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Abstract 

Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene 

expression, with complex regulation occurring at every stage in the processing of genetic information. 

This approach enables Pseudomonas to generate precise individual responses to the environment in 

order to improve their fitness and resource economy. The weak correlations we observe between RNA 

and protein abundance highlight the significant regulatory contribution of a series of intersecting post-

transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to 

Pseudomonas environmental responses. This review examines our current understanding of three 

major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and 

presents an overview of new research frontiers, emerging genome-wide methodologies, and their 

potential for the study of global regulatory responses in Pseudomonas. 

Post-transcriptional regulatory mechanisms  

One of the most well-understood pathways responsible for integrating external stimuli into post-

transcriptional control in Pseudomonas is the Gac/Rsm signalling pathway (Coggan & Wolfgang, 

2012). Gac/Rsm is a widespread system that controls biofilm formation, virulence, motility and 

external stress responses in many different bacterial species (Brencic & Lory, 2009, Chambers & 

Sauer, 2013), and represents a major determinant of the switch between chronic and acute lifestyles in 

P. aeruginosa. While many of the core network components and their functions in the signaling 

cascade have been described in detail (Brencic et al., 2009, Goodman et al., 2009) (Fig 1), in recent 

years Gac/Rsm has also been shown to regulate several downstream signalling pathways including 

transcriptional regulators, quorum sensing and the second messenger cyclic-di-GMP (Brencic & Lory, 

2009, Chambers & Sauer, 2013), markedly increasing the complexity of the system.  

At the heart of the Gac/Rsm pathway are the small RNA molecules RsmY and RsmZ. The abundance 

of these sRNAs ultimately dictates the output of the Gac/Rsm system, and as such their transcription 

is subject to tight and complex regulation by the GacAS two-component signalling system. GacS is a 

transmembrane histidine protein kinase (HPK), and activates its cognate response regulator GacA by 

phosphotransfer (Goodman et al., 2009). Upon phosphorylation, GacA promotes transcription of 

RsmY/Z (Brencic et al., 2009), which contain multiple GGA trinucleotides in exposed stem-loops of 

their predicted secondary structures (Schubert et al., 2007, Lapouge et al., 2013). RsmA and the 

related protein RsmE (Reimmann et al., 2005), are small (7 kDa) proteins that specifically recognize 

and bind to conserved GGA sequences in the 5′ leader regions of target mRNAs. RsmA/RsmE 

binding affects mRNA stability, and/or prevents interactions between the 30S ribosomal subunit and 

the ribosomal binding site, thus inhibiting translation initiation (Heurlier et al., 2004, Reimmann et 

al., 2005). RsmA/E activity is in turn inhibited by RsmY/Z, which titrate RsmA/E away from the 5’ 

mRNA leader sequences in their target mRNAs (Heurlier et al., 2004) (Fig 1). The relationship 

between P. fluorescens RsmE and RsmZ has recently been defined at the molecular level, with RsmE 
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protein dimers assembling sequentially onto the RsmZ sRNA within a narrow affinity range (100-200 

nM Kd in P. fluorescens), and showing positive binding cooperativity (Duss et al., 2014). The GacAS 

system is itself controlled by three additional HPK hybrid proteins: RetS, PA1611 and LadS (Ventre 

et al., 2006, Kong et al., 2013) (Fig 1). These HPKs are present in most pseudomonads, although the 

regulatory network can vary between individual species (Chatterjee et al., 2003, Wei et al., 2013). In 

P. aeruginosa, RetS functions as an antagonist of GacS, and suppresses RsmZ/Y levels (Goodman et 

al., 2004). However, rather than operating via a conventional HPK phosphotransfer mechanism, RetS 

binds to and inhibits GacS, blocking its autophosphorylation and preventing the downstream 

phosphorylation of GacA (Goodman et al., 2009). Conversely, PA1611 interacts directly with RetS in 

P. aeruginosa, thus enabling the activation of GacS (Kong et al., 2013, Bhagirath et al., 2017). LadS 

positively controls rsmY/Z expression through a phosphorelay resulting in phosphotransfer to the HPT 

domain of GacS (Chambonnier et al., 2016). In P. aeruginosa, although interestingly not in other 

tested Pseudomonas species, LadS activation occurs following calcium binding to its periplasmic 

DISMED2 domain, which activates its kinase activity (Broder et al., 2016) (Fig 1). 

