per
molecule of mean expression (per unit time) for each
genetic network as follows:

cost ¼
1

EðXÞ
½EðSmRNAÞCmRNA+EðSXÞCX+EðSsRNAÞCsRNA�;

ð5Þ

Figure 1. Comparing suppression of the mean and fluctuations of protein under transcriptional and sRNA-mediated negative autoregulation.
Results for 2000 parametrizations of each feedback control system, selected uniformly from the biologically plausible rate parameter space
(Supplementary Data). (A) NTAR with the reactions added to the unregulated system to obtain the corresponding NTAR system shown in red.
(B) NSAR, with the reactions added again shown in red. Complete descriptions of both reaction networks are in Supplementary Table S1. (C) For
NTAR, the ratio of the variances of the number of protein molecules in the regulated (r) and unregulated (u) systems, as a function of the ratio of
the corresponding means (using logarithmic axes). Each point corresponds to a pair of rate parameter vectors (one each for r and u): rate parameters
present in both systems are held constant. The colour bar shows the logarithm of the ratio of average cost per molecule of mean expression (per unit
time) for the two systems (Equation 5). The red and black lines through the origin have gradients of 1 and 2 respectively. (D) As in C, but for
NSAR. (E) For NTAR, as in C, but with the ratio of the CV of protein on the y-axis. Points below (above) the red line have a lower (higher) relative
variance (or Fano factor) in the regulated case. Points below (above) the dashed line have a lower (higher) variance in the regulated case. (F) As in E,
but for NSAR. Adding transcriptional or sRNA-mediated autorepression usually increases the protein noise measured by the CV.
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where X is the number of protein molecules, E denotes a
mean or expectation, S indicates the number of molecules
synthesized per unit time and C is the energetic cost per
molecule. For the NTAR network, which of course lacks
sRNA, we set E(SsRNA)=0. We assume an effective cost
per monomer for each molecular species so that

CmRNA ¼ LmRNAcnu; CX ¼ LXcaa; CsRNA ¼ LsRNAcnu;

ð6Þ

where LmRNA, LX=LmRNA/3 and LsRNA are the lengths
of the molecular species in terms of their constituent
monomers, and cnu, caa are the effective costs per nucleo-
tide and per amino acid, respectively. For our calculations
we used LsRNA=LmRNA ¼ 10�2, cnu=49.3 [corresponding
to the median cost of precursor synthesis per nucleotide in
yeast measured in numbers of high-energy phosphate
bonds (22)], and caa=30.3 [corresponding to the
combined biosynthesis and polymerization cost per
amino acid measured in numbers of high-energy phos-
phate bonds (22)].

Relative variance of downstream gene expression

The relative variance of a downstream gene Y whose
transcription rate is proportional to the level of a
protein, X, is given (Supplementary Data) by:

DG ¼ 1þ
vy

dy þ dmy

þ RVx
kvy

dy þ dmy

ð��1x þ dy þ dmy
Þ

ð��1x þ dyÞð��1x þ dmy
Þ
;

ð7Þ

where the transcription rate of Y is equal to kX, tx is the
autocorrelation time of the upstream protein, and ðdy; dmy

Þ

are the per molecule degradation rates of the protein
Y and of its mRNA. Our Equation 7 is exact when the
persistence (lifetime) of the fluctuations in X away from
the mean is governed by an exponential decay over time
and hence the ACF of X is exponential (Supplementary
Data).

RESULTS

Comparing suppression of the mean and variance of
protein levels under transcriptional and sRNA-mediated
negative autoregulation

What happens to fluctuations in protein levels when either
the transcriptional or sRNA-mediated negative feedback
loop is added to a constitutive gene expression system to
obtain the corresponding NTAR or NSAR system?
Previous work has tended to characterize protein fluctu-
ations using a single summary measure of noise—the
ratio of either the standard deviation or variance of
protein to its mean (17,23). These are called the CV, and
the Fano Factor or RV, respectively (‘Methods’ section,
Equation 1). However, undue reliance on any single,
summary measure of noise can deliver misleading conclu-
sions. Since introducing feedback control typically alters
both the mean and variance of fluctuations, it is preferable
to consider both effects individually.

