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ABSTRACT
Geometric Semantic Genetic Programming (GSGP) induces a uni-
modal �tness landscape for any problem that consists in �nding
a function �tting given input/output examples. Most of the work
around GSGP to date has focused on real-world applications and
on improving the originally proposed search operators, rather than
on broadening its theoretical framework to new domains. We
extend GSGP to recursive programs, a notoriously challenging do-
main with highly discontinuous �tness landscapes. We focus on
programs that map variable-length Boolean lists to Boolean val-
ues, and design search operators that are provably e�cient in the
training phase and attain perfect generalization. Computational
experiments complement the theory and demonstrate the superi-
ority of the new operators to the conventional ones. This work
provides new insights into the relations between program syntax
and semantics, search operators and �tness landscapes, also for
more general recursive domains.
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1 INTRODUCTION
For about a decade, Genetic Programming (GP) witnessed a trend
towards a deeper understanding of program semantics and its ef-
fect on search [2, 6, 7, 12], which often led to improved forms of
GP. GSGP [8] is a form of semantic GP with a strong theoretical
foundation which induces a simple unimodal �tness landscape for
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any supervised machine learning problem and has provably good
search performance [9].

Most of the work around GSGP to date has focused on real-
world applications [15] and on improving the search operators for
the originally proposed domains (Arithmetic, Boolean, Classi�ers).
Relatively little attention has been paid to using the theoretical
framework behind GSGP for the principled design of search opera-
tors for other domains.

Recursion is a key construct in computer programs. There have
been several attempts to evolve recursive programs [1, 3, 5, 11,
16, 18]. However, GP has been found badly suited to this [17]. A
major challenge is that GP operators are highly disruptive when
applied to recursive programs, because small changes in the code of
a recursive program cascade through the recursion, amplifying the
di�erence in behaviour. As a result, �tness values between parent
and o�spring programs may vary immensely, giving rise to highly
discontinuous �tness landscapes.

In this paper, we embrace the challenge of designing search
operators that provably see a unimodal landscape when evolving
recursive programs. Our aim is to provide theoretical insights
about how to design good semantic-aware search operators for
recursive domains, by studying a small and well-de�ned domain
– a kind of ‘onemax’ of recursive programs. We extend the GSGP
framework to the domain of recursive programs that map variable-
length Boolean lists to Boolean values. For this domain, we use the
theoretical observations to guide the design of search operators that
are provably e�cient in the training phase and produce provably
correct programs, attaining so perfect generalization.

2 GEOMETRIC OPERATORS FOR RECURSION
In this section, we design geometric semantic search operators for
recursive Boolean problems, so that GP with these operators will
be guaranteed to be e�cient in the training phase.

2.1 Naive approach
The conventional geometric semantic search operators for the
Boolean domain introduced in [8] are:

• Crossover: T3 = (T1 ∧ TR) ∨ (¬TR ∧ T2), where TR is a
random program.

• Mutation: TM = T ∨M (I ) with probability 0.5 and TM =
T ∧ ¬M with probability 0.5 where M (I ) is a random
minterm of all variables in program input I .

When applied to Boolean programs of �xed input arity, i.e. Bn → B,
these operators are geometric under the Hamming distance on the
output vectors, i.e., mutation changes a single entry of the semantic
vector, crossover produces o�spring with intermediate semantics
of parents, and the �tness landscape seen by a GP algorithm using
these operators is unimodal with constant slope.
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By extending the discourse to recursive programs, we move to
the domain of programs with signature BL → B (BL domain for
short), where BL is the space of all lists of Booleans. In this domain,
it becomes convenient to rewrite the original operators using the
if-then-else construct:

• Crossover: T3 = if TR then T1 else T2
• Mutation: TM = if M (I ) then RC else T , where RC

is a random constant true or false, each with prob 0.5.
Note that these are the geometric semantic operators proposed in

[8] for the domain of classi�ers. This is not incidental, as classi�ers
form a super-domain of Boolean expressions, which can be thought
of as binary classi�ers fed with binary variables.

The random Boolean expression TR used originally in crossover
naturally extends to a randomly generated (and possibly recursive)
program RP in the BL domain. For mutation, the original random
minterm M cannot be directly applied to program input, which is
a variable-length list rather than a �xed-size set of named input
variables. To make M behave like a minterm for the BL domain,
i.e. return true only for a single input and FALSE otherwise, we
implement it as eq(I, RList), where RList is a random Boolean
list of length smaller or equal than the maximum length of input
vectors in the training set, and the primitive eq tests its arguments
for equality. We then de�ne the following operators:

• SC(P1,P2) = if RP then P1 else P2
• SM(P) = if eq(I,RList) then RC else P

RP, RList and RC are drawn uniformly and independently in each
application of SC and SM .

At this point it becomes essential to clarify how search operators
a�ect recursion. To make sure that SC and SM preserve recursive
calls in parent programs, we use generic call self, so that e.g. the
factorial function can be expressed as fact(n) = if n=0 then 1
else n × self(n-1). The alternative approach of calling fact
explicitly would result in an o�spring that calls its parents rather
than itself.

2.2 Sca�olded GSGP operators
Though the above extension seems to naturally generalize GSGP to
handle variable-length inputs, it is naive in ignoring the e�ects of
recursive calls on program semantics. As a matter of fact, SC and
SM do not induce a unimodal �tness landscape because the recursion
interferes with the intended outcome of the functional application
of GSGP search operators to recursive parents.
Proof sketch: Consider program of the form p(i) = g(i, self(i-
1)), in which self, as per above convention, refers to p. Applying
SM to p results in o(i) = SM(g(i, self(i-1))), in which self
refers to o. This is not equivalent to the intended o�spring o(i)
= SM(p(i)) with p(i)=SM(g(i, p(i-1))), as SM is not inside the
body of resulting recursive program. An analogous reasoning holds
for semantic crossover.

