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Abstract 

Determining phylogenetic relationships among recently diverged species has long been 

a challenge in evolutionary biology. Cytoplasmic markers, which have been widely used 

notably in the context of molecular barcoding, have not always proved successful in 

resolving such phylogenies, but phylogenies for closely related species have been 

resolved at a much higher detail in the last couple of years with the advent of next-

generation-sequencing technologies and associated techniques of reduced genome 

representation. Here we examine the potential and limitations of one of such techniques 

— Restriction-site Associated DNA (RAD) sequencing, a method that produces 

thousands of (mostly) anonymous nuclear markers, in disentangling the phylogeny of 

the fly genus Chiastocheta (Diptera: Anthomyiidae). This genus encompasses seven 

described species of seed predators, which have been widely studied in the context of 

their ecological and evolutionary interactions with the plant Trollius europaeus 

(Ranunculaceae). So far, phylogenetic analyses using mitochondrial markers failed to 

resolve monophyly of most of the species from this recently diversified genus, 

suggesting that their taxonomy may need to be revised. However, relying on a single, 

non-recombining molecule and ignoring potential incongruences between 

mitochondrial and nuclear loci may provide incomplete account of a lineage history. In 

this study, we apply both classical Sanger sequencing of three mtDNA regions and RAD-

sequencing, for reconstructing the phylogeny of the genus. Contrasting with results 

based on mitochondrial markers, RAD-sequencing analyses retrieved the monophyly of 

all seven species, in agreement with the morphological species assignment. We found 

robust nuclear-based species assignment of individual samples, and low levels of 

estimated contemporary gene flow among them. However, despite recovering species’ 
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monophyly, interspecific relationships varied depending on the set of RAD loci 

considered, producing contradictory topologies. Moreover, coalescence-based 

phylogenetic analyses revealed low supports for most of the interspecific relationships. 

Our results indicate that despite the higher performance of RAD-sequencing in terms of 

species trees resolution compared to cytoplasmic markers, reconstructing inter-specific 

relationships may lie beyond the possibilities offered by large sets of RAD-sequencing 

markers in cases of strong gene tree incongruence. 

 

Keywords: coalescent analysis; DNA barcoding; maximum likelihood; mito-nuclear 

incongruence; single nucleotide polymorphisms; quartet inference 
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1. Introduction 

Recently diverged lineages pose a problem for traditional phylogenetic approaches that 

typically rely on a small set of relatively slowly evolving loci (DeFilippis 2000), often 

lacking resolution at narrower evolutionary scales (Cariou et al. 2013). In addition, 

complex processes such as incomplete lineage sorting (Avise et al. 2008; Maddison & 

Knowles 2006; Pollard et al. 2006) and gene flow among species (Leaché et al. 2013) 

increase incongruences among gene trees and topological deviations from the species 

tree (Dengan & Rosenberg 2009; Maddison 1997). This is especially true for lineages 

that have undergone rapid radiations, in which ancestral polymorphisms sorted 

idiosyncratically into the descendant taxa through short evolutionary nodes (Avise et al. 

2008), and in cases where subsequent evolutionary events may blur phylogenetic signal 

(Whitfield & Kjer 2008; Whitfield & Lockhart 2007). Sampling more loci has been 

shown to be a promising approach in such cases (Rokas & Carroll 2005; Townsend et al. 

2011; Wielstra et al. 2014; Williams et al. 2013), but the spectrum of genetic markers 

developed for phylogeny estimation is still limited (Whitfield & Kjer 2008). 

Next-generation sequencing approaches, particularly reduced representation genome 

sequencing (Davey et al. 2011), offer the possibility to sample thousands of genomic 

markers from non-model species. Among them, Restriction site-Associated DNA (RAD; 

Baird et al. 2008) techniques rely on the sequencing of short DNA fragments flanking 

restriction sites, generating random anonymous genomic markers, homologous across 

the analyzed samples (Andrews et al. 2016; Davey & Blaxter 2010). From a phylogenetic 

perspective, an important aspect of RAD markers is the rise in the proportion of ‘null 

alleles’ as genome divergence across samples increases. This phenomenon is caused by 

random mutations occurring in the restriction sites that decrease the numbers of 
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shared RAD loci among taxa, resulting in data matrices containing large amounts of 

missing data (Cariou et al. 2013; Chattopadhyay et al. 2014; Gautier et al. 2013). 

However, using an in-silico approach Rubin et al. (2012) and Cariou et al. (2013) have 

shown that RAD-seq data can be used successfully to resolve species relationships that 

transcend timescales up to 60 Mya (million years ago). Experimentally sampled RAD 

datasets have been applied to reconstruct phylogenetic relationships, mostly among 

recently diverged taxa (e.g., Eaton & Ree 2013; Harvey et al. 2016; Jones et al. 2013; 

Leaché et al. 2015; Nadeau et al. 2013; Wagner et al. 2013), with fewer studies involving 

more distantly related ones, even up to even 80 Mya (e.g., Cruaud et al. 2014; Eaton et 

al. 2016; Herrera and Shank 2016; Hipp et al. 2014; Pante et al. 2015). Although these 

genomic datasets improved phylogenetic inferences for groups that were ambiguous 

using classical markers (e.g., Escudero et al. 2014; Hipp et al. 2014), the potential utility 

of RAD loci for resolving more complex phylogenetic histories, such as those where 

historical introgression has occurred or those associated with incomplete lineage 

sorting, remains still poorly explored (Combosch & Vollmer 2015; Eaton & Ree 2013). 

