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A B S T R A C T

The widespread loss of wetlands due to agricultural intensification has been highlighted as a major threat to
aquatic biodiversity. However, all is not lost as we reveal that the propagules of some aquatic species could
survive burial under agricultural fields in the sediments of ‘ghost ponds’ - ponds in-filled during agricultural land
consolidation. Our experiments showed at least eight aquatic macrophyte species to germinate from seeds and
oospores, following 50–150 years of dormancy in the sediments of ghost ponds. This represents a significant
proportion of the expected macrophyte diversity for local farmland ponds, which typically support between 6
and 14 macrophyte species. The rapid (< 6 months) re-colonisation of resurrected ghost ponds by a diverse
aquatic vegetation similarly suggests a strong seed-bank influence. Ghost ponds represent abundant, dormant
time capsules for aquatic species in agricultural landscapes around the globe, affording opportunities for en-
hancing landscape-scale aquatic biodiversity and connectivity. While reports of biodiversity loss through agri-
cultural intensification dominate conservation narratives, our study offers a rare positive message, demon-
strating that aquatic organisms survive prolonged burial under intensively managed agricultural fields. We urge
conservationists and policy makers to consider utilizing and restoring these valuable resources in biodiversity
conservation schemes and in agri-environmental approaches and policies.

1. Introduction

Intensive agriculture has contributed significantly towards global
habitat loss and biodiversity declines (Henle et al., 2008; Tscharntke
et al., 2012). Agricultural wetlands have particularly suffered in this
respect, with huge numbers of agricultural ponds and other small wa-
terbodies lost to drainage and infilling during the last 50 years (Wood
et al., 2003; Serran and Creed, 2015). Given the significant contribution
of small agricultural ponds and wetlands towards regional aquatic and
terrestrial biodiversity (Davies et al., 2016; Sayer et al., 2012), their
widespread disappearance poses a considerable challenge for biodi-
versity conservation and aquatic habitat connectivity.

Many aquatic organisms have evolved strategies for surviving ha-
bitat desiccation as dormant propagules. These propagules comprise
aquatic macrophyte seeds (de Winton et al., 2000), oospores (Beltman
and Allegrini, 1997; Stobbe et al., 2014) and cladoceran ‘resting eggs’
(Hairston, 1996) that can remain viable for centuries and allow rapid
species' re-establishment following habitat restoration (Beltman and

Allegrini, 1997; Kaplan et al., 2014). While long-term viability of pro-
pagules has been established for extant aquatic habitats (Bakker et al.,
1996; Beltman and Allegrini, 1997; de Winton et al., 2000; Hairston,
1996), their fate in ‘ghost ponds’, ponds that have been in-filled for
agricultural land consolidation, has remained unexplored. Ghost ponds
are abundant across many agricultural regions, often discernible as
damp depressions or by local colour alterations in crops and soil
(Fig. 2a). We investigated the restoration potential of ghost ponds, and
explored the longevity and germination rates of aquatic plant propa-
gules extracted from their sediments. With around 75% of all ponds lost
across large parts of the UK since the start of the 20th century
(Rackham, 1986; Williams et al., 2010; Wood et al., 2003), and with
similar levels of pond loss recorded in many agricultural regions across
the globe (Agger and Brandt, 1988; Curado et al., 2011; Serran and
Creed, 2015), ghost ponds could represent a major and overlooked
resource for the resurrection of aquatic species ostensibly lost from the
agricultural landscape. Both the ‘resurrection’ of ghost ponds, and the
translocation of their sediments to newly created sites, could provide
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highly valuable approaches in aquatic conservation. Ghost ponds have
the potential to retain not only historic populations of extant species,
but also remnants of flora which have become locally or regionally
extinct. Further, ghost pond restoration could help to reinstate the
historic landscape connectivity between aquatic habitats.