This non-geometric character SM and SC can be seen as a special
case of the more general brittleness of recursive programs, i.e. that
a modi�cation introduced by a search operator propagates through
the stack of recursive calls and completely changes the behavior of
a program (even though the change might have been intended to
be minor). To address this brittleness in the general, non-semantic
context, Moraglio et al [10] proposed sca�olding, a technique that
substitutes the recursive calls with calls to the (unknown) target

program, using the �tness cases as a surrogate for it. This allows
evolving recursive programs as if they were non-recursive. Con-
ceptually, sca�olding replaces the calls of the form self(i-1) with
t(i-1), where t is the target function, i.e. t(i) returns the desired
output for input i. t can be seen a partial function that de�nes the
desired behavior of program on the training examples only.

It should be clear at this point that we denote the argument
of recursive call by i-1 mostly for clarity and conformance with
the earlier example of factorial. The way in which that argument
is formed depends on the speci�c domain. Crucially, sca�olding
allows in recursive calls only arguments that are present in the
training set (i.e. belong to the domain of the partial target function
t). In other words, for a given input i all its ‘predecessors’ that can
be generated by the argument to recursive calls have to be present
in the training set. This assumption implies certain consequences
that we will come back to later.

With sca�olding, GSGP operators cause no interference with
recursive calls, inducing so unimodal landscape and becoming e�-
cient operators for training recursive programs.
Claim 1: Operators SC and SM are geometric under sca�olding.
Proof sketch: Consider program p(i) = g(i, self(i-1)). When
sca�olded, p becomes p’(i) = g(i, t(i-1)). Applying SM to p
leads to o’(i) = SM(g(i, t(i-1))) which is equivalent to o’(i)
= SM(p’(i)). Therefore, SM has the desired e�ect of modifying
the output vector of p at exactly one position. Analogous reason-
ing holds for SC . As a result, there is no interference with search
operators, as search takes place in the ‘sca�olded function space’.
Once the optimum function h(i,t(i-1)) in the sca�olded space is
found, it can be ‘desca�olded’ to obtain optimal recursive function
h(i)=h(i,h(i-1)).
Claim 2: sca�olded semantic hill-climber �nds the optimum (with
zero training error) in m log(m) where m is the size of the training
set, for any target problem.
Proof sketch: The semantic mutation corresponds in the semantic
space to a bit-�ip mutation on a binary string of sizem, i.e., the out-
put vector on the function undergoing mutation. The hill-climber
takes thenm log(m) evaluations to hit the optimum (well-known
runtime result [4]).

3 DOMAIN LANGUAGE AND TARGET CLASS
Domain language: There are many programming languages that
can express programs with signature BL→ B. When designing the
language for this study, we aimed at a minimal set of instructions
that is expressive enough to (i) represent possibly many functions
with that signature and (ii) represent the semantic operators con-
cisely. Concerning (ii), note that the semantics of SM and SC need
to be implemented in the programming language of consideration,
in order to provide for closure.

We chose a minimal LISP instruction set augmented with ele-
mentary Boolean operators, the recursive call self, and the eq
operator (Fig. 1). De�ning and calling additional functions is not al-
lowed, so the language is not Turing-complete, and not all BL→ B
functions are expressible. Nevertheless the language allows imple-
menting many useful and interesting functions, from generalized
2-ary Boolean operators like and and or to more sophisticated con-
cepts like testing whether the values in the input list form some
repetitive pattern. The presence of two types requires strongly-
typed GP systems, where programs created at random and programs
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B ::= true | false | not(B) | and(B,B) |
| or(B,B) | ite(B,B,B) | head(L) | empty(L)
| eq(L,L) | self(L)

L ::= const-list | I | tail(L) | cons(B,L)
| ite(B,L,L)

Figure 1: The grammar de�ning the set of considered pro-
grams. const-list is a constant list of Booleans, I is the in-
put list, self implements the recursive call, eq tests two lists
for equality, and ite stands for if-then-else. The starting
symbol of the grammar is B.

produced by search operators are guaranteed to be type-correct.
Note that SM and SC applied to type-correct parent programs pro-
duce type-correct o�spring programs, as a consequence of being
semantically well-de�ned.
Target functions: We consider a family of target functions with
tunable di�culty that allow expressing common recursive functions
in the adopted programming language. They generalise the well-
known fold function de�ned as:
fold(I) = ite(empty(I), bc0,
bf2(head(I), self(tail(I)))),

where bf2 is a 2-ary Boolean function, and bc0 is a Boolean constant.
List-wise and, list-wise or and list-wise parity belong to this class,
which we term 1-fold functions. This class can be generalised to
a k−fold class that includes all functions with recursion order up
to k . For instance, the blueprint for 2-fold functions is:
fold2(I) = ite(empty(I), bc0,
ite(eq(I,[false]), bc1,
ite(eq(I,[true]), bc2,
bf4(head(I), self(tail(I)),
head(tail(I)), self(tail(tail(I)))))))

