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INTRODUCTION  
 Accurately quantifying and assessing the 
reliability of Marine Energy Converters (MEC’s) is 
critical for the successful commercialization of the 
industry. Without improvements in reliability and 
hence reductions in operation & maintenance 
(O&M) costs, the industry will struggle to reach 
competitive Levelised Cost of Energy (LCoE). At 
present, due to the nascent stage of the industry 
and commercial sensitivities there is very little 
reliability field data available. This presents an 
issue: how can the reliability of MEC devices be 
accurately assessed and predicted with a lack of 
specific reliability data? 
 
BACKGROUND 
  Reliability prediction in the MEC industry 
often uses surrogate data sources which are 
corrected for the marine environment via 
correction factors [1], [2], [3]. The surrogate data 
is typically sourced from component specific field 
tests out with the marine environment [3], [4] or 
from onshore wind databases [5], [6]. Typically, 
the resulting estimates are time independent and 
thus assume that individual components exhibit 
random failures (constant failure rate). 
 Reliability prediction is inherently an 
uncertain process; the traditional statistical 
methods typically used in MEC reliability 
assessments do not contain a measure of this 
uncertainty. Thus, reliability assessments of MEC 
devices tend to be uncertain as well as being 
based on data sources that are often outdated and 
not specific to the marine environment. 

 This paper seeks to develop a Bayesian 
updating framework for critical drive train 
components using high fidelity onshore wind 
failure data. This framework can then have MEC 
field data applied to as it becomes available. 
 Bayesian updating is a statistical method that 
offers an opportunity to address uncertainty and 
lack of specific data issues. It has distinct 
advantages over classical probabilistic methods. 
Its primary goal is to define the uncertainty 
surrounding the unknown parameters of a 
statistical model. Given that there is currently no 
publicly available reliability field data for MEC’s, 
Bayesian updating presents a promising way in 
which to perform more accurate reliability 
assessments. 
 Bayesian updating has the advantage of being 
able to make predictions about future 
performance despite having access to little or no 
data. This is particularly attractive for an industry 
such as marine renewable energy. Also Bayesian 
updating allows for multiple, disparate sources of 
data to be incorporated into the analysis whilst 
providing an inherent, subjective measure of the 
uncertainty surrounding a statistical parameter. 
This can have profound implications for MEC 
reliability assessment as it enables a degree of 
belief to be assigned to a statistical parameter 
thereby providing a quantified level of certainty in 
the values underpinning reliability assessments. 
 Current work on MEC reliability prediction 
that uses Bayesian methods includes [7] which 
uses the inherent quantification of uncertainty 
that  Bayesian methods possess to address the 
uncertainty in the failure rates of a notional wave 
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energy converter power cable. The underlying 
failure data here is from OREDA and assumes a 
constant failure rate for the power cable.  
 Also [2] uses a Bayesian framework for its 
analysis of mechanical drive train failure rates for 
a notional tidal turbine, focusing on analyzing the 
effect of the number of failures and strength of 
belief on component failure rates.  
 This paper furthers the ideas presented in 
these two studies via the application of high 
fidelity surrogate failure data and builds a 
framework that defines the uncertainty around 
the unknown parameters of component failure 
models and can be used to apply MEC field data as 
it becomes available. 
 Experience from onshore wind has shown 
that the drive train is a critical area with respect to 
reliability [8]. The Pitch System and Generator 
often record the highest number of failures so 
these components are where the focus of this 
paper lies.  
 
BAYESIAN THEORY AND RELIABILITY DATA 
 Bayesian analysis involves the determination 
of probability density functions (PDF’s) that 
define the uncertainty around statistical 
parameters of interest.  
 The prior distribution represents all 
knowledge that exists about an unknown 
statistical parameter of interest prior to any 
formulation of an experiment. Typically, this 
constitutes engineering knowledge and/or data 
from surrogate industries. 
 A 2 parameter Weibull distribution is chosen 
to represent the probabilistic failure model for 
each component due to its flexibility and common 
application with failure statistics (Equation 1).  