Moreover, the use of RAD datasets as markers for evolutionary genetics has recently 

been heavily discussed (Lowry et al. 2017; McKinney et al. 2017). 

In this study, we test the utility of RAD-sequencing to recover phylogenetic 

relationships in a genus of seed parasitic pollinators of Trollius europaeus 

(Ranunculaceae) — flies from the genus Chiastocheta Pokorny, 1889 (Diptera: 

Anthomyiidae). Here, sequencing of mitochondrial markers failed to reveal the 

monophyly and phylogenetic relationships among previously morphologically 

described species (Després et al. 2002; Espíndola et al. 2012). This discordance 

between morphology and mitochondrial phylogeny has been interpreted as a call for a 
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taxonomic revision, and a possible reconsideration of conclusions from previous 

ecological and evolutionary studies (Espíndola et al. 2012). However, several 

mechanisms may cause mitochondria not to track species evolution (Funk & Omland 

2003) and, indeed, there are many cases where mitochondrial and nuclear gene trees 

have been shown to be incongruent (e.g., Govindarajulu et al. 2015; Phillips et al. 2013; 

Seehausen et al. 2003). As relying on a single, non-recombining molecule may provide a 

misleading account of a species history (Ballard & Whitlock 2004), utilizing a large set 

of independent nuclear loci (sampled through RAD-sequencing) should allow us to test 

the monophyly of the morphologically described species and resolve phylogenetic 

relationships among them. Whether or not molecular markers are able to reveal 

scenarios of rapid radiations is still an open question (Giarla & Esselstyn 2015). In 

these, identifying a single species tree might lie beyond analytical possibilities due to 

pervasive conflicts among the gene trees, particularly when population sizes are large 

and speciation events happen at a higher rate than the mutation-drift equilibrium, 

eventually producing conflicting topologies. In order to explore gene and species trees, 

we applied both a concatenation-based phylogenetic approach (i.e., RAxML; Stamatakis 

2014) and a coalescence-based inference method (i.e., SVDquartets; Chifman & Kubatko 

2014) to a RAD-seq dataset encompassing specimens from 51 European populations, 

representative of the seven recognized Chiastocheta morphospecies. In order to 

examine the extent to which different combinations of RAD loci may produce distinct 

species trees, we used a newly developed algorithm that performs loci binning, using 

dissimilarity levels among phylogenetic patterns retrieved at single loci (treeCl; Gori et 

al. 2016). We also applied population genetics clustering algorithms (i.e., STRUCTURE; 

Pritchard et al. 2000) as a control. Eventually, we compared our results to those 
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obtained with classical phylogenetic inference based on concatenation of three 

mitochondrial regions. 

2. Materials and methods 

2.1 Study system 

The center of origin and diversity of Chiastocheta has been inferred to be the Western 

Palearctic, where seven fly species are involved in nursery pollination interactions with 

Trollius europaeus L. (Espíndola et al. 2012; Pellmyr 1989, 1992; Suchan et al. 2015). 

These seven morphologically delimited European Chiastocheta species, namely C. 

dentifera Hennig 1953; C. inermella (Zetterstedt, 1838); C. lophota Karl, 1943; C. 

macropyga Hennig, 1953; C. rotundiventris Hennig, 1953; C. setifera Hennig, 1953 and C. 

trollii (Zetterstedt, 1838) are ecologically very similar and often sympatric (Collin 1954; 

Hennig 1976; Michelsen 1985; Zetterstedt 1845; V. Michelsen pers. comm.). In his 

monograph of this plant-pollinator interaction, Pellmyr (1992) discussed another 

species, C. abruptiventris as a northern vicariant of C. rotundiventris, a taxon not 

supported by previous molecular studies (Espíndola et al. 2012) and never formally 

described. Although all Chiastocheta reproduce within the flowers of T. europaeus, with 

potential cross-species mating possibilities, no putative hybrids have been observed 

based on genital morphology (T. Suchan and A. Espíndola, pers. obs.). 

Although the species are well defined morphologically, mitochondrial phylogenies 

recovered only three monophyletic clades – C. rotundiventris, C. dentifera, and C. lophota 

(Després et al. 2002; Espíndola et al. 2012), and suggested a polyphyletic origin for C. 

inermella and C. setifera (Després et al. 2002; Espíndola et al. 2012), with C. macropyga 
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and C. trollii being paraphyletic (Espíndola et al. 2012). Molecular dating placed the 

most recent common ancestor of all European species at the end of the Pliocene (2-3.4 

Ma; Després et al. 2002; Espíndola et al. 2012), and indicated that most diversification 

events occurred within the last 1.6 Ma.  

2.2 Sampling 

Chiastocheta specimens were sampled from 51 European populations during spring and 

summer 2006, 2007, and 2008 (Table 1; maps on Fig. S1). The flies were killed and 

preserved in 70% ethanol and stored at room temperature until DNA extraction. 

Collected specimens were identified to morphospecies following Hennig (1976) and 

unpublished keys (V. Michelsen). All identifications were confirmed by an expert (V. 

Michelsen, Natural History Museum of Denmark, Copenhagen), as the taxonomical 

revision of the genus is not yet published. 

