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Abstract

Over the past few decades there has been a strong effort towards the development of

Smoothness-Increasing Accuracy-Conserving (SIAC) filters for Discontinuous Galerkin

(DG) methods, designed to increase the smoothness and improve the convergence rate

of the DG solution through this post-processor. The applications of these filters in

multidimension have traditionally employed a tensor product kernel, allowing a natu-

ral extension of the theory developed for one-dimensional problems. In addition, the

tensor product has always been done along the Cartesian axis, resulting in a filter

whose support has fixed shape and orientation. This thesis has challenged these as-

sumptions, leading to the investigation of rotated filters: tensor product filters with

variable orientation. Combining this approach with previous experiments on lower-

dimension filtering, a new and computationally efficient subfamily for post-processing

multidimensional data has been developed: SIAC Line filters. These filters transform

the integral of the convolution into a line integral. Hence, the computational advantages

are immediate: the simulation times become significantly shorter and the complexity

of the algorithm design reduces to a one-dimensional problem.

In the thesis, a solid theoretical background for SIAC Line filters has been estab-

lished. Theoretical error estimates have been developed, showing how Line filtering

preserves the properties of traditional tensor product filtering, including smoothness

recovery and improvement in the convergence rate. Furthermore, different numerical

experiments were performed, exhibiting how these filters achieve the same accuracy

at significantly lower computational costs. This affords great advantages towards the

applications of these filters during flow visualization; one important limiting factor of

a tensor product structure is that the filter grows in support as the field dimension in-

creases, becoming computationally expensive. SIAC Line filters have proven efficiency

in computational performance, thus overcoming the limitations presented by the tensor

product filter. The experiments carried out on streamline visualization suggest that

these filters are a promising tool in scientific visualisation.
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Chapter 1

Introduction

Flow visualisation through particle tracking methods such as streamlines and streak-

lines is a common technique used to provide insight into fluid dynamics. Among

the many techniques used for Computational Fluid Dynamics, Discontinuous Galerkin

(DG) methods are one family of numerical schemes that allow for generating data for

flow visualisation. They are robust, high order methods which can handle complicated

geometries as well as effectively solve solutions containing shocks [14].

Field lines (streamlines, streaklines, pathlines, etc.) are mathematically described

using Ordinary Differential Equations (ODEs) and there are many solvers such as the

Runge-Kutta schemes, designed to find these curves numerically. Visualising DG solu-

tions can be challenging; the numerical solution has low levels of continuity and most

ODE solvers assume smooth field conditions. For discontinuous fields where smooth-

ness can no longer be assumed, in order to obtain accurate field lines, adaptive methods

are usually employed. Unfortunately, these methods add computational intensity since

near critical regions, computing a new point usually requires a “pre-stage” that lo-

cates the discontinuity (e.g., predictor-corrector methods) and effectively steps over it.

Alternatively, one can introduce a filter to increase the levels of continuity and subse-

quently compute field lines through a simpler ODE solver. This thesis investigates a

particular class of post-processor, Smoothness-Increasing Accuracy-Conserving (SIAC)

filters, and its applications to flow visualisation for solutions obtained by DG methods.

DG schemes, like Finite Element (FEM) and Finite Volume (FVM) Methods, use a

variational form to solve Partial Differential Equations (PDEs). However, unlike FEM

that require global continuity, a DG solution is continuous only inside the elements.

The solution across the element interface is controlled through a numerical flux that

is only weakly continuous; as a result, the error exhibits high frequency oscillations.

SIAC Filtering [38, 40, 41] is a post-processing technique employed to reduce the error

oscillations and recover smoothness in the solution and its derivatives [36, 51, 53, 57].

It consists of convolving a B-Spline kernel at a particular point with the DG solu-

tion at final time. The filters were originally designed for accuracy enhancement of

FEMs [2,44] and later applied to DG [13]. The post-processor extracts the hidden “su-

perconvergence” of these methods; for linear hyperbolic problems, the filtered solution

is of order 2k+ 1, where k denotes the degree of the polynomial space used for the DG
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approximation which is order k + 1 convergent for special meshes [10,50] and of k + 1
2

order for arbitrary meshes [11,30]. Hence, in addition to increasing the smoothness, for

smooth initial data and linear problems, the filtered solution is generally more accurate

than the DG solution.

The original filter used a symmetric kernel whose support was centred around the

post-processing point and expanded equally in every direction. Today, there are several

versions of these filters attempting to address issues related to domain boundaries and

near-shock regions. Since beyond the computational domain there is no information,

the symmetric kernel can not be implemented near the boundaries. Furthermore,

for solutions containing shocks, taking information near the shock may produce an

undesirable smooth region. Hence, alternative kernel versions were introduced, giving

rise to one-sided [56] and position-dependent [36,63] SIAC filters, and more recently, the

non-uniform knot based PSIAC filters [45]. These filters include a shifting parameter in

the kernel that translates the support towards one direction. Therefore, points near the

domain boundary can be post-processed by pushing the support towards the interior

of the domain and one can filter points belonging to shock regions by translating the

support away from the discontinuity.

There has been ongoing work on the application of SIAC filters for DG solutions

to improve the flow conditions where streamlines are subsequently computed. The

authors of [61] implemented a multidimensional filter, generated a whole whole new

smooth field and then computed streamlines. They observed that when the field con-

tained high discontinuous jumps, filtering resulted in a more efficient technique than

applying an adaptive method. However, multidimensional filtering implies solving the

integral of the convolution in several variables. In practise, the long computational

times associated to these filters limits their applications to real-world problems. This

issue was first tackled by [64]. They presented a numerical experiment along 2D fields

applying a type of one dimensional filter along the streamline curves, saving com-

putational costs and reducing the complexity of the filter implementation. However,

the theoretical and numerical investigation into the effectiveness of this technique on

typical test problems was not carried out.

This thesis attempts to build a solid bridge between the theoretical work on the

filters and the applications during flow visualisation for optimal accuracy and smooth-

ness enhancement. Previous theoretical work on post-processing with SIAC filters has

mainly concentrated on extracting superconvergence. However, the theoretical error

estimates give information on the convergence order but can not ensure error min-

imisation. Rather than seeking superconvergence, the purpose of this research is to

answer questions such as: “given a DG field and a streamline seed, which type of filter

should be applied at each point in order to obtain the most accurate streamline?”. The

foundations for proving superconvergence assume only smooth initial data and link the

filter directly to the underlying mesh, restricting the choices on the area of the domain

from which information is extracted. For example, the traditional multidimensional

filter is built as a tensor product of univariate filters along each Cartesian axis and
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hence the support orientation is fixed. From a visualisation perspective, it is natural

to question if orienting the filter with the flow direction and changing the support size

plays a role in improving the quality of the filtered solution. Therefore, a new type

of filter is presented: the rotated SIAC filters. These filters are no longer Cartesian

coordinate aligned and have variable orientation. Furthermore, based on the “filtering

along streamlines” approach in [64], a subfamily of these filters is derived: the SIAC

Line Filters. This is a new and computationally efficient technique for post-processing

multidimensional fields using lower dimensional filters. This family of filters transforms

the 2D integral of the convolution into a line integral. Hence, from a computational

point of view, the advantages are immediate. Furthermore, theoretical error estimates

are given showing that it is possible to extract superconvergence for such filters. In

addition, the post-processed solution is not only smoother but generally much more

accurate. The low computational costs associated to these filters makes them a very

attractive tool for the scientific community.

1.1 Contributions

This thesis has contributed towards the investigation of SIAC filters in view of im-

proving the vector field conditions during flow visualisation. The research has lead to

the discovery of a subfamily of these filters which whilst preserving the properties of

traditional SIAC filtering, reduce significantly the computational costs. The SIAC Line

filters open up new horizons for this type of post-processing technique with promising

applications across the whole scientific community. The main contributions are:

• Introducing rotations for tensor product SIAC filtering. A robust for-

mulation for tensor product SIAC filters has been developed which introducing a

rotation in the kernel, allows the filter support to expand in different directions.

This has extended the concept of multidimensional filtering that until now, always

used a tensor product construction along the Cartesian axis. The mathematical

formulation is given together with a range of numerical results studying the po-

tential of rotated filters for error reduction and smoothness recovery from DG

solutions. This is discussed in Chapter 3.

• Development of the SIAC Line filters. A subclass of rotated filters was

derived which reduces the filtering convolution to a one-dimensional problem by

post-processing along a line, thus avoiding the tensor product structure. This is

achieved by transforming the filtering convolution into a line integral. Theoreti-

cal error estimates are given, proving 2k + 1 order for the filtered solution when

applied to linear hyperbolic problems over uniform meshes. In addition, sev-

eral numerical results were performed showing that through this low dimensional

filtering, it is possible to recover smoothness as well as reduce the error from

the DG solution. This is discussed in detail in Chapter 4 and these contributions

have been reported in the submitted journal article: “Multi-dimensional filtering:

3



Reducing the dimension through rotation”, Julia Docampo Sánchez, Jennifer K.

Ryan, Mahsa Mirzargar and Robert M. Kirby, SIAM Journal of Scientific Com-

puting (SISC), submitted in 2016.

• Implementation of General SIAC filters. A robust algorithm has been de-

veloped in order to implement line and tensor product filters over general meshes.

A detailed discussion on the different challenges associated to the computations

of SIAC filters is given as well as full details on how to derive the implementation.

This includes a powerful algorithm designed to find, compute and sort intersec-

tion points between two overlapping structures which in this case are identified

with the element interfaces of the DG mesh and the SIAC kernel breaks. This is

discussed in Chapter 5.

• Applications of the SIAC Line filters to streamline visualisation. The

SIAC Line filters were tested during streamline computations over DG fields

containing singularities. The experiments showed how these filters successfully

improve the quality of the visualisation, producing highly accurate streamlines

that without filtering, diverge from the exact solution. Furthermore, the experi-

ments revealed that the Line filter can match (and sometimes improve) the results

compared to traditional tensor product filter. This is discussed in Chapter 6.
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Chapter 2

Background

The theory of SIAC filtering for DG methods relies on the divided differences of the

numerical solution. Using a piecewise polynomial basis of degree k, the numerical so-

lution is typically of order k + 1 under the L2 norm in both the approximation and

divided differences for linear hyperbolic equations [60]. However, DG solutions have

“hidden” superconvergence. In [13] it was proven that the DG solution has 2k+ 1 con-

vergence in the negative-order norm for the approximation and the divided differences.

SIAC filters exploit this fact and can achieve 2k+1 order in the L2 norm for the actual

solution. In order to understand how one can extract superconvergence, this chapter

begins by introducing the DG scheme together with theoretical error estimates.

2.1 DG Schemes

DG schemes were introduced by Reed and Hill, who in 1973 implemented them to solve

the neutron transport equation [49]. Although originally designed for linear hyperbolic

equations, these methods extended to diffusion and elliptic problems and today are used

to solve non-linear combined problems such as the incompressible and compressible

Navier-Stokes equations [1,33]. DG schemes for hyperbolic conservation laws have been

studied in depth by [9,14]. However, for the development of theoretical error estimates,

understanding the properties of the solution is necessary. Therefore, the theoretical

analysis is typically done for the linear advection equation. This equation provides a

simple model for exploring numerical schemes for hyperbolic problems, including initial

discontinuous data or time developing shocks. Here, an overview of the scheme is given

together with theoretical error estimates as well as a numerical example highlighting

two important features: the superconvergence property and the oscillatory behaviour

in the error profile.

Consider the linear hyperbolic problem:
ut +

d∑
i=1

Aiuxi + A0u = 0, (x, t) ∈ Ω× [0, T ], Ω bounded,

u(x, 0) = u0,

(2.1)
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where Ai, i = 1 . . . , d are constant, x = (x1, x2, . . . , xd) and u represents the advection

of the conserved quantity. Furthermore, assume periodic boundary conditions. The

numerical solution using a DG scheme is found using the Method-Of-Lines (MOL)

approach, which in this case implies a spatial discretization but not temporal. Hence,

the first step is to choose a suitable tessellation T (Ω) =
∑
e of the domain Ω and a

piece-wise polynomial approximation space:

V k
h =

{
v ∈ L2(Ω) : v ∈ Pk(e), ∀e ∈ T (Ω)

}
.

Then, the DG solution is obtained using the variational form of Equation (2.1). It is

the unique function uh ∈ V k
h satisfying∫

e

(uh)tvdx−
d∑
i=1

(∫
e

Aiuh(x, t)vxidx

)
+

∫
e

A0uhvdx+
d∑
i=1

∫
∂e

Âiuh · nvdS = 0 (2.2)

for all v ∈ V k
h and for every element of the tessellation. The term Âiuh refers to the

numerical flux, the function enforcing weak continuity across the element interfaces,

which is typically taken to be the upwind flux. In the following, this discretization is

demonstrated for the linear advection equation.

Example 2.1.1. One dimensional DG Scheme.

Consider the scalar problem

{
ut + ux = 0, x ∈ Ω t ∈ [0, T ],

u0(x) = u(x, 0).
(2.3)

Define the mesh elements by Ii = (xi− 1
2
, xi+ 1

2
), Ω =

⋃N
i=1 Ii.

x+
i− 1

2

x−
i− 1

2

x−
i+ 1

2

x+
i+ 1

2

IiIi−1 Ii+1

Imposing the upwind flux,

ûh
i+1

2

= uh(x
−
i+ 1

2

, t),

the DG formulation given in equation (2.2) becomes:

N∑
i=1

[
∂

∂t

∫
Ii

u(x, t)vhdx =

∫
Ii

u(x, t)
∂vh
∂x

dx− ûh
i+1

2

v−h
i+1

2

+ ûh
i− 1

2

v+
h
i− 1

2

]
. (2.4)

Choose the Legendre basis:


φ0(ξ) = 1,

φ1(ξ) = ξ,

φ`+1(ξ) =
2`+ 1

`+ 1
ξφ`(ξ)−

`

`+ 1
φ`−1(ξ), ` ≥ 1,

to be the piece-wise polynomial approximation space V k
h . The following two ideas will

be used to carry out the approximation:
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1. Legendre polynomials are orthogonal with respect L2-norm for −1 ≤ x ≤ 1.

Moreover

φ`(±1) =(±1)`, (2.5)∫
Ii

φm(x)φ`(x)dx =


0, if ` 6=m,

2

2j + 1
, if ` =m.

(2.6)

2. The change of variables:

ξ =
2

hi
(x− xi) , dξ =

2

hi
dx,

maps each DG element to the interval [−1, 1].

Let vh(x) = φ`(ξ) and uh(x, t) =
N∑
i=1

k∑
`=0

u
(`)
i (t)φ`(ξ). (2.7)

Imposing the properties of Legendre polynomials ( equations (2.5) and (2.6)) in equa-

tion (2.4) and rearranging gives:

N∑
i=1

k∑
`=0

[
∂u

(`)
i (t)

∂t
=
h

2

2`+ 1

2

(
−ûh

i− 1
2

(−1)` + ûh
i+1

2

+

∫
Ii

φ`(ξ)
k∑

m=0

∂φm(x)

∂x
(x)dx

)]
.

(2.8)

The solution to this equation is found implementing a time marching scheme such as

the SSP Runge-Kutta methods [21].

The theorem presented next presents superconvergent error estimates for the DG

approximation for linear hyperbolic problems. Before, it is necessary to define the

negative order norm:

‖v‖−`,Ω = sup
φ∈C∞0 (Ω)

(v, φ)Ω

‖φ‖`,Ω
, ‖φ‖`,Ω =

∑
|α|≤`

‖Dαv||2Ω

 1
2

and ` > 0. (2.9)

Here, ‖ · ‖`,Ω is the norm associated to the Sobolev space H`(Ω) = W `
2(Ω) and Dα

denotes the differential operator. Furthermore, the notation ∂α will be used to define

the (scaled) divided difference:

∂αh = ∂α1
h,1∂

α2
h,2 · · · ∂

αd
h,d, ∂h,jf(x) =

1

h

(
f(x+

h

2
ej)− f(x− h

2
ej)

)
, (2.10)

∂
αj
h,jf = ∂h,j(∂

αj−1
h,j f), αj > 1, j = 1, . . . , d. (2.11)

Theorem 2.1.1. (cf. Theorem 3.3 in [13]). Let Ω0 ⊂⊂ Ω and u be the solution to

problem (2.1) with periodic boundary conditions. Assume that u0 ∈ L2
per(Ω, H

s(DΩ̃)),

where Hs(DΩ̃) is certain Sobolev space and

L2
per(Ω) =

{
f ∈ L2

loc(Ω) : f(x+ α) = f(x), ∀x ∈ Ω, α ∈ Zd
}
,

7



i.e., functions that are translation invariant by integer shifts. Under certain conditions,

the DG approximation uh to problem (2.1) satisfies the following negative order norm

error estimate:

‖u(T )− uh(T ))‖−(k+1),Ω0
≤ Ch2k+1. (2.12)

Note 2.1.1. This result is a particular case of the original theorem using the values

from Table 3.4 in [13] corresponding to DG approximations.

Finally, the error estimates for the divided differences of the DG solution are given

below.

Theorem 2.1.2. (cf. Theorems 3.3 & 3.4 in [13]). Let u and uh be the exact and

DG solutions respectively to problem (2.1) with periodic boundary conditions. For a

uniform mesh, the following error estimates hold:

‖∂αh (u(T )− uh(T ))‖0,Ω ≤ Chk+1 (2.13)

in the L2-norm and in the negative order norm:

‖∂αh (u(T )− uh(T ))‖−(k+1),Ω ≤ Ch2k+1. (2.14)

Here k denotes the polynomial order used for the DG approximation and α =

(α1, α2, . . . , αd) a multi-index.

Note 2.1.2. The divided differences are scaled by the mesh element size and the ap-

proximation space is translation invariant by shifts of x 7→ x ± h
2
. Hence, the divided

difference of the solution satisfies the PDE (taking u = ∂hu and u0 = ∂hu0) and the

same error estimates than those for the DG approximation hold.

Finally, the following Lemma is introduced which allows us to switch between the

L2 and the negative-order norms.

Lemma 2.1.1. (Bramble and Schatz [2]). Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω, Ω bounded domain

in Rd and s be an arbitrary but fixed non-negative integer. Then, for u ∈ Hs(Ω1), there

is a constant C such that

||u||0,Ω0 ≤ C
∑
|α|≤s

‖Dαu‖−s,Ω1
. (2.15)

Now a numerical result is given for the scalar problem (2.3).

Example 2.1.2. Let uh be the DG approximation to the problem:{
ut + ux = 0 (t, x) ∈ (0, T )× [0, 1]

u0(x) = sin(2πx),
(2.16)
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with final time T = 2 and using an uniform mesh. Table 2.1 shows the global errors

and orders illustrating how both the DG solution and its divided differences attain

k + 1 convergence (both in the L2 and L∞ norms) when using Pk polynomials. For

the highest degree (k = 3) and finest mesh, both the convergence order and error are

destroyed but this is due to round off errors arising from using double precision. Figure

2.1 shows another important feature of these schemes: the spurious oscillations in the

error profile resulting from the weak continuity at the element interface.