Figure 1 shows the effect of adding the negative
feedback loop on both the variance and the mean,
relative to those of the unregulated system. We present
results for 2000 different rate parameter vectors for each
feedback mechanism, sampling the biophysically plausible
parameter space randomly and uniformly (Supplementary
Data). For each data point shown, reactions common to
both the regulated (r) and unregulated (u) systems have
identical rate parameters. The NTAR and NSAR systems
we consider (Figure 1A and B) explicitly include the
reversible, bimolecular reactions in which the protein
binds to the relevant promoter. There is one binding site
per promoter for the protein and hence no cooperativity in
promoter binding.
For both mechanisms NTAR and NSAR (detailed in

Supplementary Table S1), the mean of the protein level is
always reduced on the addition of negative feedback
compared to the unregulated mean, typically more so
for NTAR than for NSAR. The strength of variance sup-
pression by the two feedback mechanisms can be assessed
by comparing the loci of points in panels C and D of
Figure 1. For a given reduction in (the logarithm of) the
mean, a greater reduction in (the logarithm of) the
variance indicates stronger suppression. These reductions
do not depend on the units in which protein levels are
measured. Broadly speaking, NSAR suppresses the
variance more strongly than NTAR. However, suppres-
sion by NSAR is more sensitive to rate parameters than
NTAR for smaller reductions in the mean, where increases
in the variance itself are sometimes observed. This larger
sensitivity for NSAR is evident in the larger spread of
points (for the smaller values of mean reduction) in
panel D compared to panel C of Figure 1.
Interestingly, the reduction in the logarithm of the

variance is approximately proportional to the reduction
in the logarithm of the mean for both mechanisms.
Linear regression lines through the origin have slopes
of 1.16 and 1.58, and R2 equal to 0.989 and 0.964, for
NTAR and NSAR, respectively. The R2 gives, in each
case, the squared correlation between the fitted values
from the regression and the actual data, with values
closer to 1 therefore indicating a better fit for the linear
regression. The larger slope for NSAR reflects the gener-
ally stronger variance suppression by NSAR. For an
exactly proportional relationship, a slope >1 is equivalent
to the RV decreasing when feedback is added and a slope
>2 is equivalent to the CV decreasing when feedback is
added. Finding increases or decreases in these summary
noise measures thus depends on the rate at which the
variance decreases as the mean decreases. We predict
from Figure 1C and D, for both NTAR and NSAR that
typically the RV will decrease but the CV will increase on
adding the feedback (comparing to the red and black lines,
respectively). These predictions are correct and discussed
further below.
Figure 1 also shows the effect of adding the feedback on

the average cost per molecule of mean expression (per unit
time, see ‘Methods’ section, Equation 5). The effect is
small and rather uniform for NTAR, but more variable
for NSAR. Stronger variance suppression by NSAR than
NTAR is associated with greater average cost (see the

Nucleic Acids Research, 2012, Vol. 40, No. 15 7087

http://nar.oxfordjournals.org/cgi/content/full/gks385/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks385/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks385/DC1


points closer to the black line in panel D than panel C).
We consider the costliness of the feedback controls in
detail later on.
We also compared the NTAR and NSAR systems to the

unregulated system, holding the mean protein level
constant across the systems (Supplementary Figure S4).
A difficulty with such comparisons is that there are many
different parametrizations of both the regulated and
unregulated system that result in (approximately) the
samemean. Considering awide range ofmeans andwithout
biasing the choice of parametrizations (e.g., by tuning only
some subset of the parameters), we find that the variance is
decreased in 42 and 52% of the cases for NTAR and
NSAR, respectively. The results are clearly sensitive to
the specific choice of parameter vectors for the regulated
and unregulated systems being compared.