2.3 Sequencing mitochondrial regions and RAD markers 

DNA was extracted from insect legs using a DNeasy Blood and Tissue Kit (Qiagen, 

Hilden, Germany), following the manufacturer’s instructions. We amplified three 

mitochondrial regions: COI, COII, and the ultra-variable D-loop (control) region. We 

followed Espíndola et al. (2012) for sequencing of the COI and COII regions. For D-loop 

we used primers TM-N-193 and  SR-J-14612 as desxcribed in Simon et al. (1994) as 

described by Espíndola et al. (2012) with the following modification of the PCR 

program: 5 min at 95°C, followed by 35 cycles of 1 min at 95°C, 1 min of annealing 

at 55°C and 2 min of elongation at 60°C, and 5 min of final elongation at 60°C. PCR 

products were sequenced at Macrogen Inc. (South Korea) and Fasteris SA (Switzerland). 

Chromatograms were visually corrected on ChromasPro 1.41 (Technelysium Pty. Ltd.). 
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Alignment was performed using MUSCLE algorithm (Edgar 2004) in Geneious 10.1.3 

(Biomatters, Auckland, New Zeland) and gaps with more than 50% missing data in the 

D-loop region were removed. Additionally, a dataset with D-loop removed was 

analyzed. Double digest RAD (ddRAD) libraries were prepared according to Mastretta et 

al. (2014), a modified protocol of Peterson et al. (2012), without performing the size-

selection of DNA fragments, and other minor modifications (see Supporting 

Information). The enzymes used for DNA digestion were SbfI and MseI. Libraries were 

sequenced at the Lausanne Genomic Technologies Facility (Switzerland) on three lanes 

of the HiSeq2500 instrument (Illumina, San Diego, USA) using a 2x100 bp paired-end 

reads protocol. For RAD-sequencing we introduced technical replicates for optimizing 

de novo assembly and controls for the effects of sequencing errors and allele dropout on 

the final results (Mastretta-Yanes et al. 2015; samples with “REPL” suffix in Table S1), 

and DNA extraction replicates from the fly thoracic muscle (in order to control for flies’ 

body contamination with pollen; samples with “MUS” suffix in Table S1). 

2.4 RAD-seq loci assembly 

Two important considerations for de novo RAD loci assembly are the parameters for 

clustering orthologous loci, while filtering out paralogs (Eaton 2014; Mastretta et al. 

2015). If the sequence similarity required to consider sequence as orthologs is set too 

high, real heterozygous alleles will be split into more than one cluster, therefore 

creating false homozygous loci (Harvey et al. 2015). On the other hand, if the similarity 

is set too low, this will result in paralogous sequences being clustered together. Several 

methods were proposed for filtering out such sequences from the final dataset, 

including ploidy filtering (removing clusters that have more than two sequences per 
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individual) and filtering out highly variable loci (Eaton 2014; Ilut et al. 2014). As there 

are no general guidelines for fine-tuning the parameters mentioned above, we 

empirically tested how the different clustering parameters affected the final dataset. 

Finally, we chose the dataset with clustering parameter that maximized the loci overlap 

between pairs of technical replicates (see below). Loci overlap among samples and pairs 

of technical replicates were calculated using the RADami 1.0 library in R (Hipp et al. 

2014). 

Read demultiplexing and de novo assembly of RAD loci was performed using the pyRAD 

3.0.1 package (Eaton 2014), based on an alignment-clustering algorithm. This approach 

allows for indel variation among more diverged specimens. Moreover, it also allows for 

lower similarity among the clustered reads, making it well-suited for phylogenetic-scale 

analyses. First, the reads were demultiplexed according to the in-line 6-nucleotides 

barcode present at the beginning of each sequenced fragment, while allowing for one 

mismatch. Only reads with the restriction site present were retained for further 

analyses. All nucleotides with Phred quality score lower than 20 were converted to 

unknown bases and reads with more than four unknown sites were removed from the 

dataset. Reads were then clustered within and between individuals, with a minimum 

number of six reads to form a cluster and sequence similarity of 75%, 80%, 85%, 90%, 

and 95%. Possible clustered paralogs or repetitive sequences were removed by filtering 

out the loci that had more than five variable positions per locus or more than 10 shared 

polymorphic sites in a locus among individuals, and the loci for which more than two 

alleles were present per individual. Finally, datasets were produced by retaining the loci 

present in a minimum of 10, 20, and 100 individuals and compared for the total number 
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of loci, proportion of missing data, loci overlap among replicates, and the mean number 

of individuals per locus. 

2.5 Phylogenetic analyses 

We performed Maximum-likelihood (ML) analyses using RAxML (Stamatakis 2014) 

with rapid bootstrap analyses and extended majority-rule consensus tree automatic 

bootstrap stopping criterion, following search for the best-scoring ML tree. The 

mitochondrial regions were partitioned using the PartitionFinder 2.1.1 software 

(Lanefar et al. 2016).  Analyses were performed in the RAxML 8.2.4, for the 

mitochondrial dataset. For the dataset consisting of COI, COII, and D-loop regions the 

GTR+G+I model with all three nucleotide positions on coding genes considered as 

separate partitions and D-loop as a fourth partition. For the dataset consisting of COI 

and COII the GTR+G model with the first two nucleotide positions considered as a first 

and third nucleotide position considered as a second partition. Analyses for the RAD 

dataset were performed using the GTRCAT model in the RAxML 8.2.10 version on the 

CIPRES cluster (San Diego CA, USA; Miller et al. 2010). For the RAD-based dataset, 

replicated samples were retained in the phylogenetic analyses and the concatenated 

matrix was considered as a single partition. Additionally, ML analyses of the RAD 

datasets with other clustering parameters were performed in order to evaluate how this 

parameter affects the tree topology. The trees were rooted with C. rotundiventris as an 

outgroup, as identified previously (Després et al. 2002; Espíndola et al. 2012). 