The underlying mechanism of SIAC filters transforms the differential operator Dα

in Lemma 2.1.1 into a divided differences operator. This allows for using the negative

order estimate of Theorem 2.1.2 for the filtered solution, giving 2k+ 1 accuracy in the

L2 norm [13]. Furthermore, these filters reduce the oscillations in the error. In the

next section, details on this post-processor are given together with numerical examples

showing superconvergence, smoothness recovery and error reduction.
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2.2 SIAC Filters

SIAC filtering finds its foundations on a class of post-processor originally developed

for Finite Element Methods by Bramble and Schatz [2]. They showed how to recover

smoothness and even increase the order by convolving the solution with a filter acting as

a local averaging operator. Later, Cockburn, Luskin, Shu and Süli [13] applied them

to DG schemes for hyperbolic problems and today they are known as Smoothness-

Increasing-Accuracy-Conserving (SIAC) filters [52]. A very detailed description of the

properties of these filters, implementation details and applications to different mesh

types can be found in [39,40,42,43,52].

Let r = 2k and ` = k + 1, where k denotes the degree of the DG approximation.

The post-processor is a continuous convolution:

u?h(x, T ) =

∫ ∞
−∞

K
(r+1,`)
H (x− y)uh(y, T ) dy, x ∈ Ω, (2.17)

where uh denotes the DG solution at final time and the kernel (symmetric) is a linear

combination of central B-Splines:

K(r+1,`)(η) =
r∑

γ=0

cγψ
(`)
(
η −

(r
2
− γ
))

. (2.18)

Here, γ denotes the B-Splines centres. The kernel subindex H in equation (2.17) acts

as a scaling factor , i.e., KH(x − y) = 1
H
K
(
x−y
H

)
= 1

H
K(η). To give an idea of the

filter size, for uniform meshes, the usual scaling choice is H = h, where h denotes the

element size used for the DG approximation. The superindexes (r + 1, `) indicate the

number of B-Splines employed to build the kernel (r + 1) and the spline order (`).

Basis Splines (B-Splines) are local functions providing maximum approximation order

with minimum support. They are computationally very attractive since they can be

calculated using recurrence formulas. Define a knot sequence by t = (ti), made of

non-decreasing real numbers. The normalised ith B-Spline is given by:

Bi,1,t(x) =

{
1, ti ≤ x < ti+1,

0, otherwise
if ` = 1, (2.19)

Bi,`,t(x) =
x− tj
ti+`−ti

Bi,`−1(x) +
tj+` − x
ti+`−ti

Bi+1,`−1(x), if ` > 1. (2.20)

The central B-Splines are the particular case consisting of the uniform knot sequence:

t = − `
2
,−`− 2

2
, . . . ,

`− 2

2
,
`

2
. (2.21)

Here, they will be identified with the letter ψ(`) = B0,`,t(x). These splines can be

defined using the following recurrence:

ψ(1)(x) = χ[−1/2,1/2)(x), (2.22)

ψ(`)(x) = ψ(`−1) ? ψ(1)(x), ` > 1 (2.23)

=
1

`− 1

((
`

2
+ x

)
ψ(`−1)

(
x+

1

2

)
+

(
`

2
− x
)
ψ(`−1)

(
x− 1

2

))
. (2.24)
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Moreover, they have the following property for the derivatives:

dαψ(`) = ∂αψ(`−α), ∂α = αth divided difference (∂αh=1 in eq. (2.10)). (2.25)

A complete description on these spline functions can be found in [17] and [59].

Note 2.2.1. The letter ` used to denote the B-Splines order will appear frequently in

this thesis and will always correspond to ` = k + 1 unless otherwise specified. Further-

more, the notation r = 2k will be commonly used to specify the number of B-Splines

used to build the kernel.

Finally, the kernel coefficients, cγ, dictate each of the B-Spline weights and are

determined by imposing the polynomial reproduction property:

K(r+1,`) ? xp = xp, p = 0, . . . , r. (2.26)

The problem of computing these kernel coefficients is discussed later in chapter 5, which

is dedicated to the implementation of SIAC filters and the computational challenges

associated to them. Figure 2.2 shows the B-Spline functions for several degrees together

with two kernels corresponding to equation (2.18) using k = 1, 2 respectively.

−2 −1 0 1 2

0

1

 

 

ψ(1)

ψ(2)

ψ(3)

−2 −1 0 1 2
−0.2

0

1.2

 

 

ψ(2)

K(3,2)

−4 −2 0 2 4
−0.2

0

1

 

 

ψ(3)

K(5,3)

Figure 2.2: B-Splines (left) for different degrees and two symmetric SIAC kernels (cen-

tre and right).

The following Theorem provides error estimates for the post-processed DG solution.

Theorem 2.2.1. (Cockburn, Luskin, Shu, and Süli [13]) Under the same conditions

in Theorem 2.1.2 and if Ω0 +2supp
(
K

(2k+1,k+1)
h

)
⊂⊂ Ω1 ⊂ Ω, then for H = h (h mesh

size): ∥∥∥u−K(2k+1,k+1)
h ? uh

∥∥∥
0,Ω0

≤ Ch2k+1. (2.27)

Note 2.2.2. Using Property (2.25) together with Lemma 2.1.1 allows to transform

the differential operator into a divided difference operator and subsequently applying

Theorem 2.1.2 over the filtered solution, giving the error estimate in Theorem 2.2.1.

2.3 General SIAC Filters

Here, an outline of the development of SIAC filters is given. The kernel presented

in equation (2.18) is symmetric in the sense that the support is centred around the
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post-processing point and expands equally in all directions. This can be appreciated in

the kernels from Figure 2.2, which are centred at zero. The aforementioned position-

dependent SIAC filters include a shifting parameter in the B-Splines, translating the

kernel support towards one direction when necessary. These type of filters were first

applied in [56], and are called RS filters. Unfortunately, they noticed that near the

boundaries, where the filter support is most shifted, accuracy dropped. To overcome

this limitation, [63] introduced the SRV filter. This variation of the RS filter consists

of doubling the amount of splines employed on the position-dependent kernel and

introduce a function that allows a smooth transition towards the original symmetric

kernel as soon as the latter one can be implemented. In [28], superconvergent error

estimates were developed for the SRV filter for multidimensional problems, proving

global 2k + 1 accuracy under the L2 norm and order min{2k + 1, 2k + 2− d
2
} (d being

the field dimension) under the L∞ norm. However, superconvergence is achieved at

the expense of increasing computational costs. Furthermore, increasing the number of

splines affects the magnitude of the error since the constant in the error in Theorem

2.2.1,

‖u− u?‖0 ≤ Ch2k+1,

includes a factor that depends on the kernel coefficients (see the proof in [13]):

C1 =
r∑

γ=0

|cγ|,

which grow as the number of splines increase. A detailed discussion on the effects of

this constant can be found in [35, Ch. 2]. In order to overcome this limitations, [55]

developed the new efficient position-dependent SIAC filters. Rather than doubling the

amount of splines near the boundaries, these filters introduce a general spline. Such

spline is added at the filter support boundaries but does not increase the support size.

Notice that the SRV filter has 2k extra splines, hence the support is wider. This new

filter is globally 2k + 1 superconvergent for the linear case (i.e., k = 1) and of order

k + 1 if k > 1, i.e., it does not destroy the DG accuracy. Furthermore, the numerical

results show that the filtered solution has generally lower error than the original DG

and actually can outperform the SRV filter (in terms of the error). For more details

on the filters performance and comparison between each, see [35].

The shift in the kernel support is achieved by translating the centre of the B-

Splines towards one direction. Let (r + 1, `) be the number of B-Splines and their

degree respectively. The position-dependent kernel is given by the formula:

K(r+1,`)(η) =
r∑

γ=0

cγψ
(`)(η − xγ(λ)) + cr+1b

(`)(x−Hη︸ ︷︷ ︸
=y

), xγ(λ) = −r
2

+ γ + λ, (2.28)

where η is the scaled variable, i.e. η = x−y
H
, and the shift function depends on the
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location of the post-processing point x:

λ(x) =


min

{
0,−r + `

2
+
x− xL
H

}
, x ∈

[
xL,

xL + xR
2

)
max

{
0,
r + `

2
+
x− xR
H

}
, x ∈

(
xL + xR

2
, xR

]
.

(2.29)

Here, xL and xR denote the domain boundaries respectively. The central B-Splines,

ψ(`)(·), are calculated in the usual way (see equations (2.22)-(2.24)) and the general

spline, b(`)(·), is given by:

b(`)(y) =



(
y −

(
y − xL
h

− 1

))`−1

if
y − xL
h

− 1 ≤ y ≤y − xL
h

,((
y − xR
h

+ 1− y
))`−1

if
y − xR
h

≤ y ≤y − xR
h

+ 1,

0 otherwise.

(2.30)

Note 2.3.1. The RS and SRV kernels can be written using equation (2.28) excluding

the last term, corresponding to the general spline b(`).

Note 2.3.2. The kernel given in equation (2.28) will be identified as XLi kernel (filter)

throughout this thesis.

Figure 2.3 shows an example of three boundary filters using the RS, SRV and the

new efficient kernels respectively.
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Figure 2.3: Three different types of boundary filters using 3 B-Splines (left), 5 B-Splines

(centre) and the XLi kernel using 3 B-Splines plus a general spline (b(2)).

Figure 2.4 and Table 2.2 show the numerical results after filtering the DG solution

to Problem (2.16). Three different types of filters were applied; a symmetric filter,

implemented by assuming periodic boundary conditions, a position-dependent filter

using the kernel given in equation (2.28) and a boundary filter. The latter one was

obtained through equation (2.28) imposing λ(x) = r+`
2
, i.e., every point was assumed

to be a boundary point. The global results in Table 2.2 show how for the linear approx-

imation, both the symmetric and position-dependent filters give the same errors and

orders. However, as the polynomial order increases, using a symmetric filter along the

entire field results in better post-processing: the global and point-wise errors are most
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Before post-processing After post-processing

Symmetric Postition Dependent Boundary

N L2 error Order L2 error Order L2 error Order L2 error Order

P1

20 4.6e-03 NA 2.0e-03 NA 2.0e-03 NA 3.4e-03 NA

40 1.1e-03 2.1 2.4e-04 3.0 2.4e-04 3.0 6.7e-04 2.3

80 2.7e-04 2.0 3.0e-05 3.0 3.0e-05 3.0 1.6e-04 2.1

160 6.6e-05 2.0 3.8e-06 3.0 3.8e-06 3.0 3.9e-05 2.0

P2

20 1.1e-04 NA 4.1e-06 NA 1.2e-05 NA 9.0e-05 NA

40 1.3e-05 3.0 1.0e-07 5.4 5.5e-07 4.5 9.4e-06 3.3

80 1.7e-06 3.0 3.1e-09 5.0 4.8e-08 3.5 1.2e-06 3.0

160 2.1e-07 3.0 1.6e-10 4.3 4.2e-09 3.5 1.5e-07 3.0

P3

20 2.1e-06 NA 7.3e-08 NA 2.3e-06 NA 8.2e-06 NA

40 1.3e-07 4.0 6.5e-10 6.8 4.2e-09 9.1 7.8e-08 6.7

80 8.1e-09 4.0 4.7e-11 3.8 4.8e-11 6.4 4.4e-09 4.1

160 5.0e-10 4.0 5.8e-12 3.0 5.8e-12 3.0 2.8e-10 4.0

Table 2.2: Global L2 errors and orders after applying three different kernels to the DG

solution to Problem (2.16).

reduced and the filter successfully eliminates the oscillations. If periodic boundary

conditions cannot be assumed, the position-dependent filter should be implemented.

The error plots (central images) show how the oscillations are fully eliminated towards

the domain centre where the filter is essentially symmetric and are significantly re-

duced towards the boundary. Furthermore, there is a clear error reduction compared

to the DG solution, both globally and locally. The boundary filter on the other hand,

is neither able to raise the DG convergence order or reduce the error. Furthermore,

the error plots in Figure 2.4 show how this filter is unable to recover smoothness.

2.3.1 Discussion

SIAC filters were designed both for smoothness recovery and superconvergence extrac-

tion. In addition, the filtered solution is generally more accurate than the original one,

provided the DG solution is well resolved. This can be observed both in the point-

wise error profile plots in Figure 2.4 and in the global results from Table 2.2. The

numerical experiments suggest that greatest error reduction occurs when applying a

symmetric kernel except for the P1 case; the position-dependent filter using the kernel

from equation (2.28) (including the general B-Spline b(`)), gives exactly the same re-

sults as applying a fully symmetric kernel. On the other hand, for higher polynomial

degrees, when the filter is no longer symmetric, the position-dependent kernel reduces

the oscillations but does not remove them completely compared to the fully symmetric

kernel. The boundary filter does not raise the convergence order nor recover smooth-
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Figure 2.4: Point-wise errors (log) before and after filtering the DG solution to Problem

(2.16) for several meshes and polynomial degrees using three different kernel types.

ness. Furthermore, the global errors shown in Table 2.2 for this filter indicate that

although the new solution has a lower error than the original one, the difference is

almost negligible. However, these filters were designed to improve the errors at the

boundary and not globally. In the last column of Figure 2.4, it can be seen that near

the boundaries, the filter successfully reduces the magnitude of the errors from the

original DG solution. This case was included because it relates back to streamline

visualisation; the one-dimensional filter from [64] consisted of a boundary filter imple-

mented along the streamline curve. The idea behind this type of post-processing is

that the filter support expands downstream along the streamline from the evaluating

point. In this way, the filter uses information from the “true” curve, corresponding to

previously computed streamline points. Since for streamline visualisation, error reduc-

tion is more important than superconvergence, Figure 2.4 gives a better insight into

the filter performance. The error profile of the boundary and symmetric filters indicate

that the kernel should stay as symmetric as possible. This seems to be in disagreement

with the “filtering along the streamlines” approach. However, this numerical example

corresponds to a one-dimensional field so it can not be concluded that a boundary filter

should be avoided for multidimensional fields, where for example, the flow direction

may become relevant.
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2.4 Divided Differences & Translation Invariance

DG methods have superconvergent properties under the negative-order norm. SIAC

filters use the “hidden” information under this norm to attain the same order of ac-

curacy but in the L2 norm. However, theoretical error estimates of SIAC filters are

strongly linked not only to the DG solution itself, but to its divided differences as well.

Lemma 2.1.1 provides a L2 bound of the DG approximation in terms of its derivatives

and a negative-order norm. The post-processor makes use of the B-Spline properties to

transform the differential operator into a divided difference. Theorem 2.1.2 shows how

for linear hyperbolic problems, the divided differences have 2k + 1 order of accuracy

under the negative-order norm. The superconvergent error estimates from Theorem

2.2.1 are obtained by combining Lemma 2.1.1 and Theorem 2.1.2 together with the

kernel divided differences properties.

The kernel scaling plays a major role for allowing switching from the derivatives to

the divided difference operator. Recall that the (scaled) B-Splines are defined by

ψ
(`)
H (x) =

1

H
ψ(`)

( x
H

)
,

and differentiation of this B-Spline gives the scaled divided difference:

dαψ
(`)
H (x)

dxα
= ∂αHψ

(`−α)
H (x).

For uniform meshes, the scaling H = mh where m ∈ Z+ and h is the DG mesh size,

the error estimate for the divided differences,

‖∂αH(u− uh)‖−(k+1),Ω ≤ CH2k+1,

still holds because it preserves the mesh translation invariance. For general nonuniform

meshes, the theoretical estimates for the divided differences give only k + 1− α order

and determining an optimal scaling becomes very complicated. This is studied in detail

in [35, Ch. 4]. In [32], a numerical study on the translation invariance property was car-

ried out from a geometrical perspective. Several mesh types were proposed consisting

of elements that when assembled together in certain groups, produce a translation in-

variant space in terms of the superelements. Examples of such meshes are the Chevron

or the Union Jack meshes shown in Figure 2.5. Their numerical results consistently

showed that selecting the scaling using the characteristic length of the superelement

lead to optimal results.

Another important limitation for the development of superconvergent theoretical

estimates is the nature of the hyperbolic problem. For linear hyperbolic equations,

the same negative-order estimates for the DG solution hold for the divided differences.

However, this does not hold for variable coefficient or non-linear hyperbolic equations.

In this case, it is necessary to develop error estimates on the divided differences in both

norms. In [29], superconvergent error estimates for the DG solution were extended to

non-linear hyperbolic conservation laws. The authors proved how the DG solution can
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(a) Chevron Mesh (b) Union-Jack Mesh

Figure 2.5: Two meshes highlighting the superelement that also forms a uniform mesh.

attain 2k + m order in the negative order norm, where 0 ≤ m ≤ 1 and depends on

the numerical flux. However, they did not extend the proof for the divided differences

of the solution. On the other hand, they provided numerical results showing 2k + 1

order for the filtered solution. Recently, [37] proved for one-dimensional non-linear

scalar hyperbolic problems, superconvergence of SIAC filters for uniform meshes of at

least 3
2
k + 1 order in the L2 norm. For the first time, theoretical error estimates of

the divided differences were developed, giving 2k + 3
2
− α

2
order in the negative-order

norm. Furthermore, the authors show that is possible to prove 2k+1 superconvergence

for variable coefficient hyperbolic equations. Unfortunately, the proofs do not extend

naturally to multidimensional problems so error estimates for such cases remain still

unproven.

2.5 Summary

Combining SIAC filters with DG approximations results in smooth fields with high

order of accuracy. This can be exploited during vector field visualisation, enhancing

the quality of the field data used, for example, by a streamline solver. The symmetric

filter seems optimal in terms of smoothness recovery, superconvergence extraction and

error reduction. The numerical results show that position-dependent filters are glob-

ally superconvergent but on a local basis, they are still outperformed by symmetric

filters both in terms of error reduction and smoothness recovery. Although theoretical

error estimates address order of accuracy, applications of these filters should focus on

smoothness recovery and seek error reduction on top of superconvergence. In addition,

on a local basis, boundary filters should match the performance of the symmetric filter

in terms of error reduction in order to apply them during flow visualisation.
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Chapter 3

Tensor Product Rotated Filters

Multidimensional SIAC filters have traditionally been implemented using tensor prod-

uct filters along each of the Cartesian axes. This configuration, a natural extension

of the one dimensional case, allows for developing theoretical error estimates both for

uniform and nonuniform meshes [13]. The foundations for proving superconvergence

assumes only smooth initial data and links the filter directly to the underlying mesh.

For uniform meshes, provided the kernel scaling is of the form H = mh, where m ∈ Z
and h is the mesh size, it is possible to show 2k+1 accuracy when using Pk polynomials

for the DG approximation. However, as soon as the mesh uniformity assumption drops,

finding a suitable scaling becomes complicated. A detailed theoretical discussion on

the kernel scaling and nonuniform meshes can be found in [35, Ch. 4] and [15] provides

a numerical study.

