
Optimisation and Landscape Analysis of
Computational Biology Models: A Case Study

Kevin Doherty
K.Doherty@exeter.ac.uk

University of Exeter, EX4 4QF, UK

Khulood Alyahya
K.Alyahya@exeter.ac.uk

University of Exeter, EX4 4QF, UK

Ozgur E. Akman∗
O.E.Akman@exeter.ac.uk

University of Exeter, EX4 4QF, UK

Jonathan E. Fieldsend
J.E.Fieldsend@exeter.ac.uk

University of Exeter, EX4 4QF, UK

Abstract
�e parameter explosion problem is a crucial bo�leneck in mod-
elling gene regulatory networks (GRNs), limiting the size of models
that can be optimised to experimental data. By discretising state,
but not time, Boolean delay equations (BDEs) provide a signi�cant
reduction in parameter numbers, whilst still providing dynami-
cal complexity comparable to more biochemically detailed models,
such as those based on di�erential equations. Here, we explore
several approaches to optimising BDEs to timeseries data, using
a simple circadian clock model as a case study. We compare the
e�ectiveness of two optimisers on our problem: a genetic algo-
rithm (GA) and an elite accumulative sampling (EAS) algorithm
that provides robustness to data discretisation. Our results show
that both methods are able to distinguish e�ectively between alter-
native architectures, yielding excellent �ts to data. We also perform
a landscape analysis, providing insights into the properties that
determine optimiser performance (e.g. number of local optima and
basin sizes). Our results provide a promising platform for the analy-
sis of more complex GRNs, and suggest the possibility of leveraging
cost landscapes to devise more e�cient optimisation schemes.
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1 Introduction

1.1 Optimising computational biology models

�e development of computational models of gene regulatory net-
works (GRNs) is a crucial aspect of both systems and synthetic
biology. Parameter optimisation is the key bo�leneck in construct-
ing such models [3, 11]. However, it is o�en addressed in an ad
hoc manner, with parameters tuned by hand or optimised locally
around previously published values, thereby placing strict limits
on the size of systems that can currently be studied. Hence, there
is a need for mathematical methods to reduce model complexity,
and also for optimisation algorithms capable of dealing with highly
parametrised problems of this type. In terms of the la�er, standard
approaches for optimising GRN models have not fully exploited
the powerful techniques a�orded by evolutionary computation,
although promising results have been obtained by applying evolu-
tionary algorithms (EAs) to a range of biological problems, such as
the analysis and design of GRNs [12] and neural model ��ing [5].

1.2 An exemplar GRN – the circadian clock

Circadian clocks are GRNs found in almost all organisms, control-
ling processes ranging from cyanobacterial cell division to human
sleep-wake cycles [6]. �ese networks function by generating en-
dogenous ∼24 hour oscillations in gene expression (free-running
rhythms) that can synchronise (entrain) to the external light-dark
cycle. Entrainment enables organisms to time biochemical pro-
cesses relative to dawn and dusk, providing an adaptive advantage
[15]. �e clocks of di�erent organisms appear to have a similar
structure based on interlocking gene-protein feedback loops [19].

Computational models of these feedback structures have proved
useful in elucidating the general design principles of clocks, and
also led to the discovery of novel circadian regulators [2, 11, 19].
�e majority of clock models constructed thus far have been based
on di�erential equations and possess on the order of 10 to 100
parameters, which is representative of the broader GRN problem
class [3, 19]. A simple, representative model of this type is the
minimal ordinary di�erential equation (ODE) model of the clock in
the �lamentous fungus Neurospora crassa [10], shown below:

Ṁ = (vs + θ (t ))
kNI

kNI + P
N
n
−vm

M

km +M
,

Ṗc = ksM −vd
Pc

kd + Pc
− k1Pc + k2Pn ,

Ṗn = k1Pc − k2Pn .

(1)
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�e model comprises three equations describing the dynamics of
the oscillation-generating negative feedback loop: FRQ mRNA (M)
is translated into protein (Pc ) in the cytoplasm and then translo-
cated into the nucleus (Pn ), where it binds to the FRQ promoter and
represses transcription. �e model is parameterised by 10 kinetic
constants: vs – transcription rate; ks – translation rate; vm , vd
– degradation rates; k1, k2 – transport rates; kI , km , kd – activa-
tion/repression thresholds; N – promoter binding cooperativity.
�e function θ (t ) models light, which upregulates FRQ transcrip-
tion, thereby providing a mechanism for light entrainment [10]:

θ (t ) =



LA if tDAW N < t (mod 24) < tDUSK ;
0 otherwise.

