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We consider a semi-infinite dielectric with multiple spatially dispersive resonances in the susceptibility. The
effect of the boundary is described by an arbitrary reflection coefficient for polarization waves in the material at
the surface, with specific values corresponding to various additional boundary conditions (ABCs) for Maxwell’s
equations. We derive exact expressions for the electromagnetic reflection and transmission coefficients and
present the results for a variety of materials with multiple exciton bands. We find an improved single-band
approximation for heavy/light exciton bands and extend our model to exciton dispersion relations with linear k
terms which occur in uniaxial crystals. Finally, we calculate the spectral energy density of thermal and zero-
point radiation for a variety of multi-resonance models and ABCs.

I. INTRODUCTION

The susceptibility describing the material response to an
applied electromagnetic field contains both temporal and spa-
tial dispersion1,2. As a result of the latter, the induced po-
larization at any point in the medium depends on the applied
field in the region surrounding that point. This behavior can
be due to a range of excitations within the material, such as
phonons or excitons, each with their own associated reso-
nance in the susceptibility. While this nonlocal response is
often negligible in comparison to the frequency dependence
there are cases where it can play a significant role, such as
metallic nanostructures3–7, radiative heat transfer8,9, sponta-
neous emission10–14, spectral energy density15 and Casimir
self-forces10. Spatial dispersion is also important in semi-
conductors, where the complex electronic band structure can
lead to many excitations16, each with their own nonlocal re-
sponse. In this paper, we continue our previous work on non-
local response15 by extending results on reflection and trans-
mission at planar boundaries to the case where the medium
has multiple spatially-dispersive resonances.

The susceptibility is typically expressed as a sum of reso-
nances. Nonlocal response is included as a k dependence in
the model parameters, but is usually limited to a k-dependent
resonant frequency. Hopfield and Thomas17 proposed the fol-
lowing model, based on the properties of semiconductors, but
it can also be derived from a simple classical model18:

χ(k, ω) = χ0 +

M∑
m=1

ω2
pm

ω2
Tm(k)− ω2 − iγmω

, (1)

where ωT (k) is the resonant frequency, γ quantifies the ab-
sorption and ωp is the oscillator strength. The term χ0 collects
contributions from other resonances and acts as a background
susceptibility. For the sake of simplicity, the parabolic disper-
sion

~ωT (k) = ~ωT +
~2k2

2mex
, ω2

T (k) ≈ ω2
T +Dk2 (2)

was used17 to describe the exciton bands in the medium,
where mex is the exciton mass and D = ~ωT /mex

The difficulties involved in the calculation of electromag-
netic reflection and transmission coefficients for nonlocal me-
dia are well known. While there is only one transmitted wave

for a local medium, the nonlocal medium has several trans-
mitted waves due to the k dependence in (1)2. The Maxwell
boundary conditions are no longer sufficient to solve for the
unknown amplitudes of the multiple transmitted waves. His-
torically, this need for extra information was resolved with the
introduction of Additional Boundary Conditions (ABCs) on
the polarization P associated with the resonances in (1). Var-
ious authors19–42 have proposed different ABCs under certain
assumptions that suit different types of material. The Pekar
ABC, where P vanishes at the boundary, is the simplest and
most commonly used.

The majority of work on the subject has focused on suscep-
tibilities with a single, isolated resonance. In this case, Halevi
and Fuchs43 have derived reflection coefficients for a gener-
alized ABC model, containing all the previously suggested
ABCs. In a previous paper15 we have adapted this model to
the tensor case with different transverse and longitudinal sus-
ceptibilities.

In general, the susceptibility of real materials is far more
complex than simple isolated resonances16. In exciton bands,
for example, there can be multiple closely spaced bands, de-
generate bands16,44,45 and more complex k dependence46–48.
While some authors49–56 have considered multi-resonance
systems, they are typically limited to a maximum of two res-
onances and a specific ABC.

The first aim of this paper is to extend the Halevi and
Fuchs43 generalized ABC model to a multi-resonance suscep-
tibility and derive expressions for the reflection and transmis-
sion coefficients. This derivation is first applied to a system
with simple parabolic exciton bands and then to bands that
are degenerate at k = 0, where we find improved parameters
for the single band approximation.

The second aim is to modify the derivation further to in-
clude alternate wave vector dependences, specifically the case
where the dispersion in (2) contains a ±k term. This behavior
is known as linear splitting and is typically found in uniax-
ial crystals such as Wurtzite. This case has been previously
calculated54–56, but only for a specific ABC and orientation of
the crystal axis. We will show that linear k splitting can eas-
ily be incorporated into the multi-resonance model and that
the orientation of the crystal axis has significant effects on the
result.

Finally, we will use the derived electromagnetic reflection
coefficients to calculate the spectral energy density of ther-
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mal and zero-point radiation outside the spatially dispersive
medium. The results for various multi-resonance systems are
calculated and compared to those in our previous paper on the
isolated resonance15.

The assumptions made in the following derivation are dis-
cussed in greater detail in our previous paper15. In sum-
mary, we consider a smooth boundary that does not contain
any features such as slits or other nontrivial structures and
is sufficiently far from any other boundaries such that mul-
tiple reflections can be ignored. In addition we do not include
any quantum mechanical effects not directly encoded in the
macroscopic susceptibility

The paper is organized as follows. In Sec. II we present
the spatially dispersive susceptibility model for a half-infinite
dielectric with a multi-resonance permittivity and derive the
field equations. In Sec. III and IV we derive the general ex-
pressions for the reflection and transmission coefficients for p
and s polarized light and present the results for parabolic ex-
citon bands in Sec. V. In Sec. VI we extend our derivation
to a uniaxial crystal by including a linear splitting term and
in Sec. VII we calculate the zero-point and thermal spectral
energy density.