In this Chapter, a variant of the multidimensional tensor product filter is presented.

It consists of introducing a rotation in the kernel, hence the name rotated filters. This

idea comes from practical applications of SIAC filters. In terms of robustness, the

Cartesian axis aligned tensor product set-up is restrictive. There is only one possible

choice for the kernel support: a box aligned with the Cartesian axis as shown in Figure

3.1. This presents limitations for the choices on the area of the domain from which

information is extracted. The question arises whether changing the direction in which

information was filtered could improve the results. For example, if the post-processor

is used during flow visualization, it is reasonable to ask whether keeping the kernel

aligned with the mesh is more relevant than aligning the kernel with the flow direction.

Figure 3.2 illustrates an example of an alternative support configuration. In this figure,

the filter orientation is obtained from two consecutive streamline points. In this way,

the filter is taking information from the vector field as close to the curve as possible.

Previous work on post-processing with SIAC filters has mainly concentrated on

extracting superconvergence. Theorem 2.2.1 gives information on the convergence order

but does not say anything about the value of the constant in front of the error:

‖u−K(2k+1,k+1)
h ? u‖0,Ω0 ≤ Ch2k+1.

Thus, ensuring superconvergence does not necessarily imply ensuring error minimiza-

tion. This will be stressed later in the numerical experiments. Furthermore, these
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estimates assume a filter with constant scaling and a tensor product structure aligned

with the domain axis. On the other hand, the concept of a rotated SIAC filter pre-

sented here, suggests a filter with variable orientation and size. In addition, rather than

seeking global superconvergence, the rotated SIAC filter seeks local optimal accuracy.

Unfortunately, there is no theory behind the local performance of the filter, even for

the original Cartesian aligned one. Therefore, before attempting to develop theoret-

ical error estimates, the filter performance is first tested numerically. The numerical

experiments are not conclusive but give insight into the behaviour of the filters. This

Chapter begins by introducing and discussing the technical details of the rotated filter,

both mathematical and computational. Then a qualitative study is done based on

numerical experiments, testing combinations of rotations and scalings on a local and

global basis.

Figure 3.1: Support of a Cartesian axis aligned filter projected onto a uniform quadri-

lateral mesh.

Figure 3.2: Comparison of the support of the Cartesian axis aligned filter (white

box) with a rotated filter (gray box) aligned with the streamline direction (red dashed

curve).

3.1 Mathematical Formulation

Before introducing the formula for the convolution of the rotated filter, a short review

of basis and coordinate systems is given.

Definition 3.1.1. (Basis, coordinate systems and change of basis matrices [48, Ch.

6]).

• Let B = {u1, u2, . . . , un} be a subset of a vector space V . B is a basis for V if it

satisfies the following properties:
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1. B spans V

2. {u1, u2, . . . , un} are linearly independent.

Any vector v ∈ V can be written as v = c1u1 + c2u2 + . . . + cnun and the values

{c1, c2, . . . , cn} denote its coordinates in the basis B which can be given as a

coordinate vector:

[v]B =


c1

c2

...

cn

 .

Theorem 3.1.1. Let B1 = {u1, u2, . . . , un} and B2 = {v1, v2, . . . , vn} be two bases for

a vector space V . Then, the change-of-basis matrix from B1 to B2, PB2←B1 [x]B1 is

defined by:

PB2←B1 =
[
[u1]B2 [u2]B2 · · · [un]B2

]
(3.1)

and it satisfies:

a) PB2←B1 [x]B1 = [x]B2 ∀x ∈ V.

b) PB2←B1 is unique and invertible. Furthermore, (PB2←B1)
−1 = PB1←B2 .

The proof of this theorem can be found in [48, Ch. 6.3].

3.1.1 Rotated Convolution

The original 2D filter is defined by:

u?(x, y) =

∫ ∞
−∞

∫ ∞
−∞

K
(r+1,`)
Hx

(x− x)K
(r+1,`)
Hy

(y − y)uh(x, y)dxdy (3.2)

and each (symmetric) kernel is defined in the usual way:

K
(r+1,`)
H (η) =

r∑
γ=0

cγψ
(`)
(
η −

(
−r

2
+ γ
))

, (3.3)

where γ are the B-Splines nodes.

Consider now a general 2D filter whose support expands along the axis

~kx = (cos θx, sin θx), ~ky = (cos θy, sin θy).

Remark 3.1.1. The original 2D kernel can be seen as a particular case using the axis
~kx = (1, 0) and ~ky = (0, 1).

Let B1 := {e1 = (1, 0), e2 = (0, 1)} , i.e., the Cartesian reference system, and con-

sider a second basis B2 :=
{
~kx, ~ky

}
.

Remark 3.1.2. The set B2 =
{
~kx, ~ky

}
is a basis of R2 provided θx 6= θy.
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The following equations express the kernel axis in the original reference system B1:

~kx = cos θx · e1 + sin θx · e2, (3.4)

~ky = cos θy · e1 + sin θy · e2. (3.5)

The change-of-basis matrices for the rotated filter coordinate system are obtained

from these relations:

PB2←B1

(
cos θx cos θy

sin θx sin θy

)
and PB1←B2 =

1

det (PB2←B1)

(
sin θy − cos θy

− sin θx cos θx

)
. (3.6)

This gives the following relations:

X = (x1, x2)B1 = PB1←B2 ·X ′ ⇔ X ′ = (x′1, x
′
2)B2 = PB2←B1 ·X.

Note 3.1.1. For orthogonal rotations, let θx = θ. Since

θy = θ + π/2⇒

{
cos θy = − sin θ

sin θy = cos θ,
(3.7)

the change of basis matrices reduces to

PB2←B1 =

(
cos θ − sin θ

sin θ cos θ

)
and PB1←B2 =

(
cos θ sin θ

− sin θ cos θ

)
. (3.8)

The rotated filter consists of rewriting the convolution in the new basis:

u?(x, y) =
1

HxHy

∫ ∞
−∞

∫ ∞
−∞

Kx

(
x− x′

Hx

)
Ky

(
y − y′

Hy

)
u(x′, y′)J(x′, y′)dx′dy′ (3.9)

where (
x′

y′

)
= PB2←B1

(
x

y

)
, and J(x′, y′) = det(PB2←B1). (3.10)

Note 3.1.2. For orthogonal systems, the Jacobian J(x′, y′) reduces to

det(PB2←B1) = cos2 θ + sin2 θ = 1.

Remark 3.1.3. This definition is consistent with the original post-processor. This can

be seen by taking θ = 0. In this case, x = x′ (y = y′), giving equation (3.2).

Figure 3.4 illustrates the structure of two tensor product filters. The original DG

mesh is aligned with the Cartesian axis. The right picture shows the effect of the

rotation in the kernel and each of the B-Spline supports.
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~kx

~ky

θx
θy

e1

e2

Figure 3.3: Illustration of the basis vectors for the two coordinate systems.

K
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(x)

K
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K
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Hx′

(x′)K
(3,2)
Hy′

(y′)

Figure 3.4: Structure of the 2D tensor product filters using a Cartesian axis aligned

kernel (left) and a π/4-rotated kernel (right). The smaller squares (dark blue) highlight

the total filter support. The segments (solid, dotted and dashed) across the filters

support along the directions Kx, Ky represent each of the B-Spline support and the

two dots (light blue) denote the evaluation point.
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3.2 Global Analysis: Superconvergence & Errors

One important question to ask about these new filters is if they preserve superconver-

gence. Thus, a numerical study was carried out over the 2D linear advection equation:{
ut + ux + uy = 0, (x, y) ∈ [0, 2π]2, t ∈ [0, T ]

u0(x, y) = sin(x+ y).
(3.11)

The unfiltered solution was obtained with a DG scheme using an upwind flux over a

uniform quadrilateral mesh. In order to quantify the effect of the rotation, the first

study was done over the L2 projection of the function

u0(x, y) = sin(x+ y), (x, y) ∈ [0, 2π]2. (3.12)

This provides a simplified setup for the filter since the effects of the numerical flux on

the solution are omitted.

Three particular rotations: θ = 0, π/6, π/4 were considered. Furthermore, three

types of scalings were used corresponding to the formula H = µh, with h being the

DG mesh size and varying µ. The value µ = 1 corresponds to the scaling for which

it is proven that the Cartesian axis aligned filter achieves superconvergence [12]. This

scaling is chosen to ensure mesh translation invariance by shifts of size H as shown

in Figure 3.5. Thus, for the π/4-rotation, the case H =
√

2h was introduced. The

π/6 rotation cannot produce a translation invariant space but it is possible to preserve

invariance for each direction by using shifts of µ = 1/ cos(π/6) as shown in Figure

3.6. Finally, the value µ = 0.9 was included in the study to support the discussion on

superconvergence and minimum error.

Figure 3.7 shows the contour lines of the point-wise error along the entire field

before and after applying a π/4-rotated filter. In Figure 3.8 the same error profile is

shown but in this case for a π/6-rotated filter. These plots highlight how relevant is the

scaling both in terms of smoothness recovery and error reduction; regarding smooth-

ness, observe that for the lowest polynomial degree (P1), the solution is only smooth

when the scaling is chosen according to the discussion given in the previous paragraph.

This prevails still for the case P2 in Figure 3.7, corresponding to a π/4 rotated kernel

and it is due to the large difference between the scalings. Concerning mesh translation

invariance, this rotation requires a larger scaling than the π/6 rotation. Notice that

the difference between the values µ = 0.9, 1 and µ =
√

2, corresponding to the π/4

rotation is much larger than the difference between µ = 1 and µ = 1/(cos(π/6) ≈ 1.15.

On the other hand, in terms of error reduction, larger scalings seemed less effective.

Notice how both filters achieved lower errors when applying a scaling equal to the

mesh size. Nevertheless, regardless the support size, all the filtered solutions reduced

the error from the original DG solution.

Table 3.1 shows the global L2 and L∞ errors from Figure 3.7. In terms of super-

convergence, the P1 case shows that only the scaling H =
√

2h allows the rotated filter

to extract the expected 2k+ 2 order; when post-processing the L2 projection of a func-

tion, the filtered solution is of order (2k+ 1) + 1. A similar behaviour can be observed
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h

Figure 3.5: Kernel scalings using H = h (left and centre) and H =
√

2h (right). The

central image is not translation invariant.

for the π/6-rotation for the scaling µ = 1/ cos(π/6) as shown in Table 3.2, although

the difference here is less clear. The mesh resolution is not high enough to allow the

scaling effects to be more visible. Table 3.3, which will be discussed later, also includes

a 80 × 80 element mesh for the P1 approximation. For such case, it is clear how the

π/4-rotated filter has a better global performance when applying the scaling µ =
√

2.

With the available computational resources, the studies on these filters were limited to

relatively coarse meshes. The global errors shown in this table suggest that the scaling

H = h has a better performance. On the other hand, for a π/4-rotated filter, as the

mesh is being refined (see Table 3.3), the value switches towards H =
√

2h. In [32], the

filter was tested using different scalings for several mesh types. It was concluded that

although asymptotically, the translation invariant scaling gives the best results, over

coarser meshes, a smaller scaling will result in greater error reduction. On the other

hand, in general, larger scalings tend to worsen the error. This is consistent with the

results presented here.

Finally, Table 3.3 compares the L2-errors of the π/4-rotated filter with the Cartesian

axis aligned filter. Observe that, in general, using the scaling µ = 0.9 outperforms (in

terms of the error) the other choices for both filters, aligned and rotated. Figure 3.9

compares the three rotations using a scaling H = h. Notice that for the value θ = 0,

this scaling effectively reduces the oscillations. On the other hand, as mentioned earlier,

such value is not suitable for the other rotations since oscillations in the filtered error

still persist. Table 3.4 shows the global L2 errors and orders corresponding to these

plots. The values in this table show that the case θ = 0 gives consistently the lowest

errors. Therefore, although the rotated filters recover smoothness and improve the

unfiltered error, overall, the axis aligned filter has a better performance. This filter

not only produces a smooth solution too but it is the one that achieves greatest error

reduction.

3.3 Local Behaviour

The previous experiments focused on the global behaviour of the filters in order to

examine whether superconvergence was preserved when rotating the kernel. The fol-

lowing experiments were carried out in order to understand whether there is a best

rotation according to the point location relative to the element to which it belongs.
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Figure 3.6: A π/6 rotated filter with a scaling H = 1/ cos(π/6) showing the invariant

space.

Unfiltered Scaling Filtered

H = µh θ = π/4

N L2-Error Order L∞-Error Order µ L2-Error Order L∞-Error Order

P1

20 3.7e-03 - 1.3e-02 -
1 3.5e-04 - 6.6e-04 -
√

2 1.2e-03 - 1.7e-03 -

40 9.2e-04 2.00 3.3e-03 1.99
1 3.1e-05 3.50 7.5e-05 3.14
√

2 7.8e-05 3.96 1.1e-04 3.96

P2

20 9.8e-05 - 3.2e-04 -
1 1.8e-05 - 2.5e-05 -
√

2 1.3e-04 - 1.9e-04 -

40 1.2e-05 3.00 4.1e-05 2.99
1 2.8e-07 5.95 4.3e-07 5.87
√

2 2.2e-06 5.92 3.1e-06 5.92

P3

20 1.9e-06 - 4.9e-06 -
1 1.1e-06 - 1.5e-06 -
√

2 1.6e-05 - 2.3e-05 -

40 1.2e-07 4.00 3.1e-07 3.99
1 4.4e-09 7.94 6.2e-09 7.92
√

2 6.9e-08 7.87 9.7e-08 7.87

Table 3.1: L2 and L∞ results before and after applying a π/4-rotated filter on the

L2-projection of u0(x, y) = sin(x + y) on Ω = [0, 2π]2 over an uniform mesh of size h.

Results are shown using two different scalings, H = h and H =
√

2h.

Post-Processing Cell Centres

Before performing a local analysis limiting the filter to a single element, the entire field

was post-processed choosing a particular set of points: the element centres. This is a

situation where the original post-processor (Cartesian axis aligned) is expected to be

optimal. This is because the mesh is made of uniform quadrilaterals and the evaluating

point is at the centre, using the scaling H = h (h being the mesh size) provides the

filter with a support that has a completely symmetric footprint.

Consider the L2 projection of the initial condition of Problem (3.11), ie, the DG

solution at initial time. Figure 3.10 shows the point-wise error profiles after applying
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Unfiltered Applying a π/4-rotated filter

µ = 0.9 µ = 1 µ =
√

2

P1

P2

P3

Figure 3.7: Contour-line error plots (log) before and after filtering the L2−projection

of u0(x, y) = sin(x+y) in Ω = [0, 2π]2 using a π/4 tensor product filter with H = µh, h

mesh size.

the rotated filter using ten rotations:

θ =
k

10

π

2
, k = 0, . . . , 9

and two scalings.

Note 3.3.1. The filter support is square so it is not necessary to take θ ≥ π/2. In

fact, pairs of complementary angles (see Figure 3.11) give exactly the same error and

therefore in the right plots of Figure 3.10, only six error curves are shown. This can

be attributed to the symmetry in the function sin(x+ y).

In this scenario, the zero rotation is consistently the best orientation. The magni-

tude of the error increases with the rotation angle, finding its maximum at θ = π/4.

Another important remark is that changing the scaling seems to have a similar impact

on all rotations. Observe the P2 case of Figure 3.10. In this case, the filter has a

smaller support since H = 0.8h and the error curves show similar behaviour as that

for H = h case in terms of the relation between the magnitude of the error and the

rotation angle.

Filtering Inside a Particular Element

In the previous study, the axis aligned filter showed optimal performance (in terms

of error reduction) compared to the rotated filters. Overall, the behaviour of the
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Unfiltered Applying a π/6-rotated filter

µ = 1 µ = 1/ cos(π/6)

P1

P2

P3

Figure 3.8: Contour-line error plots (log) before and after filtering the L2−projection

of u0(x, y) = sin(x+y) in Ω = [0, 2π]2 using a π/6 tensor product filter with H = µh, h

mesh size.

filter with different orientations relative to each other was consistent throughout the

entire field. In the next experiment, the filters were tested on a particular element.

The reason for not studying all the elements was because it would require very long

computational times. In order to analyse the filter behaviour, one needs to implement

several polynomial degrees and mesh refinements. For example, using five scalings and

five rotations implies needing 25 simulations. For a 20×20 mesh using nine quadrature

points per element, it requires post-processing 25×20×20×9 = 9·104 points. Therefore,

it was assumed that the filter behaviour at a particular element could be representative

(to some extent) of its behaviour on all elements.

Problem (3.11) was studied in two different ways; first, the filters were applied to

the L2 projection of the initial condition. Then, the problem was solved for time T = 12

using a Runge-Kutta (RK4) DG scheme with upwind flux. This introduces the effect

of the weak continuity at the element interface. Figure 3.12 shows the error profiles for

three different polynomial degrees using rotated filters of varying angle θ ∈ [0, 2π) and
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Unfiltered Scaling Filtered

H = µh θ = π/6

N L2-Error Order L∞-Error Order µ L2-Error Order L∞-Error Order

P1

20 3.7e-03 - 1.3e-02 -
1 3.0e-04 - 5.7e-04 -

1/ cos(π/6) 5.0e-04 - 7.2e-04 -

40 9.2e-04 2.00 3.3e-03 1.99
1 2.3e-05 3.74 6.0e-05 3.24

1/ cos(π/6) 3.2e-05 3.98 4.6e-05 3.98

P2

20 9.8e-05 - 3.2e-04 -
1 1.4e-05 - 2.1e-05 -

1/ cos(π/6) 3.3e-05 - 4.7e-05 -

40 1.2e-05 3.00 4.1e-05 2.99
1 2.3e-07 5.96 3.4e-07 5.90

1/ cos(π/6) 5.4e-07 5.95 7.6e-07 5.95

P3

20 1.9e-06 - 4.9e-06 -
1 8.1e-07 - 1.2e-06 -

1/ cos(π/6) 2.5e-06 - 3.6e-06 -

40 1.2e-07 4.00 3.1e-07 3.99
1 3.3e-09 7.94 4.7e-09 7.93

1/ cos(π/6) 1.0e-08 7.92 1.5e-08 7.92

Table 3.2: L2 and L∞ results before and after applying a π/6-rotated filter on the

L2-projection of u0(x, y) = sin(x + y) on Ω = [0, 2π]2 over an uniform mesh of size h.

Results are shown using two different scalings, H = h and H =
√

2h.

scaling 0.8 ≤ µ ≤ 1.4. The left set of figures were plotted as a function of the scaling

and the right figures as a function of the rotation angle. The sample corresponds to 25

Quadrature points inside the element with centre C ≈ (1.2, 1.75) and uh(x, y) ≈ 0.1.

Notice that as the polynomial degree increases, the scaling that minimises the error

tends to µ ≈ 1. Furthermore, the angle plots (right) show that for the P3 case, the zero

rotation is almost consistently the one that minimises the error. In fact, these plots

suggest the same as Figure 3.10: the error increases as the rotation angle increases.