𝑝(𝑡|𝜂, 𝛽) =
𝛽

η
(

𝑡

η
)

β−1

 𝑒
−(

𝑡

η
)

β

        (1) 

t represents the time to first failure (TTFF) for the 
component. The unknown parameters of the 
distribution (β, shape and η, scale) can be 
modelled as random variables and represented by 
2 parameter Weibull distributions: 
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Where aβ  and bβ  are the scale and shape 

parameters of the prior shape parameter 
distribution, aη  and bη  are the scale and shape 

parameters of the prior scale parameter 
distribution. The goodness of fit of the distribution 

to failure time data can be seen for the Pitch 
System in Figure 1. 

 
FIGURE 1 WEIBULL PROBABILITY PLOT FOR PITCH 
SYSTEM FAILURE TIME DATA 

  The data underlying the prior distributions 
comes from the Reliawind project, described in 
reference [8].  This high fidelity onshore wind 
failure data comes from several different wind 
farms in the United Kingdom. This paper uses 
failure events for the pitch system and generator 
from all the turbines in four farms (in total over 
100 turbines). The turbines are the same model 
and are rated between 1-2MW which is 
comparable to those deployed in early MEC 
arrays. The generators are of the Doubly Fed 
Induction (DFIG) type and the pitch systems are 
electric. 
 The likelihood function is used to update the 
prior distributions and is of the same functional 
form (a 2 parameter Weibull distribution) as the 
priors.     
 Applying Bayes theorem: 
 

𝑝(𝛽, 𝜂|𝑡) =  
𝑓(𝑡|𝛽, 𝜂) 𝑝(𝛽)𝑝(𝜂)

∬ 𝑓(𝑡|𝛽, 𝜂) 𝑝(𝛽)𝑝(𝜂) 𝑑(𝛽) 𝑑(𝜂)
  (4) 

 
results in the definition of two posterior 
distributions 𝑝(𝛽|t) and 𝑝(𝜂|t)  which provide 
information about the uncertainty around the 
unknown statistical parameters 𝛽 and η. The 
double integral must be evaluated using a Markov 
Chain Monte Carlo (MCMC) numerical algorithm 
e.g. Metropolis-Hastings. 
 
METHOD 
  This paper demonstrates the development of 
a Bayesian updating framework that can be 
applied in the reliability assessment of MEC’s.  The 
method used is as follows: 
 

1. Calculate maximum likelihood estimates 
(MLE) of component failure models for 
each of the four windfarms  



 

2. Fit a 2 parameter Weibull distribution to 
the MLE estimates for each component. 
This represents the prior distributions of 
the unknown parameters of the 
component failure models 

3. Fit 2 parameter Weibull distribution to 
likelihood data (the ‘new’ data 
representing field data). 

4. Compute posterior distributions of 
unknown parameters using Metropolis 
Hastings algorithm 

5. Use mean values from posteriors as 
parameters in component failure models 

 
 Firstly, MLE’s of the unknown parameters of 
the component failure models are obtained for 
each of the four windfarms. Given that each farm 
has between 10-40 turbines of the same model 
and the failure data used is consistently from the 
first 6 months of operation it is reasonable to 
assume that the unknown parameters for each 
farms components come from the same 
distributions. This is the rationale behind 
obtaining the parameters via MLE and then fitting 
a distribution to them. There are only 4 points for 
each fit and this is acknowledged as a limitation of 
the available dataset.  
 The likelihood function constitutes the next 6 
months of data for each of the turbines in each 
farm. This represents a bi-annual updating 
program in which the existing data is updated at 
scheduled 6 monthly intervals. Given the nature of 
typical MEC scheduled maintenance regimes this 
is not unreasonable.  
   The Metropolis Hastings algorithm is then 
used (a subset of Markov Chain Monte Carlo 
(MCMC) methods) to generate the posterior 
distributions which completely define the 
uncertainty around the unknown statistical 
parameters 𝛽 and η.   
 The mean values of the parameter posterior 
distributions are then used to determine the 
updated component reliabilities. These updated 
reliabilities are compared with the initial 
component reliabilities obtained using mean 
values of the prior distributions of the unknown 
parameters. This allows for the effect of the 
parameter update on the component reliability to 
be examined.  
 This paper currently only uses onshore wind 
data; however, it proposes a framework that can 
be used to apply MEC field data directly as it 
becomes available. This framework also allows for 
investigations into the effects of using different 
subsets of data e.g. size and type of turbine. Thus, 
the effects on the evolving data set can be used to 
inform decision making for MEC maintenance 