Several additional signalling proteins, sRNAs and other pathways are implicated in the control of 

Gac/Rsm (Chambers & Sauer, 2013). For example, BswR, an XRE-type transcriptional regulator in P. 

aeruginosa, controls rsmZ transcription (Wang et al., 2014). The histidine phosphotransfer protein 

HptB indirectly controls rsmY expression under planktonic growth conditions. HptB is the 

phosphorylation target of four HPKs, including RetS, PA1611, PA1976, and SagS (Lin et al., 2006, 

Hsu et al., 2008). SagS also controls the Biofilm Initiation two-component system BfiSR, a key 

regulator of the initial stages of biofilm formation, and itself a repressor of rsmZ expression (Petrova 

& Sauer, 2011). In addition to RsmY/RsmZ, other small RNAs can also influence RsmA/E function. 

In P. aeruginosa, the sRNA RsmW specifically binds to RsmA in vitro, restoring biofilm production 

and reducing swarming in an rsmYZ mutant. RsmW expression is elevated in late stationary versus 

logarithmic growth, and at higher temperatures (Miller et al., 2016). RsmY and RsmZ are also 

differentially regulated by the conditions in the growth environment (Jean-Pierre et al., 2016). Finally, 

the ATP-dependent protease Lon negatively regulates the Gac/Rsm cascade, with lon mutants 

showing increased stability and steady-state levels of GacA in late exponential growth (Takeuchi et 

al., 2014).  

The Gac/Rsm system shows extensive regulatory overlap with a second major post-transcriptional 

regulator; Hfq. Hfq is a small, hexameric RNA-binding protein with several discrete regulatory 

functions (Fig 2) (Vogel J, 2011). Hfq function is dictated in large part by the abundance of its various 

sRNA binding partners. Unlike RsmA/E, which has only two or three cognate sRNAs, Hfq binds to 

many different sRNA molecules that are expressed under different conditions (Vogel J, 2011, 

Chambers & Sauer, 2013). It functions as an RNA-chaperone, facilitating binding between regulatory 

sRNAs and their mRNA targets (Moller et al., 2002, Maki et al., 2008). Hfq also targets the specific 
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degradation of selected mRNAs (Moll et al., 2003, Afonyushkin et al., 2005, Morita et al., 2005) and 

can act as a direct repressor of mRNA translation (Desnoyers & Masse, 2012). Hfq binding also acts 

to protect sRNAs from degradation by PNPase and other enzymes (Andrade et al., 2012). Finally, it 

can regulate gene expression by influencing mRNA polyadenylation (Valentin-Hansen P, 2004), or 

through direct interaction with DNA (Fig 2) (Cech GM, 2016). Hfq binds to and stabilizes RsmY in 

P. aeruginosa (Sonnleitner et al., 2006), while the RsmA homolog CsrA represses Hfq translation in 

E. coli (Baker et al., 2007). Furthermore, E. coli CsrA and Hfq share at least one regulatory sRNA 

(Jorgensen et al., 2013). Similarly to GacA (Takeuchi et al., 2014), Hfq levels increase in a P. 

aeruginosa lon mutant background (Fernandez et al., 2016). Regulation of oxidative stress response 

proteins (Zhang et al., 1998, Fields & Thompson, 2008) and the Fis global transcriptional regulator 

(via the sRNA RgsA (Lu et al., 2016)) have also been linked to both Hfq and Gac/Rsm. This 

regulatory connection is reflected in the large number of shared phenotypes between rsmA/E and hfq 

mutants in Pseudomonas species, with disruption of either gene leading to increased surface 

attachment, reduced motility and disruption of virulence (Brencic & Lory, 2009, Irie et al., 2010, 

Little et al., 2016).  

