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Preamble ramble: d[ ◦ ∆ ◦ ]b

Sorry I’m still preambling...

In the present day, we heavily use writing to communicate our thoughts via this
medium we call the internet. So, I will use it to communicate my thoughts to you
dear reader. And yea I want to stamp my identity on this document. I don’t want to
pretend that I am not human and didn’t feel a myriad of emotions related and not
related to the creation of this works. The Sun shines every day, and not knowing the
grammatical rules of this language I might not stick to them and apologize if this
next bit is a sketchy ride into my thoughts. Аз не се шегувам ;) As a child, I was
terrible at sticking inside the lines when colouring in things. And I still am terrible.
So as I write this, I wonder what the writing process is like for you dear Reader. I get
lost and forget I am human until I am reminded otherwise by the needs of my body...

Even at the end, as I write this thing, I still remember the day I began this PhD.
I had no idea of what I was about to embark upon and neither could I imagine the
things I would learn. I was free of expectation, filled with naive innocence, empty of
despair and full of hope. And now? I can imagine the thousands upon thousands
of students that have worked hard so that as a collective we could have the photo-
lithographic technology used to create the laptop in front of me now. The keys I am
pressing, the mouse I move and the screen pixels I now command. Oh deary me, I
wish that no one would have to hold all of those technical details in their head! With
the loss of the naive innocence I once had I appear to have become sad. I believe this
to be due to my observation of how science is portrayed by society and the media in
general.

In 1986, scientists at a conference announced that we, as a collective, are causing
a mass extinction event. An event similar to what had occurred when the dinosaurs
became extinct. This news made it onto page 26 of the New York times, “Action is
urged to save species" By Philip Shabecoff, Special to the New York Times Published:
September 28, 1986. There was 26 pages of thoughts to share that were deemed
more important than then we are annihilating life on our planet. Where as an article
with a title “iPhone 8 production will start sooner than expected, report suggests” by
Andrew Griffin, Independent Newspaper, 08/FEB/2017 makes it near the front of the
technology section in UK newspaper The Independent. I guess us not killing life on
the planet is not profitable. Therefore, you must gives us better technology that will
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save us from our boredom, allow us to escape our problems, be profitable and make
us control the elements with greater ease. This previous sentence is what I feel that
human society is demanding from the scientific collective. This really worries me as
its manifestation, I believe, is that a piece of scientific research will only be funded
depending if it is profitable or it helps other people do things. Whilst helping people
appears kind and noble, helping someone kill a million people is not. For example,
the nuclear bomb... Therefore, helping others is not kind and noble in all cases.
The profitable part, on April/24/1965 Clair C. Patterson published an article named
“Contaminated and Natural Lead Environments of Man” . With this article Patterson
attempted to raise public awareness that our car industry, in particular the leaded
petrol used by cars then, has increased the levels of lead in the environment and the
food chain. He fought against the lobbying power of petrol companies. Even though
his arguments were you are literally killing yourselves and everyone else, the petrol
companies still fought a 20 year campaign to protect their profits which included
funding research which proved Patterson wrong.

Not that I really care about any of this nonsense in the previous paragraph. I just
wanted to point it, sorry. I really like to point out what is obvious in life, like a lamp
post on the road. But I always regret doing such things because it is soo funny when
somebody walks into a post! :D

I am not going to condemn society! No! I live a good life. I am not going
to condemn a society whose best description, I believe, was given by a Hopi1 elder:
You all have watches but have no time. Rushing endlessly and endlessly amidst the
concrete jungles of our metropolitan cities. Physically so close to each other yet I can
not help but feel lonely amongst soo many people. If you look at someone in the eyes
and smile, the reaction of "Why is this person looking at me? What a creep!" occurs
at too high of a frequency in my opinion. yeah ( ◦ ^ ◦ ) The next point I wish to
illuminate is the works of John B. Calhoun, Population Density and Social Pathology,
Scientific American, February 1962. I’m only pointing to it coz I’m too scared to talk
about the details... I don’t think we, as a species evolved to live in hunter-gatherer
communities, are able to handle the amount of human contact we have to deal with
on a daily basis.

Aah, loom and gloom. It’s always there so don’t worry! Of the utmost importance
is to not get up caught up on perfection but on progress. The world is beautiful in all

1The Hopi wikipedia link or something goes here at some point...
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its fractal aesthetics and fragile symmetry. It begins and ends like a story, temporal
and impermanent. But as this day turns to night I wonder, are these things nothing
more than human constructs used to describe the ever changing shapes and forms
that dance in the emptiness of this physical reality? A reality composed of complex
phenomelogical effects that when understood with simple causal principles, an awe-
inspiring feeling arises. Like a living thing it consumes and nourishes the inner depths
of your mind. So come on work yourself harder coz it’s boring when a dancer doesn’t
push themselves to the point at which they might breakdown. Down, and down you’ll
roll on the mountain slopes where you’ll find Truth dotted about everywhere and
create Beauty every time you take a poop (according to the flies anyways). So don’t
worry about a thing, coz you’ve found the elegance of this moment.

The ugliness, I hope you’ve found. What the hell happens in this world? I
don’t even know what space is! There is no set of axioms that can prove their own
consistency and this statement is unprovable. Well isn’t that funny? This statement
is false. I can’t say it’s true or false due to the self-reference within the statement.
I find it very interesting that such paradoxes are created from self-reference; it just
talks about itself. I did this and I did that so I am this. The self: aaaa who am
I? I have no idea, I just know I came out of this world and you can get multiple
reflections if you don’t set your boundary conditions right, then the overall solution
is compromised. But what if you get an infinite number of reflections? Should I even
contemplate infinity? A concept we came up with coz no one could be asked to count
all the natural numbers... I certainly can’t! And so I ask will the square root of minus
one remain after humanity is gone. I dunoo; surely it must! So here’s a self-referring
question: why was the question why created?

We are the universe thinking about itself,
so count the stars

and the number of sunsets you’ve seen.
And tell me what you see,

because I do wonder about you!
Thank you dear reader.

d[ ◦ ∆ ◦ ]b
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Abstract

The terehertz radiation potentially has many interesting applications. From air-
port security, non-destructive evaluations of electronics and space shuttle panels, to
non-ionizing photon energies with the potential to detect cancer growths and quality
control of pharmaceutical tables, the list of potential applications is vast as shown
in chapter 1. However, there is a lack of cheap, robust and efficient THz sources,
detectors and modulators. Further, the long wavelengths render micron sized de-
tails unseeable with far-field imaging techniques. This has rendered most imaging
applications unusable in the real world. This thesis is based around demonstrating an
imaging technique that uses a near-field THz modulator to obtain sub-wavelength im-
ages. There are five distinct experimental demonstrations that show the full capacity
of the imaging technique developed here.

Chapter 2 gives an outline of the background physics knowledge needed to un-
derstand the entirety of the thesis. An outline of the mathematics used for modelling
is given in the latter part of the chapter as well. Chapter 3 gives a background on
the THz generation and detection techniques used in our THz-TDS system, optical
rectification and electro-optic sampling in ZnTe. Further more, our system is capable
of photoexciting a sample in conjunction to it being probed with a THz pulse. For
the most part, we photoexcite a silicon wafer in order to use its photoconductive
properties to modulate our THz pulse. Our photoexcitation pulse is spatially mod-
ulated, via a digital micromirror device, which in turn spatially modulates our THz
pulse. This patterned THz pulse can then be used with a single-element detector to
perform imaging. How to do this and the type of patterns needed is described in the
latter part of chapter 3.

Chapter 4 is the first demonstration that photo-induced conductivity in silicon
can be used to manipulate evanescent THz fields for sub-wavelength imaging. For
this, we imaged a 1D sub-wavelength slit and were able to obtain the slit profile with
65µm (λ/6 at 0.75THz) resolution.

Chapter 5 demonstrates what limits the resolution in our imaging system. Namely,
the distance which the patterned THz pulse propagates to the object from where it



was spatially modulated. We demonstrate 9µm (λ/45 at 0.75THz) resolution using
an ultra-thin (6µm) silicon wafer. At such sub-wavelength scales polarization becomes
an important factor. We show how one can use polarization in order to detect 8µm
breaks in a circuit board hidden by 115µm of silicon.

Chapter 6 concerns itself with showing how noise affects our images. Further more,
our imaging system is compatible with compressed sensing where one can obtain an
image using fewer measurements than the number of pixels. We investigate how
different under-sampling techniques perform in our system. Note under-sampling at
sub-wavelength resolutions, as is done here, is rather unusual and is of yet to be
demonstrated for other part of the electro-magnetic spectrum.

Chapter 7 shows that one does not need to photoexcite silicon. One can in
principle illuminate any material, hence we photoexcite graphene with our spatially
modulated optical pulses. This allows us to obtain the THz photoconductive response
of our graphene sample with sub-wavelength resolution (75µm ≈ λ/5 at 0.75THz).
We compare our results with Raman spectra maps. We find a clear correlation between
THz photoconductivity and carrier concentration (extracted from Raman).

Chapter 8 exploits the full capacity of our imaging system by performing hyper-
spectral near-field THz imaging on a biological sample. For this, in our imaged field
of view, we measured the full temporal trace of our THz pulse at a sub-wavelength
spatial resolution. This has allowed us to extract the frequency dependent permittivity
of our biological sample, articular cartilage, over our spectral range (0.2-2THz). We
find the permittivity to change on a sub-wavelength scale in correlation with changes
in the structure of our sample. However, the permittivity extraction procedures that
have been developed make a far-field approximation. We mathematically show the
presence of the THz near-fields to render the long wavelength spectral parts of our
extracted permittivity to be wrong.

Chapter 9 is where we conclude and point out the main problem that needs to
be addressed in order to make the measurements presented here more accessible to
others. Namely, the cost of the laser system powering the THz-TDS and how to
further reduce the acquisition time.
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Chapter 1

Introduction

1.0.1 A paragraph on the history of THz

The birth of THz science as we know it today can be traced to back the late 1960s
with the studies of the materials responses to the newly developed ultrafast picosec-
ond pulsed lasers. Research continued into improved laser performance and better
fabrication methods of materials needed for the THz detection and generation pro-
cesses, thus the 1990s saw the creation of the standard layout for the modern THz
time-domain spectrometer (THz-TDS). Most THz-TDS are based on photoconduc-
tive antennas (PCA), or on an electro-optical (EO) crystal, being illuminated by a
pulsed laser. Such systems are large, heavy and expensive, thus the development
of more compact commercially utilizable systems has been on going since the late
1990s. Companies such as TeraView (UK), Picometrix (USA), Toptica (Germany),
Advantest (Japan) and Zomega (USA) offer integrated systems of various sizes and
functionalities. A fuller history of terahertz can be found in ref. [1].

1.1 Uses and applications of THz

In the last two decades, the THz frequency range (0.2-2 THz) has attracted a lot
of attention due its unique properties [2–4]. Many many low frequency vibrations of
molecules and solids lie in here [5]. For industrial applications, most non-conductive
materials and non-polar liquids are THz transparent. This is useful for non-invasive in-
spection of many multi-component or buried systems, such as defects in space shuttle
panels [6] and complex electronic circuits [7, 8]. Further, the low photon energies will
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not damage sensitive electronics [9]. THz can also be used in quality control of phar-
maceutical tablets [10, 11]. Most molecules have a unique THz spectral fingerprint,
which allows for the sensing of explosive and illegal substances [12]. Spectroscopic
THz imaging has been used in uncovering the material composition and substructure
of paintings, murals or frescoes [13].

For bio-medical applications the non-ionizing THz photon energies are of great
interest for biological tissue evaluation [14, 15]. Further, the high THz sensitivity
to polar molecules are qualities of much interest in the diagnosis of cancer [4, 16].
Here, cancerous cells greater absorption coefficients compared to healthy cells. More-
over, many low-frequency vibrational modes of biological molecules in aqueous media
lie in this frequency range, allowing THz spectroscopy to identify and characterize
inter-molecular bonding in amino acids [17], sugars [18], DNA [19] and proteins [20],
as well as dynamics at biomolecule-water interfaces [21] and in photoactive proteins
[22]. Furthermore, long-range collective vibrational modes, which mediate structural
changes and the reaction coordinates critical to the function of active proteins [23],
normally manifest themselves at THz frequencies. Whilst THz spectroscopy can
readily identify such vibrational modes [24], there are several difficulties in the deter-
mination of structural features of these systems. These are discussed in the section
below.

1.2 THz imaging technology now

To image with EM-radiation one must detect and generate said wavelengths. Unlike
the visible regime, materials that exhibit bandgaps in the THz regime are few. This
has rendered THz technology to be cumbersome and expensive. For generation of
CW THz there exist: far-infrared gas lasers [25], germanium THz lasers [26], quantum
cascade lasers [27] and free-electron lasers [28] to name a few. All of these sources
are either expensive or lack broadband tunability (≥ 0.5THz). There are broadband
pulsed THz sources, namely photoconductive antennas [29], non-linear crystals [30]
and plasma mixing in air [31]. These methods are commonly used in THz-TDS
systems due to their broadband frequency range and picosecond temporal resolution.
However, they have weak field strengths and are powered by expensive, large, amplified
femtosecond laser systems [32]. Recently, the size and cost of a THz-TDS has been
highly reduced by dispensing away the amplified laser system and using a femtosecond
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solid state laser instead [33].
For thermal detection of THz there exist bolometers [34], pyroelectric detectors

[35] and Golay Cells [36]. Further, THz detector arrays exist but they are typically low-
bandwidth or require cryo-genetic temperatures for operation [37, 38]. Nevertheless,
there is progress [39]. These are typically used to detect CW sources. Picosecond
THz pulses are detected in THz-TDS systems via photoconductive antennas [29] and
with non-linear crystals [30]. These are normally limited by photoexcited saturation of
charge carriers [40] and crystal phonon absorption resonances [41] respectively. THz
detection using air ionized plasma is free of such limitations [42] giving rise to larger
bandwidths, however this method can only be used for far-field detection to prevent
sample damage from plasma filament.

Near-field THz imaging is typically done by scanning a tapered metal tip in the
near-field of a sample. One of the initial demonstrations of this technique achieved
λ/4 resolution [43]. It is also possible to use a vibrating metal tip, as in the case
of apertureless near-field scanning optical microscopy, to yield a resolution of a few
µm [44]. Alternatively, one can use THz fields to modulate the bias in a scanning
tunnelling microscope, which yields a resolution of a few nm for some specific samples
[45–47]. However, these tip scanning methods are inherently slow and invasive [48].
Image acquisition speed can be improved by placing an EO detection crystal in the
near-field of a sample [49]. However, this requires a complex detection scheme.

In regards to biological imaging there is two main problems. The first problem,
owing to the long wavelengths employed (λ=300µm at 1THz), near-field approaches
are required to get sub-mm resolution. However, imaging techniques involving scan-
ning near-field tips can perturb the sample or require nm-flat surfaces. This renders
the techniques of refs [43–47] unusable. The second problem, samples have to be kept
hydrated for normal biological function to be maintained, which is problematic due to
the large THz absorption of water [50]. For this, it is usually necessary to encapsulate
biological samples to maintain hydration, severely restricting the resolution achiev-
able by scanning apertures, and the apertures themselves typically have a very strong
frequency response [51] making them unusable for spectroscopic applications. For
these reasons, subwavelength spectroscopic THz measurements of biological samples,
although existent [52–54], have been plagued by problems. Consequently, biological
imaging has mostly been restricted to large structures such as organs [55, 56].
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1.3 Imaging with single-element detectors

Imaging with a single-element detector has been around since the 1970s [57]. How-
ever, at that time the spatial encoding masks had to be physically made thus rendering
these techniques awkward to use. Furthermore, imaging with a single-element detec-
tor requires that measurements have to be taken sequentially (as opposed to in parallel
as is done with detector arrays) which hinders the acquisition rate. These two things
prevented their wide spread use. However, in recent years there has been increased
attention towards such imaging techniques. There are two reasons. First, the devel-
opment of spatial light modulators, such as digital micro-mirror devices (DMD), has
enabled one to spatially encode a beam of radiation without making a physical mask.
Second, such techniques are compatible with compressed sensing [58], a field born in
2006 with two papers [59, 60], where one obtains an image using fewer measurements
than the number of pixels.

Imaging with a single-element detector has been implemented in the THz regime
[61–66]. All of these works use photoconductivity in semiconductors in order to create
a THz spatial modulator (details of this are given in chapter 3). However, all these
studies have been performed in the far-field, hence the spatial resolutions are around
0.5mm. Finally, it does need to be noted that using photoconductivity in semicon-
ductors for near-field THz imaging has been performed in 2000 [67]. However, spatial
light modulators were non-existent when this proof-of-principle demonstration was
first performed. Therefore, they were limited to raster scanning a single focal optical
spot. This resulted in near-field tip scattering techniques [43–47] outperforming the
technique of ref. [67].

1.4 This thesis

This thesis performs near-field THz imaging with a single-element detector. This is
achieved by the placing our THz spatial modulator, a silicon wafer pumped with optical
light, in the near-field of the object to be imaged. We demonstrate sub-wavelength
spatial resolution (9µm ∼ λ/45 at 0.75THz) whilst been able to under-sample our
images (we measure down to 35% the number of measurements as the number of
pixels). Under-sampling at sub-wavelength resolutions is yet to be experimentally
demonstrated even in the visible regime. Further more, we have a hyperspectral
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detector with which we are able to extract the near-field permittivity of a sample (see
ch. 8). Whilst certainly impressive, our technique is very slow with the acquisition
of a single image taking hours. The reason for this slow acquisition rate is that we
use a high-power low-repetition rate laser system1. We use this high-powered laser
because in order to achieve good THz modulation one has to photoexcite a silicon
wafer with a lot of power. The need for this large pump power is the biggest drawback
to our technique. A smaller drawback that needs to be mentioned is that this is a
complicated setup requiring the temporal synchronization and the spatial alignment
of three beams: a THz beam, an optical pump and a detection probe pulse.

1The laser system had a 1050Hz repetition rate with 3mJ energy per pulse (duration 100fs).
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Chapter 2

Background Electromagnetic
theory

2.1 THz interaction with matter

This entire work lays its foundations upon Maxwell’s macroscopic equations:

∇ ·D = ρf , (2.1)

∇ ·B = 0, (2.2)

∇× E = −∂B
∂t
, (2.3)

∇×H =
∂D

∂t
+ Jf , (2.4)

where ρf and Jf are respectively the free charge and current densities within some
space. The macroscopic fields D and H are defined as

D ≡ ε0E + P = εE, (2.5) H ≡ 1

µ0

B−M =
1

µ
B, (2.6)

where ε0 and µ0 are respectively the permittivity and permeability of free space with
ε and µ being the electric permittivity and the magnetic permeability of a mate-
rial, respectively. The polarization P and magnetization M hold the macroscopic
information regarding the properties of the medium in mind.
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2.1.0.1 Boundary Conditions at a surface discontinuity

The above equations are stated for regions of space where there is no discontinuity
in the material properties of the medium. However, objects exist causing abrupt
changes in the material properties needed to describe the scene in mind. These
changes impose boundary conditions to the electric and magnetic fields across the
surface of such discontinuities. These boundary conditions are only stated here due
to their immense importance in all electro-magnetic phenomena and for the sake of
completeness;

n12 · (B(2) −B(1)) = 0, (2.7)

n12 · (D(2) −D(1)) = ρs, (2.8)

n12 × (H(2) −H(1)) = js, (2.9)

n12 × (E(2) − E(1)) = 0, (2.10)

where ρs and js are respectively the surface charge and current densities across the
discontinuity and n12 is the vector normal to the surface. In words, these boundary
conditions can be stated as: The normal component to the magnetic induction and
the tangential electric field are both continuous across the discontinuity, and the
normal electric displacement and tangential magnetic fields change abruptly with
their discontinuities respectively equaling ρs and js × n12. A full derivation of these
boundary conditions can be found in chapter 1.1.3 of ref. [68].

2.1.1 Wave equation and Fabry-Perot

From Maxwell’s equations, we next obtain the wave equation for the electric field.
This is accomplished by putting eqs. (2.4), (2.5) & (2.6) into the curl of eq. (2.3)
and simplifying with the vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A;

∇2E− εµ∂
2E

∂t2
= µ

∂Jf
∂t

+
1

ε
∇ρf . (2.11)

Further simplifications are made with Ohm’s law Jf = σE and neglecting charge
density fluctuations, ie. ∇ρf = 0, to then obtain

∇2E− εµ∂
2E

∂t2
= σµ

∂E

∂t
, (2.12)
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where σ is the electrical conductivity. An identical wave equation is obtained is for H
in an identical manner. In the case of free space propagation, σ = 0, ε = ε0, µ = µ0,
one obtains c = 1/

√
ε0µ0 as the speed at which an electromagnetic wave moves

through a vacuum. In other words c is the speed of light. However, should σ = 0,
ε 6= ε0 and µ 6= µ0 then the wave propagates with speed v = c/n where n is the
refractive index of the material given by n2 = εµ

ε0µ0
.

Having an equation only sets up the problem and does not yield insight or infor-
mation regarding the observable world. For this reason, we look for solutions to the
wave equation that are expressed as linearly polarized, monochromatic, plane waves
traveling in the z-direction with wave-vector k = kzẑ, ie:

E(r, t) = E0e
i(kzz−ωt). (2.13)

Putting this equation into eq. (2.12) yields the following dispersion relation

k2z = ωµ(εω + iσ). (2.14)

This relationship determines how a wave propagates in a medium with specific elec-
tromagnetic properties ε, µ, σ. In the case of a dielectric or an insulator σ ' 0 hence
kz is purely real. Then the wave propagates as

E(r, t) = E0e
i(ω
√
µεz−ωt) (2.15)

and experiences no decay provided µ and ε are both positive and real. In a conductor,
however, the conductivity is very large such that σ � εω thus k2 ≈ iωµσ. Evidently

k = kr + iki ≈
√
ωµσ

2
(1 + i), (2.16)

where kr and ki are the real and imaginary parts of the k vector. In this case the EM
wave propagates as

E(r, t) = E0e
i(ωµσz/2−ωt)e−z/d, (2.17)

where d =
√

2
ωµσ

is known as the attenuation length or skin depth. This value
indicates how far the wave will penetrate before being attenuated.

8



2. Background Electromagnetic Theory

2.1.1.1 Reflections at Boundaries

We now have a plane wave as a simple solution to our wave equation. If we input
this into ∇ ·E = 0 and ∇ ·H = 0 we observe the following relation

k ·E = k ·H = 0. (2.18)

This relationship implies that E and H are both perpendicular to the direction of
travel, hence EM waves are transverse. A consequence of this is that if one considers
transmission through an interface between two media of different refractive indices,
then the wave can be polarized perpendicular or parallel in regards to the plane
incidence (Figure 2.1). This consequence combined with the continuity boundary
conditions at the surface, in §2.1.0.1, implies that you get different reflection and
transmission coefficients depending on how your incident light is polarized. This fact

Surface

θ1
θ1

θ2

ki

kr

kt

n1

n2

E


E⊥

plane of 
incidence

Figure 2.1: Reflection and transmission of a plane wave at a surface between two
mediums with different refractive indices. Shown are the incident, reflected and
transmitted k vectors in blue, and shown with the pink and green arrows is wave
polarization parallel and perpendicular to the plane of incidence respectively.

when combined with Snell’s law of refraction

n1 sin θ1 = n2 sin θ2, (2.19)

where n1,2 are the refractive indices of the two mediums and θ1,2 are the angles of inci-
dence and refraction, yields the famous Fresnel amplitude reflection and transmission
coefficients:

9



2. Background Electromagnetic Theory

r‖ =
n2 cos θ1 − n1 cos θ2
n1 cos θ1 + n2 cos θ2

, (2.20)

t‖ =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
, (2.21)

r⊥ =
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

, (2.22)

t⊥ =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
. (2.23)

Furthermore one defines the Reflectivity and Transmissivity as R = |r|2 and T =

n2|t|2/n1.

2.1.1.2 Fabry-Perot Interference

The above consideration would hold absolutely true if our world was made from solely
two materials. Obviously untrue, hence the next step of extending our mathematical
model of the world is to consider the scenario when the second material is of a finite
thickness L. When a plane arrives at the incident interface it will split into a reflected
and a transmitted component. Then, the transmitted part will come up against the
second exit interface and split again. The consequential reflected component will split
again at the other interface. This process will carry on going indefinitely. Further,
every time the wave travels through the dielectric it will pick up a phase shift, between
each preceding member of the set of reflected or transmitted waves, of

φ =
2πf

c
Ln2 cos θ2, (2.24)

where f is the frequency of the wave. A Fabry-Perot resonance is defined as when
all the components resulting from each individual splitting of the wave interfere con-
structively. Now, if one considers the superposition of all these waves then the total
transmitted field Et is given by

Et = Eit1t2e
iφ(1 + r1r2e

2iφ + r21r
2
2e

4iφ + ...