operations for different ratings of pitch system 
and generator. 
 It is acknowledged that the drive train of an 
MEC consists of more than the two components 
investigated here, but the framework that the 
paper proposes allows for further components to 
be incorporated as necessary. 
 
RESULTS 
 The prior distributions for η and β can be seen 
in figures 2 and 3 respectively. 
 

 
FIGURE 2 PRIOR PDF FOR ETA PARAMETER OF 
FAILURE MODELS FOR PS: PITCH SYSTEM, GEN: 
GENERATOR 

 
FIGURE 3 PRIOR PDF FOR BETA PARAMETER OF 
FAILURE MODELS FOR PS: PITCH SYSTEM, GEN: 
GENERATOR 

The concentration of mass is more pronounced for 
the Generator than for the Pitch System for the η 
parameter (as shown in figure 1). This is because 
the underlying data (the MLE shape parameters 
for the generators for each farm) are similar in 
value and not as dispersed as for the pitch 
systems.   
 The posterior distributions for each 
parameter can be seen in figures 4 and 5. These 
are the result of 200,000 drawn samples. 



 

 
FIGURE 4 POSTERIOR DISTRIBUTIONS FOR BETA AND 
ETA FOR PITCH SYSTEM 

 
FIGURE 5 POSTERIOR DISTRIBUTIONS FOR BETA AND 
ETA FOR GENERATOR 

The mean value parameters and Highest Posterior 
Densities (HPD) are shown for each parameter 
and component in Table 1.  
 
TABLE 1 MEAN VALUES, HIGH POSTERIOR DENSITIES 
FOR UNKNOWN PARAMETERS FOR EACH COMPONENT 

 β(mean) η(mean) 95% 
HPD 
(β) 

95% 
HPD 
(η) 

Pitch 
System 

0.98 1356 0.80-
1.17 

1032-
1706 

Generator 1.41 2347 1.07-
1.76 

1841-
2925 

 
The HPD is analogous to a classical confidence 
interval and can be interpreted as defining with 
95% certainty the possible values the random 
variables (unknowns β and η) can take.  
 Implementing the mean values of the 
parameters into the component reliability models 
(from Equation 1) yields the plots in Figures 5 and 
6.  

 
FIGURE 6 GENERATOR PROJECTED RELIABILITY, 
INITIALLY AND AFTER UPDATE 

These plots can be viewed as projected 
component reliability models using initial data 
parameters and then updated parameters.  

 
FIGURE 7 GENERATOR PROJECTED RELIABILITY, 
INITIALLY AND AFTER UPDATE 

For both components, updating the parameters 
after 6 months results in a much changed 
reliability model.  
 
CONCLUSIONS 
 The Bayesian updating framework developed 
in this paper uses high fidelity onshore wind 
failure data to form prior distributions of the 
unknown parameters of component failure 
models. It updates this information with the next 6 
months of failure data to provide the framework 
for MEC’s to perform scheduled updating of 
component failure models when field data 
becomes available. 
 The effect that parameter updating has on 
component reliability models has been 
demonstrated for a pitch system and generator 
from a 1-2MW onshore wind turbine.   
 The framework developed here can provide 
MEC developers, project stakeholders and 
insurers with a method of quantifying the 
uncertainty surrounding the unknown statistical 
parameters of component reliability models.  
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