Hfq controls a wide variety of phenotypes, with common regulatory targets emerging from studies of 

closely related bacteria. In Pseudomonas and other proteobacteria, Hfq controls carbon catabolite 

repression (Sonnleitner E, 2014), and negatively regulates both amino-acid ABC transporters 

(Sonnleitner et al., 2006, Gao et al., 2010, Sobrero et al., 2012, Little et al., 2016), and pathways 

underpinning biofilm formation (Jorgensen et al., 2012, Thomason et al., 2012). Conversely, Hfq 

mRNA stabilisation exerts complex, but generally positive effects on motility (Mulcahy et al., 2008, 

Gao et al., 2010) and virulence (Sonnleitner et al., 2003). Hfq has also been implicated in the control 

of iron homeostasis (Sobrero et al., 2012) and enables the environmental stress-tolerance super-

phenotype in P. putida (Arce-Rodriguez et al., 2016). In P. fluorescens, Hfq plays an important role 

in niche adaptation, with reduced Hfq levels resulting in phenotypes including reduced motility, 

increased surface attachment, and compromised rhizosphere colonisation (Little RH et al., 2016).  

Hfq and its target sRNAs have been the subject of intensive research in several bacteria. As well as  

structural/biochemical studies of Hfq-RNA complexes (Mikulecky et al., 2004, Link et al., 2009), a 

number of recent studies have examined the relationship between Hfq and RNA using global methods 

such as CLIP-Seq analysis to identify Hfq-bound RNAs (Sittka A, 2009, Holmqvist E, 2016) and 

transcriptional and proteomic surveys of hfq deletion mutants (Sonnleitner et al., 2006, Gao et al., 

2010, Sobrero et al., 2012, Boudry P, 2014). Global proteomic and transcriptomic analyses have been 

conducted for hfq mutants of P. putida (Arce-Rodriguez et al., 2016) and P. aeruginosa (Sonnleitner 

et al., 2006) respectively, and implicate Hfq in the control of pathways including acetoin and 

metabolism, ABC and MFS transporters, quorum sensing, and siderophore and phenazine production. 

These global analytical methods promise to greatly increase our mechanistic understanding of post-
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transcriptional regulation by the well-studied Gac/Rsm and Hfq pathways, and are discussed in more 

detail in the final section of this review. 

Novel mechanisms of translational regulation  

In addition to these well-studied pathways for post-transcriptional control, entirely new regulatory 

mechanisms are still being discovered. The specific alteration of ribosome function by post-

translational modification of its associated proteins represents a significant, and to date largely 

unexplored, regulatory process (Little et al., 2016). 57 proteins have been identified in the bacterial 

ribosome, many of which are essential, and 34 of which are universally conserved (Bubunenko et al., 

2007). Intriguingly, multiple ribosomal proteins are subject to post-translational regulation by 

acetylation, methylation, methylthiolation, and the removal or addition of C-terminal amino acid 

residues. While the purpose of such modifications is in most cases still unknown (Nesterchuk et al., 

2011), their existence strongly suggests that aspects of ribosomal behaviour may be subject to 

dynamic regulation through a process of ribosomal specialisation. It is tempting to posit that changes 

to the ribosome will result in corresponding changes to the cellular proteome as a consequence of 

altered ribosome-mRNA recognition, changes to translational efficiency, or other post-transcriptional 

mechanisms. Until relatively recently this has been difficult to test, as technological limitations 

coupled with a lack of searchable peptide sequence databases have rendered quantitative 

characterisation of cellular proteomes difficult, if not impossible. Advances in liquid chromatography-

coupled mass analysis, sample labelling methods (Unwin, 2010), and a critical mass of genome 

sequence data have revolutionised the field of proteomics. A recent study by our laboratory (Little et 

al.) has exploited these advances to probe the consequences of a particular ribosomal modification, 

revealing unexpectedly large and specific alterations in the cellular proteome.  

