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Abstract  

 

Dietary nitrate (NO3
-) supplementation, with NO3

--rich beetroot juice (BR), 

increases nitric oxide (NO) bioavailability by the stepwise reduction of NO3
- to 

nitrite (NO2
-) and NO. This has been associated with a number of beneficial 

physiological and exercise performance effects, but understanding of NO3
- 

metabolism is incomplete. The purpose of this thesis was to investigate some of 

the factors purported to influence dietary NO3
- metabolism in humans. 

Specifically, the influence of oral cavity temperature and pH on dietary NO3
- 

metabolism, and the influence of muscle oxygenation on exercise economy and 

tolerance were investigated following BR supplementation. Chapter 3: Salivary 

and plasma [NO3
-] and [NO2

-] were assessed at a neutral oral pH with a low 

(TempLo-pHNorm), intermediate (TempMid-pHNorm) and high (TempHi-pHNorm) oral 

temperature, and at an alkaline oral pH with a low (TempLo-pHHi), intermediate 

(TempMid-pHHi) and high (TempHi-pHHi) oral temperature. Compared to the 

TempMid-pHNorm trial (976 ± 388 µM), mean salivary [NO2
-] over the protocol was 

higher in the TempMid-pHHi (1855 ± 423 µM), TempHi-pHNorm (1371 ± 653 µM), 

TempHi-pHHi (1792 ± 741 µM), TempLo-pHNorm (1495 ± 502 µM) and TempLo-

pHHi (2013 ± 662 µM) conditions, with salivary [NO2
-] also higher at a given oral 

temperature when oral pH was increased (P<0.05). The increase in mean 

salivary [NO2
-] was positively correlated with the increase in salivary flow rate 

when all data were combined (r = 0.48, P<0.01). Plasma [NO2
-] was higher 3 

hours post BR consumption in the TempMid-pHHi, TempHi-pHHi and TempLo-pHHi 

trials, but not the TempLo-pHNorm and TempHi-pHNorm trials, compared to the 

TempMid-pHNorm trial (P<0.05). Chapter 4: Work-to-work step cycle tests were 

completed to exhaustion (Tlim) in normobaric hypoxia (fraction of inspired 

oxygen; FiO2: 15%), normoxia (FiO2: 21%) and hyperoxia (FiO2: 40%). Plasma 

[NO2
-] was higher in all BR compared to all PL trials (P<0.05). Quadriceps 

tissue oxygenation index (TOI) was higher in normoxia compared to hypoxia 

(P<0.05) and higher in the hyperoxia compared to hypoxia and normoxia 

(P<0.05). Tlim was improved after BR compared to PL consumption (250 ± 44 

vs.  231 ± 41 sec), with the magnitude of improvement being negatively 

correlated with quadriceps TOI at exhaustion (r = -0.78), in hypoxia (P<0.05). 

Tlim tended to be improved with BR in normoxia (BR: 364 ± 98 vs.  PL: 344 ± 78 

sec; P=0.087), but was not improved in hyperoxia (BR: 492 ± 212 vs.  PL: 472 ± 
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196 sec; P>0.05). BR consumption increased peak oxygen uptake in hypoxia 

(P<0.05), but not normoxia or hyperoxia (P>0.05). Collectively, these findings 

improve our understanding of dietary NO3
- metabolism and might help guide 

future studies assessing the efficacy of dietary NO3
- supplementation on human 

health and performance. 
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Chapter 1: Introduction and Literature Review 

 

Nitric oxide  

 

Nitric oxide (NO) is a gaseous signalling molecule that was discovered as an 

‘endothelium-derived relaxing factor’ by Dr. Louis Ignarro, Dr. Robert Furchgott 

and Dr. Ferid Murad in the 1980’s. NO is best known for its vasodilatory function 

(Furchgott and Zawadzki, 1980; Ignarro et al., 1987; Murad et al., 1978) but it 

also influences numerous physiological processes including mitochondrial 

respiration (Ghafourifar and Cadenas, 2005) and biogenesis (Nisoli et al., 

2003), sarcoplasmic reticulum calcium handling (Viner, Williams and Schoneich, 

2000), neurotransmission (Garthwaite, 2008) and skeletal muscle glucose 

uptake (Merry, Lynch and McConnell, 2010) and fatigue (Percival et al., 2010). 

NO has a circulatory half-life of ~0.1 seconds (Kelm and Schrader, 1990). 

 

Nitric oxide production 

 

NO was initially considered to be exclusively synthesised from the oxidation of 

L-arginine by the NO synthase (NOS) enzymes (i.e. endothelial NOS, neuronal 

NOS and inducible NOS; Stamler and Meissner, 2001) in a complex metabolic 

reaction (the NOS pathway) that requires several additional substrates/co-

factors including O2, nicotinamide adenine dinucleotide phosphate, flavin 

adenine dinucleotide, flavin mononucleotide, tetrahydrobiopterin, haem and 

calmodulin (Alderton, Cooper and Knowles, 2001). The oxidation of NOS-

derived NO was known to produce nitrate (NO3
-) and nitrite (NO2

-); specifically, 

NO3
- is synthesised from the reaction of NO2

- or NO with oxyhaemoglobin 

(Cooper, 1999) and NO2
- is synthesised from the reaction of NO with O2 

(Ignarro et al., 1993) or when NO is oxidised by ceruloplasmin (Shiva et al., 

2006). However, NO3
- and NO2

- were long considered inert by-products of NO 

metabolism (Moncada and Higgs, 1993).  

It is now known that NO3
- and NO2

- can be reduced into bioactive NO 

(the NO3
--NO2

--NO pathway; Lundberg et al., 2004; Lundberg and Weitzberg, 

2009). In addition to its endogenous synthesis, NO3
- is naturally consumed as 
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part of the diet. ~80% of human dietary NO3
- intake originates from vegetable 

sources (Gilchrist, Winyard and Benjamin, 2010; Hord, Tang and Bryan, 2009) 

with the remaining 20% derived from processed meats, where NO3
- is used as a 

preservative, and drinking water. Vegetables with a ‘very high’ NO3
- content 

(>250 mg/100 g fresh weight) include leafy greens (i.e. lettuce, spinach and 

rocket) and beetroot (Hord, Tang and Bryan, 2009). Following consumption, 

NO3
- is rapidly absorbed in the stomach and small intestine (Florin, Neale and 

Cummings, 1990) and enters systemic circulation within ~60 min (Lundberg and 

Weitzberg, 2009) where it has a half-life of ~5 hr (McKnight et al., 1997). ~25% 

of the consumed NO3
- is concentrated and secreted by the salivary glands 

(Lundberg and Weitzberg, 2009). This is then reduced to NO2
- by commensal 

anaerobic bacteria located on the dorsal surface of the tongue, which contain 

the NO3
- reductase enzymes required for NO2

- production that humans lack 

(Duncan et al., 1995; Sasaki and Matano, 1979; Spiegelhalder, Eisenbrand and 

Preussmann, 1976). These enzymes have been suggested to have a high 

affinity for NO3
-, with a maximum velocity (Vmax) of ~2 µmol of NO3

-.mg-1.min-1 

and a Michaelis-Menten constant (KM; the substrate concentration that provides 

half of the enzymes Vmax) of <300 µM (Sparacino-Watkins, Stolz and Basu, 

2014). When swallowed, NO2
- reacts with gastric acid in the stomach to form a 

mixture of nitrogen oxides, including NO (Benjamin et al., 1994; Duncan et al., 

1995). Alternatively, NO2
- can be absorbed into circulation to increase plasma 

[NO2
-]. Therefore, the reduction of NO2

- to NO also occurs systemically (Zweier 

et al., 1995). This reaction can be catalysed by several enzymes including 

xanthine oxidase (Zhang et al., 1997), mitochondrial respiratory chain enzymes 

(Kozlov, Staniek and Nohl, 1999), cytochrome P-450 (Kozlov, Dietrich and Nohl, 

2003), deoxyhaemoglobin (Cosby et al., 2003; Nagababu et al., 2003), 

deoxymyoglobin (Shiva et al., 2007; Rassaf et al., 2007) and even NOS (Vanin 

et al., 2007). NO2
- can also be reduced non-enzymatically in the presence of 

protons, which is greatly enhanced by reductants such as polyphenols (Peri et 

al., 2005) and vitamin C (Carlsson et al., 2001). The NO3
--NO2

--NO pathway 

has been proposed to represent a means of NO synthesis when the activity of 

the NOS pathway is impaired, such as conditions of low O2 availability (Bryan, 

2006), and has become a major focus of NO physiology research in recent 

years. 
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Dietary nitrate supplementation 

Plasma [nitrate] and [nitrite] 

 

Human plasma [NO3
-] and [NO2

-] is subject to notable inter-individual variability 

due to differences in age, health, training status and nutritional intake, however, 

typical resting values have been suggested to be ~34 µmol (Jungersten et al., 

1997) and ~305 nmol (Kleinbongard et al., 2003), respectively. Supplementing 

dietary NO3
- intake with pharmacological (sodium NO3

-; Larsen et al., 2007; 

2010) and natural (NO3
--rich beetroot juice; BR; Bailey et al., 2009; 2010) 

means has been demonstrated to increase plasma [NO2
-]. This thesis will focus 

on natural dietary NO3
- supplementation with BR. 

Previous research has used a range of BR supplementation doses 

typically containing between 5.1 and 23 mmol NO3
-. Wylie et al., (2013) 

investigated the dose-response relationship and pharmacokinetics and 

pharmacodynamics between acute BR supplementation (providing 4.2, 8.4 or 

16.8 mmol NO3
-) and resting plasma [NO3

-] and [NO2
-]. Plasma [NO3

-] was 

increased by 130, 282 and 580 µM, while plasma [NO2
-] was increased by 150, 

291 and 425 nM, following 4.2, 8.4 and 16.8 mmol NO3
- consumption, 

respectively. The peak change in plasma [NO3
-] occurred 1 hour post-

consumption following 4.2 and 8.4 mmol NO3
- and 2 hour post-consumption 

following 16.8 mmol NO3
-, while the peak change in plasma [NO2

-] occurred 2 

hour post-consumption following 4.2 and 8.4 mmol NO3
-
 and 4 hour post-

consumption following 16.8 mmol NO3
-. Collectively, these findings indicate that 

BR supplementation dose-dependently increases plasma [NO3
-] and [NO2

-] with 

the delayed peak increase in plasma [NO2
-], compared to plasma [NO3

-], 

presumably consequent to the time requirement for the enterosalivary 

circulation and reduction, by commensal anaerobic bacteria, of NO3
- to NO2

-.  

 

Physiological effects 

 Blood pressure 
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Three days of dietary NO3
- supplementation with BR (providing 5.6 mmol.day-1 

NO3
-) was demonstrated to reduce systolic blood pressure by ~5 mmHg in 

healthy young adults (Bailey et al., 2009). Subsequent research identified that 

this magnitude of change was evident following a single dose (providing 5.2 

mmol NO3
-) and was maintained following both five and fifteen days of 

supplementation (Vanhatalo et al., 2010). The effect of BR supplementation on 

diastolic blood pressure appears to be less consistent, with results for (~4 

mmHg reduction; Vanhatalo et al., 2010) and against (no change; Bailey et al., 

2009) a reduction reported in normotensive participants. In hypertensive 

patients, four weeks of BR supplementation (providing 6.4 mmol.day-1 NO3
-) 

was demonstrated to reduce systolic blood pressure by ~8 mmHg and diastolic 

blood pressure by ~2 mmHg (Kapil et al., 2015). Wylie et al., (2013) reported 

that systolic blood pressure was reduced dose dependently following acute BR 

supplementation providing 4.2 (~5 mmHg reduction) and 8.4 (~10 mmHg 

reduction) mmol NO3
- with no additional benefit gained from the consumption of 

16.8 mmol NO3
- (~9 mmHg reduction), while diastolic blood pressure was 

reduced equally following the consumption of 8.4 and 16.8 mmol NO3
- (~3 

mmHg reduction) with no effect evident following the consumption of 4.2 mmol 

NO3
-. The time to peak reduction in systolic and diastolic blood pressure (2-4 

hours) occurred after the time to peak plasma [NO3
-] and [NO2

-] (~2 hours) 

following BR supplementation providing 8.4 mmol NO3
- (Wylie et al., 2013). 

Therefore, the beneficial haemodynamic effect of dietary NO3
- supplementation 

is believed to be associated with the stepwise reduction of NO3
- to NO2

- and 

NO. NO stimulates smooth muscle relaxation by the synthesis of cyclic 

guanosine monophosphate (cGMP; Murad, 1986).  

 

Pulmonary and muscular oxygen uptake 

 

Dietary NO3
- supplementation with BR has been demonstrated to reduce the O2 

cost of moderate-intensity exercise by ~5% in healthy young adults following 

acute (Vanahtalo et al., 2010) and chronic (Bailey et al., 2009; Vanahatalo et 

al., 2010) consumption. Wylie et al., (2013) reported that steady-state O2 uptake 

(V̇O2) was reduced dose-dependently following acute BR supplementation 

(providing 4.2, 8.4 or 16.8 mmol NO3
-), with a peak reduction of ~50 ml.min-1. 
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NO has been suggested to alter steady-state V̇O2 by reducing the adenosine 

triphosphate (ATP) cost of skeletal muscle force production (Bailey et al., 2010; 

Fulford et al., 2013), increasing the oxidative phosphorylation efficiency of the 

mitochondria (Larsen et al., 2011) and/or improving muscle blood flow (Bailey et 

al., 2009; Ferguson et al., 2013). Bailey et al., (2009) reported an improved 

muscle oxygenation following BR supplementation via the observation of an 

increased [total haemoglobin] and [oxyhaemoglobin] at baseline and over the 

first 120 sec of exercise in the vastus lateralis muscle using single-channel near 

infrared spectroscopy. Furthermore, [deoxyhaemoglobin], an index of muscle 

fractional O2 extraction, was reduced by 13% during exercise following BR 

supplementation. The Fick equation denotes that for the same V̇O2, an 

increased O2 delivery enables a reduced muscle fractional O2 extraction. 

Therefore, the reduced V̇O2 following BR supplementation suggests that less O2 

extraction was required to sustain oxidative energy turnover during moderate-

intensity exercise. However, while BR supplementation has been reported to 

lower the O2 cost of sub-maximal exercise in health, recreationally active 

individuals, most studies conducted on well-trained athletes suggest it does not 

lower the O2 cost of sub-maximal exercise in this population (Bescós et al., 

2011; Carriker et al., 2016; Christensen, Nyberg and Bangsbo, 2013; Nyakayiru 

et al., 2017; Porcelli et al., 2015).  

 

Exercise tolerance and performance 

 

Previous research has demonstrated a ~15% improvement in continuous 

cycling (Bailey et al., 2009; Wylie et al., 2013) and running (Lansley et al., 

2011b) exercise tolerance following BR supplementation. This magnitude of 

improvement has been suggested to equate to a ~1-2% improvement in athletic 

performance when using an ecologically valid test, such as a cycling time trial 

(Paton and Hopkins, 2006), which would be extremely meaningful in 

competition. Subsequently, a ~3% improvement in 4 and 16.1 km time trial 

performance by club-level cyclists (mean V̇O2 peak = 56 ± 6 ml.kg body 

mass.min-1) was demonstrated following acute BR consumption (providing ~6.2 

mmol NO3
-; Lansley et al., 2011a), while a ~1% improvement in 10 km time trial 

performance by well-trained cyclists (mean V̇O2 peak = 58 ± 2 ml.kg body 
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mass.min-1) was demonstrated following chronic BR supplementation (providing 

~8 mmol.day-1 NO3
- for 6 days; Cermak, Gibala and van Loon, 2012). However, 

not all studies have demonstrated an improved exercise performance in well-

trained endurance athletes following BR supplementation (Lowings et al., 2017; 

McQuillan et al., 2016; Nyakayiru et al., 2017; Porcelli et al., 2015; Wilkerson et 

al., 2012). For example, Wilkerson et al., (2012) reported a non-significant 0.8% 

reduction in 50 mile time trial performance by well-trained cyclists (mean V̇O2 

peak = 63 ± 8 ml.kg body mass.min-1) following acute BR consumption (providing 

~6.2 mmol NO3
-).  