II. THEORY

A. Infinite Medium

We first consider an infinite, homogeneous, spatially-
dispersive dielectric with the susceptibility (1). The electric
field E and polarization field P satisfy the wave equation:

∇×∇×E(r, ω)− ω2

c2
E(r, ω) =

ω2

c2
P (r, ω), (3)

where the polarization field is given by

Pi(r, ω) =

∫
d3r′χ(r − r′, ω)Ei(r

′, ω). (4)

In general, the spatially dispersive susceptibility χ is a tensor1,
but here we consider a scalar. Using the Fourier transforma-
tion

Pi(r, ω) =
1

(2π)3

∫
d3kPi(k, ω)eik·r (5)

we have

Pi(k, ω) =
∑
j

χ(k, ω)Ei(k, ω). (6)

The wave equation (3) has solutions for E when the frequency
and wave vector satisfy the dispersion relation2

(ω/c)2 [1 + χ(k, ω)] = k2, (7)

for transverse waves with E · k = 0 or

1 + χ(k, ω) = 0, (8)

for longitudinal waves with E ×k = 0. With the field depen-
dence exp(ikzz) we restrict ourselves to Im[kz] > 0, leading
toM+1 transverse andM longitudinal waves for the suscep-
tibility in (1) and the parabolic dispersion in (2).

B. Half-Infinite Medium

We now consider the half-infinite dielectric occupying the
z > 0 region as shown in Fig. 1. The vacuum contains the in-
cident wave (E0) and reflected wave (Er) with wave-vectors
k0 and kr (k0 = kr = ω/c). Inside the dielectric there are
N = 2M + 1 transmitted waves (En) with the correspond-
ing wave vectors kn. The coordinate system has been chosen
such that the xz-plane coincides with the plane of incidence,
with knx = K, kny = 0 and knz = qn.

DielectricVacuum k1
k2

k3

k0

kr

z

x

z=0

θi

kN

…

FIG. 1: Schematic of the model. The z < 0 vacuum half-space
contains the incident (k0) and reflected (kr) wave. The angle of in-
cidence is θi. The z > 0 spatially dispersive dielectric half-space
contains M + 1 transverse (k1, k2 . . .kM+1) and M longitudinal
(kM+2 . . .kN ) transmitted waves. The coordinate system is cho-
sen such that the xz-plane coincides with the plane of incidence and
ky = 0.

The bulk susceptibility (1) in this co-ordinate system can be
rewritten as:

χ(K, 0, q) =χ0 +

M∑
m=1

χm(K, 0, q), (9)

where:

χm(K, 0, q) =
ω2
pm/Dm

q2 − Γ2
m(K)

(10)

and:

Γ2
m(K) =

ω2 − ω2
Tm + iγmω

Dm
−K2. (11)

With the presence of the boundary at z = 0, the polarization
field now depends on a position-dependent susceptibility χ′i
(i ∈ {x, y, z})43. After a Fourier transformation in the xy
plane:

Pi(K, 0, z) =

∫ ∞
0

dz′χ̃′i(K, 0, z, z
′)Ei(K, 0, z

′). (12)

We subsequently omit K dependence for notational sim-
plicity. We assume that each resonance in the half-infinite
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medium can be expressed in terms of the bulk susceptibility
in the same manner as Halevi and Fuchs43:

χ̃′mi(z, z
′) =

{
χ̃m(z − z′) + Umiχ̃m(z + z′) if z, z′ > 0,

0 otherwise
(13)

and the overall susceptibility is given by:

χ̃′i(z, z
′) =

χ0δ(z − z′) +

M∑
m

χ̃′mi(z, z
′) if z, z′ > 0,

0 otherwise.
(14)

The first term in (13) is the position-independent nonlo-
cal bulk response. The second describes a polarization wave
propagating from z′ to the surface before reflecting and con-
tinuing to z. The reflection amplitude coefficient Ui is (in
general) complex and frequency dependent, with |Ui| = 1
implying elastic reflection. Halevi & Fuchs43 demonstrated
that specific values of Ui correspond to certain ABC’s, shown
in Table I. Each ABC was developed for a particular type of
medium or excitation. For example, Pekar39–42 and Rimbey-
Mahan34–38 were developed for Frenkel (tight-binding) exci-
tons, Ting et al.29 for Wannier-Mott (weak-binding) excitons,
Fuchs-Kleiwer29–33 for metals and Agarwal et al.19–28 for the
general case where surface effects can be ignored.

TABLE I: List of ABC’s

Ux Uy Uz

Agarwal et al.19–28 0 0 0
Ting et al.29 1 1 1
Fuchs-Kliewer29–33 1 1 -1
Rimbey-Mahan34–38 -1 -1 1
Pekar39–42 -1 -1 -1

Substituting (14) into (12) gives:

Pi(z) =χ0Ei(z) +
1

2π

∫ ∞
−∞

dq

∫ ∞
0

dz′
M∑

m=1[
eiq(z−z′) + Umie

iq(z+z′)

]
χm(q)Ei(z

′), z > 0.

(15)

At this point we introduce an ansatz for the E field inside the
medium43 — a linear combination of N = 2M + 1 plane
waves from (7) and (8):

Ei(z) =

N∑
n=1

E
(n)
i eiqnz, (16)

where n = 1 to M + 1 are transverse waves and n = M + 2
to N are longitudinal waves.

After substitution of the ansatz (16) into (15) and evaluating

the z′ integral, we find

Pi(z) =χ0Ei(z) +
i

2π

∫ ∞
−∞

dqeiqz
M∑

m=1

N∑
n=1[

1

qn − q
+

Umi

qn + q

]
χm(q)E

(n)
i , z > 0. (17)

The q integral is evaluated by performing a contour integration
in the upper half-plane. This encloses the poles at q = qn and
Γm, giving

Pi(z) =

N∑
n=1

χ(qn)E
(n)
i eiqnz

−
ω2
p1

2D1Γ1

N∑
n=1

(
1

qn − Γ1
+

U1i

qn + Γ1

)
E

(n)
i eiΓ1z

−
ω2
p2

2D2Γ2

N∑
n=1

(
1

qn − Γ2
+

U2i

qn + Γ2

)
E

(n)
i eiΓ2z

− . . .