(2)

In the above, LA is the light amplitude (0 or 1) and tDAW N and
tDUSK denote the times of dawn and dusk respectively.

1.3 GRN models based on Boolean delay equations

Modelling approaches based on Boolean logic provide a signi�cant
reduction in complexity compared to ODEs. In Boolean models,
the activity of each gene is described by a two-state variable taking
the value ON (1) or OFF (0), indicating that its products are present
or absent, respectively. Biochemical interactions are represented
by simple, binary functions (logic gates) that calculate the state
of a gene from the activation state of its upstream components
[9, 17]. �is approximation dramatically reduces both the number
of system components and the number of system parameters [3].

In this study, we consider systems of Boolean delay equations
(BDEs), which are parameterised by the collection of logic gates –
referred to as the logic gate con�guration – together with the set
of signalling delays that specify the time it takes for state changes
to take e�ect [4]. In [3], Akman et al. introduced a general scheme
for modelling oscillators using the BDE formalism, constructing
Boolean versions of several established ODE clock models. �is
included the Neurospora model (1), expressed in BDE form as

xM (t ) = G (xP (t − τ2) ,д2) ORθ (t − τ3) ,
xP (t ) = G (xM (t − τ1) ,д1) ,

(3)

where xM is FRQ mRNA, xP is lumped FRQ protein (combining the
cytoplasmic and nuclear forms), θ (t ) is light and τ = (τ1,τ2,τ3) are
the signalling delays. �e function G (x ,д) implements the identity
or NOT gate, modelling activation and repression by x respectively,
depending on the value of the bit д: G (x , 0) = x ,G (x , 1) = NOT x .
�e bitstring g = д1д2 thus speci�es the logic con�guration, which
is g = 01 (activation of xP by xM ; repression of xM by xP ). Note
that there are 3 other possible con�gurations obtained by �ipping
д1 and д2, which correspond to alternative regulatory structures
consistent with the underlying directed graph of the ODE model
(i.e. the graph with connections M → Pc → Pn and Pn → M):
for example, g = 00 corresponds to a circuit in which frqmRNA
activates FRQ protein, but FRQ protein activates FRQ mRNA (a
double positive feedback loop). Also note that system (3) has 2
variables and 3 parameters, compared with the 3 variables and 10
parameters of the ODE formulation. Note that to obtain a solution
{x(t ) = (xM ,xP (t )) : t ≥ 0} of (3) for a given g and τ , it is necessary
to specify an initial history, xh = {x(t ) : 0 ≤ t ≤ th }, where
th ≥ max(τ ) [3, 4].

1.4 Aims of the study

In [3], BDE versions of several established ODE clock models (in-
cluding (1)) were optimised to timeseries data using a recursive grid
search method. Here, we build on this previous work, leveraging
evolutionary algorithms and landscape analysis to: (i) accelerate
the optimisation process; and (ii) and gain insight into how the
regulatory structure of a model and the method used to score it
against experimental data a�ect the underlying cost landscape.

2 Methods & Results

2.1 Data, discretisation and model prediction

Following the approach used in [3], we optimise the BDE model
(3) to synthetic mRNA and protein data generated from the cor-
responding ODE formulation as follows: �rst, system (1) is inte-
grated over the interval 0 ≤ t ≤ 120 (5 circadian cycles), starting
from an initial condition on the system a�ractor; next, the cyto-
plasmic and nuclear proteins are added together to obtain a bulk
protein variable P = Pc + Pn ; �nally the mRNA and protein traces
{(M (t ), P (t )) : 0 ≤ t ≤ 120} are sampled every 0.5h, mimicking the
best possible experimental resolution [3].

In order to enable this continuous data to be compared to the
solutions of (3) for a given logic con�guration д and delay set τ ,
the sampled timeseries are normalised between 0 and 1, and then
discretised by applying thresholds 0 < T1 < 1 (mRNA) and 0 < T2 <
1 (protein), such that all subthreshold values are set to 0 (OFF) and
all suprathreshold values to 1 (ON). E cycles of this discretised data,
where 1 ≤ E ≤ 4, are subsequently used to de�ne the initial history
for (3), by using linear interpolation to compute the time points
within the history interval 0 ≤ t ≤ 24E at which switches in state
occur. From this history, predicted mRNA and protein timeseries
are generated over the time interval 24E ≤ t ≤ 120 using a variant
of the BDE solver described in [4]. �e last S cycles of the model
prediction, where 1 ≤ S ≤ 5 − E, are then extracted, sampled every
0.5h, and scored against the discretised data lying in the same time
interval (120 − 24S ≤ t ≤ 120), using one of the costing methods
described in section 2.2. E cycles of data are thus used to generate
the model prediction and S cycles are used to obtain a model score.
We refer to this as an E:S scoring protocol, and – following [3] –
�x E to be 1, yielding 4 possible protocols: E:S=1:4, 1:3, 1:2 and 1:1.