 

Factors influencing dietary nitrate metabolism 

Oral cavity temperature and pH 

 

The reduction of NO3
- to NO2

- is a crucial limiting factor for dietary NO3
- 

metabolism since humans lack the NO3
- reductase enzymes required for NO2

- 

production (Duncan et al., 1995; Lundberg et al., 2004). These enzymes are 

contained within commensal oral bacteria, which use NO3
- as a terminal 

electron acceptor during anaerobic respiration (Duncan et al., 1995; Lundberg 

et al., 2004). Previous research has demonstrated that suppressing these oral 

bacteria attenuates the rise in salivary and plasma [NO2
-] following BR 

supplementation (McDonagh et al., 2015; Woessner et al., 2016). The influence 

of facilitating the activity of the oral bacteria and the subsequent effect on 

salivary and plasma [NO2
-] following dietary NO3

- supplementation is currently 

unclear. Previous research has demonstrated a role for oral temperature and 

pH on [NO2
-] following the incubation of NO3

- solutions in the oral cavity, with 

optimal [NO2
-] evident at a temperature attuned to a summer climate and a pH 

of 8 (Bojić, Bojić and Perović, 2004). The human oral cavity maintains a 

relatively constant temperature (34-36°C) and pH (~7; Marcotte and Lavoie, 

1998). Therefore, elevating these conditions might augment the increment in 

salivary and plasma [NO2
-] observed following BR supplementation, but this 

remains to be determined.  

 

Muscle oxygenation 
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The reduction of NO2
- to NO has been suggested to be facilitated under hypoxic 

conditions (Bryan, 2006) which might be evident in contracting skeletal muscle 

(Bailey et al., 2010; Richardson et al., 1999). This suggests a role for muscle 

oxygenation in the physiological effects induced by dietary NO3
- 

supplementation, which might be greater in hypoxia (<21% oxygen; O2) and 

lower in hyperoxia (>21% O2) compared to normoxia (21% O2).  

 The reduced fraction of inspired O2 (FiO2) in hypoxic air decreases 

arterial O2 saturation and the intracellular partial pressure of O2 (PO2; 

Richardson et al., 1995). This stimulates local NO-mediated vasodilation to 

increase muscle blood flow and O2 supply (Casey et al., 2010). Compared to 

normoxia, sub-maximal constant work rate exercise in hypoxia is performed at 

the same V̇O2 but with greater muscle metabolic perturbation, consequent to 

greater utilisation of the anaerobic reserves (i.e. phosphocreatine and glycogen) 

to sustain the required rate of ATP turnover (Hogan, Richardson and Haseler, 

1999). The subsequent accumulation of fatigue-related metabolites (i.e. 

adenosine diphosphate, inorganic phosphate and hydrogen ions) contribute to 

an impaired exercise tolerance (Hogan, Richardson and Haseler, 1999). Dietary 

NO3
- supplementation with BR has been demonstrated to reduce muscle 

metabolic perturbation (Vanhatalo et al., 2011), lower steady-state V̇O2 and 

speed V̇O2 kinetics (Kelly et al., 2014) and improve exercise tolerance (Kelly et 

al., 2014; Vanhatalo et al., 2011) in hypoxia, presumably due to an increased 

NO bioavailability.  

The increased FiO2 in hyperoxic air increases arterial O2 saturation and 

the intracellular PO2 (Collins et al., 2015) and has been associated with an 

improved sub-maximal (Adams and Welch, 1980) and maximal (Adams and 

Welch, 1980; Linossier et al., 2000) exercise capacity. This is likely mediated by 

an increased muscle V̇O2 (Astorino and Robergs, 2003) and greater 

maintenance of muscle contractile function (Linossier et al., 2000); mechanisms 

that are consistent with those induced by dietary NO3
- supplementation in 

hypoxia. To date, no study has investigated the physiological effects induced by 

dietary NO3
- supplementation during exercise in hyperoxia. However, a reduced 

time to fatigue was observed in mouse muscle fibres following incubation with 

sodium NO2
- at a supra-physiological PO2 (Nogueira et al., 2013). Therefore, 
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exercise performed in hyperoxia might be associated with a reduced stimulus 

for NO2
- reduction to NO, thus attenuating the physiological effects induced by 

dietary NO3
- supplementation. However, this remains to be identified. 

 

Summary 

 

Dietary NO3
- supplementation can elicit several physiological effects, 

presumably by increasing NO bioavailability. These effects include: a reduced 

systolic blood pressure (Bailey et al., 2009; Vanhatalo et al., 2010; Webb et al., 

2008; Wylie et al., 2013), due to an increased synthesis of cGMP (Murad, 

1986); a reduced O2 cost of moderate-intensity exercise (Bailey et al., 2009; 

Vanhatalo et al., 2010; Wylie et al., 2013), due to improvements in muscle 

contractile function (Bailey et al., 2010), mitochondrial efficiency (Larsen et al., 

2011) and/or muscle blood flow (Bailey et al., 2009; Ferguson et al., 2013); and 

an improved tolerance to severe-intensity exercise (Bailey et al., 2009; Wylie et 

al., 2013). These effects are believed to be NO-mediated. The synthesis of NO 

by NO3
- metabolism is critically dependent on the reduction of NO3

- to NO2
- in 

the mouth and the subsequent reduction of NO2
- to NO in the stomach or 

systemically. Manipulating oral cavity temperature and pH has been suggested 

to aid NO3
- reduction to NO2

- while lowering muscle oxygenation has been 

suggested to aid the reduction of NO2
- to NO. Therefore, these factors have the 

potential to increase NO signalling after BR supplementation.  

 

Aims 

 

The purpose of this thesis is to investigate the effect of manipulating oral 

temperature and pH, and muscle oxygenation, on dietary NO3
- metabolism.  

This thesis aims to enhance existing knowledge of the conditions that might 

influence the efficacy of dietary NO3
- supplementation to improve exercise 

physiology and performance. The following research questions will be 

addressed:  
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1) Does the manipulation of oral cavity temperature and pH influence the 

effectiveness of BR supplementation at increasing NO bioavailability in 

humans? 

a. Does an alkaline oral cavity pH increase the effectiveness of BR 

supplementation at elevating salivary and plasma [NO2
-]?  

b. Does an increased oral cavity temperature increase the 

effectiveness of BR supplementation at elevating salivary and 

plasma [NO2
-]? 

c. Does the combination of an alkaline oral cavity pH and an 

increased oral cavity temperature exert a synergistic increase in 

salivary and plasma [NO2
-]? 

 

2) Does altering the FiO2 influence the effectiveness of BR supplementation 

at improving the physiological responses and tolerance to exercise? 

a. Does BR supplementation reduce the O2 cost of moderate-

intensity exercise and enhance severe-intensity exercise tolerance 

in normoxia, as previously reported (Bailey et al., 2009).  

b. Does BR supplementation reverse the detrimental effects of 

hypoxia on the physiological responses and tolerance to exercise, 

as previously reported (Kelly et al., 2014).  

c. Does BR supplementation induce physiological responses and 

alter the tolerance to exercise in hyperoxia? 

 

Hypotheses 

 

The following hypotheses will be tested: 

1) Salivary and plasma [NO3
-] and [NO2

-] would be increased following BR 

supplementation, [NO2
-] would be increased further when oral 

temperature and pH were elevated independently and the greatest [NO2
-] 

would be achieved when oral temperature and pH were elevated 

simultaneously. 
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2) Following dietary NO3
- supplementation, muscle oxygenation, V̇O2 

kinetics and exercise tolerance would be augmented in normoxia, 

increased further in hypoxia and attenuated in hyperoxia. 
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Chapter 2: General methods 

 

General experimental procedures  

Ethics and participant consent 

 

The two studies included in this thesis were approved by the University of 

Exeter’s Sport and Health Sciences Ethics Committee prior to the onset of data 

collection. Participants provided their written informed consent after reading the 

Participant Information Sheet, which described in detail the experimental 

protocol and their specific involvement, and having any questions about the 

study answered.  

 

Health and safety 

 

All experimental procedures were conducted in accordance with the Sport and 

Health Sciences Health and Safety Code of Practise 2015-16. The researchers 

were vigilant of laboratory cleanliness, safety and suitability for the testing of 

human participants.  

 

Participants  

 

The participants recruited for the studies in Chapters 3 and 4 were male 

University of Exeter students (mean ± SD; age = 23 ± 3 years, height = 1.80 ± 

0.06 m; body mass = 77.1 ± 9.4 kg). Participants were non-smokers and free 

from disease. No participant reported antibiotics use prior to the study or dietary 

supplement or antibacterial mouthwash use during the study. The effects of 

prior antibacterial mouthwash use on the oral microbiome would be transient, 

thus not likely to influence our findings. All participants were recreationally 

active but not highly trained. In both studies, participants were instructed to 

report to the laboratory in a rested and fully hydrated state, having not 

consumed food in the previous 3 hours, caffeine in the previous 12 hours or 

alcohol in the previous 24 hours. Strenuous exercise was to be avoided in the 

previous 24 hours. Experimental testing was performed at the same time of day 
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(±2 hours) for each participant to minimise the potential for diurnal variation to 

influence the results.  

 

Supplementation  

 

Dietary NO3
- supplementation was administered in the form of BR, which was 

donated by James White Drinks (Ipswich, UK). In both studies, participants 

were instructed to consume either concentrated NO3
--rich BR (providing ~6.2 

mmol NO3
- per 70 ml) or concentrated NO3

--depleted BR as a placebo (PL; 

providing negligible NO3
- content) in a repeated measures, crossover 

experimental design. The [NO3
-] of three BR supplements was measured 

directly to determine the accuracy of the data reported by the manufacturer 

(Jajja et al., 2014). Similar to the findings of Jajja and colleagues, mean [NO3
-] 

(6.5 ± 0.7 mmol) differed from that reported by the manufacturer. The PL 

supplement was manufactured by filtering the BR through a column containing 

Purolite A520E ion exchange resin prior to pasteurisation, which selectively 

removes the NO3
- ions (Lansley et al., 2011a; 2011b). This procedure creates a 

PL supplement that is identical to the test supplement in appearance, taste and 

smell.  

 In Chapter 3, the supplements were either concentrated BR (1 x 70 ml) 

or concentrated PL (1 x 70 ml). Participants were instructed to consume the test 

supplement at the beginning of the experimental protocol. A washout period of 

at least 24 hours separated each experimental visit. In Chapter 4, the 

supplements were either concentrated BR (3 x 70 ml) or concentrated PL (3 x 

70 ml). Participants were instructed to consume the test supplement 2.5 hours 

before the exercise test. A washout period of at least 48 hours separated each 

experimental visit (Lansley et al., 2011a; 2011b). In both chapters, participants 

were instructed to consume a NO3
- and glucosinolate/thiocyante restricted diet 

throughout data collection and to replicate their dietary intake in the 24 hours 

prior to each experimental visit. The harmless, temporary side effects of BR 

consumption, including beeturia (red urine) and red stools, were communicated 

to participants.  
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Measurement procedures 

Descriptive data  

 

Prior to any experimental testing, each participant’s age was recorded and their 

height and mass were measured using a Seca Stadiometer SEC-225 (Seca, 

Hamburg, Germany) and Seca Digital Column Scale SEC-170 (Seca, Hamburg, 

Germany), respectively.  

 

Blood sample collection 

 

For the studies in chapters 3 and 4, a Insyte-W cannula (Becton-Dickinson, 

Madrid, Spain) was inserted into a forearm vein by a phlebotomy-trained 

individual. This allowed for multiple blood samples to be drawn efficiently during 

the subsequent protocol. In chapter 3, the cannula was kept clear with the 

infusion of 0.9% saline at a rate of 10 ml.h-1, which was administered with 

single-use 5 ml syringes (Terumo, Leuven, Belgium). 5 ml syringes were also 

used to draw the blood samples, following the removal of dead space content 

using a 2.5 ml single-use syringe (Terumo, Leuven, Belgium). The samples 

were immediately ejected into 5 ml Vacutainer lithium-heparin tubes (Becton-

Dickinson, New Jersey, USA) and were subsequently centrifuged at 4000 

revolutions per minute (rpm) and 4°C for 8 min. The plasma was then extracted 

and stored at -80°C for later analyses of NO3
- and NO2

-. 

 

Measurement of nitrate and nitrite concentrations 

 

The quantification of plasma [NO3
-] and [NO2

-] are technically challenging 

with considerable variability reported between the assays used. For example, 

the modified Griess reaction is an assay used frequently to measure [NO2
-] 

(Tsikas, 2007). However, this method lacks the sensitivity to identify the 

nanomolar NO2
- levels present in human plasma. Therefore, ozone-based 

chemiluminescence is considered the preferred assessment method (Higuchi 

and Motomizu, 1999). 
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All glassware, utensils and surfaces were regularly rinsed with deionised 

water to remove residual NO3
- and NO2

- before sample analyses. In chapter 3, 

plasma samples were deproteinized using zinc sulfate (ZnSO4)/sodium 

hydroxide (NaOH) precipitation prior to determination of [NO3
-]. Firstly, 500 μL 

of 0.18 N NaOH was added to 100 µL of sample followed by 5 min incubation at 

room temperature. Subsequently, samples were treated with 300 μL aqueous 

ZnSO4 (5% w/v) and vortexed for 30 seconds before undergoing an additional 

10 min incubation period at room temperature. Samples were then centrifuged 

at 4,000 rpm for 5 min, and the supernatant was removed for subsequent 

analysis. The [NO3
-] of the deproteinized plasma sample was determined by its 

reduction to NO in the presence of 0.8 % (w/v) vanadium chloride (VCl3) in 1 M 

hydrochloric acid (HCl) within an air-tight purging vessel. Plasma samples were 

introduced to the vessel via 50 uL injections into the septum at the top of the 

vessel. The spectral emission of electronically excited nitrogen dioxide, derived 

from the reaction of NO with ozone, was detected by a thermoelectrically 

cooled, red-sensitive photomultiplier tube housed in a Sievers NOA 280i gas-

phase chemiluminescence NO analyzer (Analytix, Durham, UK). The [NO3
-] was 

determined by plotting signal (mV) area against a calibration plot of sodium 

NO3
- standards. The [NO2

-] of the undiluted (non-deproteinized) plasma was 

determined by its reduction to NO in the presence of glacial acetic acid and 

aqueous sodium iodide (NaI) (4% w/v) from sodium NO2
- standards. 100 uL 

injections were used for plasma [NO2
-] determination. After thawing at room 

temperature, saliva samples were centrifuged for 10 min at 14000 rpm and the 

supernatant was removed for subsequent analysis. The supernatant was diluted 

100-fold with deionized water and [NO3
-] and [NO2

-] were determined from 50 

uL injections using the same reagents described above for the plasma 

analyses. In chapter 4, plasma [NO2
-] was determined using the same method 

as in chapter 3.  

 

Exercise testing  

 

In chapter 4, participants performed a cycle ramp incremental exercise test for 

the determination of their V̇O2 peak and gas exchange threshold (GET). All tests 

were performed on an Excalibur Sport cycle ergometer (Lode, Groningen, The 
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Netherlands). Participants were instructed to remain seated and maintain a 

pedal cadence of 80 rpm for as long as possible. The test began with a baseline 

stage of 20 W for 4 min. Following this, the workload was increased at a linear 

rate of 40 W.min-1 and continued until the participant reached volitional 

exhaustion or the pedal cadence fell below 70 rpm for five consecutive seconds. 

Breath-by-breath pulmonary gas exchange data were collected continuously 

throughout using a Medgraphics Cardiorespiratory Diagnostics (Express Series, 

Gloucester, UK). The data were then averaged over consecutive 10 sec time 

periods with V̇O2 peak determined as the highest 30 sec average value. GET was 

derived from test data using the cluster of measurements previously employed 

by Bailey et al., (2009). Briefly, GET was determined as the first: 

disproportionate increase in the volume of carbon dioxide (CO2) produced 

(V̇CO2), as determined by visual inspection of the individual data points of V̇O2 

plotted against V̇CO2; increase in expired ventilation (VE)/V̇O2 without an 

increase in VE/V̇CO2; increase in end-tidal O2 tension without a decline in end-

tidal CO2 tension. 