−
ω2
pM

2DMΓM

N∑
n=1

(
1

qn − ΓM
+

UMi

qn + ΓM

)
E

(n)
i eiΓMz.

(18)

For the wave equation (3) to be valid for all values of z,
we require each of the right-hand side sums proportional to
exp(iΓmz) in (18) to equal zero:

N∑
n=1

φ
(n)
miE

(n)
i = 0, m = 1, . . . ,M (19)

where

φ
(n)
mi =

(
1

qn − Γm
+

Umi

qn + Γm

)
. (20)

This leads to a set of M equations of the form (19) for each of
the Ei components.

III. p-POLARIZATION

The field can be decomposed to components with E per-
pendicular to (s-polarized) or in the plane of incidence (p-
polarized). For p-polarized light Ey = 0, Ex 6= 0 and
Ez 6= 0. Both the transverse and longitudinal waves appear in
the medium.

A. Surface Impedance

The reflection coefficient is calculated using the surface
impedance, which for p-polarized light is given by:

Zp =
Ex(0+)

Hy(0+)
. (21)
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(Here H = µ0B.) The magnetic field By can be expressed
in terms of the electric field using k0B = k ×E and (16):

B(n)
y (z) =

1

k0

[
qnE

(n)
x −KE(n)

z

]
eiqnz

=

[
qn −Kη(n)

k0

]
E(n)

x eiqnz

= τ (n)E(n)
x eiqnz, (22)

where we have substituted Ex for Ez using

E(n)
z = η(n)E(n)

x , (23)

where η(n) = −K/qn for transverse waves and η(n) = qn/K
for longitudinal waves. This leads to:

τ (n) =


q2
n +K2

qnk0
, transverse waves,

0, longitudinal waves.
(24)

The surface impedance can now be expressed solely in terms
of Ex field amplitude ratios:

Zp =
1

µ0

∑N
n=1E

(n)
x∑N

n=1 τ
(n)E

(n)
x

=
1

µ0

1 +
∑N

n=2
E(n)

x

E
(1)
x

τ (1) +
∑N

n=2 τ
(n) E

(n)
x

E
(1)
x

. (25)

B. Field Amplitude Ratios

To proceed any further, we require the Ex field amplitude
ratios in (25). By using (23), we can rewrite the Ez equations
in (19) in terms of Ex:

N∑
n=1

[
φ(n)
mx

]
E(n)

x = 0,

N∑
n=1

[
η(n)φ(n)

mz

]
E(n)

x = 0. (26)

We now have 2M equations relating the 2M + 1 waves in-
side the medium and have sufficient information to solve for
the reflection coefficient. After dividing byE(1)

x and rearrang-
ing we can express (26) in matrix form. As an example, we
present the result for a two-resonance system:


φ

(2)
1x φ

(3)
1x φ

(4)
1x φ

(5)
1x

φ
(2)
2x φ

(3)
2x φ

(4)
2x φ

(5)
2x

η(2)φ
(2)
1z η(3)φ

(3)
1z η(4)φ

(4)
1z η(5)φ

(5)
1z

η(2)φ
(2)
2z η(3)φ

(3)
2z η(4)φ

(4)
2z η(5)φ

(5)
2z



E

(2)
x /E

(1)
x

E
(3)
x /E

(1)
x

E
(4)
x /E

(1)
x

E
(5)
x /E

(1)
x

 = −


φ

(1)
1x

φ
(1)
2x

η(1)φ
(1)
1z

η(1)φ
(1)
2z

 , (27)

where n = 1, 2, 3 are transverse waves and n = 4, 5 are lon-
gitudinal waves. By inverting the 2M × 2M matrix, we can
find the field amplitude ratios.

C. Reflection and Transmission Coefficients

The p-polarization reflection coefficient can be expressed
in terms of surface impedance30

rp =
Er

E0
=
Z

(0)
p − Zp

Z
(0)
p + Zp

, (28)

where Zp is given by (25) and Z(0)
p =

√
k2

0 −K2/µ0k0 is
the vacuum surface impedance.

We can find the transmission coefficients for the N trans-
mitted waves by imposing the continuity of the tangential E

field across the boundary. Our choice of coordinate system
means we simply equate the Ex components on each side:

[E0 − Er] cos θi =

[
N∑

n=1

E(n)
x

]
. (29)

This can be expressed in terms of the previously calculated
field amplitude ratios using (28) and cos θi =

√
k2

0 −K2/k0:√
k2

0 −K2

k0
[1− rp]E0 =

[
1 +

N∑
n=2

E
(n)
x

E
(1)
x

]
E(1)

x . (30)

By rewriting:

E(n) =

√[
E

(n)
x

]2
+
[
E

(n)
z

]2
=
√

1 + η(n)2E(n)
x , (31)
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we can derive the transmission coefficient:

t(n)
p =

E(n)

E0
(32)

for transverse waves:

t(n)
p =

√
q2
n +K2

qn

E
(n)
x

E
(1)
x

√
k2

0 −K2

k0

[1− rp][
1 +

∑N
n=2

E
(n)
x

E
(1)
x

] ,
(33)

and longitudinal waves:

t(n)
p =

√
q2
n +K2

K

E
(n)
x

E
(1)
x

√
k2

0 −K2

k0

[1− rp][
1 +

∑N
n=2

E
(n)
x

E
(1)
x

] .
(34)

We now have a single method for rp and tp in the presence
of multiple resonances that can cover a wide frequency range.
This derivation could be extended further to a tensor suscepti-
bility using the method described in our previous paper15. In
this case the polarization reflection coefficents are a tensor Uij

with certain restrictions on the components.

