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Abstract 

Tree-ring based paleoclimate reconstructions entail several sequential estimation or 

processing steps. Consequently, it can be difficult to isolate climatic from non-climatic 

variability in the raw ring width measurements, estimate the uncertainty associated with a 

reconstruction, and directly infer how specific techniques used to sequentially fit growth 

curves or to reconstruct climate influence the final estimates. This paper explores the use 

of hierarchical regression models to address these problems. The proposed models 

simultaneously model the entire reconstruction process in a way that is consistent with 

the existing step-by-step estimation framework, but allow for uncertainty estimation and 

propagation across steps, which can help determine how best to improve a candidate 

model. The utility of hierarchical models is tested for an example, the reconstruction of 

summertime temperatures in northern Sweden in a cross-validated framework relative to 

1) a sequential process of growth curve fitting followed by chronology development, 3) 

an iterative, “signal-free” approach, and 2) a signal-free regional curve standardization 

(RCS-SF). Further, an exploration of different structures within the unifying hierarchical 

framework is provided to illustrate how one could easily test a variety of choices of 

model design. We focus on a subset of choices relevant to recent dendroclimatic studies 

using hierarchical methods and related to 1) data transformation, 2) the benefits of 

biological detrending and climate reconstruction in a single step 3) partial pooling of the 

age model across trees, 4) the homogeneity of variance across tree-ring residuals, 5) the 

structural form of the age model, and 6) the inclusion of autoregressive processes for the 

tree-ring residuals. The work described here represents part of a series of ongoing 

explorations of potential advances over current dendroclimatic reconstruction approaches 
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and commonly implemented ways in which they have and are specifically implemented. 

The results show that hierarchical modeling appears to offer improved climate 

reconstructions over the standardization techniques explored in this exercise, 

substantially so for the non-RCS sequential and iterative methods.  

 

Introduction 

Paleoclimate reconstructions from tree rings have proven enormously useful for 

understanding past climate variability prior to instrumental or historical records. The 

development of these reconstructions requires that variability in tree-ring width 

measurements (or other growth-related data) related to external climate forcing be 

isolated from other variability in the tree-ring measurements associated with internal 

growth processes, such as biological age-related trends. These trends emerge as the stem 

expands over the life of the tree and subsequently radial ring widths slowly decline.  

 

In dendroclimatology, methodologies to separate climatic from non-climatic variability in 

the raw ring width measurements are referred to as standardization techniques (Fritts, 

1976). These techniques generally follow a three-step, sequential procedure in which 1) 

age-related growth trends are estimated and removed from each tree-ring series, 2) trend-

adjusted series are averaged across trees to develop a single chronology, and 3) a target 

climate series of interest is modeled as a function of the chronology to develop the 

reconstruction. The possible removal of part of the climate signal with the biological age-

related trend is a common problem that arises in the first two stages of this procedure. 

This problem, known as the ‘segment length curse’ (Cook et al., 1995; Briffa et al., 

1996), arises because the age-related growth trend is fit to the length of each tree-ring 
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series using deterministic (e.g., monotonic decreasing linear, modified negative 

exponential growth) or flexible (e.g., smoothing splines) curves that, by construct, 

assume trends across the length of the data series consistent with the growth model are 

associated with biological and not climatic variability. Thus, decadal to centennial scale 

climate variability present in the tree rings but with period longer than the length of the 

tree-ring series is subsumed into the biological trend model and removed from the 

chronology and subsequent climate reconstructions.  

 

A variety of approaches have been proposed to mitigate the loss of climate information 

when fitting and removing age-related trends. Regional curve standardization (RCS) is an 

empirical curve fitting technique that assumes a homogenous growth rate across all trees 

of the same age (or age class) and estimates that rate based on the average ring width for 

all tree rings in a given age class, with post-average smoothing (Briffa et al., 1992). The 

RCS approach assumes that the distribution of age classes is sufficiently random across 

trees in any given time period so that climate-related variance in that time period is 

averaged out in the calculation of age-related growth for each age class. Because the 

biological growth curve is estimated using all tree-ring series, it is not constrained by the 

length of any one series and the resulting chronology can exhibit variability on long 

timescales up to the length of the full chronology (Esper et al., 2002; Peters et al., 2015). 

However, the assumptions made in the RCS procedure, namely that a single, 

homogenous growth curve can be applied to all trees in a stand, are often violated due to 

variations in local conditions (e.g., soil, competition, microclimate, etc.) experienced by 

individual trees (Briffa and Melvin, 2011).  
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To circumvent these challenges and minimize the effects of the segment-length curse, 

Melvin and Briffa (2008) proposed the “signal-free” method of standardization. In this 

approach, biological age-related trends are estimated and removed for individual trees 

and a chronology then estimated, similar to a traditional standardization. However, the 

chronology is then removed from each tree and the individual age models re-estimated. A 

new chronology is developed and the entire procedure iterated until the chronology 

converges to a sufficiently fixed time series. Through this iteration, the signal-free 

approach removes the influence of common, climate-forced signal in individual tree-ring 

width series prior to biological trend estimation, thus improving the chances that the 

biological trend does not subsume the climate signal while still allowing for 

heterogeneity in biological trends. The signal-free method has also been extended to the 

RCS approach (i.e., RCS-SF standardization) to better manage situations where only a 

few older trees with common germination dates are available to estimate the climate 

series from early parts of the chronology (Briffa and Melvin, 2011; Melvin and Briffa, 

2014a).   

 

While the signal-free approach improves the retention of external climate forcing in the 

final chronology, some amount of climate signal may still be lost in the early iterations of 

the procedure. Recently, hierarchical regression models have been proposed as an 

alternative approach for isolating climate and non-climate variance in tree-ring series. In 

hierarchical models, the biological age-related trend and the shared climate signal across 

trees are estimated jointly and simultaneously in a single-step modeling procedure. To the 
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authors’ knowledge, only a handful of studies have utilized hierarchical regression 

models for ring width detrending and chronology development. Concurrently, Duncan et 

al. (2010) and Bontemps et al. (2010) were the first to propose such an approach. Duncan 

et al. (2010) found that cross-validated temperature reconstructions in New Zealand were 

substantially improved over a reconstruction based on a sequential procedure that utilized 

individual smoothing splines for detrending. The model proposed in Bontemps et al. 

(2010) was compared against an RCS procedure and found to produce similar 

chronologies (Bontemps and Esper, 2011), although they did not present a comparative, 

cross-validated assessment of reconstructed climate. Schofield et al. (2016) adopted a 

Bayesian hierarchical approach and proposed a novel framework in which the model 

linking the chronology to the climate series targeted for reconstruction was calibrated 

simultaneously with the models of biological trend for each tree-ring series. In that study, 

a variety of model variants were developed to test different underlying assumptions in 

model structure, and these different model versions were compared to both standard and 

RCS procedures. While Schofield et al. (2016) did present a novel framework and a 

thorough discussion of hierarchical model development and inter-comparison, they were 

unable to show substantive improvements in cross-validated reconstructions of 

Scandinavian summer temperature over other standardization techniques. Through our 

work we find that this was primarily due to the length of the temperature series used in 

the analysis. Schofield et al. (2016) also did not compare their results to signal-free 

approaches designed to better separate age- and climate-related variability in the ring 

width series. Our results show that a RCS-SF approach is quite robust and has 

comparable out-of-sample performance to the hierarchical models, although the two 
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approaches do lead to different chronologies and reconstructions prior to the instrumental 

record.  

 

This study builds directly from the work presented in Schofield et al. (2016) and further 

explores the use of hierarchical regression models for dendroclimatic standardization and 

climate reconstruction and how they compare to existing approaches. Similar to Schofield 

et al. (2016), we adopt a hierarchical Bayesian framework, although this is not necessary 

to implement the hierarchical construct. Our work differs from the original study 

presented in Schofield et al. (2016) in three primary ways. First, we consider a variety of 

additional model choices not explicitly assessed in the original study and test their 

implications for the fidelity of climate reconstructions. These choices include 1) the type 

of data transformation, 2) biological detrending and climate reconstruction in a single 

modeling step, 3) partial pooling of the age model across trees, 4) the homogeneity of 

error variance across tree-ring residuals, 5) the structural form of the age model, and 6) 

the inclusion of autoregressive processes for the tree-ring residuals. Second, we compare 

the hierarchical models to signal-free approaches for standard and RCS detrending, which 

are better designed to avoid subsuming the climate signal into the biological trend. 