where bf4 is a 4-ary Boolean function, bci are Boolean constants,
and [false] denotes a list containing one element false. Higher
order of recursions are obtained by recursive calls with successive
tails of the input list. The so de�ned order of recursion is a natural
generalisation of the concept of the order of recursion in, e.g.,
recursive formulas. For instance, factorial has the order of recursion
one because fact(n)=g(fact(n-1)), while the Fibonacci function
has order two because fib(n)=g(fib(n-1),fib(n-2)).
Handling run-time errors: In the BL domain, syntactical cor-
rectness of a program does not guarantee its error-free execution.
To deal with errors, we devise a penalization approach that has
a natural semantic interpretation and, importantly, does not alter
the unimodality of the �tness landscape. When a program applies
head or tail to an empty list, or applies self to a list that is not
shorter than its argument I1, we assume that its output for that
input is a designated special value err. As a consequence, program
semantics is a ternary vector of three symbols: true, false, and
err. The de�nition of semantic distance remains unchanged, i.e.
it is the Hamming distance, and so does �tness, i.e. Hamming dis-
tance of program’s semantics from the target semantics. Because
the target semantics does not ever contain err, each error for a
training example (test) results in a unit penalty. This error handling
allows us to apply semantic operators also to erroneous programs

1Recursive call with an argument list that is not shorter than I does not need to lead
to in�nite recursion, but preventing such cases is essential for sca�olding.

and reason about the e�ects of such applications. Crucially, the
operators remain geometric and so handle errors seamlessly.

4 EXPERIMENT 1
We empirically verify the properties of GSGP in the naive and scaf-
folded variant on the BL domain. Benchmarks are parameterized
by the order k of the target k-fold function and the length n of
lists in the training set. The training set contains all 2n+1 − 1 lists
of length up to n. A particular instance of target function is con-
structed by randomly drawing the 2k − 1 random constants bci
that determine the response to input lists of lengths < k and the
2k entries in the truth table of the bf2k function that aggregates
the leading elements with the recursive calls on tails. This is done
independently for each run, so that each con�guration faces the
same instances of k-fold functions.

The compared con�gurations of synthesis methods span three
dimensions: search algorithms, search operators, and sca�old-
ing. They all start with program trees initialized by the RandPro-
gram(type) function, which recursively traverses the derivation
tree of the grammar in Fig. 1 from the starting symbol of type type
(B for initialization) and randomly picks the expressions from the
right-hand sides of productions. Once this process reaches 4 in
resulting program tree, the algorithm starts picking productions
that immediately lead to terminals whenever possible. If the depth
exceeds 5, RandProдram terminates, discards the tree, and starts
anew. The constant lists (const-list) are drawn uniformly from
the training set. There is no limit on the size nor the depth of
program trees.
Search algorithms: We compare the population-based genera-
tional evolutionary algorithm (EA) and a single-point stochastic
hill climber (SHC). In EA, we evolve a population of 1000 programs
for 100 generations, selecting the parents using tournament selec-
tion with pool size 7, and breeding new programs with mutation or
crossover in proportions 50 : 50. In SHC, there is only one working
solution: in each iteration, a mutation operator is applied to it, and
if the o�spring is better, it replaces the working solution. This cycle
is repeated up to 100,000 times.
Search operators: We compare GSGP operators SM and SC de-
�ned in Section 2 (GSGP), standard GP operators (GP), and random
search (RS). Random programs RP in SC are obtained by calling
RandProgram(B), and they may include recursive calls self. GP
employs typed variants of subtree-replacing mutation and subtree-
swapping crossover. Mutation picks a random node n in the parent
tree and replaces the subtree rooted inn with a subtree generated by
calling RandProgram(type(n)). Crossover draws a random node
n1 in the �rst parent program, and builds the list l of same-type
nodes in the second parent. If l is empty, it draws n1 again and
retries. Otherwise, it draws n2 from l and exchanges the subtrees
rooted in n1 and n2. The retries are guaranteed to terminate, as
both parent trees always feature at least one node of type (B), i.e.
the root node, and root nodes are permitted to be swapped. RS
uses one search operator that discards the parent program and
draws a new program by calling RandProgram(B). RS is used only
in combination with SHC and without sca�olding.
Sca�olding: Calling self(L)with an argument list L longer than I
interrupts execution and returns the special err value introduced in
Section 3. For Ls shorter than I, self(L) returns the corresponding
desired output for L from the training set in con�gurations with
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enabled sca�olding, or simply performs recursive call in remaining
con�gurations.

Table 1 presents the performance indicators of particular con-
�gurations obtained from 50 runs of each con�guration on each
benchmark for k ∈ [1,4] and n ∈ [1,5]. A run is considered suc-
cessful if it yields a program that produces correct outputs for all
training examples. The number of evaluations, generalization error,
and graph size concern best-of-run programs and are averaged over
successful runs only; the blank table cells mark con�gurations where
no run succeeded. Evaluations presents the log10 of the number
of evaluations elapsed. Generalization error is the percentage of
lists of lengths in [n + 1,n + 2] for which the program produced
incorrect output (or err). Graph size is the number of unique nodes
in a program, i.e. the size of program tree when ‘compressed’ to a
graph. Graph size is more appropriate than size of program tree,
as GSGP operators produce programs that refer to (call) the same
ancestor programs multiple times. It is also consistent with natu-
ral implementation in functional programming languages (used in
our software framework), where programs are immutable and thus
there is no need for cloning code pieces.2 Functional implemen-
tation forms a natural alternative to the e�cient implementation
introduced by Vanneschi et al [14].

