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The occurrence of seizures is the common feature across the spectrum of epileptic
disorders. We describe how the use of mechanistic neural population models leads to
novel insight into the dynamic mechanisms underlying two important types of epileptic
seizures. We specifically stress the need for a spatio-temporal description of the rhythms
to deal with the complexity of the pathophenotype. Adapted to functional and structural
patient data, the macroscopic models may allow a patient-specific description of seizures
and prediction of treatment outcome.
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EPILEPTIC SEIZURE DYNAMICS
Epilepsy is a chronic condition, characterized by acute seizures
with unpredictable onsets. The enormous variability of seizures
reflects a multitude of genetic and environmental influences
(Engel, 2001). Epileptic seizures are defined as “a transient occur-
rence of signs and/or symptoms due to abnormal excessive or
synchronous neuronal activity in the brain” (Fisher et al., 2005).
It is generally assumed that clinical symptoms are a consequence
of abnormal macroscopic activities depending on their occur-
rence and locations within the brain. These activities lead to
specific features in the electroencephalogram (EEG) which are
strongly correlated with clinical symptoms of seizures.

The phrase “excessive or synchronous neuronal activity” in the
definition of seizures refers to neuronal activity of large popula-
tions of neurons, generally implying that this activity is observable
on the macroscopic scale. Epileptic seizures are thereby defined
as the result of large-scale neural network activity rather than
the activity of individual neurons or small neuronal circuits.
The collective nature of the abnormal activity renders it macro-
scopically observable, e.g., in the EEG. The inclusion of both
“excessive and synchronous” activity refers to either strong local
potential changes or a high degree of correlation between neigh-
boring potential changes. How these changes correlate with rate
and synchrony of neural firing is unclear. For example, parallel
measurements of the firing of more than one hundred individ-
ual neurons during clinical seizures in humans showed complex
changes in neuronal spiking activity including decreased firing
rate and decreased synchrony (Truccolo et al., 2011). Seizure dis-
charges are specific macroscopic spatio-temporal activity patterns
for which one needs to have a specific (genetic and/or environ-
mental) predisposition. For a deeper understanding of the seizure

activity itself, we focus on the specific macroscopic pattern that is
the cause of its clinical appearance.

Epileptic seizure dynamics typically takes the form of reg-
ular or irregular temporal rhythms in the EEG. A rhythm
is a repetitive event that is identified by visual inspection as
standing out from normal background activity and being dis-
tinct from known physiological EEG rhythms like the occip-
ital alpha rhythms. Epileptic waveforms comprise both linear
(sinusoidal) and nonlinear rhythms and the degree of regularity
varies strongly between seizure types. As one assumes that these
rhythms arise from collective neuronal activity, they are consid-
ered to have a strong deterministic (explained) component rather
than being solely due to random fluctuations. They should thus
be described in terms of nonlinear dynamics, specifically as short
realisations of low-dimensional attractors (Lopes da Silva et al.,
2003; Lytton, 2008). However, the exact nature of the transient
dynamics is unknown at present. A second feature is the spa-
tial distribution of rhythms during the course of a seizure. The
study of spatio-temporal patterns is well established in physics
(Cross and Hohenberg, 1993) but an application of the concepts
to the study of seizure dynamics is not straightforward. Many
of the existing models assume spatial homogeneity whereas in
epilepsy one almost certainly deals with significant spatial hetero-
geneity. In particular, for generalized seizures, source localization
methods provide evidence for localized onset and differentiated
spatial distribution of epileptiform activity (Westmijse et al.,
2009; Bai et al., 2010). In focal-onset seizures a localized region is
thought to be responsible for the generation of abnormal seizure
rhythms (Rosenow and Lüders, 2001). Therefore, both temporal
and spatial features are important for a detailed description of
clinical seizure rhythms.
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NEURAL MASS MODELING
A generic and quantitative description of seizure dynamics in
terms of spatio-temporal patterns is provided by neurophysiolog-
ically derived neural population models (neural mass models).
The mathematical derivation of these models and the explicit
equations are beyond the scope of the present perspective but can
be found in the literature, see (Deco et al., 2008) for a detailed
review. The neural mass models start with a description of the
dynamics of neural populations, where the variables are derived as
macroscopic representations of ensembles (populations) of simi-
lar neurons (Friston, 2008). For the formal description of a single
population, either one or two-variable differential equations can
be used but more complex equations with more biophysical detail
are also available. Based on a number of assumptions, these mod-
els then allow the investigation of the interaction between neural
populations and explain macroscopic dynamics as observed in,
for instance, the EEG. They thus combine a mathematical for-
malism based on mechanistic neurophysiological knowledge with
output that serves to represent clinical observables. Graphical
schemes of the involved neural populations and their interac-
tions are given for individual models, e.g., (Wendling et al., 2002;
Breakspear et al., 2006; Suffczynski et al., 2006). A body of lit-
erature exists on the successful application of these macroscopic
models to deal with a variety of phenomena but we focus here
on the contribution of neural mass modeling of epileptic seizure
dynamics. We describe typical EEG features of two important
seizure types and highlight the contributions of neural mass mod-
eling to explain seizure activity as emergent from the interaction
of neural populations.