Figure 3.13 shows the element L2 and L∞ norms for both the L2 projection and the

DG solution (T = 12). Comparing the two types of solutions (L2 projection vs DG),

it seems that the differences between the performance of the filters are smaller once

the solution is evolved in time. In the L2 projection error plots, increasing the scaling

aids the rotated filters in reducing the error. For example, the π/4 rotation has a

lower error when applying larger scalings. However, for the DG solution, the error

behaves similar to the cell centre experiment (see Figure 3.10). Changing the scaling

affects all the rotations in a similar way and the error increases as the rotation angle

increases. The plots suggest that the optimal scaling for error reduction corresponds

to the value µ = 1. In addition, for this value, the difference in the magnitude of the

error between the rotations θ = 0, π/4 is very small, except for the highest polynomial

degree. However, the zero rotation consistently minimises the error.
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Unfiltered Scaling Filtered

H = µh θ = 0 θ = π/4

N L2-Error Order µ L2-Error Order L2-Error Order

P1

20 3.7e-03 -

0.9 1.5e-04 - 3.5e-04 -

1 1.9e-04 - 3.5e-04 -
√

2 6.7e-04 - 1.2e-03 -

40 9.2e-04 2.00

0.9 1.5e-05 3.28 6.4e-05 2.44

1 1.2e-05 3.99 3.1e-05 3.50
√

2 6.7e-05 3.31 7.8e-05 3.96

80 2.3e-04 2.00

0.9 3.6e-06 2.37 1.6e-05 2.05

1 7.3e-07 4.00 5.6-06 2.47
√

2 1.4e-05 2.28 4.9e-06 3.99

P2

20 9.8e-05 -

0.9 9.5e-06 - 2.4e-06 -

1 1.8e-05 - 4.5e-06 -
√

2 1.3e-04 - 3.5e-05 -

40 1.2e-05 3.00

0.9 4.0e-08 5.90 2.4e-07 5.32

1 7.1e-08 5.98 2.8e-07 5.95
√

2 5.8e-07 5.92 2.2e-06 5.92

P3

20 1.9e-06 -

0.9 6.0e-08 - 4.7e-07 -

1 1.4e-07 - 1.1e-06 -
√

2 2.1e-06 - 1.6e-05 -

40 1.2e-07 4.00

0.9 2.4e-10 7.97 1.9e-09 7.93

1 5.5e-10 7.97 4.4e-09 7.94
√

2 8.7e-09 7.94 6.9e-08 7.87

Table 3.3: L2 errors and orders comparing the π/4-rotated filter and the Cartesian

axis filter for the L2-projection of u0(x, y) = sin(x+ y) on Ω = [0, 2π]2 over an uniform

mesh of size h.
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Unfiltered Filtered

θ = 0 θ = π/6 θ = π/4

P1

P2

P3

Figure 3.9: Contour-line error plots (log) before and after filtering the L2−projection

of u0(x, y) = sin(x + y) in Ω = [0, 2π]2 for different SIAC filters using H = h, h mesh

size.

Unfiltered Filtered

θ = 0 θ = π/6 θ = π/4

N L2-Error Order L2-Error Order L2-Error Order L2-Error Order

P1

20 3.7e-03 - 1.9e-04 - 3.0e-04 - 3.5e-04 -

40 9.2e-04 2.00 1.2e-05 3.99 2.3e-05 3.74 3.1e-05 3.50

P2

20 9.8e-05 - 4.5e-06 - 1.4e-05 - 1.8e-05 -

40 1.2e-05 3.00 7.1e-08 5.98 2.3e-07 5.96 2.8e-07 5.95

P3

20 1.9e-06 - 1.4e-07 - 8.1e-07 - 1.1e-06 -

40 1.2e-07 4.00 5.5e-10 7.97 3.3e-09 7.94 4.4e-09 7.94

Table 3.4: L2 errors and orders before and after post-processing the L2-projection of

u0(x, y) = sin(x+ y) on Ω = [0, 2π]2 applying filters with scaling H = h, h mesh size.
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40× 40 elements 80× 80 elements

P1

µ = 1

P2

µ = 0.8

Figure 3.10: Surface error plots (log) and 1D slices of the error after filtering the

L2 projection of u(x, y) = sin(x + y) for the element centre along the entire field

Ω = [0, 2π]2. The scalings correspond to H = µh and ten rotations were considered.

θ θ′

Figure 3.11: Footprints of two kernels with same error profiles corresponding to a

θ−rotated filter and the supplementary θ′ = π − θ. The rotation can also be seen as

θ′ = π/2− θ since the kernels have square support.
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Scaling Orientation
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Figure 3.12: Pointwise error profiles as a function of the scaling (left) and the rotation

angle (right) after postprocessing the L2 projection of u(x, y) = sin(x + y) inside a

particular element from a 80× 80 mesh.

34



L
2

p
ro

je
ct

io
n

(T
=

0
)

D
G

so
lu

ti
o
n

(T
=

1
2
)

P1

0
π
/4

π
/2

-8-6-4

||error||2

θ

||error||2

0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-8-6-4

||error||∞
θ

||error||∞

0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-4-2

||error||2

θ

||error||2

0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-4-2

||error||∞

θ

||error||∞

0
.8

1
.0

1
.4

µ

P2

0
π
/4

π
/2

-1
0-8-6-4

||error||2

θ

||error||2

0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-1
0-8-6-4

||error||∞

θ

||error||∞
0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-1
0-8-6-4

||error||2

θ

||error||2

0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-1
0-8-6-4

||error||∞

θ

||error||∞

0
.8

1
.0

1
.4

µ

P3

0
π
/4

π
/2

-1
4

-1
2

-1
0-8

||error||2

θ

||error||2

0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-1
4

-1
2

-1
0-8

||error||∞

θ

||error||∞

0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-1
4

-1
2

-1
0-8-6

||error||2

θ

||error||2

0
.8

1
.0

1
.4

µ

0
π
/4

π
/2

-1
4

-1
2

-1
0-8-6

||error||∞

θ

||error||∞

0
.8

1
.0

1
.4

µ

F
ig

u
re

3.
13

:
L

o
ca

l
L

2
an

d
L
∞

er
ro

rs
fo

r
a

p
ar

ti
cu

la
r

el
em

en
t

as
a

fu
n
ct

io
n

of
th

e
ro

ta
ti

on
an

gl
e

an
d

sc
al

in
g

af
te

r
p

os
tp

ro
ce

ss
in

g
th

e
so

lu
ti

on
to

P
ro

b
le

m
(3

.1
1)

u
si

n
g

80
×

80
el

em
en

ts
.

T
h
e

h
or

iz
on

ta
l

d
as

h
ed

li
n
es

d
en

ot
e

th
e

u
n
fi
lt

er
ed

er
ro

rs
.

35



3.4 Discussion

The previous numerical results suggest that the rotated filters preserve the properties

of SIAC filtering in terms of superconvergence and smoothness recovery. On the other

hand, it was observed that keeping the filter aligned with the Cartesian axis resulted

in greater error reduction. Maximum error reduction is the most desirable property

when applying the filters for engineering problems. Hence, from these experiments, it

was concluded that rotated tensor product filters are not a good alternative over the

original axis aligned filter.

This chapter served as an introduction to tensor product rotated filtering. As a

first approach, the problem model considered in the experiments consisted of a simple

linear hyperbolic equation:

ut + ux + uy = 0.

In the future, studies on these filters should extend to non-linear problems. Further-

more, the numerical examples done for these filters were done over a uniform quadri-

lateral mesh. Therefore, the question is whether the same behaviour holds for general

meshes. For non-uniform meshes, it is possible that there is a less clear “best scaling-

orientation” for maximum error reduction. In [36], optimal accuracy is discussed for

non-uniform meshes. The authors show the difficulties arising from matching the the-

oretical optimal scaling to the one observed from running numerical tests. Since for

non-uniform meshes it is not even clear for the Cartesian aligned filter which is the best

scaling, the study for the rotated filters was limited to uniform quadrilateral meshes.

The applications to non-uniform meshes are left for future work. The important infor-

mation obtained from rotating the filter was that post-processing in different directions

still allows for increasing the convergence order and reducing the error of the filtered

solution. This motivated the development of the SIAC Line filters presented in the

next chapter.

Finally, it is left as an open problem what would happen if the filter shape changed.

Notice that although a rotation was introduced, throughout the experiments, the fil-

ter preserved a orthogonal inner axis. In Section 3.1, the formulation of the rotated

filtering convolution was done for a general basis, not necessarily requiring orthogonal

vectors. Figure 3.14 illustrates the idea of building a 2D π/4-rotated filter with non-

orthogonal inner axis. This filter also has the mesh translation invariance property

and uses a smaller support compared to the rotated filter applied in Section 3.2 using{
θ = π/4, µ =

√
2
}

.
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Figure 3.14: Footprint of the mesh of two kernels with translation invariance property

showing an alternative rotation with non orthogonal inner axis (right).
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Chapter 4

SIAC Line Filters

There are different challenges that SIAC filters should overcome in order to become

a practical tool during flow visualisation. From an engineering perspective, the filter

should be robust, require relatively low computational intensity and have short sim-

ulation times. One important limiting factor on the applications of tensor product

SIAC filters is the long computational times for higher degree filters. In addition, as

discussed in Chapter 3, applying the filter to general meshes not only adds computa-

tional complexity to the algorithm design but also intensifies the process of finding and

sorting integrable regions.

The numerical experiments for the tensor product rotated filters suggested that

introducing a rotation does not destroy the properties that characterise SIAC filters;

provided the appropriate scaling is used, post-processing with these filters produces

a smooth solution with same order of accuracy than when keeping the kernel aligned

with the Cartesian axis. The question is then whether it is necessary to have a tensor

product structure. The idea of lower dimension SIAC filters for multidimensional

domains was first introduced in [64]. They showed the potential of this technique with

an empirical study on streamlines, implementing a one-sided filter along the curve

using arc-length parametrization. Here, that idea is developed mathematically leading

to SIAC Line filters: rotated SIAC filters with support expanding only along a

segment inside the 2D domain. This family of filters transforms the 2D integral of the

convolution into a line integral. Therefore, from a computational point of view, the

advantages are immediate. Not only the support size is enormously reduced and hence

the computational times but also sorting the integrable regions becomes a much less

intense and simple task. Furthermore, it is possible to prove superconvergence for these

filters and provide similar error estimates than for the original tensor product filter.

This chapter begins by reviewing the theory for proving superconvergence. The SIAC

Line filters are then formally introduced together with Theorem 4.3.1 which provides

theoretical error estimates for these filters for linear hyperbolic problems. Then, several

numerical experiments are presented to study the performance of these filters.
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4.1 Proving Superconvergence for SIAC Filters

In [13], it was proven that the DG approximation has 2k+1 convergence in the negative-

order norm for the approximation and the divided differences. SIAC filters exploit this

fact and can achieve 2k + 1 order in the L2 norm for the actual solution. In order to

illustrate the important components for proving the same properties for the rotated

filter, the proof of Theorem 2.2.1 is discussed.

Theorem 4.1.1. (Cockburn, Luskin, Shu, and Süli [13].) Under the same conditions

in Theorem 2.1.2 and if Ω0 +2supp
(
K

(2k+1,k+1)
h

)
⊂⊂ Ω1 ⊂ Ω, then for H = h (h being

the DG mesh size): ∥∥∥u−K(2k+1,k+1)
h ? uh

∥∥∥
0,Ω0

≤ Ch2k+1. (4.1)

Proof. The full proof of this Theorem can be found in [13] and here only a sketch

is given.

Begin by splitting the error:∥∥∥u−K(2k+1,k+1)
h ? uh

∥∥∥
0,Ω0

≤
∥∥∥u−K(2k+1,k+1)

h ? u
∥∥∥

0,Ω0︸ ︷︷ ︸
Θ1

+
∥∥∥K(2k+1,k+1)

h ? (u− uh)
∥∥∥

0,Ω0︸ ︷︷ ︸
Θ2

.

The term Θ1 is bounded using the polynomial reproduction property. Let T 2ku(y, ·) be

the Taylor expansion of degree 2k of u around y and denote byR2k+1 = u(·)−T 2ku(y, ·)
the residual. Then

u(x)−K(2k+1,k+1)
h ? u(x) = R2k+1u(y, x)−

∫
supp Kh

K
(2k+1,k+1)
h (y − x)R2k+1u(y, x)dx.

Let z = y−x
h

, then

u(x)−K(2k+1,k+1)
h ? u(x) = R2k+1u(y, x)−

∫
supp K

K(2k+1,k+1)(z)R2k+1u(y, x− hz)dz

and if x = y:

u(x)−K(2k+1,k+1)
h ? u(x) = −

∫
supp K

K(2k+1,k+1)(z)R2k+1u(x, x− hz)dz.

Hence,

Θ1 ≤
∥∥K(2k+1,k+1)

∥∥
L1(Rd)

· sup
z∈supp K

∥∥R2k+1u(·, · − hz)
∥∥

0,Ω0
(4.2)

≤
∥∥K(2k+1,k+1)

∥∥
L1(suppK)

· h2k+1

(2k + 1)!
|u|2k+1,Ω0+h·suppK (4.3)

Since ‖ψ(m)(·)‖L1(Rd) = 1, the kernel term in the equation above is bounded by its

coefficients:

∥∥K(2k+1,k+1)
∥∥
L1(suppK

≤
2k∑
γ=0

|cγ|ψ(k+1)
(
· − (

r

2
− γ)

)
=

2k∑
γ=0

|cγ| = C0.
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This allows to give the following estimate:∥∥∥u−K(2k+1,k+1)
h ? u

∥∥∥
0,Ω0

≤ h2k+1

(2k + 1)!
C0|u|2k+1,Ω0+h·suppK ≤ C1h

2k+1. (4.4)

Apply now Lemma 2.1.1 to the second term:

Θ2 ≤ C1

∑
|α|≤k+1

∥∥∥ Dα
(
K

(2k+1,k+1)
h ? (u− uh)

)∥∥∥
−(k+1),Ω1

. (4.5)

Using the central B-Splines derivative property:

Dαψ
(k+1)
h = ∂αhψ

(k+1−α), (4.6)

and since the convolution is a linear operator, i.e.,

Dαψ
(k+1)
h ? u = ψ(k+1−α) ? ∂αhu,

the following equation holds:(
DαK

(2k+1,k+1)
h ? (u− uh)

)
=
(
DαK

(2k+1,k+1)
h

)
? (u− uh)

= K
(2k+1,k+1;α)
h ? ∂αh (u− uh).

Imposing this in equation (4.5) gives

Θ2 ≤ C1

∑
|α|≤k+1

∥∥∥ DαK
(2k+1,k+1)
h ? (u− uh)

∥∥∥
−(k+1),Ω1

(4.7)

≤ C1

∑
|α|≤k+1

∥∥∥ K(2k+1,k+1)
h ? ∂αh (u− uh)

∥∥∥
−(k+1),Ω1

(4.8)

≤ C1

∑
|α|≤k+1

∥∥∥ K(2k+1,k+1)
h

∥∥∥
L1(R)

‖∂αh (u− uh)‖−(k+1),Ω1
(4.9)

≤ C1C2

∑
|α|≤k+1

‖∂αh (u− uh)‖−(k+1),Ω1
. (4.10)

Finally, using Theorem 2.1.2, one can conclude that:∥∥∥K(2k+1,k+1)
h ? (u− uh)

∥∥∥
0,Ω0

≤ Ch2k+1. (4.11)

Remark 4.1.1. The polynomial reproduction property implies that convolving the exact

solution with the filter produces an error of order O(h2k+1), with 2k being maximum

polynomial degree of reproduction. This is controlled by the number of B-Splines used

during kernel construction.

Remark 4.1.2. The divided differences play a key role for bounding the error compo-

nent corresponding to the filtered DG approximation. The 2k + 1 accuracy is achieved

by virtue of Theorem 2.1.2 using the B-Spline derivative property given in equation

(4.6).
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4.2 SIAC Line Kernels

The proof of Theorem 4.1.1 highlights the important role played by the divided dif-

ferences for proving superconvergence of the filtered solution; the proof relies on the

ability of the kernel to transfer the derivatives to the DG approximation as divided dif-

ferences and then apply Theorem 2.1.2. With an axis aligned kernel, a tensor product

construction,

K
(2k+1,k+1)
H (x, y) = K

(2k+1,k+1)
Hx

(x)⊗K(2k+1,k+1)
Hy

(y),

is necessary in order to compute the multi-dimensional derivatives:

DαK
(2k+1,k+1)
H (x, y) =

dα1

dx
K

(2k+1,k+1)
Hx

(x)
dα2

dy
K

(2k+1,k+1)
Hy

(y), α1 + α2 = α.

On the other hand, recall that the rotated kernel is defined by:

K
(2k+1,k+1)
H (x′, y′) = K

(2k+1,k+1)
Hx

(x′)⊗K(2k+1,k+1)
Hy

(y′), (x′, y′) = PB2←B1

(
x

y

)
.

This affords a great advantage; a single kernel direction allows for differentiation in

terms of the original basis under all variables since:

K
(2k+1,k+1)
Hx

(x′) = K
(2k+1,k+1)
Hx

(x, y). (4.12)

Exploiting this fact, it is possible to avoid tensor products and reduce the filter dimen-

sion, transforming the convolution into a line integral whilst preserving the 2D SIAC

properties. The only thing that needs to be proven is that the kernel derivatives can

still be expressed as a combination of divided differences in the x and y directions.

Then, Theorem 2.1.2 can be applied to obtain the desired 2k + 1 order of accuracy.

4.2.1 Univariate B-Splines Along Lines in R2

Let Γ ⊂ R2 be the line parametrized by the arc length

Γ(t) = t(cos θ, sin θ) t ∈ R, θ fixed. (4.13)

This line can be identified with the kernel axis kx. Notice that

x = t cos θ ⇒ x cos θ = t cos2 θ

y = t sin θ ⇒ y sin θ = t sin2 θ

}
x cos θ + y sin θ = t. (4.14)

On the other hand, using the rotation matrix (eq. (3.8)) gives:(
x′

y′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x

y

)
(4.15)

Hence, x′ = x cos θ + y sin θ = t.