5 ANALYSIS 1
In this section, we confront the experimental results with expecta-
tions grounded in the theory.

For the success rate, from the theory we expect: (i) semantic
HC and with sca�olding and semantic EA with sca�olding to have
100% success rate as the landscape seen is unimodal and the cap
on the number of evaluations is generously large; (ii) semantic HC
without sca�olding to have success rate lower than 100% as the
landscape seen is not guaranteed to be unimodal and may contain
local optima; (iii) in general all con�gurations with sca�olding to
attain higher success rates, as they see a smoother landscape; (iv)
EA con�gurations to attain higher success rate than HC, as having
multiple working solutions lessens the risk of getting stuck in local
optima. The experiments completely con�rm (i) and (iv). (ii) is also
con�rmed, though the landscape seen using the naive semantic
operators without sca�olding is often unimodal. Concerning (iii),
the presence of sca�olding does not seem to improve the success
rate except for the case of the semantic HC. In the previous work
[10], sca�olding was shown to be helpful on average on a large suite
of problems, so this may be due to the speci�c class of problems
studied here.

For the number of �tness evaluations to reach the optimum, from
the theory we expect: (i) the runtime of semantic HC with sca�old-
ing to grow slowly with n (more preciselym logm wherem is the
number of �tness cases), and to not depend on k ; (ii) semantic HC
with sca�olding to converge faster than EA with sca�olding, as on
a unimodal landscape HC converges faster than population-based
algorithms; (iii) con�gurations with semantic operators (SGP) to
scale much better than those with traditional operators (GP), as
the former see a unimodal landscape. Experiments con�rm (i), (ii)
and (iii). In particular, semantic HC with and without sca�olding is
very quick and scales much better than the other algorithms.

For generalization error, from the theory we expect: (i) semantic
HC to not generalise well, as SM is designed with the sole purpose
2https://github.com/amoraglio/GSGP, https://github.com/kkrawiec/swim

of making training e�cient and will tend to memorise the train-
ing set without making use of recursive calls; (ii) semantic EA to
generalise better than semantic HC, as SC tends to introduce new
recursive calls in the o�spring; also, semantic EA should generalise
better on larger training sets, as this favours o�spring using recur-
sive calls to �t the training set rather than memorising one entry
at a time; (iii) operators using semantics and sca�olding to lead
to worst generalisation than standard GP, because they have not
been designed with generalization in mind. Experiments con�rm
all these expectations. In particular, HC does not generalize better
for increasing n, which con�rms that it does memorise the training
set. Note also how for su�ciently large n relative to k , semantic
EA always achieves perfect generalisation, which implies making
proper use of recursive calls. In general, population-based algo-
rithms perform similarly whether sca�olded or not, and whether
semantic or not. Their generalization error improves with larger
n and deteriorates for larger k . For HC, standard GP generalises
better than semantic HC.

For the graph size of zero-error programs, from the theory we
expect: (i) the size of the �nal solution to be linear in function
of the number of �tness evaluations for semantic approaches; (ii)
larger sizes for population-based semantic approaches as they use
crossover; (iii) smaller program sizes for standard GP than for SGP
as SGP solutions grow inherently steadily in size while traditional
GP do not have such a systematic bias. Experiments (not shown)
con�rm these expectations. SGP and GP produce programs of
generally comparable sizes, but traditional GP tends to su�er less
from program growth.

6 DESIGN OF SEARCH OPERATORS
FOR GOOD GENERALISATION

In this section, we design new geometric semantic search operators
that not only scale provably well in convergence on the training
set, but also guarantee such programs to generalise provably well
on all (in�nitely many) unseen inputs.

6.1 Requirements for Good Generalisation
PAC-learning [13] is a theoretical framework for deriving guaran-
tees on generalisation for classes of Boolean functions. It cannot
be directly applied to synthesis of correct recursive Boolean pro-
grams, as the generalisation sought there is perfect, rather than only
probably approximately correct. However, PAC-learning brings
an important lesson about generalisation in general: (i) provably
good generalisation can be achieved on suitably small function
classes, and with a suitably large training set; (ii) generalisation is a
property of only the class of problem considered and the size (and
distribution) of the training examples, and not of the training algo-
rithm used. The only requirement on the training algorithm is to
(e�ciently) �nd a function within the problem class with zero-error
on the training set.

By analogy to �xed-length program semantics for �xed-arity
programs, let in�nite semantics of program P be the (in�nite) vector
(sequence) of outputs produced by P for all input lists, ordered w.r.t.
increasing length (and arbitrarily otherwise).
Claim: 1) For the class ofk−fold functions for any givenk , a pre�x
of �nite lengthmk∗ of in�nite semantics is su�cient to uniquely
identify any function in the class up to functions with the same
in�nite semantics. 2) Any function in this class that has zero error

https://github.com/amoraglio/GSGP
https://github.com/kkrawiec/swim
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Table 1: Performance indicators for the GSGP and GP operators, compared to random search RS

Fold1 Fold2 Fold3 Fold4
n = 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Su
cc
es
s
ra
te GP EA 100 100 98 96 82 100 96 54 40 18 100 98 62 28 12 100 100 76 36 8

Sca�. 100 100 98 84 90 100 96 58 36 10 100 96 56 32 10 100 92 44 30 6

HC 100 90 84 80 68 100 98 38 18 4 100 94 28 0 0 100 94 24 2 0
Sca�. 100 84 76 70 68 100 94 36 12 6 100 92 18 2 0 100 90 22 2 0

SGP EA 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Sca�. 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

HC 100 100 98 100 98 100 100 98 98 96 100 100 98 100 100 100 98 98 98 96
Sca�. 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