To account for the effects of incongruence among nuclear loci on the inferred 

phylogenies — for instance resulting from incomplete lineage sorting, we applied the 

method of Gori et al. (2016) implemented in the treeCl package (http://git.io/treeCl). 
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Because the majority of RAD loci had sparse coverage over the individuals, we kept only 

loci present in more than 100 individuals for this part of analysis. The ML 

phylogenenies were first calculated for every locus using the GTR+G model as 

implemented in RAxML 8.1.11 (Stamatakis 2014). Then, pairwise geodesic distances 

between all the resulting single-locus phylogenies were measured, and the trees were 

grouped based on the distance matrix using spectral clustering (a protocol hereafter 

referred to as binning). The number of bins was estimated using the nonparametric 

bootstrapping stopping criterion. Support for each branch in each topology was 

calculated using aBayes in PhyML (Anisimova et al. 2011). We also analyzed the log-

likelihood improvement when analyzing the data with n+1 splits vs. n splits, compared 

to the null expectation (i.e. random loci clustering). 

Additionally, we applied a coalescent-based inference method using SVDquartets 

(Chifman and Kubatko 2014) as implemented in PAUP* v.4a150 and v.4a151 (Swofford 

2002). This method infers the topology among randomly sampled quartets using a 

coalescent model, and assembles the randomly sampled quartets using a quartet 

amalgamation method. Breaking the sequence into quartets makes the analysis of large 

numbers of loci feasible. We randomly sampled the maximum of all possible quartets 

(i.e. 48,603,900 quartets = 200 taxa) with the multispecies coalescent option and 1,000 

bootstrap replicates. The quartets were summarized with the QFM (Reaz et al. 2014) 

quartet amalgamation program as implemented in PAUP*. Phylogenetic trees were 

visualized using the ape 3.2 R package (Paradis et al. 2004). 
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2.6 Population structure 

We inferred population structure using the admixture model implemented in 

STRUCTURE 2.3.4 (Pritchard et al. 2000), without prior population assignment and with 

allele frequencies correlated among populations. The software uses a Bayesian 

framework to estimate the likelihood of the data given a number of a priori defined K 

population clusters, outputting the likelihood of each sample to belong to each possible 

cluster. This analysis was performed after removing technical replicates from the 

dataset, retaining only the loci present in a minimum of 20 individuals, and selecting 

one random single SNP from each locus. Analyses were run for K values ranging 

between 1 and 8, with a burn-in of 200K cycles, followed by 1M cycles of sampling, with 

3 replicates for each K value. The optimal K value was identified following Evanno et al. 

(2005), as implemented in STRUCTURE HARVESTER (Earl & vonHoldt 2012). To 

account for the phylogenetic component in the missing alleles, we ran STRUCTURE with 

the recessive alleles model, with missing data coded as recessive. 

3. Results 

3.1 Chiastocheta sampling 

We analyzed a total of 272 Chiastocheta specimens sampled from the entire European 

range of the genus (see Table 1 and Fig. S1 for maps of the sampled specimens). Most 

species displayed a broad spatial distribution. Up to six species could be found in one 

single locality during a single visit (Table 1, mean = 2.7 species per locality, SD = 1.5), 

confirming the sympatric nature of the species and the existing opportunities for 

hybridization. 
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3.2 Sequencing and RAD loci assembly results 

After initial screening, 21 samples were removed from the final dataset because of 

insufficient coverage or technical errors. We successfully analyzed 260 specimens for 

the mitochondrial dataset (255 for COI, 204 for COII, 141 for the first, and 152 for the 

second fragment of the D-loop), and 263 for the RAD dataset, while 251 samples were 

shared between the datasets (Table 1). For the RAD dataset, we also sequenced 22 

technical replicates (samples with “REPL” suffix in Table S1), and 11 DNA extraction 

replicates from the fly muscle vs. extractions from legs (samples with “MUS” suffix in 

Table S1). 

Sequencing of the mitochondrial regions yielded 1132 nucleotide positions for the 

COI+COII dataset (of which 120 were variable) and 2003 for the COI+COII+D-loop 

dataset (of which 334 were variable), after alignment and gap filtering. Three runs of 

RAD sequencing output 552’425’482 of 2 x 100 bp reads, from which 340’598’636 

(62%) passed the restriction site and barcode quality filters (Table S1). 

After comparing the number of loci, coverage, and overlap of loci among replicates in 

the obtained datasets (Fig. S2), we chose the dataset with a minimum of 75% sequence 

similarity required for the sequences to cluster in a locus and a minimum of 20 

individuals per locus for the main analyses. This dataset contained 1724 loci after 

filtering and paralog removal, with 82’782 variable sites. The proportion of missing data 

in the dataset was 0.84, with a strong phylogenetic component in the distribution of 

missing loci (Fig. S3a). After sampling one SNP per locus for the STRUCTURE analysis, 

we obtained 1669 SNPs, of which 159 were bi-allelic. 