Finally, we use a substantially longer instrumental temperature record to better 

differentiate the reconstruction skill of different hierarchical and conventional 

standardization approaches. 

 

The remainder of the paper will introduce the hierarchical modeling framework 

considered in this work, develop model variants that represent alternative hypotheses of 
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the underlying data generating process, detail the estimation and cross-validation 

frameworks used to assess the fidelity of different model-based reconstructions, and 

present the results of the comparison.  

 

Data 

To motivate the model developments presented in this work and compare them against 

the results of Schofield et al. (2016), we use the same tree-ring data set composed of 

annual growth increments of 247 living and subfossil Scots pine (Pinus sylvestris) 

growing near the latitudinal tree-line in Torneträsk, northern Sweden (Grudd et al., 2002; 

Briffa et al., 2008). After cross-dating, the earliest ring widths in this dataset extend back 

to 1497 and the most recent rings end in 1997. All series have at least 25 annual 

increments, with the average and maximum series length equal to 179 and 484 years, 

respectively. Figure 1 shows the distribution of tree-ring data across years.  

 

Schofield et al. (2016) developed their methods based on an 83-year (1913-1995) record 

of Torneträsk summertime (JJA) temperatures recorded at the Abisko weather station. 

We also test our standardization approaches against a slightly longer Abisko record 

(1913-1997) to facilitate a direct comparison against the results in Schofield et al. (2016). 

However, we focus our attention primarily on tests using a 182-year record of summer 

temperature from 1816-1997 at Tornedalen, Sweden (Klingbjer and Moberg, 2003). 

Though there may be some degradation in the signal between the tree rings and 

temperature at the farther Tornedalen site, the use of this longer record enables each 

model variant to be tested against a much longer out-of-sample period in the cross-
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validation framework. Importantly, the Tornedalen record exhibits a substantial shift in 

temperature around 1912 (see Figure 1), thus providing a challenging testing dataset that 

can be used to help distinguish between the performance of different models. 

 

The Tornedalen temperature record is a composite of four different temperature series 

that required considerable adjustments to produce a merged homogeneous temperature 

record. See Klingbjer and Moberg (2003) for details. Even so, we conducted independent 

homogeneity tests of the summer target temperature season by comparing the Tornedalen 

record against the long homogeneous Stockholm 

(http://bolin.su.se/data/stockholm/air_temperature.php) and St. Petersburg (Phil Jones, 

pers. comm.) temperature records. In neither comparison was any sign of inhomogeneity 

found in the Tornedalen summer temperature series. 

 

Hierarchical Regression Models for Standardization and Reconstruction 

Consider that we have M tree-ring series of length ni, where 𝑦𝑖,𝑡 is the radial increment  

for the ith tree in year t. Here we assume that all tree-ring series have already been cross-

dated, each series contains data within a range of years 𝑇𝑖 = {𝑡1
𝑖 , … , 𝑡𝑛𝑖

𝑖 }, and together the 

M series span a total period of T years. Each series y contains a biological age-related 

trend, 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃𝑖) , that is a function of the cambial age of the tree, 𝑎𝑔𝑒𝑖,𝑡 , and 

parameters 𝜃𝑖 for each tree, as well as a common signal of external climate forcing, 𝜂𝑡, 

that is shared amongst all of the trees. The goal is to develop a reconstruction of a target 

climate series, 𝑥𝑡, that is related to 𝜂𝑡, and simultaneously an estimate of the biological 

growth curves. We assume that the instrumental climate series 𝑥𝑡 is available from some 
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time t0 to T and has been standardized by removing its mean and dividing by its standard 

deviation. 

 

Conventional, Non-Hierarchical Models 

In a conventional three-stage standardization approach (hereafter TS standardization), the 

function 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃𝑖) is selected from a list of possible options (linear, modified negative 

exponential, Hugershoff, smoothing splines, etc.) and estimated separately for each tree. 

Residuals 𝜀𝑖,�̂� are then estimated as the difference between 𝑦𝑖,𝑡 and 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃�̂�). These 

residuals are averaged across trees for each time period t to develop an estimated 

chronology 𝜂�̂�, and the target climate series 𝑥𝑡 in the instrumental period is modeled as a 

function of 𝜂�̂� in order to develop the reconstruction.  

 

The signal-free approach of standardization (hereafter SF standardization) begins similar 

to TS standardization, where 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃�̂�) is first estimated for each tree, and then 𝜂�̂� is 

estimated as the average 〈𝑦𝑖,𝑡 − 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃�̂�)〉 across trees. However, in the signal-free 

approach, this process is iterated with an adjusted estimate of the age model 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃�̃�) 

based on the adjusted series 𝑦𝑖,�̃� = 𝑦𝑖,𝑡 − 𝜂�̂� , followed by a new estimate 𝜂�̃�  based on 

〈𝑦𝑖,𝑡 − 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃�̃�)〉. These iterations continue until the chronology 𝜂�̃�  converges to a 

nearly fixed time series. 

 

A basic RCS approach follows the same general procedure as the TS approach, but 

𝐵(𝑎𝑔𝑒𝑖,𝑡)  is developed as a single growth curve by averaging 𝑦𝑖,𝑡  for different age 

classes (e.g., 0 < 𝑎𝑔𝑒𝑖,𝑡 < 10, 10 < 𝑎𝑔𝑒𝑖,𝑡 < 20, etc.) and smoothing the resulting curve 
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using the selected function 𝐵(𝑎𝑔𝑒𝑖,𝑡). Ideally, pith offset estimates (the number of inner 

rings missing to pith in the actual ring-width measurement series used) should be 

included in the estimation of the RCS curve (Kershaw, 2007; Briffa and Melvin, 2011). 

However, this was not done in the Schofield et al. (2016) study, and so it is not done here 

to allow for a more direct comparison using the same data as in that study. However, in 

terms of methodology, Schofield et al. (2016) used the original (simplified) RCS 

approach described in Briffa et al. (1992). Improved methods for implementing the RCS 

concept have been developed (Helama et al., 2016), such as the signal-free RCS (RCS-

SF) approach (Melvin and Briffa, 2014a,b). The RCS-SF is particularly useful in 

situations where limited subfossil samples can bias the original RCS detrending. We 

compare our hierarchical models to the RCS-SF approach because this method is better 

suited for separating biological and climate related signals, particularly for our dataset 

using limited ring width series from subfossil Scots pine, and so provides a more robust 

benchmark against which to compare the hierarchical models.  

 

The TS, SF, and RCS methodologies have been discussed at length in the literature 

(Helama et al., 2004; Peters et al., 2015 and sources within) and the reader is directed to 

these references for additional detail. We also recognize that numerous other variants of 

these standardization approaches have been proposed (Briffa et al., 2001; Bontemps and 

Esper, 2011; Björklund et al., 2013; Briffa et al., 2013; Matskovsky and Helama, 2014; 

Linderholm et al., 2015; Helama, et al., 2016), but for brevity of exposition we focus on 

the three strategies discussed above (TS, SF, RCS-SF) and their comparison to a basic 

hierarchical model to highlight the major methodological and practical differences.  
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Basic Hierarchical Model 

In a basic hierarchical modeling approach, the age models and chronology are integrated 

into a single model, expressed as:  

 

   𝑦𝑖,𝑡 = 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃𝑖) + 𝜂𝑡 +  𝜀𝑖,𝑡     (1) 

   𝜂𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜂
2)       (2) 

   𝜀𝑖,𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑖
2)       (3) 

 

Here, 𝜂𝑡  is a zero-mean deviation common to all trees, analogous to the chronologies 

developed in standard dendroclimatic practice. The moniker “hierarchical” comes from 

the fact that the parameters vary at different levels in the model, most importantly at the 

“lower” level that describes the actual tree ring width series (𝜃𝑖), and at “upper” levels 

that influence the values taken by terms in the lower level (𝜎𝜂
2, 𝜎𝑖

2). The key to the 

hierarchical framework is that the parameters and unknown quantities in Eqs. 1-3 are 

estimated jointly, instead of in stages. In the joint estimation, the upper level parameters 

(𝜎𝜂
2, 𝜎𝑖

2)  inform the estimates of lower level parameters, (𝜃𝑖) , and simultaneously, 

information at the lower level informs upper level estimation. Information about the 

common signal 𝜂𝑡 that is potentially subsumed by the age model in the sequential process 

of the TS approach or the early iterations of the SF or RCS-SF procedures is preserved in 

the joint estimation procedure, and this is a primary benefit of the hierarchical model. 