GENERALIZED SEIZURES
The first type is the generalized absence seizure. The EEG record-
ing of an absence seizure in Figure 1 shows an epileptic rhythm
occurring for about 10 s in recordings from surface EEG elec-
trodes. The seizure epoch has a dominant frequency at about 3 Hz
and is recognizable by the comparatively large amplitude in all
signals. The frequency is consistent across channels, with a trend
to decrease toward the end. The most typical feature in absence
seizures are the spike-and-wave discharges (SWD). These can best
be seen in e.g., prefrontal channels Fp1 and Fp2, while other chan-
nels may lack the “spike” component (e.g., channel Cz). Other
channels appear to have a more complex waveform (e.g., chan-
nel T5 during the first third of the seizure). During the course of
the seizure, most channels appear to undergo slow transforma-
tions of the waveform. The most obvious spatial characteristic is
that the epileptic rhythm is recorded from essentially all locations,
and that the degree of correlation (or, more generally, interre-
lation) is higher during the seizure when compared to pre- and
post-seizure periods. Topographic mappings of the spatial volt-
age distributions are shown for three distinct time points at the
bottom of Figure 1.

A number of the dynamical features mentioned have been
addressed in neural mass modeling studies. For instance, compet-
ing but plausible hypothesis have been advanced for the sudden
transition in and out of the seizure state. The first is based on
the notion of bifurcation. A bifurcation describes a change in
the qualitative behavior of a dynamical system while the setting

of the system is varied. In a mathematical model, bifurcations
are caused by changes of parameter values. Physiologically this
implies some change of e.g., connection strength between or
external input to neural populations. Bifurcation theory is then
used to characterize and classify these transitions between qual-
itative states. These states can be identified with, for example,
normal and epileptic rhythms (Taylor and Baier, 2011; Wang
et al., 2012).

For the explanation of the appearance of SWD in typical
absence seizures, a system of interacting thalamic and cortical
neural populations was explored (Marten et al., 2009). This study
suggested a saddle-node of limit cycle bifurcation. One of the
implications of this finding is that a specific change of state is
required each time the brain undergoes a transition into the
seizure. Alternatively, it was proposed that the dynamical system
is in a state of so-called bistability and no parameter change is
required for the transition to occur (Lopes da Silva et al., 2003).
Physiologically this means that a state of normal brain function
and a state of (potentially permanent) epileptic discharges coexist.
In a healthy individual these states would be widely separated,
however, and the likelihood of seizure would tend to zero. In chil-
dren with absence epilepsy, the two states would be less separated
such that random fluctuations of brain activity in the background
state would occasionally lead to a switch to the epileptic state with
its characteristic rhythm. A second (equally random) perturba-
tion, or some other mechanism, would then result in the return
to the state of normal activity. Both the parameter-dependent and
the noise-induced transitions can be explained by a single neu-
ral mass model in the vicinity of a saddle-node of limit cycle
bifurcation (Marten et al., 2009).

Presently, there are no animal studies that provide direct evi-
dence for either a slow temporal modulation of the state (as
implied by a parameter change) or the coexistence of the nor-
mal and the epileptic state. However, statistical analysis of long-
term recordings has given some support for the latter hypoth-
esis (Suffczynski et al., 2006). In addition, it has been argued
that using the temporal variation of the waveform in individual
patient recordings, a time-dependent model fit might be used to
derive knowledge about an underlying change in physiological
conditions (Nevado-Holgado et al., 2012). This could prove a cru-
cial step as patient specific traits have also been observed by other
authors (Sadleir et al., 2006; Möller et al., 2008).