‘Work-to-work step’ cycle exercise tests were then used to assess 

moderate-intensity exercise economy and severe-intensity exercise tolerance 

(Breese et al., 2011). All tests were performed on an Excalibur Sport cycle 

ergometer (Lode, Groningen, The Netherlands). Each participant’s preferred 

saddle height and handle bar configuration was recorded and reproduced for 

subsequent tests. The test began with a baseline stage of 20 W for 3 min. 

Following this, immediate transitions were performed to 90% GET for 4 min and 

then 75% Δ (% difference between power output at the GET and V̇O2 peak) until 

volitional exhaustion. Breath-by-breath pulmonary gas exchange data were 

collected continuously throughout using a Medgraphics Cardiorespiratory 

Diagnostics (Express Series, Gloucester, UK). The work rates were calculated 

from the individual’s ramp test pulmonary gas exchange data, with 

consideration for the mean response time of V̇O2 during this mode of exercise 

(i.e. two-thirds of the ramp rate was subtracted from the power output value at 

GET and V̇O2 peak; Whipp et al., 1981). Exercise tolerance was represented by 

the time to exhaustion following the transition to 75% Δ (Bailey et al., 2009).  

 

Statistical methods 
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In chapters 3 and 4, all statistical analyses were performed using Statistical 

Package for Social Sciences version 23. The specific statistical analyses run in 

each study are outlined in their respective chapters. Prior to any analysis, data 

sets were screened for normality using appropriate procedures. Statistical 

significance was accepted at P<0.05. All data are presented as mean ± 

standard deviation unless otherwise stated.   
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Chapter 3: Influence of oral temperature and pH on dietary nitrate 

metabolism in healthy adults 

 

Abstract 

 

It has been reported that the reduction of nitrate (NO3
-) to nitrite (NO2

-) by oral 

NO3
--reducing bacteria can be augmented by an increased oral temperature 

and pH. However, the independent and combined effect of increasing oral 

temperature and pH on dietary NO3
- metabolism is unclear. This study tested 

the hypothesis that the elevated salivary and plasma [NO2
-] observed following 

NO3
- supplementation would be further enhanced by independently increasing 

oral temperature and pH, with a greater effect demonstrated by simultaneously 

increasing oral temperature and pH. Seven heathy adult males (mean ± SD, 

age 23 ± 4 yr, body mass 76 ± 11 kg) consumed 1 x 70 ml of beetroot juice 

concentrate (BR, providing ~6.5 mmol NO3
-) on six separate laboratory visits. In 

a randomised crossover experimental design, salivary and plasma [NO3
-] and 

[NO2
-] were assessed at a neutral oral pH with a low (TempLo-pHNorm), 

intermediate (TempMid-pHNorm) and high (TempHi-pHNorm) oral temperature, and 

at an alkaline oral pH with a low (TempLo-pHHi), intermediate (TempMid-pHHi) and 

high (TempHi-pHHi) oral temperature. Compared to the TempMid-pHNorm trial (976 

± 388 µM), mean salivary [NO2
-] over the protocol was higher in the TempMid-

pHHi (1855 ± 423 µM), TempHi-pHNorm (1371 ± 653 µM), TempHi-pHHi (1792 ± 

741 µM), TempLo-pHNorm (1495 ± 502 µM) and TempLo-pHHi (2013 ± 662 µM) 

conditions, with salivary [NO2
-] also higher at a given oral temperature when 

oral pH was increased (P<0.05). The increase in mean salivary [NO2
-] was 

positively correlated with the increase in salivary flow rate when all data were 

combined (r = 0.48, P<0.01). Plasma [NO2
-] was higher 3 hours post BR 

consumption in the TempMid-pHHi, TempHi-pHHi and TempLo-pHHi trials, but not 

the TempLo-pHNorm and TempHi-pHNorm trials, compared to the TempMid-pHNorm 

trial (P<0.05). Therefore, despite consuming the same NO3
- dose, the increases 

in salivary and plasma [NO2
-] varied depending on the temperature and pH of 

the oral cavity. These findings might have implications for enhancing dietary 

NO3
- metabolism and its potential beneficial effect on human health and 

performance. 
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Introduction 

 

Inorganic nitrate (NO3
-) and nitrite (NO2

-) have classically been viewed as inert 

end-products of nitric oxide (NO) metabolism. However, a substantial body of 

evidence has emerged over the last two decades indicating that NO3
- and NO2

- 

can be chemically reduced into bioactive NO (Lundberg et al., 2004; Lundberg 

and Weitzberg, 2009; 2010). Therefore, increasing dietary NO3
- consumption 

might enhance NO production. Supplementation with natural NO3
--rich beetroot 

juice (BR) has been demonstrated to increase salivary (McDonagh et al., 2015) 

and plasma (Bailey et al., 2009; 2010; McDonagh et al., 2015; Webb et al., 

2008) [NO2
-]. This has been associated with the observation of NO-like 

physiological effects including reductions in resting blood pressure (Bailey et al., 

2009; McDonagh et al., 2015; Webb et al., 2008) and the oxygen cost of 

moderate-intensity exercise (Bailey et al., 2009). As such, considerable 

research interest has been generated regarding the therapeutic potential of 

dietary NO3
- supplementation for the treatment of cardiovascular diseases 

(reviewed by Lundberg et al., 2011) as well as the ergogenic implications for 

physical performance (reviewed by Bailey et al., 2012).  

~80% of human dietary NO3
- intake originates from vegetable sources 

including leafy greens and beetroot (Gilchrist et al., 2010; Hord et al., 2009). 

Following consumption, NO3
- is rapidly absorbed in the stomach and small 

intestine (Florin et al., 1990) and enters systemic circulation within ~60 minutes 

(Lundberg and Weitzberg, 2009). The salivary glands concentrate and secrete 

~25% of the ingested NO3
- (Lundberg and Weitzberg, 2009), which is then 

reduced to NO2
- by commensal bacteria located on the dorsal surface of the 

tongue (Duncan et al., 1995; Sasaki and Matano, 1979; Spiegelhalder et al., 

1976). When swallowed, NO2
- reacts with gastric acid in the stomach to form a 

mixture of nitrogen oxides including NO (Benjamin et al., 1994; Duncan et al., 

1995).  

The reduction of NO3
- to NO2

- is a crucial limiting factor for dietary NO3
- 

metabolism because humans lack the NO3
- reductase enzymes required for 

NO2
- production (Duncan et al., 1995; Lundberg et al., 2004). Commensal oral 

bacteria, such as the Veillonella genus (Doel et al., 2005; Hyde et al., 2014), 
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contain these enzymes and use NO3
- as a terminal electron acceptor during 

anaerobic respiration (Duncan et al., 1995; Lundberg et al., 2004). This 

promotes a symbiotic relationship between the bacteria and its host; one that is 

characterised by the reduction of NO3
- to NO2

-. Importantly, the use of 

antibacterial mouthwash abolishes the oral microbiota, thus attenuating the rise 

in salivary and plasma [NO2
-] following BR supplementation (McDonagh et al., 

2015; Woessner et al., 2016). Conversely, NO2
- production, following the 

incubation of NO3
- solutions in the oral cavity, was facilitated by increments in 

temperature and pH with peak bioconversion occurring at a temperature 

attuned to a summer climate and a pH of 8 (Bojić, Bojić and Perović, 2004; Xu, 

Xu and Verstraete, 2000). Considering that the human oral cavity maintains a 

relatively constant temperature (34-36°C) and pH (~7; Marcotte and Lavoie, 

1998), it might be possible for NO2
- production following BR supplementation to 

be altered by manipulating these conditions. To date, no study has investigated 

the reduction of NO3
- to NO2

- following dietary NO3
- supplementation and 

changes in oral temperature and pH. Increased salivary [NO3
-] after dietary NO3

- 

consumption might enhance NO production and its associated health and 

performance benefits.  

 The purpose of this study was to investigate how changes in oral 

temperature and pH influence the ability of acute BR supplementation to 

increase salivary and plasma [NO2
-] in humans. It was hypothesised that: 1) 

salivary and plasma [NO3
-] and [NO2

-] would increase following BR 

supplementation; 2) salivary and plasma [NO2
-] would be increased further 

when oral temperature and pH were elevated independently; and 3) a greater 

salivary and plasma [NO2
-] would be achieved when oral temperature and pH 

were elevated simultaneously.  

 

Methods 

 

Seven healthy adult males (mean ± SD; age = 23 ± 4 years, height = 1.79 ± 

0.06 m, body mass = 75.7 ± 10.5 kg) volunteered to participate in this 

experiment. Participants were all non-smokers and were not current users of 

any medication. Each participant was familiarised with the laboratory testing 

protocol prior to data collection. The procedures received ethical approval from 
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the Institutional Research Ethics Committee. Written informed consent was 

obtained prior to any involvement in the experiment and following detailed 

explanations of the procedures, associated risks and potential benefits. For 

each visit, participants were instructed to report to the laboratory in a rested and 

fully hydrated state, having not consumed food in the previous 3 hours, caffeine 

in the previous 12 hours or alcohol in the previous 24 hours. Strenuous exercise 

was also avoided in the 24 hours preceding each visit. Participants kept a food 

diary in the 24 hours preceding their first experimental visit, avoiding foods high 

in dietary NO3
- and glucosinolate/thiocyanate, and replicated this consumption 

in the 24 hours prior to their subsequent visits. The use of antibacterial 

mouthwash was prohibited to preserve the commensal bacteria in the oral 

cavity (Govoni et al., 2008). All experimental visits were performed in an air-

conditioned laboratory (20°C) at the same time of day (±2 hours) to minimise 

the influence of diurnal biological variation. 

 

Experimental design 

 

Participants reported to the laboratory on seven occasions over a 4-7 week 

period. The first visit was used to familiarise the individual with the experimental 

testing procedures including venous cannulation, saliva sampling, oral 

temperature assessment and mouth rinse administration. The experimental 

conditions were completed on visits two to seven. On each occasion a single 

dose (1 x 70 ml) of NO3
--rich BR concentrate (Beet it, James White Drinks, 

Ipswich, UK), containing ~6.5 mmol NO3
-, was consumed and the temperature 

and pH of the oral cavity were manipulated to assess the effect of these 

variables on dietary NO3
- metabolism. Temperature of the oral cavity was 

manipulated using a combination of breathing techniques, hot water bottles 

and/or gel packs. The three temperature conditions were: 1) ‘low’, which 

consisted of breathing through the mouth (TempLo); 2) ‘intermediate’, which 

consisted of breathing through the nose with the mouth closed (TempMid); and 

3) ‘high’, which consisted of breathing though the nose with the mouth closed 

while wearing two fleeced, hot water bottles, containing boiling water, applied 

anti-parallel around the neck and a heated gel pack (Reliance Medical, 

Cheshire, UK) strapped to the left cheek (TempHi). Specifically, the apex of the 
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inferior hot water bottle was in contact with the posterior surface of the neck 

while the apex of the superior hot water bottle was in contact with the anterior 

surface of the neck and the upper surface rested on the submandibular space. 

The gel pack was heated for 45 sec in a microwave oven immediately prior to 

application. pH of the oral cavity was manipulated using mouth rinses. Here, 30 

ml of either neutral (tap water; pH 7.3 ± 0.1; pHNorm) or alkaline (tap water 

titrated using food-grade sodium bicarbonate; 500 ml water to 10 g sodium 

bicarbonate; pH 8.1 ± 0.1; pHHi) test solution was swilled for 2 min before being 

fully expectorated. Therefore, the six experimental conditions were: 1) 

intermediate oral temperature, neutral oral pH (TempMid-pHNorm); 2) intermediate 

oral temperature, high oral pH (TempMid-pHHi); 3) high oral temperature, neutral 

oral pH (TempHi-pHNorm); 4) high oral temperature, high oral pH (TempHi-pHHi); 

5) low oral temperature, neutral oral pH (TempLo-pHNorm); and 6) low oral 

temperature, high oral pH (TempLo-pHHi). A test order was assigned using a 

randomised crossover design and each visit was separated by at least 24 

hours.  

 

Procedures 

 

Upon arrival at the laboratory, participants were provided with a standardised, 

low dietary NO3
- and glucosinolate/thiocyanate, breakfast consisting of 54 g of 

Oats So Simple porridge oats (Quaker Oats, Chicago, USA), prepared with 180 

ml of tap water, and one 20 g sachet of Lyle’s Golden Syrup (Tate & Lyle, 

London, UK). Following this, an Insyte-W cannula (Becton-Dickinson, Madrid, 

Spain) was inserted into a forearm vein by a phlebotomy-trained individual and 

was kept clear with the infusion of 0.9% saline at a rate of 10 ml.h-1 for the 

duration of the protocol. The baseline blood sample was then drawn (see 

Measurements). Subsequently, baseline oral temperature was recorded (see 

Measurements) for 10 min with participants breathing through their nose with a 

closed mouth. The baseline saliva sample was collected (see Measurements) 

during the last 2 min of the baseline oral temperature measurement. The 

temperature manipulation was then applied with the hot water bottles/gel packs 

replaced every 30 min in the TempHi-pHNorm and TempHi-pHHi trials to maintain 

the elevated oral temperature. The temperature probe was removed after 5 min 
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with subsequent measurements taken for 5.5 min every 30 min. The first mouth 

rinse was then performed with subsequent rinses occurring every 7.5 min. Pilot 

testing revealed this to be the required frequency of rinsing to maintain the 

elevated oral pH. The test supplement was then consumed and each hour, for 

the next 3 hours, a blood and saliva sample were collected. At the 2:30 hour 

mark, the time taken for peak NO3
- reduction following BR consumption (Wylie 

et al., 2013), the temperature and pH manipulations ceased.  

 

Measurements 

 

Venous blood samples (~5 ml) were drawn into lithium-heparin tubes (Becton-

Dickinson, New Jersey, USA) and immediately centrifuged at 4000 rpm and 4°C 

for 10 min. Following this, the plasma was extracted and stored at -80°C for 

later analysis of [NO3
-] and [NO2

-] (see below). For the collection of whole, 

unstimulated, saliva samples, participants first swallowed their saliva content 

and then drooled into a sample tube until the base was full (~1.2 ml). The 

sample was immediately analysed for temperature and pH, using a SI series pH 

meter (Sentron, Leek, The Netherlands), and volume, using a S1 Pipet Filler 

and serological pipette (Thermo Scientific, Massachusetts, USA), before 

storage at -80°C for later analyses of [NO3
-] and [NO2

-] (see below). Oral 

temperature was measured by placing a temperature probe (Carefusion, Illinois, 

USA) under the tongue. The probe was connected to a Squirrel SQ2020 Series 

Data Logger (Grant, Cambridgeshire, UK), which captured data at 0.33 Hz. 

Upon completion of each mouth rinse, the solution was fully expectorated and 

the volume of the mixture was recorded to provide an indication of how much 

NO2
--rich saliva had been lost. In the TempMid-pHNorm and TempMid-pHHi trials, 

mouth rinses were heated to 35.0 ± 1.2 °C to maintain oral temperature, 

whereas mouth rinses were administered at room temperature (20.7 ± 0.1 °C) in 

the TempLo-pHNorm and TempLo-pHHi trials to lower oral temperature, and heated 

to 40.4 ± 0.7 °C to increase oral temperature in the TempHi-pHNorm and TempHi-

pHHi trials. 