Replicating the approach used to �t ODE models [2, 11], we
score the model against timeseries simulated in two light regimes:
(i) constant darkness (termed DD), obtained by se�ing LA = 0
in eqn. (2); and (ii) 12:12 light-dark (LD) cycles (alternating 12h
periods of light and dark), obtained by se�ing LA = 1, tDAW N = 6
and tDUSK = 18 in eqn. (2). �e total score is then calculated as
the sum of the DD and LD scores, as detailed in Section 2.2.

2.2 Optimisation experiments

�e goal of our parameter optimisation is to determine the set
of parameters giving the best �t of the model to the synthetic
timeseries. We consider a number of ways of framing this problem:
1. For each �xed choice of gates g = д1д2, we optimise over the
combination of delays τ = (τ1,τ2,τ3) and thresholds T = (T1,T2);
2. We optimise over gates g, delays τ and thresholds T together;
3. We optimise over g, τ and T using �tness sharing between
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solutions with the same g to maintain diversity; 4. We repeat 1-
3, but penalise threshold combinations yielding data with a low
information content; 5. We repeat 1 & 2, calculating cost values
for each combination of gates g and delays τ by averaging over
thresholds. In cases 1-4, we optimise using a genetic algorithm
(GA); in case 5, we use elite accumulative sampling (EAS) [7]. �e
two algorithms are described in detail in section 2.3.

2.2.1 Optimising with gates �xed In the �rst case, we solve
the following constrained optimisation problem for each g ∈ {0, 1}2

{τ ,T}min = argmin
{τ ,T}

C (τ , g,T), 0 < τk < 24, τ1 + τ2 < 24, (4)

C (τ , g,T) =
2∑
j=1

2∑
i=1

dH (Fi j (τ , g,Dj (T,E), S ),Di j (Ti , S )). (5)

In the cost function (5) above, i indexes the model variables (FRQ
mRNA or FRQ protein) and j indexes the light regimes (DD or
LD). �e constraints on the delays {τk } ensure that the sum of the
signalling delays around the negative feedback loop do not sum
to a value greater than the period of free-running or entrained
oscillations [3]. For a given choice of j, Dj (T,E) denotes the �rst
E cycles of the timeseries obtained by discretising the synthetic
data using thresholds T = (T1,T2); this is used as the initial history
to generate a model prediction. �e �nal S cycles of the predicted
timeseries for each species i , denoted Fi j (τ , g,Dj (T,E), S ), is then
compared to the corresponding cycles of thresholded synthetic
data, Di j (Ti , S ). �e discrepancy dH between prediction and data is
measured as the Hamming distance between bitstrings Fi j and Di j ,
normalised by bitstring length |Di j |. �e overall cost C associated
with the design {τ , g,T} is then obtained by summing over species i
and light conditions j. Since 0 ≤ dH ≤ 1, it follows that 0 ≤ C ≤ 4,
with lower costs indicating be�er �ts of the model to data.

2.2.2 Optimising over gates In the second case, we solve

{τ , g,T}min = argmin
{τ ,g,T}

C (τ , g,T), 0 < τk < 24, τ1 + τ2 < 24. (6)

2.2.3 Fitness sharing In the case of �tness sharing, we solve

{τ , g,T}min = argmin
{τ ,g,T}

CFS (τ , g,T), 0 < τk < 24, τ1+τ2 < 24. (7)

Here, the cost of a particular solution CFS is calculated as
4
(
1 − 1/ng

)
+ C/ng, where ng is the number of solutions in the

population with the same gate con�guration as the solution in ques-
tion. �is penalises a solution if the population contains a relatively
large number of solutions with the same gate con�guration, thus
encouraging the algorithm to maintain diversity in g [16].

2.2.4 Penalising pathological solutions In solving prob-
lems (4), (6) and (7), it is possible to obtain designs with thresholds
close to 0 or 1. In these cases, the discretised data contains bitstrings
composed almost entirely of 0s or 1s. �is yields solutions that,
whilst having a low cost value, contain li�le temporal information
(e.g. are non-oscillatory) [3]. To mitigate against this, we introduce
a penalty term that assigns maximum cost to a variable if there is a
signi�cant probability of obtaining the same cost by chance.