Once the hierarchical model is fit, the chronology 𝜂𝑡 can be used to reconstruct target 

climate series of interest in a similar manner to conventional standardization techniques. 
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The joint estimation procedure for hierarchical modeling can proceed by maximizing the 

likelihood function of all of the data. Alternatively, a Bayesian approach can be adopted 

(as in this study), whereby other sources of information (e.g., expert opinion, results from 

past studies) can be included in the estimation through the use of prior distributions for 

model parameters. These prior distributions provide a flexible way to impart additional 

structure onto the parameters, which could improve model stability and prediction. For 

instance, we could require that all age-related parameters be drawn from a common prior 

distribution, which will have the effect of pulling the parameters for each tree towards the 

mean of the prior while still allowing for heterogeneity between trees. This formulation 

draws from both the TS and RCS approaches to biological trend modeling. The prior 

distributions for parameters can also be made sufficiently vague (e.g., uniform 

distributions, normal distributions with very large variances) so that the data dominate the 

estimation. 

 

To complete the model in Eqs. 1-3, we require a specific formulation for the biological 

age-related trend. Based on an initial assessment of the Torneträsk tree-ring data, we 

adopt a simple linear model after first transforming the original ring widths using a Box-

Cox transformation: 

 

   𝐵(𝑎𝑔𝑒𝑖,𝑡|𝛽0,𝑖, 𝛽1,𝑖) = 𝛽0,𝑖 +  𝛽1,𝑖𝑎𝑔𝑒𝑖,𝑡   (4) 
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This age model is also used for two of the conventional standardization techniques (TS 

and SF). For the RCS-SF standardization, however, we used an age-dependent spline to 

maximize the flexibility of the homogenous age curve used across tree ring series.  

 

Exploring Model Structure in a Hierarchical Framework 

Hereafter, the hierarchical model described in Eqs. 1-4 is considered the reference model 

and denoted M0. This model is very similar to that of Duncan et al., 2010. A variety of 

other model formulations will be developed from the reference model to demonstrate the 

flexibility of the hierarchical modeling structure and provide guidance for future 

dendroclimatic studies seeking to use hierarchical models for standardization. These 

model formulations are selected to build from the work presented in Schofield et al. 

(2016) and provide insight into their utility for climate reconstruction. Table 1 

summarizes all of the models considered in this work, which are described further below. 

Additional detail on the Bayesian estimation framework is provided afterwards. 

 

Data Transformation  

The model for radial growth increments in Eq. 1-4 was expressed as an additive model 

under a flexible Box-Cox transformation of the original ring widths. Multiplicative 

models are also commonly employed for tree-ring analyses, where annual growth 

increments are modeled as the product of expected growth, 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃𝑖), a common 

deviation across trees (i.e., the chronology, 𝜂𝑡), and an error term (Melvin and Briffa, 

2008): 
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    𝑦𝑖,𝑡 = 𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃𝑖) × 𝜂𝑡 × 𝜀𝑖,𝑡   

 (5) 

 

However, assuming a negative exponential growth curve, the multiplicative model is 

equivalent to a linear additive model under a logarithmic transformation. In both Duncan 

et al. (2010) and Schofield et al. (2016), the tree-ring widths were assumed to follow such 

a model. However, this assumption may result in a biased estimation if the logarithmic 

transformation over-corrects for the skew commonly found in strictly positive ring width 

measurements (Helama et al., 2016). In such cases a less extreme and more flexible 

transformation, such as the Box-Cox transform, may be more appropriate (see Cook and 

Peters (1997), Helama et al. (2004), and supporting material). Schofield et al. (2016) 

mentioned briefly in their discussion that their results did not vary much between a 

logarithmic and square root transformation of the ring widths, but our results indicated 

more significant differences when comparing logarithmic and Box-Cox transformations. 

Therefore, we include a comparison between a linear standardization model after 

logarithmic transformation (hereafter M1) and the additive model after a Box-Cox 

transformation used in the reference model.  

 

Joint Estimation for Target Climate Series Reconstruction  

The primary hierarchical model formulation presented in Schofield et al. (2016) linked 

the target climate series directly to the chronology within the model framework. Their 

proposed formulation, which we adopt here, can be expressed by expanding the reference 

model as follows: 
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    𝜂𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝛽2𝑥𝑡, 𝜎𝜂
2)     (6) 

   𝑥𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑥, 𝜎𝑥
2)     (7) 

 

Here, the mean function for the chronology is modeled as a linear function of the climate 

series to be reconstructed, whose distribution is also modeled. The argument for such an 

approach is that during the instrumental period, 𝑡𝜖(𝑡0, 𝑇), the model will be able to “see” 

variations in the climate series that correspond to common variations in many of the tree-

ring series when fitting the age models for each tree, and so the model is less likely to 

subsume the climate forcing into the age model and be more prone to incorporate it into 

the chronology, 𝜂𝑡, through the time-varying term 𝛽2𝑥𝑡. For time periods prior to 𝑡0 when 

𝑥𝑡 is unavailable, the model will consider these values of the climate series as unknown 

quantities that require posterior estimation. This estimation will combine information 

from the prior distribution in Eq. 7 with the posterior chronology 𝜂𝑡  for 𝑡 < 𝑡0 . We 

discuss this further in the section entitled Climate Reconstruction. 

 

While innovative, the study presented in Schofield et al. (2016) did not test the 

improvements in climate reconstruction afforded by this approach against a suitable 

control that could isolate the effects of the explicit link between climate and chronology. 

We develop such a controlled experiment here by comparing the model formulation in 

Eqs. 6-7 (hereafter M2) against the reference model, where the calibrated values of the 

zero-mean 𝜂𝑡  are regressed against the climate series outside of the hierarchical 

standardization model. We also note that the formulation in M2 may render the fitted 
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chronology 𝜂𝑡 inappropriate for reconstructions of other climate data besides 𝑥𝑡, which 

may detract from its value as a generalized tool for chronology development.   

 

Partial Pooling  

The parameters of the hierarchical model are allowed to exhibit additional structure that 

could improve model stability and prediction, depending on the amount of tree-ring data 

available for the reconstruction. For instance, parameters for the biological age-related 

model of each tree can be linked through a parent distribution in the prior. For the linear 

age model considered in this study, these priors can be specified as: 

 

 𝛽0,𝑖 ~ 𝑁(𝜇𝛽0
, 𝜎𝛽0

2 )     (8) 

    𝛽1,𝑖 ~ 𝑁(𝜇𝛽1
, 𝜎𝛽1

2 )  T(-∞,0)   (9) 

 

Here, 𝜇𝛽0
, 𝜎𝛽0

2 , 𝜇𝛽1
, 𝜎𝛽1

2  are hyperparameters also calibrated in the model and T(-∞,0) 

indicates that the prior for 𝛽1 is truncated to be negative to ensure a decreasing growth 

curve. The effect of this additional structure will be to pull, or shrink, the age parameter 

estimates towards their mean value across all trees. The partial pooling of information for 

the age model across trees somewhat resembles the RCS approach, but rather than 

requiring a homogenous age model for all trees, heterogeneous models are permitted with 

the additional constraint that they share some amount of information dependent on the 

uncertainty associated with the data from each tree and the regional prior. Both Duncan et 

al. (2010) and Schofield et al. (2016) partially pool information across trees, but neither 

assessed whether such an approach provides benefits for the climate reconstruction. 
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Partial pooling affords the most benefits when the data are corrupted by outlier values or 

there is a paucity of data for individual trees in the model. However, since tree-ring series 

often contain dozens to hundreds of rings for each tree, it is unclear whether partial 

pooling of age models will provide any benefit to the reconstruction or will just degrade 

the age models for each tree. While the answer to this question is likely case study 

specific and dependent on the data available for each tree series, we provide some insight 

based on the Torneträsk data by comparing the reference model to a similar model with 

the priors given in Eqs. 8-9 (hereafter M3). 