= Eit1t2e
iφ

∞∑
n=0

(r1r2e
2iφ)n

= Ei
t1t2e

iφ

1− r1r2e2iφ
,

(2.25)

10
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n1

n1

n2 L

θ1

θ2

r1

r2

t1

t2

Et

Ei

Figure 2.2: Reflection and transmission of a plane wave undergoing multiple reflections
within a dialectic.

where t1, t2, r1, r2 are the relevant Fresnel coefficients in fig. 2.2. A more detailed
derivation is given in ch. 7.6.1 of ref. [68] along with the equation for reflection;

Er = −r2(1− (r22 + t1t2)e
2iφ

1− r22e2iφ
Ei. (2.26)

These two equations (2.25) & (2.26) do need to be considered if one wishes to do
a reflection or transmission experiment through any material. In THz measurements
they are also used to extract permittivity of an unknown material, as outlined in
§3.2.1.

2.1.2 Fundamental models of matter

So far, the previous sub-sections have assumed that the materials properties, ε, µ and
σ, do not change with the frequency of the EM wave. This is false for all materials
in an absolute sense, however for certain frequency ranges this can be approximately
true and such materials are called dispersion-less. However, most materials do change
with frequency since everything contains atoms and electrons which interact with an
incident EM wave.

2.1.2.1 Classical Lorentzian

For an improved mathematical description of the world the classical Lorentzian model
was developed. It accounts for the response of charged and bound particles to an

11
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incident EM wave. Here, one assumes that a bound charge oscillates about its equi-
librium position and thus has a potential energy given by a simple harmonic oscillator
of frequency ω0 and mass m:

U(x) =
1

2
mω2

0x
2. (2.27)

Then the charged particle will experience a restoring force Fr from F = −∇U .
Further more, there will be a damping term Fd and a force from the incident electric
field FE. Combining these forces into Newton’s second law gives;

m
d2x

dt2
= Fr + Fd + FE

= −mω2
0x−mγ

dx

dt
+ qE,

(2.28)

where γ is the phenomelogical damping rate and q is the charge of the charged
particle. If we say that we have a scalar monochromatic linearly polarized EM wave,
ie. it is of the form of eq. (2.13), then the solution to eq. (2.28) is given by

x(t) =
qE0e

−iωt

m(ω2
0 − ω2 − iγω)

. (2.29)

Now one knows the electric dipole moment per charged harmonic oscillator p(t) =

qx(t). Hence, for a medium with N oscillators per unit volume we have an electric
polarization of

P (t) = Nqx(t) =
Nq2E0e

−iωt

m(ω2
0 − ω2 − iγω)

≡ ε0χ(ω)E0e
−iωt, (2.30)

where χ(ω) is the linear susceptibility of the medium. Now if we consider eqs. (2.5)
and (2.30) we can define the relative permittivity of our medium

εr(ω) ≡ ε(ω)

ε0
= 1 + χ(ω) = 1 +

Nq2

mε0(ω2
0 − ω2 − iγω)

(2.31)

with real and imaginary parts εr = ε′r + iε′′r , given by

ε′r =
Nq2(ω2

0 − ω2)

mε0((ω2
0 − ω2) + ω2γ2)

(2.32)

12
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ε′′r =
Nq2ωγ

mε0((ω2
0 − ω2) + ω2γ2)

(2.33)

In terahertz this model is most often used to account for the absorption caused by
crystal lattice vibrations.

2.1.2.2 Drude model

In the section above the charged particle is bound in space, however the scenario of
it being free to move about in space is also possible. To account for such a response
the Drude model was developed. Its assumptions are that we have a sea of mobile
electrons and a set of stationary positively charged ions constituting our medium.
The mobile electrons freely move in only straight lines unaffected by any other forces
except those in the instantaneous (assumed to be so) collisions with the impenetrable
ion cores (electron-electron collisions conserve momentum hence no change to the
current). The electrons collide with the ion cores on average after time τ . This is
the only mechanism by which they reach thermal equilibrium, hence we assume that
each collision randomizes the velocity with a speed appropriate to the local thermal
conditions.

With the above assumptions we can find the DC electrical conductivity of a ma-
terial. This is done by considering the current density created from N electrons per
unit volume moving through a surface area perpendicular to velocity of the electrons
v. The charge carried by each electrons is −e, hence the current density is simply

J = −Nev. (2.34)

Now, if we apply an electric field E then after time t an electron’s velocity will be
v = v0 − eEt/m, where v0 is the electron’s velocity after its previous collision. Due
to the velocity randomization through each collision v0 averages out to zero. Since
each collision occurs on average after time τ , we have

vavg = −eEτ
m

; J =
Ne2τ

m
E, (2.35)

where vavg is known as the electron drift velocity. From Ohm’s law we can see that

13
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the DC conducivity, σ0, of a metal is

J = σ0E; σ0 =
Ne2τ

m
. (2.36)

In practice we don’t know τ but by measuring the conductivity we can estimate values
for it.

With the above assumptions, the Drude response of a medium to a monochromatic
wave can be characterized by that of a Classical Lorentzian oscillator centered at zero
frequency and a damping rate equal to the probability of collision per unit time, ie.
ω0 = 0 and γ = 1/τ in eq. (2.29). However, we are interested in the velocity not
position so we can use eq. (2.34) to obtain

σ(ω) =
Ne2τ

m(1− iωτ)
=

σ0
1− iωτ

(2.37)

as the AC conductivity of our material. Now, if we turn our attention to the wave
equation (2.12) describing our EM wave and say µ = µ0, we can see that it can
written in the form

∇2E = −ω2µ0

(
ε+

iσ0
ω(1− iωτ)

)
E. (2.38)

This yields the following dispersion relation for our monochromatic wave;

k2z = ω2µ0ε0ε(ω); ε(ω) = ε∞ +
iσ0

ε0ω(1− iωτ)
, (2.39)

where ε∞ is the frequency independent dielectric permittivity due to the contribution
of bound charges and ε(ω) is known as the Drude permittivity.

If we now consider the case of ωτ >> 1 we can see that our Drude permittivity
approximates to

ε(ω) = ε∞ −
Ne2

mε0ω2
= ε∞ −

ω2
p

ω2
, (2.40)

where ωp =
√
Ne2/mε0 is known as the plasma frequency of the material. Since

kz ∝
√
ε(ω) then when ω2ε∞ > ω2

p we have a purely real dispersion relation thus
the wave propagates inside the material. For ω2ε∞ < ω2

p we have a purely imaginary
kz signifying that the waves decay inside the material at the rate given by ki(ω) =
1
c

√
ω2
p − ε∞ω2.
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2.1.2.3 Quantum Models of Charge carriers

The Free-Electron model was developed to better understand solids and the conduc-
tion of electrons through metals. It considers the valence electrons of a material and
makes similar assumptions to the Drude model along with taking into account Quan-
tum theory and Pauli’s exclusion principle. This model gives insight into the thermal
and electrical conductivity, heat capacity and electrodynamics of metals. However, it
fails to point out the distinction between metals, semiconductors and insulators. To
understand this distinction the Nearly Free-Electron model was developed.

The Nearly Free-Electron model makes a step further by taking into account how
the conducting electrons experience a potential energy variation due to the lattice
arrangement of the positive ion cores within a crystal. This model gives intuitive
insight into the observed band structure of solid matter, in other words why there
exist electrons with momentum values which do not propagate through the crystal.
This is done by considering the Bragg reflection condition within the first Brillouin
zone of the crystal lattice in mind; one sees that two different standing waves can be
set up from the periodicity of the lattice. One piles up electrons on top of the positive
ions and the other in between the ion cores. Due to the attractive forces between
the negative electrons and positive cores, the first wave has a lower total energy. The
difference in two energies is known as the energy gap, Eg.

The size of the energy gap between the conduction and valance electron bands
determines whether a material is a metal, a semiconductor or an insulator as follows;
metals have no energy gap hence there is always filled states in the conduction band,
semiconductors have a small gap thus it is easy to excite electrons into a conducting
state and insulators have a large energy gap hence a lot of energy is required to force
electrons to become conducting (shown in Fig. 2.3). Another important feature to
consider here is when an electron is excited into the conduction band a vacant orbital
is left in the valance band, which is referred to a hole. Holes act though as they
are an electron with positive +e charge and mass mh = −me in applied electric and
magnetic fields. In other words, they contribute to the overall current within our
material. Thus, they are considered as charge carriers along with the electrons. Both
these charge carriers do not behave like their counterparts in free-space. To account
for this a theoretical simplification is made by saying electrons and holes behave like
free-space particles with an effective mass m∗.

Next, we define the charge carrier mobility as the magnitude of its drift velocity
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Figure 2.3: Band structures of metals, semiconductors and insulators. The Fermi
level shows where the electron states are filled up to. Taken from hyperphysics

per unit electric field, ie µ = |vavg|/E or µ = qτ/m∗ from consideration of eq. (2.35)
[69]. Then the electrical conductivity of our medium is

σ = Neeµe +Nheµh, (2.41)

where µe & µh are the electron and hole mobilities respectively. Further, the conduc-
tion electrons and holes will diffuse according to the 3D diffusion equation. Hence,
their mean square displacement is

< x2 >= 6Dt, (2.42)

where D is the diffusion coefficient given by the Einstein-Smoluchowski relation,
D = µqkBT/q where µq is the mobility of the charge carrier given earlier in this
paragraph.

2.1.3 Material properties at THz

2.1.3.1 Conductors

The terahertz response to highly conductive mediums such as metals is well accounted
for by the Drude model. The typical relaxation times of metals are on the order of
10−14s implying that ωτ << 1. This reduces σ(ω) and ε(ω) in eqs. (2.39) and (2.37)
respectively down to σ(ω) = σ0 and ε(ω) ≈ iσ0/(ε0ω). This yields a reflectivity of
R(ω) ≈ 1 −

√
8ε0ω/σ0. In the end, typical metals with conductivities on the order

of 107 S.m−1 have a penetration depth of 400 nm and a reflectivity of 98-99%, table
2.1 show reflection values of common metals. Metals are used as THz reflectors.
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Table 2.1: THz reflectivity of metals, uncertainty ±0.1%. From [70].

Metals R at 0.58THz R at 2.55THz
Copper 0.997 1
Silver 0.996 0.995
Gold 0.994 0.994

Aluminium 0.995 0.994
Nickel 0.994 0.991

Chromium 0.993 0.974

In regards to THz applications, transparent conductors such as tin doped indium
oxide (ITO) are very interesting. The visible light transmittance of ITO is reported
to be around 90%. Its conductivity is on the order of 106 S.m−1 yielding a reflectivity
of 98% at 1 THz. This allows for the creation of a THz reflector that transmits an
optical beam.

2.1.3.2 Glass and polymers

Ordinary glasses exhibit high losses due to charged defects at THz and thus are
not used as optical elements. Much more transmissive materials include polymers,
dielectrics and semiconductors. Polymers give on average an absorption coefficients
around 0.4 cm−1 at 1 THz [71] and typical refractive indices of around 1.5 [72].
Due to their refractive indices polymers can be used as THz lenses, however their
absorption coefficients increase with frequency as shown by Fig. 2.4. A mention
goes to Tsurupica, a highly transparent polymer for both THz and visible light with
a refractive index of 1.52 for both bands.

2.1.3.3 Semiconductors

Silicon is probably going to be one of the most crucial materials for device develop-
ment at Terahertz frequencies; the reasons are because it’s very transmissive, nearly
dispersionless and there is an advanced Silicon manufacturing industry which supplies
highly quality cheap Silicon quickly, a feature useful for any realistic experimental-
ist. Further more there is a rich literature regarding its mechanical and electrical
properties.

Silicon refractive index was measured to be 3.4175 and to vary by ±0.0001 over
the frequency range of 0.5-4.5 THz. Its absorption coefficient was measured to be
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Figure 2.4: Absorption coefficients of some polymers versus frequency in the range of
2-12 THz. Polymers shown are: High-density polyethylene (HDPE), Teflon (PTFE),
Polypropylene (PP) and Polymethylpentene (TPX). Figure from [71].

0.04 cm−1 at 1 THz [73]. Silicon is commonly used in THz lenses. An extra point,
the plasma frequency of highly resistive Silicon lies below the terahertz regime. How-
ever, by modulation of free charge carrier concentration one can switch the material
response from dielectric to conductor (see §3.3).

One way of controlling the carrier density is via optical excitation with photons
of energy h̄ω, further discussed in §3.3. Reference [74] was the first to demonstrate
amplitude, phase and frequency modulation of THz via the optical excitation of silicon.
More recently, people have built upon these ideas to create an optically modulated
wire-grid polarizer [75] and to image objects by creating an imaging mask [61] in
Silicon. There are other materials which have similar properties such as InSb and
GaAs.

2.2 Image theory and Fourier Optics

When light impinges upon an object it is scattered from it in all directions. Then,
how this scattered light reaches our eyes, or an external detector, is the prime concern
of imaging theory. Rephrased in modern terms, how is a set of EM-field disturbances
at point A related to a set at point B. Below is an overview of the theories used for
modeling in this thesis.
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2.2.1 Scalar diffraction theory

Although light is a vectorial wave, many initial imaging experiments showed remark-
able agreeance with scalar diffraction theories. In other words, the Cartesian compo-
nents of an EM-field are not coupled together, by Maxwells eqs. (2.1-2.4), but the
behavior of each individual component is summarized by a single scalar wave equation
[76]

∇2U(p, t)− n2

c2
∂2U(p, t)

∂t2
= 0, (2.43)

where U(p, t) represents the scalar field components at position p and time t. Now
one needs to impose some boundary conditions describing the object in mind. After
solving the resulting equation one can calculate how the field distribution at the object
will propagate to any point of observation. However, different theories make various
assumptions to obtain a solution.

Next, we follow the work of ref. [77]. Therein, by assuming a monochromatic
wave and that all scatterers, sources and diffracting apertures are located in negative
z-space Kowarz obtains a solution to eq. (2.43) for positive z-space. His expression
for the electric field U(x, z) is the sum of two parts, a homogeneous propagating field
Uh(x, z) and an evanescent field Ui(x, z):

Uh(x, z) =

∫
|ux|≤1

A(ux)e
ikuxxeikz

√
1−u2xdux, (2.44)

Ui(x, z) =

∫
|ux|≥1

A(ux)e
ikuxxe−kz

√
u2x−1dux, (2.45)

where ux is the directional wavevector, k is the free space wavenumber in x and
A(ux) is a spectral amplitude function that is the Fourier transform of the scatterer’s
field distribution in the plane z = 0, ie.

A(ux) =
k

2π

∫ ∞
−∞

U(x, 0)e−ikuxxdx. (2.46)

From the above three equations one can calculate the diffraction of a field distribution
U(x, 0) at any plane in positive z space. Note, the intensity is defined as I(x, z) ≡
|U(x, z)|2 = |Uh(x, z) + Ui(x, z)|2.

A technical note, in our experiments we have multiple frequencies. To account
for this, we sum the diffracted fields for all our frequencies, where each frequency
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component has an input amplitude given by our pulse spectrum (fig. 3.1B) and
a silicon equivalent wavelength. Finally, for ch. 5 we extend this theory to two
dimensions by considering the 2D Fourier transform of eq. 2.46 and adding an extra
integral over uy1 in eqs. 2.44 & 2.45.

2.2.2 Vectorial modal matching theory

It is always of preference to use simpler mathematical models to describe the world.
However, these usually come with assumptions and restrictions rendering them un-
usable in certain scenarios. Namely, polarization effects are neglected by the scalar
diffraction approximation in the above section. For this reason, next follows an outline
of a full wave modal matching solution to Maxwell’s equations. Note that this theory
was used in Ch. 4 and 8, however the method is outlined using the simpler equations
of Ch. 8.

PEC

Silicon

x

z

w
hp

hsi

(0,0) Region: I

II

III

IV

Figure 2.5: Schematic showing the variable definitions used in the modal matching
calculations of Sec. 2.2.2. hp = 11µm is the penetration depth of our 800nm pump
light [78], hsi = 104µm is the thickness of our silicon wafer minus hp. PEC stands
for perfect electrical conductor.

The time dependent components of the fields (eiωt) have been omitted for clarity.
We begin by sectioning our system into four regions along the z-axis direction, shown
by Fig. 2.5. Region I extends to the half space on the incident side of our system.
Using the angular spectrum representation [76, 77] we have a normally incident plane
wave and a reflected component that is a superposition of plane waves propagating
away from the sample, written

E1x = eik1,z(0)z +

∫ ∞
−∞

Ar(vx)e
−ik1,z(vx)zeivxxdvx, (2.47)

1Note the square root terms become
√

1− u2x − u2y and there is an extra eikuyy term.

20



2. Background Electromagnetic Theory

where vx is the directional wavevector in x, Ar(vx) is a spectral amplitude function
and k1,z(vx) =

√
(n1k0)2 − v2x. In the region II we have a perfectly conducting film

with single slit of some refractive index, where the infinite conductivity approximation
simplifies boundary conditions. Our fields are represented by the modes of a cavity.
For simplicity, we choose polarization perpendicular to our cavity, thus the electric
field parallel to the interfaces of the conducting sections will be zero. Boundary
conditions will thus dictate that the fundamental mode of our cavity is described by
a rectangle function. This is written

E2x =
(
G1e

ibzz −G2e
−ibzz

)
rect

( x
w

)
(2.48)

where bz = n2k0 is the wave vector inside the cavity, w is width of cavity. In region
III, containing an arbitrary dielectric, we have two sets of wave superpositions, each
travelling in opposite z directions, written

E3x =

∫ ∞
−∞

F1(vx)e
ik3,z(vx)zeivxxdvx −

∫ ∞
−∞

F2(vx)e
−ik3,z(vx)zeivxxdvx, (2.49)

where k3,z(vx) =
√

(n3k0)2 − v2x. Finally, in region IV we have a transmitted com-
ponent that is a superposition of plane waves propagating away from the sample in
the positive z direction:

E4x =

∫ ∞
−∞

At(vx)e
ik4,z(vx)zeivxxdvx, (2.50)

where k4,z(vx) =
√

(n4k0)2 − v2x. All Ey components are zero due to our choice
of geometry and incident polarization. From the free space Maxwell’s equations
∇ ·E = 0 and ∇× E = −µ0∂H/∂t we obtain the z electric field components, and
also the subsequent expressions for the magnetic H-fields.

We now have the electric and magnetic components in all regions of space in
terms of six unknow functions Ar(vx), G1,2, F1,2(vx) and At(vx). We solve for these
by applying boundary conditions: the electric fields must be continuous for all x space
at the interfaces between adjacent regions, while the magnetic fields are continuous
only over our defined apertures [79, 80]. Hence, for the interface between regions I
and II at z = 0 we end up with E1x = E2x for the electric and H1y = H2y for the
magnetic continuity equations. Substituting eqs. (2.47) and (2.48) into the E-field
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continuity equation for the interface at z = 0, and taking its Fourier transform1, we
end up with

δ(vx) + Ar(vx) = (G1 −G2)Q(vx) (2.51)

where δ(vx) is the delta function and Q(vx) is the Fourier transform of the rect
function, ie.

Q(vx) =
1

2π

∫ ∞
−∞

rect
( x
w

)
e−ivxxdx. (2.52)

The H-field continuity equation at the same interface, z = 0, gives

kz(0)−
∫ ∞
−∞

Ar(vx)e
ivxxO(vx)dvx = qz (G1 +G2) rect

( x
w

)
(2.53)

where O(vx) = v2x+k1,z(vx)
2

k1,z(vx)
in eq. (2.53). We now substitute Ar(vx) from (2.51)

into (2.53) and integrate the resulting equation over the values of x for which the
magnetic continuity equations hold (the non-conducting regions), obtaining

kz(0)w −
∫ ∞
−∞

(
(G1 −G2)Q(vx) − δ(vx)

)
Ih(vx)A(vx)dvx = qz (G1 +G2)w,

(2.54)

where

Ih(vx) =

∫ w/2

−w/2
eivxxdx. (2.55)

Notice that the field amplitudes in the cavities in region II do not depend on the
directional wavevector vx and thus can be taken out of the integral in eq. (2.54). A
similar consideration of the remaining interfaces between the regions is carried out;
in the end we obtain six simultaneous equations which are solved for all six amplitude
coefficient functions via matrix methods. We can now plot the electric & magnetic
fields in any region of space for any choice of parameters (w, λ, n3, ...). In doing so,
we must numerically evaluate the overlap integrals resulting from these mathematical
manipulations. For example, the integral∫ ∞

−∞
Ih(vx)O(vx)Q(vx)dvx (2.56)

1The Fourier transform is allowed since the E-fields are continuous for all x and the integration
equates the fields for all x. However, a Fourier transform of a the H-fields is not possible since they
are not continuous for all x space.
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2. Background Electromagnetic Theory

arising from eq. (2.54) is numerically evaluated using a Riemann sum over the interval
[-125 000, 125 000]m−1 with 350 sampling points, each evaluated at the midpoint
of the respective subintervals between the sampling points. Note that numerical
instabilities were encountered when vx = n1k0 since O(vx) diverges to infinity at this
point. These instabilities were solved by excluding the values around these poles1.
The full mathematical workings as performed with Wolfram Mathematica is given in
the appendix.

Use of Model

Our main use for the model in the section 2.2.2 is to investigate the validity of the
permittivity extraction procedure of chapter 3.2.1. Briefly, this procedure involves
solving the Fresnel equations for the transmission through our multilayer system with
and without the sample. This is emulated in our model by calculating the far-field
transmitted component, i.e. (2.50) for vx = 0, when n3 =

√
7.5 + 2i and again when

n3 = 1. In both cases we set n1,4 = 1.58 in order to take into account the effect of
the plastic coverslips encapsulating our sample and n2 = 3.44 to model our silicon
photomodulator. In our experiments we use a multi-aperture approach, meaning
that our final amplitudes result from the addition of fields due to different sized
apertures and scatterers. This is also emulated in the model by calculating (2.50) for
a discrete range of values of w and then carrying out a complex summation of these
fields, i.e.

∑
wi
E4x(wi). These fields are then processed in a manner similar to the

experimentally measured fields, as described in §3.2.1, so as to extract a frequency
dependent permittivity of the sample layer.

1To be sure that excluding the poles did not affect the output value, we used the various
intergration algorithms built in to Wolfram Mathematica 9 to obtain consistent values between all
these algorithms. The Riemann sum was chosen for the final evaluation due to its speed.
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Chapter 3

Experimental

This chapter gives the experimental details behind this thesis. The work here com-
bines two major fields, THz spectroscopy and compressed sensing. Whilst nothing
new is presented in regards to each individual field, the novelty is the successful com-
bination of the two. The first two sections summarize THz spectroscopy and the
latter two describe how one can perform compressed sensing in a THz time-domain
spectrometer.

3.1 THz Time domain spectrometer

The fundamental layout of the setup is shown in figure 3.1. In its essence, a beam
of femtosecond optical pulses is split into three beams: generation, detection and
excitation. The first is used to generate a picosecond THz pulse, through optical
rectification in ZnTe as discussed in sec. 3.1.2.1, which then passes through the
sample under investigation. Our THz beam is collimated and collected by 90◦ off-axis
parabolic mirrors made from gold. The second beam is used to detect the time profile
of the THz waveform. This is achieved by temporally overlapping the much longer
THz pulse with the very short detection pulse. The difference in pulse durations allows
one to discretely sample the terahertz temporal profile by varying the path lengths
with an optical delay line (typical THz transient and detection pulse envelope shown
in figure 3.2). The electric field amplitude is extracted via electro-optic sampling
in a ZnTe crystal, discussed in sec. 3.1.2.2. These systems detect the amplitude
and relative phase of the THz pulse. This allows for the extraction of a real and
imaginary permittivity of a sample as discussed in sec. 3.2. The third beam is used
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3. Experimental

to photoexcite the sample. These three beams are what constitute a typical THZ-
TDS system. However, additionally in our system, the excitation beam is spatially
modulated via a digital micromirror device (DMD) and a lens so as to project any
binary intensity pattern onto our sample. Further more, our DMD is synchronized to
the main laser system. The reason for this is discussed in sec. 3.4.2.2.

Ultrafast
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Beam 
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Detection
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Delay line
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Figure 3.1: Schematic of time domain terahertz spectrometer. A beam of
ultrashort optical pulses leave an ultrafast laser. The beam is split into three beams:
generation, detection and excitation. A chopper is placed in the detection or gener-
ation beams, depending on the needs of the experiment. A spatial light modulator,
which can be synchronized to the ultrafast-laser, is placed in the excitation beam.
Parabolic mirrors are used to collect and collimate the THz radiation.