IV. s-POLARIZATION

We now consider the simpler case of s-polarized light,
where Ey 6= 0, Ex = 0 and Ez = 0. As kn all lie in the
xz-plane, this leads to the absence of longitudinal waves in
the medium, leaving the M + 1 transverse waves.

A. Surface Impedance

The surface impedance for s-polarized light is given by:

Zs =− Ey(0+)

Hx(0+)
. (35)

As in (25) we express Hx in terms of Ey and field amplitude
ratios:

Zs =
1

µ0

k0

∑M+1
n=1 E

(n)
y∑M+1

n=1 qnE
(n)
y

=
1

µ0
k0

1 +
∑M+1

n=2

E(n)
y

E
(1)
y

q1 +
∑M+1

n=2 qn
E

(n)
y

E
(1)
y

. (36)

As we only have the M + 1 transverse waves in the s-
polarization, the set ofM equations from (19) can be rewritten
as

M+1∑
n=2

[
φ(n)
my

] E(n)
y

E
(1)
y

= −φ(1)
my, (37)

which is sufficient to solve for the amplitude ratios.

B. Reflection and Transmission Coefficients

Using the vacuum surface impedance Z
(0)
s =

k0/µ0

√
k2

0 −K2 and (36), we can construct the s-
polarization reflection coefficient:

rs =
Er

E0
=
Z

(0)
s − Zs

Z
(0)
s + Zs

. (38)

As in the previous section, we impose the continuity of the
tangential E field across the boundary. As we only have Ey

components, this leads to:

E0 − Er =

M+1∑
n=1

E(n)
y . (39)

Using (38) this can be expressed in terms of the field ampli-
tude ratios previously found from (37):

E0 (1− rs) =E(1)
y

(
1 +

M+1∑
n=2

E
(n)
y

E
(1)
y

)
, (40)

which leads to:

t(n)
s =

E(n)

E0
=
E

(n)
y

E
(1)
y

1− rs
1 +

∑M+1
n=2

E
(n)
y

E
(1)
y

. (41)

V. REFLECTION COEFFICIENT RESULTS

We now use the derivations in the previous sections for a
number of materials with a variety of exciton band structures.
In Fig. 2 we show some example exciton bands and the cor-
responding dispersion relations for transverse E waves in the
absence of damping.

In this section we first consider the simple case of ZnO50

with three non-interacting exciton bands and GaAs52 with two
bands that are degenerate at k = 0. The model parameters are
given in Table II. The values of ωp are calculated from the
measured values of ωL, which are the solutions of the disper-
sion relation for transverse E waves at k = 0 in the absence
of damping. Similarly D is found from the measured exciton
mass mex, which is given in units of the rest electron mass
me0.

TABLE II: List of model parameters

ZnO50 GaAs52

m 1 2 3 1 2
χ0 5.2 5.2 5.2 11.6 11.6

~ωT (eV) 3.3758 3.3810 3.4198 1.514 1.514
~ωL (eV) 3.3776 3.3912 3.4317 1.515 1.515
~γ (meV) 0.7 0.7 0.7 0.05 0.05
mex (mex) 0.87 0.87 0.87 0.183 0.805
~ωp (eV) 0.5334 0.6055 0.5983 0.138 0.138

D (1011m2s−2) 6.82 6.84 6.91 14.55 3.31
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FIG. 2: Exciton band behavior (black dashed) compared to the light
line (black dotted) and dispersion relations for transverse E waves
in an infinite medium (solid red) when γ is set to zero. Examples in-
clude multiple parabolic bands (left), heavy/light exciton bands with
the same ωT but different k2 terms (middle) and bands with the same
ωT and k2 terms, but a ±k linear splitting term (right). The exciton
bands in last two are degenerate at k = 0.

A. Simple Resonances

We first consider a three-resonance model for ZnO50, in-
volving the A, B and C excitons which we label m = 1, 2 and
3 respectively. The exciton bands are of the form in (2) and
do not interact.

Figure 3 shows rp(ω) and rs(ω) for a fixed incident angle.
The peak locations are determined by the ωT and ωL values,
indicated by solid and dashed vertical lines respectively. The
rp behavior is mostly determined by Ux, with Ux = 1 giving
the largest maxima and smallest minima. In contrast Uz only
affects the results at the reflection minima. The frequency re-
gion around ωT3 can be accurately described using the single-
resonance model. This is because the overlap with the other
resonances in the susceptibility is very small. The same is not
true of the m = 1 and 2 resonances. Here the proximity of
ωT1 and ωT2 lead to the one-resonance models failing, par-
ticularly in intermediate frequency region. The effect of Ui

remains the same as the isolated resonance. However, if there
is significant overlap in the resonant peaks (e.g. if the ωT val-
ues are separated by less that the full-width half-maximum),
then Ux = 1 gives not only the the largest peaks but also the
largest value in the intermediate frequency region.

B. Heavy & Light Excitons

We now move on to consider an exciton band structure
with degeneracy at k = 0. Kane44 showed that interactions
in a medium could lead to the splitting of degenerate exciton
bands. In the case of isotropic valence bands, this can lead to
a “heavy” and “light” exciton band with parabolic dispersion

FIG. 3: Reflection coefficients rp and rs as a function of ω for the
ZnO 3-exciton model at an incident angle of 60◦. Vertical lines indi-
cate ωTm (solid) and ωLm (dashed) values. Includes Agarwal et al.
(Red), Ting et al. (Brown), Fuchs-Kliewer (Green), Rimbey-Mahan
(Blue) and Pekar (Purple) ABC’s.

relations

ω2
Th(k) = ω2

T +
~ωT

mh
k2 = ω2

T +Dhk
2, (42)

ω2
T l(k) = ω2

T +
~ωT

ml
k2 = ω2

T +Dlk
2, (43)

substituted into the susceptibility.