RS 100 80 72 70 70 100 66 4 4 4 100 40 0 0 0 100 52 0 0 0

Ev
al
ua

ti
on

s

GP EA 3.0 3.6 3.9 4.1 4.1 3.0 3.8 4.3 4.6 4.7 3.1 3.9 4.4 4.6 4.8 3.0 4.0 4.5 4.7 4.9
Sca�. 3.0 3.7 3.9 3.9 4.0 3.0 3.9 4.4 4.5 4.4 3.0 4.0 4.4 4.6 4.8 3.1 4.0 4.3 4.6 4.9

HC 3.3 4.9 4.9 4.8 4.6 3.3 5.0 5.5 5.5 0.7 3.1 5.2 5.6 3.0 5.2 5.6 5.9
Sca�. 3.3 4.9 4.9 4.3 4.6 3.3 5.1 5.6 5.6 5.0 3.1 5.2 5.6 5.9 3.0 5.2 5.6 5.9

SGP EA 3.0 3.2 3.5 3.7 4.0 3.0 3.4 3.8 4.1 4.4 3.0 3.4 3.8 4.2 4.5 3.0 3.4 3.8 4.2 4.5
Sca�. 3.0 3.2 3.4 3.5 3.7 3.0 3.4 3.8 4.1 4.3 3.0 3.4 3.8 4.2 4.5 3.0 3.4 3.8 4.2 4.5

HC 1.1 1.4 1.9 2.3 2.7 1.0 1.4 1.9 2.3 2.7 0.9 1.5 1.9 2.4 2.7 1.0 1.4 1.9 2.3 2.7
Sca�. 1.1 1.4 1.9 2.3 2.7 1.0 1.4 1.9 2.3 2.7 0.9 1.5 1.9 2.4 2.7 1.0 1.4 1.9 2.3 2.7

RS 2.5 4.7 4.6 4.4 4.7 2.6 5.3 0.6 0.6 0.6 2.8 4.9 2.8 5.2

G
en

er
al
iz
at
io
n

GP EA 26 12 9 4 3 45 39 32 27 18 53 49 47 44 37 52 50 50 48 49
Sca�. 26 10 5 1 1 45 39 32 26 12 54 48 48 45 37 52 49 48 48 48

HC 25 9 6 0 1 46 38 27 9 0 53 48 51 52 48 53 58
Sca�. 25 8 2 0 0 46 37 27 12 0 53 47 53 27 52 49 51 58

SGP EA 28 12 10 9 8 46 39 36 29 25 53 49 47 45 42 52 50 48 50 49
Sca�. 28 12 4 2 2 46 38 33 24 17 53 49 47 43 40 52 51 49 48 49

HC 69 62 64 64 64 55 56 55 57 56 65 62 62 58 58 56 58 58 55 55
Sca�. 69 63 64 64 64 55 56 55 57 56 65 62 62 58 58 56 58 58 56 56

RS 27 6 0 0 0 44 36 0 0 0 53 48 51 50

on examples corresponding to pre�x elements generalises perfectly
on any unseen input. This result holds for any training algorithm.
Proof sketch: 1) There is a �nite number of functions belonging
to a given k-fold class. Consider the set S of in�nite semantics of
all those programs. Each pair of them is either equal or di�erent.
For each di�erent pair of semantics s1,s2 ∈ S consider the shortest
pre�x that discriminates them. Its length must be �nite, otherwise
s1 and s2 cannot be di�erent. Now letmk∗ be the maximum length
of such pre�xes over each pair of semantics in S . By construction
the pre�x of lengthmk∗ discriminates any two semantics in S . If
two semantics in S have the same pre�x of length mk∗, they must
be identical i.e., ∀s1,s2 ∈ S : s1[1 :mk∗] = s2[1 :mk∗]⇒ s1 = s2.
2) Note that the unknown target function t also belongs to the k-
fold class, so its in�nite semantics st ∈ S . As per 1), if any k-fold
function f with in�nite semantics sf coincides with st on the pre�x
of lengthmk∗, they cannot di�er on the remaining elements, and
it must hold that sf ≡ st , and so f must have zero generalisation
error on all examples.

For pre�x lengths l < mk∗, we expect generalization error to
decrease with l , as longer pre�xes are more selective. This may
be useful if mk∗ is reasonably small. For the 1-fold class, we
enumerated all output sequences and determined thatm1∗ = 15.

6.2 k-fold GSGP Operators
The practical upshot of the arguments brought in the previous
section is that by (i) evaluating programs on a su�ciently large
number of training cases and (ii) performing search in the space
of k-fold functions only, the resulting program is guaranteed to
generalize perfectly if it achieves zero error on the training set. The

former is beyond our control in real-world settings, so we leave it
open. The latter depends on the design of initialization and search
operators. Therefore, in the following we re�ne the sca�olded
GSGP search operators to make sure that the search takes place in
the k-fold space only.

To begin with, we assume that the initial population contains
only k-fold programs. This can be easily achieved using appropriate
initialization operator, e.g. the procedure for generating k-fold
target functions described in Section 4. Then, we propose the
following two mutation operators:
SM1k(P) = ite(eq(I,rl), bc, P)
SM2k(P) = ite(len(I)≥k, SMB(P), P)

where bc is a Boolean constant, and rl is sampled from the set
of all Boolean lists of length up to k − 1, and SMB is the semantic
(minterm) mutation for Boolean expressions. We combine SM1k
and SM2k into one k-fold mutation operator SMk by using the
former with probability nc/(nc +nf ) and the latter with probability
nf /(nc + nf ), where nc = 2k − 1 and nf = 22k . We de�ne k-fold
crossover as:
SCk(P1, P2) = ite(rf, P1, P2)

where rf is a random k-fold function.
In the following we show that SMk and SCk are k-fold preserv-

ing, i.e., given parentsp,p′ ∈ Fk , the o�spring SMk (p),SCk (p,p
′) ∈

Fk . We show this only for k = 1, but the reasoning holds for
any k . As shown in Section 3, functions in F1 can be written in
the 1-fold form as fold(I) = ite(empty(I), bc, bf(head(I),
self(tail(I)))), where bc is a Boolean constant and bf is a 2-ary
Boolean function. If a function д can be rewritten in this form, then
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д ∈ F1. It is therefore su�cient to show that given two parents
in 1-fold form, the generated o�spring can be rewritten in the
1-fold form.