 

Homogenous or Heterogeneous Variance  

One seemingly innocuous model choice includes whether to include a common or tree-

specific error variance. In both Duncan et al. (2010) and Schofield et al. (2016), the 

variance parameter 𝜎𝑖
2 is assumed the same for all trees and set equal to 𝜎2. However, if 

the variability in the residuals for each tree series varies significantly from tree to tree, 

this assumption may give too much weight to the information from certain trees and 

overly discount others. We test this underlying assumption by altering the reference 

model to include only a single, constant variance for all tree-ring residuals (hereafter 

M4). We also note that a compromise is possible in the hierarchical model by partially 

pooling these variance parameters across trees, although no such model is tested here.  

 

Choice of Biological Trend Model  

In the models specified above, simple linear age models were adopted following a Box-

Cox or logarithmic transform. However, a variety of other biological age-related trend 
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models are possible, including other deterministic functions and flexible smoothing 

splines. We do not attempt a thorough review of all of these approaches here. Rather, an 

examination of the data suggests that a modified Hugershoff curve (Warren, 1980) is 

potentially more appropriate for the Box-Cox transformed data than a simple linear 

model (see supporting material and Briffa and Melvin, 2011). The modified Hugershoff 

curve is given as: 

 

  𝐵(𝑎𝑔𝑒𝑖,𝑡|𝜃𝑖) = 𝑎𝑖 × 𝑎𝑔𝑒𝑖,𝑡
𝑏𝑖𝑒𝑥𝑝(−𝑐𝑖 × 𝑎𝑔𝑒𝑖,𝑡) + 𝑑𝑖  

 (10) 

 

We first tested several formulations for the Hugershoff curve, including one where 

parameters are constant across all trees (similar to a RCS standardization), one where 

separate parameter sets are allowed for each tree, and a compromise where the 

parameters 𝑎𝑖 and 𝑑𝑖 are allowed to vary by tree but parameters b and c (which control 

curvature) are common to all trees. This final formulation performed equal or better than 

the other formulations under out-of-sample cross validation (see supporting information) 

and is therefore considered in the broader model comparison (hereafter M5).   

 

Modeling Autocorrelation 

After accounting for the expected growth of each tree series and any common climate 

forcing, the residuals of the tree-rings, 𝜀𝑖,𝑡 , can often still be autocorrelated in time 

(Macias-Fauria et al., 2012). Conventionally, it is considered good practice to represent 

residual autocorrelation directly in a model, as this will improve predictions of the 
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modeled data and more accurately estimate the uncertainty of other regression 

parameters. However, in dendroclimatology we are less interested in accurate and precise 

estimates of the tree rings themselves, but rather are more concerned with accurate and 

precise estimates of out-of-sample climate reconstructions. By modeling the 

autocorrelation of the tree-ring residuals, there is a risk that part of the climate signal will 

be subsumed into the parameters for residual autocorrelation, although such a result is not 

intuitive prior to model fitting and testing. Therefore, we augment the reference model by 

allowing the residuals to follow an AR(1) process and include this variant in the inter-

model comparison (hereafter M6). Before selecting the AR(1) process, we first examined 

the residuals of the fitted reference model and tested a variety of AR(p) formulations (see 

supporting material). The AR(1) model performed as well or better than other variants 

under cross-validation and therefore was chosen for the broader model comparison.  

 

Model Fitting and Prediction 

Bayesian Inference via Markov Chain Monte Carlo Sampling 

In the Bayesian approach taken in this study, the estimation process involves the 

evaluation of the joint posterior distribution of all model parameters, given by Bayes 

Theorem: 

 

    𝑝(Θ|𝑌) =  
𝑝(𝑌|Θ)𝑝(Θ)

∫ 𝑝(𝑌|Θ)𝑝(Θ)𝑑ΘΘ

    (11) 

 

Here, Θ is the vector of all parameters, 𝑝(𝑌|Θ) is the likelihood function of the data, and 

𝑝(Θ) is the prior distribution for the model parameters. The integral in the denominator is 
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a constant of proportionality required to ensure that the right hand side is a well-defined 

probability density function.  

 

For the purposes of exposition, we develop the components of the posterior distribution 

for the reference model, M0. The joint prior distribution 𝑝(Θ), which summarizes our 

knowledge of the parameters prior to model fitting against the data, can often be more 

conveniently partitioned into a series of conditional and marginal distributions: 

 

 𝑝(Θ) =  𝑝(𝜂1:𝑇|𝜎𝜂
2) × 𝑝(𝜎𝜂

2) × [∏ 𝑝(𝜎𝑖
2) × 𝑝(𝛽0,𝑖) × 𝑝(𝛽1,𝑖)

𝑀
𝑖=1 ]  (12) 

 

with the conditional prior distribution for the chronology, 𝜂, given by: 

 

  𝑝(𝜂1:𝑇|𝜎𝜂
2) = ∏

1

√2𝜋𝜎𝜂
2

exp (−
𝜂𝑡

2

2𝜎𝜂
2)𝑇

𝑡=1     (13) 

 

All other prior distributions are set to non-informative distributions (see supporting 

material), with the exception of 𝑝(𝛽1,𝑖), which is uniformly distributed from -5 to 0 to 

ensure a decreasing growth curve with age. The likelihood function for the tree-ring 

series in M0 is given by: 

 

  𝑝(𝑌|Θ) = [∏ ∏
1

√2𝜋𝜎𝑖
2

𝑒𝑥𝑝 (−
(𝑦𝑖,𝑗−(𝛽0,𝑖+ 𝛽1,𝑖𝑎𝑔𝑒𝑖,𝑗+𝜂𝑗))

2

2𝜎𝑖
2 )𝑗∈𝑇𝑖

𝑀
𝑖=1 ] (14)  
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The posterior distribution in Eq. 11, and in particular the integral in the denominator, is 

often too complex to be solved using analytical methods. This challenge has been largely 

ameliorated with computational advances that enable the generation of samples from the 

posterior distribution that can be used to empirically summarize any of its features. 

Markov chain Monte Carlo (MCMC) sampling provides a straightforward way to 

generate these samples; we provide a brief summary here and direct the reader to Gelman 

et al. (2013) for more detail. MCMC sampling uses sampling chains to simulate a random 

process that has the posterior distribution as its equilibrium distribution. In one common 

algorithm to simulate these chains (the Metropolis-Hastings procedure), parameters are 

sampled from a proposal distribution and the numerator of the posterior density in Eq. 11 

is evaluated under both the new and previous parameter samples to determine whether 

the chain should move towards the newer sample. This process is iterated over all 

parameters, enabling each level of the hierarchical model to inform the estimation of all 

the other levels. If multiple MCMC chains are initiated with very different parameter 

values but converge to the same region in the parameter space, the MCMC algorithm is 

said to have converged on the posterior distribution. This can be assessed using the 

Gelman and Rubin convergence criterion [Gelman and Rubin, 1992]. In this study, the 

posterior distribution is explored using the MCMC sampler in the software package 

JAGS [Plummer, 2011] with 20,000 samples for ‘burn-in’ and 20,000 samples to develop 

the posterior. We note that these Bayesian methods are slower to fit compared to 

conventional methods. As a benchmark, the reference model took approximately 1 hour 

to run on a MacBook Pro laptop with a 2.6 GHz Intel Core i7 processor and 16GB of 

Random Access Memory (RAM). 
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Climate Reconstruction 

The predicted reconstruction of climate prior to the instrumental record is the primary 

variable of interest. For all hierarchical models except M2, these predictions are 

generated by regressing the climate variable 𝑥𝑡 against the fitted chronology, taken as the 

posterior median values, 𝜂�̂�. This can be summarized as: 

 

 𝑥𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝛽𝑥𝜂�̂�, 𝜎𝑥
2),        t=1,…,T   (15) 

 