This study examined the potential viability of dormant propagules
buried within the sediments of in-filled ghost ponds. External propagule
sources are commonly stated as primary agents of pond colonisation
(Mari et al., 2011; Williams et al., 2008), but in restored or resurrected
habitats the historic propagule bank may also make a significant con-
tribution. Focusing on three farmland ghost ponds in Norfolk, eastern
England, UK, we used a multi-level experimental design to examine the
longevity of viable propagules, and indicate the relative importance of
the seed bank vs. external propagule sources in mesocosm colonisation.
Our work establishes the viability of aquatic plant propagules following
burial under intensive agriculture some 45, 50, and ~150 years ago.
We show remarkable longevity of aquatic plant propagules beneath
cropped agricultural fields, and highlight the great potential of ghost
pond restoration for aquatic biodiversity conservation in global agri-
cultural landscapes.

2. Methods

2.1. Experimental design

Our study comprises four complimentary approaches (Fig. 1):

i) The resurrection of three ghost ponds (Fig. 2), following burial

50–150 years ago.
ii) On-site mesocosm experiments (Fig. 3a), comparing macrophyte

colonisation of 4 different treatments in four replicates, with me-
socosms either open or closed to dispersal, and containing sterile or
historic pond sediment.

iii) Sealed microcosm experiments (Fig. 3b), comparing macrophyte
establishment from sterile and historic pond sediment.

iv) Viability testing of propagules extracted from historic pond sedi-
ments using tetrazolium chloride staining (Fig. 3c).

2.2. Locating and excavating ghost ponds

Ghost ponds were identified using historic UK Ordnance Survey
(OS) maps and local tithe (1836–1841) maps. Within the study region
of Norfolk (5371 km2), eastern England, UK, around 8400 ponds have
been lost since the 1950s. The three ghost ponds selected for this study
were all located in areas that had experienced relatively high levels of
pond loss: within a 3 km radius of each study pond, a further 289
(GP150), 275 (GP50) and 147 (GP45) ghost ponds, buried since the early
1950s, were identified (Alderton, 2017). For the three studied ghost
ponds, time since burial was estimated from the most recent map de-
marcation of a pond and from landowner knowledge of pond loss. The
oldest ghost pond, GP150, was buried sometime between 1839 and
1883. GP50 was in-filled during the late 1960s, and GP45 during the
early 1970s. All three ponds were located on land intensively farmed
over many decades. Prior to their excavation, pond GP150 was situated
near a hedgerow, while both GP50 (Fig. 2a) and GP45 were located in
the middle of arable fields.

All three ponds were excavated over September–October 2013.
Once exact ghost pond locations had been established, a trench was dug
through their centre and top soil was removed until dark historic pond
sediments were exposed (Fig. 2b). Bulk samples of approximately 30 L
of historic pond sediments were collected from multiple locations
within the ghost pond basin, and stored in the dark in air-tight bags at
5 °C, prior to use in the mesocosm and microcosm experiments (Fig. 3).
Each ghost pond was then fully resurrected following the profile, size
and depth of the historic pond basin (Fig. 2c) and given a 6 m
+ marginal buffer left to natural plant colonisation. The ponds natu-
rally filled with water over winter, and aquatic macrophytes were
surveyed at weeks 5, 16, 28, 34 and 40 following excavation.

2.3. On-site mesocosms

Sixteen PVC-lined mesocosms measuring 40 × 30 × 30 cm were
placed around each of the ghost pond sites (Fig. 3a). Eight mesocosms
were prepared with 2 L of historic ghost pond sediment, each with 4
replicates left open to dispersal (‘propagule bank & dispersal’) and 4
replicates (‘propagule bank’) covered with 0.25 mm diameter mesh to
prevent the influx of dispersing propagules. The remaining eight me-
socosms were prepared with 2 L of a 50/50 mix of steam-treated potting
soil and builder's sand (Boedeltje et al., 2002); with 4 again left open
(‘dispersal’) and 4 covered with 0.25 mm mesh (‘control’). Despite their
small size, the positioning of mesocosms adjacent to the resurrected
ghost ponds meant that waterfowl, a key dispersal vector for aquatic
macrophyte seeds (Soons et al., 2016), accessed both the ponds and
open mesocosms. Mallard (Anas platyrhynchos) were directly observed
dabbling in the open mesocosms, although other bird species may also
have visited the sites. All mesocosms were filled with filtered (53 μm
mesh) rainwater and surveyed for aquatic macrophytes at the same
time intervals as the ghost ponds.