For mutation, SM1k and SM2k take the following form for k = 1:
SM11(P) = ite(eq(I,[]), bc, P)
SM21(P) = ite(len(I)≥1, SMB(P), P)

where SM11 is engaged with probability 0.2 and SM21 with prob-
ability 0.8. The outcome of SM11 applied to a program f can be
rewritten as:
SM11(f(I)) = ite(I=[], bc, f(I))

= ite(I=[], bc,
ite(I=[], bc, bf(head(I), self(tail(I))))

= ite(I=[], bc, bf(head(I), self(tail(I)))

The o�spring can be thus written in the 1-fold form, so SM11(f)
∈ F1. For SM21:
SM21(f(I)) = ite(len(I)≥1, SMB(F(I)), F(I))
= ite(len(I)≥1,

SMB(ite(I=[], bc, bf(head(I), self(tail(I))))),
ite(I=[], bc, bf(head(I), self(tail(I)))))

= ite(len(I)≥1, SMB(bf(head(I), self(tail(I))), bc)
= ite(I=[], bc, SMB(bf(head(I), self(tail(I))))

The last expression is also in the 1-fold form, as the expres-
sion SMB(bf(head(I), self(tail(I))) is an expression whose
inputs are head(I) and self(tail(I)), as required by the 1-
fold form. In this case, semantic mutation changes bf(head(I),
self(tail(I)) of the parent to SMB(bf(head(I), self(tail(I))),
i.e. modi�es a single entry in the truth table of bf. SM11 and SM21
are thus 1-fold preserving, and so is SM1.

For crossover SC1 applied to a parent program f(I):
O(I) =SC1(f(i)) = ite(rf(I), P1, P2)
= ite(ite(I=[], RBC, bf(head(I), self(tail(I))),

ite(I=[], bc1, bfp1(head(I), self(tail(I)))),
ite(I=[], bc2, bfp2(head(I), self(tail(I)))))

If I=[] the above expression becomes OBC = ite(RBC, bc1,
bc2); otherwise it becomes:
OBF2(head(I), self(tail(I))) =
= ite(RBF2(head(I), self(tail(I)),

bfp1(head(I), self(tail(I)),
bfp2(head(I), self(tail(I)))

Hence the o�spring is O(I) = ite(I=[], OBC, OBF2(head(I),
self(tail(I)))), which is in the 1-fold form because: (i) its
bc is a Boolean constant inherited from the bc of either parents
depending on the value of RBC, and its bf part is of the required form
as ite can be thought as a Boolean function taking three Boolean
inputs, and its composition on RBF2, bfp1, and (ii) bfp2 is a Boolean
function of head(I) and self(tail(I)). Hence SC1(f)∈ F1.

Note that these operators are 1-fold preserving also when using
sca�olding, as replacing the recursive call self with the desired
output known from the training set does not a�ect the reasoning.
Geometric characteristics of k-fold operators: In order to
analyse the k-fold operators, we introduce the notion of inten-
sional semantics. The intensional semantics si(f) of a 1-fold func-
tion f(I)=ite(I=[], bc, bf(head(I), self(tail(I)))) is the
concatenation of the random constant bc and the output vector
of the bf function (i.e., dependent column of its truth table). For
instance, the intensional semantics of list-wise AND, which can be
written in 1-fold form as f(I)=ite(I=[], True, And(head(I),

self(tail(I)))), is 1 (bc = True) followed by the output vector
of And (00→ 0,01→ 0,10→ 0,11→ 1), i.e. (10001). For k > 1, all
random constans bci are obviously concatenated.

The intensional semantics si of a k-fold function is an alterna-
tive way of representing the function, which identi�es it uniquely
in Fk . To avoid confusion, from now on we refer to the standard
notion of semantics (the vector of function outputs) as extensional
semantics and denote it with se .

Endowing intentional semantics with the Hamming distance
creates intentional semantic space of k-fold functions. It should
be clear from the previous section that SMk and SCk correspond
respectively to bit-�ip mutation and uniform crossover in that space,
i.e., they are geometric in the intensional space. This however
does not imply that they see a unimodal landscape, as the �tness
function is based on the distance of the extensional semantic space.
In the following we provide better understanding of the relationship
between these two spaces.

Consider 1-fold function g(I) = ite(I=[],B0, f(head(I),
g(tail(I)))). si(g) is ([], B0) concatenated with the truth table
of f , i.e. {[] 7→ B0,00 7→ B1,01 7→ B2,10 7→ B3,11 7→ B4}.

The extensional semantics se(g) is an in�nitely long vector, the
�rst elements of which are as follows:

I g se(g)
[] B0 G1
[0] f(0,g([])) = f(0,G1) G2
[1] f(1,g([])) = f(1,G1) G3
[00] f(0,g([0])) = f(0,G2) G4
[01] f(0,g([1])) = f(0,G3) G5
[10] f(1,g([0])) = f(1,G2) G6
[11] f(1,g([1])) = f(1,G3) G7
[000] f(0,g([00])) = f(1,G4) G8
...