Adding negative autoregulation rarely suppresses
fluctuations enough to reduce the coefficient of variation

Although some previous theoretical studies report that
(in the absence of extrinsic fluctuations) transcriptional
autorepression reduces noise (17,18), others report an
increase in noise with increasing feedback strength
(24,25). Comparisons are made by holding different
features of the system constant, often including the
mean protein level. The summary noise measure used
also differs between studies.
The present context highlights particularly clearly the

danger of undue reliance on any single summary noise
measure such as the CV (Figure 1E and F). For our
NTAR mechanism, which has one binding site for the
protein in the promoter, the CV of the protein is never
reduced and can increase as much as 10-fold. For NSAR,
the increase in the CV is typically less pronounced (26)
and lies between 0 and 10% in 50% of the cases
sampled. We observed a decrease in the CV for NSAR
of up to 10% in a minority of the cases sampled (18%).
Should we then conclude that neither negative feedback

mechanism robustly ‘suppresses noise’? Both mechanisms
effectively reduce protein variance and standard deviation
(Figure 1C and D). They usually reduce these strongly
enough compared with the reduction in the mean to
reduce the relative variance or Fano factor (compare to
the red line in panels C and D) but not enough to reduce
the CV (compare to the black line). This quantification of
the strength of fluctuation suppression usefully goes
beyond a statement about the sign of the change in the
CV. (For the relationship between the two noise measures,
see ‘Methods’ section Eqution 1). There is no reason to
suppose that, when the mean is decreased, only reductions
in the variance of the number of protein molecules that are
sufficient to reduce the CV can be beneficial to the cell.
Such a conclusion does not follow, for example, from the
scale invariance of the CV. The reduction in the mean may
be of primary phenotypic importance, and the associated
reduction in the variance of additional benefit.
The non-decrease in the CV compared with the unregu-

lated case for our NTAR system is consistent with the
theoretical prediction of Singh et al. (27) for the limiting
regime where protein degradation is much slower than

mRNA degradation. They describe transcriptional repres-
sion using a Hill function and find that, in the absence of
extrinsic noise, the minimum CV on varying the feedback
strength while holding other kinetic parameters fixed is
given by the unregulated system. The approach is an
approximate analytical one, relying on a linearization of
the Hill function around the stationary protein mean and
a stochastic hybrid system description with continuously
valued protein levels. They find that when a Hill coeffi-
cient >1 is used (to model cooperativity), the CV can
decrease compared to the unregulated case.

The relative variance for NTAR and NSAR is rarely
below one and often substantially exceeds a theoretical
lower limit for feedback control

We find for both negative feedback mechanisms NTAR
and NSAR that the protein variance is rarely reduced
below the level of the mean—in other words, the RV of
the number of protein molecules is always (approximately)
�1 (colour bars Figure 2A and B). Of course, the
(greatest) lower bound is equal to one for the RV of the
‘unregulated’, 2-stage gene expression system. Analysis of
NTAR using a Hill function approximation and lineariza-
tion around the steady-state indicates that a RV <1 is
possible for NTAR (17); see also (28). We find when
explicitly including promoter binding and unbinding reac-
tions that such ‘sub-Poissonian’ noise is very rare.
Furthermore, a recent system-wide study of protein
levels in Escherichia coli cells provides some experimental
evidence that regulatory mechanisms do not decrease the
RV substantially below a value of one (29).

Motivated by the poor characterization of many bio-
chemical systems, Lestas et al. (4) recently gave an
elegant derivation of lower limits on the extent to which
biochemical feedback control mechanisms could suppress
fluctuations by characterizing the performance of mathem-
atically optimal control. However, very little is yet known
about how close biochemical systems come in practice to
achieving such lower bounds. This question is clearly of
interest in its own right, both for naturally occurring and
synthetically designed systems. We therefore quantify the
performance of the NTAR and NSAR systems relative to
the performance derived in (4) for a hypothetical, optimal
controller. We computed the lower bound on the coeffi-
cient of variation provided by (4) for our reaction
networks (‘Methods’ section, Equation 3), and found
that the actual CV is on average 8.0 times the magnitude
of the lower bound for NTAR and 4.3 times the lower
bound for NSAR (Figure 2). An actual CV exceeding the
lower limit by a factor of�10 is not uncommon for NTAR
(26% of cases sampled). These numbers are unchanged
when we consider the lower bound for the square root of
the relative variance of protein.