2.4. Microcosms

Sealed microcosms were set up to corroborate the mesocosm results
under strictly controlled conditions (Fig. 3b). Microcosms were set up
outside at a central location situated about 25 km from the nearest

Fig. 1. Study design and experimental treatment. Historic sediment from three ghost
ponds (GP45, GP50 and GP150) provided the aquatic propagule material for three different
experimental treatments; on-site mesocosms (Fig. 3a), sealed microcosms (Fig. 3b), and
viability testing using tetrazolium chloride (TZ) stain (Fig. 3c).
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ghost study pond (GP150). As such, microcosms experienced similar
weather conditions to the study ponds and on-site mesocosms, but
without the risk of being exposed to the external input of aquatic pro-
pagules. Sediment collected from each ghost pond was homogenized
and distributed between 6 plastic microcosms (30 × 20 × 19 cm), in
March 2014. Each microcosm was filled with 1 L of sediment. As con-
trols, six additional microcosms were filled again with 1 L of a 50/50
mix of sterile potting soil and builder's sand. All microcosms were filled
with filtered rainwater (as for the mesocosms), covered with cling-film,
and positioned on outdoor pallets. A frame was constructed to support a
thin polythene cover (December–February), or shade netting (June–-
July), to protect the microcosms from temperature extremes, while
allowing for a natural light regime. Aside from protecting the micro-
cosms from winter frost damage and high summer temperatures, we
allowed for a wide variation in temperature to break dormancy across
species with a range of likely germination triggers (Hay et al., 2008;
Proctor, 1967). Microcosms therefore experienced a water temperature
range of 0–28 °C. Microcosm germinations were recorded at weeks 8,
13, 18, 22, 29, 37, 47, and 62 between May 2014 and May 2015. After
being sealed, filtered rainwater in the microcosms was replaced at
weeks 13, 18, 22 and 37 to reduce the effects of stagnation and po-
tential anoxia. During each survey, germinations were counted for each
species. To reduce sediment disturbance, and more closely mimic
conditions in the on-site mesocosms and ponds, seedlings were not re-
moved from the microcosms. During the time frame of the microcosm
study, none of the newly established plants set seed, and as such all

individuals counted must have arisen from the historic propagule bank.
By week 62, some charophytes had started to develop oogonium, al-
though these had not ripened before the experiment ended. However,
charophytes also propagate vegetatively, and as such it is possible that
some ‘individuals’ may have been counted more than once. To avoid
this problem, our results focus on species presence/absence, rather than
the number of individuals present.

2.5. Tetrazolium chloride (TZ) staining

TZ staining was conducted at the Millennium Seed Bank, Wakehurst
Place, Royal Botanic Gardens, Kew over 30/11/2015–01/12/2015.
Sediment collected from the ghost ponds was kept in cold storage for
23 months. For TZ staining, seeds were then extracted from 4 × 50 mL
samples of homogenized sediment from each of the three ghost ponds.
To maximize the number of examined propagules from the oldest site,
GP150, an additional 450 mL bulk sample was processed. Sediment was
passed through 355 μm and 125 μm sieves to remove all seeds and
oospores, which were subsequently transferred to vials of distilled
water and returned to cold storage (5 °C) for a further two months
before staining. During this period, fungal growth was removed peri-
odically from the propagules. Imbibed cleaned seeds and oospores then
underwent an X-ray assay to assess numbers of full, insect infested and
empty seeds. For the TZ assay, imbibed seeds were kept at 20 °C for
2–4 days to initiate metabolic processes. Potamogeton natans and
Ranunculus aquatilis seeds were bisected laterally, while Chara ssp.

Fig. 2. Photographs of ghost pond GP50 restoration; (a)
GP50 prior to excavation (white dots indicate the edge of
the ghost pond depression); (b) excavation of a trench
through the centre of GP50 showing dark pond sediment
layer; (c) GP50 one day after excavation; (d) GP50 one year
post-resurrection with abundant beds of Potamogeton natans
(September 2014).