3.1.0.1 The ultra-fast laser source

The starting point of our THz-TDS is the laser powering the entire setup; a Ti:Sapphire
system consisting of a seed laser and and regenerative amplification stage. Titanium-
doped sapphire crystals have an absorption peak at 520nm and exhibit a gain over a
large wavelength range, from 650nm to 1100nm, with a maximum at 800nm (see ch.
3.1.2 of ref. [71]). Further, these crystals can withstand large optical pump power
(∼ 20W ). In our seed system, Coherent Vitesse, the Ti:Sapphire crystal is pumped
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3. Experimental

using a 535nm diode laser. The excited electrons within the crystal relax down to
a lower state and emit photons with central wavelength 800nm. The continuous
wave emission is converted in to pulses via a Kerr-lens modelocking mechanism. The
emitted pulses have a duration of 85fs, 12nJ of energy per pulse and a repetition
rate of 80MHz.

However, for the non-linear optical phenomena used to generate THz radiation in
this thesis (§3.1.2.1) to be efficient, much bigger pulse energies are needed. Further
more, most experiments here photoexcite a silicon wafer in order to modulate our
THz pulse, see §3.3, which also requires large pulse energies. This is why we have
a regenerative amplifier, Coherent Legend Elite, to increase the energy of the seed
pulses although at lower the repetition rate. Before amplification, the seed pulses are
temporally stretched using a reflection grating and collimating optics. This stretching
stage lowers the instantaneous pulse intensity and thus avoids damaging the energy
amplification optics at later stages. The regenerative amplifier is another Ti:Sapphire
laser cavity that is optically isolated from the seed laser. The gain medium is pumped
with its own diode laser until it has sufficient amounts of energy to be used an amplifier
for the seed pulses. Unfortunately, this waiting stage results in throwing away many
of the pulses from the seed laser. The seed pulses are injected into this amplification
cavity with a Pockels cell and a polarizer1. The injected pulses absorb the energy in
the gain medium increasing their own field strength every time they make a round trip
in the laser cavity. This process carries on for approximately 20 round-trips until the
pulses are switched out of the cavity with a second Pockels cell. Then the temporal
stretching stage is reversed using another grating in order to compress the amplified
pulses in to a 100 femtoseconds. In the end this amplification stage results in an
increase in the instantaneous pulse intensity by a factor of 2× 106 and a decrease in
repetition rate by a factor of 8× 104. The amplifier output is a train of pulses with
temporal length of 100fs, 3mJ energy per pulse, 800nm central wavelength and a
repetition rate of 1050Hz.

3.1.1 Single-cycle THz transients

This section describes the characteristics of our THz pulses. Figure 3.2 shows a typical
temporal trace of the THz pulses detected by our THz-TDS, ie. a plot of E(t) with

1When the Pockels cell is biased with a voltage it changes the polarization of the pulse so that
it is transmitted by the polarizer.
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Figure 3.2: Red: typical THz pulse detected by our system in normal room conditions
(3̃5% humidity). Blue: THz pulse recorded in a box pressurized with dry air (air passed
through desiccant). Green: envelope of detection pulse used to discretely sample the
THz waveform. Arrow points to the maximum field strength of our single-cycle THz
pulse. Oscillations after the red THz pulse are due to water vapor in the background
environment. Inset, Blue(red): Fourier spectrum of the THz pulse without (with)
water vapour oscillations.

0.04ps resolution. The envelope of our probe pulses used to discretely sample the
field-strength of our THZ waveform is also shown here in green. The black arrow
points to the maximum field value of our THz pulse at ≈ 4.2ps. In-front and behind
this positive value two other peaks with negative values can be seen. This is our main
THz waveform which is generated and detected by our system. In the blue line, some
other oscillations behind the main THz pulse can be seen. These are dependent of
optics and alignment of the system, therefore they they do not change regularly but
only when one performs a major change/update to the system1. In the red curve, one
can see many other oscillations after the main THz pulse. The experimental difference
between the red and blue curves is that the red pulse was measured in normal room
conditions, where as the blue one was measured in a dry air enclosure2. Therefore,
the numerous oscillations seen in the red pulse are due to the water vapor in the
ambient atmosphere (∼35% humidity). These are the rotational modes of the water

1For example changing a parabolic mirror or replacing the crystal detector.
2The box was pressurized with air that was passed through desiccant.
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vapor molecules [81], and consequently the red THz pulse has reduced field-strength.
This measurement is performed in the time domain. Therefore, by Fourier trans-

formation one can obtain the spectrum, including the phase information, of the fre-
quencies in our THz pulse, or mathematically

|E(ω)|eiφ(ω) =

∫ ∞
∞

E(t)e−2πitfdt, (3.1)

where φ(ω) is the phase information at each angular frequency ω = 2πf . This
Fourier transform implies that our spectral resolution is determined by the temporal
length of our measurement. The amplitude spectrum, |E(2πf)|, of our THz pulse is
shown in the inset of fig. 3.2. The full-width-half-maximum and the central frequency
of our pulses are 1.3THz and 0.95THz (325µm) respectively. The red line shows
the spectrum when the water rotational oscillations are present. They manifest at
various frequencies as absorptions lines of different widths. These give artifacts when
performing spectroscopic analysis, sec. 3.2, hence they need to be eradicated in
experiment if such analysis is required.

3.1.2 THz radiation from non-linear optics

The THz generation and detection mechanisms used here are respectively optical
rectification and electro-optic sampling in ZnTe. They are both 2nd order non-linear
polarization effects. The classical description of non-linear polarization phenomena is
as follows. Electrons are modeled as masses held in place by non-linear springs. In
other words, a Lorentzian oscillator §2.1.2.1 in a non-linear potential with cubic, and
higher, displacement dependence terms. The solution to the equation of motion for
an input of two superpositioned E-fields with frequencies ω1 and ω2 is [82]

P
(2)
i (ω1 − ω2) = ε0

∑
j,k

χ
(2)
i,j,k(ω1 − ω2)Ej(ω1)E

∗
k(ω2), (3.2)

where χ(2)
i,j,k is the susceptibility tensor and the i, j, k subscripts denote the Cartesian

components of polarization. Note, this is the difference frequency term. The case
of the sum frequency mixing is observed in the mathematical details [82]. In the
early 1960s, Bass et al [83] observed difference frequency mixing, named optical
rectification, and Franken et al [84] observed sum frequencies generation.
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3.1.2.1 THz generation, Optical Rectification

Optical rectification falls out of eq. (3.2) when we take the limit of ω2 → ω1,

P
(2)
i (0) = ε0

∑
j,k

χ
(2)
i,j,k(0)Ej(ω1)E

∗
k(ω1). (3.3)

One can now see that a strong electric field at ω1 gives rise to a DC polarization.
In practice, the bandwidth of the input laser determines the distribution of difference
frequency components. Lasers emitting ultra-short (100fs in this thesis) pulses have
frequency bandwidths in the THz regime. Such pulses are shone onto a crystal. This
causes a polarization and thus the oscillation of the bound charges. Accelerating
charges cause the emission of E-fields. Since the polarization has low frequency
components, the emitted field has THz frequencies.

The above process can only occur in crystals where the 2nd order susceptibility
tensor, χ(2), is non-zero. This excludes all crystals with inversion symmetry1. Listed
in Table 3.1 are commonly used THz generation crystals and their symmetry point
group. The crystal symmetry group determines the crystal’s response to the angular
orientation of the incoming radiation. ZnTe, the crystal used in this thesis, emits
maximum THz when the optical polarization lies in the {110} plane. For crystals cut
in this plane, THz generation is then maximized by rotation of the crystal wafer.

Table 3.1: Common THz generation crystals

Material Point group
LiNbO3, LiTaO3 3m

ZnTe, GaAs, GaP, InP 4̄3m
GaSe 6̄2m

For further optimization the crystals needs: to be transparent with minimal ab-
sorption at all frequencies involved, to have a high damage threshold to withstand
the intensities needed and to not have other competing non-linear processes. For
final generation optimization, one has to have constructive interference between all
the waves generated from all points in the crystal. In other words, the THz phase
velocity has to be equal to the group velocity of the laser input packet within the
material.

1All components of χ(2) equal 0 in crystals with inversion symmetry
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3. Experimental

If the phase matching condition is fully satisfied, the THz field gradually gets
amplified while propagating through the medium. Now consider an optical wave
traveling faster than the THz wave. The effective interaction length is given as the
coherence length lc of when either waves are π/2 out of phase with each other:

lc =
c

2fTHz|ng − nTHz|
, (3.4)

where ng (nTHz) is the group (phase) refractive index at the visible (terahertz) fre-
quencies. From eq. (3.4) one can see that lc → ∞ as ng → nTHz. In reality this
condition is hard to satisfy. The most commonly used nonlinear crystal for THz gen-
eration is ZnTe because it best satisfies this condition at the operational wavelength
(800nm) of Ti:Sapphire lasers. In ZnTe lc →∞ for visible wavelengths around 800nm
and terahertz frequencies around 1.69THz [85], shown in the fig. 3.3.
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Figure 3.3: Group refractive index ng and phase refractive index nTHz at optical and
terahertz regimes, respectively, of ZnTe. Taken from [71]

Finally, one has to consider the crystal’s absorption in the spectral region of
interest. The dominant causes of absorption in such crystals are the transverse-
optical phonon resonances in the terahertz region. Table 3.2 lists such resonances in
commonly used crystals.
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Table 3.2: Lowest TO-phonon resonances in some EO crystals, taken from [71]

ZnTe GaP InP GaAs LiNbO3

fTO (THz) 5.3 11 9.2 8.1 7.7

3.1.2.2 THz Detection, Electro-Optic sampling

The THz detection mechanism used in this thesis is called Electro-Optic (EO) sam-
pling. It falls out of eq. (3.2) when we take the limit of ω2 → 0,

P
(2)
i (ω1) = ε0

∑
j,k

χ
(2)
i,j,k(ω1)Ej(ω1)E

∗
k(0). (3.5)

From eq. (3.5) one can see that a DC electric field, E∗k(0), gives rise to a polarization
P

(2)
i (ω1) at frequency ω1. In other words, a static electric field induces a birefringence

in the non-linear crystal proportional to the bias field amplitude. This effect is known
as the Pockels effect.

The detection of THz relies on the above process. The THz field strength is deter-
mined by the measuring the induced birefringence. This is achieved with polarization
measurements of an optical probe pulse. Because the THz and visible light pulses
have different temporal lengths (Fig. 3.2), the THz field is akin to a DC field when
both pulses propagate through the EO crystal. Note, this only holds provided the THz
wave and optical pulse travel at the same speed through the medium. The visible
light pulse is scanned in time, via an optical delay line, to sample the full temporal
THz waveform.

The electro-optic effect is weak. To enhance signal people use a balanced photo-
diode detection scheme and a quarter wave-plate, shown in fig. 3.4. The quarter
wave-plate is set to circularly polarize the probe beam if there is no THz present.
A polarization beam splitter then sends equals amounts of power onto the balanced
photo-diodes. Reading the difference in outputs from the diodes will yield zero.
However, if the THz is present, the difference in outputs will correspond to the
THz field amplitude. To further enhance signal, an optical chopper modulates the
generation beam1 at half the repetition rate of the main laser. One then uses a Lock-
In amplifier to only record the modulated signal. This minimizes electrical noise in
the circuitry and intensity fluctuations in the main laser.

1Can also be the excitation beam
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Figure 3.4: A schematic of EO sampling. A focused THz pulse and a detection probe
pulse are incident onto an EO crystal. Afterwards, the polarization of the probe pulse
is measured by a pair of balanced photodiodes. A Wollaston prism is used to separate
the orthogonal polarizations and a quater-wave plate is used to enhance the signal.
Probe polarization with (solid) and without (dashed) the THz field are shown before
and after the λ/4 plate.

3.2 THz spectroscopic analysis

Obtaining the frequency dependent refractive index of a sample is the standard use of
a THz-TDS. Consider a pulse of radiation incident upon a slab of material. There will
be a transmitted and a reflected pulse (see inset of fig. 3.5left). The amplitudes of the
transmitted and reflected pulses will be related to the incident pulse amplitude via the
Fresnel reflection and transmission coefficients, §2.1.1.1. However, multiple reflections
will occur within the material, as outlined in §2.1.1.2, hence the transmission and
reflection functions of the material are respectively given by eqs. (2.25) and (2.26).
Therefore, if one has knowledge the incident wave and measures the transmission
through (or reflection of) some material of known thickness, then it is possible to
solve eq. (2.25) for the refractive index of the material. We next outline how to
extract the refractive index of a plastic cover slip with our system.

In our THz-TDS we perform two measurements: one measuring the temporal
waveform transmitted through a sample, Esamp(t), and the other to obtain a refer-
ence waveform without the sample , Eref(t). These two measurements are shown on
the left of fig. 3.5. Here one can see that the sample pulse (in red) is at a later time
than the reference pulse (in blue). This is because it has traveled through the sample
which has a larger refractive index than air1. A small pulse at ∼ 14ps can be seen
in the reference waveform, and it arises from the the first Fabry-Perot reflection in

1The reference pulse traveled through air.
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the material. Note, some fast oscillations can be see behind our main pulses. They
were found to change depending on the optical alignment of our system, hence are
associated with detector response function of our ZnTe crystal.

Our measurements contain the relative amplitudes and propagation times of our
pulses, therefore a Fourier transform, eq. (3.1), will yield the frequency spectrum
and along with the relative phase of each frequency. The frequency spectrum and
the phase of our THz pulses are shown on the right of fig. 3.5. Here the solid blue
and red lines show the detected transmission spectrum through free-space and our
sample respectively. It can be seen that these two solid curves have the similar shapes,
however the red curve has small oscillations in it. These are due to the first Fabry-
Perot pulse detected in the time-domain measurement. The blue and red dashed lines
show the phase1 of the free-space and our sample waveforms respectively. One can
see that the red dashed line has larger values of phase. This is because the sample
waveform has accumulated a bigger phase delay by propagating through the sample.
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Figure 3.5: Left: THZ pulses measured by our system. Blue shows the reference
pulse and the red trace shows the THz pulse transmitted through our plastic cover slip
(this was a 810µm thick plastic petry dish made from non-cytotoxic virgin polystyrene
Sterilin BS EN ISO 24998:2008). Inset shows a schematic illustration of the mea-
surement. Right: Fourier spectrum of the THz pulses on the left. The solid lines are
the power spectrum and dashed lines are the unwrapped phase where the blue (red)
colour shows the data from the reference (sample) scan.

After the Fourier transformation, we have Eref(ω) and Esamp(ω) which be sub-
stituted in eq. (2.25). Note, our reference measurement is related to the incident

1The unwrapped angle, shown here, is typically shown since it does not have 2π discontinuities
hence it has more visual appeal.
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waveform by Eref(ω)e−iωL/c = Ei, where L is the sample thickness, since it has
propagated through air with a refractive index of 1. Therefore we obtain

Esamp(ω)

Eref(ω)e−iωL/c
=

t1t2e
iφn

1− r1r2e2iφn
, (3.6)

where φn = ωnL/c is the phase delay the wave accumulates by propagating through
our sample, t1,2, r1,2 are the relevant Fresnel coefficients, eqs. (2.21-2.23). The
only unknown left is the refractive index of our sample, n, which can be solved for
numerically at each frequency point. Since our measurement contains the relative
amplitudes and the relative phases, our solution can obtain the complex refractive
index. However, since the phase term is 2π periodic there is an infinite number of
solutions that satisfy eq. (3.6). Therefore, selecting the correct solution is of vital
importance. This accomplished by making an initial guess at the refractive index.
This guess can be made by looking at the time difference between the reference and
sample waveforms. If we denote the temporal co-ordinates of the peaks of the sample
and reference waveforms as ts and tr respectively, one obtains

nr = 1 +
(ts − tr)c

L
(3.7)

as the real part of the average refractive index. For non-absorbing samples this will
suffice. However, should the sample be absorbing then one can use the above value
and

|Esamp(ωc)|
|Eref(ωc)|

= t1t2e
−niωcL/c, (3.8)

where ωc is the central angular frequency of the pulses and ni is the imaginary part of
the refractive index, to obtain an initial guess for the imaginary part1. A more accurate
estimate is obtained by saying t1,2 are also functions of ni, however a numerical solver
needs to then be used. Although crude, this initial guess will ensure that the numerical
solver2 of eq. (3.6) will find the physically relevant solution. A technical note, this
crude initial guess is used only for the first frequency point inputed into the solver.
Then the solution from the first frequency point is used as the initial guess for the
second frequency point. This process is iterated until one has a solution for all the

1This equation is only valid if we consider only the first transmitted pulse through our sample,
ie. zero out the Fabry-Perot pulses in the temporal measurement

2The numerical solve we use is the vpasolve function built into MATLAB 2016b.
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frequencies in the spectrum. This iterative process ensures that the obtained refractive
index is a continuous function.
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Figure 3.6: Refractive index of plastic cover slip. Solid blue and red lines respectively
show the real and imaginary refractive index with an initial guess of n = 1.50. The
dashed lines show the obtained refractive index with an initial guess with n = 3.

Figure 3.6 shows the real and imaginary refractive index of the plastic cover slip1

used as a sample in the temporal measurements of fig. 3.5. The solid lines show
the obtained solution using the initial guess of eq. (3.7) with the real (imaginary)
part in blue (red). One can see a very flat dispersionless response with no absorption.
However, one can see small oscillations. These are due to the fact that we have solved
for the Fabry-Perot equation whereas in the temporal measurement we measured only
the first Fabry-Perot pulse. The dotted lines show the obtained solution with an initial
guess of n = 3. This solution is obviously false since it means that we have gain from
0.3 to 1.25THz in the imaginary part (dotted red line) and the real part (dotted blue
line) is less than 1 from 0.8 to 2.4THz.

This dispersion-less non-absorbing response from this type of plastic is very useful
for THz measurements. The reason is they are originally designed to be used as
petri dishes, hence they are non-toxic to bacteria, optically transparent, thermally
resistant, mechanically rigid and readily available. These qualities make them excellent
alternatives to glass cover slips, as used in the visible regime, since glasses absorb

1This was a 810µm thick plastic petry dish made from non-cytotoxic virgin polystyrene Sterilin
BS EN ISO 24998:2008
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THz radiation. The optical transparency can in principle allow a THz and an optical
image to be taken simultaneously. More over, the main imaging technique in this
thesis (described in the later sections of this chapter) uses visible light to switch the
material response of silicon from dielectric to metal (§3.3), which has allowed the
placement of a near-field THz probe next to a biological sample as shown in ch. 8.

3.2.1 Multi-layer systems

The previous section is only applicable if there are 3 materials, in other words the
sample is free standing in space. However, if our sample is enclosed by two cover slips,
ie. it is a multi-layered system, then it is convenient to use the transfer matrix method
[86]. As before, our measurement contains the transmission coefficients, however our
transmission function of the system is [86, 87]

t =
2
√
εi

M21 +
√
εiM11 +

√
εf (M22 +

√
εiM12)

, (3.9)

where εi and εf are the permittivities of the initial and final media, respectively, en-
closing the multilayer system andM is a 2×2 matrix associated with the propagation
through the entire multilayer system. This matrix is given by the product of the indi-
vidual layer matrices, M ≡M1M2M3...MN , describing the propagation through each
layer. The characteristic matrix of the jth layer, Mj, with thickness lj and dielectric
function εj is given by

Mj =

[
cos βj

−i√
εj

sin βj

−i√εj sin βj cos βj

]
, (3.10)

where βj = ωlj
√
εj/c is the phase delay associated with light propagation inside

the jth layer. By equating the experimental amplitude transmission coefficients
Esamp/Eref with (3.9), we can then numerically solve for the permittivity of the
sample as before. Then one can divide the transmission functions of the different sys-
tems and equate them to the experimental amplitudes. Note, it is of preference that
the materials used in the reference measurement are not absorptive hence improve
signal to noise.

This multi-layer analysis allows one model much more complex systems than a
simple Fabry-Perot model. We use this multi-layer analysis in chapter 8.
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3.3 THz modulation via photoexcitation of Si

3.3.1 Silicon photoexcitation

Undoped high-resist silicon is a dielectric for THz frequencies. It has a dispersion-
less refractive index of 3.42 from 0.5 to 4.5THz with minimal absorption [73]. It has
very few charge carriers, therefore its Drude plasma frequency lies below the terahertz
regime. However, if the number of charge carriers is increased via photoexcitation,
then silicon can behave as a classical Drude conductor [74]. This has allowed for
amplitude, phase and frequency modulation of THz via the optical excitation of sil-
icon [74]. More recently, people have built upon these ideas to create an optically
modulated wire-grid polarizer [75] in Silicon. There are other materials which have
similar properties such as InSb and GaAs.

We next consider controlling the carrier density via optical excitation in our system.
Consider the Drude model permittivity, §2.1.2.2,

ε(ω) = ε∞ +
iω2

p

ω(1/τ − iω)
= ε∞ +

iNe2

ε0mω(1/τ − iω)
, (3.11)

where N is the number of charge carriers, e is the electron charge and τ is the average
carrier collision time (160fs for undoped silicon [88]). Here, the number of charge
carriers, the primary modulating parameter, is modulated via optical excitation with
photons of energy h̄ω. When such pulses hit this material electrons in the valance
band are given enough energy for them to enter the conduction band1. In other
words, they are no longer bound in the potential of the positive ion core they were
orbiting and hence are able to traverse through the medium. Note, now there will
also exist a vacant electron orbital referred to as a hole. Holes can travel through
medium and act as though they have positive charge, thus are also considered as
charge carriers. The excited electrons will then decay back down to their ground
state and recombine with the vacant holes. The electron and hole populations at
time t after photoexcitation are given by N(t) = N(0)e−τct, where τc is known as the
carrier lifetime. In silicon the carrier lifetime is 25µs [89]. The repetition period of
our pulses is 1ms, hence by the time our next pulse arrives all the carriers will have
relaxed to their ground state. This allows us to neglect sample heating. Furthermore,

1This is provided the photons have enough energy to overcome the silicon bandgap of 1.12eV
(1100nm) at room temperature.
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since our THz-TDS allows us to probe our silicon picoseconds after photoexcitation,
discussed in §3.3.2, we can also neglect carrier recombination effects. The key variable
to determine is therefore the mean carrier-carrier distance. In our system, we probe
our material 5ps after photoexcitation, see Fig. 3.9, thus we can calculate the mean
square displacement of carriers via eq. (2.42). We obtain mean displacements of√
< x2 > = 506nm(425nm)1 for our photo-electrons (holes). Since the diffusion

lengths are considerably smaller than the penetration depth of the photoexcitation
light (12µm [78]), we can neglect carrier diffusion from our considerations. Therefore,
one only needs to consider the carrier generation rate. We arrive at a charge carrier
density of

N =
I0(1−R)

2h̄ωAd
(3.12)

where I0 is the incident intensity, R is the reflectivity of Si at the incident wavelength,
d is the penetration depth and A is the area of excitation.

In all experiments involving silicon as the photomodulator, ch. 4, 5, 6, 8, our
pulse energy per unit area is ∼ 100µJ/cm2, R = 0.3 is the Fresnel reflectance of a
Si interface at our excitation wavelengths, h̄ωl is the photon energy of the 800nm
pump light, d is the penetration depth (d≈12µm [78] for our wavelengths) and the
factor of 2 accounts for the excitation of electrons and holes. Using the average of
the electron and hole masses, we obtain a Drude plasma frequency (eq. 2.40) of
70THz with ε(1THz) = −101 + 36i for our photoexcited silicon. In other words,
we generate a THz material with a negative real and positive imaginary part to the
dielectric function, the characteristics of a lossy conductor.

3.3.2 Photoexcitation studies with THz-TDS

THz pump-probe spectroscopy allows one to study carrier photoexcitation and relax-
ation dynamics on picosecond time scales. This is achieved by investigating how the
THz pulse changes at different excitation times. For now we ignore what happens
at different excitation times and return to this later. In figure 3.7 we plot the THz
pulses transmitted through undoped (solid line, Eref) and photoexcited (dashed line,
Ephoto) silicon. For the undoped silicon, we can see the main THz pulse at ∼ 2ps,

then we see the 2nd and 3rd Fabry-Perot pulses arriving at ∼ 5ps and ∼ 7.5ps re-
1These numbers determine subsequent smearing and broadening of spatial features should an

optical pattern be transferred to a THz beam using a silicon photomodulator. How we transfer an
optical pattern to a THz beam is discussed in §3.4.1.
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spectively. In the Fourier spectrum these secondary pulses manifest themselves as the
Fabry-Perot peaks seen here. The pulse transmitted through the photoexcited silicon
(dashed red line) is seen to have a similar shape as the other one and it arrives at the
same time. However, the amplitude has been decreased by ∼ 85%. This is because,
as discussed in the previous section, we have generated a lossy conductor which has
absorbed our THz radiation. Consequently, Fourier spectrum of this pulse has much
lower amplitudes.
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Figure 3.7: THz pulses transmitted through an undoped (solid blue line) and a pho-
toexcited (dashed red line) silicon wafer (115µm thick, 1000Ω · cm resist). Wafer is
excited with 800nm pump light with ∼ 100µJ/cm2 fluence. Inset shows that Fourier
transform of the pulses.