For the dataset used for assessing loci incongruence in the RAD-seq based phylogeny 

(see below), we focused on loci present in at least 100 individuals. This resulted in a 



  

 

16 

matrix of 176 loci (among 1724 overall number of loci identified; i.e., 10.2%) with 

missing data showing much less phylogenetic structuring (Fig. S3b). 

3.3 Mitochondrial and nuclear-data phylogenies 

The mitochondrial phylogeny on the COI+COII_D-loop dataset (Fig. 1a and Fig. S4a) 

failed to resolve four of the clades identified based on the RAD-seq data (see below), but 

retrieved well-supported monophyletic group for C. rotundiventris and, to the lesser 

extent for C. dentifera and C. inermella, as both of the latter had two specimens placed 

outside their clades. C. inermella, C. setifera, and C. trollii formed one clade with the 

species extensively interdispersed and a clade containing mostly C. macropyga nested 

within. As the analysis based based on the reduced COI+COII dataset recovered a similar 

pattern, except placing C. lophota as sister to C. macropyga, we refer to the results of the 

larger dataset in the rest of the paper. Most of the C. lophota samples also formed one 

clade with lower support values. The relationships among samples from the remaining 

four morphospecies remained unresolved, without clear support for the 

morphologically described species. 

In contrast to the ML mtDNA phylogeny, both ML and SVDquartets analysis of the RAD 

analysis (Fig. 1b, c and Fig. S4b, c) confirmed monophyly of the seven morphologically 

defined taxa. RAxML analysis revealed relatively high bootstrap supports (> 90%) for 

all of the interspecific relationships, except the split between C. setifera and the clade (C. 

lophota, (C. macropyga, (C. dentifera, C. trollii))) with bootstrap support > 80%. The split 

of C. rotundiventris into two putative vicariant clades, informally proposed by Pellmyr 

(1992) — northern C. abruptriventris and southern C. rotundiventris, was not recovered. 
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SVDquartets analysis also confirmed monophyly of the species, but only the split 

between C. dentifera and C. trollii had a bootstrap support > 90%; the clade (C. 

macropyga, (C. dentifera, C. trollii)) had bootstrap support > 80%; these two clades were 

the only ones supported by both SVDquartets and the RAxML analyses (Fig. 1c). 

Moreover, SVDquartets revealed two well-supported clades within C. rotundiventris. 

These however do not show any pattern of vicariance and often occur together in a 

single population, thus most likely do not correspond to the two vicariant species of C. 

abruptiventris and C. rotundiventris as discussed by Pellmyr (1992). The technical 

replicates were consistent in the placement of the sample within the proper clade, and 

most replicates were placed as sister clades with both methods (Fig. S4b,c). 

3.4 Incongruence among the RAD-sequencing loci 

TreeCl analysis identified, in the most conservative interpretation, at least four clusters 

of loci, as the largest likelihood improvement was obtained when increasing the number 

of bins from three to four (Fig. S6). The bin sizes were of 29, 42, 47, and 58 loci, 

therefore the identified groups were not simply consisting of a few outliers. The trees 

inferred for the four bins confirmed the monophyly of the analysed species to a large 

extent, although few individuals appeared outside their expected clades. The largest 

departure from monophyly was observed for C. lophota in the smallest tree consisting of 

29 loci (Fig. 2). The trees inferred for each cluster had branch supports for interspecific 

nodes larger than 95%, and differed substantially in terms of topology and branch 

lengths. Only one tree, with the largest number of loci (i.e., 58) supported the only clade 

that was supported by both RAML and SVDquartets analysis (C. macropyga, (C. 

dentifera, C. trollii)). Except that, the interspecific relationships retrieved with each of 
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the treeCl bins were different than with the concatenated RAxML analysis and 

SVDquartets analysis (Fig. 1b,c). 

3.5 Structure analysis 

We found low levels of contemporary introgression, as shown by STRUCTURE analysis. 

The most likely K number of STRUCTURE groups was consistent with the number of 

morphological species (7), and all samples were assigned to their ‘correct’ 

morphospecies (Fig. 1d). Also for lower numbers of clusters, we did not observe 

signatures of introgression (Fig. S5). 

4. Discussion 

4.1 Utility and limits of RAD-sequencing for resolving phylogeny 

of a „difficult” genus 

RAD-sequencing successfully discriminated all formally described European 

Chiastocheta species. The robust species delineation is striking when compared to 

mtDNA-based trees that failed to support monophyly of C. inermella, C. macropyga, C. 

setifera, and C. trollii (Fig. 1a and Fig. S4a; see also: Després et al. 2002; Espíndola et al. 

2012). The ability to recover previously defined morphological species in our dataset, 

whatever analysis method used (i.e., maximum-likelihood phylogenetic reconstruction 

using a concatenated matrix with RAxML, coalescence-based phylogenetic inference 

with SVDquartets, or population-genetics clustering with STRUCTURE), supports the 

results of a previous simulation study by Hovmöller et al. (2013), that high amounts of 

missing data, typical for RAD-based datasets, should not interfere with clade (or cluster) 
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identification. Recently, similar conclusions were drawn by Eaton et al. (2016) 

concerning the SVDquartets method. 

In contrast, no consensus could be reached in retrieving inter-specific relationships. 

Whereas RAxML identified relationships with high bootstrap support in four of the five 

possible interspecific relationships, only two of them were also supported by the 

SVDquartets analysis (Fig. 1b,c). Incongruence in the phylogenetic signals associated 

with different sets of loci could explain the difficulty in resolving these interspecific 

relationships. When performing loci binning using treeCL (Gori et al. 2016), we found 

out that different subsets of loci (in our case, the optimal number of bins was equal to 

four) produced different topologies, while still being largely congruent in the sample 

assignment into species (Fig. 2).  