Fig. 3. Photographs of the three experimental components used: (a) P. natans growing in GP50 ‘propagule bank’ treatment mesocosm (July 2014); (b) P. natans and Chara sp. growing in
GP50 microcosm (July 2014); (c) TZ-stained and viable Chara sp. oospore from GP150 (Left) and P. natans embryo from GP50 (Right).
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oospores were left intact. Seed embryos and oospores were incubated in
1% TZ solution at 30 °C for 36 and 48 h respectively; the longer time
period allowing penetration of the TZ solution through the oospore
wall. TZ staining was finally assessed under a light microscope at
×10–20 magnification (Fig. 3c). Seeds/oospores were classed as ‘vi-
able’ if they exhibited complete red staining, and as ‘potentially viable’
if the staining was slightly patchy, or pink in colour. Seeds/oospores
were classed as ‘non-viable’ if they did not stain, or exhibited very
patchy or pale pink staining.

2.6. Statistical analysis

Profile analysis for the mesocosm treatments was conducted in
SPSS. This multivariate technique can be used to test one dependent
variable measured at different times, or several different dependent
variables measured at the same time. The test is an extension of a re-
peated measures ANOVA, but avoids multiple comparisons where data
are analyzed across more than two time points. Profile analysis is robust
to both small sample sizes and violations of normality (Tabachnick and
Fidell, 2007; Von Ende, 2001). In this case, it was used to compare three
components of the response curves of each mesocosm treatment; the
overall level of each curve (levels – whether there is a significant effect
of mesocosm treatment), the shape of the response curves relative to
each other (parallelism – whether mesocosm treatments differ from
each other at different time points), and whether each curve has an
average slope different from zero (flatness – the effect of time, irre-
spective of mesocosm treatment). Graphs were generated in R (package
‘ggplot2’).

3. Results

Ghost pond sediments collected from GP150, GP50 and GP45 con-
tained propagules from at least 15 aquatic plant species in 10 genera.
Twelve of these species rapidly colonized the resurrected ponds within
5–40 weeks, while 8 species also germinated under at least one ex-
perimental condition (Table 1).

The sediment of the oldest pond (GP150) contained viable propa-
gules of at least 5 aquatic macrophytes; the charophytes Chara virgata
and C. vulgaris, and Potamogeton natans, Ranunculus aquatilis and Juncus
sp. (Table 1). When stained, 20% of charophyte oospores from GP150
appeared viable (Fig. 3c), with a further 20% classified as ‘potentially
viable’. Many oospores, and individual seeds of Juncus sp. and R.
aquatilis, germinated from GP150 sediment in cold storage (5 °C) prior to
viability testing. Non-viable seeds of Mentha aquatica and Persicaria
amphibia were also recorded in GP150 sediment. These species did not
germinate in any experimental treatment, but quickly colonized

resurrected pond GP150.
The propagule bank of GP50 was dominated by viable P. natans

seeds and non-viable Lemna trisulca seeds, with only one viable char-
ophyte oospore identified during TZ staining. Nonetheless, P. natans
and the charophyte species C. vulgaris, C. globularis and C. contraria all
germinated in GP50 and in associated mesocosms and microcosms.

Only empty charophyte oospores and seed cases of A. plantago-
aquatica, L. trisulca, Potamogeton spp. and R. aquatilis were found in the
sediment from GP45. However, P. natans grew in the microcosms, me-
socosms, and resurrected pond, while C. hispida grew in the pond and
mesocosms, and Nitella flexilis agg. grew in the pond and microcosms.

Table 1
Aquatic macrophyte species found in the study ponds and germinating or viable in at least one experimental treatment. ‘Experimental treatment’ indicates the location and maximum age
of the germination/viable propagule; ghost pond (Pond), mesocosm (Meso.), microcosm (Micro.), or viable Tetrazolium chloride (TZ) staining (TZ stain). Details are also provided for
oospores and seeds that germinated while in cold storage (Germ. in storage and Germ. age). Viability testing results using 1% TZ stain are shown as the number of seeds/oospores Examined,
and the number which were Viable (full stain), and Maybe viable (patchy stain). *Fully-developed charophytes were identified to species level while charophyte oospores were identified to genus
only.