It should be noted that the lower bound for the CV
depends not only on the expected rate of synthesis of the
number of ‘signalling’ molecules, but also on a ratio of
rate constants (Nmax) that varies across different param-
etrizations of the system. The larger this ratio, the less the
optimal controller is constrained by the maximal rate of
transcription from the promoter of the signalling molecule
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(mRNA for NTAR and sRNA for NSAR). The lower
bound for the squared CV is proportional to the recipro-
cal of the mean. It therefore provides a lower bound for
the relative variance that does not depend on the mean
(‘Methods’ section, Equation 4). This lower bound tends
to estimate the actual RV better when the latter is closer to
one, although we find that even then the bound can
perform poorly as an approximation of the RV
(Figure 2). While it is clear that the NTAR and NSAR
systems must perform worse in terms of CV and RV than
the lower limits based on optimal control, the magnitude
of the discrepancy has not previously been quantified. The
lower bounds in (4) are limits on the level of the noise for a
given system (measured either by the CV or RV) expressed
in terms of the costliness of control. They allow a relative
comparison of the noise level of two systems in terms of
the relative cost of control when both systems achieve (or
get very close to) the optimal noise level for their respect-
ive costs. When this is not the case, the relationship
between reduction of noise and increase in the cost of
control may be very different from that implied by the
form of the lower limits. We return to this point in a
subsequent section.

Adding transcriptional autorepression whitens noise and
reduces the relative variance of protein numbers

Adding transcriptional autorepression reduces the
variance of protein measured relative to its mean (RV)
in the overwhelming majority of cases sampled
(99.95%). Figure 3 is analogous to Figure 1 but reports
three additional summary statistics, again comparing
them for NTAR and NSAR. We report the ratio of the
RVs for the regulated and unregulated systems, which
does not depend on the units in which protein levels are
measured (although numbers of molecules is a natural
choice in our context). The proportional reduction in the
RV is quite stable across a wide range of resultant reduc-
tions in the mean (Figure 3A) and therefore a useful

summarizing measure here, with 98% of cases reducing
the RV to between 0.5 and 0.8 of its level in the unregu-
lated system. We consider NSAR in the subsequent
section. Two previous theoretical studies (17,18) used ap-
proximate methods to predict a decrease in the RV under
NTAR, when comparing the regulated and unregulated
system as we do.
NTAR also reliably whitens the noise in protein expres-

sion. The variance is the time-average of the squared
deviation of the protein level from its mean over a long
time (for an ergodic system). Biologically relevant time-
scales over which some form of time-averaging by down-
stream modules takes place may be considerably shorter,
in which case the persistence over time (lifetime) of excur-
sions away from the mean becomes important. Such per-
sistence is measured by the autocorrelation function
(ACF) for the protein level and its autocorrelation time
(defined here as the time-integral of that function, see
‘Methods’ section Equation 2). For NTAR, the autocor-
relation time is always reduced and is between 0.5 and 0.7
of that for the unregulated system in 69% of the cases
sampled (Figure 3C).
Such a ‘whitening’ of the noise by transcriptional

autoregulation was predicted by Simpson et al. (18)
(NSAR is not considered) using a frequency domain
analysis with Langevin and shot noise approximations.
These approximations may however perform poorly for
low numbers of molecules. We have demonstrated
without approximation (beyond that due to Monte
Carlo sampling error), and using a single ‘chromosomal’
copy of the gene, that NTAR always reduces the autocor-
relation time for parameters in the biophysically plausible
parameter space. A shift of the distribution of ACF
‘half-lives’ towards shorter half-lives due to NTAR has
been observed experimentally for a gene circuit on high
copy number plasmids (14). The distribution is across
lineages of dividing cells.

A B

Figure 2. The magnitude of the discrepancy between the theoretical lower limits based on optimal control and the CV of protein for NTAR and
NSAR. Comparison of the CV of the regulated system (r) with the lower bound of Lestas et al. (4) given by Equation 3, for 2000 parametrizations of
each feedback control system (selected uniformly from the biologically plausible space). (A) For NTAR, the ratio of the CV to the lower bound
equals that of the RV

1
2 to its bound and is plotted against the mean of protein under regulation (using logarithmic axes). The colour bar shows the

logarithm of the magnitude of the relative variance of the number of protein molecules for the NTAR system. RVr <0.95 for 0.4% of cases. (B) As
in A, but for NSAR. RVr <0.95 for 0.0% of cases.
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We assess below the combined effect of the observed
reductions in both the relative variance and the autocor-
relation time by considering noise in expression of a down-
stream gene. We are able to explain analytically how the
reductions in both noise measures combine to control the
downstream noise, for the case of proportional transcrip-
tional activation.