Define the inverse curve
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t (x, y)
Γ

Γ−1

by:

Γ−1(x, y) = x cos θ + y sin θ. (4.16)

Remark 4.2.1.

t = t(x, y) = Γ−1 (Γ(t)) = Γ−1(x, y) = x cos θ + y sin θ ∀(x, y) ∈ Γ(t). (4.17)

Definition 4.2.1. (SIAC Line kernels). Consider the line Γ and its inverse Γ−1 given

by equations (4.13) and (4.16). Then, the B-Spline along the Γ line is defined by

ψ̃
(k+1)
θ (x, y) =

{
ψ(k+1)

(
Γ−1(x, y)

)
if (x, y) ∈ Γ(t)

0 otherwise,
(4.18)

and has compact support

supp ψ̃
(k+1)
θ = (t cos θ, t sin θ), t ∈

[
−k + 1

2
,
k + 1

2

]
. (4.19)

Γ(t) ⊂ R2 R R
(t cos θ, t sin θ) t ψ(k+1)(t)

Γ−1 ψ(k+1)

ψ̃
(k+1)
θ

R
supp ψ(`)(t)

Ω ⊂ R2

supp ψ(`)(t)

supp ψ̃
(`)
θ (x, y)

Γ(t)

Figure 4.1: Illustration of an univariate B-Spline support along a line in R2.

Here, ψ(k+1)(·) denotes the univariate B-Spline of order k ≥ 0.

The SIAC Line kernel is construced as a linear combination of these (scaled)

B-Splines and the symmetric version has the following formula:

K
(2k+1,k+1)
H,Γ (t) =

k∑
γ=−k

cγψ
(k+1)
θ,H (t− γ) (4.20)

in arc length coordinates, or alternatively by:

K
(2k+1,k+1)
H,Γ (x, y) =

k∑
γ=−k

cγψ̃
(k+1)
θ,H

(
Γ−1 (x− γ cos θ, y − γ sin θ)

)
(4.21)

in the Cartesian system.
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The 2D convolution for the SIAC Line filter is given by:

u?(x, y) =
1

H

∫
Γ

KΓ,H

(
t

H

)
uh(Γ(t))dt, (4.22)

where it was used that Γ(t) = t(cos θ, sin θ) + (x, y) and ||Γ′(t)|| = 1.

4.2.2 Differentiation and Divided Differences

Now that B-Splines for line filters have been introduced, it is necessary to characterise

the derivatives of the term in equation (4.5) in Theorem 4.1.1,∥∥∥ DαK
(2k+1,k+1)
h ? (u− uh)

∥∥∥
−(k+1),Ω1

. (4.23)

Let ` = k + 1 and consider the B-Spline from Definition 4.2.1 (equation (4.18)):

ψ̃
(`)
θ,H(x, y) = ψ

(`)
H

(
Γ−1(x, y)

)
.

Note 4.2.1. Using (4.17), we also have

ψ̃
(`)
θ,H(x, y) = ψ

(`)
H (t), where t = t(x, y).

Furthremore,
∂t

∂x
= cos θ and

∂t

∂x
= sin θ.

Then,

Dαψ̃
(`)
θ,H(x, y) =

∂α1

∂xα1

(
∂α2

∂yα2

(
ψ

(`)
H

(
Γ−1(x, y)

)))
=

∂α1

∂xα1

(
sinα2 θ · d

α2ψ
(`)
H (t)

dtα2

)
(4.24)

= sinα2 θ
∂α1

∂xα1

(
dα2ψ

(`)
H (t)

dtα2

)
= sinα2 θ cosα1 θ

(
dαψ(`)(t)

dtα

)
(4.25)

= sinα2 θ cosα1 θ
(
∂αHψ

(`−α)
H (t)

)
, α1 + α2 = α. (4.26)

This formula establishes a relation between the derivatives of the B-Spline along the line

and the divided differences of the B-spline along the arc length parameter. However,

in order to apply Lemma 2.1.1 in equation (4.23) and bound the filtered solution, a

particular type of divided differences are introduced.

Definition 4.2.2. (Directional Divided Difference). Consider the direction given by

the vector ~u = (ux, uy). Then the scaled directional divided difference with respect to ~u

is defined by

∂~u,Hf(x, y) =
1

H

(
f

(
x+

H

2
ux, y +

H

2
uy

)
− f

(
x− H

2
ux, y −

H

2
uy

))
, (4.27)

and the α-directional divided difference is defined by

∂α~u,Hf(x, y) = ∂~u,H

(
∂α−1
~u,H

f(x, y)
)
, α > 1. (4.28)
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The following Lemma provides a relation between the directional divided differences

and the basis vectors.

Lemma 4.2.1. Let f be a smooth function. Then, its (scaled) α-directional divided

difference along the direction vector uθ,H = (cos θ, sin θ) can be expressed as a sum of

α-directional divided differences using the basis vectors:

uθx = (cos θ, 0), uθy = (0, sin θ)

through the formula

∂αuθ,Hf(x, y) =
α∑

m=0

(
α

m

)
∂α−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

α−m
2

H sin θ

)
. (4.29)

Proof. Consider the first order divided difference. By definition:

∂uθ,Hf(x, y) =
1

H
f

(
x+

H

2
cos θ, y +

H

2
sin θ

)
− 1

H
f

(
x− H

2
cos θ, y − H

2
sin θ

)
.

Adding and subtracting the term

1

H

(
f

(
x− H

2
cos θ, y +

H

2
sin θ

))
,

in the previous equation gives:

∂uθ,Hf(x, y) =
1

H
f

(
x+

H

2
cos θ, y +

H

2
sin θ

)
− 1

H
f

(
x− H

2
cos θ, y +

H

2
sin θ

)
+

1

H
f

(
x− H

2
cos θ, y +

H

2
sin θ

)
− 1

H
f

(
x− H

2
cos θ, y − H

2
sin θ

)
.

Since

uθx = (cos θ, 0), uθy = (0, sin θ),

the equation can be written as:

∂uθ,Hf(x, y) =∂uθx,Hf

(
x, y +

H

2
sin θ

)
+ ∂uθy ,Hf

(
x− H

2
cos θ, y

)
. (4.30)

On the other hand, replace α = 1 in the sum given by equation (4.29).

1∑
m=0

(
1

m

)
∂1−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

1−m
2

H sin θ

)
=

∂uθx,Hf

(
x, y +

1

2
H sin θ

)
+ ∂uθy ,Hf

(
x− 1

2
H cos θ, y

)
.

Hence the formula holds for the first directional divided difference. Assume now that

the formula holds for α− 1. Then,

∂αuθ,Hf(x, y) = ∂uθ,H
(
∂α−1
uθ,H

f(x, y)
)

=∂uθ,H

(
α−1∑
m=0

(
α− 1

m

)
∂α−1−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

α− 1−m
2

H sin θ

))

=
α−1∑
m=0

(
α− 1

m

)
∂uθ,H

(
∂α−1−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

α− 1−m
2

H sin θ

))
.
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Using the result from equation (4.30)

∂uθ,Hf(x, y) = ∂uθx,Hf

(
x, y +

H

2
sin θ

)
+ ∂uθyf

(
x− H

2
cos θ, y

)
,

∂αuθ,Hf(x, y) =

=
α−1∑
m=0

(
α− 1

m

)
∂uθx,H

(
∂α−1−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

α− 1−m+ 1

2
H sin θ

))
︸ ︷︷ ︸

(i)

+
α−1∑
m=0

(
α− 1

m

)
∂uθy ,H

(
∂α−1−m
uθx,H

∂muθy ,Hf

(
x− m+ 1

2
H cos θ, y +

α− 1−m
2

H sin θ

))
︸ ︷︷ ︸

(ii)

(i) =

(
α− 1

0

)
∂αuθx,Hf

(
x, y +

α

2
H sin θ

)

+
α−1∑
m=1

(
α− 1

m

)
∂α−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

α−m
2

H sin θ

)
Changing m→ m+ 1 in (ii) gives

(ii) =
α−1∑
m=1

(
α− 1

m− 1

)
∂α−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

α−m
2

H sin θ

)

+

(
α− 1

α− 1

)
∂αuθy ,Hf

(
x− α

2
H cos θ, y

)

(i) + (ii) =
α−1∑
m=1

((α− 1

m

)
+

(α− 1

m− 1

))
︸ ︷︷ ︸

=

(
α

m

)
∂α−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

α−m
2

H sin θ

)

+

(α− 1

0

)
︸ ︷︷ ︸

=

(
α

0

)
∂αuθx,Hf

(
x, y +

α

2
H sin θ

)
+

(α− 1

α− 1

)
︸ ︷︷ ︸

=

(
α

α

)
∂αuθy ,Hf

(
x− α

2
H cos θ, y

)
,

which gives the formula

∂αuθ,Hf(x, y) =
α∑

m=0

(
α

m

)
∂α−m
uθx,H

∂muθy ,Hf

(
x− m

2
H cos θ, y +

α−m
2

H sin θ

)
.

The previous Lemma allows for calculating directional divided differences in terms

of the basis building vectors. Now the relation between the divided differences along

the arc length parameter and directional divided differences is discussed.
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Lemma 4.2.2. For a B-Spline of the form of equation (4.18), the (scaled) directional

divided differences along the line Γ are equal to the (scaled) divided differences of the

univariate B-Spline along the arc length parameter, i.e.,

∂αuθ,H ψ̃
(`−α)
θ,H (x, y) = ∂αHψ

(`−α)
H (t), uθ = (cos θ, sin θ). (4.31)

Proof. Start with the first order divided difference: α = 1.

∂uθ,H ψ̃
(`−α)
θ,H (x, y) =

ψ̃
(`−α)
θ,H

(
x+ H

2
cos θ, y + H

2
sin θ

)
H

−
ψ̃

(`−α)
θ,H

(
x− H

2
cos θ, y − H

2
sin θ

)
H

Examining the first term:

ψ̃
(`−α)
θ,H

(
x+ H

2
cos θ, y + H

2
sin θ

)
H

=
ψ

(`−α)
H

(
Γ−1

(
x+ H

2
cos θ, y + H

2
sin θ

))
H

(4.16)

↓
=

ψ
(`−α)
H

((
x+ H

2
cos θ

)
cos θ +

(
y + H

2
sin θ

)
sin θ

)
H

=
ψ

(`−α)
H

(
x cos θ + H

2
cos2 θ + y sin θ + H

2
sin2 θ

)
H

=
ψ

(`−α)
H

(
t+ H

2

)
H

.

The second term gives a similar result:

ψ̃
(`−α)
θ,H

(
x− H

2
cos θ, y − H

2
sin θ

)
H

=
ψ

(`−α)
H

(
t− H

2

)
H

.

Hence,

∂uθ,H ψ̃
(`−α)
θ,H (x, y) =

ψ
(`−α)
H

(
t+ H

2

)
H

−
ψ

(`−α)
H

(
t− H

2

)
H

= ∂Hψ
(`−α)(t).

For higher order divided differences, recall that the α-th divided difference of a function

is defined by

∂αf = ∂(∂α−1f), α > 1. (4.32)

Assume

∂α−1
uθ,H

ψ̃
(`−α)
H (x, y) = ∂α−1

H ψ(`−α)(t), 1 < α ≤ `.

Then,

∂αuθ,H ψ̃
(`−α)
H (x, y) = ∂uθ,H

(
∂α−1
uθ,H

ψ̃
(`−α)
H (x, y)

)
1 < α ≤ `.

∂uθ,H

(
∂α−1
uθ,H

ψ̃
(`−α)
θ,H (x, y)

)
=

=
∂α−1
uθ,H

ψ̃
(`−α)
θ,H

(
x+ H

2
cos θ, y + H

2
sin θ

)
H

−
∂α−1
uθ,H

ψ̃
(`−α)
θ,H

(
x− H

2
cos θ, y − H

2
sin θ

)
H

=
∂α−1
H ψ

(`−α)
H

(
t+ H

2

)
H

−
∂α−1
H ψ

(`−α)
H

(
t− H

2

)
H

= ∂αHψ
(`−α)
H (t).
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Corollary 4.2.1. The derivatives of the B-Splines from Definition 4.2.1 can be ex-

pressed as a sum of directional divided differences through the formula:

Dαψ̃
(`)
θ,H(x, y) =

sinα2 θ cosα1 θ

α∑
k=0

(
α

k

)
∂α−k
uθx,H

∂kuθy ,H ψ̃
(`−α)
θ,H

(
x− k

2
H cos θ, y +

α− k
2

H sin θ

)
.

Proof. Differentiating the B-Spline gives

Dαψ̃
(`)
θ,H(x, y) = sinα2 θ cosα1 θ∂αHψ

(`−α)
H (t)

(see equation (4.24)). Now use Lemma 4.2.2 to express the derivatives in terms of the

directional divided differences:

∂αHψ
(`−α)
H (t) = ∂αuθ,H ψ̃

(`−α)
θ,H (x, y).

Using Lemma 4.2.1 completes the proof.

Remark 4.2.2. Corollary 4.2.1 shows that the derivatives of the B-Spline can be com-

puted as a combination of directional divided differences using the original Cartesian

basis.

Finally, for a smooth function v,

Dαψ̃
(`)
θ,H ? v = cosα1 θ sinα2 θ · ψ̃(`−α)

θ,H ? ∂αuθ,Hv, α1 + α2 = α. (4.33)

Since the convolution and the divided differences are linear operators,

Dα
(
ψ̃

(`)
θ,H ? v

)
(x, y) =

(
Dαψ̃

(`)
θ,H

)
? v(x, y) = cosα1 θ sinα2 θ ·

(
∂αuθ,H ψ̃

(`−α)
θ,H ? v

)
(x, y)

= cosα1 θ sinα2 θ

∫
R

∫
R
∂αuθ,H ψ̃

(`−α)
θ,H (x− ξx, y − ξy)v(ξx, ξy)dξxdξy

= cosα1 θ sinα2 θ

∫
R

∫
R
∂αuθ,H ψ̃

(`−α)
θ,H (ηx, ηy)v(x− ηx, y − ηy)dηxdηy

= cosα1 θ sinα2 θ

∫
R

∫
R
ψ

(`−α)
θ,H (ηx, ηy)∂

α
uθ,H

ṽ(x− ηx, y − ηy)dηxdηy

= cosα1 θ sinα2 θ
(
ψ

(`−α)
θ,H ? ∂αuθ,Hv

)
(x, y).

4.3 Error Estimates for SIAC Line Filters

Now that the foundations for line filtering have been discussed, superconvergent error

estimates are given in the following theorem.

Theorem 4.3.1. Let u be the exact solution to problem (2.1) with d = 2 and assume

periodic boundary conditions. Let uh be the DG approximation over a uniform mesh

and denote by hx and hy the DG mesh size. Consider the line filter K
(2k+1,k+1)
Γ,H along

Γ(t) = t(cos θ, sin θ), θ fixed. If θ = arctan
(
hy
hx

)
and H = hx cos θ + hy sin θ, then:∥∥∥u−K(2k+1,k+1)

Γ,H ? uh

∥∥∥
0,Ω0

≤ Ch2k+1. (4.34)
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Proof. Write∥∥∥u−K(2k+1,k+1)
H ? uh

∥∥∥
0,Ω0

≤
∥∥∥u−K(2k+1,k+1)

H ? u
∥∥∥

0,Ω0︸ ︷︷ ︸
Θ1

+
∥∥∥K(2k+1,k+1)

H ? (u− uh)
∥∥∥

0,Ω0︸ ︷︷ ︸
Θ2

.

Since the line filter preserves the polynomial reproduction property:

K
(2k+1,k+1)
Γ,H ? xp = xp, p = 0, . . . , 2k, (4.35)

the first term is bounded as shown in the proof of Theorem 4.1.1 using equation (4.4).

The second term needs to be written in terms of the divided differences with an

expression similar to

Dα
(
K

(2k+1,k+1)
H ? (u− uh)

)
= K

(2k+1,k+1−α)
H ? ∂αH(u− uh)

in order to obtain a bound of the form of:

Θ2 ≤ C1C2

∑
|α|≤k+1

‖∂αh (u− uh)‖−(k+1),Ω1
. (4.36)

Let ` = k + 1, r = 2k, and denote the error by e = u − uh. The kernel is a linear

combination of B-Splines so it suffices to study one B-Spline alone. Lemma 4.2.1 allows

to write

Dαψ̃
(`)
θ,H ? e =

sinα1 θ cosα2 θψ̃
(`)
θ,H ?

(
α∑

m=0

(
α

m

)
∂α−m
uθx,H

∂muθy ,He

(
x− m

2
H cos θ, y +

α−m
2

H sin θ

))
,

where uθx = (cos θ, 0) and uθy = (0, sin θ).

Note 4.3.1. Since

θ = arctan

(
hy
hx

)
and H = hx cos θ + hy sin θ,

the following equations hold

H =
hx

cos θ
=

hy
sin θ

. (4.37)

The second equality
hx

cos θ
=

hy
sin θ

,

comes directly from the definition of θ. To show the first one, assume H = hx
cos θ

. Then,

H =
hx

cos θ
⇒ H cos2 θ = cos θ · hx

H cos2 θ =H(1− sin2 θ)

H = cos θ · hx + H sin2 θ︸ ︷︷ ︸
H=hy/ sin θ

= hx cos θ + hy sin θ.
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This allows us to write the directional divided differences of the error function in the

canonical basis B1 = {e1, e2} using the mesh size:

∂uxθ ,Hf(x, y) =
1

H

(
f

(
x+

H

2
cos θ, y

)
− f

(
x− H

2
cos θ, y

))
=

1

H

(
f

(
x+

hx
2
, y

)
− f

(
x− hx

2
, y

))
= cos θ · ∂e1,hxf(x, y).

Analogously, the second direction gives

∂uyθ ,Hf(x, y) = sin θ · ∂e2,hyf(x, y).

Hence

Dαψ̃
(`)
θ,H ? e =

= sinα1+1 θ cosα2+1 θψ̃
(`)
θ,H ?

(
α∑

m=0

(
α

m

)
∂α−me1,hx

∂me2,hy
e

(
x− m

2
hx, y +

α−m
2

hy

))
,

giving:

Θ2 ≤ C1C2C(θ)
∑
|α|≤k+1

∥∥∥∥∥
α∑

m=0

(
α

m

)
∂α−me1,hx

∂me2,hy
e

∥∥∥∥∥
−(k+1),Ω1

. (4.38)

The rest of the proof follows from Theorem 4.1.1.

Remark 4.3.1. When a B-Spline is differentiated, as a consequence of the chain rule

a sin θ or cos θ term appears. As a result, the constant term in equation (4.38) now

includes the multiplying factor

sinα1+2 θ cosα1+1

which is always less than one (and decreasing with every power) since the rotation

angle is defined by arctan(hy/hx). This means that the constant in front of equation

(4.34) can actually be reduced. In the numerical experiments presented in the following

section, there are cases where the line filter outperforms the 2D axis aligned filter in

terms of error reduction.

4.4 Numerical Results

The numerical experiments were done for the 2D transport equation:{
ut + ux + uy = 0, (x, y) ∈ [0, 2π]2, t ∈ [0, T ]

u0(x, y) = u(x, 0)
(4.39)

at final time T = 2. The unfiltered solution was obtained with a DG scheme using an

upwind flux over an uniform mesh. In the following, the various aspects of filtering

will be discussed: smoothness and accuracy enhancement, including error reduction.
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4.4.1 Recovering Smoothness

Since line filtering implies post-processing along a single direction, one can expect that

it is only along that line where the filtered solution gains smoothness. Consider the L2

projection of the function

u(x, y) = sin(x), (x, y) ∈ [0, 2π]2.