 All glassware, utensils and surfaces were rinsed with deionised water to 

remove residual NO3
- and NO2

- before sample analyses. Plasma samples were 

deproteinized using zinc sulfate (ZnSO4)/sodium hydroxide (NaOH) 
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precipitation prior to determination of [NO3
-]. Firstly, 500 μL of 0.18 N NaOH 

was added to 100 µL of sample followed by 5 min incubation at room 

temperature. Subsequently, samples were treated with 300 μL aqueous ZnSO4 

(5% w/v) and vortexed for 30 seconds before undergoing an additional 10 min 

incubation period at room temperature. Samples were then centrifuged at 4,000 

rpm for 5 min, and the supernatant was removed for subsequent analysis. The 

[NO3
-] of the deproteinized plasma sample was determined by its reduction to 

NO in the presence of 0.8 % (w/v) vanadium chloride (VCl3) in 1 M hydrochloric 

acid (HCl) within an air-tight purging vessel. Plasma samples were introduced to 

the vessel via 50 uL injections into the septum at the top of the vessel. The 

spectral emission of electronically excited nitrogen dioxide, derived from the 

reaction of NO with ozone, was detected by a thermoelectrically cooled, red-

sensitive photomultiplier tube housed in a Sievers NOA 280i gas-phase 

chemiluminescence nitric oxide analyzer (Analytix, Durham, UK). The [NO3
-] 

was determined by plotting signal (mV) area against a calibration plot of sodium 

nitrate standards. The [NO2
-] of the undiluted (non-deproteinized) plasma was 

determined by its reduction to NO in the presence of glacial acetic acid and 

aqueous sodium iodide (NaI) (4% w/v) from sodium nitrite standards. 100 uL 

injections were used for plasma [NO2
-] determination. After thawing at room 

temperature, saliva samples were centrifuged for 10 min at 14000 rpm and the 

supernatant was removed for subsequent analysis. The supernatant was diluted 

100-fold with deionized water and [NO3
-] and [NO2

-] were determined from 50 

uL injections using the same reagents described above for the plasma 

analyses. 

 

Data analysis  

 

Oral temperature at each time point was taken as the mean temperature over 

the final 5 min of the recording. Data for oral temperature were then analysed 

as a condition mean, which was taken as the mean temperature of all time 

points. Data for salivary pH was analysed as the mean salivary pH between the 

baseline, 1 and 2 hours post BR consumption samples. Salivary flow rate was 

calculated by dividing the volume added to the mouth rinse solutions by the 

collection time, based on the procedure used by Walsh et al., (2004).  
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Statistical analysis 

 

A two-way (condition × time) repeated measures ANOVA was used to 

determine the independent and combined effects of manipulating oral 

temperature and pH on salivary and plasma [NO3
-] and [NO2

-]. A one-way 

repeated measures ANOVA was used to determine the effects of oral 

temperature and pH manipulation on the mean salivary and plasma [NO3
-] and 

[NO2
-], oral temperature, salivary pH and salivary flow rate across the 

experimental conditions. Where the analysis revealed a significant main or 

interaction effect, Fishers Least Significant Difference tests were used to 

determine the origin of such effects. Pearson’s product moment correlation 

coefficient was used to assess the relationship between changes in variables 

across conditions. Statistical analyses were performed using SPSS version 23.0 

(IBM, Chicago, USA) with significance set at P<0.05. All results are presented 

as means ± SD unless stated otherwise. 

 

Results 

 

Self-reported compliance to the avoidance of potential confounding factors (i.e. 

restricting dietary intake of NO3
- and glucosinolate/thiocyanate and not using 

antibacterial mouthwash) was 100%. BR consumption was well tolerated by all 

participants with only minor, non-harmful side effects, including beeturia (red 

urine) and red stools, reported. This is consistent with previous studies using a 

similar dose of BR consumption (Bailey et al., 2009; Wylie et al., 2013).  

 

Oral temperature 

 

The influence of BR consumption and oral temperature and pH manipulation on 

oral temperature is presented in Figure 1. There was a main effect for condition 

on oral temperature (P<0.01). Oral temperature was higher in the TempMid-

pHNorm and TempMid-pHHi trials compared to the TempLo-pHNorm and TempLo-
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pHHi trials, and higher in the TempHi-pHNorm and TempHi-pHHi trials compared to 

the TempMid-pHNorm, TempMid-pHHi, TempLo-pHNorm and TempLo-pHHi trials 

(P<0.01 for all comparisons).  

 

 

Figure 1. Oral temperature (upper panel) and salivary pH (lower panel) after acute nitrate-rich 

beetroot juice consumption in intermediate temperature-neutral pH (TempMid-pHNorm), 

intermediate temperature-high pH (TempMid-pHHi), high temperature-neutral pH (TempHi-pHNorm), 

high temperature-high pH (TempHi-pHHi), low temperature-neutral pH (TempLo-pHNorm) and low 

temperature-high pH (TempLo-pHHi) conditions. The oral temperature and salivary pH data are 

expressed as the mean response of all samples collected during the oral temperature and pH 

manipulations. The filled bars represent the group mean ± SEM responses while the solid grey 

lines represent the individual responses in each experimental condition. * indicates higher than 

TempLo-pHNorm and TempLo-pHHi (P<0.05). # indicates higher than TempMid-pHNorm, TempMid-

pHHi, TempLo-pHNorm and TempLo-pHHi (P<0.05). ¥ indicates higher than TempMid-pHNorm, TempHi-

pHNorm and TempLo-pHNorm (P<0.05). 
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Salivary pH 

 

The influence of BR consumption and oral temperature and pH manipulation on 

salivary pH is presented in Figure 1. There was a main effect for condition on 

salivary pH (P<0.01). Salivary pH was higher in TempMid-pHHi, TempHi-pHHi and 

TempLo-pHHi trials compared to the TempMid-pHNorm, TempHi-pHNorm and TempLo-

pHNorm trials (P<0.01 for all comparisons).  

 

Salivary flow rate 

 

The influence of BR consumption and oral temperature and pH manipulation on 

salivary flow rate is presented in Figure 2. There was a main effect for condition 

on salivary flow rate (P<0.05). Salivary flow rate was higher in the TempHi-pHHi 

trial than the TempHi-pHNorm trial (P<0.05), higher in the TempLo-pHHi trial than 

the TempMid-pHNorm, TempMid-pHHi, TempHi-pHNorm and TempLo-pHNorm trials 

(P<0.05) and tended to be higher in the TempLo-pHHi trial than the TempHi-pHHi 

trial (P=0.086).    

 

 

Figure 2. Salivary flow rate after acute nitrate-rich beetroot juice consumption in intermediate 

temperature-neutral pH (TempMid-pHNorm), intermediate temperature-high pH (TempMid-pHHi), 

high temperature-neutral pH (TempHi-pHNorm), high temperature-high pH (TempHi-pHHi), low 

temperature-neutral pH (TempLo-pHNorm) and low temperature-high pH (TempLo-pHHi) conditions. 

The data are expressed as the mean response of all samples collected during the oral 

temperature and pH manipulations. The filled bars represent the group mean ± SEM responses 

while the solid grey lines represent the individual responses in each experimental condition. * 
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indicates higher than TempHi-pHNorm (P<0.05). # indicates higher than TempMid-pHNorm, TempMid-

pHHi, TempHi-pHNorm and TempLo-pHNorm (P<0.05). 

 

Salivary [nitrate] 

 

The influence of BR consumption and oral temperature and pH manipulation on 

absolute salivary [NO3
-] at baseline and 1, 2 and 3 hours post BR consumption, 

and mean salivary [NO3
-] 1-3 hours post BR consumption, are presented in 

Figure 3. There was a main effect for time (P<0.001) with absolute salivary 

[NO3
-] increasing above baseline in all experimental conditions. Absolute 

salivary [NO3
-] was lower in the TempMid-pHHi trial compared to the TempHi-

pHNorm, TempHi-pHHi and TempLo-pHNorm trials 1 hour following BR consumption 

(P<0.05). The mean salivary [NO3
-] 1-3 hours post BR consumption was also 

lower in the TempMid-pHHi trial compared to the TempHi-pHNorm, TempHi-pHHi and 

TempLo-pHNorm trials (P<0.05). 
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Figure 3. Salivary nitrate concentration ([NO3
-]) across the protocol (upper panel) and the mean 

salivary [NO3
-] at hours 1-3 of the protocol (lower panel) after acute NO3

--rich beetroot juice 

consumption in intermediate temperature-neutral pH (TempMid-pHNorm), intermediate 

temperature-high pH (TempMid-pHHi), high temperature-neutral pH (TempHi-pHNorm), high 

temperature-high pH (TempHi-pHHi), low temperature-neutral pH (TempLo-pHNorm) and low 

temperature-high pH (TempLo-pHLo) conditions.  Salivary [NO3
-] values across the protocol 

(upper panel) are expressed as group mean values with error bars omitted for clarity. The filled 

bars represent the group mean ± SEM responses while the solid grey lines represent the 

individual responses in each experimental condition for mean salivary [NO3
-] at hours 1-3 of the 

protocol (lower panel). * indicates TempMid-pHHi lower than TempHi-pHNorm, TempHi-pHHi and 

TempLo-pHNorm (P<0.05). 

 

Salivary [nitrite] 

 

The influence of BR consumption and oral temperature and pH manipulation on 

absolute salivary [NO2
-] at baseline and 1, 2 and 3 hours post BR consumption, 
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and mean salivary [NO2
-] 1-3 hours post BR consumption, are presented in 

Figure 4. There were main effects for time (P<0.001) and condition (P<0.01), as 

well as a condition × time interaction effect (P<0.05), with absolute salivary 

[NO2
-] increasing above baseline in all experimental conditions. Absolute 

salivary [NO2
-] was higher 1 and 2 hours post BR consumption in the TempMid-

pHHi, TempHi-pHHi, TempLo-pHNorm and TempLo-pHHi trials compared to the 

TempMid-pHNorm trial (P<0.05), and higher than the TempMid-pHNorm trial in all 

other experimental conditions 3 hours post BR consumption (P<0.05). There 

was a main effect for condition on the mean salivary [NO2
-] 1-3 hours post BR 

consumption (P<0.01) with mean salivary [NO2
-] higher than the TempMid-pHNorm 

trial in all other experimental conditions (P<0.05), higher than the TempHi-pHNorm 

trial in the TempHi-pHHi and TempLo-pHHi trials (P<0.05) and higher than the 

TempLo-pHNorm trial in the TempLo-pHHi trial (P<0.05). When all data were 

pooled, salivary flow rate was positively correlated with the absolute salivary 

[NO2
-] 1 hour (r = 0.32, P<0.05), 2 hours (r = 0.5, P<0.01) and 3 hours (r = 0.47, 

P<0.01) post BR consumption, and the mean salivary [NO2
-] 1-3 hours post BR 

consumption (r = 0.48, P<0.01). 
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Figure 4. Salivary nitrite concentration ([NO2
-]) across the protocol (upper panel) and the mean 

salivary [NO2
-] at hours 1-3 of the protocol (lower panel) after acute nitrate-rich beetroot juice 

consumption in intermediate temperature-neutral pH (TempMidm-pHNorm), intermediate 

temperature-high pH (TempMid-pHHi), high temperature-neutral pH (TempHi-pHNorm), high 

temperature-high pH (TempHi-pHHi), low temperature-neutral pH (TempLo-pHNorm) and low 

temperature-high pH (TempLo-pHLo) conditions.  Salivary [NO2
-] values across the protocol 

(upper panel) are expressed as group mean values with error bars omitted for clarity. The filled 

bars represent the group mean ± SEM responses while the solid grey lines represent the 

individual responses in each experimental condition for mean salivary [NO2
-] at hours 1-3 of the 

protocol (lower panel). * indicates TempMid-pHNorm lower than TempMid-pHHi, TempHi-pHHi, 

TempLo-pHNorm and TempLo-pHHi (P<0.05). # indicates TempMid-pHNorm lower than TempMid-pHHi, 

TempHi-pHNorm, TempHi-pHHi, TempLo-pHNorm and TempLo-pHHi (P<0.05). ɸ indicates lower than 

TempHi-pHHi and TempLo-pHHi (P<0.05). ¥ indicates lower than TempLo-pHHi (P<0.05). 

 

Plasma [nitrate] 
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The influence of BR consumption and oral temperature and pH manipulation on 

absolute plasma [NO3
-] at baseline and 1, 2 and 3 hours post BR consumption, 

and mean plasma [NO3
-] 1-3 hours post BR consumption, are presented in 

Figure 5.  There was a main effect for time (P<0.001) with absolute plasma 

[NO3
-] increasing above baseline in all experimental conditions. There were no 

between condition differences in absolute plasma [NO3
-] at 1, 2 and 3 hours 

post BR consumption or the mean plasma [NO3
-] 1-3 hours post BR 

consumption (P>0.05). 

 

 

Figure 5. Plasma nitrate concentration ([NO3
-]) across the protocol (upper panel) and the mean 

plasma [NO3
-] at hours 1-3 of the protocol (lower panel) after acute NO3

--rich beetroot juice 

consumption in intermediate temperature-neutral pH (TempMid-pHNorm), intermediate 

temperature-high pH (TempMid-pHHi), high temperature-neutral pH (TempHi-pHNorm), high 

temperature-high pH (TempHi-pHHi), low temperature-neutral pH (TempLo-pHNorm) and low 

temperature and pH (TempLo-pHLo) conditions.  Plasma [NO3
-] values across the protocol (upper 
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panel) are expressed as group mean values with error bars omitted for clarity. The filled bars 

represent the group mean ± SEM responses while the solid grey lines represent the individual 

responses in each experimental condition for mean plasma [NO3
-] at hours 1-3 of the protocol 

(lower panel). 

 

Plasma [nitrite] 

 

The influence of BR consumption and oral temperature and pH manipulation on 

absolute plasma [NO2
-] at baseline and 1, 2 and 3 hours post BR consumption, 

and mean plasma [NO2
-] 1-3 hours post BR consumption, are presented in 

Figure 6.  There were main effects for time (P<0.001) and condition (P<0.05), 

with absolute plasma [NO2
-] increasing above baseline in all experimental 

conditions. Absolute plasma [NO2
-] was higher 3 hours post BR consumption in 

the TempMid-pHHi, TempHi-pHHi and TempLo-pHHi trials compared to the TempMid-

pHNorm trial (P<0.05). There was a main effect for condition on the mean plasma 

[NO2
-] 1-3 hours post BR consumption (P<0.01) with mean plasma [NO2

-] higher 

than the TempMid-pHNorm in the TempHi-pHHi trial (P<0.05).     
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Figure 6. Plasma nitrite concentration ([NO2
-]) across the protocol (upper panel) and the mean 

plasma [NO2
-] at hours 1-3 of the protocol (lower panel) after acute nitrate-rich beetroot juice 

consumption in intermediate temperature-neutral pH (TempMid-pHNorm), intermediate 

temperature-high pH (TempMid-pHHi), high temperature-neutral pH (TempHi-pHNorm), high 

temperature-high pH (TempHi-pHHi), low temperature-neutral pH (TempLo-pHNorm) and low 

temperature and pH (TempLo-pHLo) conditions.  Plasma [NO2
-] values across the protocol (upper 

panel) are expressed as group mean values with error bars omitted for clarity. The filled bars 

represent the group mean ± SEM responses while the solid grey lines represent the individual 

responses in each experimental condition for mean plasma [NO2
-] at hours 1-3 of the protocol 

(lower panel). * indicates TempMid-pHNorm lower than TempMid-pHHi, TempHi-pHHi, and TempLo-

pHHi (P<0.05). # indicates lower than TempHi-pHHi (P<0.05).    

 

Discussion  

 

This is the first study to investigate how changes in oral temperature and pH 

influence the ability of BR supplementation to increase salivary and plasma 
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[NO2
-]. Salivary and plasma [NO3

-] and [NO2
-] were all increased following BR 

supplementation, but the main novel findings from this study were that salivary 

[NO2
-] was increased further when oral temperature and pH were manipulated 

with the peak increase evident when oral temperature was lowered and oral pH 

was elevated. Plasma [NO2
-] was higher 3 hours post BR consumption in the 

alkaline pH conditions compared to the TempMid-pHNorm trial. These findings 

indicate that salivary and plasma [NO2
-] following dietary NO3

- consumption can 

be influenced by oral temperature and pH manipulation which might have 

implications for the physiological effects induced by dietary NO3
- 

supplementation.    