Seed/oospore collection TZ stain Experimental treatment

Species Number/vol. (ml) Germ. in storage Germ. age Examined Viable Maybe viable TZ stain Micro. Meso. Pond

Chara spp. 740/150 70/740 ~150a 160 32 32 ~150a ~150a ~150a ~150a
Chara contraria * * * * * * * ~50a ~50a ~50a
Chara globularis * * * * * * * ~50a ~50a ~50a
Chara hispida * * * * * * * ~45a ~45a
Chara virgata * * * * * * * ~150a ~150a ~150a
Chara vulgaris * * * * * * * ~150a ~150a ~150a
Juncus sp. 22/12 1 ~150a 22 ~150a
Nitella flexilis agg. 0/200 ~45a ~45a
Potamogeton natans 69/400 69 4 5 ~50a ~150a ~50a ~150a
Ranunculus aquatilis 143/550 1 ~150a 104 ~50a

Fig. 4. Total and mean species richness of plants germinating in mesocosms over time.
Error bars show standard errors. Treatments as follows: ‘Propagule bank’ (covered me-
socosms containing ghost pond sediment); ‘Propagule bank & Dispersal’ (open mesocosms
containing ghost pond sediment); ‘Dispersal’ (open mesocosms containing sterile sub-
strate) and ‘Control’ (covered mesocosms containing sterile substrate).
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These findings suggest that GP45 sediment contained much lower den-
sities of viable propagules.

The on-site mesocosm results reflect the importance of dormant
propagule reserves for aquatic macrophyte colonisation and diversity
(Fig. 4). Germination in covered mesocosms containing ghost pond
sediment (‘propagule bank’ - treatment) was significantly higher
(p < 0.02), and faster than in other mesocosm types, with macro-
phytes germinating in the order: P. natans (week 5, GP50 sediment), C.
vulgaris (week 28, GP150 and GP50 sediment; week 40, GP45 sediment),
C. contraria (week 28, GP50 sediment), C. virgata (week 34, GP150 se-
diment), C. globularis and C. hispida (week 40, GP45 sediment). Only P.
natans (week 28, GP50) and C. vulgaris (week 34, GP150 and GP50)
germinated in the open ‘propagule bank & dispersal’ treatment, and
only C. vulgaris (week 34, GP150 and GP50) germinated in the open
‘dispersal’ treatment containing sterile substrate. No germinations oc-
curred under ‘control’ conditions.

We also observed crustaceans (Daphnia spp. and Cyclops spp.) in
both microcosms and ‘propagule bank’ mesocosms, indicating the pre-
sence of viable ‘resting eggs’ of crustacean zooplankton, but did not
investigate their establishment patterns.

4. Discussion

While agricultural intensification has undoubtedly had highly det-
rimental impacts on biodiversity, our findings offer a glimmer of hope
for the restoration of aquatic habitats and macrophyte communities
ostensibly lost to agriculture. We demonstrate that buried ghost pond
propagule banks can act as a key source of aquatic macrophytes to
ponds and other wetlands in modern agricultural landscapes, where
dispersal barriers often limit the effectiveness of conventional habitat
creation methods (Raebel et al., 2012; Williams et al., 2008). While
temporal dispersal is a known mechanism for the persistence of aquatic
organisms in extant habitats (Beltman and Allegrini, 1997;
Weyembergh et al., 2004), our study is the first to demonstrate at least
centennial-scale survival of aquatic plants in ‘extinct’ aquatic habitats
beneath intensively cultivated agricultural fields.