The noise properties of sRNA-mediated negative feedback
are sensitive to rate parameters

Negative feedback mediated by sRNA sometimes
increases and sometimes decreases the relative variance
and the autocorrelation time (Figure 3B and D). Both
noise measures are reduced relative to the unregulated
system in 47% of cases sampled, compared to 100% for
NTAR. NSAR has relative autocorrelation time between
0.8 and 1 in 56% of cases, and between 1 and 1.2 in 41%

of cases. NSAR thus typically whitens protein fluctuations
less than NTAR. We find that NSAR can be much more
or much less effective than NTAR in reducing the RV,
depending on the choice of rate parameters. Comparison
of panels A and C (NTAR) with panels B and D (NSAR)
in Figure 3 provides a bird’s eye view of the differences
between the effects of the transcriptional and translational
control mechanisms.

Noise reduction in a downstream gene is the result of both
noise whitening and variance reduction

In order to assess the combined effect of regulating the
variance and the autocorrelation time, we consider the
noise in expression of a downstream gene that is transcrip-
tionally activated by the protein (X) that is under negative
autoregulation. The transcription rate of the downstream
gene is then itself stochastic. Figure 3E and F shows the

A B

C D

E F

Figure 3. Comparing noise control by transcriptional and sRNA-mediated negative feedback. Adding transcriptional autorepression both whitens
noise and reduces relative variance (RV), with both effects reducing variability in expression of an activated downstream gene. Autoregulation by
sRNA typically suppresses the mean less. It is otherwise more sensitive to rate parameters, often more costly, and usually performs less noise
whitening. First column is for NTAR, second column for NSAR. (A) and (B) The ratio of the RV in the regulated (r) and unregulated (u) systems, as
a function of the ratio of the corresponding means (using logarithmic axes). As in Figure 1, each point corresponds to a pair of rate parameter
vectors (one for the regulated and one for the unregulated system): rate parameters present in both systems are held constant. Colour bars for all
panels show the ratio of the average cost per molecule of mean expression (per unit time) in the two systems (Equation 5). (C) and (D) As in (A) and
(B), but for the ratio of the protein autocorrelation time (Equation 2). (E) and (F) As in (A) and (B), but for the ratio of the relative variance of a
downstream gene (DG) transcriptionally activated by the autoregulated protein. Exact results (up to Monte Carlo sampling error) for 1000 par-
ametrizations of each system, selected uniformly from the biologically plausible space.

7090 Nucleic Acids Research, 2012, Vol. 40, No. 15



ratio of the relative variance of the downstream gene (DG)
when X is regulated (by NTAR and NSAR, respectively)
to its relative variance when X is unregulated.
NTAR robustly reduces the RV of the downstream
gene—the RV is on average 0.48 that for the unregulated
case. (Again, the proportional reduction in the RV is quite
stable and a useful summary measure here.) For NSAR,
the ratio of the relative variances of the downstream gene
is again more sensitive to rate parameters and is similar
to the same ratio for the autoregulated protein itself
(Figure 3B). In this setting, the addition of sRNA-
mediated autoregulation is usually less effective in sup-
pressing downstream noise, with only 10% of cases
below the average ratio of 0.48 for NTAR.

When the rate of transcription of the downstream gene
is proportional to the level of X, the relative variance of
the downstream gene is given (see ‘Methods’ section) by

DG ¼ k0 þ k1Wð�xÞRVx; ð8Þ

where the constants k0 and k1 depend only on the constant
rate parameters governing the gene expression reactions
for the downstream gene. The function W decreases as the
autocorrelation time of X decreases (‘Methods’ section,
Equation 7). Equation 8 thus quantifies how changes in
the relative variance (RVx) and autocorrelation time of the
autoregulated protein combine to determine the relative
variance of downstream gene expression. Decreases in
both are beneficial, and the relative variance of the down-
stream gene therefore always decreases for NTAR
(Figure 3E). The analytical expression makes precise the
intuition that whiter noise is more readily filtered out by
downstream gene circuits (18). It is exact when the persist-
ence (lifetime) of the fluctuations in X away from the mean
is governed by an exponential decay over time and hence
the ACF of X is exponential (Supplementary Data).
Comparison of plots obtained using Equation 8 to
evaluate DG with the results for simulation of down-
stream expression shown in Figure 3E and F reveals that
Equation 8 is in close agreement with the Monte Carlo
estimates (see supplementary Figures S2 and S3). Suppose
that the upstream protein X had the same relative variance
under regulation as for NTAR but that the autocorrel-
ation time was unchanged compared to the unregulated
case. Then, using Equation 8, the average ratio of
the RVs for the downstream gene would be 0.65 instead
of 0.48, reflecting the importance of the noise whitening
by NTAR.