�e penalty term is calculated as follows. For eachmodel variable
i and light regime, j , letpi j denote the proportion of ones in the data
Di j and p̂i j the proportion of ones in the model prediction Pi j . �en

the probability µi j of having a di�erence between the bitstrings at
any location by chance is µi j = pi j + p̂i j − 2pi j p̂i j . It follows that
the total number of di�erences between the two bitstrings follows
a Binomial distribution with mean nBµi j and standard deviation√
nBµi j (1 − µi j ), where nB = |Di j | is the bitstring length. Hence,

for su�ciently largenB , the normalised Hamming distance between
the data and prediction which would be observed by chance is
approximately normally distributed with mean µi j and standard
deviation σi j =

√
µi j (1 − µi j )/nB . We use this approximation to

calculate the probability of observing a Hamming distance equal to
or lower than dH (Fi j ,Di j ) by chance. If this probability is less than
0.01, no penalty is applied; otherwise, maximum cost is assigned to
variable i in light regime j by se�ing dH (Fi j ,Di j ) = 1 in (5).

2.2.5 Averaging over thresholds In generating a model
score, the thresholds {T1,T2} act as meta-parameters: although
they don’t directly a�ect the model (3) – which only depends on the
delays τ and logic gates g – they do determine both the initial his-
tory used to compute the model prediction and the data which the
prediction is costed against. In particular, extreme thresholds (i.e. Ti
values near 0 or 1) can result in unphysical solutions. Consequently,
it is desirable to �nd {g,τ } combinations which give predictions
that are robust to uncertainty in the discretisation thresholds.

Here, we therefore also consider the following extension to prob-
lem (4): optimising over τ for a �xed gate con�guration g, whilst
calculating the average cost for individual solutions over a set of
distinct threshold values. In this case, for each g, we solve

{τ }min = argmin
τ

CA (τ , g), 0 < τk < 24, τ1 + τ2 < 24, (8)

CA (τ , g) =
1
m

2∑
j=1

m∑
l=1

2∑
i=1

dH (Fi j (τ , g,Dj (Tl ,E), S ),Di j (Til , S )).

(9)

In (9), the individual cost for each light regime (j = 1, 2) is calculated
by averaging the sum of the variable scores over a �xed set of
threshold combinations {Tl = (T1l ,T2l ) : 1 ≤ l ≤ m}. We also
consider the corresponding extension to problem (6):

{τ , g}min = argmin
{τ ,g}

CA (τ , g), 0 < τk < 24, τ1 + τ2 < 24. (10)

2.3 Optimisation algorithms

2.3.1 �e genetic algorithm We use a genetic algorithm
(GA) to solve: problem (4) – optimising over delays τ and thresh-
olds T for �xed gates g, referred to as experiment GA; problem (6)
– optimising over τ , T and g together, referred to as experiment
GA +G; and problem (7) – optimising over τ , T and g using �tness
sharing, referred to as experimentGA+ FS . In addition, we use the
GA to solve the variants to these problems obtained by penalising
thresholds yielding pathological solutions, referring to these as
experiments GA + P , GA +G + P and GA + FS + P , respectively.

In each case, we use the function, ga, from the Global Optimiza-
tion Toolbox in MATLAB 2016b with all options set to their default
values, except for the following: (i) to initialise the population, we
generate a uniform random sample of solutions, rather than im-
plementing the default GA option @gacreationlinearfeasible,
which creates a large number of individuals on the boundaries of
the feasible region in parameter space; (ii) we have wri�en a custom
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mutation function in which a parameter is mutated with probabil-
ity 1/d , where d is the number of dimensions in parameter space,
to ensure that on average one parameter is mutated. Real-valued
parameters (delays and thresholds) are mutated by sampling from
a normal distribution centred at the current value, with standard
deviation set to 10% of the parameter range. Logical parameters
(gates) are mutated by bit-�ipping. Rejection sampling is performed
to ensure new individuals satisfy bounds and constraints. We use
a population size of 50 and run the algorithm for 49 generations,
resulting in 2500 �tness evaluations. MATLAB’s GA carries a num-
ber of elite solutions nE from each generation to the next: we set
nE to 3 for �xed gate searches, and in the case of GA + FS + P , we
keep 2 elite members for each gate con�guration.

2.3.2 Elite accumulative sampling An elite accumulative
sampling (EAS) algorithm was developed for problem (8) – optimis-
ing over delays τ for �xed gate con�gurations g using threshold
averaging, referred to as experiment EAS , and problem (10) – opti-
mising over delays τ and con�gurations g together using threshold
averaging, referred to as experiment EAS +G.