Clearly, the entries in se (д) depend in general not only on the
entries in the intensional semantic table, but also on the previous
entries in se (д). Flipping a single bit in si (д) may a�ect arbitrarily
many (even in�nitely many) bits in se (д), as the changes propagate
via recursive calls. Thus, ‘�xing’ an entry in si (д) (which is the
general intent of GSGP search operators) does not necessarily lead
to ‘�xing’ entries in se (д), unless previous entries in the table are
also correct. Fixing a single bit in si (д) towards the intensional
representation of the optimum may result in ‘un�xing’ more entries
in se (д) towards the extensional semantics of the target, worsening
the �tness. The extensional semantic space may thus feature local
optima.

Sca�olding changes this picture, replacing the recursive call with
the call of the actual target function t, so that g becomes g’(I) =
ite(I=[], B0, f(head[I], t(tail[I]))), which in turn leads
to the following extensional semantics se(g’):

I g’ t se(g’)
[] B0 T1 G1’
[0] f(0,t([])) = f(0,T1) T2 G2’
[1] f(1,t([])) = f(1,T1) T3 G3’
[00] f(0,t([0])) = f(0,T2) T4 G4’
[01] f(0,t([1])) = f(0,T3) T5 G5’
[10] f(1,t([0])) = f(1,T2) T6 G6’
[11] f(1,t([1])) = f(1,T3) T7 G7’
[000] f(0,t([00])) = f(1,T4) T8 G8’
...

The key observation is that, as the target is �xed, the entries in
se (д

′) depend directly, in a non-recursive way, on the entries of
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si(g’) (which is the same as si(g). For instance, when t is the func-
tion that always returns 0, we have: g’([])=G1’=B0, g’([0])=G2’
=f(0,0)=B1, g’([1])=G3’= f(1,0)=B3, g’([00])=G4’=f(0,0)
=B1,.... Moreover, the entries in se(g’) can be grouped into dis-
joint blocks, each corresponding to one entry in si(g’) and having
the same output as that entry. For instance, g’([0]) and g’([00])
both belong to the block corresponding to the intensional semantic
entry f(0,0), and have the same B1 output.

This implies the existence of a relation between the distance
in the intensional semantic space (SDi ) and the distance in the
extensional semantic space (SDe ). For any two k-fold functions
f1 and f2, SDi ( f1, f2) = HD (si ( f1),si ( f2)), where HD is Hamming
distance. In turn, SDe ( f1, f2) = HD (se ( f1),se ( f2)), but crucially
SDe ( f1, f2) can be also expressed as a weighted HD of their inten-
sional semantics, in which the weight of each contributing entry
is the size of the corresponding block in the extensional seman-
tics. For the �tness landscape seen from the intensional space it
holds that for every point P at a distance SDi (P ,t ) to the target t ,
its �tness is Fit (P ) = SEe (P ,t ) = HDw (si (P ),si (t )). This implies
that the �tness landscape as seen by the search operators in the
intensional semantic space is still unimodal, as moving towards the
target in the intensional space (smaller SDi (P ,t )) corresponds to
getting a better �tness (smallerHDw (si (P ),si (t ))). However, it does
not have a constant gradient (which is the case for the traditional
GSGP operators). Nevertheless, when using an ordinal selection
scheme (i.e., such that depends only on the order of �tness values,
like tournament selection), this landscape is e�ectively equivalent
to a unimodal landscape with a constant gradient.

In summary, we have shown above that the k-fold search op-
erators SMk and SCk not only provide closure for the Fk , but also
induce a unimodal �tness landscape when combined with sca�old-
ing. Limited space allowed us to present this only for k = 1, but the
above reasoning elegantly generalizes to k > 1. As a consequence,
these operators and sca�olding ensure provably e�cient training
and perfect generalisation. A search process starting from a popu-
lation of functions from Fk and using SMk and SCk must produce
a solution which is also in Fk . Provided the target is also in Fk , and
the training set is su�ciently large (mk∗ or more training exam-
ples), the solution with zero-error of the training set is guaranteed
to have perfect generalisation. The landscape is unimodal, so the
optimum can be found e�ciently. For a stochastic hill-climber, the
runtime is li log li , where li = 2k − 1 + 22k is the length of the
intensional semantics vector (in contrast the runtime of random
search is exponential in li ).

7 EXPERIMENT 2
In this experiment we evaluate the k-fold search operators proposed
in Section 6.2 on the same suite of k-fold problems as in Section 4,
using analogous con�gurations of EA and SHC with and without
sca�olding. This time however we make sure that the entire search
process takes place in the space of k-fold functions Fk . To this aim,
we assume that the fold order k of benchmark’s target function
is known to the search algorithm. Given k , we �rst initialize the
population with programs that implement random k-fold functions.
Each such program comprises a single node (terminal) rfk that
returns the value of that function for the current input I . The
intensional semantics (truth tables) of particular instances of rfk
are drawn in the same way as for the target functions in Experiment

1. The programs in the population are then modi�ed using search
operators SMk and SCk described in Section 6.2. To implement
them, we extend the set of instructions from Fig. 1 with rfk and the
terminal instruction lenk that implements the condition len(I)≥
k , required in SM2k . We also assume this time that the constant
lists (the const-list terminal) are all Boolean lists shorter than k .
This extended instruction set is su�cient to implement SMk and
SCk , including the minterm operation SMB. These search operators
form the con�guration SGP fk .

Note that, despite featuring additional instructions, the set of
programs considered here is not a superset of the language de�ned
by the grammar in Fig. 1, because instructions can be combined
only as prescribed by SMk and SCk , and so keep search within
the bounds of Fk . Also, recursive calls can be introduced only
by mutation (contrary to SGP, where only crossover was capable
of that), more precisely by the SMB term. As a consequence, new
recursive calls may appear also in SHC runs that use only mutation.