The cost of feedback control

Motivated by recent interest in the costliness of noise sup-
pression by feedback control (4), we quantified the cost of
implementing the two types of negative autoregulation. In
order to take into account mRNA, sRNA and protein
synthesis, we defined the average cost per molecule of
mean expression (per unit time) for each genetic network
as follows (see ‘Methods’ section):

cost ¼
1

EðXÞ
½EðSmRNAÞCmRNA+EðSXÞCX+EðSsRNAÞCsRNA�;

ð9Þ

where S indicates the number of molecules synthesized per
unit time and C is the energetic cost per molecule. We have
divided by the mean protein level in this definition in order
to make comparisons across systems with widely differing
means.
Lestas et al. (4) emphasize the importance of the

expected number of births of the signalling molecule—in
their framework, mRNA for the NTAR system and
sRNA for the NSAR system—in assessing the costliness
of noise suppression. In the case of the NSAR system, for
example, we also include the effect of different values of
the rate parameters on mRNA and protein births, as well
as allowing for the difference in cost per molecule of
mRNA and of the much shorter sRNA. Lestas et al. (4)
consider the expected number of births of the signalling
molecule (per molecule of mean expression) during the
protein ‘lifetime’, that is the period of time equal to the
reciprocal of the protein degradation rate.
We compared the average cost per molecule of mean

expression for the system with the negative feedback
loop added and for the unregulated system, computing
the ratio of the cost in the former to the cost in the
latter (colour bars in Figures 1 and 3). For NTAR, the
average cost is lower for the regulated system than
the unregulated in roughly half of the cases. The cost
ratio varies between 0.68 and 1.53. There is no obvious
relationship between any of the three measures of noise
control in Figure 3 and the cost effect of adding the
NTAR negative feedback. Figure 4 shows histograms
for NTAR of the proportional increase in average cost
associated with the average observed levels of reduction
in the relative variance for the autoregulated protein and
downstream gene expression (using the data from Figure
3). It is clear from Figures 3 and 4 that for NTAR, sub-
stantial reductions in the relative variance of both the
regulated protein and downstream expression are very fre-
quently observed with little increase in average cost—the
cost ratio remains close to 1. As we discuss below, this
runs counter to some recent interpretations (30) of the
slow decline of the lower limits on the relative variance
in (4) as the measure of the cost of control increases.
For NSAR, the cost ratio is more variable, with a

minimum and maximum of 0.97 and 18.4, respectively
(and a lower average cost under regulation in only 0.5%
of cases). Adding the sRNA-mediated control tends to be
more costly than adding transcriptional control, with a
cost ratio for sRNA greater than the maximum for
NTAR observed in 18% of cases. Broadly speaking, cost
ratios much larger than one for NSAR tend to be
associated with a greater decrease in the relative
variance and in the relative variance of the downstream
gene.

Praxis

Our results have practical implications on a number of
fronts: for experimentalists comparing noise in gene ex-
pression across different systems, for biologists seeking
to understand the role of negative feedback in controlling
cellular variation, and for the construction of synthetic
gene circuits. First, our results caution against comparing
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systems using any single, summary measure of biochem-
ical noise. Negative feedback mechanisms often have a
substantial effect on the mean, the variance and the auto-
correlation of the fluctuations. All of these effects should
be considered. For each mechanism, plotting the loga-
rithm of the variance against the logarithm of the mean
(or the deviation of these variables from suitable reference
values) for different parametrizations or experimental
configurations, as we did, provides informative compari-
sons and better characterizes the strength of noise suppres-
sion. Reporting the dimensionless ratio of the relative
variance for two systems or parametrizations, in
addition to that of the CVs, is recommended.
Second, biologists concerned with understanding the