Short interspecific branches in the resolved phylogenies confirm the conclusions of 

Espíndola et al. (2012) that most of the species from the Chiastocheta genus underwent 

a recent (less than 1.6 Mya), rapid radiation. These results highlight the fact that in such 

cases it may be impossible to retrieve some of the phylogenetic relationships among the 

taxa as fully bifurcating tree, because gene trees may depict different evolutionary 

histories due to incomplete lineage sorting (Avise et al. 2008; Maddison 1997). This is a 

limitation shared with classical markers (Walsh et al. 1999) and other NGS approaches 

(see below), pointing to a possible constitutive limitation in resolving rapid radiations. 

In rapidly diverging taxa, even the large number of nuclear markers, while being more 

successful here in recovering species boundaries than mitochondrial markers may not 

be informative-enough to retrieve all interspecific evolutionary relationships. 

The extent to which the above limitation is the result of technical constraints of RAD 

datasets or a true biological limitation remains to be investigated. RAD-seq targets 
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random, mostly neutral parts of the genome. This results in high number of lineage-

specific mutations that bear a strong signal to delineate species or populations – within 

these fast-evolving parts of the genome, even varying allele copy-numbers (i.e. recent 

paralogs) can appear as population-specific (Mastretta-Yanes et al. 2014). The 

downside is however, missing data increases rapidly with evolutionary distance as a 

result of the loss of restriction sites  (Cariou et al. 2013; Chattopadhyay et al. 2014; 

DaCosta & Sorenson 2016; Gautier et al. 2013; Rubin et al. 2012; Wagner et al. 2013). 

For instance, Leaché et al. (2015) found differences between phylogenies obtained 

using RAD-seq vs. target enrichment techniques, whereas other studies have shown the 

agreement among data types (Manthey et al. 2016). The latter techniques rely on 

capture of a predefined (Faircloth et al. 2014; McCormack et al. 2012) or random 

(Suchan et al. 2016, Schmid et al. 2017) subset of loci. By not relying on the presence of 

restriction sites, and thus having less missing data, enrichment techniques may be 

better suited for broader phylogenetic scales.  

Nevertheless, it has been shown that even with hundreds of conserved loci, known 

substitution models and several individuals per species, trees with short branches are 

difficult to resolve, and ML analyses based on concatenated sequences may provide high 

bootstrap values  despite incorrectly resolved topologies (Giarla & Esselstyn 2015; 

Kubatko & Degnan 2007; but see Gatesy & Springer 2013; Springer & Gatesy 2016; Roch 

& Warnow 2015). This is exemplified by our study, in which using all RAD loci, we 

obtained a ML phylogeny with highly supported interspecific nodes, whereas 

coalescence-based phylogenetic inference did not show strong supports for most of the 

interspecific relationships. Our exploration of explanations for such a discrepancy using 

the loci binning approach showed support for at least four different underlying gene 
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tree topologies. In these analyses, we reduced the dataset to a non-random set of loci 

when filtering for high loci coverage among samples. The retained loci, present in at 

least 100 analyzed individuals, and with less phylogenetically-structured missing data 

(see Fig. S3b), should be characterized by lower mutation rates or being under 

stabilizing selection (Huang & Knowles 2014). Using binning, the best fit to the data was 

not obtained with a single bin of loci but with four. We could therefore not identify one 

single evolutionary history of the Chiastocheta genus, but rather equally-supported 

gene trees topologies. Importantly, these different topologies cannot be attributed to a 

few outlier loci, as their distribution was relatively even across the clusters (29, 58, 42 

and 47 loci; Fig. S6), incongruence among these sets possibly impacting maximum-

likelihood phylogenetic reconstruction using a concatenated matrix and coalescence-

based phylogenetic inference. We have also confirmed that in such cases, ML methods 

provide elevated bootstrap support values, and that lower bootstrap support values 

resulting from coalescence-based methods may better reflect the biological uncertainty 

of interspecific relationships. 

4.2 Mitonuclear discordance in the phylogeny of Chiastocheta 

While our RAD-sequence dataset delineated seven clades, with full agreement with the 

morphological assignments, mitochondrial data failed to support species monophyly, 

except for C. rotundiventris and, to a lesser extent, C. lophota and C. dentifera. The other 

remaining species: C. inermella, C. setifera and C. trollii formed a large clade with the 

species extensively interdispersed and with the clade consisting mostly of C. macropyga 

nested within (Fig. 1a). Despite, on average, mitochondrial markers should be more 

suited for capturing relationships among recently diverged lineages, due to an effective 
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population size four times less than that of nuclear genes (assuming neutral processes, 

equal sex ratios, and unbiased mating systems), and thus shorter coalescence times 

(Zink & Barrowclough 2008), analyzing a large dataset of nuclear markers provided 

more power to discriminate the species in our case. 

Mitonuclear discordance patterns can be explained either by the different biological 

properties of mitochondrial DNA (vegetative segregation, uniparental inheritance, 

intracellular selection, and reduced recombination; Birky 2001) or differences in the 

evolutionary histories of nuclear and mitochondrial markers [e.g., direct selection on 

the mitochondrial genes (Ballard et al. 2007; Ballard & Pichaud 2014; Boratyński et al. 