A main feature of absence seizures is that they can be picked
up from many locations on the scalp and that their electro-
graphic onset is comparatively sudden on most locations of the
scalp. The apparent strong correlation between the EEG chan-
nels during seizures led modeling researchers to assume that
the dynamics is homogeneous in space and that spatial effects
can be discarded. However, imaging data (e.g., from combined
EEG-fMRI studies) consistently point to a heterogeneous situa-
tion across the neocortex and specifically to regions in the brain
that can be associated with seizure onset (Möller et al., 2008;
Westmijse et al., 2009; Bai et al., 2010). A recent modeling study
started to address such features by assuming a small cortical area
composed of coupled compartments with heterogeneously dis-
tributed parameters across the compartments (Goodfellow et al.,
2011). It was found that while the homogeneous model showed
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FIGURE 1 | EEG of a spontaneous absence seizure in a pediatric patient. Potentials from standard surface electrodes are plotted against time. Horizontal
axis spans about 16 s. Below are three topographic potential mappings projected on the scalp (seen from above).

a bistability between normal and epileptic state (as proposed
previously), the assumption of a heterogeneous medium led to
the detection of a new dynamical state. In this new state the
dynamics remain in the background activity for most of the time,
but autonomously bursts into periods of spike-wave dynamics.
Dynamically, this state belongs to the category of spatio-temporal
intermittencies and it suggests that seizure dynamics can be spon-
taneous and self-terminating even in the absence of random

fluctuations. Importantly, in contrast to the previous models, the
intermittency model also explains the sudden reorganization of
correlations between locations: the correlation between sites in
the background activity is low due to coupling between sites,
while during the seizure state the correlation is high between most
but not necessarily all locations. Additionally the model predicts
so-called “micro-seizures”, transient spike-wave dynamics in sin-
gle locations that do not to lead to the collective appearance of
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seizure dynamics. Micro-seizures have been reported from micro-
electrode recordings in humans with partial seizures (Stead et al.,
2010) but it is not yet known whether they can occur in human
patients with typical absence.

FOCAL-ONSET SEIZURES
The second type of seizure are the focal-onset seizures, where
the epileptic activity initiates from a focal region and successively
spreads to other regions. Typically, different frequency rhythms
are involved in the course of a single seizure (Blume et al., 1984).

The frequency can vary continuously or abruptly, and qualita-
tively different waveforms can often be discerned. Figure 2 shows
an example from a focal-onset seizure that originated in the neo-
cortex. This recording is an electrocorticogram, where electrodes
are placed on the grey matter of the cortex in a grid cover-
ing a few square centimeters. Therefore the spatial resolution in
the recording is higher than in the EEG recording in Figure 1.
The focal-onset seizure starts with a slow rhythm which is only
visible in a few contacts, speeds up (approximately near the mid-
dle of the figure), increases in amplitude and starts spreading

FIGURE 2 | Electrocorticogram of a partial seizure in an adult patient. Top: potentials from 78 grid electrodes are plotted against time. Horizontal axis
spans about 30 s. Bottom: pseudo-3D plot of 20 electrodes indicated by black frame in the top figure.
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to neighboring locations. There is a loss of rhythm for about
2 seconds before a new, slow rhythm resumes (last third of the
figure). Note that the contacts with a slow rhythm at the end
of the recording are not the same as those that showed the ini-
tial rhythm. The bottom part of the figure shows a pseudo-3D
representation of the corresponding spatio-temporal pattern.

In neural mass modeling the large amplitude rhythms of
partial seizures were accounted for by large-amplitude oscilla-
tions resulting from a saddle-node on invariant circle bifurcation
(Grimbert and Faugeras, 2006). Different frequencies of rhythms
and different waveforms can be found within the oscillatory
region of the model. To explain the succession of rhythms in a
specific type of epilepsy (mesial temporal lobe epilepsy), param-
eters were fitted to individual segments of the rhythm such that
optimal agreement with the data was obtained (Wendling et al.,
2005). Different seizure patterns then lead to different parameter
paths. The course of each individual seizure is thereby interpreted
as a specific path in parameter space.