role of negative feedback should likewise consider its
effect on both the mean and the variance. As we have
explained, it would be misleading to conclude that, since
the CV increases for NTAR on adding negative feedback,
transcriptional autorepression has no biological import-
ance in controlling cellular variation due to intrinsic
processes. Indeed, we found that fluctuations were
almost always suppressed strongly enough by NTAR to
reduce the relative variance. Separate consideration of
effects on the mean and the variance is also important
when the genetic system is subject to regulation by
incoming signals. Negative autoregulation could impair
information transfer (31) despite reducing the (condi-
tional) variances as a result of also reducing the variability
of the mean responses to the different signal values (the
‘dynamic range’). Our finding that NSAR typically has
less effect on the mean response than NTAR suggests
that sRNA-mediated autoregulation could potentially
perform better as a signal transduction mechanism. This
deserves further investigation.
Third, our results suggest that NSAR may have more

limited value than transcriptional autoregulation for noise

reduction in some synthetic biology applications. The per-
formance of NSAR relative to the unregulated system is
considerably more sensitive to rate parameters, which may
themselves be difficult to control in synthetic circuits.
Furthermore, when NSAR suppresses noise more effect-
ively than NTAR, we found that the metabolic cost
imposed on the cell tends to be considerably higher.
More generally, comparing the noise performance of a
proposed synthetic gene circuit, for example in silico,
with the bounds of Lestas et al. (4) in the way we did
can guide a design process. We found that the NTAR
and NSAR gene circuits rarely get close to the optimal
performance.

DISCUSSION

Adding negative autoregulation typically suppresses both
the mean and variance of protein levels compared to the
unregulated gene expression system with the same rate
parameters. We have demonstrated the importance of
quantifying individually and relating both these effects
when characterizing the impact of feedback on biochem-
ical fluctuations. For the broad ranges of biologically
plausible rate parameters we consider, the two effects
usually combine to increase the coefficient of variation
when transcriptional or small RNA-mediated autore-
pression is added to the system. However, the absolute
magnitude of fluctuations is typically suppressed for
both feedback mechanisms, often strongly enough to
decrease the variance of the number of protein molecules
measured relative to the mean. Such reductions in
variance can still benefit the cell, discouraging sole
reliance on the coefficient of variation (CV) as a
summary noise measure. For example, the reduction in
the mean may be of primary phenotypic importance,
and the associated reduction in the variance of additional

A B

Figure 4. The increase in average cost per molecule of mean expression to substantially suppress noise is frequently negligible for transcriptional
autorepression. (A) The histogram of the proportional increase (or decrease) in average cost (Equation 5) incurred in order to decrease the relative
variance by 38 ± 5% compared with the unregulated system (38% is the average reduction observed for NTAR). Data from Figure 3A.
(B) Histogram of proportional increase in average cost as in (A) but for a resultant decrease in the relative variance of the activated downstream
gene (DG) of 52 ± 5% compared with the unregulated system (52% is the average reduction observed for NTAR). Data from Figure 3E.

7092 Nucleic Acids Research, 2012, Vol. 40, No. 15



benefit. By their construction both the CV and relative
variance conflate effects on the mean and variance,
effects that are best also considered individually.

Dynamic properties of protein fluctuations beyond their
variance should be considered, in particular their autocor-
relation properties (14). The variance is the time-average
of the (squared) deviation of the protein level from the
mean over a long time period (for an ergodic system).
Biologically relevant timescales over which some form of
time-averaging by downstream modules takes place may
be considerably shorter, in which case the lifetime of
excursions away from the mean becomes important.
This lifetime can be measured by the autocorrelation
function for the protein level and its autocorrelation
time. We have quantified and explained analytically how
beneficial reductions in both the autocorrelation time
(‘noise whitening’) and in the relative variance of a tran-
scription factor combine to control the noise in down-
stream gene expression, for the case of proportional
transcriptional activation. We find that transcriptional
autorepression whitens noise more substantially and
reliably, compared to small RNA-mediated negative
autoregulation.