FIG. 4: Reflection coefficient rp as a function of ω for the GaAs
heavy/light exciton model at an incident angle of 60◦. Vertical lines
indicate ωT (solid) and ωL (dashed) values. Plot styles follow the
conventions in Fig. 3.

We consider a two-resonance model for GaAs52 containing
only the heavy and light exciton bands, using the parameters
in Table II. We have slightly simplified the model by assuming
isotropic valence bands and using the 〈100〉 exciton masses
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for all directions. The results for rp are shown in Fig. 4 and
display the same basic features as a single resonance model.
The same behavior is seen in the rs result, which we do not
plot.

Previous work52 has suggested that the two-resonance sys-
tem of heavy and light exciton bands can be approximated by
a single band with an effective Deff term in the susceptibility,
given by

Deff =
Dh +Dl

2
(44)

and multiplying ω2
p by a factor of 2. However, simply tak-

ing the average of the nonlocal parameter D as in (44) does
not lead to the best approximation. Figure 5 compares the
heavy/light exciton model to the effective single band result
and shows that it underestimates the peak of the heavy/light
system. This is true even when Dh and Dl are close. Instead,
if we re-express the nonlocal term as

D∗k2 = (σk)2, (45)

we find that a better fit is given by taking the average value of
the coefficient σ, which leads to:

√
D∗ =

√
Dh +

√
Dl

2
. (46)

This new value provides an excellent fit whenDl andDh have
similar values. For larger differences between Dl and Dh

(such as this model where Dl ≈ 4Dh), both single-resonance
approximations begin to fail as the the two resonance model
has a larger peak just above ωT . This difference is greatest for
Ux = −1 and smallest for Ux = 1. Despite this, we find that
(46) gives a better fit to rp and rs than (44) for all values of
Dl/h and Ui.

FIG. 5: Detail of rp using the Agarwal et al. ABC for the GaAs
heavy/light exciton model (solid line) compared to effective one ex-
citon results. We find that D∗ (dashed) from (46) gives a better fit to
the resonant peak than the previously suggested Deff (dotted) from
(44).

VI. LINEAR k TERMS

So far we have only considered materials with isotropic,
parabolic energy bands of the form (2). However the symme-
try of the crystal structure can lead to the introduction of ad-
ditional k terms. For example, in 1964 Mahan and Hopfield54

used a linear k term to explain a shoulder in the reflection
spectra of CdS, a uniaxial medium with wurtzite crystal sym-
metry. This behavior was only observed when E was per-
pendicular to the crystal axis c, with the exciton dispersion
relation:

~ω±(k) = ~ωT +
~2k2
⊥

2mex⊥
+

~2k2
‖

2mex‖
± ζk⊥, (47)

where mex is the exciton mass and k‖ and k⊥ are wave vector
components parallel and perpendicular to c respectively. In
the susceptibility, (47) is approximated to54:

ω2
±(k) = ω2

T +D⊥k
2
⊥ +D‖k

2
‖ ± ξk⊥, (48)

where D⊥/‖ = ~ωT /mex⊥/‖ and ξ = 2ωT ζ/~. This leads to
two resonances:

χ+(k) + χ−(k) =
ω2
p

(ω2
T +D⊥k2

⊥ +D‖k
2
‖ + ξk)− ω2 − iγω

+
ω2
p

(ω2
T +D⊥k2

⊥ +D‖k
2
‖ − ξk)− ω2 − iγω

,

(49)

that can be collected to a single fraction χ⊥lin, giving

χ⊥lin(k) =
2ω2

p(ω2
T +D⊥k

2
⊥ +D‖k

2
‖ − ω

2 − iγω)

(ω2
T +D⊥k2

⊥ +D‖k
2
‖ − ω2 − iγω)2 − ξ2k2

⊥
(50)

for E ⊥ c. When E ‖ c, the exciton bands were found to be
degenerate with ζ = 0, leading to the resonance:

χ
‖
lin(k) =

2ω2
p

(ω2
T +D⊥k2

⊥ +D‖k
2
‖)− ω2 − iγω

(51)

The bulk susceptibility of the uniaxial crystal is no longer a
scalaer and takes a vector form when c is aligned with one of
the co-ordinate axes, such as:

χlin(k) =

χ⊥lin(k)
χ⊥lin(k)

χ
‖
lin(k)

 (52)

for c ‖ ẑ. In Tables III and IV we present the χlini compo-
nents relevant for s and p polarized light when c is aligned
with each of the co-ordinate axes as defined in Fig. 1.

Previous work54–56 has only considered such a model for
c ‖ ŷ (perpendicular to the incident plane) using the Pekar
ABC. We will now modify the derivation of the previous
section to include resonances of the form (52) in a multi-
resonance system with arbitrary U values when c is aligned
with each of the co-ordinate axes.
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TABLE III: List of χliny expressions for c orientations.

χliny

c ‖ x̂
2ω2

p(ω
2
T +D⊥q

2 +D‖K
2 − ω2 − iγω)

(ω2
T +D⊥q2 +D‖K2 − ω2 − iγω)2 − ξ2q2

c ‖ ŷ
2ω2

p

(ω2
T +D⊥(K2 + q2))− ω2 − iγω

c ‖ ẑ
2ω2

p(ω
2
T +D⊥K

2 +D‖q
2 − ω2 − iγω)

(ω2
T +D⊥K2 +D‖q2 − ω2 − iγω)2 − ξ2K2

A. Field Amplitude Ratios

Due to the fact that the bulk components in (52) are no
longer equal, the dispersion relations take the form

k2
0 [1 + χliny(q)]−

(
K2 + q2

)
= 0 (53)

for s-polarized light and

k2
0 [1 + χlinx(q)] [1 + χlinz(q)]