 

Oral temperature and pH 

 

The experimental manipulations impacted upon oral temperature and pH. Mean 

oral temperature in the high, intermediate and low temperature conditions was 

36.2 ± 0.3°C, 34.9 ± 1.2°C and 33.6 ± 1.7°C, respectively, while mean salivary 

pH in the alkaline and neutral pH conditions was 7.8 ± 0.2 and 6.7 ± 0.2, 

respectively. An increased oral temperature and pH has previously been 

suggested to elevate NO3
- reduction to NO2

-, with a pH of ~8 demonstrated to 

be optimal (Bojić, Bojić and Pervović, 2004). Therefore, the salivary pH of 7.8 in 

the alkaline conditions might allow for an optimal salivary [NO2
-] following 

dietary NO3
- supplementation with BR.  

 

Salivary flow rate 

 

NO3
- metabolism might be influenced by changes in salivary flow rate. An 

increased salivary flow rate would be expected to elevate NO3
- secretion by the 

salivary glands thus providing more substrate for reduction to NO2
-. This might 

increase salivary [NO2
-]. Simultaneous, but not independent, oral temperature 

and pH manipulation impacted upon salivary flow rate, which was greater in the 

alkaline pH condition for both the high (TempHi-pHHi: 723 ± 261 µL.min-1 vs. 

TempHi-pHNorm: 501 ± 300 µL.min-1) and low (TempLo-pHHi: 1051 ± 543 µL.min-1 

vs. TempLo-pHNorm: 689 ± 584 µL.min-1) temperature conditions and tended to 
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be greater in the TempLo-pHHi trial compared to the TempHi-pHHi trial (Δ = 329 ± 

282 µL.min-1). Therefore, salivary [NO2
-] following dietary NO3

- consumption and 

oral temperature and pH manipulation might vary due to the differences elicited 

in salivary flow rate. The measurement of salivary flow rate, in the present 

study, builds upon previous research that did not account for this factor when 

investigating oral NO3
- reduction to NO2

- following temperature and pH 

manipulations (Bojić, Bojić and Pervović, 2004).  

 

Salivary and plasma [nitrate] and [nitrite] 

 

Consistent with previous research, BR supplementation increased salivary 

[NO3
-] and [NO2

-] (McDonagh et al., 2015; Woessner et al., 2016) and plasma 

[NO3
-] (McDonagh et al., 2015; Wylie et al., 2013) and [NO2

-] (Bailey et al., 

2009; 2010; Vanhatalo et al., 2010; 2011; Webb et al., 2008; Wylie et al., 2013). 

Salivary [NO3
-] increased 26.8-, 17.6- and 11.8-fold, salivary [NO2

-] increased 

12.6-, 8.8- and 8.6-fold, plasma [NO3
-] increased 5.1-, 5.1- and 4.6-fold and 

plasma [NO2
-] increased 0.8-, 1.5- and 1.6-fold at hours 1-3 post consumption in 

the TempMid-pHNorm trial, respectively. The magnitudes of change in plasma 

[NO3
-] and [NO2

-] conform with the dose-dependent elevations reported 

following acute BR supplementation by Wylie et al., (2013). The delayed time to 

peak plasma [NO2
-] highlights the importance of dietary NO3

- on the 

enterosalivary circuit and, therefore, the metabolism of NO3
- by commensal oral 

bacteria (Duncan et al., 1995; Sasaki and Matano, 1979; Spiegelhalder et al., 

1976).  

 Following BR consumption, oral temperature and pH manipulation had 

no effect on salivary [NO3
-] but salivary [NO2

-] was increased further in the 

independently (TempMid-pHHi: Δ = 1076 ± 423 nM; 90%; TempHi-pHNorm: Δ = 592 

± 653 nM; 41%) and simultaneously (TempHi-pHHi: Δ = 1012 ± 741 nM; 84%) 

elevated oral temperature and pH conditions and in the low oral temperature 

conditions (TempLo-pHNorm: Δ = 715 ± 502 nM; 53% TempLo-pHHi: Δ = 1234 ± 

662 nM; 106%) compared to the TempMid-pHNorm trial. Plasma [NO3
-] also 

remained unaltered following BR consumption and the experimental 

manipulations, however plasma [NO2
-] was increased further than the TempMid-

pHNorm trial in the independently elevated oral pH condition (TempMid-pHHi: Δ = 
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192 ± 89 nM; 20%), the simultaneously elevated oral temperature and pH 

condition (TempHi-pHHi: Δ = 246 ± 75 nM; 53%) and in the TempLo-pHHi trial (Δ = 

220 ± 71 nM; 37%). Therefore, despite consuming the same NO3
- dose, the 

increases in salivary and plasma [NO2
-] varied depending on the temperature 

and pH of the oral cavity. The greatest increase in salivary [NO2
-] was observed 

in the TempLo-pHHi trial. This is likely due to salivary flow rate, which was 

positively correlated with salivary [NO2
-] (r = 0.48). Despite the larger salivary 

[NO2
-] in the TempLo-pHHi trial, the greatest increase in plasma [NO2

-] occurred 

in the TempHi-pHHi trial. It is plausible that this measurement was confounded 

by the mouth rinse protocol, which resulted in 46% more NO2
--rich saliva being 

expectorated following the mouth rinses and sample collections in the TempLo-

pHHi trial compared to the TempHi-pHHi trial. This would likely impair the 

characteristic rise in plasma [NO2
-] demonstrated following dietary NO3

- 

supplementation (Lundberg and Govoni, 2004; Webb et al., 2008). Furthermore, 

the oral temperature manipulation might have elevated core temperature, which 

is known to increase eNOS activity and NO release (Harris et al., 2003). This 

would be expected to increase plasma [NO2
-] independently of dietary NO3

- 

metabolism. A limitation of the present study is that core temperature was not 

measured. Future research should build upon these limitations when 

administering oral temperature and pH manipulations following dietary NO3
- 

supplementation.  

The results herein build upon previous research that demonstrated an 

increased [NO2
-] following both NO3

- consumption and oral pH manipulation 

using a pH-regulating chewing gum (van Maanen, van Geel and Kleinjans, 

1996) and the incubation of an alkaline NO3
- test solution in the mouth (Bojić, 

Bojić and Pervović, 2004). Collectively, the findings suggest that NO3
- reductase 

activity in the human oral cavity is sensitive to pH, salivary flow rate and, to a 

lesser extent, temperature. It is important to note that seasonal variations in oral 

cavity NO3
- reductase activity has the potential to confound these findings. This 

might have influenced the results reported by Bojić, Bojić and Pervović (2004) 

due to their experimental manipulations being performed outdoors in a summer 

and winter climate. In the present study, the experimental manipulations were 

performed in a temperature-controlled laboratory during the winter and spring 

months, therefore, reducing this factor. Oral temperature and pH manipulation 
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following dietary NO3
- supplementation might have implications for future BR 

supplementation recommendations, might contribute to understanding of the 

underlying physiology for responders and non-responders to dietary NO3
- 

supplementation, and might enhance the cardiovascular health and physical 

performance benefits demonstrated at a given dietary NO3
- dose. Therefore, 

further research is warranted.  

 

Conclusion 

 

The increase in salivary and plasma [NO2
-] following acute BR supplementation 

was influenced by oral temperature and pH manipulation. Peak salivary [NO2
-] 

was evident in the low oral temperature and alkaline oral pH condition, with the 

prior suggesting a key role for salivary flow rate in human NO3
- metabolism. 

Plasma [NO2
-] was also higher in the alkaline oral pH conditions. These results 

extend our understanding of dietary NO3
- metabolism following BR 

supplementation. Further research is required to build upon the findings of this 

study. Specifically, investigating the impact of oral temperature and pH 

manipulation on plasma [NO2
-] and the physiological effects induced by dietary 

NO3
- supplementation might be fruitful areas of study.  
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Chapter 4: Effect of dietary nitrate supplementation on oxygen uptake 

kinetics and exercise tolerance: influence of muscle oxygenation 

 

Abstract 

 

We tested the hypothesis that dietary nitrate (NO3
-) supplementation would 

improve muscle oxygenation, oxygen uptake (V̇O2) kinetics and exercise 

tolerance (Tlim) in normoxia and that these improvements would be augmented 

in hypoxia and attenuated in hyperoxia. In a randomized, cross-over study, ten 

healthy males completed work-to-work step cycle tests to exhaustion following 

acute consumption of 3 x 70 ml NO3
--rich beetroot juice (BR; 19.5 mmol NO3

-) 

or NO3
--depleted beetroot juice placebo (PL; 0.12 mmol NO3

-). These tests were 

completed in normobaric hypoxia (FiO2: 15%), normoxia (FiO2: 21%) and 

hyperoxia (FiO2: 40%). Pulmonary V̇O2 and quadriceps tissue oxygenation 

index (TOI), derived from multi-channel near-infrared spectroscopy, were 

measured during all trials. Plasma [nitrite] was higher in all BR compared to all 

PL trials (P<0.05). Quadriceps TOI was higher in normoxia compared to 

hypoxia (P<0.05) and higher in the hyperoxia compared to hypoxia and 

normoxia (P<0.05). Tlim was improved after BR compared to PL consumption 

(250 ± 44 vs.  231 ± 41 sec), with the magnitude of improvement being 

negatively correlated with quadriceps TOI at exhaustion (r = -0.78), in hypoxia 

(P<0.05). Tlim tended to be improved with BR in normoxia (BR: 364 ± 98 vs.  PL: 

344 ± 78 s; P=0.087), but was not improved in hyperoxia (BR: 492 ± 212 vs.  

PL: 472 ± 196 s; P>0.05). BR consumption increased peak V̇O2 in hypoxia 

(P<0.05), but not normoxia or hyperoxia (P>0.05). Therefore, NO3
- 

supplementation is more likely to improve T lim and peak V̇O2 as skeletal 

muscles become increasingly hypoxic. 

 

Introduction  

 
Nitric oxide (NO) is a gaseous signalling molecule with physiological 

functions including the regulation of blood flow, muscle contractility and 

mitochondrial respiration (Stamler and Meissner, 2001). NO is endogenously 
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synthesised from the oxidation of L-arginine by the NO synthase (NOS) 

enzymes (the NOS pathway; Stamler and Meissner, 2001) or from the stepwise 

reduction of inorganic nitrate (NO3
-) to nitrite (NO2

-) and NO (the NO3
--NO2

--NO 

pathway; Lundberg et al., 2004; Lundberg and Weitzberg, 2009). NO3
- is 

consumed as part of the human diet, with ~80% of its intake originating from 

vegetable sources including leafy greens and beetroot (Gilchrist et al., 2010; 

Hord et al., 2009). ~25% of the consumed NO3
- is concentrated and secreted by 

the salivary glands (Lundberg and Weitzberg, 2009), which is then reduced to 

NO2
- by commensal anaerobic bacteria located on the dorsal surface of the 

tongue (Duncan et al., 1995; Sasaki and Matano, 1979; Spiegelhalder et al., 

1976). When swallowed, NO2
- reacts with gastric acid in the stomach to form a 

mixture of nitrogen oxides, including NO (Benjamin et al., 1994; Duncan et al., 

1995). Alternatively, NO2
- can be absorbed into circulation where its reduction to 

NO is catalysed by several enzymes (i.e. xanthine oxidase; Zhang et al., 1998) 

or reduced non-enzymatically in the presence of protons (Carlsson et al., 2001; 

Peri et al., 2005). The NO3
--NO2

--NO pathway has been proposed to represent 

a means of NO synthesis when the activity of the NOS pathway is impaired, 

such as conditions of low oxygen (O2) availability (Bryan et al., 2006) which 

might be evident in contracting skeletal muscle (Bailey et al., 2010; Richardson 

et al., 1999), and has become a major focus of NO physiology research in 

recent years.   

An abundance of evidence exists to support the use of dietary NO3
- 

supplementation, including NO3
--rich beetroot juice (BR), to increase plasma 

[NO2
-] (Bailey et al., 2009; 2010; Vanhatalo et al., 2010; 2011; Webb et al., 

2008; Wylie et al., 2013). This has been associated with lower pulmonary O2 

uptake (V̇O2; Bailey et al., 2009; Vanhatalo et al., 2010; Wylie et al., 2013) and 

greater indexes of vastus lateralis muscle oxygenation during moderate-

intensity exercise (Bailey et al., 2009) and an enhanced tolerance to severe-

intensity exercise (Bailey et al., 2009; Wylie et al., 2013) in healthy young adults 

performing in conditions of normal O2 availability (~21% O2; normoxia). These 

changes have been suggested to be caused by NO-mediated improvements in 

muscle contractile function (Bailey et al., 2010), mitochondrial efficiency (Larsen 

et al., 2011) and/or muscle blood flow (Ferguson et al., 2013) and might be 

more pronounced in conditions of reduced O2 availability (<21% O2; hypoxia) 
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whereby local NO-mediated vasodilation increases muscle blood flow to restore 

sufficient O2 supply (Casey et al., 2010). Indeed, BR supplementation has been 

shown to lower steady-state V̇O2 and speed V̇O2 kinetics during moderate-

intensity exercise and enhance severe-intensity exercise tolerance in hypoxia 

(Kelly et al., 2014). To date, no study has investigated the physiological and 

tolerance changes induced by dietary NO3
- supplementation during exercise 

completed in conditions of increased O2 availability (>21% O2; hyperoxia). 

However, a reduced time to fatigue was observed in mouse muscle fibres 

following incubation with sodium NO2
- at a supra-physiological partial pressure 

of O2 (PO2; Nogueira et al., 2013). Considering that the increased fraction of 

inspired oxygen (FiO2) in hyperoxic air is associated with a greater intracellular 

PO2 (Collins et al., 2015), exercise performed in hyperoxia might be associated 

with a reduced stimulus for NO2
- reduction to NO, thus attenuating the 

physiological effects induced by dietary NO3
- supplementation. However, this 

remains to be identified.  

The dietary NO3
- supplementation studies by Bailey et al., (2009) and 

Kelly et al., (2014) used single-channel near infrared spectroscopy (NIRS) 

systems to measure the muscle oxygenation status of the vastus lateralis. The 

use of a multi-channel system, that comprises multiple source/detector pairings, 

would enable the investigation of regional differences within a single muscle 

(i.e. proximal vs. distal) and/or wider differences within a muscle group (i.e. 

vastus lateralis vs. rectus femoris within the quadriceps muscle group). To date, 

no study has used a multi-channel NIRS system to investigate the changes in 

quadriceps muscle group oxygenation induced by dietary NO3
- supplementation 

and exercise in hypoxia, normoxia or hyperoxia.  

The purpose of this study was to investigate how dietary NO3
- 

supplementation influenced muscle oxygenation, V̇O2 kinetics and exercise 

tolerance in hypoxia, normoxia and hyperoxia. Specifically, the alterations in 

plasma [NO2
-], arterial SpO2, multi-channel NIRS-derived quadriceps TOI, 

pulmonary V̇O2 and time to exhaustion (Tlim) were investigated following acute 

BR supplementation and work-to-work step cycling exercise in hypoxia, 

normoxia and hyperoxia. It was hypothesised that muscle oxygenation, V̇O2 

kinetics and exercise tolerance would be augmented in normoxia, increased 

further in hypoxia and attenuated in hyperoxia following BR supplementation.  
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Methods 

 
Ten healthy males (mean ± SD; age = 23 ± 3 years, height = 1.80 ± 0.07 m, 

body mass = 78.2 ± 8.9 kg) volunteered to participate in this study. None of the 

participants were tobacco smokers or users of any medication. All participants 

were fully familiarised with the laboratory testing protocol prior to data collection. 

The procedures received ethical approval from the Institutional Research Ethics 

Committee. Written informed consent was obtained prior to data collection and 

following detailed explanations of the experimental procedures, associated risks 

and potential benefits of participation. For each visit, participants were 

instructed to arrive at the laboratory in a rested and fully hydrated state, 3 hours 

post-prandial, having not consumed caffeine in the previous 12 hours or alcohol 

in the previous 24 hours. Strenuous exercise was also avoided in the 24 hours 

preceding each visit. Each participant performed their experimental visits at the 

same time of day (±2 hours) to minimise the influence of diurnal biological 

variation on physiological responses and exercise performance. The use of 

antibacterial mouthwash was prohibited to preserve the NO3
--reducing 

commensal oral bacteria (Woessner et al., 2016). Participants recorded their 

food intake in the 24 hours preceding their first experimental visit, avoiding 

foods high in dietary NO3
- and glucosinolate/thiocyante, and replicated this 

consumption in the 24 hours preceding each subsequent visit.  