We have provided an extensive bird’s eye view and com-
parison of the properties of these two types of negative
autoregulation, rather than relying on approximate ana-
lytical solutions or presenting simulation results for a
limited number of choices of rate parameters.
Transcriptional negative feedback mediated via an inter-
mediate protein species is studied in the Supplementary
Data (Supplementary Figure S1), and is found to offer
no particular benefits compared to the unmediated case.
Our results are exact except for the carefully controlled
variability introduced by Monte Carlo sampling.

It has been previously suggested that translational
autoregulation is a more effective means of attenuating
noise in gene expression than transcriptional autore-
gulation (32) (for parametrizations of the systems having
the same mean protein level and direct binding of the
protein to its own mRNA). The noise properties of
negative, small RNA-mediated translational control
have, however, received little previous attention, despite
the widespread occurrence we find of the feedback motif
from bacteria to humans (Table 1). We report that adding
transcriptional feedback to the existing system is a more
robust and usually less costly means of controlling noise
than adding translational feedback using small RNA—it
is considerably less sensitive to rate parameters. Tran-
scriptional autorepression both reduces relative variance
and whitens the noise by decreasing its autocorrelation
time. Autorepression by small RNA usually reduces the
mean to a lesser extent. Both more extreme noise suppres-
sion than transcriptional control, and a simultaneous
increase in the relative variance and autocorrelation time
are possible.

It would be interesting to perform similarly detailed
comparisons in the presence of extrinsic noise, although
exactly how to specify the extrinsic processes is
challenging. Previous work considering transcriptional
autorepression and extrinsic noise points to the existence
of an optimal feedback strength (20,27,33). Experiments

using chromosomal rather than plasmid-borne genes
should be performed to compare the effect of small
RNA and transcriptional autorepression in living cells—
as discussed, we predict a very different noise signature for
small RNA-mediated negative feedback. Our theoretical
analysis could be extended to include the effects of protein
dimerization, multiple binding sites in promoters, delays
from intracellular transport, noise attenuation due to
macromolecular crowding inside the cell (34), and more
detailed specification of the reactions involved in the
processes of transcription and translation.
We have shown for both types of negative autore-

gulation considered that the relative variance of the
number of protein molecules (RV) is rarely reduced
below the Poissonian value of one, in contrast to predic-
tions based on Hill function inhibition of transcription.
The RV also often substantially exceeds a recently
obtained theoretical lower limit (4) for general feedback
control systems. To the best of our knowledge, we report
the first quantitative comparison of such limits with real-
istic biochemical feedback mechanisms. A relative
variance equal to one is a natural point of comparison
because it is the (greatest) lower bound for the RV of
unregulated, two-stage gene expression and is also the
RV of a stationary birth–death process describing the syn-
thesis and degradation of a molecular species.
The theoretical lower limits (lower bounds) on the RV

discussed by Lestas et al. (4) decrease slowly as one moves
along the ‘frontier’ of optimal control by increasing the
cost of that control. Cost is measured by the expected
number of births of signalling molecules (per molecule
of mean expression) during the protein ‘lifetime’, and the
lower bound on the relative variance is found to decrease
with the square root of births (4). However, it should not
be concluded that biochemical noise suppression is always
a costly business. We find that for transcriptional
autorepression, substantial reductions in the relative
variance of both the autoregulated protein and of a down-
stream gene are very frequently observed with little
increase in the average cost per molecule of mean expres-
sion—the average cost remains close to that of the more
noisy, unregulated system (Figures 3 and 4). The reduc-
tions we report in relative variance are proportional ones,
independent of the units in which protein levels are
measured. The relationship between relative variance
and the costliness of control is expected to be different
away from the frontier of optimal control. Such settings
are relevant because both naturally occurring and syn-
thetic networks may be far from currently achieving the
fundamental mathematical limits. Substantial noise
control can then be implemented by the cell while
incurring a negligible increase (or even a decrease) in the
average cost per molecule of mean expression, as we have
illustrated using a biochemically realistic feedback
mechanism.
Our results challenge preconceptions concerning the

strength and costliness of noise suppression by
autoregulation in genetic networks, and call for experi-
ments comparing transcriptional and small RNA-
mediated control of chromosomal gene expression in
living cells. The disparate signatures on protein noise
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properties, together with the high cost and sensitivity to
rate parameters of the most effective noise control by
small RNA suggest different functional roles for the two
feedback architectures.
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