�e EAS algorithm addresses the arbitrariness in the choice of
threshold parameters by searching for the best solution possible
based on a running average cost computed over samples of thresh-
old combinations (cf. cost function (9)). EAS records a history H of
all points visited over the course of the algorithm. Individual solu-
tions in H are sampled for at least one combination of thresholds
and H is sorted according to solutions’ average cost. Solutions are
initially sampled at one threshold combination and solutions that
have a low cost preferentially accumulate samples to progressively
improve the estimate of their average cost. Not discarding any
solutions means that we allow for a member of H with an initially
poor �tness ranking to later improve its ranking as other solutions’
average cost is increased upon resampling. �e pseudocode for
EAS is given in Algorithm 1.

We considered two approaches to sampling the thresholds Tl
used in cost function (9): (i) each solution samples from the same
sequence of thresholds; and (ii) each solution samples from indepen-
dent threshold sequences. Independently sampling each solution
resulted in a bias towards solutions that had been sampled in re-
gions of T-space with good score (results not shown). We therefore
decided to use a �xed set of thresholds, generated via Sobol se-
quences to ensure e�cient space-�lling [14]. �is gave optimal
solutions with uniformly distributed threshold sets, as desired.

2.4 Optimisation results

2.4.1 Optimising with �xed gates Table 1 summarises the
results obtained from 30 runs each of experiments GA, GA + P and
EAS . Of note is that when optimising using theGAwith no penalty
term included, the best solution found is for gate con�guration
g = 11, rather than the con�guration g = 01 used to generate
the data that is ��ed to. �is best solution has extreme thresh-
olds, with T1 ≈ 0, T2 ≈ 1 (cf. Fig. 1), and is therefore unphysical.
However, incorporating the penalty term (GA + P ) prevents such
pathological solutions being found, leading to the best solution
being obtained for g = 01, and also to a greater separation between
the cost distributions by gate. Furthermore, the EAS results indi-
cate that averaging over thresholds also yields a best solution with

Algorithm 1 Pseudo-code for the EAS algorithm. For the exper-
iments presented here, we take max evals = 2500, re�ne evals =
0.1max evals, num elites = 10 and pop size = 50.
Require: max evals Total number of evaluations.
Require: re�ne evals Number of evals. used for re�nement.
Require: num elites Number of elite solutions.
Require: pop size Population size.
1: H ← generate initial solutions(pop size) Initialise

history with pop size solutions.
2: num evals = 0 Keep track of number of �tness evaluations.
3: for x ∈ H do
4: Tx = sample thresh(x)
5: evaluate(x,Tx)
6: num evals = num evals + 1
7: end for
8: while num evals < max evals do
9: while num evals < max evals − re�ne evals do
10: pmut ← draw random(H [1 : pop size]) Choose random

parent from best pop size solutions.
11: cmut ← mutate(pmut) Get child from mutation.
12: Tcmut ← sample thresh(cmut)
13: evaluate(cmut,Tcmut )
14: num evals← num evals + 1
15: insert(cmut,H ) Insert child into history and re-order.
16: pxover1 ← draw random(H [1 : pop size])
17: pxover2 ← draw random(H [1 : pop size])
18: cxover ← xover(pxover1, pxover2) Child from crossover
19: Tcxover ← sample thresh(cxover)
20: evaluate(cxover,Tcxover )
21: num evals← num evals + 1
22: insert(cxover,H ) Insert child into history and re-order.
23: xelite ← remove least sampled(H [1 : num elites]) Get

num elites member with fewest threshold samples.
24: Txelite ← sample thresh(xelite)
25: evaluate(xelite,Txelite)
26: num evals← num evals + 1
27: update average cost(x )
28: insert(x ,H ) Insert the resampled solution.
29: end while
30: Helite = extract(H [1 : num elites]) Remove the num elites

best members from H .
31: xelite ← remove least sampled(Helite) Get Helite

member with fewest threshold samples.
32: Txelite ← sample thresh(xelite)
33: evaluate(xelite,Txelite)
34: num evals← num evals + 1
35: update average cost(xelite)
36: insert(x ,Helite) Insert the resampled solution, re-order.
37: end while
38: insert(Helite,H ) Insert the elite solutions.

g = 01, and comparable separations between cost distributions by
gate (albeit with greater spreads of scores and higher average costs).

�e pronounced clustering of thresholds obtained in experiment
GA for g = 01 (cf. Fig. 1) lead us to investigate how the binary
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Table 1: �emean cost, standard deviation (std) and best cost
from30 runs ofGA,GA+P and EAS (optimisationwith gates g
�xed). For EAS , the results for each g are computed from the
sampled threshold set yielding the lowest individual cost, as-
sociated with the best solution (lowest average cost).