 

Experimental design 

 
Participants reported to the laboratory on nine occasions over a 3 to 5 week 

period. Following an initial ramp incremental exercise test and familiarisation 

trials, participants completed work-to-work step cycle exercise tests for the 

determination of plasma [NO2
-] and V̇O2 kinetics, quadriceps oxygenation and 

exercise tolerance. The experimental trials were completed after acute 

consumption of either NO3
--rich beetroot juice concentrate (BR; Beet it, James 

White Drinks, Ipswich, UK) or NO3
--depleted beetroot juice concentrate as a 

placebo (PL; Beet it, James White Drinks, Ipswich, UK) in normobaric hypoxia 
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(BR-Hypo, PL-Hypo), normoxia (BR-Norm, PL-Norm) and hyperoxia (BR-Hyper, 

PL-Hyper). These conditions were administered double blind in a randomised 

crossover experimental design.  

 

Procedures  

 
During the first visit to the laboratory, a ramp incremental exercise test was 

performed for the determination of V̇O2 peak and gas exchange threshold (GET). 

All exercise tests were performed on an electrically-braked cycle ergometer 

(Lode Excalibur Sport, Groningen, The Netherlands). Following a baseline cycle 

at 20 W for 3 min, the work rate was increased at a linear rate of 40 W.min-1 

until the limit of tolerance. Participants cycled at a self-selected cadence 

(between 70-90 rpm) and this pedal rate along with saddle and handle bar 

configuration was recorded and reproduced in subsequent tests. Breath-by-

breath pulmonary gas exchange data were collected continuously during the 

incremental tests and subsequently averaged over consecutive 10 sec periods 

using a Medgraphics Cardiorespiratory Diagnostics (Express Series, 

Gloucester, UK). V̇O2 peak was determined as the highest 30 sec average value 

achieved before the participant’s volitional exhaustion. The GET was 

determined from a cluster of measurements including: 1) the first 

disproportionate increase in carbon dioxide (CO2) production (V̇CO2) from visual 

inspection of individual plots of V̇CO2 vs. V̇O2; 2) an increase in expired 

ventilation (V̇E) /V̇O2 with no increase in V̇E /V̇CO2; and 3) an increase in end-

tidal O2 tension with no fall in end-tidal CO2 tension. The data collected during 

the incremental test was used to calculate the work rates which were employed 

during the subsequent work-to-work step tests. Specifically, the work rates that 

would require 95% of the V̇O2 at GET (moderate-intensity exercise) and 75% of 

the difference between the V̇O2 at the GET and V̇O2peak (75% Δ; severe-

intensity exercise) were calculated, with consideration for the mean response 

time of V̇O2 during incremental ramp exercise (i.e. two-thirds of the ramp rate 

was subtracted from the power output at the GET and V̇O2 peak; Whipp et al., 

1981).  

Participants completed a work-to-work step exercise test in each of the 

remaining eight visits. Visits two and three were used to familiarise participants 
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with the exercise test while breathing normoxic and hypoxic inspirates, 

respectively. The experimental conditions were then completed on visits four to 

nine. Upon arrival at the laboratory, a Insyte-W cannula (Becton-Dickinson, 

Madrid, Spain) was inserted into a forearm vein, by a phlebotomy-trained 

individual, to enable the collection of frequent blood samples during and 

immediately after the exercise test. The participant was then transferred to the 

cycle ergometer where the mouthpiece, fingertip pulse oximeter and three sets 

of NIRS probes were fitted (see Measurements section below). Subsequently, 

participants underwent a 5 min seated rest while breathing the test specific 

inspirate (see Inspirate Generation section below) immediately followed by the 

work-to-work exercise test. The test began with 2 min of low-intensity ‘baseline’ 

cycling at 20 W before an abrupt transition to a moderate-intensity constant 

work rate equivalent to 95% GET (U → M). Following 4 min of moderate-

intensity cycling, the work rate was abruptly increased to a severe-intensity 

constant work rate equivalent to 75% Δ (M → S). The severe-intensity exercise 

bout was continued until the limit of tolerance, which was recorded when the 

pedal rate fell 10 rpm below the previously established self-selected cadence.  

Participants were required to consume 3 x 70 ml beetroot juice 

concentrate 2.5 hours prior to arrival at the laboratory for all experimental tests. 

BR (which provided ~19.5 mmol NO3
-) was consumed for the BR-Norm, BR-

Hypo and BR-Hyper trials while PL (which provided ~0.1 mmol NO3
-) was 

consumed for the PL-Norm, PL-Hypo and PL-Hyper trials (Wylie et al., 2013). 

Each experimental test was separated by a washout period of at least 48 hours 

(Lansley et al., 2011). 

 

Inspirate generation 

 
The test inspirates administered in this study were generated using an Altitude 

Air Generator 12 (Colorado Altitude Training, Louisville, USA). The generator 

comprised two outlets, one which expelled O2-enriched air and one which 

expelled O2-depleted air. Air from these outlets were delivered, via an extension 

conduit, to a 1000 L Douglas Bag (Cranlea & Co., Birmingham, UK), which 

acted as a reservoir and mixing chamber. To generate the hypoxic and 

hyperoxic inspirates, the O2-enriched and O2-depleted air was mixed until the 
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required O2 percentage was achieved. To generate the normoxic inspirate, the 

O2-enriched and O2-depleted air was delivered to the Dougas Bag in equal 

parts. The O2 and CO2 concentration of the inspirate was recorded prior to each 

test using a 5200 High Accuracy Paramagnetic O2 and CO2 Analyser 

(Servomex, Crowborough, UK). This analyser was calibrated prior to each test 

with a 16.0% O2, 8.0% CO2 and 76.0% nitrogen gas mix (BOC Special Gases, 

Guildford, UK). The mean O2 % in the PL-Norm, BR-Norm, PL-Hypo, BR-Hypo, 

PL-Hyper and BR-Hyper trials was 21.0 ± 0.2, 21.0 ± 0.1, 14.9 ± 0.1, 14.9 ± 0.1, 

40.1 ± 0.1 and 40.0 ± 0.1, respectively. The Douglas bag comprised a separate 

outlet tube that connected to a two-way breathing valve system (Cranlea, 

Birmingham, UK). The two-way valve was connected to the mouthpiece which 

provided a constant, unidirectional flow rate and ensured that no re-breathing of 

expired air occurred.  

 

Measurements 

 
Venous blood samples were collected at the end of unloaded and moderate-

intensity cycling, 120 sec following the onset of severe-intensity cycling and at 

the point of exhaustion during severe-intensity cycling. Samples (~5 ml) were 

drawn into lithium-heparin tubes (Becton-Dickinson, New Jersey, USA) and 

immediately centrifuged at 4000 rpm and 4°C for 10 min, within 2 min of 

collection. The plasma was subsequently extracted and immediately stored at -

80°C for later analyses of [NO2
-] via ozone-based chemiluminescence, as used 

previously (Wylie et al., 2013).  

Arterial O2 saturation (SpO2) was measured continuously at 0.5 Hz using 

a Rad-87 pulse oximeter (Masimo, Irvine, USA) attached to the right index 

finger with the data file exported for later analysis. Quadriceps tissue 

oxygenation index (TOI) was measured continuously at three sites using two 

spatially-resolved NIRS systems with data sampled at 1 Hz. The TOI of the 

rectus femoris was assessed using a NIRO 200 tissue oxygenation 

spectrometer (Hamamatsu Photonics KK, Hamamatsu City, Japan) while the 

TOI of the vastus lateralis was assessed using a NIRO 200NX tissue 

oxygenation spectrometer (Hamamatsu Photonics KK, Hamamatsu City, 

Japan). Both systems comprised an emission probe that irradiated laser beams 
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and a detection probe. Three different wavelength laser diodes provided the 

light source (775, 810 and 850 nm in the NIRO 200 and 735, 810 and 850 in the 

NIRO 200NX) and the light returning from the tissue was detected by a 

photomultiplier tube in the spectrometer. The optodes were placed in a holder, 

which was secured to the skin with adhesive. The rectus femoris probe was 

placed at 50% of the distance between the patella and the greater trochanter. 

The proximal vastus lateralis probe was attached at 70%, with the distal vastus 

lateralis probe attached at 30%, of the distance between the patella and the 

greater trochanter. To secure the holder and wires in place, an elastic bandage 

was wrapped around the subject’s leg. The wrap helped to minimize the 

possibility that extraneous light could influence the signal and also ensured that 

the optodes did not move during exercise. Indelible pen marks were made 

around the holder to enable precise reproduction of the placement in 

subsequent tests. The inter-optode distance (3 cm) and optical pathlength factor 

(18.6 cm) were consistent between measurement sites.   

During all exercise tests, pulmonary gas exchange and ventilation were 

measured continuously using a Medgraphics CPX Express stress testing 

system (MGC Diagnostics, Saint Paul, USA). Participants wore a nose clip and 

breathed through a low-dead-space, low-resistance mouthpiece and preVent 

pneumotach flowmeter assembly (MGC Diagnostics, Saint Paul, USA). The 

inspired and expired gas volume and gas concentration signals were 

continuously sampled, the latter using galvanic (O2) and non-dispersive infrared 

(CO2) analysers (MGC Diagnostics, Saint Paul, USA) via a capillary line 

connected to the mouthpiece. The gas analysers were calibrated before each 

test with gases of known concentration and the turbine volume transducer was 

calibrated with a 3 L syringe (Hans Rudolph, Kansas City, USA).   

 

Data analysis  

 
The breath-by-breath V̇O2 data from each trial were initially examined to 

exclude errant breaths caused by coughing, swallowing, sighing, etc., and those 

values lying more than four standard deviations from the local mean were 

removed. The breath-by-breath data were subsequently linearly interpolated to 

provide second-by-second values and time-aligned to the start of exercise. A 
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single-exponential model without time delay, with the fitting window 

commencing at t = 0 sec (equivalent to the mean response time, MRT) was 

used to characterise the kinetics of the overall V̇O2 response during the U→M 

and M→S step work rate increments as described in the following equation:  

 

V̇O2 (t) = V̇O2 baseline + A (1-e- (t/MRT))    (Eqn. 1)                                          

 

where V̇O2 (t) represents the absolute V̇O2 at a given time; V̇O2 baseline 

represents the mean V̇O2
 measured over the final 60 sec of baseline; and A and 

MRT represent the amplitude and MRT, respectively, describing the overall 

increase in V̇O2 above baseline. An iterative process was used to minimise the 

sum of the squared errors between the fitted function and the observed values. 

We quantified the V̇O2 MRT with the fitting window constrained to the end of the 

U→M work rate increment and to 180 sec of the M→S work rate increment. The 

absolute V̇O2 at the end (mean over the final 60 sec) of the U→M and M→S 

work rate increments, and at 180 sec (± 15 sec) of M→S were also calculated, 

as was the change (∆) in V̇O2 between baseline and end-exercise in the U→M 

and M→S work rate increments and between baseline and 180 sec of the M→S 

work rate increment.     

The TOI responses at the rectus femoris and proximal and distal vastus 

lateralis were averaged prior to analysis. The absolute TOI at the end (mean 

over the final 60 sec) of the unloaded baseline, the U→M and M→S work rate 

increments, and at 180 sec (± 15 sec) during the M→S work rate increment 

were subsequently calculated. The SpO2 data from the start of unloaded cycling 

up to 120 sec of severe-intensity cycling exercise were averaged for each 

experimental condition to provide an overall SpO2 profile for each trial.  

 

Statistical analysis  

 
A two-way, supplement (PL and BR) × inspirate (hypoxia, normoxia and 

hyperoxia), repeated-measures ANOVA was employed to assess differences in 

plasma [NO2
-], V̇O2 kinetics, SpO2, TOI and exercise tolerance across the 
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experimental conditions.  Significant effects were further explored using post-

hoc Fisher’s LSD t-tests. Relationships between the outcome variables were 

assessed using Pearson’s correlation coefficient (r). Statistical analyses were 

performed using SPSS version 23.0 (IBM, Chicago, USA) with significance 

accepted when P<0.05. Data are presented as mean ± SD, unless stated 

otherwise. 

 

Results  

 

The BR and PL supplements and hypoxic and hyperoxic inspirates 

administered in this study were well tolerated with no side-effects reported. All 

participants self-reported that their dietary and exercise habits were consistent 

across the duration of the study. Participants attained a peak work rate of 379 ± 

40 W and V̇O2 of 3.82 ± 0.50 L·min-1 (49 ± 5 ml·kg-1·min-1) during the ramp 

incremental test. The work rates applied during the moderate-intensity and 

severe-intensity step cycle tests were 106 ± 14 and 292 ± 34 W, respectively. 

 

Plasma [nitrite]  

 

Plasma [NO2
-] data are presented in Figure 1. Plasma [NO2

-] was higher at the 

end of baseline cycling, moderate-intensity cycling, 120 sec of severe-intensity 

cycling and at exhaustion in the BR-Hypo (410 ± 220, 385 ± 212, 334 ± 216 and 

231 ± 130 nM, respectively), BR-Norm (398 ± 191, 368 ± 130, 390 ± 147 and 

246 ± 77 nM, respectively) and BR-Hyper (359 ± 104, 343 ± 88, 369 ± 113 and 

247 ± 74 nM, respectively) trials compared to the PL-Hypo (107 ± 92, 97 ± 87, 

110 ± 82 and 99 ± 80 nM, respectively), PL-Norm (89 ± 44, 91 ± 42, 85 ± 27 

and 80 ± 32 nM, respectively) and PL-Hyper (89 ± 40, 82 ± 37, 61 ± 24 and 59 ± 

19 nM, respectively) trials (P<0.01); however, there were no differences 

between the BR-Hypo, BR-Norm and BR-Hyper trials or between the PL-Hypo, 

PL-Norm and PL-Hyper trials at specific time points (P>0.05). In the BR, but not 

PL trials, plasma [NO2
-] was lower at exhaustion compared to the end of 

baseline cycling, moderate-intensity cycling and 120 sec of severe-intensity 

cycling (P<0.05). 
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Figure 1. Plasma nitrite concentration ([NO2
-]) following nitrate-depleted beetroot juice (PL) in 

hypoxia (PL-Hypo), normoxia (PL-Norm) and hyperoxia (PL-Hyper), and following nitrate-rich 

beetroot juice (BR) in hypoxia (BR-Hypo), normoxia (BR-Norm) and hyperoxia (BR-Hyper). 

Plasma was sampled at the end of unloaded baseline cycling at 20 W, moderate-intensity 

cycling, 120 sec of severe-intensity cycling and at the point of exhaustion during severe-

intensity cycling. Data are presented as group mean ± SEM. * indicates BR-Hypo, BR-Norm, 

and BR-Hyper trials are higher than PL-Hypo and PL-Norm and PL-Hyper (P<0.05). # indicates 

different from baseline, end moderate and 120 sec severe in the BR-Hypo, BR-Norm, and BR-

Hyper trials (P<0.05). 

 

Arterial oxygen saturation 

 
The mean SpO2 data are presented in Figure 2. Mean SpO2 was lower in the 

hypoxic trials compared to the normoxic and hyperoxic trials (P<0.01), but not 

different between the normoxic and hyperoxic trials (P>0.05).   
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Figure 2. Arterial oxygen saturation (SpO2) following nitrate-depleted beetroot juice (PL) in 

hypoxia (PL-Hypo), normoxia (PL-Norm) and hyperoxia (PL-Hyper), and following nitrate-rich 

beetroot juice (BR) in hypoxia (BR-Hypo), normoxia (BR-Norm) and hyperoxia (BR-Hyper). The 

open bars represent the group mean ± SEM SpO2 from the PL trials while the filled bars 

represent the group mean ± SEM SpO2 from the BR trials. Data represent the mean SpO2 up 

120 sec of severe-intensity cycling exercise. * indicates different from PL-Hypo and BR-Hypo 

(P<0.05).   