We can calculate the transmission of the photoexcited silicon from the the pulses
in Fig. 3.7. This is achieved by dividing the spectra of the photoexcited pulse by the
other one, ie. |Ephoto/Eref|. This is what is plotted in figure 3.8 as the solid blue line.
You can see that the transmission goes from 0.17 in our low frequencies to 0.07 in
our higher frequencies. From eq. (3.11) the higher frequencies see a less absorbing
material, however the shorter wavelengths see an optically thicker absorbing material.
The latter mechanism seems to win over our frequency range hence the decrease in
transmission. This is supported by modeling1. However, there is a mismatch in the

1Our model consists of calculating the transmission through a 2-layer system using eq. (3.9).
The first layer is the photoexcited region of thickness 15µm (a small amount more than the pen-
etration depth) with permittivity given by eq. (3.11) with ωp = 71THz and the second layer is
undoped silicon of thickness 100µm (wafer used in experiment was 115µm thick).
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number of peaks with experiment, namely there are 5 peaks in experiment and only
3 in modeling. This is because our model assumes a homogeneous photoexcitation
layer where as in experiment the power is absorbed with an exponential decay rate
with penetration depth of 12µm. Thus in experiment there is no sharp boundary that
the Fabry-Perot reflections to interact with. Note that due to the large silicon refrac-
tive index of 3.42, the photoexcitation layer can not be assumed to be an infinitely
thin sheet either. This mismatch changes the Fabry-Perot resonance conditions in
experiment and modeling. Further, in experiment we have a small amount of water
vapor present affecting our measurements.
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Figure 3.8: Amplitude transmission through photoexcited silicon with experiment and
modeling in solid blue and dashed red lines respectively. There is a ∼2.5% error in
the experimental measurement. This error arises from the noise in the measurement
of our THz waveforms, ∼5% (see fig. 6.1), and the number of averages, 5, therefore
rounding up the error is ∼ 5/

√
5 ≈ 2.5%.

The previous two paragraphs have so far ignored what happens when we vary the
arrival time of the pump excitation pulse. This is what will be considered next. For
this we overlap our detection pulse overlapped with the peak of our THz waveform,
as indicated in the inset of fig. 3.9. Then we change when our pump excitation pulse
arrives at our silicon sample. Note, we measure the change in transmission due to
photoexcitation, ie. ∆E = Eref − Ephoto from fig. 3.7. For negative arrival times
the pump arrives after our THz pulse. Therefore, since the THz pulse has passed
through the sample unphotoexcited, we do expect a value of zero for ∆E. This is
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what we observe. When the pump pulse arrives at similar times as the THz pulse,
we start to observe non-zero values. This is because the photoexcitation has started
to generate charge carriers and thus change the permittivity. These photoexcited
carriers will eventually relax back down to their ground state. However, in silicon
carrier relaxation occurs on microsecond time scales [89] and our system measures up
to a nanosecond difference in time delay1.
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Figure 3.9: Difference in THz transmission due to the photoexcitation of silicon. Inset
shows a schematic illustrating when the pump pulse arrives on the sample with respect
to the THz and detection pulses. Propagation arrow points the direction which the
pulses are traveling.

The black arrow labeled as “measurement” indicates when the pump pulse arrives
on our silicon wafer when we use the photoexcitation of silicon for imaging with a
single-element detector, discussed in the next section.

3.4 Imaging with a Single-Element Detector

THz detector arrays are currently difficult and expensive to manufacture [90]. As a
consequence, we can not use array based imaging techniques, such as those used in
the modern day cameras, where one uses a lens to project an image of some scene
on a detector array, thereby obtaining the intensity (or amplitude) of each spatial
point of the scene simultaneously. Our detector can only measure the total amplitude

1This is due to light traveling 30cm in 1ns, hence the need for much longer delay lines.
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emanating from the scene, hence why it is called a single-element detector. The
simplest way of imaging with such a detector is to block the light from the entire
scene leaving only a small square to be transmissive, an aperture. Then our detector
readout will correspond to the light emanating from that small square, the first pixel in
our image. If we move the aperture and measure again, then we will the know the light
emanating from the area adjacent to our first measurement. This process is iterated
until we have sampled the entire scene. In other words, our imaging measurements are
obtained sequentially rather than in parallel. For this reason, single-element imaging
typically has a longer acquisition time compared to focal plane imaging arrays, its
major disadvantage. However, single-element detectors are generally cheaper and
more robust.

The resolution of a raster scanning technique, as outlined above, is determined by
size of the aperture. However, if this aperture is made smaller and smaller, the light
reaching our detector is reduced and eventually one will run into detector noise.

One could sample more than one aperture simultaneously to increase the detected
signal level in order to overcome detector noise, an idea which seems to first originate
in 1935 with Yates [91]. This idea is illustrated in fig. 3.10. Here, we have a light
source shining upon a spatial encoding mask (ie. it has many apertures open as
opposed to one). This spatially encodes a beam of radiation, and then this beam
passes through an object and all the light is gathered by a single-element detector. In
the next measurement we change the configuration of our encoding mask (ie. change
the location of the apertures) and measure again. Although we have increased the
light reaching our detector in each measurement, to form an image with such encoding
masks, however, introduces extra calculation difficulties as the measured intensity
is due to the sum of the scanning apertures. Therefore, the mask configurations
(the locations of the scanning apertures) in each measurement must form a set of
simultaneous equations which can be solved for the individual pixels of the object’s
transmission function.

We now consider the construction of an N -pixel image y; our ith measurement, yi,
is the dot product of the object transmission function and the ith mask configuration,
mathematically expressed as

yi =
N∑
j=1

aijxj, (3.13)

where aij holds the spatial information of the ith mask and xj is the jth pixel of the
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Figure 3.10: Imaging with a single-element detector. An encoding mask spatially
encodes a beam of radiation. Follow this, the beam is passed through an object and
onto the single-element detector.

object. The full set of measurements can be represented by the matrix equation

y = Ax, (3.14)

where the rows of matrix A are shaped into the projected masks. For invertible ma-
trices A, the image vector x can be obtained through matrix inversion x = A−1y.
Otherwise, one can use least squares solvers and more complicated recovery algo-
rithms. Note that x then has to be reshaped into a 2D matrix of pixel values. A note
on terminology, the matrix equation (3.14) represents the image being expanded in
some basis given by A and they are discussed in §3.4.2.

3.4.1 Implementation in the THz regime

As discussed in §3.3, the material response of an undoped Silicon wafer can be
switched from dielectric to conducting via photoexcitation with high energy pulses,
ie. it can be made to absorb and block our THz radiation. Therefore, to spatially
pattern our THz we can photoexcite this silicon wafer with the desired spatial pattern.
To this end, we use a digital micromirror device1 (DMD) to impart a spatial structure
into the pump beam used to photoexcite the silicon wafer, as illustrated by Fig. 3.11.
The photoexcited regions have values of 0, in eq. (3.14), since they absorb our THz
radiation where as the other regions transmit THz and thus they have values of 1.
Then we pass our THz pulse through this spatially photoexcited space, then through
an object and finally on our single-element detector.

1We use the DLP lightcrafter evaluation module by Texas instruments.
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Our physical masks are composed of 1s and 0s whereas some encoding schemes
might be made of +1s and -1s, for example orthogonal masks derived from Hadamard
matrices. However, as is outlined in [92], we can still perform a measurement with
masks made +1s and -1s in our system. Consider the H2 matrix and two other
matrices G+ and G−:

H2 =

[
1 1

1 −1

]
, G+ =

[
1 1

1 0

]
, G− =

[
0 0

0 1

]
. (3.15)

It is easy to see thatH2 = G+−G−. Thus if we have two sets of measurement vectors
each using one of the complementary sets of masks, y+ = G+x and y− = G−x,
then subtraction of the second set gives the desired encoding matrix. This doubles
the number of measurements required. However, due to detection scheme used,
discussed in §3.1.2.2, the difference in THz transmission is obtained via a Lock-In
amplifier. Our DMD is triggered by the main laser to switch between the +ve and
−ve masks. This prevents doubling the total measurement time. This is because we
use a Lock-In to detect the difference when the THz is switched on and off onto our
detector. Moreover, since the complementary negative mask is projected immediately
after its positive counterpart, one can eliminate an unwanted source of noise, namely
low frequency source oscillations as shown in §6.2.1.

Digital 
Micromirror
DeviceOn
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Lens 115µm
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Figure 3.11: Single pixel THz imaging: An 800nm pump pulse is spatially mod-
ulated and used to photoexcite a semiconducting wafer, which transfers the spatial
encoding mask onto a coincident THz pulse. The subsequent THz pulse is then
passed through an object onto a single pixel detector.
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3.4.1.1 Phase Front Correction
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Figure 3.12: Diagram of the optical excitation scheme showing how a flat phase front
is achieved with off axis photoexcitation. Each micro-mirror tilts at θ = 13o to DMD
array plane.

It needs to be mentioned that there is a phase front distortion induced by the
DMD. This phase front distortion arises from the fact that each individual mirror tilts
on its own at a 13◦ angle with respect to the overall mirror plane. This shortens,
or lengthens, the optical path length of light hitting a mirror on the edge of the
DMD array compared to one in the middle, as shown in fig. 3.12. This means one
will photo-excite different parts of the sample at different times. Therefore, if one
wishes to study ultra-fast carrier dynamics, in graphene for example (see ch. 7), this
wavefront distortion needs to be removed. This is achieved by photoexciting at an
angle off normal opposite to the angle of the DMD mirrors. Figure 3.12 clarifies
the arrangement used to achieve a photo-excitation without a temporally smeared
wavefront.
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3.4.2 Choice of basis: Raster, Orthogonal, Random

Next we outline the ideas behind using three different measurement matrices, namely
the identity matrix, orthogonal and random matrices. How each one of these performs
in noisy experimental conditions is shown in chapter 6.

3.4.2.1 Raster Scanning

As pointed out earlier, we can raster scan a single aperture across our field of view.
This means our ith measurement directly corresponds to ith pixel of our image. In the
matrix notation of eq. (3.14), A is the identity matrix IN .

There is one great disadvantage to using raster scanning techniques. Namely
that to increase resolution the aperture size is reduced, however this also reduces the
amount of light transmitted through an aperture. Therefore, by continual decrease of
the aperture size eventually one will only measure detector noise. For apertures much
larger than the wavelength the amplitude transmission is proportional to the area,
i.e. E ∝ r2 where r is the aperture radius and E is the transmitted field amplitude.
However, when the aperture size is smaller than the wavelength the dependence is
described by Bethe’s theory [93], mathematically E ∝ r3. This has already been
demonstrated for THz frequencies [94] and such apertures can achieve 3µm spatial
resolution [51]. It also possible to overcome the small transmissions of apertures and
use near-field scattering tips [43] in order to reach nm resolution [45, 47]. Whilst
impressive, raster scanning techniques necessitate long measurement times due to the
small signals emanating from sub-wavelength scatterers.

3.4.2.2 Orthogonal Hadamard matrices

In this section, we use orthogonal Hadamard matrices as our basis expansion. So, A
is a Hadamard matrix of order N . A Hadamard matrix Hn is defined as an n × n
matrix of +1s and -1s with the property that the scalar product between any two
distinct rows is 0 (each row is orthogonal to every other one). Thus Hn satisfies:

HnH
T
n = HT

nHn = nIn, (3.16)

where HT
n is the transpose of Hn. This allows for easy image reconstruction since

H−1n = HT
n /n, which is equivalent to summing the projected patterns with each

pattern weighted by its detector readout.
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Every Hadamard mask (apart from the first one which is all 1s) has equal amounts
of 1s and -1s, therefore in every measurement we use half of the total incident light.
Therefore, a Hadamard basis will minimize the effect of detector noise [95]. This
is the major reason why one should use a Hadamard sampling matrix. However, it
should be noted that this Hadamard imaging scheme is quite sensitive to source noise.
To explain this we modify eq. (3.14) into Ry = Ax where R is an N -sized vector
with the ith entry describing our source’s power output at the time of measurement
and y is the noiseless measurement vector. The ith entry of R is the total power
transmitted through the ith mask, in other words the sum of the dot product between
the ith mask and source power output at the time of measurement. With Hadamard
masks we use of half of the total light in each measurement. Therefore, 5% source
noise fluctuations manifest themselves as 2.5% noise fluctuations in R. For this
reason, Hadamard imaging schemes are much more sensitive to source noise than
raster scanning schemes1. Although source noise can be minimized by using +ve

and −ve mask pairs, as demonstrated in §6.2.1, it still makes this Hadamard scheme
unfavorable should one have a noisy source but a low-noise detector.

The most common method of constructing Hadamard matrices is via the Sylvester
construction method, first used in the 1860s. If we have some Hadamard matrix Hn

of order n, then

H2n =

[
Hn Hn

Hn −Hn

]
. (3.17)

The lowest Hadamard matrix isH1 = [1], therefore using eq. (3.17) one can construct
matrix of order 2k where k is a real integer. This is the most common method due
to its simplicity, however it can be quite restrictive in terms of the number of pixels
one can use, namely only powers of 2. Further more, for an N ×N image one needs
an N2 ×N2 matrix, which can cause memory problems when N > 512.

There is another construction method, the Paley construction technique. Let q be
a prime power congruent to 3( mod 4). Then one constructs a vector, V , of length

1In raster scanning we only use very small amounts light in each measurement, hence source
noise minimized
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q in which the ith entry equals χ(i− 1), where

χ(x) =


0 if x = 0

1 if x is a quadratic residue of q

−1 if x is a quadratic non-residue of q.

(3.18)

Then one constructs a q × q matrix, Q, where the jth row is obtained by cyclically
permuting V to the right j − 1 times. Finally,

Hq+1 = I +

[
0 JT

−J Q

]
, (3.19)

where J is a column vector of length q where every entry equals 1 and I is the identity
matrix. This method has two great advantages over the Sylvester method. First, it
has greater freedom in terms of how many pixels one can sample since the allowed
matrices are of order q+ 1 where q is a prime congruent to 3( mod 4). Second, due
to the cyclic permutation of V , one can construct each individual mask whilst only
holding a vector of length (N − 1)2 in memory.

Note, when creating masks of subwavelength dimensions, as in this thesis, then
polarization effects in the masks need to be considered. This is done in §5.3.2.

3.4.2.3 Random matrices

In this section we discuss the scenario of when A is a random matrix, such as Gaussian
iid matrices or Bernoulli matrices as used in compressed sensing [59]. Note that for
a fairer comparison with Hadamard matrices the random matrices used in this thesis
always consist of only +1s and −1s. Random matrices do not offer better noise
suppression than orthogonal ones, however compared to raster scanning they increase
the amount of light reaching a detector due to the number of opened apertures in
each measurement.

The main motivation for using a random matrix to sample your object is that it
allows for the reconstruction of an image using an undersampled set of measurements,
ie. fewer measurements than number of pixels. In terms of the notations of eq. (3.14),
A is now an M by N matrix, y is M sized vector of our measurements and x is our
N -pixel image that is to be reconstructed. Unfortunately, A is no longer invertible and
there exist an infinite amount of solutions to this problem. Obtaining the physically
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relevant solution is key and also the difficult part.
An intuitive explanation of compressed sensing is obtained by reversing image

compression schemes. Briefly, an image is Fourier transformed and then any spatial
frequencies with small amplitudes are discarded. This reduced data set is then Fourier
inversed to show an approximate representation of the image. This final image is
stored using less memory space hence is considered a compressed representation of
the image. In essence, one tries to find the sparsest representation of the image data
using some basis, and in the previous example this is done using a Fourier basis.
Compressed sensing aims at obtaining this “compressed representation” of the image
without fully measuring the object. This is achieved by finding the sparsest vector x
that satisfies eq. (3.14).

A vector is considered k-sparse if it has k non-zero components. The number of
non-zero components are measured with a l0 norm, defined as ||x||0 := #{i : xi 6= 0}
[58]. Then the mathematical problem is stated as

min ||x||0 subject to y = Ax. (3.20)

However, this problem is NP-hard [96]. In one of the two fundamental compressed
sensing papers [97] the l0 norm was replaced with the l1 norm, the closest norm to
it. Thus they solved the following minimization problem

min ||x||1 subject to y = Ax. (3.21)

Many compressed sensing papers concern themselves with when does ‘l0 = l1’. How-
ever, we shy away from such considerations and point out that our measurements
have a lot of noise. Therefore, we point to an alternative algorithm better able to
cope with noise. Namely,

min ||x||1 subject to ||Ax− y||2 ≤ γ, (3.22)

where γ is a parameter used to determine the ‘smoothness’ of the final image1.
Finally, total variation minimization algorithms have been shown to denoise images

1In our system, this value depends on the amount of noise in the measurements.
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[98]. Hence, we also consider the the following problem

min TV(x) subject to ||Ax− y||2 ≤ γ, (3.23)

and TV is total variation of our image defined as

TV(x′) :=
∑
i

√
(Dhx′)2i + (Dvx′)2i , (3.24)

where x′ is a 2D image and Dh,v are the discretized gradient operators along the
horizontal and vertical directions respectively. All three problems of eqs. (3.21-3.23)
have been solved using the L1-magic package, see reference [99] for algorithm details
and downloadable MATLAB scripts.

A final note on image reconstruction, if we sum the projected patterns with each
pattern weighted by its detector readout, akin to the orthogonal image reconstruction,
then we can also obtain an image. This is a computationally simple and fast method
used a initial guess for the more complex algorithms of eqs. (3.21-3.23).

3.4.3 Adaptive Computational Imaging

The previous section concerns itself with how to sample a desired region with three
distinct measurement matrices. However, once an image with a particular number
of pixels has been taken, one can calculate which regions are interesting and then
sample them with smaller pixel sizes. This reduces total measurement time since
measurements are concentrated in the regions of interest only. This process can be
iterated until the desired pixel size is reached. This is the idea of reference [100] and
is an alternative to compressed sensing.

We first measure a low resolution image (Ii) consisting of Ni ×Ni pixels, where
i is the tier number. i = 1 in the first case. This image is measured using a full
set of Hadamard projections (Sylvester construction), and the reconstruction is the
weighted sum of the Hadamard patterns, each weighted by its detector readout. Next
we perform a single tier Haar Wavelet transform on I1. In general the single tier Haar
wavelet transform Ti is calculated as follows, where T ′i is the partial Haar transform
calculated as an intermediate step.

T ′i (x, y) = Ii(2x, y) + Ii(2x+ 1, y) (3.25)
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T ′i (x+Ni/2, y) = Ii(2x, y)− Ii(2x+ 1, y) (3.26)

Ti(x, y) = T ′i (x, 2y) + T ′i (x, 2y + 1) (3.27)

Ti(x, y +Ni/2) = T ′i (x, 2y)− T ′i (x, 2y + 1) (3.28)

Here x and y are Cartesian coordinates defining pixel locations. Eqns. 3.25 to 3.28
essentially calculate the sum and differences between adjacent rows and columns of
pixels. In figure 3.13 we show single tier wavelet transform on an image. Our wavelet
transformed image, Ti, consist of 4 quadrants (here referred to as Q1-Q4). Q1 is
a downscaled version of the original image, with the linear resolution reduced by a
factor of two. Q2-Q4 represent images of the object at the same resolution as Q1,
with vertical, horizontal and diagonal edges highlighted respectively, at the scale of
the pixels sizes in the original low resolution image. We now use the identification
of edges highlighted in Ti to guide where to make further measurements at higher
resolution. We form image Iedge, which combines the highlighted edge information
present in images Q2-Q4. Iedge is formed by calculating the pixel-by-pixel quadrature
sum of Q2,Q3 and Q4 to create image:

Iedge(x, y) =

[
j=4∑
j=2

Qj2(x, y)

] 1
2

(3.29)

We now create an image mask by binarising Iedge based on either a threshold value or
by setting a required percentage of pixels to image at higher resolution. This mask
defines which regions of the object we will sample at the next phase.

The next tier of imaging is performed by making a series of Hadamard projection
measurements using a fully sampled set of patterns confined to the regions defined
by the mask. Here the most common Sylvester Hadamard construction is no longer
optimal, as the number of patterns (and therefore pixels) in the Sylvester Hadamard
sets are confined to 2k, where k is a non-negative integer, while the number of pixels
within the next phase is unlikely to equal 2k. Therefore we now use the Paley type-II
Hadamard construction, which is of more flexible scale, since it can possess a number
of patterns equal to p + 1, where p is a Prime number that is congruent to 3 (mod
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3. Experimental

Figure 3.13: Left: Picture of Rayko Stantchev. Right: Single tier Haar wavelet
transform of image on the left. For the transform the wavelet coefficients (quadrants
Q2-Q4) have been multiplied by 5 to improve contrast. Large wavelet values are
shown as white and indicate regions with strong edges.

4). Therefore we create the smallest Paley type-II Hadamard matrix which can be
used to critically or slightly oversample the target area of the object defined by the
mask, at twice the resolution of the initial low resolution initial image I1. The fully
sampled higher resolution image of the masked regions is once again reconstructed
from a weighted sum of the Paley Type-II Hadamard patterns, each weighted by its
measured correlation with the object.

Finally, image I1 is upscaled by a factor of 2, and updated to I2 by either replacing
those parts of I1 with the higher resolution information, or to make the best use of
all measurements, we can combine both low and high resolution measurements by
representing all our measurements as a matrix equation as shown in Eqn. (3.14),
and solving for the image. In the second case, the newly imaged areas are now
oversampled, and so a least squares fit provides a level of noise suppression. In the
regions that have not been re-sampled at higher resolution we keep our initial low
resolution measurements with uniform intensity across each larger scale pixel. Once
I2 is obtained, it is used as the input for the single tier Haar wavelet transform
and the process is repeated at increasing resolutions. Evidently, as the algorithm
progresses, the selection of new regions to image at higher resolutions is likely to
be made inside regions that were imaged in the previous phase. This represents the
truncation of the Wavelet tree, which is following the assumption that high values
of wavelet coefficients at coarse scales are highly correlated with high values at finer
scales. This is a reasonable assumption which can be understood by considering that
sharp edges are represented by Fourier components across a wide range of frequencies.
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Chapter 4

Imaging a sub-wavelength slit

Summary

In this chapter, we demonstrate that manipulating the THz near fields using pho-
toconductivity is possible, and show this can be used to construct an image. By
generating a pair of thin conducting stripes in a silicon wafer using structured illu-
mination, we show that the near field interference pattern can be used to irradiate a
sub-wavelength metallic slit. Further, by creating a constructive near field interfer-
ence we bring about enhanced transmission through the slit. Then, by displacing this
pattern in the direction perpendicular to a slit, we build a near field profile of this slit
by recording the far field transmission of our THz pulses. This experiment demon-
strates imaging capability of metallic features with a resolution of ∼60µm (≈ λ/4).
The main experimental idea is a shown in Figure 4.1.

115µm

photoexcited
region

Incident THz

Silicon

Gold

a(0,0)

x

z

wp

wg

polarization

Figure 4.1: Schematic side view of a THz plane wave incident upon a silicon wafer
with a single slit in a thin gold film on the exit side. The dark (pink) regions indicate
the photoexcited conductive regions.
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4. 1D Slit imaging

4.1 Theoretical Modelling

4.1.1 Scalar Diffraction Pattern

In order to investigate the dimensional dependence of the interference pattern gen-
erated by the two parallel stripes we use scalar diffraction theory. We approximate
our photoexcited regions as a perfect electric conductor that is infinitely thin in the
z direction, which is reasonable since the penetration depth of the incident pump
beam (11µm for our 800nm light [78]) is much smaller than our THz wavelengths.
Note that this approach ignores absorptive losses in the silicon plasma. To maximize
transmission, polarization perpendicular to the slit is chosen.

We solve the Fresnel diffraction integral1 [76]

U(x) =
eikz

iλz

∫ ∞
−∞

U(ξ)e
ik
2z

(x−ξ)2dξ (4.1)

for the wavelengths inside silicon and then consider the resultant diffraction pattern
at a distance equal to our silicon wafer thickness (115µm), where ξ runs parallel to x
(Fig. 4.1) along the surface of the silicon and U(ξ) describes the field distribution at
this plane. The experimental geometry and choice of polarization allows us to define
an electric field of amplitude zero at the boundary of the conducting region and unity
everywhere else, which is described by the function

U(ξ) = 1−
(
rect

(
ξ − a
wp

)
+ rect

(
ξ + a

wp

))
, (4.2)

where rect is the rectangle function, a is the stripe separation parameter (center to
center distance is 2a) and wp is the stripe width as shown in Fig. 4.1.