In this work, we examined the effects of post-translational modification of the ribosomal protein 

RpsF. RpsF is located in the central domain of the 30S ribosomal subunit, where it interacts with both 

the ribosomal RNA and the protein S18 (Agalarov et al., 2000). RpsF is modified by RimK, a 

member of the ATP-dependent ATP-Grasp superfamily, by the addition of glutamate residues at its C-

terminus (Kang et al., 1989). This modification is associated with profound effects on the structure 

and function of the Pseudomonas ribosome. Quantitative LC-MS/MS analysis of labelled peptides 

revealed that rimK deletion leads to significantly lower abundance of multiple ribosomal proteins, 

alongside increased stress response, amino-acid transport and metal iron scavenging pathways. No 

significant alterations were detected in the levels of rRNA, or the mRNAs of differentially translated 

proteins in the rimK mutant, suggesting that RpsF modification specifically changes ribosome 

function in some way, and this leads to altered proteome composition. 

In the mutualistic plant-growth-promoting rhizobacteria P. fluorescens, the rimK-encoding operon is 

highly upregulated during early stage colonisation of the rhizosphere, suggesting an important role for 
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RimK function in this period (Little et al.). This transcriptional regulation is reinforced by the tight 

control exerted on RimK protein activity, both transcriptionally and through interactions with the 

other components of the Rim operon (RimA, RimB) and the signalling molecule cyclic-di-GMP. 

RimA/B and cyclic-di-GMP interact directly with the RimK enzyme and substantially influence its 

ATPase and glutamate ligase activities, although the mechanistic details of the signalling network are 

currently poorly defined (Fig 2) (Little et al., 2016). In any event, modification of RpsF correlates 

with a post-transcriptional output favouring a motile, virulent state. This fits with the observed 

increase in rimK expression seen during the early stages of plant root colonisation, when cells need to 

rapidly colonise the spatial environment of the rhizosphere. Conversely, lack of RpsF modification is 

associated with protein changes that prioritize long-term rhizosphere adaptation, like surface 

attachment, resource acquisition and stress resistance. In addition to controlling phenotypes associated 

with colonisation and metabolic adaptation, RimK also plays an important role in the virulence of 

both human and plant pathogenic pseudomonads (Little et al., 2016). 

A number of unanswered questions remain relating to the regulation and mechanism of action of the 

Rim pathway. Firstly, we do not yet fully understand how exactly RimK is controlled. How does the 

external environment influence RimK activity? What is the role of the widespread signalling molecule 

cyclic-di-GMP in RimK regulation? Related to this, how does control of RimK link into the wider 

network of post-transcriptional regulation in Pseudomonas? RsmA has a complex regulatory 

relationship with cyclic-di-GMP, both controlling its metabolism (Chambers & Sauer, 2013) and 

subject to cyclic-di-GMP regulation itself (Moscoso et al., 2014). This raises the possibility that 

RsmA and RimK may form part of a single, integrated pathway under the ultimate control of cyclic-

di-GMP. A second major research area concerns the mechanistic function of RimK. How does RimK 

ribosomal modification lead to altered proteome composition? Is this a consequence of altered 

translation, or mRNA recognition by the modified ribosomes, or possibly a combination of both? 

Many of the proteomic changes producing ΔrimK phenotypes could be rationalised by the observed 

reduction in levels of the RNA-binding post-transcriptional regulator Hfq (Little et al., 2016). Thus, it 

is important to determine the extent to which Rim tunes the proteome by controlling Hfq levels, and 

exactly how this control takes place.    