 

Tissue oxygenation index 

 
Quadriceps TOI data are presented in Figure 3. Quadriceps TOI was higher 

during moderate-intensity and severe-intensity cycling exercise in the PL-Norm 

trial compared to the PL-Hypo trial (P<0.05) and in the PL-Hyper trial compared 

to the PL-Hypo and PL-Norm trials (P<0.05; Figure 3). There were no 

differences in quadriceps TOI between the PL-Hypo and BR-Hypo trials or 

between the PL-Hyper and BR-Hyper trials (P>0.05), but quadriceps TOI was 

higher during baseline (71 ± 3 vs. 69 ± 3 %) and at moderate-intensity (67 ± 5 

vs. 65 ± 4 %) cycling exercise in the BR-Norm trial compared to the PL-Norm 

trial (P<0.05; Figure 4).   
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Figure 3. Quadriceps tissue oxygenation index (TOI) responses following nitrate-depleted 

beetroot juice (PL) in hypoxia (PL-Hypo), normoxia (PL-Norm) and hyperoxia (PL-Hyper). TOI 

data during baseline cycling at 20 W (-60-0 sec), moderate-intensity cycling (0-240 sec) and 

severe-intensity cycling (240-360 sec) are group mean responses displayed as 5 sec averages. 

TOI data at exhaustion during severe-intensity cycling exercise represent the mean TOI over the 

final 60 sec of exercise and are presented as group mean ± SEM. # indicates different from PL-

Hypo and BR-Hypo (P<0.05). * indicates different from PL-Norm, BR-Norm, PL-Hypo and BR-

Hypo (P<0.05).   
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Figure 4. Quadriceps tissue oxygenation index (TOI) responses following nitrate-depleted 

beetroot juice (PL) and nitrate-rich beetroot juice (BR) in hypoxia (upper panel; PL-Hypo and 

BR-Hypo, respectively), normoxia (middle panel; PL-Norm and BR-Norm, respectively) and 

hyperoxia (lower panel; PL-Hyper and BR-Hyper, respectively). TOI data during baseline cycling 

at 20 W (-60-0 sec), moderate-intensity cycling (0-240 sec) and severe-intensity cycling (240-

360 sec) are group mean responses displayed as 5 sec averages. TOI data at exhaustion 

during severe-intensity cycling exercise represent the mean TOI over the final 60 sec of 

exercise and are presented as group mean ± SEM. * indicates different from PL-Hypo (P<0.05). 

# indicates different from PL-Norm (P<0.05).    
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Pulmonary oxygen uptake kinetics 

 
The group mean pulmonary V̇O2 data are presented in Table 1 with the V̇O2 

responses from a representative individual and the group mean end-exercise 

V̇O2 shown in Figure 5. There were no differences in the absolute V̇O2 during 

baseline, moderate-intensity cycling or the first 180 sec of severe-intensity 

cycling between any of the experimental conditions (P>0.05). The V̇O2 MRT 

was longer following the onset of severe-intensity cycling initiated from a 

moderate-intensity baseline compared to moderate-intensity cycling initiated 

from an unloaded baseline (P<0.01; Table 1). However, the V̇O2 MRT during 

moderate-intensity and severe-intensity exercise were not different between 

experimental conditions (P>0.05). The change in V̇O2 over the first 180 sec of 

severe-intensity cycling and end-exercise V̇O2 during severe-intensity cycling 

were not different between the PL-Norm and PL-Hyper conditions (P>0.05) but 

were lower in the PL-Hypo trial compared to both the PL-Norm and PL-Hyper 

trials (P<0.05; Table 1). There were no differences in the change in V̇O2 over 

the first 180 sec or end-exercise V̇O2 during severe-intensity cycling between 

the BR and PL conditions in normoxia and hyperoxia (P>0.05), but these 

variables were both higher after BR supplementation in hypoxia compared to PL 

supplementation in hypoxia (P<0.05; Table 1; Figure 5).    

 

Table 1. Pulmonary oxygen uptake kinetics following a step increment in work rate from 

unloaded to moderate-intensity cycling and moderate-intensity to severe-intensity 

cycling after nitrate-rich and nitrate-depleted beetroot juice in hypoxia, normoxia and 

hyperoxia. 

 PL-Hypo BR-Hypo PL-Norm BR-Norm PL-Hyper BR-Hyper 

 U→M 

Baseline V̇O2 (L·min-1) 
0.90 ± 

0.14 

0.87 ± 

0.09 

0.89 ± 

0.09 

0.89 ± 

0.12 

0.86 ± 

0.09 

0.90 ± 

0.20 

End V̇O2 (L·min-1) 
1.65 ± 

0.23 

1.60 ± 

0.20 

1.64 ± 

0.20 

1.61 ± 

0.22 

1.62 ± 

0.16 

1.60 ± 

0.25 

∆ End-Baseline V̇O2 

(L·min-1) 

0.75 ± 

0.11 

0.72 ± 

0.14 

0.75 ± 

0.16 

0.72 ± 

0.13 

0.76 ± 

0.15 

0.69 ± 

0.12 

Mean response time 

(sec) 
49 ± 15 39 ± 10 43 ± 9 47 ± 13 41 ± 14 41 ± 9 

 M→S 

Baseline V̇O2 (L·min-1) 
1.65 ± 

0.23 

1.60 ± 

0.20 

1.64 ± 

0.20 

1.61 ± 

0.22 

1.62 ± 

0.16 

1.60 ± 

0.25 

180 sec V̇O2 (L·min-1) 
3.27 ± 

0.35 

3.35 ± 

0.42 

3.46 ± 

0.47 

3.49 ± 

0.46 

3.48 ± 

0.25 

3.40 ± 

0.48 
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∆ 180 sec-Baseline V̇O2 

(L·min-1) 

1.62 ± 

0.22 

1.75 ± 

0.24¥ 

1.81 ± 

0.27# 

1.88 ± 

0.30# 

1.86 ± 

0.14# 

1.80 ± 

0.25# 

Mean response time 

(sec) 
64 ± 17* 62 ± 13* 68 ± 11* 67 ± 11* 61 ± 17* 60 ± 16* 

End V̇O2 (L·min-1) 
3.28 ± 

0.33 

3.43 ± 

0.36¥ 

3.82 ± 

0.53# 

3.83 ± 

0.44# 

3.82 ± 

0.35# 

3.82 ± 

0.58# 

∆ End-Baseline V̇O2 

(L·min-1) 

1.64 ± 

0.20 

1.83 ± 

0.21¥ 

2.18 ± 

0.35# 

2.21 ± 

0.29# 

2.20 ± 

0.30# 

2.22 ± 

0.39# 

Data are presented as mean ± SD. PL-Hypo, acute ingestion of a nitrate-depleted beetroot juice 

concentrate and inhalation of a hypoxic inspirate; BR-Hypo, acute ingestion of a nitrate-rich 

beetroot juice concentrate and inhalation of a hypoxic inspirate; PL-Norm, acute ingestion of a 

nitrate-depleted beetroot juice concentrate and inhalation of a normoxic inspirate; BR-Norm, 

acute ingestion of a nitrate-rich beetroot juice concentrate and inhalation of a normoxic 

inspirate; PL-Hyper, acute ingestion of a nitrate-depleted beetroot juice concentrate and 

inhalation of a hyperoxic inspirate; BR-Hyper, acute ingestion of a nitrate-rich beetroot juice 

concentrate and inhalation of a hyperoxic inspirate; U→M, a step increment from an unloaded 

baseline to a moderate-intensity work rate; M→S, a step increment from a moderate-intensity 

baseline work rate to a severe-intensity work rate; V̇O2, pulmonary oxygen uptake; ∆, difference; 

* different from U→M value (P<0.05); # different from PL-Hypo and BR-Hypo (P<0.05); ¥ 

different from PL-Hypo (P<0.05). 
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Figure 5. Pulmonary oxygen uptake (V̇O2) responses following nitrate-depleted beetroot juice 

(PL) and nitrate-rich beetroot juice (BR) in hypoxia (upper panel; PL-Hypo and BR-Hypo, 

respectively), normoxia (middle panel; PL-Norm and BR-Norm, respectively) and hyperoxia 

(lower panel; PL-Hyper and BR-Hyper, respectively). V̇O2 data during unloaded baseline cycling 

at 20 W (-60-0 sec), moderate-intensity cycling (0-240 sec) and severe-intensity cycling (240-

360 sec) are displayed as 5 sec averages from a representative subject. Insets present end-

exercise V̇O2 (mean over the final 60 sec of severe-intensity cycling) following PL and BR 

supplementation in hypoxia, normoxia and hyperoxia. The open bars represent the group mean 

± SEM end-exercise V̇O2 in the PL trials, while the filled bars represent the group mean ± SEM 

plasma end-exercise V̇O2 in the BR trials. The solid grey lines represent the individual changes 
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in end-exercise V̇O2 following BR supplementation at a given fraction of inspired O2. * indicates 

different from PL-Hypo (P<0.05). 

 

Exercise tolerance 

 
Tlim was lower in the normoxic trials (PL-Norm: 344 ± 78 sec; BR-Norm: 364 ± 

98 sec) compared to the hyperoxic trials (PL-Hyper: 472 ± 196 sec; BR-Hyper: 

492 ± 212 sec) and lower in the hypoxic trials (PL-Hypo: 231 ± 41 sec; BR-

Hypo: 250 ± 44 sec) compared to the normoxic and hyperoxic trials (P<0.05; 

Figure 6). Tlim was not different between BR and PL in the hyperoxic trials 

(P>0.05), tended to be higher with BR in the normoxic trials (P=0.087) and was 

increased with BR in the hypoxic trials (P<0.05; Figure 6). The improved 

exercise tolerance after BR supplementation in hypoxia was negatively 

correlated with the end-exercise quadriceps TOI in the PL-Hypo trial (r = -0.78, 

P<0.05; Figure 7).  

 

 

Figure 6. Time to exhaustion (Tlim) following nitrate-depleted beetroot juice (PL) in hypoxia (PL-

Hypo), normoxia (PL-Norm) and hyperoxia (PL-Hyper), and following nitrate-rich beetroot juice 

(BR) in hypoxia (BR-Hypo), normoxia (BR-Norm) and hyperoxia (BR-Hyper). The open bars 

represent the group mean ± SEM Tlim from the PL trials while the filled bars represent the group 

mean ± SEM Tlim from the BR trials. The solid grey lines represent the individual changes in T lim 

following BR supplementation at a given fraction of inspired O2. * indicates different from PL-
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Hypo (P<0.05). # indicates different from PL-Hypo and BR-Hypo (P<0.05). ¥ indicates different 

from PL-Norm, BR-Norm, PL-Hypo and BR-Hypo (P<0.05). 

 

 

Figure 7. The relationship between end-exercise tissue oxygenation index (TOI; mean over the 

final 60 sec of severe-intensity cycling) following nitrate-depleted beetroot juice (PL) in hypoxia 

(PL-Hypo) and the change (Δ) in time to exhaustion (T lim) between the PL and nitrate-rich 

beetroot juice (BR) trials in hypoxia (PL-Hypo and BR-Hypo, respectively). Note that end-

exercise TOI in PL-Hypo was negatively correlated with Δ Tlim between the PL-Hypo and BR-

Hypo trials.  

 

Discussion 

 
This study investigated how dietary NO3

- supplementation influenced muscle 

oxygenation, V̇O2 kinetics and exercise tolerance in hypoxia, normoxia and 

hyperoxia. Plasma [NO2
-] was increased in all BR compared to all PL trials but 

was not influenced by the FiO2 at rest, during exercise or at exhaustion. Multi-

channel NIRS-derived quadriceps TOI was positively associated with the FiO2 

and was higher during baseline and moderate-intensity cycling exercise in 

normoxia following BR supplementation. T lim was increased in hypoxia, with the 
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magnitude of improvement being negatively correlated with quadriceps TOI at 

exhaustion, tended to be improved in normoxia and remained unaltered in 

hyperoxia following BR supplementation. Peak V̇O2 was greater following BR 

supplementation in hypoxia but remained unaltered in normoxia and hyperoxia. 

These findings suggest that the potential for dietary NO3
- supplementation to 

improve the physiological responses and tolerance to exercise is greater as 

skeletal muscle becomes increasingly hypoxic.  

 

Plasma [nitrite] 

 
Consistent with previous research (Bailey et al., 2009; 2010; Vanhatalo et al., 

2010; 2011; Webb et al., 2008; Wylie et al., 2013), plasma [NO2
-] was increased 

in all BR compared to all PL trials. The increment in plasma [NO2
-] due to BR 

supplementation was not significantly different at baseline between hypoxia 

(347 ± 157 nM), normoxia (299 ± 147 nM) and hyperoxia (270 ± 64 nM) and 

plasma [NO2
-] remained unaltered after 4 min of moderate-intensity and 2 min 

of severe-intensity exercise in all conditions. At exhaustion, plasma [NO2
-] was 

lowered in each of the BR trials. This is likely due to an elevated rate of NO2
- 

reduction to NO, which is facilitated in hypoxia and acidosis (Lundberg and 

Govoni, 2004); conditions that might be evident in contracting skeletal muscle 

(Bailey et al., 2010; Richardson et al., 1999). No additional influence was 

observed due to the FiO2 at exhaustion. Similar [NO2
-] kinetics were reported by 

Kelly et al., (2014) who investigated the variations between hypoxia and 

normoxia. However, the authors observed a significant reduction in plasma 

[NO2
-] after 1 min of severe-intensity exercise in hypoxia following BR 

supplementation which was not evident in the present study. This might be 

explained by the larger NO3
- dose (19.5 mmol) administered herein.  

 

Influence of fraction of inspired oxygen on arterial and muscle oxygenation 

 
Administration of the hypoxic (15% O2), normoxic (21% O2) and hyperoxic (40% 

O2) inspirates influenced arterial SpO2 and quadriceps TOI. SpO2 was lower in 

hypoxia (88 ± 4%) than in normoxia (95 ± 3%) but was not different between 
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normoxia and hyperoxia (95 ± 6%). These changes in SpO2 would be expected 

to impact upon the O2 diffusion cascade, therefore, altering muscle oxygenation 

during exercise. Consequently, TOI was higher during moderate- (65 ± 4 vs. 64 

± 4%) and severe- (54 ± 6 vs. 51 ± 7%) intensity exercise in normoxia 

compared to hypoxia, and was greater still during moderate- (67 ± 5%) and 

severe- (56 ± 7%) intensity exercise in hyperoxia.  

 

Influence of nitrate-rich beetroot juice supplementation on the physiological 

responses to moderate-intensity exercise 

 
Acute BR supplementation had no effect on pulmonary V̇O2 but did influence 

quadriceps TOI, as investigated using multi-channel NIRS, during moderate-

intensity exercise in normoxia. The unaltered V̇O2 is consistent with the 

observations of Breese et al., (2013) who employed a work-to-work step cycling 

exercise protocol, with a moderate-intensity bout that also lasted for 4 min, and 

a chronic BR supplementation procedure (providing ~8 mmol.day-1 NO3
- for 6 

days). However, reductions in sub-maximal V̇O2 have previously been reported 

following a single step transition cycling bout lasting for 5-6 min and both a 

chronic (providing ~11 mmol.day-1 NO3
- for 6 days; 5% reduction in V̇O2; Bailey 

et al., 2009) and acute (providing 16.8 mmol NO3
-; 3% reduction in V̇O2; Wylie 

et al., 2013) BR supplementation procedure. These discrepancies might be 

explained by the duration of the exercise protocol, such that the 4 min bout 

employed in the present study might not have been sufficient to detect a change 

in V̇O2. An extended duration was prevented due to the further step increment 

that was completed until the limit of tolerance and the possibility of this resulting 

in the 1000 L capacity of the Douglas bag being reached. This was a limitation 

of the present study and, consequently, is an area for further research. Also, 

chronic, rather than acute, BR supplementation might have been more effective. 

Despite the unaltered V̇O2, TOI was higher during baseline (71 ± 3 vs. 69 ± 3 

%) and moderate-intensity (67 ± 5 vs. 65 ± 4 %) cycling exercise, indicating an 

improved muscle oxygenation (Ferrari, Mottola and Quaresima, 2004). This 

finding builds upon the single-channel work of Bailey et al., (2009), who 

observed an increased total [haemoglobin] and [oxyhaemoglobin], signifying an 

increased muscle O2 delivery, and a reduced [deoxyhaemoglobin], signifying a 
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reduced muscle O2 extraction, in the vastus lateralis during moderate-intensity 

exercise. This physiological response is explained by the Fick equation which 

states that for the same V̇O2 an increased muscle O2 delivery allows for a 

reduced muscle O2 extraction. An increased muscle O2 delivery following 

dietary NO3
- consumption is presumably the result of greater vasodilation, 

caused by increased NO2
- reduction to NO.  