Fig. 4.2a) shows how the normalized intensity, |U(x)|2, at a point equidistant from
the stripes (x = 0), in a parallel plane 115µm away, varies with frequency and a. For
small stripe separations we see a minimum in the THz field. As the stripe separation is
increased, we observe successive constructive and destructive interference maxima and
minima. Each subsequent maxima occurs with lower intensity and shorter periods of
a due to the increasing propagation distance. The other features criss-crossing these
maxima and minima are dependent on the stripe width and hence are associated with
the finite dimensions of the stripes.

1We use the numerical solvers built into Mathematica 9.
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4. 1D Slit imaging

Although we now know which frequencies should be enhanced and diminished due
to the near field interference from the waves scattered by our stripes, these Fresnel
calculations can only serve as an initial guide to experiment and as an explanation
of the underlying physics, since they do not account for the Fabry-Perot resonances
within the silicon and they inadequately treat the evanescent fields.

4.1.2 Evanescent Contributions in Scalar Diffraction

To account for the evanescent near-fields, we modify the calculations in Ref. [77]
(shown in §2.2.1) for our field distribution given by equation (4.2).

In Fig. 4.2b) we plot the normalized intensity, |U(x)|2, as in a), but using the
more rigorous considerations of Ref. [77] which take into account the evanescent
fields. Comparing the two plots, we see agreement in the first maximum, however
the separations between the subsequent maxima and minima are very different. The
large number of maxima and minima in the Fresnel calculation in a) arise from the
highly oscillatory Fresnel integrals, which are not present in the calculation of Fig.
4.2b) due to the more rigorous treatment of the near fields.

However, even this more rigorous calculation does not account for multiple scat-
tering or the Fabry-Perot type resonances in the silicon, hence in the following section
we describe a full wave solution to Maxwell’s equations to account for all the relevant
physics.

4.1.3 Method of Modal Matching

We develop a full wave modal matching solution in order to describe our system. Note
that we omit the time (t) dependent components of the fields. We begin by splitting
our sample into 5 regions with respect to z-axis, Fig. 4.3. Region I extends to the
half space on the incident side the sample. Using the angular spectrum representation
[76, 77] we have a normally incident plane wave and a reflected component that is a
superposition of plane waves propagating away from the sample, written

E1x = ei(0x+kz(0)z) +

∫ ∞
−∞

R(ux)e
−ikz(ux)zeiuxxdux, (4.3)

where ux is the directional wavevector in x, R(ux) is a spectral amplitude function and
kz(ux) =

√
k20 − u2x. In the photoexcited space (region II) our fields are represented
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Figure 4.2: (a) Fresnel diffraction intensity distribution at x = 0 with varying stripe
separation, a, as calculated at a distance of z = 115µm. (b) is the same diffraction
pattern as part a), but including the homogeneous and evanescent contributions from
Sec. 4.1.2. (c) is the absolute value of the propaging components at the exit side
of our system squared, as calculated using the modal matching model in Sec. 4.1.3.
The black arrows indicate the Fabry-Perot type resonances of the silicon. wp = 64µm
in all calculations. Note that the intensities in a) and b) are not comparable with c)
because c) takes into account the transmittance of the slit as well as absorptive and
reflective losses from the silicon which are neglected in the other two calculations.

56



4. 1D Slit imaging

PEC

Silicon

Gold

a
b

x

z wp

wm
ws 

hp

hg

hsi

wg

>> l

(0,0) Region: I

II

III

IV

V

Figure 4.3: Schematic showing the variable definitions used in the modal matching
calculations of Sec. 4.1.3. hp = 11µm is the penetration depth of our 800nm pump
light [78], hsi = 104µm is the thickness of our silicon wafer minus hp, hg = 250nm
is the thickness of our gold film. PEC stands for perfect electrical conductor.

by the modes of the cavity between the parallel conducting stripes. Since we choose
polarization perpendicular to our stripes the electric field parallel to the conductor will
be zero. Boundary conditions will thus dictate that the fundamental mode between
our stripes is described by a rectangle function 1. Unlike the Fresnel calculation, we
are not able to directly take into account an expansion into an infinite x space, but
instead approximate by considering one cavity in the middle and two on either side
whose width tends to infinity in the final calculation 2. This is written

E
(m)
2x =

(
P

(m)
1 eiqsi,zz − P (m)

2 e−iqsi,zz
)
rect

(
x

wm

)
(4.4a)

E
(p)
2x =

(
P

(p)
1 eiqsi,zz − P (p)

2 e−iqsi,zz
)
rect

(
x+ β

ws

)
(4.4b)

E
(n)
2x =

(
P

(n)
1 eiqsi,zz − P (n)

2 e−iqsi,zz
)
rect

(
x− β
ws

)
, (4.4c)

where qsi,z = nsik0 is the wave vector inside the cavities, wm(ws) is width of middle
(side) cavity and β is the displacement parameter for the side cavities as shown in
Fig. 4.3. The superscript in parentheses denotes the cavity (m is middle slit, p is
for +β and n is for −β). In the silicon (region III) we have two sets of plane wave

1For larger stripe separations, ∼ 200µm, the cavity between our stripes becomes multimodal
and thus our rectangle function description is an approximation. However, since the higher order
modes are oscillatory, giving rise to a smaller overlap integral with the incident field, the fundamental
mode will dominate even for larger stripe separations

2In the final calculation we add a small amount of loss (nsi = 3.415 + 0.05i) in the silicon to
further eradicate any artefacts that may arise from the 3 slit approximation.
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4. 1D Slit imaging

superpositions travelling in opposite z directions, written

E3x =

∫ ∞
−∞

S1(ux)e
iksi,z(ux)zeiuxxdux −

∫ ∞
−∞

S2(ux)e
−iksi,z(ux)zeiuxxdux, (4.5)

where ksi,z(ux) =
√

(nsik0)2 − u2x. In region IV we describe our fields in the lower
cavity region with a variable displacement parameter b:

E4x =
(
B1e

iqzz −B2e
−iqzz

)
rect

(
x− b
wg

)
, (4.6)

where qz is the wavevector inside the cavity. Finally, in region V we have a transmitted
component that is a superposition of plane waves propagating away from the sample
in the positive z direction:

E5x =

∫ ∞
−∞

T (ux)e
ikz(ux)zeiuxxdux. (4.7)

All Ey components are zero due to sample geometry and choice of incident polariza-
tion. From the free space Maxwell’s equations ∇ ·E = 0 and ∇× E = −µ0∂H/∂t

we obtain the z electric field components, and also the subsequent expressions for
the magnetic H-fields.

These equations are then solved in the same reasoning as those solved in §2.2.2.
In Fig. 4.2c) we plot the square of the absolute value of the electric field in

region V given by eq. (4.7), taking into account only propagating field components
integrated over our slit width i.e. ux varies between −k0 and k0 (for values where
|ux| > k0, kz =

√
k20 − u2x is imaginary and thus the waves become evanescent

and not measurable by our experiment). This gives the transmitted intensity in the
far field normalized by the incident field intensity. The downward pointing arrows
in Fig. 4.2c) show the maxima due to the Fabry-Perot type resonances within the
silicon. The increase in transmitted components with increasing frequency (decreasing
wavelength) is expected for the transmittance through a sub-wavelength slit. For small
stripe separations, a, the transmission through the slit is minimal. With increasing a,
we start to see the Fabry-Perot interferences in the silicon as well as the near field
interference due to scattering from the conducting stripes. Strong maxima occur
when these two interference conditions coincide.

Comparing all models in Figure 4.2, we see that to obtain the constructive inter-
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4. 1D Slit imaging

ference conditions it is absolutely essential to carry out the full wave solution in c).
These interference conditions depend on the wafer thickness (115µm in our case) and
will have to be recalculated should the thickness be changed. Note, the first order
interference condition marked at point 1 will result in a relatively simple field pattern,
while the higher order condition marked by point 2 will give a more complex field
distribution. We return to this later.

4.2 Experimental Setup and Sample fabrication

An 800nm (90fs) Ti-Sapphire femtosecond laser is used to generate our THz pulses
using optical rectification in a ZnTe crystal §3.1.2.1. The 800nm pulses also provide
the pump excitation beam for the silicon wafer. Our experiment is illustrated in
Fig. 4.4, where a pump pulse is spatially modulated via a digital micromirror device
(DLP3000 with the DLP Lightcrafter from Texas Instruments) so as to project a pair
of thin lines on the surface of the silicon sample, and coordinated with a collimated
THz beam. The THz transmitted through the sample is gathered and measured using
electro-optic sampling in a second ZnTe crystal §3.1.2.2. The lateral position of the
stripes is controlled with a precision of 18µm, which is set by the magnification of
our pump beam optics and the dimensions of the individual micromirrors.

To detector

Gold

30µm slit

Silicon

THz beam

Lens

Pump pulse

Digital Micromirror
Device

On
O�

7.63µm
296µm 38.7µm

Photoexcitation pattern

Figure 4.4: Experimental setup. A pump pulse is spatially modulated so as to project
a pair of thin lines on the surface of the silicon sample, coordinated with the THz
beam path through the 30µm slit. The spatially modulated intensity pattern of the
pump beam, measured at the plane of the sample, is shown as recorded by a beam
profiler.
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4. 1D Slit imaging

For the sample, a 115µm thick 1000Ω · cm silicon wafer has a 250nm thin gold
film deposited via thermal evaporation on one side. A 5nm layer of chrome acts as
the adhesion agent between the silicon and the gold. A 30µm wide slit is wet etched
in the gold layer using a photolithographic mask.

4.3 Results & Discussion

In experiment, we measure the electric field of the THz pulses in the time domain,
Fig. 4.5a). The solid line shows the electric field transmitted through our sam-
ple. After an initial signal at ∼ 2ps, representative of our incident pulse, we see a
number of repeating signals at ∼ 4.5ps & ∼ 7.5ps which represent the Fabry-Perot
type interferences within our silicon wafer. The dashed line shows the transmitted
field measured after the photoexcitation of the silicon wafer, using homogeneous (un-
patterned) 800nm 92µJ/cm2 pulses. This energy is enough to significantly alter the
conductivity of the silicon, effectively turning it into a conductor §3.3 and reducing the
field transmission by ≈ 85%. The solid dotted line shows the change in transmission,
∆E = Emod − Eref .

In Fig. 4.5b) we plot ∆E(t) when the photoexcitation pattern takes the form of
two conducting stripes with a fixed center to center separation distance of 468µm

(a = 234µm). The horizontal axis represents the displacement of the two photoex-
cited lines along the surface of the silicon. The reference signal in part a) is also
plotted on the left of the greyscale plot. There are three main features in this graph.
For displacement values around 200µm and 675µm, we essentially see the negative of
the reference signal. This corresponds to a large decrease in THz signal arising from
shadowing due to a photoexcited line situated directly above our slit. From these two
features, diagonal lines arise due to the scattering of our stripes. These lines then
intersect at 450µm, when the stripes are symmetrically placed with respect to the
slit. At this point we observe additional features in the transmitted field due to the
interferences of the scattered fields.

In order to distinguish the frequency dependence of the interferences, we take the
Fourier transforms of the measured fields at each individual displacement value. Note
that an increase in transmission occurs when the absolute value of the modulated sig-
nal divided by the reference is greater than one ie. |Emod/Eref | > 1. For a decrease
in transmission, one observes |Emod/Eref | < 1. In Fig. 4.6 we compare the frequency
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Figure 4.5: (a) THz Pulses detected through our slit measured in the time-domain.
Solid line is the reference signal, dashed line is the signal when the entire silicon
surface is photo-modulated and dotted solid line is the differential signal ie. the
difference between the other two. Note that the data has been offset for visual
purposes. Fourier spectrums of the pulses are given in the inset, with Fabry-Perot
type resonances indicated by downward pointing arrows. (b) Differential time signal
when a pair of 72µm photoexcited lines are displaced along the surface of the silicon
with a center to center separation of 468µm (a = 234µm). The reference signal is
highlighted by dashed rectangle.

spectra measured in experiment to those predicted by our modal matching calcula-
tions, corresponding to points 1 and 2 in Fig. 4.2c). Note that the model assumes
perfectly defined conductive regions, whereas the experimentally photoexcited stripe
edges are blurred by the diffraction1. Furthermore, our model neglects absorption
within the photoexcited plasma, which results in lower transmission in experiment,
and higher order modes within the cavities of region II in Fig. 4.3. Nevertheless,
we still detect clear enhancements in transmission corresponding to the constructive
interference conditions. We also see that for large stripe separations (a=234µm) one
observes multiple interference fringes, while for small stripe separations (a=126µm)
we see a single interference fringe.

In Figure 4.7 we take a horizontal slice through Fig. 4.6 at a single frequency
of f = 1.05THz (the Fabry-Perot resonance nearest the central frequency of our
free space pulses). This signal is a convolution between the scattered field and the
slit width, and so is essentially a THz image. We look at our resolution with two
definitions. First, we look at the steepness of the edge. Using the 90%-10% criterion

1The Rayleigh resolution criterion of our optics is 5.3µm
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Figure 4.6: Comparison plots of the absolute value of the modulated signal divided by
the reference |Emod/Eref |. Any value above 1 corresponds to enhanced transmission
at that frequency. Top: a = 126µm Bottom: a = 234µm, with experiment on the
left and modal matching on the right.

we obtain a resolution of 47.8µm. Second, we look at the full width half maximum
of our peak. Here we find a resolution of 65.7µm. Since both definitions give
numbers smaller than our free space wavelengths we have sub-wavelength resolution:
for a=126µm at λ0 = 285µm the full width half maximum is ∼λ/4 (note that the
image resolution will be dependent on the wavelength, but we choose 285µm as the
dominant wavelength in our spectral transmission). This resolving power is due to
a narrow field confinement for the Point 1 condition in Fig. 4.2c). If one selects a
much larger stripe separation of a=234µm (Point 2), the complex interference leads
to a much more complex field pattern, and sub-wavelength imaging is not possible.
This highlights the requirement for a single interference fringe.
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Figure 4.7: Absolute value of the modulated transmission divided by the reference
signal as a function of stripe displacement at f = 1.05THz (λ0 = 285µm) for two
different stripe separation values. Error bar is shown in top-right corner

4.4 Conclusions

By photoexciting and modelling a pair of line scatterers, we show that optically
induced conduction in semiconductors can enhance THz transmission through a sub-
wavelength slit. More over, we demonstrate that this same phenomenon can be used
to obtain a profile of the same slit with λ/4 resolution. Our technique is completely
non-invasive, unlike conventional near-field scanning microscopy. It is interesting to
note that the upper limit for resolution in this technique is set by the optical pattern.
Therefore, if engineering challenges can be overcome, one could in principal achieve
a THz image with resolution at the optical diffraction limit.

63



Chapter 5

Photomodulator thickness and
polarization

The first part of this chapter demonstrates how the resolution is affected by diffrac-
tion caused by the THz propagating through the photomodulator. The second part
shows polarization effects and the possibility of using of polarization to detect sub-
wavelength objects through a silicon wafer.

5.1 Imaging technique

Our imaging set up is illustrated in figure 5.1. A more detailed schematic is shown
in figure 3.1 along with our THz pulses (0.2 - 2THz). A THz pulses is generated via
optical rectification in ZnTe, see §3.1.2.1. To spatially modulate our THz beam, we
shine a coincident 800nm, 100fs pump pulse onto a highly resistive silicon wafer.
The pump pulse itself is structured into binary spatial intensity patterns by a stan-
dard digital micromirror device [101]. When these patterns are projected onto the
silicon wafer, the photoexcited regions are rendered conductive (see §3.3) and thus
also opaque to the coincident THz radiation [74]. Moreover, because we record the
THz transmission immediately following photoexcitation, before processes such as
electron diffusion take place (see §3.3), the spatial pattern encoded in the 800nm
pulse is directly transferred to the THz pulse without smearing or broadening of spa-
tial features. The patterned THz pulse then propagates through the silicon before
interacting with a sample positioned on the hidden side of the wafer, after which we
record the far-field transmission with our ZnTe detector (see §3.1.2.2). As explained
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5. Photomodulator thickness and polarization
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THz beamTo single-element
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Figure 5.1: Illustration of imaging setup: using a digital micromirror device and a
lens, a pump pulse is spatially structured and projected onto a silicon wafer. This
spatially modulates a coincident THz pulse. This THz pulse then passes through an
object and measured on a single-element THz detector. Inset is an optical image of
a resolution test target (cartwheel) manufactured from gold on a 6µm thick silicon
wafer.

in §3.4, by spatially encoding a beam of THz radiation with binary intensity patterns,
an image can be formed by analyzing the THz radiation transmitted or scattered by
an object using a single pixel detector [92, 95] (see §3.4).

5.1.1 Image formation example

Here we show a typical set of measurements made in our system to form an image
with a Hadamard encoding scheme ( §3.4.2.2). Consider a spatially encoded beam
of radiation incident upon an object with some spatial transmission profile. The total
transmitted light will be the dot product of the object and the encoding mask. Our
single-element detector measures this total transmitted light. These measurements
for different Hadamard masks are shown in the bottom panel of fig. 5.2, where the
vertical axis is our detector readout and mask number is along the horizontal axis (we
show the first 500 masks of out the 4096). Here, we also show six Hadamard masks
above the right hand-side of the signal plot, where white and black are values of 1
and -1 respectively. After we have completed our measurements for the full set of
4096 masks, we can perform an inverse Hadamard transform to obtain an image of
our object. This image is shown above the left hand-side of the signals plot.
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5. Photomodulator thickness and polarization

Figure 5.2: Hadamard Signals: Top left panel, a 64×64 image taken in our system
using Hadamard transform imaging. On the right are six Hadamard encoding masks
(obtained via the Sylvester construction §3.4.2.2) used in the measurement of the
image. Bottom graph shows the first 500 signals measured in experiment. The red
dashed lines show the number of the example Hadamard masks.

5.2 Resolution and photomodulator thickness

In near field imaging approaches, subwavelength resolution can be achieved due to
the presence of near fields in the interaction with the object. However, near fields
decay exponentially with distance. Furthermore, the propagating fields diffract as they
propagate further decreasing resolution. In figure 5.3 we plot the diffraction pattern
of a single stripe scatterer (40µm wide) at different distances from the stripe. We
use the mathematics in §2.2.1 at a single frequency (1THz) for a world filled with
a refractive index of 3.42. Here it can be seen that the shadow cast by the stripe
widens as the light propagates further away from the stripe. One can also see that
the shadow decrease in amplitude contrast. For imaging, this results says the closer
you can get to the object the better resolution you can obtain.
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Figure 5.3: Diffraction pattern from a single stripe of width 40µm. Intensity distribu-
tion (horizontal axis) from the stripe as it is propagated further away from the stripe
(vertical axis). We plot the sum total intensity at a single frequency (1THz) for a
world filled a refractive index of 3.42 (that of silicon at THz frequencies). Refer to
§2.2.1 for mathematical details.

5.2.1 Resolution in our system

In our approach, the thickness of the modulator sets a practical limit to how close
we can get to our object. Therefore, it can be expected to play an important role
in determining the ultimate resolution of our THz images. To investigate this, this
we image a subwavelength sized, metallic resolution target through a silicon photo-
modulator of varying thickness h. Our resolution target is a metallic cartwheel, shown
in inset of fig. 5.1. We pick a cartwheel pattern since it contains an increasing amount
of spatial frequencies towards its center. This allows us to estimate a resolution as
follows; if one blurs this pattern, the individual cartwheel arms in the center will
merge together becoming indistinguishable from one another. However, the arms at
the edges will be discernible from each other (provided the blurring is not too great).
Thus, there will be a point between the center and the edge where cartwheel arms
become distinguishable. By denoting the distance between the arms at this point,
one obtains an estimate for the resolution.
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5. Photomodulator thickness and polarization

In Fig. 5.4 we show our THz images taken through silicon wafers of thickness
h=400, 110 and 6µm. For a relatively thick modulator (h=400µm, of the order
of the THz wavelength), we see that very few of the subwavelength features of the
cartwheel are evident in the resulting image (see fig. 5.4a). One can understand
the resulting image by considering the diffracted field expected for the object when
propagated through a thickness h of silicon (refractive index = 3.42), plotted in figure
5.4d using scalar diffraction theory [77] (see §2.2.1 for details). While agreement is
imperfect (discussed in the next paragraph), we see similar blurring to the cartwheel
edges, particularly for the high spatial frequency components towards the centre of
the cartwheel, completely distorting the final image. If we reduce the thickness of
the photomodulator to 110µm, we obtain the images of figs. 5.4b and 5.4e.
We see an image resembling a cartwheel, with only the centre of the image being
distorted. Only when we reduce the thickness of the modulator to 6µm do we finally
recover a reasonably complete image of the cartwheel, see figs. 5.4c and 5.4f. The
overall trend here is clear: as the thickness of the modulator is reduced, the images
sharpen. Hence, due to the varying spatial frequencies of the cartwheel, as discussed
in the previous paragraph, we can estimate our obtained resolution by evaluating
the minimal distance for which the cartwheel arms are distinguishable. This leads to
resolution values of 154µm, 100µm and 9 (±4)µm for h = 400µm, 110µm and
6µm, respectively.

We note that there are two main reasons for the discrepancies between the top
and bottom rows of fig. 5.4. Firstly, the polarization of the THz field is important,
while our scalar diffraction calculations neglect this. This leads to the breaking of
rotational symmetry in the experimental images. Indeed, the effect of polarization
can be observed explicitly when we vary the orientation of certain objects (see next
section). Secondly, our model assumes an infinitely thin conducting sheet, where
as in experiment the optical pump light has a finite penetration depth in silicon of
12µm for our 800nm pump light [78]. Whilst an infinitely thin sheet is reasonable
for the low-frequency components our THz pulses, it not justifiable for most of our
spectrum due to the large silicon refractive index (n=3.42 [73]). Therefore, the
pump light will influence the diffracted field. Importantly, this effect sets a practical
limit in terms operational efficiency. This is because reducing the modulator thickness
further would cause leakage of the optical pump and reduce the modulation efficiency.
Thus investigations with direct bandgap photo-modulators are required in order to
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Figure 5.4: a, b, c: THz images (horizontal polarization) of the cartwheel shown in
inset of Fig. 5.1 taken through 400, 110, 6µm thick silicon wafers respectively. Note,
the cartwheels in a, b have diameters larger than the field of view. Further, the origin
of the vertical lines in a is discussed later. d, e, f: Calculated diffracted fields of a
cartwheel as propagated through 400, 110, 6µm thicknesses of silicon respectively.

improve the THz image resolution. Further, direct band-gap semiconductors have
shorter carrier-lifetimes, therefore allowing for quicker repetition rate lasers to used
thus improving the acquisition rate. However, the ultimate resolution limit in this
technique is the pump-light diffraction limit. Therefore, using shorter wavelength
pump light is perhaps more desirable since penetration depth in silicon decreases with
smaller wavelengths.

Origin of vertical lines in Fig 5.4a

We begin with an empirical observation of how to eradicate the vertical lines. Moving
the silicon wafer out our lens focus increases the amplitude of the vertical lines. This
was first observed in the 6µm thick Si wafer, with the results shown in Fig. 5.5.
Here, the cartwheel pattern is moved out of focus in the top row going left to right.
Strong vertical lines appear as one of moves out of focus. The bottom row are the
first 350 measurements of the corresponding image above. It can be seen that the
out of focus image contains periodically occurring masks with abnormally high values.
We now proceed to explain these preliminary observations.
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5. Photomodulator thickness and polarization

Consider imaging a perfectly homogeneous beam with Hadamard multiplexing 1.
The first mask has values of +1 everywhere, ie. every pixel is turned on. Therefore
this mask will measure to the total light transmitted through our object. However,
every other mask has equal numbers of +1s as -1s. Since we are imaging a perfectly
homogeneous beam, these masks will have a detector readout of zero. However,
due to projecting these patterns with a +5cm lens, some +ve and −ve mask pairs
might not be perfect inverses of each other. These mask pairs will have a reading
on the detector. The strength of the value will depend on how well the mask pair
cancel each other. For more out of focus projections we expect the cancellation to
be less efficient. Hence, why the signals in the out of focus image have the largest
values. Finally, we believe these masks occur in a periodic manner due to the Paley
type-I Hadamard sampling matrix, namely in that it uses a cyclical permutation in
its method of construction.

Figure 5.5: Left to right; THz images of the cartwheel as the silicon wafer is moved
out of the focus of our projection lens. Top row are the images with the corresponding
Hadamard signals below. Semi-focus (Out of focus) is defined as when the object is
moved by ∼40(80)µm out of the focal plane.