The baseline method is RSk , the random search in the space of
k-fold functions Fk . RSk is a single-point hill climber that in each
iteration generates a random k-fold program p =rfk , and replaces
the current program with p if the �tness of p is better.

With rfk terminals present in instruction set, it becomes possible
to �nd a single-node solution to a given k-fold target function
benchmark. However, the odds for this decrease rapidly with k , as
there are 22

k −1+2k k-fold functions.
The remaining settings are identical to those in Experiment 1.

The results of this experiment are shown in Table 2.

8 ANALYSIS 2
For success rate, hitting the optimum gets harder with growingk and
growing n, which is particularly evident for RS. This is expected be-
cause the number of functions in a k-fold class grows exponentially
with k , and the number of functions in Fk that match the training
examples decreases with n (up to a critical number of �tness cases).

For the number of evaluations, the expected number of evalu-
ations to hit the optimum in RS is the size of Fk divided by the
number of functions in Fk that match all training examples. This
ratio is also a measure of di�culty of the problem. Experimental
results con�rm that for small n and k the assumed population size
of 1000 is disproportionate w.r.t. the expected performance of RS,
and the optimum is found in the initial population. The results
con�rm also that HC (sca�olded or not) scales much better than
RS for growing k and n, and that for n and k large enough EA also
scales better than RS.

For generalisation performance, for 1-fold class, for n ≥ 3 all
search algorithms generalize perfectly, as predicted by the theory.
Perfect generalisation is independent from the search algorithm,
and depends only on the problem class and su�cient number of
�tness cases. When the training set is not large enough to guarantee
perfect generalisation, all algorithms improve their generalisation
performance for growing training set size as expected, and we
notice that random search generalises the best.

For graph size (results not shown),the solutions found by random
search are always the smallest, which must be the case all candidate
solutions in RSk are single-node k-fold functions rfk . The sizes of
the programs found by the other algorithms are smaller than those
not using the k-fold operators.
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Table 2: Performance indicators for the k-fold operators, compared to random search RSk

Fold1 Fold2 Fold3 Fold4
n = 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Su
cc
.r
at
e SGPk EA 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Sca�. 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

HC 76 86 76 80 74 100 52 32 36 44 100 100 10 0 0 100 100 100 6 0
Sca�. 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

RSk 100 100 100 100 100 100 100 100 96 96 100 100 100 2 0 100 100 100 0 0

Ev
al
s. SGPk EA 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.3 3.6 3.8 3.0 3.0 3.4 3.7 4.0 3.0 3.0 3.4 3.7 4.0

Sca�. 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.3 3.6 3.8 3.0 3.0 3.4 3.7 4.0 3.0 3.0 3.4 3.7 4.0

HC 1.1 1.3 1.3 1.3 1.3 1.6 1.8 2.1 2.1 2.2 2.2 2.5 2.5 2.9 3.0 3.1 3.3
Sca�. 1.1 1.2 1.2 1.2 1.2 1.6 1.9 2.0 2.0 2.0 2.2 2.5 2.6 2.7 2.7 2.9 3.0 3.1 3.2 3.3

RSk 0.9 1.4 1.4 1.4 1.4 0.8 2.1 3.9 5.0 5.2 1.0 2.1 4.6 5.5 1.0 2.0 4.6

G
en

er
. SGPk EA 19.0 0.0 0.0 0.0 0.0 49.0 35.8 30.1 22.4 14.1 48.3 48.5 49.2 47.5 45.9 49.8 50.5 48.4 51.2 49.8

Sca�. 19.0 0.0 0.0 0.0 0.0 49.0 35.8 29.9 21.4 13.2 48.3 48.5 49.2 47.1 46.3 49.8 50.5 48.4 50.5 50.1

HC 29.2 3.0 0.0 0.0 0.0 52.2 41.2 31.5 7.1 3.1 51.2 50.4 45.0 49.5 50.9 49.8 49.0
Sca�. 30.0 4.1 0.0 0.0 0.0 52.2 42.3 26.5 8.1 2.7 51.2 50.4 46.5 41.0 29.8 49.5 50.9 49.8 48.6 46.9

RSk 22.0 0.0 0.0 0.0 0.0 48.2 38.6 16.4 3.5 0.6 49.8 48.9 43.5 44.8 49.7 52.2 48.8

9 CONCLUSIONS AND FUTUREWORK
Evolving recursive programs e�ectively is one of the long-standing
challenges for GP and the key to its ultimate goal of evolving com-
plex, fully-�edged programs from examples. In this paper, we made
�rst steps towards designing provably e�cient search operators for
recursive domains that see a unimodal �tness landscape and are
guaranteed to �nd the correct program. These three properties have
signi�cant implications for theory and practice of GP, and make this
new line of investigation very exciting. The theoretical concepts
and methodology introduced here for the speci�c case of recur-
sive Boolean programs have in principle much wider applicability.
There are several interesting lines of future investigation: extend-
ing this framework to arithmetic recursive domains and investigate
the potential issues resulting from moving to continuous domains;
extension to functions that map multiple Boolean lists to Boolean
lists, a much richer class of functions (requires more complex no-
tion of program semantics for vectors of lists); investigating classes
of functions that capture traditional LISP programs manipulating
nested lists of symbols (i.e., tree-like structures), and so involve
richer data structures that are inherently recursive; last but not
least, extending the framework to Turing-complete programs.
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