This approach, while simple, ignores the uncertainty in 𝜂𝑡 (which will depend on the data 

availability for each year t), and this can lead to a biased estimate of the regression 

coefficient, 𝛽�̂�, when estimated using least squares (Fuller, 1987). However, this bias will 

be small if the uncertainty in 𝜂𝑡 for each year t is small compared to the variance of the 

median chronology over the fitting period. This situation is likely since the fitting period 

is almost always coincident with the modern instrumental period of climate records, and 

this is the time period when most tree-ring series are available to constrain the uncertainty 

in 𝜂𝑡. For instance, under the reference model M0, bias in 𝛽�̂� would be on the order of 

1% of its estimated value. Therefore, we maintain the simple yet slightly biased approach 

of ignoring the uncertainty in 𝜂𝑡  when estimating Eq. 15. However, a full Bayesian 

regression model could easily be developed that accounts for the uncertainty in 𝜂𝑡  by 

coupling Eq. 15 (i.e., the likelihood function) with priors for each time period, 

𝜂𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝜂�̂� , 𝜎𝜂𝑡
2̂ ) , where the values 𝜂�̂� , 𝜎𝜂𝑡

2̂  are estimated from the posterior 

distribution of 𝜂1:𝑇.  
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For M2, the climate series is modeled directly, and so no secondary regression is 

necessary. In this model, the MCMC algorithm will automatically provide posterior 

distributions for the out-of-sample temperature values, 𝑥1:(𝑡0−1), that include uncertainty 

from the remaining model parameters. These are the posterior predictions presented in 

Schofield et al. (2016). However, no estimates will be provided for the within-sample 

climate 𝑥𝑡0:𝑇 because the model sees these values as data and not unknown quantities, 

precluding the generation of within-sample performance statistics. This can be resolved 

by deriving the maximum likelihood estimates of 𝑥1:𝑇 for the whole period conditional on 

the fitted values 𝜎𝜂
2̂, 𝜇�̂�, 𝜎𝑥

2̂, 𝛽2̂, and 𝜂1:�̂�: 

 

    𝑥𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑥,𝑡
∗ , 𝜎𝑥

2∗
)    (16) 

    𝜇𝑥,𝑡
∗ =

(𝜎𝜂
2̂𝜇�̂�+𝜎𝑥

2̂𝛽2̂𝜂�̂�)

𝜎𝜂
2̂+𝛽2̂

2
𝜎𝑥

2̂
     (17) 

    𝜎𝑥
2∗

= (
1

𝜎𝑥
2̂

+
𝛽2̂

2

𝜎𝜂
2̂

)
−1

     (18) 

   

Here, we assume that the Bayesian inference described above has already been 

performed. Given the formulation of M2, Eqs. 17-18 describe the analytical solutions to 

the conditional posteriors for the mean and variance of the climate series. The time-

varying mean 𝜇𝑥,𝑡
∗  is the term used for the mean climate reconstruction, whereas the full 

distribution in Eq. 16 contains the uncertainty around those mean estimates. Therefore, 

the final climate reconstruction from M2 can be developed by developing point estimates 

of model parameters from their fitted posterior distributions {𝜎𝜂
2̂, 𝜇𝑥 ,̂ 𝜎𝑥

2̂, 𝛽2̂, 𝜂1:�̂�}  and 
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inserting these point estimates into Eqs. 17-18 to estimate a time series of mean climate 

𝜇𝑥,𝑡
∗ , as well as the uncertainty around the mean, 𝜎𝑥

2∗
. We use the posterior median of 

each conditioning parameter in the estimation above, but the uncertainty of these 

parameters can also be propagated into the reconstructed values of 𝜇𝑥,𝑡
∗  and 𝜎𝑥

2∗
 by 

sampling from their joint posterior distribution and passing those samples into Eqs. 16-

18.  

 

Cross-Validation Framework 

Temperature reconstructions from the seven hierarchical models listed in Table 1 are 

compared against each other and reconstructions from the three conventional, non-

hierarchical approaches (TS, SF, RCS-SF) to determine if and how the hierarchical 

framework provides advantages for climate reconstruction. We adopt a split-sample 

cross-validation framework in which half of the temperature data is included for model 

fitting and the other is reserved for testing. The cross-validation is performed twice for 

both the Tornedalen and Abisko temperature series, with fitting and testing periods 

reversed. For the Tornedalen series, we use the 1816-1912 and 1913-1997 periods, while 

for the Abisko series we use the 1913-1955 and 1956-1997 periods.  

 

Four performance metrics are used to assess model performance. Three of the metrics are 

adopted from Cook et al. (2007): the square of the Pearson correlation (RSQ), the 

reduction of error (RE), and the coefficient of efficiency (CE). The metrics are each 

calculated for both the calibration period (subscript c) and the validation period (subscript 

v) as follows: 
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  𝑅𝑆𝑄𝑐 =
[∑(𝑥𝑡−𝑥𝑐̅̅ ̅)(𝑥�̂�−𝑥�̂�

̅̅ ̅)]
2

∑(𝑥𝑡−𝑥𝑐̅̅ ̅)2 ∑(𝑥�̂�−𝑥�̂�
̅̅ ̅)

2      ,    𝑅𝑆𝑄𝑣 =
[∑(𝑥𝑡−𝑥𝑣̅̅̅̅ )(𝑥�̂�−𝑥�̂�

̅̅̅̅ )]
2

∑(𝑥𝑡−𝑥𝑣̅̅̅̅ )2 ∑(𝑥�̂�−𝑥�̂�
̅̅̅̅ )

2     (18) 

  𝑅𝐸𝑐 = 1 −
∑(𝑥𝑡−𝑥�̂�)2

∑(𝑥𝑡−𝑥𝑣̅̅̅̅ )2              ,    𝑅𝐸𝑣 = 1 −
∑(𝑥𝑡−𝑥�̂�)2

∑(𝑥𝑡−𝑥𝑐̅̅ ̅)2     (19) 

  𝐶𝐸𝑐 = 1 −
∑(𝑥𝑡−𝑥�̂�)2

∑(𝑥𝑡−𝑥𝑐̅̅ ̅)2                 ,  𝐶𝐸𝑣 = 1 −
∑(𝑥𝑡−𝑥�̂�)2

∑(𝑥𝑡−𝑥𝑣̅̅̅̅ )2  (20) 

 

The RSQ metric is a measure of covariance between the reconstructed and observed 

climate series without any consideration of bias. The RE includes a bias component, but 

always considers the bias with respect to the mean of the observations in the period not 

being evaluated. Conversely, the CE considers bias with respect to the observed mean for 

the period being evaluated. High values of 𝐶𝐸𝑣 are the most difficult to achieve, because 

in order to do so the model must predict any epoch-scale shifts in the mean of the 

observations from the calibration to the validation period.  

 

The three metrics above summarize the skill of the mean reconstructed climate series, but 

they do not capture the ability to appropriately model the uncertainty of predicted values. 

Therefore, the continuous rank probability skill score (CRPSS) is also considered. The 

CRPSS is a relative score that is only defined by the comparison of two models: 

  

    𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆

𝐶𝑅𝑃𝑆𝑟𝑒𝑓
     (21) 

 

Here, CRPS and CRPSref are the continuous rank probability scores of the current model 

under consideration and the reference model, respectively. The CRPS is the average of 
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integrated square differences between the cdf of the predicted values, 𝐹�̂�𝑡
, and the cdf of 

the observation, 𝐹𝑥𝑡
 (defined here for the calibration period):  

 

  𝐶𝑅𝑃𝑆𝑐 =
1

𝑛𝑇𝑐

∑ ∫ (𝐹�̂�𝑡
(𝑧) −  𝐹𝑥𝑡

(𝑧))
2

𝑑𝑧
∞

−∞𝑡∈𝑇𝑐
   (22) 

 

The cdf of the predicted values is based on the predictive uncertainty from the regression 

between 𝑥𝑡 and 𝜂�̂�  (or the pdf given in Eq. 16 for M2), while the cdf of the observed 

value is just the heaviside step function at the value 𝑥𝑡. Here, 𝑇𝑐 and 𝑛𝑇𝑐
 are the range of 

years and number of years in the calibration period. 𝐶𝑅𝑃𝑆𝑣 and 𝐶𝑅𝑃𝑆𝑆𝑣 can be defined 

similarly for the validation period. By including the entire cdf of predicted climate 

values, and not just the mean estimate, the CRPS (and thus CRPSS) can assess both the 

accuracy and precision of the reconstructed temperature series, with lower values of the 

CRPS indicating a more accurate and precise prediction.  