−K2 [1 + χlinx(q)]− q2 [1 + χlinz(q)] = 0 (54)

for p-polarized light, where we have omitted K dependence
for notational simplicity. Unlike the previous section, the re-
sults of (53) are not also solutions of (54). We substitute the
susceptibility (50-51) and the ansatz (16) into (15), using the
N values of qn that satisfy (53) and (54). If the field is aligned
with c, there is no linear splitting and the derivation in the pre-
vious section is sufficient to find the amplitude ratios. If linear
splitting is present then χlini has two poles with Im[q] > 0,
which we label Γ

(+)
i and Γ

(−)
i . Evaluating the contour inte-

gral in (17) gives

Pi(z) =

N∑
n=1

χlini(qn)E
(n)
i eiqnz

− F (+)
i

N∑
n=1

(
1

qn − Γ
(+)
i

+
Ulini

qn + Γ
(+)
i

)
E

(n)
i eiΓ

(+)
i z

− F (−)
i

N∑
n=1

(
1

qn − Γ
(−)
i

+
Ulini

qn + Γ
(−)
i

)
E

(n)
i eiΓ

(−)
i z,

(55)

where F (±)
i is a simple prefactor and we have used a single

value of Ulini for both resonances. The additional terms not
proportional to exp(iqnz) lead to the same set of equations as
(19), but with different values of Γm:

N∑
n=1

(
1

qn − Γ
(+)
i

+
Ulini

qn + Γ
(+)
i

)
E

(n)
i =0,

N∑
n=1

(
1

qn − Γ
(−)
i

+
Ulini

qn + Γ
(−)
i

)
E

(n)
i =0. (56)

In summary, the inclusion of linear k terms to the exciton
dispersion relation does not significantly affect the derivation

of field amplitude ratios presented in the previous section. The
only changes required are to use the appropriate Γ values in
the field amplitude ratio matrix and the q values that satisfy
the dispersion relation.

B. c ‖ ŷ Orientation

The simplest case is to align the crystal axis c with ŷ. This
particular orientation has been looked at previously only for
the Pekar ABC. As there is no linear splitting in χliny for this
orientation, the derivation in the previous section is sufficient
to calculate rs and t(n)

s in the s-polarization. The χliny term
leads to two transverse wave from (53), if it is the only reso-
nance.

In comparison, χlinx and χlinz are equal and contain linear
splitting. Equation (54) for the p-polarization can be simpli-
fied to

[1 + χlinx(q)]
{
k2

0 [1 + χlinx(q)]−
(
K2 + q2

)}
= 0. (57)

Solutions of the first bracket give two longitudinal waves and
the second give three transverse waves, for a total of five if
χlin is the only resonance. The transverse waves are no longer
the same as those in the s-polarization.

As χlinx and χlinz contain linear splitting, the integral in
(17) leads to two equations of the form (56) for both Ex and
Ez . The Ez equations can be converted to Ex using (23) with
η(n) = −K/qn for transverse waves and η(n) = qn/K for
longitudinal waves as in the previous section. This gives a
total of four Ex equations, the same as the number of trans-
mitted waves added by the resonance, which is sufficient to
solve for the reflection coefficient.

C. c ‖ x̂ or c ‖ ẑ Orientation

The two other orientations present additional challenges.
As splitting is present in χliny , the s-polarization now has
three transverse waves, and two equations of the form (56) for
Ey . There is sufficient information to solve for rs and t(n)

s .
The fact that the expressions for χlinx and χlinz in Table IV

are different means (54) cannot be simplified and the waves
are no longer purely transverse or longitudinal. The χlin res-
onances give a total of four waves in the absence of other res-
onances. The contour integration in (17) leads to a total of
three equations of the form (56) - one from the un-split χlini

and two from the split χlini. Again, we have sufficient infor-
mation to solve for the field amplitude ratios.

As the waves are no longer purely transverse or longitudi-
nal, care must be taken when converting Ez to Ex. From the
wave equation, we find:

η(n) = − 1

Kqn

{
k2

0 [1 + χlinx(qn)]− q2
n

}
. (58)

Similarly, the relation betweenBy andEx used in (25) is mod-
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TABLE IV: List of χlinx and χlinz expressions for c orientations.

χlinx χlinz

c ‖ x̂
2ω2

p

(ω2
T +D⊥q2 +D‖K2)− ω2 − iγω

2ω2
p(ω

2
T +D⊥q

2 +D‖K
2 − ω2 − iγω)

(ω2
T +D⊥q2 +D‖K2 − ω2 − iγω)2 − ξ2q2

c ‖ ŷ
2ω2

p(ω
2
T +D⊥(K

2 + q2)− ω2 − iγω)
(ω2

T +D⊥(K2 + q2)− ω2 − iγω)2 − ξ2(K2 + q2)

2ω2
p(ω

2
T +D⊥(K

2 + q2)− ω2 − iγω)
(ω2

T +D⊥(K2 + q2)− ω2 − iγω)2 − ξ2(K2 + q2)

c ‖ ẑ
2ω2

p(ω
2
T +D⊥K

2 +D‖q
2 − ω2 − iγω)

(ω2
T +D⊥K2 +D‖q2 − ω2 − iγω)2 − ξ2K2

2ω2
p

(ω2
T +D⊥K2 +D‖q2)− ω2 − iγω

ified from (24) to:

τ (n) =

[
qn −Kη(n)

k0

]
=
k0

qn
[1 + χlinx(qn)] . (59)

These expressions and the calculated field amplitude ratios are
substituted into (25) and (36) to find the surface impedances
and the subsequent reflection coefficients.

D. Results

As an example, we present the results for CdS16 using the
model parameters in Table V, where ξ in (47) has been calcu-
lated from the measured ζ in (48). Figure 6 shows rp(ω) and
rs(ω) at an incident angle of 60◦ for c aligned with x̂, ŷ and
ẑ.