The determination of RimK function highlights an intriguing new mechanism for post-transcriptional 

control that links changes in ribosome function, and hence proteome composition, to the dynamic, 

controlled modification of ribosomal proteins (Little et al., 2016). In turn, this finding raises major 

implications for studies of other ribosomal modifications, several of which may also represent novel 

post-translational regulatory systems. If this turns out to be the case, it will further transform our 

understanding of post-transcriptional regulation in bacteria. In the final section of this review, we will 

discuss some of the emerging genome-wide methodologies that are allowing researchers to examine 
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new aspects of post-transcriptional regulation in bacteria, and may give us answers to the outstanding 

questions raised above. 

Emerging genome-wide methodologies for investigating translational regulation 

While advances in quantitative proteomics enabled us to examine the impact of RimK on the 

Pseudomonas proteome, the development of additional, novel technologies are expanding our ability 

to probe other important mechanisms of translational regulation to a finer resolution than has 

previously been possible (Fig 3). 

Translational regulation of gene expression is a ribonucleoprotein-driven process, which involves 

both noncoding RNAs and RNA binding proteins (RBPs). A large complement of noncoding RNAs 

affect gene expression by employing multiple distinct regulatory mechanisms, at the level of 

translation initiation by modulating ribosome recruitment, and/or at the level of transcript abundance 

by modulating transcript degradation (Barquist L & J, 2015). Deciphering the sRNA-target 

interactome is an essential step toward understanding the roles of sRNA in the cellular network. 

However, computational identification of sRNA targets can be challenging. sRNA-mRNA 

hybridisation is frequently influenced by sRNA secondary structure, and base-paired regions between 

RNAs are generally short and can include multiple discontinuous stretches of sequence (Wang J et al., 

2015). To identify the regulatory targets of RyhB; one of the best studied sRNA in Escherichia coli, at 

the genome level Wang et al., (Wang J et al.) established ribosome profiling experiments (Ribo-seq) 

in bacteria (Fig 3). Ribo-seq is a state-of-the-art technology that enables comprehensive and 

quantitative measurements of translation. Like many recent high-throughput techniques, it adapts an 

established technology to take advantage of the massively parallel measurements afforded by modern 

short-read sequencing. In the case of Ribo-seq, ribosomes bound to actively translated mRNA are 

purified from cell lysates. Following digestion of the unprotected RNA fraction, the protected, 

ribosome-bound RNA is reverse transcribed to cDNA and sequenced. By identifying the precise 

positions of ribosomes on the transcript, ribosomal profiling experiments have unveiled key insights 

into the composition and regulation of the expressed proteome (NT, 2016). Ribo-seq is a powerful 

approach for the experimental identification of sRNA targets, and can reveal sRNA regulation both at 

the level of mRNA stability and at the translational level. However, while Ribo-Seq can identify 

target mRNAs, it cannot reveal precise sites of sRNA:target hybridization. Moving forward, sRNA 

target prediction algorithms could be combined with Ribo-seq datasets to facilitate guided target site 

identification, where predictions are focused on a subset of mRNAs rather than the whole 

transcriptome. 

Many bacterial sRNAs are at least partially dependent on RBPs, such as the previously introduced 

RNA chaperone Hfq for their function (Van Assche E, 2015). Approaches combining in vivo 

crosslinking and RNA deep sequencing have been increasingly used to globally map the cellular RNA 

ligands and binding sites of RBPs in vivo (Holmqvist E, 2016). Recent approaches include a UV 
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crosslinking step, which offers several advantages over traditional co-immunoprecipitation (Zhang & 

Darnell, 2011). These large-scale methods provide a global view of the RNA molecules bound to 

individual RBPs, although specific sRNA-target pairs can only be indirectly deduced by additional, 

sequence-dependent predictive schemes. To overcome this limitation, Melamed and colleagues 

(Melamed et al.) developed a broadly applicable methodology termed RIL-seq (RNA interaction by 

ligation and sequencing, Fig 3). RIL-seq incorporates an additional RNA ligation step into the 

workflow of a conventional RNA pull-down experiment to create sRNA-mRNA chimeric fragments, 

followed by advanced computational analysis of the resulting cDNA library to identify interacting 

RNA pairs from the dataset of protein interaction partners. Applied to the in vivo transcriptome-wide 

identification of interactions involving Hfq-associated sRNA, this technique enabled the discovery of 

dynamic changes in the Hfq-mediated sRNA interactome with changing cellular conditions (Melamed 

et al., 2016).  