2014; Dowling et al. 2008), incomplete lineage sorting, historical or ongoing gene flow 

among species, or hybrid speciation].  Indeed, it has been shown before that relying on a 

single, non-recombining mtDNA molecule may provide a misleading account of a 

species history (e.g., Ballard & Whitlock 2004; Govindarajulu et al. 2015; Phillips et al. 

2013; Seehausen et al. 2003; and reviews by Funk & Omland 2003; Rubinoff & Holland 

2005).  While investigating the reasons for the mito-nuclear discordance was not within 

the scope of this paper, we could reject the hypothesis of a contemporary gene flow or 

hybrid origin of the taxa as responsible for this pattern. We did not detect signature of a 

genetic mosaic in the—mostly—nuclear RAD data, which would be expected in the case 

of hybrid origin (Ballard 2000; Brelsford et al. 2011; Mallet 2007; Pollard et al. 2006). 

Using RAD-sequencing data, the assignment of samples into species was concordant 

with morphology (Fig. 1b,c and S4b,c) and we did not detect significant levels of 

contemporary gene flow using population genetics-based approaches (Fig. 1d), despite 

apparent opportunities for hybridization. Most of Chiastocheta occur in sympatry (Fig. 

S1), they also have very similar biologies, reproducing and spending most of their time 
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on or inside flowers of Trollius europaeus (Pellmyr 1989; Suchan et al. 2015). Although a 

temporal sequence in oviposition has been observed (Després & Jaeger 1999; 

Johannesen & Loeschcke 1996; Pellmyr 1989), most species co-occur temporally. 

Despite these ecological similarities and the relatively young age of the genus (most of 

the clades emerging less than 1.6 Ma; Espindola et al. 2012), a lack of nuclear evidence 

for hybridization indicates strong contemporary reproductive barriers among the 

species. 

5. Conclusions 

This study demonstrates how a combination of RAD-seq and mtDNA data can provide 

insights into phylogenies of genera that are poorly resolved using mitochondrial 

markers alone and reveal complex picture of mitonuclear discordance. It also 

underlines the limits of RAD-seq-based phylogenies in case of rapid radiations. Our 

results show that a scenario of rapid radiation can affect many loci across the genome, 

leading to discordant gene trees, even when using methods controlling for incomplete 

lineage sorting. This may point to an inherent limitation of using molecular markers to 

resolve rapid radiations, at least at some of the inter-specific relationships, and suggests 

that this limitation is not necessarily due to technical issues (e.g. low number of shared 

markers). 

Adding to the body of examples of mito-nuclear discordance (reviewed in Toews & 

Brelsford 2012), our study warns against relying solely on mitochondrial markers (e.g., 

COI barcoding; Herbert et al. 2003) for species delimitation, especially when they show 

incongruence with classical taxonomy. In the case presented here, mitochondrial 

markers suggested poly- or paraphyly for most species, and proposed the need to 
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review the taxonomy of the genus (Espíndola et al. 2012). When tackled from the 

genomic point of view, the genetic support of species status for these seven entities was 

confirmed. Finally, we provide an example of how ML phylogenies based on large 

concatenated datasets can provide erroneously high bootstrap supports for incorrect or 

uncertain topologies (Giarla & Esselstyn 2015; Kubatko & Degnan 2007). 
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Figures 

Figure 1. Phylogenies obtained for a) ML analysis of the mtDNA dataset; b) ML analysis 

of the RAD dataset; c) SVDquartets analysis of RAD dataset; bootstrap node supports > 

80 are shown denoted by gray points, bootstrap node supports > 90 are shown denoted 

by black points. d) Population clustering of the sampled Chiastocheta specimens, 

estimated with STRUCTURE using K = 7 value. 

 

Figure 2. Phylogenetic trees on the four bins, as identified by the treeCl analysis, 

considering only the loci present in at least 100 specimens. Bootstrap node supports > 

80 are shown denoted by gray points, bootstrap node supports > 90 are shown denoted 

by black points. 
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Tables 

Table 1. Populations included in the study, with geographical coordinates and the 

number of specimens used in the final analyses. Letter codes denote Chiastocheta 

species: C. dentifera (D), C. inermella (I), C. lophota (L), C. macropyga (M), C. 

rotundiventris (R), C. setifera (S), and C. trollii (T). 

code site latitude longitude year D I L M R S T sum 

AMB Ambri 46.50680 8.70292 2008 
  2 4 2  1 9 

AMO Amot 59.62199 8.42346 2007 
 4      4 

BAY Bayasse 44.30814 6.74067 2007 
 1 2 2 2  3 10 

BEI Beistohlen 61.20761 8.95473 2007 
 5      5 

BID Bidjovagge 69.29778 22.47808 2008 
 1   1   2 

BON Col de 

Bonnecombe 
44.57557 3.11410 2007 

   3 1 1 2 7 

BRA Braas 57.09309 15.06817 2007 
 1      1 

CCO Col de la 

Colombière 
45.98722 6.46972 2006 

  2 1 2  1 6 

CDV Creux du Van 46.93526 6.74119 2006 
 1 2  2 2  7 

CHA Chasseral 47.12569 7.02130 2006 
  5  3  1 9 

CHE Chemin 46.08993 7.08978 2006 
3 1  3 2 1 2 12 

CRA Crans-Montana 46.34650 7.53890 2006 
 1 1  3 1 1 7 

CRE Cressbrook Dale 53.26724 -1.74041 2008 
     2  2 

CTP Colt Park 54.19365 -2.35247 2008 
 4   1  1 6 

DON Donovaly 48.88922 19.23068 2008 
  3 1 2   6 

EID Eidda Pastures 53.03720 -3.74190 2008 
     2  2 

ELL Ellingsrudelva 59.91771 10.91844 2007 
 1      1 

EPO Esposouille 42.62341 2.09450 2008 
1  1  2 2 3 9 

FRO Froson 63.18205 14.60268 2007 
 2      2 
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GAL Col du Galibier 45.08528 6.43861 2006 
 2 2  3  3 10 