Since the field depends only in one variable, the line filters are expected to behave

similarly in every direction and identically with respect to each other, provided the

appropriate scaling is selected. Figure 4.2 shows the error profiles corresponding to

a horizontal and diagonal domain slice before and after line filtering along the θ =

0, π/4 and 3π/4 directions. The plots highlight the importance of the scaling choice;

observe how the θ = 0 line filter only recovers smoothness when the H is set equal

to the mesh size. In Theorem 4.3.1 it was shown that the scaling should be set to

H = arctan(hx/hy) =
√

2 (the mesh is made of uniform squares). The slice plots show

how for the rotations θ = π/4 and θ = 3π/4, a smaller scaling results in a oscillatory

error profile. Regarding the magnitude of the error, despite the lack of smoothness

in the filtered solution, there is general error reduction for all scalings and rotations.

Table 4.1 shows the global L2 errors and orders before and after applying these line

filter over the entire field. As expected, using the right angle-scaling pairs results in

the same convergence rate and error.

The next study was done for the DG solution to Problem 4.39 and introducing

multivariate fields through the initial condition:

u(x, t) = sinx cos y.

Figure 4.3 shows different error profiles corresponding to a horizontal, vertical and

diagonal domain slice. The plots show how the zero rotation produces a smooth solution

along the filtering direction only (horizontal) and without much error reduction. On

the other hand, rotating the filter produces a smooth profile in all directions. Both the

π/4 and 3π/4-line filters are able to recover smoothness and clearly reduce the error

from the DG solution. Figure 4.4 shows the error profiles for the same problem but

using the initial condition:

u(x, y) = sin(x+ y).

Again, for the zero rotation line filter, there is only smoothness recovery along the

horizontal cut. Furthermore, just like the previous case, the magnitude of the error of

the filtered solution is very close to the original DG solution. The performance of the

3π/4 rotation is shown for two different scalings. Observe how although the value µ = 1

results in error reduction, the filtered solution is still oscillatory whilst using µ =
√

2

not only produces a smooth solution in all directions but also the error decreases.
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Unfiltered Line Filtered

H = µh θ = 0 θ = π/4 θ = 3π/4

N L2-Error Order µ L2-Error Order L2-Error Order L2-Error Order

P1

20 2.6e-03 -

0.9 8.2e-05 - 6.6e-04 - 6.6e-04 -

1 9.3e-05 - 4.0e-04 - 4.0e-04 -
√

2 3.5e-04 - 9.3e-05 - 9.3e-05 -

40 6.5e-04 2.00

0.9 1.0e-05 3.03 1.7e-04 2.00 1.7e-04 2.00

1 5.8e-06 3.99 9.9e-05 2.03 9.9e-05 2.03
√

2 4.3e-05 3.02 5.8e-06 3.99 5.8e-06 3.99

80 1.6e-04 2.00

0.9 2.1e-06 2.26 4.2e-05 2.00 4.2e-05 2.00

1 3.6e-07 4.00 2.5e-05 2.01 2.5e-05 2.01
√

2 9.7e-06 2.15 3.6e-07 4.00 3.6e-07 4.00

P2

20 6.9e-05 -

0.9 1.2e-06 - 6.6e-06 - 6.6e-06 -

1 2.2e-06 - 3.0e-06 - 3.0e-06 -
√

2 1.8e-05 - 2.2e-06 - 2.2e-06 -

40 8.6e-06 3.00

0.9 2.1e-08 5.81 8.2e-07 3.01 8.2e-07 3.01

1 3.5e-08 5.98 3.6e-07 3.07 3.6e-07 3.07
√

2 3.0e-07 5.89 3.5e-08 5.98 3.5e-08 5.98

80 1.1e-06 3.00

0.9 1.1e-09 4.26 4.5e-08 4.21 4.5e-08 4.21

1 5.6e-10 5.99 1.0e-07 1.81 1.0e-07 1.81
√

2 1.3e-08 4.55 5.6e-10 5.99 5.6e-10 5.99

P3

20 1.4e-06 -

0.9 3.0e-08 - 3.4e-08 - 3.4e-08 -

1 6.9e-08 - 1.3e-08 - 1.3e-08 -
√

2 1.1e-06 - 6.9e-08 - 6.9e-08 -

40 8.5e-08 4.00

0.9 1.2e-10 7.96 2.1e-09 4.03 2.1e-09 4.03

1 2.7e-10 7.97 7.0e-10 4.21 7.0e-10 4.21
√

2 4.4e-09 7.94 2.7e-10 7.97 2.7e-10 7.97

80 5.3e-09 4.00

0.9 1.0e-12 6.89 1.3e-10 4.01 1.3e-10 4.01

1 1.1e-12 7.98 4.3e-11 4.04 4.3e-11 4.04
√

2 1.9e-11 7.86 1.1e-12 7.98 1.1e-12 7.98

P4

20 2.2e-08 -

0.9 7.7e-10 - 1.1e-10 - 1.1e-10 -

1 2.2e-09 - 8.1e-11 - 8.1e-11 -
√

2 6.7e-08 - 2.2e-09 - 2.2e-09 -

40 6.7e-10 5.00

0.9 7.2e-13 10.05 3.3e-12 5.09 3.3e-12 5.09

1 2.2e-12 9.99 1.4e-12 5.88 1.2e-12 6.06
√

2 7.0e-11 9.91 2.2e-12 9.99 2.2e-12 9.99

80 2.1e-11 5.00

0.9 5.6e-14 3.68 1.1e-13 4.84 1.1e-13 4.84

1 5.5e-14 5.30 9.6e-14 3.83 7.8e-14 3.95
√

2 3.5e-14 10.97 5.0e-14 5.42 5.0e-14 5.43

Table 4.1: L2 errors and orders before and after applying several Line Filters to the

L2 projection of the function u(x, y) = sin(x) on Ω = [0, 2π]2.
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4.4.2 Accuracy Enhancement

It has just been discussed the line filters ability to gain smoothness if choosing the

correct rotation and scaling. Now attention is turned towards global error and conver-

gence order. The goal of this study was to compare the line filtered solution with the

DG solution. Some numerical results include the original tensor product filter aligned

with the Cartesian axis. However, since this chapter investigates the performance of

line filters, the experiments for the 2D filter stop at 40 × 40 elements. Although this

may not seem complete, since the results show three polynomial degrees, it suffices to

give insight into the filters behaviour relative to each other.

The performance of line filters was studied in several ways in order to understand

which features of the solution are more relevant for maximum error reduction. In

particular, the line filters performance was tested subject to the mesh type, initial

condition and flow direction. Consider the DG solution at time zero and project the

function

u(x, y) = sin(x+ y)

onto the space Ω = [0, 2π]2 using a uniform square mesh. Figure 4.5 shows the contour-

line error profiles using three different line filters. The second column of plots show

the performance of the horizontal line filter. The results show that this filter is unable

to improve the smoothness or the size of the error from the original solution. The π/4

rotation effectively reduces the oscillations for the larger scaling µ =
√

2 but at the

expense of less error reduction compared to the value µ = 1. In fact, the P4 case shows

that the pair θ = π/4, µ =
√

2 produce a solution with greater error than the original

one. The rotation θ = 3π/4, on the other hand, exhibits excellent performance for

the theoretical scaling µ =
√

2, both in terms of smoothness and error reduction. The

other scaling indeed reduces the error of the original solution (though not as much as

if using µ =
√

2) but the filtered solution still exhibits oscillations. Table 4.2 shows

the global L2 errors and convergence rates. Both the π/4 and 3π/4 rotations achieve

the expected superconvergence when using the scaling µ =
√

2. This is clearer for

the θ = π/4 case which attains 2k + 2 order for all polynomial degrees (k being the

polynomial degree used for the approximation). The θ = 3π/4 convergence rates drop

at the higher degree polynomials but this clearly due to round off errors since the

global errors are already at 10−14, i.e., machine double precision limits. An important

remark for the zero rotation is that the filtered solution results in lower error but the

convergence rates stay at the original k + 1 order.

Figure 4.6 and Table 4.3 show numerical results comparing the line filter with

the original tensor product filter for the DG solution to Problem (4.39). Two initial

conditions were considered: u(x, y) = sin(x + y) and u(x, y) = sin x cos y. For the

first initial condition, as the filters order increase, the 3π/4-line filter has excellent

behaviour and actually outperforms the 2D filter in terms of error reduction. Regarding

convergence orders, it seems like both the tensor product filter and the π/4-line filter

have a faster rate than the 3π/4-line filter. However, for the second initial condition,
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u(x, y) = sinx cos y, the three filters exhibit similar orders of accuracy. In this case,

the tensor product filter has consistently a lower error. Nevertheless, in all cases, the

filtered solutions clearly reduce the error compared to the original DG solution.

The first set of numerical experiments on line filtering suggested that the best

orientation is the 3π/4 direction. This orientation is also the line of symmetry of the

wave u(x, y) = sin(x+ y) and it is also tangent to the flow direction ut + ux + uy = 0.

Hence, two additional studies were considered. The first corresponds to the same DG

solution to Problem (4.39) but this time using the initial condition

u(x, y) = sin(x+ 3y).

The contour-line plots in Figure 4.7 show the error profiles before and after filtering

using the 3π/4-line filter compared to the θ = arctan(3) and its perpendicular direction

(u(x, y) = sin(x + 3y), tan(θ) = 3/1). Table 4.4 shows the global L2 errors and

orders. The 3π/4 rotation has an overall better performance, indicating that the initial

condition plays a minor role on the filter orientation choice. In terms of the order of

accuracy, both the orientations θ = π/4 and θ = arctan(3) have a faster convergence

rate than the perpendicular directions. This can be observed as well in Table 4.3 for

the initial condition u(x, y) = sin(x + y) and the pair θ = π/4, 3π/4. However, for

the θ = π/4 case, this occurs at the expense of lower error reduction as shown, for

example, for the P3 case in Table 4.4.

The next question was whether the flow direction could result in better filtering.

Therefore, the following problem was considered:{
ut + 1.3ux + 0.8uy = 0

u(x, y, 0) = sin x cos y.

Two pairs of Line filters were applied corresponding to the flow direction and its tangent

as well as the mesh based Line filters using the π/4 and 3π/4 orientations. The flow

direction based filters were tested for three different scalings. In addition to the value

µ = 1, an alternative scaling was selected using the B-Splines parametrization for line

filtering:

H = hx cos θ + hy sin θ.

Since the mesh consists of uniform squares, hx = hy and µ = cos θ + sin θ. Finally,

using the flow direction vector ~u = (1.3, 0.8), the vector magnitude was considered,

giving the value µ =
√

0.82 + 1.32. Figure 4.8 shows contour-line plots of the error

profiles before and after applying these filters. The plots suggest that as the polynomial

degree increases, the flow direction aligned filter (and its tangent direction) have the

greatest error reduction (using the scaling µ = sin θ + cos θ). On the other hand, the

3π/4 Line filter has a smoother profile for all polynomial degrees. The flow direction

based filters exhibit an interesting behaviour: the rotation θ = arctan(0.8/1.3) seems

to recover smoothness horizontally whereas its perpendicular orientation reduces the

oscillations more towards the vertical direction. Table 4.5 shows the global L2 errors
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and orders for the previous filters and also including the π/4 rotation. The differences

in the performance between each orientation and its perpendicular is very small and

decreasing with each polynomial order. Consider the P3 case for the rotations π/4 and

3π/4 which have identical values. Furthermore, the global errors suggest the same as

demonstrated in the plots in Figure 4.8: asymptotically, choosing a direction in relation

to the flow results in greater error reduction than using a mesh based orientation.

However, the convergence rates of these orientations are not as high as the 3π/4 and

π/4 rotations.

Finally, in the last experiment, the mesh was transformed into uniform rectangular

elements of size hx = 2hy. In this case, by Theorem 4.3.1, the rotation angle should

be chosen to θ = arctan(1/2) or its supplementary angle θ = π − arctan(1/2) and the

scaling should be H =
√

5hx
2

or equivalently H =
√

5hy. Figure 4.9 shows the error

profiles for the DG solution and the filtered solution comparing the θ = 3π/4 with the

θ = π − arctan(1/2) rotation. The plots include three different scalings corresponding

to µ =
√

5/2,
√

2,
√

5. These plots highlight the importance of the support size for

smoothness recovery. Observe how the value µ =
√

2 is not able to eliminate the

oscillations for the θ = π− arctan(1/2) rotation or how the other two values µ =
√

5/2

and µ =
√

5 affect the solution for the 3π/4-line filter. The performance of these filters

is almost identical for the right angle-scaling pairs. This can be verified in Table 4.6

which shows the global errors and convergence order for the L2 norm.
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Unfiltered Line Filtered

H = µh θ = 0 θ = π/4 θ = 3π/4

N L2-Error Order µ L2-Error Order L2-Error Order L2-Error Order

P1

20 3.7e-03 -

0.9 2.6e-03 - 1.0e-03 - 9.3e-04 -

1 2.6e-03 - 7.3e-04 - 5.5e-04 -
√

2 2.6e-03 - 1.2e-03 - 3.4e-05 -

40 9.2e-04 2.00

0.9 6.5e-04 2.00 2.4e-04 2.10 2.3e-04 1.99

1 6.5e-04 2.00 1.5e-04 2.32 1.4e-04 2.00
√

2 6.5e-04 2.01 7.8e-05 3.96 2.1e-06 3.99

80 2.3e-04 2.00

0.9 1.6e-04 2.00 5.9e-05 2.02 5.9e-05 2.00

1 1.6e-04 2.00 3.5e-05 2.06 3.5e-05 2.00
√

2 1.6e-04 2.00 4.9e-06 3.99 1.3e-07 4.00

P2

20 9.8e-05 -

0.9 6.9e-05 - 1.4e-05 - 9.4e-06 -

1 7.1e-05 - 1.8e-05 - 4.1e-06 -
√

2 6.9e-05 - 1.3e-04 - 2.2e-08 -

40 1.2e-05 3.00

0.9 8.6e-06 3.00 1.2e-06 3.54 1.2e-06 3.01

1 8.6e-06 3.04 6.3e-07 4.87 5.0e-07 3.01
√

2 8.6e-06 3.00 2.2e-06 5.92 3.5e-10 6.00

80 1.5e-06 3.00

0.9 1.1e-06 3.00 1.5e-07 3.06 1.5e-07 3.00

1 1.1e-06 3.00 6.5e-08 3.28 6.3e-08 3.00
√

2 1.1e-06 3.00 3.5e-08 5.98 5.4e-12 6.00

P3

20 1.9e-06 -

0.9 1.4e-06 - 4.7e-07 - 4.8e-08 -

1 1.4e-06 - 1.1e-06 - 1.6e-08 -
√

2 1.7e-06 - 1.6e-05 - 8.6e-12 -

40 1.2e-07 4.00

0.9 8.5e-08 4.00 3.7e-09 6.99 2.9e-09 4.03

1 8.5e-08 4.00 4.5e-09 7.89 9.6e-10 4.03
√

2 8.6e-08 4.34 6.9e-08 7.87 4.2e-14 7.69

80 7.5e-09 4.00

0.9 5.3e-09 4.00 1.9e-10 4.31 1.8e-10 4.01

1 5.3e-09 4.00 6.5e-11 6.11 6.0e-11 4.01
√

2 5.3e-09 4.00 2.7e-10 7.97 1.0e-14 2.06

P4

20 3.1e-08 -

0.9 2.2e-08 - 2.4e-08 - 1.5e-10 -

1 2.2e-08 - 6.7e-08 - 5.4e-11 -
√

2 7.1e-08 - 2.0e-06 - 5.4e-14 -

40 9.5e-10 5.00

0.9 6.7e-10 5.00 2.5e-11 9.90 4.6e-12 5.06

1 6.7e-10 5.01 7.0e-11 9.91 1.7e-12 5.01
√

2 6.8e-10 6.70 2.2e-09 9.82 5.5e-14 -0.02

80 3.0e-11 5.00

0.9 2.1e-11 5.00 1.5e-13 7.34 1.5e-13 4.91

1 2.1e-11 5.00 1.1e-13 9.29 9.4e-14 4.16
√

2 2.1e-11 5.01 2.2e-12 9.99 5.5e-14 0.01

Table 4.2: L2 error and order before and after applying several Line Filters on the L2

projection of the function u(x, y) = sin(x+ y) on Ω = [0, 2π]2.
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N DG TPF LF

θ = 0, µ = 1 θ = π/4, µ =
√

2 θ = 3π/4, µ =
√

2

Initial Condition: u(x, y) = sin(x+ y)

L2-Error Order L2-Error Order L2-Error Order L2-Error Order

P1

20 9.7e-03 - 1.6e-03 - 2.7e-03 - 1.5e-03 -

40 2.4e-03 2.02 2.0e-04 3.05 2.6e-04 3.33 1.9e-04 2.98

80 5.9e-04 2.01 NA NA 2.8e-05 3.21 2.4e-05 2.99

P2

20 2.4e-04 - 6.1e-06 - 1.4e-04 - 1.5e-06 -

40 2.9e-05 3.01 1.2-e07 5.71 2.3e-06 5.91 4.7e-08 4.98

80 3.6e-06 3.01 NA NA 3.7e-08 5.95 1.5e-09 5.00

P3

20 4.5e-06 - 1.4e-07 - 1.6e-05 - 7.7e-10 -

40 2.8e-07 4.01 5.6e-10 7.96 6.9e-08 7.87 6.9e-12 6.79

80 1.7e-08 4.00 NA NA 2.7e-10 7.97 2.9e-14 7.90

Initial Condition: u(x, y) = sinx cos y

L2-Error Order L2-Error Order L2-Error Order L2-Error Order

P1

20 5.2e-03 - 8.3e-04 - 1.3e-03 - 9.7e-04 -

40 1.3e-03 2.02 1.0e-04 3.05 1.3e-04 3.33 1.0e-04 3.23

80 3.2e-04 2.01 NA NA 1.4e-05 3.21 1.2e-05 3.08

P2

20 1.3e-04 - 3.7e-06 - 6.8e-05 - 6.7e-05 -

40 1.6e-05 3.01 6.8e-08 5.77 1.1e-06 5.91 1.1e-06 5.92

80 2.0e-06 3.00 NA NA 1.8e-08 5.95 1.8e-08 5.98

P3

20 2.4e-06 - 9.8e-08 - 8.1e-06 - 8.1e-06 -

40 1.5e-07 4.01 3.9e-10 7.96 3.4e-08 7.87 3.4e-08 7.87

80 9.5e-09 4.00 NA NA 1.4e-10 7.97 1.4e-10 7.97

Table 4.3: L2 errors and orders before and after applying several Line Filters on the

DG solution to the problem ut +ux +uy = 0 on Ω = [0, 2π]2 with final time T = 2 and

two different initial conditions.
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4.5 Discussion

This chapter presented a solid theoretical background for the SIAC Line filters. The-

orem 4.3.1 shows how these filters can attain the expected 2k + 1 superconvergence

of SIAC filters and avoid tensor products. The numerical experiments supported the

theory and revealed that generally, the filtered solution has a lower error. From the

numerical results, it was concluded that for quadrilateral based meshes, the optimal

orientation seems to be the 3π/4 direction. This was tested subject to changes in the

initial condition, flow direction and mesh variations. However, the study was limited to

linear hyperbolic problems and uniform meshes. Furthermore, the filter performance

should be tested for general meshes. Line filtering is very flexible and should allow

for a variety of mesh shapes which are currently employed in engineering problems,

including unstructured triangular meshes as well as curvilinear elements.