00 01 10 11
mean 0.354 0.107 0.983 0.401

GA std 0.190 0.039 0.124 0.172
best 0.07 0.065 0.809 0.033
mean 0.554 0.118 1.019 0.538

GA + P std 0.055 0.058 0.228 0.024
best 0.484 0.065 0.793 0.461
mean 0.653 0.343 1.017 0.637

EAS std 0.145 0.118 0.180 0.086
best 0.308 0.166 0.867 0.422

0.03

0.33

0.63

0.92

0

1

0 0.5 1

0

0.5

1

Figure 1: �reshold combinations for the optimal solutions
found in 30 runs of experimentGA. Contours of the entropy
function E (T) are shown for 20 equally spaced values be-
tween the minimum and maximum entropies. �resholds
are coloured by cost (right colourbar); contours by entropy
(le� colourbar). Lighter colours indicate higher values.

entropy of the data varies with the discretisation. We de�ne the
entropy for a given threshold combination T = (T1,T2), E (T), as

2∏
i=1

2∏
j=1

(
−pi j (Ti ) log2 (pi j (Ti )) − (1 − pi j (Ti )) log2 (1 − pi j (Ti ))

)
where pi j (Ti ) is the proportion of ones in the data for variable
i and light condition j when thresholded by Ti . It can be seen
that for the data-generating gate con�guration g = 01, the best
scoring threshold combinations all have entropy values within 5%
of the maximum value. Incorporating the penalty function further
concentrates the thresholds around this maximum entropy point,
and also pulls the best solutions for g = 00 and g = 11 away from
extreme threshold combinations (results not shown).

2.4.2 Optimising with variable gates Figure 2 show the re-
sults obtained from 100 runs each ofGA+G ,GA+G+P ,GA+FS+P
and EAS + G. It can be seen that when optimising over g, τ and

T together using the GA, the majority (51%) of optimal solutions
possess the data-generating gate con�guration g = 01 (Fig. 2(d)),
and that for each con�guration returned – g = 00, 01 and 11 – the
corresponding solutions lie on lines in τ -space of similar score (Figs.
2(a-b)). Also, whilst the best solutions with g = 01 are located in
the high entropy regions of T-space, those with g = 00 and g = 11
possess extreme thresholds (Fig. 2(c)). Indeed, all solutions with
g = 01 have a lower cost than any of those with g = 00 or g = 11,
indicating that when searching over gates, the GA can get stuck in
local minima associated with non data-generating con�gurations.

As expected from the �xed gate results, incorporating the penalty
term into the GA cost function eliminates extreme thresholds, con-
centrating the distribution of optimal solutions in T-space around
the maximum entropy point (Fig. 2(g)). Consequently, the GA
becomes less likely to get stuck in local minima: con�guration
g = 01 is now optimal for 61% of runs (Fig. 2(h)) and the lines in τ
space associated with each gate con�guration are be�er separated
and more homogenous ((Fig. 2(f))). Incorporating �tness sharing
leads to even greater homogeneity in the optimal populations, with
g = 01 now optimal for 96% of runs and g = 00 being eliminated
from the set of optimal solutions altogether (Fig. 2(l)).

Interestingly, optimising over gates with EAS yields similar re-
sults to those obtained with the GA, although the threshold gener-
ates less well separated cost distributions for each gate con�gura-
tion returned, with g = 01 only optimal for 31% of runs (Fig. 2(p)).
However, despite this greater heterogeneity, g = 01 is still the gate
associated with the best solutions overall, and also yields a lower
average cost than the other con�gurations. Hence, EAS – like the
GA – can also get stuck in local minima in this case.
2.5 Landscape analysis

�e concept of a �tness landscape was �rst introduced by evolution-
ary biologist Sewall Wright [18] and has now spread to many other
�elds, including optimisation [13]. Formally, a landscape is a triple
(X ,N , f ), where X is the set of candidate solutions, N is a neigh-
bourhood operator specifying the connectivity between candidate
solutions and f is the objective function. Here, we were interested
in studying the cost landscapes associated with our optimisation
problem in order to quantify how changes in gate con�guration g
and scoring protocol E:S a�ect the performance of our optimisers.
To this end, we consider the landscapes obtained with X taken as
τ -space and f de�ned as the weighted average over thresholds

f (τ , g,E, S ) = 4−
∫ 1

0

∫ 1

0
w (T1,T2) (4−C (τ , g,T1,T2))dT1dT2, (11)

where C is as de�ned in eqn. (5) and 0 ≤ w (T1,T2) ≤ 1 is the weight-
ing function. Motivated by our optimisation results, we consider
the landscapes arising when each point in τ -space is averaged over
all thresholds equally (w ≡ 1), averaged with entropy-weighting
(w (T) = E (T)) and computed only at the thresholds (Tmax

1 ,Tmax
2 )

giving highest entropy
(
w (T) = δ

(
T1 −Tmax

1 ,T2 −Tmax
2

))
.