 Acute BR supplementation had no effect on pulmonary V̇O2 and 

quadriceps TOI in hypoxia or hyperoxia. Hypoxia is associated with increased 

NO2
- reduction to NO (Bryan, 2006) whereas the combination of hypoxia and 

muscular contraction is known to create a strong stimulus for vasodilation to 

ensure sufficient muscle O2 delivery (Calbet et al., 2009; Casey et al., 2010). 

Subsequent research has demonstrated a reduced V̇O2 during baseline (10%) 

and moderate-intensity (7%) cycling exercise in hypoxia with a trend towards an 

improved vastus lateralis TOI (3.6%) following BR supplementation (providing 

8.4 mmol.day-1 NO3
- for 3 days; Kelly et al., 2014). The contradictory findings 

observed in the present study might be explained by the variation in 

supplementation procedure employed, such that the acute dose of BR 

administered might not have been sufficient to elicit a change in V̇O2 or TOI. In 

hyperoxia, the unaltered V̇O2 and TOI observed following BR supplementation, 

which was investigated for the first time in this study, suggests that O2 

availability to the active musculature was sufficient prior to dietary NO3
- 

consumption to meet the demands for oxidative energy turnover during 

moderate-intensity exercise with this FiO2. This observation supports previous 

research which demonstrated that O2 delivery to the active musculature is 

greater than utilisation during submaximal exercise in hyperoxia (Evans et al., 

2001). 

 

Influence of nitrate-rich beetroot juice supplementation on the physiological 

responses and tolerance to severe-intensity exercise 

 
Acute BR supplementation had no effect on quadriceps TOI but did 

influence pulmonary V̇O2 and exercise tolerance during severe-intensity 

exercise in hypoxia. Tlim was improved by 8%, while the change in V̇O2 over the 

first 180 sec of severe-intensity cycling exercise was increased by 8%, end-



77 
 

exercise V̇O2 was increased by 4% and TOI remained unaltered. The elevated 

V̇O2 suggests that muscle O2 delivery was increased following dietary NO3
- 

consumption, which would be expected to enhance oxidative energy production. 

This would then spare the finite anaerobic reserves (i.e. phosphocreatine and 

glycogen), thus delaying the development of local muscle fatigue and 

prolonging exercise tolerance (Vanhatalo et al., 2011). Furthermore, the strong, 

negative correlation between the change in Tlim due to BR supplementation and 

end-exercise TOI following PL supplementation shows that participants with a 

lower muscle oxygenation status at the limit of tolerance had a greater 

ergogenic effect from dietary NO3
- consumption. A lower oxygenation status 

would be accompanied by an increased O2 pressure gradient between the 

contracting myocytes and the surrounding capillaries. This would likely stimulate 

local NO2
- reduction to NO and, subsequently, NO-mediated vasodilation, thus 

elevating muscle O2 delivery. The increased availability of O2 would then allow 

for greater oxidative energy production, culminating in a prolonged tolerable 

duration of exercise. The magnitude of increment in T lim following BR 

supplementation is similar to that reported previously by Kelly et al., (2014; 9%) 

and might translate to a ~1% improvement in athletic performance when using 

an ecologically valid test, such as a cycling time-trial (Paton and Hopkins, 

2006). Therefore, BR supplementation might have ergogenic potential for 

athletes who experience a reduced skeletal muscle oxygenation status when 

performing at altitude. 

 Acute BR supplementation tended to improve exercise tolerance, while 

pulmonary V̇O2 and quadriceps TOI remained unaltered, in normoxia and had 

no effect in hyperoxia. In normoxia, T lim was non-significantly improved by 5% 

which contradicts the 22% improvement reported by Breese et al., (2013), who 

also used the work-to-work step cycling exercise protocol. This discrepancy 

might be explained by the variation in supplementation procedures employed by 

the two studies. In hyperoxia, the unaltered T lim builds upon previous research 

that demonstrated a reduced time to fatigue in intact mouse muscle fibres 

following incubation with sodium NO2
- at a supra-physiological PO2 (Nogueira et 

al., 2013). However, the 40% O2 inspirate used in the present study is less than 

that administered by Nogueira et al., 2013. Therefore, further research is 

required to investigate how dietary NO3
- supplementation influences muscle 
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oxygenation, V̇O2 kinetics and exercise tolerance when inhaling 100% O2. The 

unaltered V̇O2 and TOI might be explained by previous observations that 

hyperoxia is associated with an increased muscle O2 delivery (Astorino and 

Robergs, 2003) and greater maintenance of muscle contractile function 

(Linossier et al., 2000) during maximal exercise; physiological responses that 

are consistent with those induced by dietary NO3
- supplementation in hypoxia. 

This would be expected to attenuate the stimulus for local NO2
- reduction to NO 

and provides a possible explanation for the lack of effect observed following BR 

supplementation in hyperoxia.  

 

Conclusion 

 
Plasma [NO2

-] was increased by acute BR supplementation but was not 

different between hypoxia, normoxia or hyperoxia at rest, during exercise or at 

exhaustion. Multi-channel, NIRS-derived, quadriceps TOI was higher, while 

pulmonary V̇O2 remained unaltered, during baseline and moderate-intensity 

cycling exercise in normoxia following BR supplementation, which suggests an 

elevated muscle oxygenation consequent to an enhanced NO-mediated 

vasodilation. Tlim, the change in V̇O2 over the first 180 sec and end-exercise 

V̇O2 were all increased, while TOI remained unaltered, during severe-intensity 

exercise in hypoxia following BR supplementation. This is indicative of an 

increased muscle O2 delivery which might have increased oxidative energy 

production, thus sparing the finite anaerobic reserves and improving exercise 

tolerance. Tlim tended to be increased in normoxia but was unaltered in 

hyperoxia following BR supplementation. These findings extend our 

understanding of the effect of dietary NO3
- supplementation on muscle 

oxygenation, V̇O2 kinetics and exercise tolerance in hypoxia, normoxia and 

hyperoxia.  
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Chapter 5: General discussion 

 

The aim of this thesis was to enhance existing knowledge of the conditions that 

might influence the efficacy of dietary NO3
- supplementation to improve exercise 

physiology and performance. To achieve this, two studies were performed 

independently to explore the reduction of NO3
- to NO2

- and NO2
- to NO, 

respectively. These studies addressed the following research questions:   

 

1) Does the manipulation of oral cavity temperature and pH influence the 

effectiveness of BR supplementation at increasing NO bioavailability in 

humans? 

 

3) Does altering the FiO2 influence the effectiveness of BR supplementation 

at improving the physiological responses and tolerance to exercise? 

 

Summary of findings  

Influence of oral temperature and pH on dietary nitrate metabolism in healthy 

adults 

 

In chapter 3, the influence of oral cavity temperature and pH manipulation on 

the effectiveness of BR supplementation at increasing NO bioavailability was 

investigated for the first time. Salivary and plasma [NO3
-] and [NO2

-] were all 

increased following BR supplementation. Salivary [NO2
-] was increased further 

when oral temperature and pH were elevated independently (41 and 90%, 

respectively) and concurrently (84%), however, the peak increase (116%) was 

evident when oral temperature was lowered (34°C) and oral pH was elevated 

(7.9). Plasma [NO2
-] was also increased further 3 hours post BR consumption in 

the alkaline pH conditions.  

 

Effect of dietary nitrate supplementation on oxygen uptake kinetics and exercise 

tolerance: influence of muscle oxygenation 
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In chapter 4, the influence of BR supplementation on muscle oxygenation, V̇O2 

kinetics and exercise tolerance in hypoxia, normoxia and hyperoxia was 

investigated. Plasma [NO2
-] was increased following BR supplementation but 

was not influenced by FiO2 at rest, during exercise or at exhaustion. Multi-

channel NIRS-derived quadriceps TOI was positively associated with the FiO2 

and was higher during baseline (3%) and moderate-intensity (3%) cycling 

exercise in normoxia following BR supplementation. Tlim was increased (8%) in 

hypoxia, with the magnitude of improvement being negatively correlated with 

quadriceps TOI at exhaustion, tended to be improved (5%) in normoxia and 

remained unaltered in hyperoxia following BR supplementation. Peak V̇O2 was 

greater (4%) following BR supplementation in hypoxia but remained unaltered in 

normoxia and hyperoxia. 

 

Nitric oxide bioavailability  

 

Consistent with previous research, the evidence in chapters 3 and 4 

demonstrates that dietary NO3
- supplementation with BR increases salivary 

[NO3
-] and [NO2

-] (McDonagh et al., 2015; Woessner et al., 2016) and plasma 

[NO3
-] (McDonagh et al., 2015; Wylie et al., 2013) and [NO2

-] (Bailey et al., 

2009; 2010; Vanhatalo et al., 2010; 2011; Webb et al., 2008; Wylie et al., 2013). 

This suggests that NO bioavailability would also be greater following BR 

supplementation. The increase in resting plasma [NO2
-] occurred following ~6.5 

(142 nM; chapter 3) and ~19.5 (388 nM; chapter 4) mmol NO3
- consumption, 

which identifies that the magnitude of improvement is determined by the dose of 

NO3
- consumed. This finding supports the work of Wylie et al., (2013) who 

demonstrated dose-dependent increases in plasma [NO2
-] following acute BR 

supplementation with 4.2, 8.4 and 16.8 mmol NO3
-. The dietary NO3

- doses 

used in chapters 3 and 4 were selected based on previous research which 

demonstrated that a larger dose is required to elicit improvements in exercise 

economy and tolerance compared to plasma and salivary [NO3
-] and [NO2

-] 

(McDonagh et al., 2015; Wylie et al., 2013). In chapter 3, the increase in resting 

salivary and plasma [NO3
-] and [NO2

-], and the delayed time to peak plasma 

[NO2
-], following BR supplementation highlights the importance of dietary NO3

- 
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on the enterosalivary circuit and, therefore, the metabolism of NO3
- by 

commensal oral bacteria (Duncan et al., 1995; Sasaki and Matano, 1979; 

Spiegelhalder, Eisenbrand and Preussmann, 1976).  

 

Factors influencing dietary nitrate metabolism 

Oral cavity temperature and pH 

 

Salivary and plasma [NO3
-] remained unaltered following acute dietary NO3

- 

supplementation with BR and oral temperature and pH manipulation. Salivary 

[NO2
-] was increased further in the independently (TempMid-pHHi: 90%; TempHi-

pHNorm: 41%) and concurrently (TempHi-pHHi: 84%) elevated oral temperature 

and pH conditions and in the low oral temperature conditions (TempLo-pHNorm: 

53% TempLo-pHHi: 106%) compared to the TempMid-pHNorm trial. Plasma [NO2
-] 

was increased further than the TempMid-pHNorm trial in the independently 

elevated oral pH condition (TempMid-pHHi: 20%), the concurrently elevated oral 

temperature and pH condition (TempHi-pHHi: 53%) and in the TempLo-pHHi trial 

(37%). This evidence indicates that dietary NO3
- metabolism is influenced by 

oral cavity temperature and pH and builds upon previous research that 

demonstrated an increased [NO2
-] following both NO3

- consumption and oral pH 

manipulation using a pH-regulating chewing gum (van Maanen, van Geel and 

Kleinjans, 1996) and the incubation of an alkaline NO3
- test solution in the 

mouth (Bojić, Bojić and Pervović, 2004).  

 

Muscle oxygenation 

 

In chapter 4, the increased plasma [NO2
-] observed following acute dietary NO3

- 

supplementation with BR was not significantly influenced by the FiO2 at rest, 

during ‘work-to-work step’ cycling exercise to moderate- and severe-intensity 

constant work rates or at exhaustion. This evidence indicates that muscle 

oxygenation does not influence dietary NO3
- metabolism and builds upon 

previous research, that demonstrated no variation in plasma [NO2
-] kinetics 

between normoxia and hypoxia (Kelly et al., 2014), by showing, for the first 

time, that a similar effect is apparent in hyperoxia.  
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Applications  

 

The studies in this thesis provide evidence that dietary NO3
- supplementation 

increases the potential for O2- and NOS-independent NO generation in healthy 

young adults. Increased NO bioavailability has previously been associated with 

a number of physiological benefits and ergogenic effects. For example, dietary 

NO3
- consumption has been reported to lower systolic blood pressure at rest, 

reduce pulmonary V̇O2 and muscle fractional O2 extraction during moderate-

intensity exercise and to improve tolerance to severe-intensity exercise (Bailey 

et al., 2009). 

In chapter 3, the elevated salivary and plasma [NO2
-] demonstrated 

following acute BR supplementation and oral temperature and pH manipulation 

might have implications for future BR supplementation recommendations, might 

contribute to understanding of the underlying physiology for responders and 

non-responders to dietary NO3
- supplementation, and might enhance the 

cardiovascular health and physical performance benefits demonstrated at a 

given dietary NO3
- dose.  

In chapter 4, the improved Tlim in hypoxia following acute BR 

supplementation might be of interest to athletes and coaches involved in short-

duration, severe-intensity cycling exercise performed at moderate altitude. BR 

supplementation was demonstrated to be particularly effective for individuals 

who experience a reduced skeletal muscle oxygenation status when performing 

in hypoxia. The development of specific pre-competition nutritional plans 

involving the consumption of dietary NO3
- might improve athletic performance.  

 

Limitations and directions for future research 

 

Despite the same dietary NO3
- dose being consumed in chapter 3, the 

increases in salivary and plasma [NO2
-] varied depending on the temperature 

and pH of the oral cavity. The greatest increase in salivary [NO2
-] was observed 

in the TempLo-pHHi trial. This was attributed to an elevated salivary flow rate 

which would likely result in greater NO3
- secretion by the salivary glands thus 
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providing more substrate for reduction to NO2
-. However, despite the larger 

salivary [NO2
-] in the TempLo-pHHi trial, the greatest increase in plasma [NO2

-] 

occurred in the TempHi-pHHi trial. It was suggested that this measurement might 

have been confounded by the mouth rinse protocol, which resulted in 46% more 

NO2
--rich saliva being expectorated following the mouth rinses and sample 

collections in the TempLo-pHHi trial compared to the TempHi-pHHi trial. This 

would likely impair the characteristic rise in plasma [NO2
-] demonstrated 

following dietary NO3
- supplementation (Lundberg and Govoni, 2004; Webb et 

al., 2008). Furthermore, the oral temperature manipulation might have elevated 

core temperature, which is known to increase endothelial NOS activity and NO 

release (Harris et al., 2003). This would be expected to increase plasma [NO2
-] 

independently of dietary NO3
- metabolism. Future research should build upon 

these limitations by controlling for potential confounding factors when 

investigating the factors that influence dietary NO3
- metabolism.  

 

Conclusion 

 

Investigation of the cardiovascular health and physical performance benefits of 

dietary NO3
- supplementation is a current hot topic in nutrition. This thesis 

aimed to contribute to the available literature by investigating the factors that 

influence dietary NO3
- metabolism in humans. The collected data suggests that 

oral cavity temperature and pH manipulation influences dietary NO3
- 

metabolism in humans and that the performance benefit of NO3
- 

supplementation is influenced by muscle oxygenation.  

The study in chapter 3 demonstrates, for the first time, that salivary [NO2
-

] following acute BR supplementation is elevated by a decreased oral 

temperature and an increased oral pH. This finding might have implications for 

enhancing some of the beneficial effects of dietary NO3
- supplementation on 

human cardiovascular health and physical performance. The study in chapter 4 

demonstrates that severe-intensity exercise tolerance is improved to a greater 

extent as skeletal muscle becomes increasingly hypoxic. This finding suggests 

that acute BR supplementation might have applications as an ergogenic aid for 

the performance of short-duration, severe-intensity cycling exercise in moderate 

hypoxia. 
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