1The same method that was used to obtain the images in Figs. 5.4a-c
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5. Photomodulator thickness and polarization

5.3 Polarization

Our THz source is linearly polarized, thus we can expect effects due to the polarization
boundary conditions (stated in §2.1.0.1). In particular, the electric field inside a
perfect electrical conductor (PEC) is zero, §2.5 of ref. [102], therefore the electric
field component parallel to the interface of the conductor must approach zero as
well. In order to contemplate polarization effects on imaging, we consider the field
distributions inside a slit in a PEC sheet for electric fields polarized parallel, E‖, and
perpendicular, E⊥, to the conducting interface as illustrated in fig. 5.6. If the slit
width is λ/4, then E‖ can not satisfy the boundary conditions with a propagating
solution1. On the contrary, E⊥ can provide propagating solution of rect( x

λ/4
). This

is because the only the field component parallel to the conductor, which for E⊥
is always non-existent, needs to go to zero at the conducting interface. The first
propagating solution for E‖ is found when the slit width is λ/2. Then one can fit
half a wavelength causing the electric field to go to zero at the boundary. Increasing
the slit width increases the number of solutions satisfying the polarization boundary
conditions. Therefore, polarization effects are particularly prominent in subwavelength
sized conductive features.

wavelength

polarization polarization

No propagating
solution

PEC

Figure 5.6: Schematic of the electric field distributions allowed for slits (going into
the page) in a PEC sheet with varying slit size. Left hand side is for an electric field
polarized into the page. Right hand side the electric field polarized horizontally in the
plane of the page. PEC sheet is indicated by the purple colour.

1From waveguide theory, the electric field frequency is below the aperture cut-off frequency.
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5. Photomodulator thickness and polarization

5.3.1 Experimental results

Our images contain conductive features smaller than the wavelength. In Fig. 5.4c
one can argue that we observe a lower resolution, of 51µm, depending on which
cartwheel arms one evaluates. This effect arises from polarization boundary condi-
tions. Namely, geometry does not render the electric-field component parallel to the
to interface of a conductor to be zero, hence the reduction of transmission adjacent
to the conductor. This effect can be better seen when imaging a sub-wavelength
triangle with two perpendicular polarizations. This is shown in figs. 5.7b and 5.7c:
the lines perpendicular to the polarization show larger transmission for the reasons
discussed in the previous section.

cb

2
0

0
μ

m

2
0

0
μ

m

34μm

Triangle design

a

1.21.00.80.60.40.20.0
Field amplitude (arb. unit)

Figure 5.7: a: Triangle design, white is transmissive and black opaque. b, c: THz
images of a sub-wavelength triangle in a manufactured on 6µm thick Si wafer with
horizontal and vertical polarization respectively.

To further investigate polarization effects, on the exit side of a 115µm thick
silicon wafer we manufactured a circuit board with the design shown in fig. 5.8a (the
thickness of the conducting wires is 50µm and the separation between the individual
wires at some locations is 30µm). In Fig. 5.8b we show a THz image of the
circuit board in 5.8a as measured with vertical THz polarization. We see that the
subwavelength conducting wires are more clearly observed when the THz radiation is
parallel to the wires. The biggest difference is seen in the conducting tracks emerging
from the large 500µm square in the bottom left corner, figs. 5.8c and d. Here, the
small separation of the wires resembles a wire grid polarizer, with the transmission
lowest (and image contrast highest) when the polarization is parallel to the wires.
While such effects may be seen as a disadvantage, for example by limiting the resolving
capacity for some metallic features, we discuss below how one can use polarization
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Figure 5.8: a, The circuit board design, where black indicates conducting, metallic
regions. 8µm breaks are marked by the letters A and B. b 64×64 THz image of circuit
board in a with vertical polarization. Pixels are 40µm. We see that the contrast of
each of the individual wires in the circuit depends on the THz polarization, with the
highest contrast seen for polarization parallel to the wires. c-f, 64 × 64 images of
the square regions in part b. Polarization is shown by the green arrow in the top left
corner of each picture. Pixel size is 20µm, and images have been denoised using the
algorithm in ref. [103]. The subwavelength breaks (marked by circles in parts c and
f) give rise to transmissive regions in the THz image when the THz polarization is
parallel to the wire. In f, the diagonally orientated wire (indicated by the white arrow)
also shows low contrast. Every image has been obtained via a full set of Hadamard
masks. g (h), Line plot through the 8µm gaps in part c (f) with amplitude and space
on the vertical and horizontal axis respectively. The spatial co-ordinates of the plot
is indicated by the green rectangle in part c (f).
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5. Photomodulator thickness and polarization

sensitivity to our advantage by employing it to detect very subwavelength features.
To this end, we have introduced very small (≤8µm) fissures in wires at two points
marked by A and B in circuit diagram in Fig. 5.8a. In Figs. 5.8c and f, these fissures
appear as marked increases in the THz transmission amplitudes at the points identified
by dashed circles. Note that, in order to better distinguish these subwavelength
features, Figs 5.8c-f have been denoised using the algorithm outlined in ref. [103]. It
should be noted that the observed increase in THz transmission is considerably larger
than one would expect solely from the reduced coverage of gold, and arises from a
relaxation in the parallel field boundary condition due to the presence of the fissure.
The subwavelength fissures are not visible when the polarization is perpendicular
to the wires, as shown in Figs. 5.8d and e. One can therefore not only identify the
orientation of the wiring using our approach, but also detect extremely subwavelength
defects in circuitry hidden beneath optically opaque silicon.

5.3.2 Photoexcited gratings

The Hadamard masks constructed from the Sylvester construction technique (§3.4.2.2)
have structures alike periodic gratings, as can be seen in the example masks shown
in fig. 5.2. Further more, the field of view in many of our images is around 1mm.
This means that masks can appear like a diffraction grating with pitch anywhere from
10µm to 400µm. This fact combined with the broad frequency spectrum of our THz
pulses (fig. 3.2) implies that some masks are expected to have a resonant feature
somewhere in our spectrum due to the periodicity1 of the masks.

In order to investigate how the apparent periodicity of the different Hadamard
masks affects our measured signals, on a silicon wafer (1000Ω · cm resist, 115µm
thick) we photoexcite diffraction gratings (energy per pulse 120µJ/cm2) aligned per-
pendicular and parallel to our THz radiation with varying pitch and a half fill factor.
Our raw temporal measurement of the transmitted waveforms is shown in fig. 5.9.
Here on the horizontal and vertical axis we have grating pitch and time respectively
with the colourscale indicating the electric-field strength of the transmitted wave-
form. On the left of the colourmaps we show the measurement for a homogeneous
excitation profile (highlighted by the green rectangle). At 3.5ps one can see the main
THz pulse arriving, then at 6.2, 9.1 and 11.5ps one can see the first, second and third
Fabry-Perot pulses respectively. As the pitch is increased one observes an increase

1The most masks are not actually strictly periodic gratings, however they are quite close.
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5. Photomodulator thickness and polarization

in the field-strength of the main THz pulse. We return to this point later. Another
interesting result is the fact that the small pitches (below 60µm) give signals of sim-
ilar size to the homogeneous excitation profile despite decreasing the total excitation
power by half1 Whilst interesting, we are concerned with the frequency response of
the system.

Figure 5.9: THz fields transmitted through gratings (50% fill fraction) photoexcited
on a 115µm thick silicon wafer. Time and pitch on the vertical and horizontal axis
respectively. The left (right) plot is when the gratings are aligned parallel (perpen-
dicular) to the incoming THz radiation. On the left of each plot is a green rectangle,
this is the field transmitted through our system when the photo-excitation profile is
homogeneous.

In figure 5.10 we plot the Fourier spectrum of the pulses transmitted through
the various gratings normalized to the homogeneous excitation response. The most
obvious features are the horizontal lines appearing at 0.59, 0.95, 1.29, 1.66, 2.05 and
2.4THz. These coincide with the minima of the Fabry-Perot resonances in our 115µm
thick silicon wafer. It can be seen that the parallel gratings are more transmissive
than the perpendicular gratings for frequencies between 1.5 and 0.5THz and pitches
greater than 150µm. Note that the biggest enhancements are observed at the Fabry-
Perot minima. This is because the presence of the gratings modifies the boundary
conditions. Namely, more evanescent field components are expected in the parallel
gratings due to the orientation, for reasons similar to those mentioned in beginning

1The power within each photoexcited region is 120µJ/cm2 per pulse, however since the gratings
have a 50% fill fraction the total power incident onto the entire silicon wafer is halved.
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5. Photomodulator thickness and polarization

of §5.3. As the cavity size is increased, compared to the wavelength, the evanescent
fields will decrease and thus reduce their effects on the boundary conditions. This is
why the parallel and perpendicular gratings have very similar values around 2.2THz.
A frequency dependent feature can be observed just below the λsi = 2a line for both
grating orientations. A few other frequency dependent features can also be observed.
The fine details of these features differ for the two grating orientations. Whilst one
can write pages on the phenomena of diffractive gratings and plasmonics [104], our
primary concern is how they affect our imaging technique. Therefore, due to their
weakness we can ignore these diffractive effects.

Figure 5.10: Fourier spectra of the THz transmission through gratings (50% fill frac-
tion) photoexcited on a 115µm thick silicon wafer. The left (right) plot is when
the gratings are aligned parallel (perpendicular) to the incoming THz radiation. Fre-
quency and pitch on the vertical and horizontal axis respectively. Note, the spectra
have been normalized to when the silicon was homogeneously photoexcited. The
three green lines show when the silicon wavelength equals 1,2 and 3 times the grating
pitch.

In the frequency spectrum we see that the major difference between the two grating
orientations arises in the Fabry-Perot minima. Our imaging technique measures the
peak field-strength of our THz pulse (i.e. at 3.5ps in fig. 5.9) and not the consequent
Fabry-Perot pulses. Therefore, these differences in the Fabry-Perot minima are of little
concern to us. However, the THz peak value does increase with pitch. This is of
great concern as it implies that Hadamard masks with low spatial frequencies are
more transmissive than those with high spatial frequencies. Next we outline a way of
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5. Photomodulator thickness and polarization

overcoming this phenomena.

Figure 5.11: Four consecutive imaging masks constructed from a Paley type II
Hadamard matrix. The blue triangles are there only as a guide to indicate how
the pixels shift with each consecutive mask.

Since the transmission of the diffraction gratings depends on the spatial frequency
of the grating, we are interested in having the same spatial frequencies for all our
imaging masks. As can be seen in the example masks of fig. 5.2, this can not be
accomplished with Sylvester Hadamard matrices. However, Paley type-II Hadamard
matrices are constructed differently which results in the creation of cyclic imaging
masks. Such masks are named so since the ith mask is obtained by shifting all the
apertures from the (i−1) mask to the right1. This means that the spatial frequencies
of all the masks are similar. This will reduce the effects observed when photoexciting
subwavelength structures.

To demonstrate this we measure the transmission through different sub-wavelength
masks constructed via the Sylvester and Paley type-II construction techniques2. The
projected masks are set to have pixel sizes of 20µm, hence some masks will have sim-
ilar spatial frequency content to a grating with 40µm pitch. Our results are shown in
fig. 5.12. Note, the signals here have been normalized to the transmission through
homogeneous photo-excitation. It can be seen that some Sylvester masks have a
factor of two more transmission than other masks. The Paley type-II masks however
do not have such large discrepancies. This demonstrates that when sub-wavelength

1This arises from the cyclic permutation used in constructing a Paley type-II Hadamard matrix.
See §3.4.2.2 for construction details. Further, this rule does not apply to the first mask since it has
all of its apertures open.

2Note, only the transmission through a positive set of masks was measured. Further more, we
measure the peak-field strength of our THz pulse (see fig. 3.2) since that was done for most imaging
experiments in this thesis.
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dimensions are utilized Paley type-II masks are preferable than Sylvester ones for the
reasons in the previous paragraph.

Figure 5.12: The THz field transmission through through the first 500 masks, from
an H64×64 matrix, constructed via the Sylvester (Paley type-II) technique in blue
(red). The masks were photoexcited on a 115µm thick silicon wafer (1000Ω · cm
resist). The individual aperture size in each mask was 20µm, meaning an image with
20µm spatial resolution would be commuted from the full set of measurements.

Conclusions

This chapter starts by showing a typical set of Hadamard measurements made in order
to obtain an image. Next we consider the resolution limit in our imaging approach.
We explicitly show that the image resolution is determined by the thickness of the
photo-modulator used. By the using an ultra-thin (6µm) silicon wafer we demonstrate
THz imaging with 9µm (λ/45 at 0.75THz) spatial resolution. At sub-wavelength
resolutions polarization effects become important, hence the final section concerns it
self with polarization. In particular, we demonstrate a possible application: we use
polarization resolved imaging to detect sub-wavelength breaks in electronic circuits
hidden behind optically opaque silicon. The chapter concludes by concerning itself
with how do polarization effects, in the masks, affect our imaging technique. It is
shown that when structural dimensions around the wavelength are present one can
expect negative effects. We discuss a way of minimizing such effects.
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Chapter 6

Noise and under-sampled images

This chapter is an investigation of how noise affects the image quality when fully
sampling and under-sampling the image. Further, when under-sampling we investigate
how different reconstruction algorithms perform.

6.1 Noise in the THz-TDS photomodulator imag-

ing system

Detector noise is commonly defined as the values that the detector shows with no
light incident upon it. Source noise arises from the amplitude fluctuations of the
device emitting light. The noise in this type of imaging system is probably unlike any
other imaging system. The reason for this is that the THz source, THz modulator and
THz detector are all powered from the same Ti:Sapphire laser system, as shown in
fig. 3.1a. Therefore, noise in the Ti:Sapphire laser will transfer itself onto the source,
modulator and detector components. Further, since this technique relies on the tem-
poral synchronization between the THz, optical pump and optical detection pulses,
all this noise is correlated. However, since the generation and detection techniques
used here rely on non-linear optical phenomena (see ch. 3), the correlation is difficult
to model. Regarding the silicon photomodulator, the powers used to photoexcite the
Si wafer are well into the saturation regime, hence a 5% drop in pump power will not
result in a 5% drop in modulation efficiency. Therefore noise from the modulator is
expected to be the smallest contributor to the degradation of image quality.

In Fig. 6.1 we show the two main sources of noise in our system. Our detector
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noise is around 4 orders of magnitude smaller than the peak of our THz pulse1.
In general this type of noise hinders raster scanning techniques. The source noise,
amplitude fluctuations in our THz peak, can be seen to have two main components to
it. First, low frequency oscillations with a period of around 20 minutes. These were
found to be due to changes in the humidity levels2 caused by the lab air-conditioning
systems, hence could be switched off or controlled. Second, there is a high frequency
noise with RMS of around 5% from the mean. This noise is inherited from the
regenerative amplified Ti:Sapphire laser system. Finally, this noise is also affected
by the alignment on the balanced diodes used for THz detection (see §3.1.2.2 for
detection details).
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Figure 6.1: Normalized THz pulse. Left inset: The first 1.75ps of the THz pulse
zoomed in. Right inset: The value of the THz peak over a period of 35 minutes.

6.2 Results

6.2.1 Minimizing low-frequency source noise

If one is not able to eradicate low-frequency amplitude oscillations in their light source,
one can minimize this unwanted source of noise. This is achieved by the using spatial
encoding masks constituted by +1s and -1s as opposed to 1s and 0s, see §3.4.1 for
the details of experimental implementation. In fig. 6.2, we compare the difference

1We measure the peak of our THz pulse as the detector readout for each mask (see §3.1.2).
2Water vapor strongly absorbs THz radiation.
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between using encoding masks derived from Hadamard matrices with [1, -1] and [1,
0] values. Here we can see that the image constructed from [1, 0] measurement
has some artifacts created from low frequency THz source oscillations (indicated by
the arrows), whereas the [1, -1] measurement have eliminated most of this type of
artifact.
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Figure 6.2: [1, -1] vs [1, 0] masks. 64 × 64 Images obtained using Hadamard
masks with values of [1, -1] in a and [1, 0] in b. Total number of measurements is
16384 for both pictures.

The reason masks with elements of [1, -1] are less affected by slow amplitude
source oscillations than those with elements of [1, 0] is now explained. Consider
imaging a perfectly homogeneous beam. If we have two different [1, 0] masks where
half the elements are 1s and the other half 0s, they would have the same detector
readout of half the total beam intensity in a world with no noise. However, if they are
taken at different phase points in the source noise oscillation cycle, then our detector
will display different values. Now consider the same perfectly homogeneous beam,
however we now have two different [1, -1] masks where half the elements are 1s and
the other half -1s. The detector readout will be zero for both of them in a world with
no noise. Now if measure our masks at different phase points in the source noise
oscillation cycle, then the detector readout will still be zero for both masks since we
are measuring half the beam intensity minus the other half. Therefore since these
masks have the same readout they are not affected our low-frequency source noise.
Although, in our experimental implementation (see 3.4.1), it needs to be pointed
out that this argument only holds true should the positive and negative masks are
measured on a time scale much quicker than the period of the source oscillations.
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6.2.2 Raster, Random and Hadamard masking schemes
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Figure 6.3: Increasing image size. A-C, Images obtained using raster masks with
increasing number of pixels from 32×32 to 64×64 and 128×128, respectively. D-F
(G-I), Images obtained using random (Hadamard) masks as number the of pixels is
increased from 32×32 to 64×64 and 128×128, respectively. The vertical lines seen
in part C are associated with periodic changes in lab environment. Note A, B, & C
have been scaled by 0.9, 0.25 & 0.1, respectively, so as to be plotted on the same
scale as all other images.

Here we investigate how experimental noise affects the three different masking
schemes, outlined in §3.4.2, as the number of pixels in the image is increased. For
this, we take images under identical conditions (one after the other) of the circuit
board in Fig 5.8a with increasing number of pixels. Our results are shown in Fig. 6.3.
Hadamard masks have the most superior signal to noise followed by random masks
and then by raster scanning. This is true for all image sizes. Raster scanning is most
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affected by detector noise due to the small signals emanating from a single aperture.
On decreasing the aperture size, and increasing the number of pixels, image noise
clearly increases. This effect is less significant for the multi-pixel approaches as these
have larger associated signals. While multi-pixel patterns clearly have the benefit
of increased signal to noise, the continual increase in the number of pixels leads to
increased image noise, even for Hadamard imaging. This is because the signal from
each individual pixel decreases as the number of pixels increase, and even though
Hadamard matrices minimize the mean square error in each image pixel [95] they do
not completely remove all noise. One should also note that we have noise in our
THz source which further degrades image quality as the number of measurements
required to form the image increases. Interestingly, random masks seem to fare best
as the number of pixels increases. It can easily be shown that is an artefact caused by
the simple for-loop reconstruction algorithm employed. The performance of random
masks can be improved by using more complex image recovery algorithms.

In figs. 6.4A and B we compare the level of noise in images, obtained with
a random sampling matrix, as recovered by a simple for-loop and a total variation
minimization algorithms (eq. 3.23) respectively. It can be clearly seen that the total
variation algorithm has superior performance. Further, in fig. 6.4C we plot the image
obtained with Hadamard masks. We see that orthogonal masks are still superior. This
is partly due to the fact that Hadamard matrices minimize the mean square error in
each image pixel [95] and partly due to the value of our relaxation parameter. In
other words, we could further improve the quality of our random mask image with
more careful considerations of our value for γ in eq. 3.23. However, the Hadamard
reconstruction uses a simple for-loop algorithm, the same as fig. 6.4A, where as
the total variation algorithm is more complicated (taking us ∼ 100s as opposed to
∼ 10ms).

6.2.3 Under-sampling with a random matrix

In this section we investigate how different compressed sensing algorithms perform in
our experimental system when we under-sample our object. Our results are shown in
fig. 6.5, where we take 72× 72 images of ∇ ·E = 0 and ∇ ·B = 01 as we decrease
the number of measurements with the top, middle and bottom rows respectively

1Using photo-lithographically, we manufactured “∇ ·E = 0” and “∇ ·B = 0” out of gold onto
the exit interface of our silicon wafer.
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Figure 6.4: 64 × 64 images of a circuit board where A and B have been obtained
using random masks except A was constructed using our simple algorithm and B has
be constructed via a total variation minimization algorithm from the same data. C;
image of the same circuit board obtained via Hadamard masks.

using 75%, 50%, 35% the number of measurements as the number of pixels. The
first column uses the simple for-loop image reconstruction and the next three columns
respectively use the problems of eqs. 3.21, 3.22 and 3.23. For all algorithms, the
image is visible when the number of measurements is 75%. In this top row, the best
images are parts D and G followed by J and finally A. However, we decrease the
number of measurements to 50% then parts E, H and K become similar in image
clarity with B performing the worst. In bottom row, the best image is part L with
F and I being equal with C performing the worst again. The performance of the
for-loop reconstruction is expected to be the worst given that it also incurs a false
reconstruction in noise free simulations1. The similar performance of the second and
third columns is expected since they both minimize the L1-norm. Although, the third
column has an extra parameter, γ, to improve the image quality, this parameter was
found mostly to affect the amplitude all of the points. This is because the L1-norm
is the sum of all absolute values of a vector. Therefore this can be minimized by just
dividing all the values by a constant value. We believe this is what algorithm did as γ
was varied. Hence an improved way of solving the problem of eq. 3.22 should mitigate
this, or perhaps a minimization of the L0-norm with a relaxation parameter would
mitigate this. Regarding the fourth column, this algorithm uses the for-loop image as
an initial guess, hence its superiority over the for-loop method. Further, many image
denoising methods perform a total variation minimization [98, 103]. Comparing the
L1-norm algorithms to the total variational one, the inferior performance of the TV-

1The matrix doesn’t satisfy AAT = NIN , hence this is not a solution satisfying the original
problem
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Figure 6.5: 72 × 72 Images of ∇ ·E = 0 and ∇ ·B = 0 reconstructed via different
Compressed sensing algorithms. The top, middle and bottom rows respectively have
75%, 50% and 35% number of measurements as the total number of pixels. The
first, second, third and fourth columns respectively use a for-loop, eq. 3.21, eq. 3.22
and eq. 3.23 image reconstruction algorithms. Note each image has been plotted on
a colourscale that best shows the image.

min at 75% number of measurements and its superior performance at 35% number of
measurements is explained as follows. Increasing γ in the TV algorithm has the effect
of reducing noise by smoothing out the image, however it also reduces the sharpness
of edges as well. Therefore, an optimal value of γ will strike a balance between noise
removal and image preservation. In partsD and G, the large number of measurements
are sufficient in number to allow the L1-norm algorithms to determine the object with
reasonable accuracy, where as our optimal value of γ prevents further noise removal
in part J. As we decrease the number of measurements, all algorithms have more
difficulty in obtaining the relevant solution. However, the total variational algorithm
fairs best due to lack of image features yielding greater freedom in regards to the
value of γ.
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6. Noise and under-sampling

6.2.4 Adaptive imaging

In this section, we investigate two strategies to reconstruct images using undersampled
sets of measurements: adaptive sampling and compressed sensing.

Using adaptive sampling, we first measure a low resolution image and then sample
regions of interest with progressively higher resolution. The regions to sample are
determined using a single-tier 2D Haar wavelet decomposition. The Haar wavelet
transform is a hierarchical structure that highlights the presence of edges in an image
at a series of progressively finer scales [105].

This can be used to compressively sample an object by making use of the assump-
tion that high values of wavelet coefficients at coarse scales are highly correlated
with high values at finer scales [100]. This is a reasonable assumption which can
be understood by considering that sharp edges are represented by non-zero Fourier
components across a wide spectral range. Therefore, identification of coarse edges
from an initial low resolution image then determines where to sample at a higher
resolution. After each resampling phase, the process is repeated until the required
resolution is reached. A more detailed description of the algorithm used is given in
§3.4.3. Using adaptive sampling the solution is straight-forward to recover, however
the reconstruction possesses an uneven distribution of pixel sizes.

Figure 6.6 compares reconstructed images of a transmissive object depicting two
of Maxwell’s equations as the number of measurements for both adaptive compression
and compressive sensing are reduced. On the top row, we see a homogeneous spatial
distribution of noise. This renders the image less obvious. On the bottom row, we can
see that there are different sized pixels, hence an uneven distribution of the noise. The
main features of the image are clearly seen for all measurement amounts. Further,
we see an increase in the noise level as the number of measurements is increased.