To calculate (11) for each choice of g, E:S and w , we approxi-
mate the continuous delay space τ ∈ [0, 24]3 and threshold space
T ∈ [0, 1]2 as uniformly spaced grids with step sizes 0.5 and 0.05
respectively. We then compare the features of the landscapes in
τ -space induced by the 1-neighbourhood and 2-neighbourhood
operators, focussing on the following: the number of minima, the
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Figure 2: Best solutions obtained when the gate con�guration is included in the optimisation. Results are shown for 100 runs
each ofGA+G (row #1),GA+G +P (row #2),GA+ FS +P (row #3) and EAS +G (row #4), starting from the same initial population
in each case. Columns #1-#3 show the projections of the solutions onto τ -space, the (τ1,τ2)-plane and T-space, respectively.
Column #4 shows the distribution of cost values for each gate con�guration returned (the number of solutions is indicated on
the corresponding boxplot in each case). In (o), the T values plotted are those that the best solution was sampled over.

basin size, and the correlation between basin size and minimum
cost. We de�ne the basin of a local minimum as the number of
feasible points (τ1 + τ2 < 24) that lead to it under local search.

Fig. 3 shows that for a given gate combination g, the global
minima obtained with the three di�erent choices for threshold

weighting lie in close proximity to one another in τ -space (cf. the
�rst two columns of Fig. 5). However, minima associated with dif-
ferent g values are separated in τ -space. We note that the minimum
yielding the lowest overall cost is obtained for the data-generating
gate g = 01 with the maximum entropy landscape. Assuming that
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Figure 3: �e global minima in the feasible region of τ -space
(τ1 + τ2 < 24) obtained for each gate con�guration when
E:S=1:4, with the 3 di�erent threshold averaging methods
(equal weighting, entropy weighting, maximum entropy).
Each minimum is coloured by cost (lighter colours denote
higher cost values). �e results of experiment EAS are also
shown as �lled symbols (cf. Table 1).

0 20 40 60 80 100 120

0

1

Figure 4: Sample timeseries generated by themodel for opti-
mal parameter sets. Discretised data and the corresponding
model prediction are plotted in simulated LD for the best re-
sult found in experiment GA + FS + P (g = 01, τ1 = 4.46, τ2 =
6.28, τ3 = 10.40, T1 = 0.34, T2 = 0.59; CFS = 0.067). �e dashed
line segregates history and scoring cycles (where E:S = 1:4);
the LD cycle is also shown. Timeseries are o�set for clarity.

EAS and GA + P are exploring the equal weighted and maximum
entropy landscapes respectively, the apparent homology between
the two landscapes may account for the similar results obtained for
the two experiments (cf. Table 1). �is assumption is supported by
the proximity of the optimal solutions to the corresponding land-
scape minima (Fig. 3). Furthermore, the pronounced di�erences
between the landscapes obtained for di�erent g values may explain
why, when searching across gates, the two algorithms are prone
to ge�ing stuck in local minima: mutations to g switch the land-
scape being searched to a signi�cantly di�erent one (e.g. compare
columns #1 and #4 of Fig. 5). For the GA, �tness sharing evidently
prevents this switching from compromising optimiser performance.

We note that although the weighting method has li�le impact on
the positions of the globalminima, the number of local optima found
for maximum entropy landscapes is substantially higher than for
the other two cases (Table 2). In addition, reducing the number of
cycles S used for scoring results in the number of minima increasing

(e.g. compare columns #1 and #3 of Fig. 5, which shows that for
g = 01, decreasing the number of cost cycles creates multiple
valleys in the landscape). Finally, for all three weighting methods,
we found the distribution of basin sizes to be very skewed, with
most basins being of small size. In Table 2, we therefore also present
the number of minima with large basins, determined by binning
basin size using the Freedman-Diaconis rule [8] and then applying
a 20% cut-o� to the resulting distributions. In general, basin size
and cost are correlated, with be�er minima having larger basins.

3 Discussion and Conclusions

In this work, we have presented new methods for optimising
Boolean delay equation (BDE) systems modelling gene regulatory
networks (GRN) to timeseries data. We discussed the advantages of
BDEs compared to ordinary di�erential equations (ODEs); namely
the dramatic reduction in parameters and the ability to systemat-
ically search over the �nite set of alternative models (logic gate
con�gurations) consistent with a given circuit diagram. We de-
scribed how when ��ing a particular gate con�guration and delay
set to data, it is necessary to specify discretisation thresholds –
meta-parameters that also a�ect model score – thereby yielding an
optimisation problem with 3 qualitatively di�erent parameter sets.