TABLE V: List of model parameters

CdS16

χ0 6.5
~ωT (eV) 2.5674
~ωL (eV) 2.5688
~γ (meV) 0.075
mex (mex) 1.3 (⊥ c) , 1.02 (‖ c)
ζ (eV m) 5.6×10−12

~ωp (eV) 0.164
D (1011m2s−2) 3.47 (⊥ c), 4.43 (‖ c)

ξ (ms−2) 6.637×1019

As expected, the c ‖ ŷ result for rp is significantly differ-
ent to the others due to linear splitting in both χlinx and χlinz

components used for p polarized light. This leads to an ad-
ditional peak in rp below ωT . While the behavior of the new
peak is still mostly determined by the value of Ux, the order
in which the ABC’s appear is different to that of the previous
section where Ux = 1 is the largest and Ux = −1 the small-
est. The rs result for c ‖ ŷ is identical to that of the previous
section as there is no splitting in χliny for this orientation.

The c ‖ x̂ and c ‖ ẑ cases have splitting in only one com-
ponent of χlini for p polarized light, resulting in an rp that is
closer to the ξ = 0 result but also displays new features just
below ωT at a smaller scale. The c ‖ ẑ results for rp and rs
are the closest to the ξ = 0 case as the linear term in Table

IV only contains K. As θi (and K) is decreased, the peak at
ωT becomes smaller, returning to the ξ = 0 result for normal
incidence. As in the previous section, the new peak is unaf-
fected by Uz and is larger for Ux = 1. In contrast, the c ‖ x̂
case has q in the linear splitting term. The differences in the
rp result are similar in magnitude to the c ‖ ẑ case, but the
new peak at ωT is more pronounced for Ux = −1 and is now
affected by the value of Uz . The effect of the splitting in q is
even more pronounced in rs, which displays features similar
to rp in the c ‖ ŷ case. This is because the linear splitting in
q is present in every χlini term used in their derivation.

In all cases, the difference between m⊥ and m‖ has very
little effect compared to the choice of ABC. This agrees with
our previous work on the tensor susceptibility15.

VII. SPECTRAL ENERGY DENSITY

We now focus on the electromagnetic zero-point and ther-
mal radiation at a perpendicular distance |z| from the bound-
ary of the nonlocal medium. In our previous paper on the
one-resonance system15 we found that the inclusion of spatial
dispersion removed the unphysical 1/|z|3 divergence present
in the spectral energy density of the local model57,58. We now
investigate how the behavior of the materials considered in
the previous sections changes due to the presence of multiple
resonances.

The average energy density of electromagnetic zero-point
and thermal radiation in the vacuum outside a medium is given
by59

〈U〉 =
ε0

2
〈|E (r, t)|2〉+

µ0

2
〈|B (r, t)|2〉

=

∫ ∞
0

dω utot (z, ω) , (60)

where utot (z, ω) is the spectral energy density. Assuming
that the nonlocal medium is in thermal equilibrium with its
surroundings and the system is rotationally invariant around
the z axis, this can be written in terms of the previously cal-



10

FIG. 6: Reflection coefficients rp and rs as a function of ω at an incident angle of 60◦ with the crystal axis c aligned with x̂ (left) ŷ (middle)
and ẑ (right). Vertical lines indicate ωT (solid) and ωL (dashed) values. Plot styles follow the conventions in Fig. 3.

culated reflection coefficients:

utot(z, ω) =

u0

k0

∫ k0

0

KdK√
k2

0 −K2

1 +
K2Re

[
(rs + rp)e2i

√
K2−k2

0|z|
]

2k2
0


+

u0

2k3
0

∫ ∞
k0

K3dK√
K2 − k2

0

Im[rs + rp]e−2
√

K2−k2
0|z|. (61)

The first integral in (61) is the contribution of propagating
waves while the second comes from evanescent waves. The
term u0 is the spectral energy density in the absence of the
material, given by

u0 =
Θ(ω, T )ω2

π2c3
, (62)

where the mean energy of a harmonic oscillator in thermal
equilibrium is

Θ(ω, T ) = ~ω
(

1

2
+

1

e~ω/kBT − 1

)
. (63)

The first term of (63) gives rise to the electromagnetic zero-
point energy.

In the K → ∞ limit for the local medium rs → 0 and
rp → χ(ω)/(2 +χ(ω)), leading to the divergent result for the
second integral59:

1

4|z|3
Im[χ(ω)]

|2 + χ(ω)|2
. (64)

In our previous paper, we showed that the inclusion of spatial
dispersion lead to peaks in Im[rp] near the point where the
Re[Γ2] changed sign from positive to negative, followed by a
1/K4 decay in the large K limit. In Fig. 7 we find the same
behavior for ZnO, GaAs and CdS (ẑ ‖ c), with a peak for
every Γm value.

Figure 8 shows the z dependence of utot for ZnO at ~ω =
3.44eV. The behavior is the same as found in our previous
paper - the 1/|z|3 divergence is removed and utot saturates to
a finite value. The ABC behavior is similar, with Ting et al.
giving the largest result, Fuchs-Kleiwer, Rimbey-Mahan and
Agarwal et al. have similar intermediate values and Pekar is
the smallest. The other materials display the same behavior
and so are omitted here.