The formulation of the Line filters presented here has only considered symmet-

ric kernels. The next step for these filters should be to introduce one-sided kernels

for application near domain boundaries. The existing theoretical error estimates for

traditional one-sided filtering should easily extend to Line filtering similar to the sym-

metric case. Hence, future work on these filters should explore such alternative kernels,

allowing more robust applications.
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Chapter 5

Computing SIAC Filters

There are two main tasks involved during the implementation of SIAC filters, namely

building the kernel itself and computing the filtering convolution. Since the values

of the kernel coefficients (cγ in equation (2.18) or (2.28)) are not given explicitly, the

first step towards the implementation of SIAC filters is to compute such coefficients.

The second and most important task is to actually find the numerical solution to the

integral (e.g., equation (3.9)) which involves several stages.

The kernel coefficients assign weights to each B-Spline through the filter polynomial

reproduction property (equation (2.26)) and can be determined by solving a linear

system of the type Ac = b. However, as the polynomial degree increases, matrix A has

a large condition number. This usually implies that round-off errors will dominate and

produce a singular system so the inverse no longer exists and it is not possible to find

the solution. In [43], an alternative method was developed where such coefficients were

characterized using Fourier analysis and avoided solving the linear system. This idea

was later exploited in [47] and aided in deriving explicit formulas to calculate kernel

coefficients using B-Splines with uniform and non-uniform knots [45]. For the purposes

of this research, solving the linear system remains a safe approach since the numerical

experiments use relatively low polynomial degrees. Hence, it will be shown how to

create the matrix A for the system.

Despite the fact that calculating the integral of the convolution might seem straight

forward, there are several computational challenges involved; to effectively solve the

convolution, one has to find all the discontinuities within the integration region, use

them to split the integral and finally apply a numerical method to approximate the

integral at each piece. The authors in [40] provide algorithms to implement SIAC

filters in multi-dimensions for triangular and quadrilateral meshes. However, they do

not include the process of finding these discontinuities. Furthermore, they point out

how this task becomes difficult for general non-uniform meshes. Later, it will be shown

how the rotated kernel footprint on the DG mesh together with all its breaks results

in a partition of the integral with a random structure (see Figure 5.9). Thus, the work

carried out in this thesis made it necessary to develop an algorithm capable of searching

for discontinuities without any assumptions on the underlying mesh. In addition, since

the number of kernel breaks per element can be relatively high, a technique is presented
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to perform an appropriate polygon splitting in order to produce regions suitable for

numerical integration. As a result, the implementation presented here is robust, admits

either triangular or quadrilateral elements and does not rely on structured meshes.

This Chapter not only discusses the computational issues mentioned above but

also explores the number of operations and simulation times required to post-process

one point. By performing such a study, it is easy to extrapolate the cost of globally

post-processing every point in the domain. The difference between the number of

integration regions for quadrilateral and triangular meshes will be explored as well as

what happens when the filters are applied to non-uniform meshes. This has direct

impact on the performance of tensor product filters, requiring long simulation times,

especially for triangular meshes. Line filters on the other hand, are minimally affected

by the mesh properties so from a computational point of view, they have promising

applications to unstructured triangular meshes.

5.1 Finding the Kernel Coefficients

In Chapter 2, the general SIAC kernel was defined by the formula

K(r+1,`)(η) =
r∑

γ=0

cγψ
(`)(η − xγ(λ)) + cr+1b

(`)(x−Hη︸ ︷︷ ︸
=y

), xγ(λ) = −r
2

+ γ + λ, (5.1)

Imposing λ = 0 in this equation and removing general B-Spline b(`)(·) gives the original

symmetric SIAC filter. Here, the computation of the kernel coefficients is discussed for

the general kernel.

The polynomial reproduction property

K ? xp = zp, p = 0, . . . , r,

implies

r∑
γ=0

cγ

∫ ∞
−∞

ψ(`)(x− y − xγ(η))ypdy︸ ︷︷ ︸
=A(p,γ)

+cr+1

∫ ∞
−∞

b(`)(x− y)ypdy︸ ︷︷ ︸
=A(p,r+1)

= xp, p = 0 . . . , r + 1.

One can obtain the coefficients cγ’s by solving the linear system
A(0, 0) . . . A(0, r + 1)

...
. . .

...

A(r + 1, 0) . . . A(r + 1, r + 1)




c0

...

cr+1

 =


x0

...

xr+1

 (5.2)

Note 5.1.1. Introducing a general spline adds an equation to the system. Hence,

in order to be able to determine the coefficients, the filter is required to reproduce

polynomials up to degree r+ 1 (rather than r). When using kernels K(r,k+1) without an

additional general spline, it suffices to impose p = 0, . . . , r.
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The entries of the matrix A can be computed using Gauss integration. Alternatively,

one can solve these integrals analytically as it will be shown next [54].

Begin with the terms corresponding to the central B-Splines:

A(p, γ) =

∫ ∞
−∞

ψ(`)(z − y − xγ(η))ypdy, let t = z − y − xγ(η)⇒

{
y = z − t− xγ(η)

dy = −dt
⇒

A(p, γ) = −
∫ −∞
∞

ψ(`)(t)(z − t− xγ(η))pdt.

Since the filter must reproduce all polynomials up to degree r+ 1 for any point z, take

z = 0. Then,

A(p, γ) = −
∫ −∞
∞

ψ(`)(t)(−t− xγ(η))pdt.

Using the Binomial Theorem,

(−t− xγ)p = (−1)p(t+ xγ(η)) = (−1)p
p∑
i=0

(
p

i

)
xγ(η)(p−i)ti,

it is possible to write

A(p, γ) = (−1)p
p∑
i=0

(
p

i

)
xγ(η)(p−i)

∫ ∞
−∞

ψ(`)(t)tidt.

Integrating by parts and imposing the relation between the derivatives of the B-Splines

and the divided differences:

d`−1

dt`−1
ψ(`)(t) = ∂`−1ψ(1)(t), (5.3)

gives

A(p, γ) = (−1)p
p∑
i=0

(
p

i

)
xγ(η)(p−i) (−1)`−1

(i+ 1) · · · (i+ `)

∫ ∞
−∞

ηi+(`−1)∂`−1ψ(1)(t)dt. (5.4)

The integral term in equation (5.4) can be solved using the following formula for the

divided differences:

∂`−1ψ(1)(t) =
`−1∑
j=0

(
`− 1

j

)
(−1)jψ(1)

(
t+

(
`− 1

2
− j
))

. (5.5)

Since ψ(1)(t) = χ[−1/2,1/2)(t),∫ ∞
−∞

ti+(`−1)∂`−1ψ(1)(t)dt =
`−1∑
j=0

(
`− 1

j

)
(−1)j

[(
j − (`− 1)− 1

2

)`+i
−
(
j − `

2

)`+i]
.

The matrix coefficients

A(p, r + 1) =

∫ ∞
−∞

b(`)(z − y)ypdy,
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corresponding to the general spline are obtained in a similar way. Consider a left-sided

filter, i.e. λ = − r+`
2

+ x−xL
H

with x being the post-processing point and xL the domain

left boundary. Let

t = z − y ⇒

{
y = z − t

dy = −dt
⇒ A(p, r + 1) =−

∫ −∞
∞

b(`)(t)(z − t)pdt

=

∫ x−xl
h

x−xL
h
−1

(
t−
(
x− xL
h

− 1

))k
(−t)pdt.

Imposing z = 0 and applying the binomial theorem:

A(p, r + 1) =
`−1∑
i=0

(
`− 1

i

)
(−1)`−1+i

(
x− xL
h

− 1

)`−1−i ∫ x−xL
h

x−xL
h
−1

ti(−t)pdt

=
k∑
i=0

(
`− 1

i

)
(−1)`−1−i+p

(
x− xL
h

− 1

)`−1−i
(

x−xL
h

p+i+1 − (x−xl
h
− 1)p+i+1

p+ i+ 1

)
.

For the right case, it is easy to check that coefficient for cr+1 is given by:

A(p, r + 1) =
k∑
i=0

(
k

i

)
(−1)i+p

(
x− xR
h

+ 1

)k−i((x−xR
h

+ 1
)p+i+1 −

(
x−xR
h

)p+i+1

p+ i+ 1

)
.

Note 5.1.2. The kernel coefficients for the tensor product filters are computed indi-

vidually along each direction.

5.2 Implementation of SIAC Filters

As it was mentioned earlier, computing the filtering convolution requires several steps.

In short, to successfully solve the integral, it is necessary to split the kernel support

into integrable regions and then transform such regions into standard elements where

numerical integration takes place. Here, two algorithms are given which were developed

to solve equation (3.9) numerically. The first one consists of a routine that finds all the

intersections between two overlapping meshes. This allows for determining the filter

footprint in the mesh and provides the integral limits. The second algorithm is related

to numerical integration over arbitrary regions using Gauss Quadrature rules.

5.2.1 The Intersection Algorithm

Since the filter has compact support, the integral in equation (3.9) is non-zero only in

a small part of the DG mesh. However, the integration region contains two kinds of

discontinuities, delimited by the mesh element boundaries and the kernel breaks; the

natural discontinuous structure of DG produces a solution that is integrable only inside

the elements. Furthermore, the kernel is built as a linear combination of B-Splines of

degree k which means that it has only k − 1 smoothness for each Spline. The kernel

support is split into kernel boxes delimited by the kernel breaks which are given by

the B-Splines knots. Just like DG for the mesh elements, the kernel function is only
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Figure 5.1: Footprint of a rotated filter using three B-Splines of order two in each

direction. The grey quadrilaterals are the mesh elements. Dashed lines denote the

kernel breaks and the rotated rectangles denote the “kernel boxes”. The multicoloured

box illustrates the partition of the kernel box into integrable regions and the red circle

denotes the post-processing point.

H H

Figure 5.2: Footprint of an axis aligned filter highlighting the integration regions when

using a uniform (left) and nonuniform (right) mesh.

integrable at the interior of the boxes. This is illustrated in Figure 5.1, where the

footprint of a rotated filter is shown together with the element boundaries and the

kernel boxes.

The footprint of a Cartesian axis filter over a uniform mesh can be predicted by

taking advantage of the regular structures. However, this is not the case for non

uniform meshes as show in Figure 5.2. Introducing a filter rotation has a similar effect.

One of the most challenging and intense computations is to actually find and sort

these regions. The kernel boxes together with the DG element boundaries produces

a “random” structure as shown in Figure 5.1. Hence, for both a rotated filter and

for an axis aligned filter over nonuniform meshes, one needs a tool that finds all the

kernel-mesh intersections in a systematic manner. In the following, a rotated filter will

be considered. The Cartesian axis aligned filter implementation can be identified with

a rotated filter with angle θ = 0.
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1 2 3

16

supp ψ0

supp ψ1

supp ψ2

Figure 5.3: Example of a kernel consisting of three B-Splines of order two in each

direction, producing 16 kernel boxes. Each vertical and horizontal line correspond to

a B-Spline knot and the stripes represent the B-Spline support.

5.2.2 The Kernel Integral Delimiters

Define a rotated tensor product filter:

K
(r+1,`)
H (x′, y′) = K

(r+1,`)
Hx

(x− x′)⊗K(r+1,`)
Hy

(y − y′) , (5.6)

where each kernel is symmetric. Recall that the central B-Spline of order ` has the

knot sequence:

t = ti = − `
2
,
`− 2

2
, . . . ,

`

2
. (5.7)

The kernel breaks are determined by these knot sequences centred at each B-Spline

node xγ = − r
2

+ γ, γ = 0, . . . r:

bγ,t = xγ + t. (5.8)

Finally, the kernel boxes are built using ordered kernel breaks as vertices:

Vij = (bγ,ti , bγ′,tj). (5.9)

Example 5.2.1. Let k = 1 (r = 2k = 2, ` = k + 1 = 2), then the symmetric kernel

K
(3,2)
H (x′, y′) with B-Splines nodes xγ = −1, 0, 1 has five kernel breaks in each direction:

b = −2,−1, 0, 1, 2 (t = −1, 0, 1)

producing the kernel boxes shown in Figure 5.3.

Note 5.2.1. The general SIAC kernel with the parameter λ has the same kernel boxes

but shifted towards one direction. Therefore, for simplicity, the symmetric kernel is

used for the discussion.
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In order to locate the filter footprint, the kernel boxes are projected onto the DG

mesh through the kernel vertices. Write

ηx =
x− x′

Hx

⇒ x′ = x− ηxHx (y′ = y − ηyHy) . (5.10)

In the kernel basis B2 = {kx, ky}, the vertices have coordinates:(
x′i

y′j

)
=

(
x− bγ,tiHx

y − bγ′,tjHy

)
. (5.11)

Finally, the change-of-basis matrix (see (3.6)) gives the coordinates of the kernel vertices

in the DG frame of reference:(
xi

yj

)
=

1

det(PB2←B1)

(
sin θy − cos θy

− sin θx cos θx

)(
x′i

y′j

)
. (5.12)

5.2.3 Finding all the Integral Regions

There are three types of points defining the integrable regions of the convolution in

equation (5.6). The first type, the kernel boxes, dictate the main blocks in which the

integral is split. Then, for each box, one has to find all the discontinuities arising from

the DG mesh itself. These are collected in two groups: element vertices and element

edge intersection points. Algorithm 11 describes how to find all the element vertices

belonging to a particular kernel box. There is an important function call inside the

Algorithm 1 Collect Mesh Vertices

for i = 0 : 3 do

kv(i)← kernel vertex

ID(i)← get element id(kv(i))

end for

B = ∪kv(i) # bounding box

(min,max)← get min max(ID)

for id← min : max do

while nv < number of vertices in (id) do

if point in polygon(vertex(nv), B) then

collect coordinates and vertex id map

else

+ + nv

end if

end while

end for

algorithm: point in polygon(). This function solves the following problem: given a

1This routine assumes a mesh with ordered elements. In this case, the ID map is similar to the

Nektar++ [7] structure, labelling from bottom to top and from left to right.
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1 2 3 4
1 2 3

Figure 5.4: The Ray Casting Algorithm even-odd rule. The ray in the left figure crosses

the polygon four times (even case) so the test point (red dot) is outside the polygon.

The right figure shows a point inside the polygon and the ray crosses the polygon three

times (odd case).

point and a polygon, determine whether the point lives inside or outside the polygon.

Although the question is trivial for the human eye, the answer is not so immediate for a

computer. The problem belongs to the branch of mathematics known as computational

geometry and there is a long history on the development of algorithms for the point

in polygon test [8, 25, 58]. Here a particular technique is briefly discussed: the ray-

casting algorithm. More details can be found in [46, Ch. 7] and the code (in C) can be

downloaded from [16].

The Ray Casting Approach

1. Check if the y-coordinate of the test point is between the polygon minimum and

maximum y-value.

2. Draw a “semi-infinite” horizontal line from the test point.

3. Count the number of times the line crosses with the polygon. Each time the line

intersects the polygon, the ray switches between the inside and outside regions

as shown in Figure 5.4. If there are an odd number of switches, then the point

lives inside the polygon. Otherwise, it is outside the polygon.

The proof of this algorithm can be done using a result from algebraic topology.

Definition 5.2.1. A Jordan curve is a plane curve homeomorphic to the unit circle.

Theorem 5.2.1. (Jordan Curve Theorem [24]). Let Sn be the nth dimensional sphere.

A subspace of S2 homeomorphic to S1 separates S2 into two complementary compo-

nents.

Note 5.2.2. Identifying the Jordan curve with the polygon, this result can be interpreted

as: “a simple closed curve divides the plane into an interior and exterior region”.

Finally, the last type of discontinuity is discussed: the element edge intersections.

The idea is to loop around the kernel box and collect all the points where the trace

crosses an element edge. The routine is described in Algorithm 2. The get intersection
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Algorithm 2 Collect Element Edge Intersections

for i = 0 : 3 do

kv(i)← kernel vertex

ID(i)← get element id(kv(i))

end for

kv(4)← kv(0)

for n = 0 : 4 do

if ID(n)! = ID(n+ 1) then

while kv(n)! = kv(n+ 1) do

s = kv(n)kv(n+ 1) # segment

do

e← ID(n)→ get edge

while s ∩ e = ∅
kv(n)← get intersection point(s, e)

Collect coordinates and element id’s

ID(n)← get element id(kv(n))

end while

end if

end for
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D
A

B

D

C
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C

(a) (b) (c) (d)

Figure 5.5: The four possible intersection types of two segments on the 2D plane.

point() function is evaluated in the following way. There are essentially four possible

relative positions of the element edge and kernel break trace (see Figure 5.5). Each

case is treated as follows:

• Case (a): Compare the coordinates of the four points and see if any two coincide.

• Case (b): Build the vectors AB, AC and BC and compute its norms:

C ∈ AB ⇔ |AC|+ |BC| = |AB|.

• Cases (c) & (d): Calculate the orientation of the triplets A,B,C and A,B,D. If

the signs are different, the segments intersect. Figure 5.6 shows how the signs

change according to the relative position of the points.

More details on the segment intersection algorithm can be found, for example, in [46,

Ch. 1].

The previous algorithms allow gathering all the points needed to construct the re-

gions where the integral will be computed. Now the question on how to construct
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Figure 5.6: Segment intersection using orientations. The left group of diagrams illus-

trates the set of points {A,B,C} and {A,B,D} both with clockwise orientation (+

sign). In the right set of diagrams, the orientation changes and therefore the segments

intersect.

integrable regions is discussed. During the intersection algorithm, for each point, the

coordinates and element IDs are stored. Notice that edge intersection points belong

to two adjacent elements, hence have two IDs. This allows sorting integration regions

element by element in an efficient way by scanning and collecting all points with the

same ID(s). However, it does not ensure that the points are ordered properly as shown

in the left image of Figure 5.7. The resulting polygon linking {P0P1, . . . , P5} is self-

intersecting and is not suitable for numerical integration. The last routine presented

here consists of sorting a set of randomly ordered points so that they form a con-

vex polygon. The idea is borrowed from the famous Graham’s Scan Algorithm [22],

designed to solve the convex hull problem [46, Ch. 3,4].

Convex Polygon Technique

1. Find the point with lowest y-coordinate and draw a horizontal ray through the

point.

2. Join that point to all the other vertices and calculate the angle with respect to

the ray.