Comparing the two, we observe that the adaptive sampling approach out performs
the compressive sampling approach in this specific case. Although we note that our
image recovery algorithms are not designed to take into account the level of noise
in our measurements. Further, here we have kept our assumptions about the object
under investigation quite general: simply that wavelet tree truncation is reasonable,
and that the objects are sparse when expanded in the Fourier basis. We aim to
demonstrate the feasibility of these techniques rather than optimize the sampling and
reconstruction algorithms to suit the object under tests and measurement conditions.
We anticipate improved results should one develop an algorithm taking into account
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specific prior knowledge of the object combined with knowledge of the measurement
noise.
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Figure 6.6: Compressive 72 × 72 THz images of ∇ ·E = 0 and ∇ ·B = 0 with
decreasing number of measurements, where the top, middle and bottom columns
respectively use 75%, 50% and 35% measurements as the number of pixels. Top
row: compressed sensing. Bottom row: adaptive sampling.

Conclusions

Here we have shown the type of noise that is present in our THz-TDS system. Namely,
there exists detector noise 4 order of magnitude smaller than our THz peak, source
noise with low frequency (period is about 20 minutes) amplitude oscillations and a
high frequency source noise with an root-mean-squared value deviating from the mean
of about 5%. Then we show how to minimize the low frequency source noise using
masks with elements of 1s and -1s. Then we show how different masking schemes
perform is our system, with orthogonal masks performing best. We demonstrate how
undersampling with a random matrix and adaptive imaging perform in our experimen-
tal system. We find adaptive imaging to outperform sampling with a random matrix.
It should be noted that undersampling at sub-wavelength resolution is has not yet
been demonstrated in any other spectral regime.
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Chapter 7

Subwavelength THz imaging of
Graphene Photoconductivity

Summary

Using a spatially structured, optical pump pulse with a THz probe pulse, we are able
to determine spatial variations of the THz photoconductivity in a planar graphene
sample with sub-wavelength resolution (75µm ≈ λ/5 at 0.75THz). We compare
our results to Raman spectroscopy and correlate the existence of the spatial inhomo-
geneities between the two measurements. We find a strong correlation with doping
inhomogeneity. This demonstrates the importance of eliminating inhomogeneities in
electron density during CVD growth and fabrication for photoconductive devices.

7.1 Graphene

The unique opto-electronic properties of graphene have received a lot of atten-
tion [106]. For example, ultrafast carrier relaxation[107–111], highly tunable dop-
ing levels[112], theoretical mobilities in excess of 150,000 cm2V−1s−1 [112], and high
thermal conductivity [113] all lend themselves to a number of interesting device appli-
cations. However, the large scale manufacturing of this 2D material, usually through
chemical vapour deposition (CVD), is not yet perfected and it is well established
that there are a number of sources of quality degrading, spatial inhomogeneities
such as charge puddles, grain boundaries, substrate induced strain variations, surface
impurities, multilayer nucleation sites and fabrication residues [114–117]. Raman
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Figure 7.1: Right: The imaging setup; a patterned 800nm pump beam is used to
photoexcite a graphene sample on quartz substrate (from graphene supermarket).
The graphene is then probed with a THz pulse (λ0 = 400µm,FWHM = 750µm).
Left: Spatially averaged photoconductivity as a function of time delay after photo-
excitation. Arrow shows the point at which the photoconductivity maps are measured.

spectroscopy and imaging has emerged as an important characterisation tool here,
due to its sensitivity to layer number [118], strain[117], carrier concentration[119]
and defects[120–123]. However, the conductivity, a critical quantity for many opto-
electronic applications, including photodetectors [124, 125], cannot be explicitly de-
termined directly in Raman, due to the limited number of observable quantities.

Given the relevance of the conductivity to many opto-electronic applications of
graphene, optical-pump THz-probe spectroscopy has attracted considerable interest
in the literature in recent years [126–130]. This experiment can determine the ultra-
fast photoconductivity of graphene, an important quantity which is now understood
to have a complex dependence on mobility, electron concentration and relaxation
rate[129–131]. However, due to the large THz spot sizes (≈ mm) used in these
experiments, they typically provide spatially averaged information, and are therefore
ignorant of the small spatial inhomogeneities typical in CVD graphene.

In this study, we devise a technique able to directly image how these spatial
inhomogeneities affect the local photoconductive THz response of graphene. This is
achieved via spatial patterning of the optical pump beam, allowing us to selectively
sample our graphene, and thereby building a THz photoconductivity map of our CVD
sample. We compare the spatially dependent THz photoconductivity to Raman spec-
tral maps and find there to be various correlated features. We find that small regions
of graphene with low electron density display a strongly suppressed photoconductivity
on ultrafast timescales. Since the resolution of our measurement is determined by the
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7. Subwavelength THz imaging of graphene photoconductivity

patterned optical pump pulse, we are able to observe these small regions of suppressed
THz photoconductivity on markedly sub-wavelength length scales (75 µm ≈ λ/5 at
0.75 THz).
DMD Phase front correction Note that for this experiment to work one needs to
eradicate the phase front distortion induced by the DMD as shown in §3.4.1.1.

7.1.1 THz measurements of graphene

We use the setup outline in §3.1.2 to generate and measure our THz field. We measure
the electric field, E, of a single cycle THz pulse ( 0.1-2THz see §3.1) transmitted
through our sample. Note that, in all the data presented in this chapter, we discuss
only changes in the peak of the transmitted THz pulse, as in ref. [130]. This gives
a spectrally averaged measurement weighted to the spectral peak of our THz pulse
(0.75THz). The femtosecond laser system also provides a third pump beam used
to photoexcite the graphene. Our raw measurement of the temporal photoexcitation
dynamics of graphene are shown on the left of figure 7.1 where we plot ∆E, defined
as

∆E = EPump On − EPump Off, (7.1)

as we vary the arrival time of the optical pump beam. Here, the photoexcitation
pulse can be seen to arrive at ∼ 0ps. We see a fast, sub-picosecond carrier rise time
followed picosecond relaxation times (associated with cooling to acoustic phonons)
as observed previously in refs. [126, 127, 129, 130]. From this measurement one can
extract the photoconductivity, ∆σ, via the relation [109]

∆σ = −1 + nsub
Z0

∆E

EPump Off
, (7.2)

where EPump Off is the transmitted THz field before photoexcitation, Z0 the impedance
of free space and nsub ≈ 1.9 is the refractive index of the quartz substrate. From
the data on left in fig. 7.1, it is clear that we have a negative photoconductivity
(i.e. a conductivity which decreases on photoexcitation). This is typical for graphene
with an intrinsic Fermi level greater than 120meV [132] (from Raman measurements
[117], we estimate the intrinsic Fermi level of our sample to be 800meV ). However,
it is important to note that this is a spatially averaged result: due to the restric-
tive diffraction limit for THz radiation, THz photoconductivity can typically only be
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determined with mm spatial resolution.
To overcome this resolution limit, we introduce spatial modulation in the optical

pump beam, as illustrated on the right of figure 7.1. In short, we employ Hadamard
matrices, see §3.4.2.2, as our sampling matrix. We spatially measure the photomod-
ulation induced in the graphene, as opposed to ch. 5 where we use photomodulation
(in silicon) to image another object. In this experimental design, the theoretical imag-
ing resolution is limited by the Rayleigh criterion for our pump beam. However, in
practice the image resolution is dictated by the signal to noise ratio in experiment
[133]. We find that a resolution of 75 µm is sufficient to resolve most of the con-
ductivity features in our sample. Note, the DMD induces a phase front in the optical
excitation beam, which needs to be removed as shown in §3.4.1.1.

7.1.2 Comparison to other THz imaging techniques

It must be noted that this is not the only near-field THz imaging technique usable
for looking into graphene. The other main techniques use near-field apertures or
probe-tips [134–137]. These techniques differ from ours in that they directly measure
the near-field THz radiation, as opposed to how photoexcitation affects the THz
transmission. Using a near-field aperture allows one to perform THz spectroscopy on
sub-wavelength graphene structures [134]. From this one can directly observe how
sub-wavelength antennas and gratings perform. The near-field probe scatters [135–
137] do something else. Graphene supports surface plasmons in the mid-infrared to
THz frequency regime [138, 139], therefore the tip-scatterer launches THz plasmons
that propagate along the graphene surface. Here one can directly detect the surface
plasmon and measure both its propagation length and wavelength. It should be
noted that THz plasmons on graphene are confined to spaces 50 times less than free-
space THz wavelength [139]. This allows for the creation of highly sub-wavelength
plasmonic sensors, which would be best inspected by tip-scattering techniques.

As a comparison, all these near-field THz imaging techniques (including ours)
detect growth inhomogeneities. However, using our technique to measure the re-
sponse of a plasmonic structure is rendered difficult as one has to also launch the
THz plasmon. Further, we are not directly measuring the surface charge oscillation
and therefore we would have to make assumptions about how it affects our measure-
ment. However, the other two techniques require would require major modifications
to measure the photo-conductive response, a quantity needed for photo-detectors.
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They are also inherently limited to raster scanning.

7.2 Results

Figure 7.2: A ∆E measured at x = 0µm showing the graphene response convoluted
with the THz probe spot (white dotted lines shows gold alignment markers) B: ∆E
measured with a shift of 450 µm with respect to A. C: ∆E normalised to the spatial
average of ∆E showing the graphene response without the THz beam profile.

The imaging results are shown in figure 7.2. We measure at the time overlap
between the pump and THz beams. Figures 7.2A and B are images showing the
spatial dependence of ∆E as recorded with our single-element imaging scheme. The
THz probe beam profile can be observed in the centre of both images, with a number
of additional features inside the spot. In order to separate the spatial response of
the sample from any spatial inhomogeneities of the THz and optical pump beams, an
averaging technique is employed, where the sample is laterally scanned with respect
to the pump and probe beams. This allows us to extract any intensity variations
associated with the graphene sample itself. In figures 7.2A and B the sample has
been laterally offset by x = 450µm. As the sample translates left to right, we use
gold markers (square features at top and bottom) to track its movement. The full
set of results are shown in supplementary materials as video S1. The average beam
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profile is then extracted by the taking mean of all N images in the stack;

∆Ebeam(x, y) =
1

N

N∑
i=0

∆Ei(x, y). (7.3)

where ∆Ei is the ith image in the stack of images. The response of the graphene
itself is then obtained by averaging the resultant stack of images, accounting for the
mechanical shift of the sample (xi) using

∆E

EPump Off
=

1

MN

N∑
i=1

∆Ei(x− xi, y)

∆Ebeam(x, y)
, (7.4)

where M is a normalization factor which equates the spatially average photoconduc-
tivity to the photoconductivity measured in fig. 7.1. The photoconductivity is then
obtained via eq. 7.2.

In figure 7.2C we plot the normalised THz photoconductivity of our sample. We
see a predominance of a negative photoconductivity across the sample, as expected
for graphene with a Fermi level � 120meV [131]. However, we also see a number
of regions in the image where the photoconductivity is more than a factor five lower
than the spatial average. Below, we try to understand the origin of these features
using Raman microscopy.
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Figure 7.3: Typical Raman spectra show-
ing the three main graphene peaks.

Raman spectroscopy measures in-
elastic scattering from optical phonon
modes in the graphene. A typical spec-
trum is shown in figure 7.3, with three
peaks corresponding to phonon modes:
the zone center mode G and the first and
second harmonics of the D zone edge
phonon. We obtain a spectral Raman
map of the area of our sample. Then we fit each of the three spectral peaks sin-
gle Lorentzians in order to extract central frequencies, intensities and widths at each
individual graphene pixel. Note that, due to the mismatch in resolution between
Raman and THz imaging approaches, multiple Raman spectra were recorded within
each 75µm area in order to give an indication of the average response of each pixel
and minimize disparity between the measurements. It is important to note that the
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D peak does not conserve momentum and is therefore a defect activated peak. As
discussed later, we observe a distribution of defects in our Raman images, as expected
for CVD graphene [120–123]. Finally, by looking at the exact frequencies and the
widths of the G and 2D peaks one can calculate the graphene carrier concentration,
however the details of this procedure have been omitted from this thesis and the
reader is pointed to the actual publication of ref. [140]. Here we only present the
final result.

In figure 7.4 we compare the spatial dependence of the THz photoconductivity,
A, against spatial maps of the Raman defect peak intensity, B, and electron con-
centration, C. In order to make fair comparison between the Raman and the THz
images we have averaged the Raman signals using a spatial filter. In all four images
we observe a feature to the bottom right of the imaged region, indicating a small
tear in the graphene. However, the correlations to some of the more subtle features
in Fig. 7.4A are less obvious - we discuss here in more detail.

Firstly, figure 7.4B is obtained by plotting the defect peak intensity, normalized
by the intensity of the G peak - this results in a spatial map of localized defects in the
graphene. From this image, it is clear that these local defects are arranged along dis-
tinct lines, possibly resulting from folding during during growth, or possibly resulting
during transfer. Irrespective, there is little or no correlation to the THz photoconduc-
tivity observed in fig. 7.4A. This is symptomatic of the local conductivity, sensitive
to motion on the ultrafast timescales, typically observed in THz measurements [141],
which is unaffected by these boundaries.

In figure 7.4C we plot the spatial dependence of the carrier concentration. This
shows a much more clear cut correspondence to the THz photoconductivity plotted in
figure 7.4A. We see very low THz photoconductivity, around a factor of five lower than
the spatial average, in regions of low doping compared to the high doping regions.
The clear correlation between Raman and ultrafast photoconductivity constitutes one
of the major findings of our work, and suggests that the steady state electron density
plays a crucial role in determining the photoconductivity [127, 129, 130, 132], a
quantity of crucial importance for any photo-detection applications.
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Figure 7.4: A: Graphene photoconductivity map showing the region of interest also
covered by the Raman map B: Normalised intensity map of defect peak showing the
relative spacial intensity of the D peak. Averaged to the same pixel size as A. C
Spatial map of carrier concentration, Averaged to same pixel size as A.

95



7. Subwavelength THz imaging of graphene photoconductivity

Optical Image of the Sample

200µm

Figure 7.5: Optical image of the graphene sample.

In Fig. 7.5 we show a white light reflection image of our graphene sample area
taken with a x20 objective on the Renishaw inVia system (the Raman spectrometer).
This shows the graphene rip in the lower right corner, also observed in our Raman
and THz images. Note that the field of view in the reflection measurements is rather
small, and the repeating pattern seen is an artifact caused by stitching of separate
images. This effect has been minimized by overlapping individual images and applying
a background subtraction tool (WIRE software).

The sample was bought from graphene supermarket deposited on a quartz sub-
strate via chemical vapor deposition. Nothing else was done to the graphene. The
gold markers were created via photo-lithographic techniques.

Conclusions

To conclude, we present a new experimental method for imaging the THz photocon-
ductivity of graphene on small length scales. By selectively photoexciting regions of
the graphene and then measuring the photoconductive terahertz response, we can
observe variations with sub-wavelength resolution (currently 75 µm ≈ λ/5 at 0.8
THz, though a fundamental limit approaching 1µm, set by the optical diffraction
limit, should in principle be possible). By comparing our images to Raman maps,
we find a strong correlation with strain and electron concentration. We attribute the
causation of this correlation to doping inhomogeneity. This demonstrates the impor-
tance of eliminating these strain and doping inhomogeneities during CVD growth and
fabrication for photoconductive devices.
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Chapter 8

Subwavelength hyperspectral
THz imaging of articular cartilage

This chapter demonstrates hyperspectral polarization-resolved THz imaging on bio-
mater. We show that the THz permittivity of a sample, articular cartilage, can be
extracted with 65µm (λ/6) spatial resolution. We observe that the permittivity varies
on a sub-wavelength scale and find it correlated with the structure of our sample.

The main motivation behind this chapter is that near-field THz imaging techniques
compatible with biological matter are nearly non-existent. As with all the previous
chapters, we employ a time-varying optical pattern projected onto a 6µm-thin silicon
wafer to achieve near-field modulation of a co-incident THz pulse. We image using
a Hadamard encoding scheme as outlined in §3.4.2.2. Further, by measuring the
temporal evolution of the THz field in the imaged field of view the THz permittivity
of a sample can be extracted, via the methods in §3.2.1, with 65µm spatial resolution.
We present the first application of this new approach to articular cartilage, where our
sample and silicon wafer are encapsulated by two plastic coverslips to maintain sample
hydration and structural integrity. We show that the THz permittivity in this material
varies progressively from the superficial zone to the deep layer, and that this correlates
with a change in orientation of the collagen fibrils that compose the structure of the
tissue. Our approach enables direct interrogation of the biophysical properties of the
sample, in this case concerning the structure and permittivity of collagen fibrils and
their anisotropic organisation in connective tissue.

Here, we take images, using the Hadamard encoding scheme §3.4.2.2, at each
temporal point resulting in a hypertemporal stack of images. These stacks are shown
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Figure 8.1: An optical pump pulse is spatially modulated and used to photoexcite a
thin silicon wafer, which, in turn, transfers the spatial encoding mask onto a coincident
THz pulse. The subsequent THz pulse is then passed through a biological sample onto
a time-gated, single-element detector. By varying the arrival time of the electro-optic
sampling pulse, we measure the full temporal trace of our THz waveform.

in videos V2 and V3 where we present the raw data used to extract the permittivity
of the cartilage sample for horizontal and vertical polarization, respectively. A pair
of still images from the two videos are shown in Fig. 8.2. A technical note is that
we cannot assume a homogenous beam. For this reason, our reference is recorded
for each pixel, performing the same measurement on the same system without the
sample in place. After Fourier transformation of the time axis, one can divide signal
by reference to obtain the frequency dependent amplitude transmission coefficients.
These are then equated to the transmission functions of the system, calculated using
the transfer matrix method, §3.2.1.

8.1 Plane wave analysis

A standard approach to analyzing THz-TDS spectra is to extract the complex per-
mittivity (or equivalent) via analysis of the Fresnel transmission equations [86] (see
§3.2.1). However, this approach assumes a plane wave approximation, something
that is questionable for the near field. In this section, we test the validity of such an
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Figure 8.2: Still images from supplementary videos S1 and S2 on the top and bottom,
respectively. In both cases, a temporal trace of our averaged signals is shown below
the two colourmaps. A vertical dashed line shows the time at which the above
colourmaps have been taken at (∼ 2.5ps). The location of the sample is indicated
by the green lines on left colourmap. Each image takes 31 minutes to acquire. The
total measurement time was 50 hours.

approximation to our experimental approach.
We analytically model a system similar to that in our experiment (full mathemat-

ical details §2.2.2). In brief, we analyze the transmission through a single aperture in
a conducting film in contact with a lossy dielectric layer of thickness h, as represented
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in Fig. 8.3a. Here, the region with the aperture is tailored to have similar transmis-
sive properties to those of the experimental photomodulator, while the lossy dielectric
is given a permittivity ε. We set the permittivity of the incident and transmitted
regions to εs = 2.5, i.e. similar to that of the plastic coverslips encapsulating our
sample. Using a modal matching model §2.2.2 which assumes an incident THz plane
wave, we simulate experiment by finding the transmitted far field for the two cases
where ε = 7.5 + 2i (i.e. similar to our cartilage sample discussed below) and ε = 1

(representing our reference). To replicate the multi-aperture approach used in our
experiment, we carry out a complex summation of fields transmitted through different
sized apertures. This is also emulated in the model by calculating the transmission
for a discrete range of values of aperture sizes (w ranges between 40µm and 700µm)
and then carrying out the complex summation of these fields. The final field is then
processed in the same manner to the experimentally measured fields, as described in
§3.2.1, so as to extract a frequency dependent permittivity of the sample layer. By
comparing the extracted permittivity to that introduced in the model, we can assess
the validity of the plane wave approximation.

In Fig. 8.3b, we plot the real and imaginary parts of the recovered permittivity
versus frequency for three different sample thicknesses. We see that at higher frequen-
cies, the recovered permittivity is generally very close to the input value used in the
model. However, a greater discrepancy is found at lower THz frequencies, pronounced
in both real and imaginary parts of the permittivity. This discrepancy arises from the
presence of near fields, which are neglected in the plane wave approximation made to
extract the permittivity. The longer decay lengths of the low frequency evanescent
field components [77] lead to a greater discrepancy than the high frequency fields.
We also see that the thin samples exhibit greater discrepancy: for thinner samples,
the amplitude of evanescent field components at the exit interface is larger.

To further understand the shortcomings of the far-field approximation, in Figs.
8.4a) & b) we plot the relative error of the recovered permittivity, defined as |(εrecov−
εinput)/εinput|, for our frequency range as we vary aperture size and sample height
respectively. These plots show that the permittivity extraction procedure becomes
more applicable as aperture size and sample thickness are increased. In Fig. 8.4a)
we see two frequency independent maxima centered around 0.6 and 1.4THz, the
strengths of which decrease with aperture size. In part b) we see the frequency of
these same maxima changing with sample height. These maximal errors arise at the
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Fabry-Perot resonances of the system. The far-field approximation used in permittivity
extraction miscalculates these resonant frequencies due to the presence of evanescent
fields, which change the impedance of each interface.
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Figure 8.3: a Side view of the modelling geometry; a plane wave is incident upon a
single aperture placed on top of a dielectric. b The permittivity recovered from our
model for three different dielectric thicknesses of 30, 50 and 125µm. We calculate the
far-fields transmitted through apertures of sizes from 40 to 700µm, then we perform
the complex summation of these fields. This is then inputted into our permittivity
extraction procedure.

One should note that discrepancies due to the plane wave approximation are ex-
pected to be less severe in our experiment, owing to the much lower, finite conductivity
of the photomodulator [133, 142], which will act to relax the aperture boundary con-
ditions [143] and reduce the amplitude of evanescent field components. Nevertheless,
for sample thicknesses on the order of µm (such as those used in the experiment), one
has to question the validity of the plane wave approximation at low THz frequencies.
For this reason, we do not consider the very low frequency part of our spectra, below
∼ 0.6THz. Note that for higher resolution images or thinner samples, one needs to
develop a more elaborate analysis procedure, incorporating all near field effects, in
order to reliably extract values of local permittivity.
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Figure 8.4: (a) & (b) Colour plots of the percentage error in the recovered permittivity
over our frequency regime. In part a) we vary aperture size and keep sample height
constant at 50µm, where as in part b) we vary sample height for an aperture size of
200µm.

8.2 Sample

Articular cartilage is a connective tissue composed of a dense extracellular matrix
(ECM) rich in water, collagen and proteoglycans, with sparse specialised cells called
chondrocytes [144]. It provides a smooth and lubricated surface for articulation and
facilitates the transmission of loads through the distinctive regional orientation of the
collagen fibrils, showing a change in fibril alignment going from the articular surface
through to deeper within the tissue. For this reason, cross-sections of articular car-
tilage are suitable candidates to test the capabilities of the THz imaging technique
with polarization resolution. The thin superficial zone is made primarily of collagen
fibrils aligned parallel to the articular surface, whilst the middle zone is composed of
thicker collagen fibrils with an oblique alignment, and the deep zone consists of col-
lagen fibrils aligned orthogonal to the articular surface [145]. Clinical conditions such
as osteoarthritis are characterized by degradation of the cartilage matrix, resulting
in a disruption of the organised collagen structure [146]. Techniques that are able
to detect changes in structure at the fibril level have potential for diagnosis of these
pathologies.
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Sample preparation

Bovine metacarpophalangeal joint cartilage was obtained from a local abattoir and
washed in phosphate-buffered saline (PBS; pH 7.4) before cryosectioning. A cartilage
segment was immersed in Bright cryo-m-bed compound and frozen before cryosections
were cut. Cross-sections of cartilage were cut perpendicular to the articular surface
and analyzed. The geometry of the section was recorded in polarized light microscope
images, obtained using a 10X objective on a standard polarized light microscope and
a CCD camera (QImaging Retiga 2000R).

8.3 Results and Discussion

Fig. 8.5a shows a photomicrograph of a cross-section of our articular cartilage sample
taken with a polarized visible light microscope. The sample contains three main
regions with distinct orientations of the collagen fibrils, similar to samples studied
previously with other imaging techniques [147, 148]. In the superficial zone, collagen
fibrils are aligned parallel to the articular surface. In the middle zone, the fibrils have
an oblique arrangement, then ending orthogonal to their starting alignment in the
deep zone, which presents high intensity of the transmitted polarized light. While
articular cartilage has a collagen ultrastructure with spatial dimensions ∼ 100nm

[149] which cannot be resolved here, we concern ourselves primarily with resolving
orientation of the collagen fibrils which also occurs on a subwavelength scale for THz
radiation.