For focal-onset seizures, the local onset, spreading and
(self-)termination of the seizure calls for an additional description
of the spatial features. Imaging of the spatio-temporal evolu-
tion of epileptic activity in an acute model of focal-onset seizure
shows rhythmic activity to result from complex spatio-temporal

patterns that show behavior reminiscent of complex wave propa-
gation in excitable media (Viventi et al., 2011). The mammalian
neocortex has been experimentally shown to possess some prop-
erties of an excitable medium (Ferezou et al., 2007), and the
question of generation of spatio-temporal epileptic rhythm can
therefore be addressed in that context. Excitable media are a class
of models that support a large number of spatio-temporal pat-
terns. A suggestion from nonlinear dynamics is thus to investigate
coupled neural mass models as an approximation of an excitable
medium.

One study considered spatially coupled compartments in
the vicinity of abnormal (epileptic) spiking and investigated its
response to local stimulation (Goodfellow et al., 2012a). If spa-
tial heterogeneity was included (modeled by compartments with
abnormally decreased inhibition), the model responded to single
pulse stimuli within or near the heterogeneous region with abnor-
mal rhythmic transients. Indeed, abnormal rhythmic responses
to single pulse stimuli are observed in human patients during
pre-surgical monitoring (Valentin et al., 2005).

The evidence that focal-onset seizures might either originate
from a single small localized region (Rosenow and Lüders, 2001)
or from distributed abnormal networks (Spencer, 2002) led to the
proposal that epileptic rhythms could be self-organised transient

FIGURE 3 | Illustration of qualitatively different transitions

from background oscillations to pathological spike-wave and back

again in a neural mass model. (A) Bifurcation: a parameter is changed
such that it crosses a bifurcation point. (B) Bistability: two pulse
perturbation are applied to start and terminate a seizure. (C) Excitability:

a single pulse perturbation is applied to induce a seizure.
(D) Intermittency: parameter setting allows spontaneous transitions
into and out of the seizure rhythms. All simulations done with a
three compartment version of the extended Jansen-Rit model (Goodfellow
et al., 2011). Upper trace: model output. Lower trace: parameter protocol.

www.frontiersin.org July 2012 | Volume 3 | Article 281 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Physiology/archive


Baier et al. Epileptic seizure dynamics as spatio-temporal patterns

phenomena in an excitable medium with differentially distributed
tissue heterogeneity (Goodfellow et al., 2012b).

SUMMARY
Thus, the modeling work suggests novel dynamical mechanisms
on the macroscopic scale resulting from known mechanisms
of interaction, in this case in the human neocortex. Figure 3
summarizes the findings with exemplary simulations. Epileptic
seizure rhythms can be induced from background activity by
(a) a change of a parameter to a pathological value (i.e., cross-
ing a bifurcation point) for the length of the seizure (Figure 3A);
(b) one perturbation to induce the seizure rhythm and another
perturbation to terminate it in the case of a bistability of back-
ground and seizure rhythm (Figure 3B); (c) a single perturbation
in the case of a spatio-temporal excitable system (Figure 3C); and
(d) no perturbation at all in the case of spatio-temporal intermit-
tency (Figure 3D). The latter two cases have only been observed
in spatially extended neural mass models. The parameter changes
corresponding to cases (a), (b) and (c) could be due to random
fluctuations of parameters on a slow (a) or fast (b and c) time
scale, respectively. In case (d) seizure generation is spontaneous.

For the future we expect that neural population models can
be adjusted to include spatial heterogeneities as determined by
imaging data from individual patients, e.g., from fMRI (Bojak
et al., 2011). Additionally, the impact of network topology is

incompletely understood. However, recently structural connec-
tivities derived from diffusion tensor imaging of normal sub-
jects and epileptic patients are becoming available and can be
incorporated in modeling studies (Taylor et al., submitted). The
spatio-temporal output can then be fitted to EEG data on the
clinically relevant scales and, if optimized for performance, could
in principle run in real time with continuous input of patient
EEG to detect specific abnormalities, see e.g., (Baier et al., 2000)
and (Chernihovskyi et al., 2005). Furthermore, in silico exper-
iments allow the design of perturbation protocols to suppress
seizure activity using e.g., electrical stimulation from implanted
electrodes (Kalitzin et al., 2010).

To conclude, spatio-temporal neural mass models are a miss-
ing link between experimental neurophysiological findings and
clinical manifestations of epilepsy. They offer a better mechanis-
tic interpretation of the multiple factors influencing the complex
pathophenotypes across the epilepsies.
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