The main differences to the one-resonance model are found
in the ω dependence of utot at a fixed distance from the bound-
ary. We first consider the simple case of ZnO, with multi-
ple, non-intersecting parabolic exciton bands. Figure 9 shows
utot(ω) at a distance of 8nm from the boundary. The results
are strongly dependent on the choice of ABC, with Ting et al.
giving the largest peaks, followed by Fuchs-Kleiwer, Agarwal
et al., Rimbey-Mahan and finally Pekar. This behavior agrees
with our previous paper15. Each resonance has two associated
peaks in utot(ω), for a total of six. The peaks in utot near
ωTm are due to the s-polarization contribution to the integral
and the peaks at ωLm are due to the p-polarization contribu-
tion. In the one-resonance system, the s-polarization peaks
in utot were typically much smaller than their p-polarization
counterparts. However, the utot peak at ωL1 has been sup-
pressed due to the proximity of the peak at ωL2 and is now
comparable in size to the s-polarization peaks. This can be
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FIG. 7: Comparison of Im[rp] as a function of K for evanescent
waves in ZnO at ~ω = 3.44eV (top), GaAs at ~ω = 1.517eV (mid-
dle) and CdS (ẑ ‖ c) at ~ω = 2.573eV (bottom). Plot styles follow
the conventions in Fig. 3.

seen in Fig. 7, where the peak in Im[rp] associated with Γ1

and the m = 1 resonance at the largest K value is very small
due to the presence of the nearby Γ2 peak at a smallerK value.

We next consider the heavy/light exciton model of GaAs.
Figure 10 shows utot(ω) at a distance of 8nm from the bound-
ary. At first glance the results appear similar to those of the
single resonance model, but the comparison in Fig. 11 reveals
that both the D∗ and Deff single-exciton models both under-
estimate the peak values. This is due to the behavior of rp.
While both approximations provide a good fit for propagating
waves, utot depends more on the evanescent wave contribu-
tion at small distances. Both approximations have a single
peak in Im[rp] at large K in contrast to the two peaks of the
heavy/light exciton model in Fig. 7.

We finally consider the uniaxial crystal of CdS in the c ‖ ẑ
case, as the other orientations lack the rotational invariance
about the z axis required for Eq. (61). The underlying be-
haviour behind Fig. 12 is more complex than the previous
cases with k2 dispersion. There are now two peaks in each

FIG. 8: Behavior of utot as a function of distance |z| from the bound-
ary of ZnO at ~ω = 3.44eV compared to the 1/z3 divergent result
of the local model (black line). Plot styles follow the conventions in
Fig. 3.

FIG. 9: Behavior of utot at a fixed distance of 8nm from the bound-
ary of ZnO. Vertical lines indicate ωTm (solid) and ωLm (dashed)
values. Plot styles follow the conventions in Fig. 3.

of the s-and p-polarization contributions to utot. A large peak
in the p-polarization term is still found near ωL, but a new
smaller peak is also present just above ωT . However, the peak
in the s-polarization contribution to utot previously found at
ωT is now a minimum, with a larger peak below this frequency
and a smaller peak above that coincides with the position of
the lower peak in the p-polarization contribution. This leads to
an overall three-peak structure in utot. This strongly contrasts
with the results in Fig. 6, where the reflection coefficients for
c ‖ ẑ are nearly identical to the ξ = 0 results. Such a contrast
was also present in our previous paper15, where a difference
in transverse and longitudinal nonlocal terms had little effect
on rp, but a significant effect on utot. The overall effect of the
ABC choice remains the same as in previous sections.

From this and the previous sections, it is clear that if multi-
ple spatially-dispersive resonances are present in a medium
then they cannot be considered separately. Each of these
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FIG. 10: Behavior of utot at a fixed distance of 8nm from the bound-
ary of GaAs. Vertical lines indicate ωT (solid) and ωL (dashed) val-
ues. Plot styles follow the conventions in Fig. 3.

FIG. 11: Detail of the Agarwal et al. ABC in Fig.10 for the
heavy/light exciton model compared to the one exciton results for
D∗ (dashed) and Deff (dotted).

results displays behavior not present in the single-resonance
case, such as the suppression of peaks in utot associated with
the p-polarization in closely-spaced parabolic bands, the dif-
ference between the heavy/light exciton model to the single
band approximations and finally the additional utot peak from
linear splitting in exciton bands.

VIII. CONCLUSIONS

We have extended the work of Halevi and Fuchs43 to derive
exact expressions for electromagnetic reflection and transmis-
sion coefficients at the boundary of a medium with multiple
spatially dispersive resonances in the susceptibility. Surface
effects are included by using phenomenological reflection co-
efficients Umi for the polarization waves at the boundary. We

have compared the results for several multi-resonance media,
using a variety of Umi values corresponding to ABC’s in the
literature. In the case of heavy/light exciton bands, we have

FIG. 12: Behavior of utot at a fixed distance of 8nm from the bound-
ary of CdS. Vertical lines indicate ωT (solid) and ωL (dashed) values.
Plot styles follow the conventions in Fig. 3.

found an improved fit for the single band approximation with√
D∗ = (

√
Dh +

√
Dl)/2.

The model has been extended to alternate exciton disper-
sion relations with the inclusion of a linear splitting term in
ω(k) typical of uniaxial crystals. We have compared the re-
sults when the crystal axis c is aligned with each of the co-
ordinate axes in our system The largest effects were seen with
c perpendicular to the plane of incidence for s-polarization
and in the plane of incidence, parallel to the surface, for p-
polarization.

Finally we have used the calculated reflection coefficients
to find the zero-point and thermal spectral energy density
utot(z, ω) outside the dielectric. Many features are the same
as the single-resonance model, such as the effect of the ABC
choice and the saturation of utot as z → 0. However,
there is new behavior that is only present when the multiple-
resonances are considered together. We have found that close
resonances can lead to significant suppression in the peaks of
utot(ω) and that single band approximations fail to capture the
correct behavior of the heavy/light exciton band model. The
linear splitting term led to significant changes for utot in the
uniaxial crystal by splitting the peak at the resonant frequency
to give an overall three-peak structure.

While the model presented here incorporates many more of
the features found in real materials than Halevi and Fuchs, it
could be extended further to include differences between the
transverse and longitudinal susceptibilities15 or higher-order
nonlocal terms. This could also be applied to other prob-
lems, such as identifying which ABC is most appropriate for
a medium with a complex exciton band structure, or in the
calculation of Casimir self-forces10.
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