The observed differences in aquatic propagule viability between our
three study sites could suggest that pond conditions pre-burial have a
stronger effect upon propagule viability than length of burial. GP45 had
dried out prior to its burial during a particularly dry year, whereas pond
GP50 was filled in while still wet. Low propagule viability in GP45
corresponds with similar trends observed in drained wetlands linked to
desiccation (Brown, 1998; Stroh et al., 2012). Nonetheless, even very
low viable propagule densities can enable macrophyte re-establishment
(Kaplan et al., 2014) and this likely explains the rapid re-colonisation of
aquatic macrophytes in all three resurrected ghost ponds, including in
GP45. The mesocosm component of our study directly demonstrates the
positive effect of the propagule bank upon both aquatic species di-
versity and rate of establishment. The unexpected significantly higher
macrophyte establishment rates in covered ‘propagule bank’ meso-
cosms, compared to open ‘propagule bank & dispersal’ mesocosms, is
most likely due to disturbance by water fowl, especially ducks which
were observed to forage in the open mesocosms. This disturbance effect
is likely to be less significant within the ghost ponds themselves, due to
their much large size.

In contrast to the generally observed loss of viable propagules from
wetlands due to drainage and lowered water levels (Brown et al., 1997;
Stroh et al., 2012), the rapid burial of pond sediments during in-filling
appears to effectively conserve long-term propagule viability. Several of
the taxa surviving prolonged burial are keystone species; charophytes
provide complex habitat structure and promote water clarity (Schneider
et al., 2015), and they have become increasingly scarce in lowland
agricultural landscapes (Lambert and Davy, 2011), while floating-
leaved species like P. natans (Fig. 2d) strongly enhance the diversity of
Odonata (Raebel et al., 2012). With UK farmland ponds typically sup-
porting between 6 and 14 aquatic macrophyte species (Davies et al.,

2008; Sayer et al., 2012), the 8 species shown here to survive prolonged
burial represent a significant proportion of the expected species di-
versity in these farmland ponds. Although our study examined the
propagule banks of just three sites, their history, origins, and sur-
rounding land use are widely representative of the conditions experi-
enced by many ghost ponds. Intensive farming after pond burial,
compaction, fertilizer and herbicide use, and continued intensive
farming (outside of a 6 m pond margin) after any potential pond res-
urrection, are common to many ghost ponds. As such, we believe our
study sites provide a realistic demonstration of the potential for using
ghost pond propagule banks to aid wetland habitat restoration in Eur-
opean lowland farmland.

Although pond loss has been highlighted as a major challenge across
many agricultural regions, current conservation policies offer ponds
minimal legislative protection. Further, in regions where pond con-
servation strategies exist, including the US (Dahl, 2014), and parts of
Europe (Céréghino et al., 2008), prevailing approaches focus on the
creation of new ponds (Dahl, 2014; Forestry Commission et al., 2016;
Freshwater Habitats Trust, 2015). The success of pond creation relies
heavily upon plant dispersal from existing habitats (Raebel et al., 2012;
Williams et al., 2008), which may be severely hampered in modern-day,
highly fragmented agricultural settings. Ghost pond restoration may
therefore provide an effective method of returning lost aquatic habitats
and their associated macrophyte communities to agricultural land-
scapes.

Ghost ponds represent biological ‘time capsules’ whose restoration
can facilitate the rapid return of wetland habitat and aquatic plants into
the farmland landscape. It is evident, from their high abundance in
agricultural landscapes around the globe (Wood et al., 2003; Curado
et al., 2011; Dahl, 2014; Serran and Creed, 2015), that ghost ponds
represent a rich and highly undervalued conservation resource. In areas
where the resurrection of ghost ponds is not a viable option, sediment
extracted from known ghost ponds could be analyzed palaeoecologi-
cally to identify past aquatic communities (Madgwick et al., 2011),
while sediment translocations could facilitate the establishment of lost
local species and genotypes in newly created ponds. We believe that
ghost pond restoration could play a significant role in reversing some of
the dramatic habitat and biodiversity losses caused by the global dis-
appearance of agricultural wetlands, while acting to enhance aquatic
habitat connectivity. We urge conservationists to incorporate ghost
pond restoration into landscape-scale conservation strategies and
evolving agri-environment approaches and policy.
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