GLE Glen Fender 56.78138 -3.79485 2008 
    2 2  4 

HT1 Haute Tinee 1 44.29617 6.81871 2007 
  3     3 

HT2 Haute Tinee 2 44.28426 6.85581 2007 
   3   1 4 

KRA Krasno Polje 44.80869 14.97271 2008 
     1  1 

LAK Laktatjakka 68.42931 18.40674 2007 
 1  4 2   7 

LFE Lough Fern 55.06569 -7.71130 2008 
     1  1 

LOS Loser 47.66052 13.78485 2007 
  4  3 1  8 

MOE Moerlimatt 47.90597 8.07760 2007 
  1  1 1 1 4 

MTP Monte Pizi 41.91524 14.16714 2008 
     2  2 

NAV Naverdal 62.70417 10.13002 2007 
 3     1 4 

PAJ Pajino Preslo 43.27799 20.81970 2008 
     2  2 

PAN Puerto de 

Panderrueda 
43.12743 -4.97223 2008 

  1 1 3 2 1 8 

PIL Pila 48.90017 20.29449 2008 
3  2 1    6 

POD Podlesok 48.94962 20.35190 2008 
   1   1 2 

PPN Petit Papa Noel 66.51647 25.79386 2007 
1 3   2  3 9 

PYD Puy de Dome 45.77222 2.96333 2006 
  2 2 2   6 

PYM Puy Mary 45.11139 2.68083 2006 
  1     1 

PYS Puy de Sancy 45.53500 2.80972 2006 
  3 2 1   6 

RAD Radkow 50.46866 16.35321 2008 
2 4   2   8 

RIS Risnjak - Snjeznik 45.43871 14.58494 2008 
    1 2  3 

SAL Salla 66.83020 28.65427 2007 
1    2 1 4 8 

SED Sede de Pan 43.03949 -0.48651 2008 
  2     2 

SET Seterasen 65.53432 13.67744 2007 
1 4  1 1  1 8 

SOL Solberga 57.95194 13.56116 2007 
4 2   2  1 9 

STE Steingaden 47.59529 11.01296 2007 
   1 1 31  5 
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STR Straumen 67.38440 15.64921 2007 
    2   2 

SUS Susch 46.74728 10.07473 2006 
2  2  2 1 3 10 

SVA Svartla 65.99583 21.22062 2007 
3 3      6 

TAR Tarasp 46.77730 10.25056 2006 
  1  2 1 3 7 

VIT Vitosha 42.59032 23.29342 2008 
     2  2 

ZAL Zali Log 46.20342 14.11080 2008 
   3 2 1  6 

    total: 21 44 42 33 59 34 38 271 
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Appendix A. Supplementary material 

Table S1. Summary statistics for the RAD-sequenced samples: number of RAD 

fragments clusters and mean coverage after retaining clusters with a coverage >5, 

estimated heterozygosities, number of consensus loci after paralog filtering, and the 

numbers of loci retained for each dataset after filtering for coverage among the samples. 

Fig. S1. Map of the sampled Chiastocheta specimens used in the study. 

Fig. S2. The effect of different clustering thresholds (X-axis) and minimum loci 

coverages (indicated by colors: red – 10, blue – 20, green – 100 individuals) on the total 

number of assembled loci, proportion of missing data, loci overlap among the technical 

replicates, and mean number of individuals per locus. 

Fig. S3. Pattern of RAD-seq loci sharing among the sequenced individuals for datasets: 

a) the main dataset using clustering similarity of 75% and minimum loci coverage 

among individuals of 20; b) using clustering similarity of 75% and minimum loci 

coverage among individuals of 100. 

Fig. S4. a) ML phylogeny inferred for the mtDNA dataset; b) ML phylogeny inferred for 

the RAD-seq dataset; c) SVDquartets phylogeny inferred for the RAD-seq dataset; 

bootstrap node supports > 80 are shown denoted by gray points, bootstrap node 

supports > 90 are shown denoted by black points. 

Fig. S5. STRUCTURE runs for K=2 to 7, plotted against the RAD-seq based phylogeny. 

Fig. S6. Phylogenetic trees on the loci partitioned into the sets of 2 to 6 clusters, 

considering only the loci present in at least 100 specimens. Bootstrap node supports > 

80 are shown denoted by gray points, bootstrap node supports > 90 are shown denoted 

by black points. Numbers below the trees denote the number of clusters into which the 
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dataset was divided. Plot of log-likelihood improvement versus the number of clusters 

is presented in the first box. 

Appendix S1. RAD-sequencing protocol. 
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Highlights: 

- RAD markers allow testing species concept where mitochondrial datasets fail, 

- disentangling inter-specific evolutionary relationships may lay beyond the 

possibilities of RAD markers in cases of the underlining gene tree incongruence, as in 

cases of species radiations 
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