 

Finally, for the Tornedalen series we also compare how the reconstructions differ when 

fitting on the 1816-1912 period versus the 1913-1997 period. Small differences in the two 

temperature reconstructions suggest that a model is robust to sampling variability in the 

tree-ring and climate data.  

 

Results 

Model Diagnostics 

Prior to comparing temperature reconstructions across hierarchical model variants and 

other standardization techniques, we first examine whether basic modeling assumptions 
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are being met under the hierarchical models. First, we calculate the time series of 

normalized residuals for each tree-ring series under each model variant. Normalized 

residuals are defined as the residuals adjusted for any autocorrelation and divided by their 

standard deviation, 𝜁𝑖,𝑡 = (
(𝜀𝑖,𝑡 −  𝛼𝜀𝑖,𝑡−1)

𝜎𝑖
⁄ ). Note that 𝛼 = 0 for all models but M6 

and 𝜎𝑖 = 𝜎  in M4. The normality of normalized tree-ring residuals is tested using a 

Shapiro-Wilk test (Shapiro and Wilk, 1965) and homoscedasticity (i.e., constant 

variance) is tested with a Breusch–Pagan test (Breusch and Pagan, 1979). We also 

examine the autocorrelation of the normalized residuals and the mean squared error of the 

original residuals.  

 

Model diagnostics are presented in Figure 2. Somewhat surprisingly, the residual series 

for many trees under all models fail the test for normality – between 40-45% of trees for 

most models have p-values from the Shapiro-Wilk test below 0.05. This number 

increases to 67% for M1. For most models, the lack of normality stems from both 

positive and negative outlier values that stretch the tails of the distribution for tree-ring 

residuals beyond the kurtosis of a normal distribution. This can be effectively solved by 

modeling the residuals using Student’s t-distribution and fitting the degrees of freedom 

for each tree series, but the temperature reconstructions from such an approach are nearly 

identical to those from a model with normal residuals (not shown). This suggests that the 

influence of residual outliers for individual tree-ring series is damped when a sufficient 

number of trees are included in the analysis, and therefore the Student’s t model was not 

considered further in this work. We note that the assumptions of normality fail more 

often under M1 mainly because the logarithmic transformation applied in that model 
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over-corrects for the skew in the rings and imparts a negative skew to most series (see 

supporting material). This cannot be solved using a Student’s t-distribution, and the 

negative skew may impart errors in the temperature reconstruction – this is addressed 

later.  

 

 The Breusch–Pagan test fails to reject the assumption of homoscedastic residuals for 

most ring width series and all models, suggesting that after the rings are transformed 

using a Box-Cox or logarithmic function, the variance of the rings does not vary 

substantially with their magnitude. All models have substantial autocorrelation in the 

residuals of tree-ring series, except M6, where this autocorrelation was explicitly 

modeled. Correspondingly, M6 also has substantially lower mean squared error for the 

residuals, since the modeled autocorrelation explains a substantial portion of the 

variability in tree-ring width series. We examine whether these improvements translate 

into improved temperature reconstructions below.   

 

Performance of Temperature Reconstructions 

Figure 3 shows the RSQ, RE, CE, and CRPSS for all models and the Tornedalen series 

calculated over the calibration and validation periods for both combinations of fitting and 

testing periods. In addition to the suite of hierarchical models, we also include the three 

other standardization approaches for comparison.  Several insights emerge from Figure 3. 

The difference in performance is most apparent when comparing the TS and SF models 

to all other models. For out-of-sample performance, the TS method consistently performs 

the worst of all the models. The SF approach provides improvements over the TS 
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method, suggesting that the iterative approach reduces the amount of climate information 

subsumed by the age models. However, the SF method based on the negative exponential 

curve is far inferior to the RCS-SF method, which performs more like the hierarchical 

models than the other conventional approaches. This is because conventional SF is still 

highly susceptible to the segment-length curse, which inevitably leads to the loss of low-

frequency signal compared to RCS-SF. These results indicate that for this case study, the 

heterogeneity in growth among trees is less important compared to the risk of climate 

information being subsumed into the age model. We also note that Schofield et al. (2016) 

found poor out-of-sample performance for a simple RCS standardization approach, 

despite previous studies that determined the RCS approach was well-suited for the study 

region (Briffa et al., 1992; Melvin et al., 2012). Our results indicate that a RCS-SF 

standardization leads to relatively accurate cross-validated temperature reconstructions, 

as compared to other models.  

 

The range of RSQ values for all the models considered here is similar to those developed 

for other summer temperature series in the region (Grudd et al., 2002). We note that the 

differences between models are much more stark when comparing performance metrics 

that account for bias (RE, CE, and CRPSS) than for the RSQ. This indicates that much of 

the climate information that gets subsumed into the age models is related to the long-term 

mean and not year-to-year fluctuations, which is not particularly surprising given the 

smooth form of the age models. We also note that the differences in performance for TS 

and SF are much less apparent when examining within-sample performance, which 

highlights the importance of a robust cross-validation framework for model evaluation.    
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Differences in performance amongst the other hierarchical models and the RCS-SF 

approach are subtler, initially suggesting that the assumptions underlying the different 

model variants are less critical for temperature reconstructions, at least in this study. 

There are some modest differences to note. First, M3, M4, M5, and especially M6 

generally underperform M0, M1, and M2 for out-of-sample periods. Therefore, it would 

appear that the use of partial pooling for the age model, homogenous variance, and the 

Hugershoff age curve do not substantively improve model performance, while auto-

correlative structure for tree-ring series residuals significantly degrades performance. 

These results are modest (except for M6) and likely sensitive to sampling variability in 

the cross-validated skill statistics. Still, they may provide some guidance for future model 

development, especially since previous hierarchical modeling studies have not discussed 

the implications of modeling residual autocorrelation and have defaulted to the use of 

partial pooling and homogeneity of error variance (Duncan et al., 2010; Schofield et al., 

2016).  

 

Importantly, some of the major differences between models seen using the Tornedalen 

data are not apparent if the cross-validation testing is performed on the shorter Abisko 

data. Table 2 shows the verification CE values for all models for both the Abisko and 

Tornedalen temperature series. Using the Abisko data, it is very difficult to distinguish 

any of the models. The largest differences are seen for M4 and M1 in the 1913-1955 

verification period, suggesting some degradation in performance when using a model 

with homogenous variance and a logarithmic transformation. However, most CE values 
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for the Abisko series are extremely close and likely indistinguishable from sampling 

variability, including those for the conventional TS and SF models. The cross-validated 

skill scores presented in Schofield et al. (2016) were similarly unable to differentiate a 

TS-type model from their primary hierarchical model (the same as M2 in this study). The 

differences between the TS and SF approaches and all other models are much clearer 

when using the longer Tornedalen series. Here, the CE values for the TS and SF models, 

as well as M6, are significantly lower than the other models, suggesting that these models 

are poor candidates to produce a final temperature reconstruction.      

 

While the longer Tornedalen series highlights clear improvements when using some 

models over others, not all models are easily distinguished, even with the longer cross-

validation period. For instance, the similarities in performance between M0, M1, and M2 

would initially suggest that data transformation and the inclusion of climate into the 

standardization model have little effect on the climate reconstruction. Also, the similar 

cross-validated performance of the RCS-SF approach raises doubts about whether the 

hierarchical models provide substantially different reconstructions compared to a more 

conventional method, at least in this case study. However, these comparisons only 

include data for reconstructed temperatures during the period of instrumental data (1816-

1997); a thorough comparison requires the examination of the entire 500-year period.  