Integral features of individual mRNAs can also influence translation efficiency, and in many cases are 

directly involved in altering gene expression in response to changing cellular conditions or 

environmental stimuli (MM). Specific motifs in the 5’ UTR of certain mRNAs can regulate gene 

expression in response to temperature, metals and small metabolite ligands. Such structures, known as 

riboswitches regulate metabolism and virulence by altering mRNA secondary structure to block 

ribosome access or induce early transcription termination (Fang FC et al., 2016). In addition to this 

role, riboswitches are also involved in the regulation of ncRNA expression, representing a novel 

mechanism of signal integration in bacteria. In both cases, high-throughput point mutagenesis has 

enabled the identification of functional post-transcriptional regulatory elements. This method uses 

FACS to categorize cells containing a mutant library based on the gene of interest fused to GFP. This 

enables researchers to associate all possible mutations (including synonymous SNPs that induce 

structural changes in the transcribed RNA) in a selected sequence with changes in gene expression 

(Holmqvist E et al., 2013).  

The plasticity of bacterial regulatory networks confers both versatility and efficiency, as multiple 

signals can be integrated to control the expression of common responses. To probe the intersecting 

contributions of the various inputs to bacterial gene expression, future analyses of post-transcriptional 

regulation are likely to involve the integration of several omics methods to produce comprehensive 

models for bacterial adaptation to external challenges. A recent demonstration of this approach 

compared relative changes in total mRNA with translational changes (polysome fractions) and protein 

abundance to provide a comprehensive study of bacterial stress responses in Rhodobacter sphaeroides 

(Berghoff BA).  

Concluding remarks  

Despite the insights we have gained to date, the list of unresolved questions within the field of 

Pseudomonas post-transcriptional regulation remains very long. Many more RNA regulators are 
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likely to be discovered, alongside novel regulatory mechanisms and refinements of existing pathways. 

Recent advancements in high throughput sequencing and bioinformatics, combined with novel 

approaches including quantitative proteomics, Ribo-seq, RIL-seq, and various other omics techniques 

(Schulmeyer KH & TL., 2017) present significant opportunities to discover and define exciting new 

mechanisms of post-transcriptional control.   
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Fig 1. The Gac/Rsm regulatory network in P. aeruginosa. An integrated response from multiple 

membrane-bound histidine kinases controls the activity of the response regulator GacA, which in 

turn controls expression of the RsmZ/Y sRNAs. These sRNA molecules inhibit the translational 

regulatory proteins RsmA and RsmE (red and green circles), leading to altered translation of their 

target mRNAs. Other proteins that influence Gac/Rsm function include the phosphotransfer protein 

HptB and the Lon protease complex.  
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Fig 2. The Rim and Hfq regulatory networks in Pseudomonas spp. The RimK glutamate ligase 

sequentially adds glutamate residues to the C-terminus of Ribosomal protein S6 (RpsF). RimK activity 

is tightly controlled by through direct interaction with the second messenger cyclic-di-GMP (red 

circles), RimB and the cyclic-di-GMP phosphodiesterase RimA. RpsF glutamation affects ribosome 

function, which leads to altered Hfq abundance via an as-yet unidentified mechanism. Hfq is a 

pleiotropic regulator of mRNA/sRNA stability, mRNA translation and gene transcription. These 

processes are mediated through a diverse series of Hfq-RNA/DNA interactions.  
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Fig 3. Emerging genome wide methodologies. Overview of the new technologies developed to study 

mechanisms of translational regulation to a finer resolution. The subject, methodology and range of 

applications for each technique are summarized in each case.    

 

 