Figs. 8.5b-e show the subwavelength THz response of cartilage measured with
polarization parallel and perpendicular to the articular surface. Measurements were
performed at discrete locations, from the superficial through to the deep zone, en-
compassing the different orientations of the collagen fibrils indicated in Fig. 8.5a. As
a comparison, we also plotted the permittivity of the sample measured in the far field
(i.e. a spatial average measured through the entire sample) and the permittivity of
pure water (taken from ref. [50]). Note that water alone accounts for nearly 80%
of the wet weight of articular cartilage [144], and that, due to the THz diffraction
limit, the far-field spatially averaged measurement is carried out over a sample length
of ∼ 0.5mm, a length scale over which both the protein concentration and fibril
orientation can be expected to vary substantially, owing to the heterogeneity of the
biological sample on a micro-scale. The water spectral response shows a decreasing
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Figure 8.5: a Photomicrograph and schematic diagram of a cross-section of bovine
articular cartilage taken with polarization microscope (Nikon Elclipse E200) at 45◦

to the articular surface. Boxes of different colour indicate locations from which THz
measurements were taken. b & c (d & e) Real and imaginary part, respectively,
of the sample’s dielectric function for horizontally (vertically) polarized incident THz
beam. Bulk water data from fit parameters of Ref. [50]. The raw THz data can be
seen in the supplementary videos.
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permittivity with increasing frequency [50]. However, both the spatially averaged and
subwavelength THz response at all points across the depth of the cartilage exhibit
broad features that are not apparent in the spectrum of pure water. Here, the broad
peak at ∼ 1.5THz(50cm−1) in the real part of the permittivity spectrum (∼ 1.7THz

in the imaginary part) is not due to bulk water and hence, is a feature associated with
hydration water and the fibrils themselves (note that the smaller oscillatory peaks
in the spectrum are artefacts of the finite Fourier transform used in the analysis,
depending on the temporal length of the THz measurement).

When we compare the cartilage’s local permittivity, measured as a function of the
distance from the superficial zone to the deep layer, to the spatially averaged measure-
ment, we see a number of striking traits. Firstly, for horizontal THz polarization (Figs.
8.5b-c), the real part of the THz permittivity increases going from the superficial to
the deep zone (top to bottom in Fig. 8.5a), whilst the imaginary part decreases. This
indicates that the sample is most polarizable when the THz field is oriented along the
fibril direction, i.e. in the superficial zone, and suggests that the collagen fibrils have
a THz frequency dipole moment oriented along their principal axis. This assignment
is corroborated by measurements with THz polarization rotated by 90 degrees (Figs.
8.5d-e): here the spatial dependence of the permittivity is essentially reversed and
the sample is most polarizable at a deep location where the THz field is oriented
along the fibril axis. It has been shown that proteins have low-frequency vibrational
modes in the far-IR region [150], as well as coupled solute–solvent modes from the
solvated solute [151]. For a biological tissue such as cartilage, both fibrous type-II
collagen and water in proximity to the protein (i.e. hydration water), may contribute
to the total THz response. Markelz et al. have shown that collagen (lyophilised
powder) has a rapidly increasing absorbance with increasing frequency in the range
0.3 to ∼ 1.25THz [19]. Our data are in line with those findings, and we speculate
that this broad absorption band is associated with the intermolecular structure of
collagen. The strong dependence of the spectral response upon the THz field polar-
ization, which is stronger when the fibrils are aligned parallel to one another, is yet
to be explained. Further studies of the localized polarization-sensitive THz response
observed here could provide greater insight in regards to the dynamics of this system.
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Conclusions

We have demonstrated for the first time subwavelength hyperspectral THz imaging of
articular cartilage using the photoconductive properties of a silicon photomodulator.
We study articular cartilage, composed of collagen which is the most abundant struc-
tural protein in the human body, and find that its THz dielectric function varies on a
sub-THz wavelength scale depending on collagen fibril orientation, which indicates the
presence of a THz dipole moment along the primary axis of the fibril. We point out
that such a detailed observation is impossible to deduce from far-field measurements,
demonstrating the value of this subwavelength approach in regards to the diagnosis of
pathologies that alter the collagen structure. It is interesting to note that, since the
fundamental imaging resolution limit of our measurement is determined by diffrac-
tion of the optical pump pulse, we believe that our approach, where visible resolution
may even be possible, holds promise as a future microscopy tool with potential for
applications in the biomedical sciences, even on subcellular scales. Furthermore, this
technique can be applied to sectioned tissue samples for THz diagnosis of diseases,
such as cancer [16], with the sub-wavelength resolution would allowing detection of
the disease at an earlier smaller stage.
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Chapter 9

Conclusions and future work

This thesis demonstrates how spatial modulation of THz radiation can be induced
with photoconductivity and then be used for near-field imaging. Chapter 1 deals with
the properties of THz radiation that render it an interesting research topic nowadays.
From non-destructive inspections of space shuttle panels and complex electronic cir-
cuits to non-ionizing medical diagnosis capabilities and the identification of chemicals,
the potential uses of THz radiation are vast. However, as outlined in ch. 1, our THz
generation and detection technologies are still too cumbersome and expensive for
many applications to be realized effectively. Chapter 2 deals with background electro-
magnetic theory needed to understand this thesis; from a Fabry-Perot resonance and
the Drude model of conduction to the THz material response of common matter and
the diffraction theories used for modeling in the latter chapters. Chapter 3 outlines
the experimental setup, a THz-TDS using a pair of ZnTe crystals for generation and
detection, and how to image with a single element detector. Further, it also gives the
background theory of imaging with a single-element detector and how to implement
this is our setup. Chapter 4 is where the work of this thesis begins; near-field imaging
of a 1D system, a sub-wavelength slit. We use a pair of photoexcited stripes to create
a near-field interference pattern at our sub-wavelength slit. Under certain conditions
we show the transmission through the slit can be enhanced or diminished. This shows
that optically generated conductive patterns in silicon can be used to manipulate the
THz near-fields. Chapter 5 demonstrates that the thickness of photomodulator lim-
its the resolution of our imaging system, and that by reducing the thickness we can
achieve λ/45 resolution. Further, we demonstrate how polarization effects can be
used to one’s advantage by imaging 8µm breaks in circuit board hidden by 115µm of
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silicon. Chapter 6 concerns itself with the type of noise in this system. An evaluation
of how different spatial encoding schemes perform under our experimental conditions
is carried out. Further, some spatial encoding schemes allow for under-sampling of
the scene to performed, hence we carry out a investigation of how different methods
perform when the number of measurements is fewer than the number of pixels. Note
this is experimentally performed with sub-wavelength objects, and undersampling with
near-field resolution is quite unusual. Chapter 7 shows an interesting application of
mapping out the photoconductivity of a graphene sample with 75µm resolution, how-
ever note that the fundamental resolution limit is set by visible-light diffraction. We
compare our THz photoconductivity maps with Raman spectroscopy and find there
to be a correlation between carrier density and THz photoconductivity. We believe
this is due to inhomogenouties and defects created during the manufacturing process.
Measuring the photoconductivity is an important characteristic for opto-electronic
applications. However, extracting it from Raman spectroscopy is a difficult post-
processing procedure where as our technique performs a direct measurement of it.
Chapter 8 is, perhaps, the ultimate culmination of this imaging technique; hyperspec-
tral THz imaging of biological matter with sub-wavelength resolution. Our sample
is articular cartilage made of long collagen fibrils that change their orientation on a
sub-THz wavelength scale. We find that the permittivity changes through our sample
and sub-THz wavelength scale and find it correlated with orientation of the collagen
fibrils. Note that although successful, the current THz permittivity extraction proce-
dures assume a plane-wave approximation. We show this to be invalid for some parts
of our spectrum but it is valid for the most part.

Whilst successful, there is a major problem that needs to be eradicated in order to
make the measurements demonstrated in this thesis to be easily accessible for others.
High optical pump powers are needed to make silicon an efficient photo-modulator
for THz radiation. This necessitates the use of a high-power amplified Ti:sapphire
laser system. This system has a lot of noise and its low-repetition rate both combine
to create slow acquisition rates, hours for a single image. It is also exceedingly
expensive. Therefore cheaper efficient THz photo-modulators are needed as well
as stable THz sources and detectors. Furthermore, the temporal synchronization
between optical pump and THz probe pulse must not be lost else carrier diffusion
will limit the achievable resolution, and the ability to study picosecond dynamics
at broadband spectral ranges is also highly desired. This renders continuous-wave
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sources unusable.
Recent work by prof. MacPherson’s group [152] has shown how a conductive

interface in a total internal reflection geometry can be exploited to achieve high
modulation over a broadband THz range. Further, this modulation technique requires
optical fluencies a few orders of magnitude less than those used in this thesis. Hence,
the next step will be to combine the imaging techniques presented in ch. 5 with the
modulation geometry of reference [152]. This will create a practical, cost-effective
THz modulator for imaging. The next thing will be to use the total internal reflection
geometry in a near-field configuration. Since much smaller excitation powers are
needed the use of cheaper, high-rep rate fibre coupled femtosecond laser systems is
possible. These systems are more robust, have less noise and allow of the detection
of a picosecond THz pulse. Such lasers will improve the acquisition rate, retain
the temporal synchronization between all pulses and allow for the investigations of
picosecond dynamics with broadband spectral ranges. Another curiosity is that ref.
[152] predicts that the amplitude reflection coefficient in a total internal reflection
geometry can be +1 and -1. This discards the need for a Lock-In amplifier to achieve
an orthogonal measurement, as discussed in §3.4.2.2, thereby halving the total number
of masks that need to be projected.
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Appendix A

Modal Matching

Below is the full modal matching script used for calculations of §2.2.2 as printed out
by Wolfram Mathematica 9.

Note that the script is written for a periodic system as opposed to a single slit
as it outlined in §2.2.2. This means the integrals over wavevector become a Fourier-
Floquet sum. In other words,∫ ∞

−∞
A(ux)e

ikz(ux)zeiuxxdux →
∞∑

m=−∞

Ameik
m
z zei

2πm
d
x, (A.1)

where d is the pitch and kmz =
√
k20 −

(
2πm
d

)2. Intuitively, making the period tend
to infinity and summing over large values of m (including many diffracted orders),
then the behavior of the periodic system becomes the same as the single slit case.
Alternatively, one can think of this as evaluating the integral via a Riemann sum where
the lengths of the different intervals between every consecutive point is given by 2πm

d
,

hence increasing the pitch increases the number of rectangles. There are two reasons
we have evaluated our integrals this way. First, periodic structures are very easily
modeled in finite element software packages, such as COMSOL, hence this gives a
way of checking our calculations. Second, this method was found to be very quick
and efficient compared to other numerical integral evaluation techniques. Further, it
gave the same values as other the evaluation techniques built into Mathematica 9.
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d2 kz@nD Tx@nD =

H4 n2 Π2 + d2 kzsi@nD2L
d2 kzsi@nD ISi1@nD ã

ä Hhsi kzsi@nDL
- ã

- ä hsi kzsi@nD
Si2@nDM

H***** Finding the Solution *****L
H* H* H* E-fields *L *L *L
Ex d ∆@nD + d Rx@nD = HBm1 - Bm2L Qm@nD;

H*Rearragned top Eqn for Rx@nD*L
Rx@nD = HBm1 - Bm2L Qm@nD

d

- Ex ∆@nD ;

d HSi1@nD + Si2@nDL = I-Bm2 ã
-ä hp kzsi1

+ Bm1 ã
ä hp kzsi1M Qm@nD;

Tx@nD = Iã
ä hsi kzsi@nD

Si1@nD + ã
-ä hsi kzsi@nD

Si2@nDM;

H* H-fields *L
Ex kz@0D wm - â

n
Hm@nD H4 n2 Π2 + d2 kz@nD2L

d2 kz@nD Rx@nD = HBm1 + Bm2L kzsi1 wm;

â
n

Hm@nD H4 n2 Π2 + d2 kzsi@nD2L
d2 kzsi@nD HSi1@nD - Si2@nDL =

ã
-ä hp kzsi1 IBm2 + Bm1 ã

2 ä hp kzsi1M kzsi1 wm;
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H4 n2 Π2 + d2 kz@nD2L
d2 kz@nD Tx@nD =

H4 n2 Π2 + d2 kzsi@nD2L
d2 kzsi@nD ISi1@nD ã

ä Hhsi kzsi@nDL
- ã

- ä hsi kzsi@nD
Si2@nDM

H*

H*Simplified Equations with Si1@nD from E-fields substituded into H-fields,

that need be solved*L
H*And also from the E & H continuity

equations at the exit surface of the silicon Si2@nD=0,

hence we end up with 6 equations we need to solve*L

Ex kz@0Dwm-Ún
Hm@nD H4 n2 Π2+d2 kz@nD2L

d2 kz@nD IHBm1-Bm2L Qm@nD
d

-Ex ∆@nDM=HBm1+Bm2L kzsi1 wm;

Ún
Hm@nD H4 n2 Π2+d2 kzsi@nD2L

d2 kzsi@nD I-Bm2 ã-ä hp kzsi1+Bm1 ãä hp kzsi1M Qm@nD
d

=

ã-ä hp kzsi1 IBm2+Bm1 ã2 ä hp kzsi1M kzsi1 wm;

H4 n2 Π2+d2 kz@nD2L
d2 kz@nD Tx@nD=

H4 n2 Π2+d2 kzsi@nD2L
d2 kzsi@nD ISi1@nDãä Hhsi kzsi@nDLM;

H*Coefficient Definitions*L
HQ:=Ún

Hm@nD H4 n2 Π2+d2 kz@nD2L
d2 kz@nD

Qm@nD
d

;

HQsi:=Ún
Hm@nD H4 n2 Π2+d2 kzsi@nD2L

d2 kzsi@nD
Qm@nD

d
;

H*Eqs*L
2 Ex kz@0Dwm-HQHBm1-Bm2L=HBm1+Bm2L kzsi1 wm;

HQsiI-Bm2 ã-ä hp kzsi1+Bm1 ãä hp kzsi1M =ã-ä hp kzsi1 IBm2+Bm1 ã2 ä hp kzsi1M kzsi1 wm;

*L

FullSimplifyBSolveB: H4 n2 Π2 + d2 kz@nD2L
d2 kz@nD Tx ==

H4 n2 Π2 + d2 kzsi@nD2L
d2 kzsi@nD ISi1 ã

ä Hhsi kzsi@nDL
- ã

- ä hsi kzsi@nD
Si2M,

Tx == Iã
ä hsi kzsi@nD

Si1 + Si2 ã
-ä hsi kzsi@nDM>, 8Si1, Si2<FF
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99Si1 ® Iã
-ä hsi kzsi@nD

Tx Hkz@nD + kzsi@nDL I4 n
2

Π
2

+ d
2

kz@nD kzsi@nDMM �
I2 kz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MM,

Si2 ® Iã
ä hsi kzsi@nD

Tx H-kz@nD + kzsi@nDL I-4 n
2

Π
2

+ d
2

kz@nD kzsi@nDMM �
I2 kz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MM==

Si1 = Iã
-ä hsi kzsi@nD

Tx@nD Hkz@nD + kzsi@nDL I4 n
2

Π
2

+ d
2

kz@nD kzsi@nDMM �
I2 kz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MM;

Si2 = Iã
ä hsi kzsi@nD

Tx @nD H-kz@nD + kzsi@nDL I-4 n
2

Π
2

+ d
2

kz@nD kzsi@nDMM �
I2 kz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MM;

FullSimplify@Si1 + Si2 D
FullSimplify@Si1 - Si2 D
ICos@hsi kzsi@nDD - Iä I4 n

2
Π

2
+ d

2
kz@nD2M kzsi@nD Sin@hsi kzsi@nDDM �

Ikz@nD I4 n
2

Π
2

+ d
2

kzsi@nD2MMM Tx@nD

IICos@hsi kzsi@nDD I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nDM � Ikz@nD I4 n
2

Π
2

+ d
2

kzsi@nD2MM -

ä Sin@hsi kzsi@nDDM Tx@nD
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H*Rearragned top Eqns for Rx@nD and Tx@nD*L
Rx@nD = HBm1 - Bm2L Qm@nD

d

- Ex ∆@nD ;

d ICos@hsi kzsi@nDD - Iä I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD Sin@hsi kzsi@nDDM �
Ikz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MMM Tx@nD = I-Bm2 ã

-ä hp kzsi1
+ Bm1 ã

ä hp kzsi1M Qm@nD;

Tx@nD = I-Bm2 ã
-ä hp kzsi1

+ Bm1 ã
ä hp kzsi1M Qm@nD

d

ICos@hsi kzsi@nDD - Iä I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD Sin@hsi kzsi@nDDM �
Ikz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MMM-1

;

H* H-fields *L
Ex kz@0D wm - â

n
Hm@nD H4 n2 Π2 + d2 kz@nD2L

d2 kz@nD HBm1 - Bm2L Qm@nD
d

- Ex ∆@nD =

HBm1 + Bm2L kzsi1 wm;

â
n

Hm@nD H4 n2 Π2 + d2 kzsi@nD2L
d2 kzsi@nD

IICos@hsi kzsi@nDD I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nDM � Ikz@nD I4 n
2

Π
2

+ d
2

kzsi@nD2MM -

ä Sin@hsi kzsi@nDDM Tx@nD = ã
-ä hp kzsi1 IBm2 + Bm1 ã

2 ä hp kzsi1M kzsi1 wm;

FullSimplifyA
IICos@hsi kzsi@nDD I4 n

2
Π

2
+ d

2
kz@nD2M kzsi@nDM � Ikz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MM -

ä Sin@hsi kzsi@nDDM *

ICos@hsi kzsi@nDD - Iä I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD Sin@hsi kzsi@nDDM �
Ikz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MMM-1E

ICos@hsi kzsi@nDD I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD -

ä kz@nD I4 n
2

Π
2

+ d
2

kzsi@nD2M Sin@hsi kzsi@nDDM �
ICos@hsi kzsi@nDD kz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2M -

ä I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD Sin@hsi kzsi@nDDM
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â
n

Hm@nD H4 n2 Π2 + d2 kzsi@nD2L
d2 kzsi@nD

IICos@hsi kzsi@nDD I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD - ä kz@nD I4 n
2

Π
2

+ d
2

kzsi@nD2M
Sin@hsi kzsi@nDDM � ICos@hsi kzsi@nDD kz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2M -

ä I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD Sin@hsi kzsi@nDDMM
I-Bm2 ã

-ä hp kzsi1
+ Bm1 ã

ä hp kzsi1M Qm@nD
d

= ã
-ä hp kzsi1 IBm2 + Bm1 ã

2 ä hp kzsi1M kzsi1 wm;

H*Coefficient Definitions*L
HQ := â

n
Hm@nD H4 n2 Π2 + d2 kz@nD2L

d2 kz@nD
Qm@nD

d

;

HQsi := â
n

Hm@nD H4 n2 Π2 + d2 kzsi@nD2L
d2 kzsi@nD

Qm@nD
d

IICos@hsi kzsi@nDD I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD -

ä kz@nD I4 n
2

Π
2

+ d
2

kzsi@nD2M Sin@hsi kzsi@nDDM � ICos@hsi kzsi@nDD kz@nD
I4 n

2
Π

2
+ d

2
kzsi@nD2M - ä I4 n

2
Π

2
+ d

2
kz@nD2M kzsi@nD Sin@hsi kzsi@nDDMM ;

H*Eqs*L
2 Ex kz@0D wm - HQ HBm1 - Bm2L = HBm1 + Bm2L kzsi1 wm;

HQsi I-Bm2 ã
-ä hp kzsi1

+ Bm1 ã
ä hp kzsi1M = ã

-ä hp kzsi1 IBm2 + Bm1 ã
2 ä hp kzsi1M kzsi1 wm

FullSimplifyASolveA92 Ex kz@0D wm - HQ HBm1 - Bm2L == HBm1 + Bm2L kzsi1 wm,

HQsi I-Bm2 ã
-ä hp kzsi1

+ Bm1 ã
ä hp kzsi1M == ã

-ä hp kzsi1 IBm2 + Bm1 ã
2 ä hp kzsi1M kzsi1 wm=,

8Bm1, Bm2<EE
::Bm1 ® -

2 Ex wm HHQsi + kzsi1 wmL kz@0D
ã2 ä hp kzsi1 HHQ - kzsi1 wmL HHQsi - kzsi1 wmL - HHQ + kzsi1 wmL HHQsi + kzsi1 wmL

,

Bm2 ®
2 ã2 ä hp kzsi1 Ex wm H-HQsi + kzsi1 wmL kz@0D

ã2 ä hp kzsi1 HHQ - kzsi1 wmL HHQsi - kzsi1 wmL - HHQ + kzsi1 wmL HHQsi + kzsi1 wmL
>>
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Qm@nD = :à
-wm�2

wm�2

ExpB-ä
2 Π n

d

xF âx, à
-wm�2

wm�2

ExpB-ä
2 Π 0

d

xF âx>

Hm@nD = :à
-wm�2

wm�2

ExpBä
2 Π n

d

xF âx, à
-wm�2

wm�2

ExpBä
2 Π 0

d

xF âx>

:
d SinA n Π wm

d
E

n Π
, wm>

:
d SinA n Π wm

d
E

n Π

, wm>

ClearAll@"Global`*"D

H* H* H* * * * Calculations * * * *L *L *L
H* H* H* Comparison with Comsol*L *L *L

nmax := 16;

Ex := 1;

d := 150 * 10
-6

;

wm := 0.499 d;

c := 3 * 10
8
;

hp := 1 * 10
-6

;

hsi := 50 * 10
-6

;

k0 :=
2 Π f * 1012

c

;

z := hp + hsi + 0 * 10
-6

;

eps := 1 + 0 ä;

kz@n_D := k0
2

-
2 n Π

d

2

;

kzsi@n_D := eps * k0
2

-
2 n Π

d

2

;

kzsi1 := eps * k0
2

;
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Qm@n_D := IfBn � 0, wm,

d SinA n Π wm

d
E

n Π
F;

Hm@n_D := IfBn � 0, wm,

d SinA n Π wm

d
E

n Π
F;

HQ := NB â
n=-nmax

+nmax

Hm@nD H4 n2 Π2 + d2 kz@nD2L
d2 kz@nD

Qm@nD
d

F;

HQsi := NB â
n=-nmax

+nmax

Hm@nD H4 n2 Π2 + d2 kzsi@nD2L
d2 kzsi@nD

Qm@nD
d

IICos@hsi kzsi@nDD I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD - ä kz@nD I4 n
2

Π
2

+ d
2

kzsi@nD2M
Sin@hsi kzsi@nDDM � ICos@hsi kzsi@nDD kz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2M -

ä I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD Sin@hsi kzsi@nDDMMF;

MatrixY = Table@0, 82<D;

MatrixY = ReplacePart@MatrixY, 2 Ex kz@0D wm, 1D;

mat = Array@0, 82, 2<D;

Eqs = 9
-HQ HBm1 - Bm2L - HBm1 + Bm2L kzsi1 wm,

HQsi I-Bm2 ã
-ä hp kzsi1

+ Bm1 ã
ä hp kzsi1M -ã

-ä hp kzsi1 IBm2 + Bm1 ã
2 ä hp kzsi1M kzsi1 wm

=;

Coeffs = 8Bm1, Bm2<;

Do@Do@
mat = ReplacePart@mat, Coefficient@Eqs@@jDD, Coeffs@@iDDD, 8j, i<D;

, 8i, 1, 2, 1<D, 8j, 1, 2, 1<D;

fmin = 0.1;

fmax = 5;

fpoints = 100;

df = N@Hfmax - fminL � Hfpoints - 1L, 5D;

count = 1;

result = Array@0 &, fpointsD;
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AbsoluteTimingB
MonitorB

ForBf = fmin, f £ Hfmax + 0.3 * dfL, f += df,

MatrixZ = LinearSolve@mat, MatrixYD;

Txf@n_D := I- MatrixZ@@2DD ã
-ä hp kzsi1

+ MatrixZ@@1DD ã
ä hp kzsi1M Qm@nD

d

ICos@hsi kzsi@nDD - Iä I4 n
2

Π
2

+ d
2

kz@nD2M kzsi@nD Sin@hsi kzsi@nDDM �
Ikz@nD I4 n

2
Π

2
+ d

2
kzsi@nD2MMM-1

Exp@ä kz@nD Hz - hp - hsiLD;

result = ReplacePart@result, Txf@0D, countD;

count += 1;

F, 8ProgressIndicator@Hcount - 1L � fpointsD, N@100 * Hcount - 1L � fpointsD<F;

F
CoolColor@z_D := HueA0.71 - 0.75 z, 1, 0.1 + z

0.3E;

H*Import Comsol data*L
SetDirectory@NotebookDirectory@DD;

comsol = Import@
"Comsol freq, S21 parameter, d=150um w=75um, f=0.1,5 points=100.csv"D;

ListPlot@8Abs@resultD, comsol@@All, 2DD<, PlotRange ® Full,

DataRange ® 8fmin, fmax<, PlotLegends ® 8"Modal Matching", "Comsol"<,

Joined ® True, AxesOrigin ® 8fmin, 0<, Joined ® True,

PlotLabel ® "Modal matching Vs Comsol", Frame ® True,

FrameLabel ® 8"Frequency HTHzL", "Transmission"<D
AbsB:NB c * 10-12

eps d

F, NB c * 10-12

eps wm

F>F

80.080005, Null<
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