 

Figures 4 and 5 show the reconstructed Tornedalen temperature series for 1497-1997 

based on the fitting periods 1816-1912 and 1913-1997, respectively. The mean 

reconstruction and 95% confidence bounds are shown along the main diagonal, and 
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differences between mean reconstructions of model pairs are shown in off-diagonal 

positions. For brevity, we only show and discuss the reconstructions for M0, M1, M2, 

and RCS-SF, since these three hierarchical models were particularly difficult to 

distinguish using performance metrics over the instrumental period, and the RCS-SF 

approach provided similar performance using a conventional standardization technique. 

However, we show comparisons between the reconstructed temperature series of all 

hierarchical models in the supporting material, which are generally very similar, in line 

with their similar performance statistics. The exceptions are M1 and M6, but we only 

focus on M1 in Figures 4 and 5 because M6 was already shown to have poor predictive 

skill.  

 

When comparing the full reconstructions, the differences between M0, M1, M2, and 

RCS-SF are better resolved. First, the reconstructions of M0 and M2 are essentially 

identical for both fitting periods, suggesting that there really isn’t much difference in the 

reconstruction if the climate series is modeled simultaneously with the tree rings. The 

same result is seen when the models are fit to the shorter Abisko data (not shown). This 

result is somewhat contrary to the thesis presented in Schofield et al., (2016), which 

argued strongly for simultaneous standardization and reconstruction. However, the result 

is perhaps not too surprising given that M0 and M2 have identical priors and extremely 

similar likelihood functions, differing only by the addition of the temperature data in M2 

(~ 90 data points, or ~0.2% of the total data in the model). If multiple climate series were 

included in M2 and not just a single temperature series, then it is possible that there 
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would be greater differences between these two models. However, this is beyond the 

scope of this study and left for future work.  

 

Figures 4 and 5 also show that the temperature reconstruction differs substantially under 

M1 compared to M0 and M2, although these differences are mainly seen prior to 1800. In 

M1, the cold anomaly centered around 1600 and extending from 1500 to 1750 is deeper 

than in M0 and M2. We argue that the anomalously cold reconstruction in M1 is actually 

a spurious artifact of the logarithmic transformation of tree rings that over-corrects for the 

positive skew in the data. After logarithmic transformation, many of the ring series have 

negative skew, and this skew imparts downward bias on either the age models or the 

regression linking the chronology to the temperature series. The lack of fit is also seen in 

Figure 2, where M1 exhibits the most egregious failure of the normality test and the 

highest MSE for individual tree-ring series (as compared to M0 and M2). We also note 

that some of the models in Schofield et al. (2016) produced implausibly cold growing 

season temperatures (<4°C) (Körner and Paulsen, 2004; Körner, 2008) in their 

reconstructions for the Abisko site, which we also found when using M1 for the Abisko 

data, but which was resolved using M0 (see supporting information). This further 

suggests that the logarithmic transformation imposes an artificial cold bias in the 

reconstruction.  

 

The difference in the temperature reconstruction between the RCS-SF approach and both 

M0 and M2 is reversed as compared to the differences seen for M1. That is, the RCS-SF 

approach simulates a milder cold anomaly centered around 1600 as compared to M0 and 
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M2, but has a similar reconstruction after 1700. We note that the hierarchical model that 

used a Hugershoff curve (M5) utilizes a common curvature across tree-ring series 

(common parameters b and c across series), which is similar to an RCS-style approach 

that shares the same age model across trees. Therefore, the differences that originate 

between RCS-SF and M0 and M2 (but not between M5 and M0 and M2) are unlikely 

associated with the homogeneity of the age model in the RCS-SF approach. Rather, we 

speculate that the differences between the RCS-SF approach and both M0 and M2 are 

most likely linked to a signal in the ring widths early in the record (< 1700) that is 

attributed to the age model in early iterations of the signal-free fitting process for the 

RCS-SF approach, but is attributed to the chronology in M0 and M2. It is difficult to 

determine whether this signal is biological or climate related and which model is correct 

in its attribution. However, it is significant that the RCS-SF and hierarchical models 

differ substantially in their reconstruction, since both model types perform similarly 

under-cross validation and are constructed to avoid subsuming the climate signal into the 

age related trend.  

 

Finally, we note that the differences between the models are more apparent for the 1913-

1997 fitting period (Figure 5) compared to the 1816-1912 fitting period (Figure 4).  To 

explore this further, Table 3 shows the average and mean square of year-by-year 

differences in mean temperature reconstruction based on the two fitting periods for all of 

the models considered. If the mean square differences between reconstructions for a 

model are small and the average difference is near zero, this indicates that the model is 

relatively insensitive to the sampling variability of the two different fitting periods. We 
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argue that a model that is highly sensitive to the fitting period used is vulnerable to over-

fitting and may lead to degraded climate predictions in the pre-instrumental period. Table 

3 shows that reconstructions based on the two fitting periods are most similar for RCS-

SF, M0, and M2, although the RCS-SF approach has a slight mean bias between the two 

periods. Models M3 and M5 also have very similar reconstructions, and to a lesser extent 

M4 as well. Differences become more pronounced for M1 and M6, suggesting that the 

logarithmic transformation and auto-correlative structure are either altogether 

inappropriate for the data being considered (M1) or are too uncertain to be estimated 

accurately without interfering with the climate reconstruction (M6). Importantly, the 

largest differences between reconstructions occur for two of the conventional 

standardization techniques (TS and SF), indicating that these methods are the most 

sensitive to sampling variability. Overall, the results in Table 3, taken in tandem with the 

previous comparisons, suggest that the reconstructions from M0, M2, and RCS-SF 

provide robust, albeit somewhat competing, representations of temperature variability in 

northern Sweden over the last 500 years. 

 

Discussion and Conclusion 

This study has presented an exploration of hierarchical regression models for use in tree-

ring standardization and chronology development. A series of hierarchical regression 

models were proposed to illustrate how one could easily test a variety of choices of 

model design. These models were tested against three more conventional standardization 

approaches in a cross-validated framework for the reconstruction of summertime 

temperatures in northern Sweden. Compared to the TS and SF approaches, the results of 
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the study show that hierarchical models are better suited to isolate climate-related 

variability from non-climatic variability in an ensemble of tree-ring series, leading to 

improved out-of-sample climate reconstructions that are more stable under sampling 

variability. The RCS-SF approach used here performed much better than both TS and SF 

techniques under cross-validation, and similarly to the hierarchical models. However, the 

RCS-SF approach led to substantially different temperature reconstructions compared to 

the hierarchical models early in the pre-instrumental period.  

 

The RCS-SF approach, while promising in this application, may be limited for settings 

that exhibit more heterogeneity in growth across trees (Esper et al., 2002; Briffa and 

Melvin, 2011). The hierarchical models presented here are flexible enough to mitigate 

issues of heterogeneity, similar to TS and SF approaches, while also circumventing the 

segment length curse, which is the primary advantage of RCS procedures over individual 

curve fitting approaches. Additional work is needed to compare hierarchical models to 

the RCS-SF approach in heterogeneous growth areas and also more recent advances in 

RCS curve fitting, e.g., multiple RCS curves fit using signal free methods (Helma et al., 

2016). We also suggest further testing of the hierarchical models on additional 

hydroclimate series that exhibit stronger relationships with the chronologies than those 

seen in this study to determine whether a similar model ranking holds in such cases. 

These matters will be investigated in future publications. Nevertheless, solely on the 

evidence of the results presented here we believe that the dendroclimatic community 

should consider further exploration of hierarchical models as a possible standard method 
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for the development of tree-ring-based chronologies for environmental, more specifically, 

climatological interpretation. 

 

The hierarchical models presented in this work were developed in a Bayesian framework 

to enable greater flexibility in model design and promote uncertainty propagation across 

all model parameters during the model fitting process. However, Bayesian methods are 

slower to fit compared to conventional methods, as indicated earlier. The long calibration 

time could be a constraint for some practitioners interested in developing chronologies 

from different subsets of trees using a hierarchical modeling approach. More generally, 

the hierarchical models presented in this work may be difficult for practitioners to adopt 

if they are less familiar with Bayesian methods. We note that a Bayesian approach is not 

necessary for hierarchical modeling and direct the reader to Duncan et al. (2010) for 

details on the faster mixed-effects modeling framework used in that study. For those 

readers interested in the Bayesian models presented in this work, code written in the R 

statistical modeling environment is available in the supplemental material to support 

model development and testing.   