To address these issues, we devised several optimisation schemes
based on a standard genetic algorithm (GA) and a novel elite ac-
cumulative sampling (EAS) algorithm, where the la�er addresses
the arbitrariness in selecting discretisation thresholds by averag-
ing over them. As a test case, we applied our methods to a BDE
model of a simple circadian clock, ��ing the model to synthetic
data generated using the corresponding ODE model. We found
that when optimising with gates �xed, the GA required a term
penalising extreme thresholds for the best results to be obtained
for the data-generating gate con�guration g = 01; by contrast, the
EAS algorithm consistently found best results for g = 01 (Table 1).
When optimising over gates, both the GA and EAS algorithm were
prone to ge�ing stuck in local minima associated with alternative
gate con�gurations. For the GA, �tness sharing mitigated against
this, with g = 01 being returned as the optimal gate in almost
all runs (Fig. 2). We note that for each optimisation scheme, the
best individual solutions obtained had g = 01, and gave rise to
near-perfect �ts to the data (Fig. 4). �ese solutions lie very close
to those obtained previously using a grid search method [3], but
required signi�cantly fewer function evaluations (2500 vs. 5.7×109).

In order to be�er understand the comparative performance of
our optimisers, we performed a landscape analysis, computing cost
surfaces in delay space by averaging over thresholds using di�erent
weighting functions. We found that di�erent gate combinations
give rise to landscapes possessing distinct structures (Fig. 5), hence
providing insight into the inability of the GA (without �tness shar-
ing) and EAS algorithm to consistently locate the global minimum
when searching across gates. In addition, reducing the number
of scoring cycles was found to signi�cantly change the landscape
properties, with an increase in the number of local optima and a
weaker correlation between basin size and cost (Table 2). �is �nd-
ing is consistent with previous work showing that the performance
of statistical parameter inference methods are highly sensitive to
the number of circadian cycles used in the likelihood function [1].
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Figure 5: Sample cost landscape contour plots. Columns #1 and #2 show the landscapes obtained for {g = 01, E:S=1:4} by
averaging over thresholds with equal weighting and by selecting the thresholds with highest entropy, respectively. Columns
#3 and #4 show the landscapes obtained with equal weight averaging for {g = 01, E:S=1:1} and {g = 10, E:S=1:4}, respectively.
�e contours are shown for the entire search space, including the infeasible region τ1 + τ2 > 24. �e minima located in the
feasible region using the 1-neighbourhood operator are shown as spheres, with sizes scaled proportional to their basin size.

Table 2: Number of minima in the feasible region of τ -space (τ1 + τ2 < 24) induced by the 2-neighbourhood operator (values
in brackets indicate the number of minima with basin sizes in the largest 80% of basin sizes). Results are shown for each
gate con�guration д, scoring protocol E:S and threshold weighting method. A † indicates that the best cost value lies in the
infeasible region (τ1 + τ2 > 24). A ‡ indicates a weak correlation between basin size and cost (Kendall’s τk > −0.3).

Equal threshold weights Entropy weighted thresholds Maximum entropy thresholds

1:4 1:3 1:2 1:1 1:4 1:3 1:2 1:1 1:4 1:3 1:2 1:1
00 67 (2) 206 (2)†‡ 300 (1) 308 (3)†‡ 86 (1) 180 (1)†‡ 281 (2) 350 (4)†‡ 6785 (7) 7198 (2)† 7408 (3) 7938 (2)†
01 56 (4) 48 (6) 66 (5) 41 (6)† 49 (5) 52 (5) 67 (6) 49 (7)† 103 (13) 143 (5)‡ 198 (11) 183 (10)†
10 62 (6)† 57 (4)† 78 (4)† 51 (6)† 54 (8)† 53 (6)† 71 (4)† 53 (12)† 135 (7)† 157 (6)† 234 (7)† 237 (14)†
11 54 (2) 271 (2)†‡ 314 (2)‡ 369 (5)† 71 (1) 263 (2)†‡ 428 (2) 417 (5)†‡ 994 (4) 875 (1)† 1515 (4) 2030 (5)†‡

In summary, this study provides a quantitative framework for
optimising BDE models of GRNs. Future work includes: (i) scaling
our methods to larger, more complex models, and compensating
for the poor scaling of grids with problem size; (ii) incorporating
�tness sharing into the EAS algorithm; and (iii) applying landscape
analysis to experimentally recorded circadian rhythms to quantify
how data uncertainty impacts optimiser performance.
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