 

The comparison between hierarchical models also provides insight and guidance for 

future model development. The results of the study show that certain modeling choices, 

such as partial pooling of the age model, homogeneity of variance across trees, flexible 

age models, residual autocorrelation, and overly corrective data transformations, can alter 

climate reconstructions to varying degrees, sometimes leading to significant degradation. 

In some cases, as for the logarithmic transform, this degradation is not obvious from an 
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out-of-sample cross-validation and can only be uncovered if the analyst checks for 

specific violations of underlying assumptions (in this case, normality). Conversely, other 

modeling choices that appear appropriate for the tree-ring series, such as autoregressive 

modeling, can have severe repercussions for the fidelity of climate reconstructions. These 

lessons suggest that modeling assumptions need to be tested against simpler models and 

adopted only if there is evidence to support the additional complexity, for instead through 

a vigorous cross-validation framework.  

 

Still, an assessment of model assumptions and a comparison of skill statistics under 

cross-validation may not definitively identify which models most accurately recover the 

true climate signal. These methods are useful for screening out poorly performing 

models, but it can be difficult if not impossible to discriminate between similarly 

performing models given the degree of sampling variability in the cross-validated 

statistics. This was the case for several of the models in this study using the longer 

Tornedalen data, and essentially all models using the Abisko data. In such cases, 

parsimony is a useful guide for model selection. Numerical experiments could also be 

used to test how well different families of models recover an underlying, true climate 

signal in synthetic examples that span a range of data generation processes. We leave 

such experiments for future work. 

 

The comparison of M0 and M2 showed that explicitly modeling the climate series during 

standardization did not substantively improve the reconstructions, contrary to the 

conclusions of Schofield et al. (2016). However, the climate data were dominated by an 
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extensive tree-ring dataset in this study, and therefore the addition of the climate 

information in M2 likely had little influence on the likelihood function during model 

fitting. This may not be the case for data collected in regions with sparser tree cover, or if 

multiple temperature series are included in the model, since temperature data would 

constitute a larger percentage of data points in the likelihood function. In this case, M2 

could be adapted to include separate regression coefficients linking the chronology to 

each temperature series. These coefficients could be partially pooled, which would be 

particularly beneficial if certain series are relatively short and temperature is reasonably 

homogenous across sites. The joint distribution of all the temperature data could also be 

modeled explicitly, accounting for the often high cross-correlation in temperature across 

sites. We suggest a more thorough comparison of M0 and M2 for these situations as the 

basis of future research investigating hierarchical models for dendroclimatic 

standardization and climate reconstruction.  
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Figures 

Figure 1. a) Time periods of available ring width data for the 247 trees used in this study. 

b) Tornedalen (red) and Abisko (blue) temperature series, with mean levels for the 

Tornedalen series in the 1816-1912 and 1913-1997 periods shown by horizontal bars.  

 

Figure 2. Diagnostics for hierarchical models, including tests for normality (Shapiro-

Wilks) and heteroscedasticity (Breusch-Pagan), autocorrelation of normalized residuals, 

and mean squared error of the original residuals. 

 

Figure 3. Cross-validation performance statistics for all models and each of the four 

metrics. Within-sample (out-of-sample) performance is shown on the main (off) diagonal 

in each subplot.   

 

Figure 4. Temperature reconstructions for models M0, M1, M2, and RCS-SF based on 

the 1816-1912 fitting period. The mean reconstruction, 95% confidence bounds, and 

instrumental temperature data are shown along the diagonal. Differences between the 

mean reconstructions of different model pairs are shown in the off-diagonal positions. 

The average difference is indicated by a dashed red line.  

 

Figure 5. Same as Figure 4, but for the 1913-1997 fitting period.  
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Tables 

 

Table 1. Description and formulation for all hierarchical models considered in this study. 

For all models besides M0, the formulation highlights the differences from the reference 

model. Priors for all models can be found in the supporting material. The ^ annotation 

indicates the posterior median.  

Description 
Model 

Label 
Formulation Climate Reconstruction 

Reference 

Model 
M0 

𝑦𝑖,𝑡 = 𝛽0,𝑖 +  𝛽1,𝑖𝑎𝑔𝑒𝑖,𝑡 + 𝜂𝑡

+  𝜀𝑖,𝑡 

𝜂𝑡~𝑁(0, 𝜎𝜂
2) 

𝜀𝑖,𝑡~𝑁(0, 𝜎𝑖
2) 

𝑦𝑖,𝑡 = BoxCox (𝑟𝑖𝑛𝑔 𝑤𝑖𝑑𝑡ℎ𝑠𝑖,𝑡) 

𝑥𝑡~𝑁(𝛽𝑥𝜂�̂�, 𝜎𝑥
2) 

 

𝛽𝑥  and 𝜎𝑥
2  estimated via 

OLS 

Transformation M1 𝑦𝑖,𝑡 = log (𝑟𝑖𝑛𝑔 𝑤𝑖𝑑𝑡ℎ𝑠𝑖,𝑡) Same as M0 

Climate Link M2 
𝜂𝑡~𝑁(𝛽2𝑥𝑡, 𝜎𝜂

2) 

𝑥𝑡~𝑁(𝜇𝑥, 𝜎𝑥
2) 

𝑥𝑡~𝑁(𝜇𝑥,𝑡
∗ , 𝜎𝑥

2∗
) 

 

𝜇𝑥,𝑡
∗ =

(𝜎𝜂
2̂𝜇�̂� + 𝜎𝑥

2̂𝛽2̂𝜂�̂�)

𝜎𝜂
2̂ + 𝛽2̂

2
𝜎𝑥

2̂
 

 

𝜎𝑥
2∗

= (
1

𝜎𝑥
2̂

+
𝛽2̂

2

𝜎𝜂
2̂

)

−1

 

Partial Pooling M3 
𝛽0,𝑖~ 𝑁(𝜇𝛽0

, 𝜎𝛽0

2 ) 

𝛽1,𝑖~ 𝑁(𝜇𝛽1
, 𝜎𝛽1

2 )  T(-∞,0) 
Same as M0 

Homogenous 

Variance 
M4 𝜀𝑖,𝑡~𝑁(0, 𝜎2) Same as M0 

Hugershoff M5 
𝑦𝑖,𝑡 = 𝑎𝑖 × 𝑎𝑔𝑒𝑖,𝑡

𝑏𝑖𝑒−𝑐𝑖×𝑎𝑔𝑒𝑖,𝑡

+ 𝑑𝑖 + 𝜂𝑡 + 𝜀𝑖,𝑡 
Same as M0 

Residual 

Autocorrelation 
M6 

𝜀𝑖,𝑡 = 𝛼𝜀𝑖,𝑡−1 + 𝜁𝑖,𝑡 

𝜁𝑖,𝑡~𝑁(0, 𝜎𝑖
2) 

Same as M0 
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Table 2. The verification period coefficient of efficiency (CE) for each model fit to the 

Abisko and Tornedalen series.  

 Abisko Tornedalen 

Model 1913-1955 1956-1997 1816-1912 1913-1997 

M0 0.25 0.16 0.15 0.08 

M1 0.2 0.13 0.13 0.1 

M2 0.25 0.17 0.15 0.09 

M3 0.26 0.17 0.13 0.05 

M4 0.17 0.15 0.12 0.05 

M5 0.26 0.17 0.14 0.06 

M6 0.25 0.19 0.06 -0.03 

TS 0.24 0.19 -0.14 -0.22 

SF 0.23 0.2 -0.04 -0.13 

RCS-SF 0.21 0.17 0.12 0.06 
 

 

Table 3. The average and mean square of year-by-year differences between mean 

temperature reconstructions for the Tornedalen series based on the 1816-1912 and 1913-

1997 fitting periods for each model.  

Model Average Mean Square 

M0 -0.01 31.70 

M1 0.21 89.49 

M2 -0.05 28.29 

M3 -0.13 35.54 

M4 0.03 42.73 

M5 -0.09 33.18 

M6 -0.31 75.03 

TS -0.58 196.13 

SF -0.46 141.15 

RCS-SF -0.15 27.15 

 

 