3. Sort the points by increasing angle size. The result is a counter-clockwise oriented

polygon (see Figure 5.7).

5.2.4 Numerical Integration over Arbitrary Regions

The previous section explained how to find all the integration regions in which the

filter has support. The remaining question is how to actually solve the integrals nu-

merically. A detailed discussion on the existing numerical techniques for approximating

integrals can be found in [62, Ch. 3] and [3, Ch. 4 ]. Here, the Gauss quadrature rules

are discussed and it is shown how to apply them to effectively solve the 2D filtering

convolution (equation (3.9)).
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Figure 5.7: Convex polygon construction. The left image shows a set of points randomly

organized and the angle with respect to the horizontal ray with origin P0. The right

figure is the result of ordering the points by increasing angles.

Theorem 5.2.2. Gauss Quadrature. If f ∈ C2n[a, b], then∫ b

a

w(x)f(x)dx−
n∑
i=1

wif(xi)u(ξ) =
f (2n)(ξ)

(2n)!
(pn, pn), ξ ∈ (a, b). (5.13)

Here, pn is the nth orthogonal polynomial, xi are its roots and wi the associated weight

functions [62, Ch. 3.6].

When the evaluating function is a polynomial, this technique is exact if enough

quadrature points are used, i.e., n points integrate exactly polynomials up to degree

2n− 1. Both the DG solution and the SIAC kernel have a polynomial representation.

In fact, convolving a kernel K
(2k+1,k+1)
H with a DG solution uh of order k, gives a

polynomial of degree 2k + 2. Hence, using k + 1 quadrature points leads to exact

integration.

Multidimensional Gaussian rules are calculated as a tensor product of univariate

quadratures. For efficiency, the integral is computed over standard regions. In 2D,

this corresponds to quadrilateral and triangular standard regions which are shown in

Figure 5.8. For arbitrary polygons consisting of more than four vertices, the area

is subdivided into quadrilateral and triangular subregions. The DG solutions used

throughout this thesis were computed using Nektar++ software [7]. This DG scheme is

implemented using a generalised tensorial bases. Taking advantage of this construction,

the triangular standard region is written in the collapsed Cartesian system [31, Ch. 3].

This is nothing but the standard quadrilateral region with two collapsed vertices. It is

a robust formulation suitable for Gauss integration [31, Ch. 4].

Integration over Quadrilateral Regions

Define the standard quadrilateral region by

Q2 = {−1 ≤ ξ2, ξ2 ≤ 1}. (5.14)

The numerical integration over Q2 is defined as a product of two uninvariate integrals:∫
Q2

u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

{∫ 1

−1

u(ξ1, ξ2)|ξ2dξ1

}
dξ2. (5.15)
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The Gaussian approximation to the integral is straight-forward:

∫
Q2

Qi−1∑
i=0

w1i


Qj−1∑
j=0

u(ξ1i, ξ2j)w2j

 , (5.16)

where {ξ1i, w1i} and {ξ1i, w1i} denote the quadrature points and weights in each direc-

tion. The points distribution is shown in Figure 5.8 (left).

For general quadrilateral regions Ωe with straight sides, define the mapping to the

standard region via its vertices
{
XA, XB, XC , XD

}
, X = (x1, x2):

xi =xAi
1− ξ1

2

1− ξ2

2
+ xBi

1 + ξ1

2

1− ξ2

2
(5.17)

+ xDi
1− ξ1

2

1 + ξ2

2
+ xCi

1 + ξ1

2

1 + ξ2

2
, i = 1, 2. (5.18)

The integral over the element Ωe can be written by∫
Ωe
u(x1, x2)dx1dx2 =

∫
Ωst

u(ξ2, ξ2)|J2D|dξ1dξ2 (5.19)

with

J2D =

∣∣∣∣∣∣∣∣
∂x1

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ1

∂x2

∂ξ2

∣∣∣∣∣∣∣∣ =
∂x1

∂ξ1

∂x2

∂ξ2

− ∂x1

∂ξ2

∂x2

∂ξ1

. (5.20)

Hence the Gaussian Quadrature for a general quadrilateral region is given by the for-

mula:

∫
Ωe

u(x1, x2)dx1dx2 '
Qi−1∑
i=0

w1i


Qj−1∑
j=0

u(ξ1i, ξ2j)w2j

∣∣∣∣∣∣∣∣
∂x1

∂ξ1

(ξ1i, ξ2j)
∂x1

∂ξ2

(ξ1i, ξ2j)

∂x2

∂ξ1

(ξ1i, ξ2j)
∂x2

∂ξ2

(ξ1i, ξ2j)

∣∣∣∣∣∣∣∣


(5.21)

Integration over Triangular Regions

Define the standard triangular region by

T 2 = {−1 ≤ ξ1 ≤ ξ2, ξ2, ξ1 + ξ2 ≤ 0}.

The two dimensional collapsed coordinate system is defined by the transformation:

η1 = 2
1 + ξ1

1− ξ2

− 1, η2 = ξ2, (5.22)

which has the inverse transformation

ξ1 =
(1 + η1)(1− η2)

2
− 1, ξ2 = η2. (5.23)

The new coordinates (η1, η2) define the standard triangular region:

T 2 = {(η1, η2)| − 1 ≤ η1, η2 ≤ 1},
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Q2

T 2

Figure 5.8: Quadrature points in the standard regions (quadrilateral and triangle)

using Gauss-Legendre nodes in both directions.

and the integral is defined by:∫
T 2

u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

∫ −ξ2
−1

u(ξ1, ξ2)dξ1dξ2 (5.24)

=

∫ 1

−1

∫ 1

−1

u(η1, η2)

∣∣∣∣ ∂(ξ1, ξ2)

∂(η1, η2)

∣∣∣∣ dη1dη2, (5.25)

where the Jacobian can be expressed as

∂(ξ1, ξ2)

∂η1, η2

=
1− η2

2
.

In the new coordinate system, Gaussian quadrature is analogous to the standard

quadrilateral case:∫ 1

−1

∫ 1

−1

u(η1, η2)
1− η2

2
dη1dη2 '

Qi−1∑
i=0

w1i


Qj−1∑
j=0

u(η1i, η2j)w2j
1− η2j

2

 . (5.26)

Figure 5.8 shows the distribution of the quadrature points before and after one vertex

being collapsed. For a general triangle with right sides and vertices

{(xA1 , xA2 ), (xB1 , x
B
2 ), (xC1 , x

C
2 )}.

the mapping to the standard region is given by:

xi = xAi
1− η1

2

1− η2

2
+ xBi

1 + η1

2

1− η2

2
+ xCi

1 + η2

2
, i = 1, 2. (5.27)

where C is the collapsed vertex.

The Gauss quadrature rules over general triangular regions are given by

∫
Ωe

u(x1, x2)dx1dx2 '
Qi−1∑
i=0

w1i


Qj−1∑
j=0

u(η1i, η2j)w2j
1− η2j

2

∣∣∣∣∣∣∣∣
∂x1

∂η1

(η1i, η2j)
∂x1

∂η2

(η1i, η2j)

∂x2

∂η1

(η1i, η2j)
∂x2

∂η2

(η1i, η2j)

∣∣∣∣∣∣∣∣
 .

5.2.5 Implementation of the SIAC Line Filter

The one-dimensional support of the SIAC Line filter results in a great reduction of

the number of operations required to post-process each point. Therefore, both the

simulation times and the level of difficulty of the implementation decrease. The support

of tensor product filters requires searching for DG mesh vertices as well as classifying

the points type (see Section 5.2.3). On the other hand, for the Line kernel support, it

is only necessary to find if there are any element interfaces between two consecutive

break points. Hence, the implementation is similar to SIAC filters for one-dimensional

problems. The pseudo code for these filters is given in Algorithm 3.
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Algorithm 3 Line Filtering Convolution

N ← get number of kernel breaks

for b = 0 : N − 1 do

kv(b)← kernel vertex

ID(b)← get element id(kv(b))

end for

for b = 0 : N − 2 do

if ID(b) == ID(b+ 1) then

Integral+ = evaluate convolution(kv(b), kv(b+ 1))

else

while ID(b)! = ID(b+ 1) do

s = kv(b)kv(b+ 1)

do

e← ID(b)→ get edge

while s ∩ e = ∅
p← get intersection point(s, e)

Integral+ = evaluate convolution(kv(b), p)

kv(b)← p;

ID(b)← get right element id

end while

if kv(b)! = kv(b+ 1) then

Integral+ = evaluate convolution(kv(b), kv(b+ 1))

end if

end if

end for
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5.3 Computational Study

The experiments presented next, study the filters from a computational point of view.

Several types of filters and meshes were tested for the number of operations and simula-

tion times that each filter requires to post-process a particular point. Figure 5.9 shows

the footprints of three different tensor product filters and a Line filter highlighting the

partition of the integral. Observe how the π/6 rotation produces a random partition

compared to the repeated patterns in the other two 2D kernels. This is because the

combination of the rotation angle and scaling results in a translation invariant space

for the π/4 (and 3π/4) rotations. The total number of integrals and quadrature sums

are shown in Table 5.1. Line filters use one dimensional quadrature rules and the total

number of integrals and quadrature sums match. On the other hand, the total number

of sums using 2D filters is increased by a factor of n2, where n denotes the total number

of integrals. This equips line filters with excellent computational attributes; not only

there are significantly less number of integration regions compared to tensor product

filters but also such number does not grow when applying the numerical integration

technique. Look for example at the highest degree Cartesian axis aligned 2D filter in

Table 5.1. The convolution is split into 400 regions and it requires 160,000 quadrature

sums. The Line filter on the other hand, divides the integral into 30 intervals only and

performs 30 quadrature sums. Figure 5.10 shows the elapsed times required to post-

process a single point using the filters from Figure 5.9 over two meshes. Notice that

not only the computational times are significantly reduced when using a Line filter but

also indicate that increasing the number and degree of the splines in the kernel slightly

modifies such times. This represents a great advantage, as one important limiting fac-

tor on the applications of 2D SIAC filters is the long computational times of higher

degree filters. Observing the plots, even for the highest order Line filters (using a K(9,5)

kernel), the elapsed time is significantly lower than the one required to filter a point

using the lowest degree tensor product kernel K(3,2). Figure 5.11 shows the footprint

of a 2D filter and a Line filter applied to a nonuniform quadrilateral mesh. Although

the number of integration regions increases, the values remain relatively close to those

for the uniform case. Triangular elements, however, imply doubling the number of

integration regions for tensor product filters. The Line filters indeed increase the num-

ber of integrals but the cut across the elements is similar to the quadrilateral meshes.

This can be seen in Figure 5.12. Table 5.2 compares the number of integrals for the

uniform and nonuniform quadrilateral meshes as well as the triangular mesh. From

these experiments, one can see the clear computational advantages of Line filtering.

5.4 Discussion

From a computational perspective, the rotated filters have contributed towards the

general application of SIAC filters; designing a filter that allows for post-processing in

any direction and size produces a very robust algorithm. The methodology proposed
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Figure 5.9: Integration regions for post-processing a single point applying different

filters over an uniform mesh.

Tensor Product Filters Line Filter

Rotation angle 0 π/6 π/4 3π/4

K(3,2)

Intersection Scans 64 64 64 4

Integrals 64 115 144 12

Quadrature Sums 4096 13225 20736 12

K(5,3)

Intersection Scans 196 196 196 7

Integrals 196 337 441 21

Quadrature Sums 38416 113569 194481 21

K(7,4)

Intersection Scans 400 400 400 10

Integrals 400 699 900 30

Quadrature Sums 160000 488601 810000 30

Table 5.1: Summary of the number of operations required to compute the filtering

convolution for the filters from Figure 5.9.
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Figure 5.10: Computational times required to post-process one point applying different

Tensor Product Filters (TPFs) and a Line Filter (LF) using kernels K(2k+1,k+1), k =

1, . . . , 4.

K(3,2) K(5,3) K(7,4)

TPF

θ = 0, µ = 1

LF

θ =
3π

4
, µ =

√
2

Figure 5.11: Integration regions for post-processing a single point applying a Tensor

Product Filter (TPF) and a Line Filter (LF) over a nonuniform mesh. The black lines

in the top row denote the kernel boxes.
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K(3,2) K(5,3) K(7,4)

TPF

θ = 0, µ = 1
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θ =
3π

4
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√
2

Figure 5.12: Integration regions for post-processing a single point applying a Tensor

Product Filter (TPF) and a Line Filter (LF) over a uniform triangular mesh. The

black lines in the top row denote the kernel boxes.

Uniform Mesh Nonuniform Mesh

Quads Triangles Quads

TPF LF TPF LF TPF LF

K(3,2)

Integrals 64 12 128 20 72 13

Quadrature Sums 4096 12 16384 20 5184 20

K(5,3)

Integrals 196 21 392 35 225 24

Quadrature Sums 38416 21 153664 35 50625 24

K(7,4)

Integrals 400 30 720 50 490 37

Quadrature Sums 160000 30 518400 50 240100 37

K(9,5)

Integrals 676 39 1352 65 754 45

Quadrature Sums 456976 39 1827904 65 568516 45

Table 5.2: Summary of the number of operations required to compute the filtering

convolution for several mesh types using a Tensor Product Filter aligned with the

Cartesian axis and a Line Filter along the 3π/4 direction.
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to implement tensor product and line filters here does not rely on any mesh geometry

assumptions. The only restriction is that the Gauss Quadrature rules assumed elements

with straight sides. However, this limitation can be easily overcome using for example,

the mappings for general curvilinear elements given in [31, Ch. 4]. Thus, even for a

zero rotation, this implementation is suitable to effectively apply the filters to general

non-uniform meshes as shown in the examples from Section 5.3. Finally, the one-

dimensional support of the Line filter presents great computational advantages. The

algorithm design gives a relatively straightforward implementation which is similar that

one used for one-dimensional problems. Furthermore, they lead to short simulation

times, even for higher order kernels or triangular meshes, which is a promising tool for

the visualization community.
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Chapter 6

SIAC Filters and Streamline

Visualisation

The goal of a numerical simulation is to provide an approximate solution of a model

designed to understand a physical problem such as flow past an aircraft or weather

forecasting. Hence, it is necessary to apply visualisation techniques that extract and

evaluate the information from the numerical solution. Vector field visualisation through

streamlines is a popular post-processing technique employed to understand fluid flow

behaviour. Streamlines, curves everywhere tangent to the velocity field, are described

by an Ordinary Differential Equation (ODE) and there are many numerical methods

designed to solve ODEs such as the Runge-Kutta schemes [5]. However, the theoretical

error estimates of these methods rely on Taylor series and therefore assume smooth

field conditions [4, Ch. 3] [6]. Vector fields obtained through a DG method present

constraints since the solution is only continuous inside each element. A suitable solver

for computing streamlines over non-smooth fields has to be able to detect, locate and

effectively step over a discontinuity [20]. This can be achieved through a Predictor-

Corrector method [26,34] or by controlling the error through adaptive step size methods

such as the Runge-Kutta-Fehlberg solvers [18, 19]. The downside of these methods is

that they require intense computations since detecting and passing over a discontinuity

implies increasing the number of evaluations per iteration. Alternatively, SIAC filters

can be applied to obtain a local smooth solution where a relatively simple ODE solver

can be implemented. Furthermore, since the filtered solution usually reduces the error

from the DG approximation, the new filtered velocity field should lead to more accurate

field lines.

Applying SIAC filters for flow visualisation implies combining different kernel types.

For example, during streamline computations, since particles can move across the entire

field, the filter has to be able to post-process points at the boundaries of the compu-

tational domain. In chapter 2, numerical results were given for the one dimensional

boundary filters. The error plots (see Figure 2.4) suggested that these filters are not as

effective as the symmetric filters when reducing the error from the DG approximation.

Hence, in this chapter, boundary Line filters are included in the numerical experiments
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to give insight into how much accuracy is lost when applying such filters even though a

suitable analysis has not been performed. On the other hand, the numerical results for

Line filters presented in chapter 4 suggested that alternative orientations to those for

which superconvergence can be proven still lead to error reduction. This was observed

for the cases where the filter was oriented using the flow direction or when symmetries

from the initial condition were used to choose the orientation. The results showed that

for such alignments, the filtered solution presented lower errors than the original one.

This can be exploited further near the boundaries, rotating the filter conveniently to

fit a symmetric kernel, thus avoiding shifting its support.

This chapter investigates the potential of SIAC Line filters for accuracy enhance-

ment during flow visualisation. A series of numerical experiments are presented where

different kernel types have been implemented. The results are compared to traditional

Tensor Product filtering in order to understand the trade-offs between computational

performance and maximum accuracy resulting from reducing the dimension through

Line filtering. Before presenting the numerical experiments, the next section provides

a brief background on streamlines and ODE solvers.

6.1 Streamlines and ODE solvers

Let U = (−→u1,
−→u2, . . . ,

−→un) be a vector field defined over the domain Ω ⊂ Rn. Streamlines

are curves everywhere tangent to the vector field so streamline Γ ⊂ Ω satisfies

Γ′ = (−→u1,
−→u2, . . . ,

−→un),

where the sign ′ above denotes the derivative. Consider a two dimensional field U =

(u(x, y), v(x, y)). Then the streamlines are described by the first order ODE:

y′(x) =
dy

dx
=
v(x, y)

u(x, y)
. (6.1)

Given a seed (initial condition), the solution to the streamline is found by solving the

Cauchy problem: 
y′(x) =

v(x, y)

u(x, y)
, (x, y) ∈ Ω,

y0 = y(x0).

(6.2)

The following Theorem gives insight into how to develop numerical schemes that solve

problem (6.2) numerically.

Theorem 6.1.1. (Picard-Lindelöf [23, Ch. 2]). Consider the Cauchy Problem

y′ = f(x, y), y(x0) = y0,

where f is a continuous function satisfying the Lipschitz condition:

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2| (6.3)

89



in some open rectangle R = {(x, y) : a < x < b, c < y < b} containing the point

(x0, y0). Then the problem has unique solution in some closed interval I = [x0−h, x0 +

h], h > 0 and the Picard iteration

yn+1(x) = y0 +

∫ xn

x0

f(x, yn(x))dx (6.4)

produces a sequence of functions yn(x) that converges to this solution uniformly on I.

The differences between the types of ODE solvers are the number of steps employed

to find the solution (single or multistep methods) and the way that the integral in

equation (6.4) is approximated. For example, the explicit 2 stage Runge-Kutta (RK2)

method is built in the following way. Assume that the function at time n, f(xn, yn), is

approximated by the midpoint of the interval [xn, xn+1]. Then,

yn+1 = yn +

∫ xn+1

xn

f(x, y(x))dx ≈ yn +

∫ xn+1

xn

f

(
xn +

h

2
, yn +

h

2
f(xn, yn)

)
dx

= yn + hf

(
xn +

h

2
, yn +

h

2
f(xn, yn)

)
, h = xn+1 − xn

This can be written in two stages by

k1 = f(xn, yn) (6.5)

k2 = f

(
xn +

h

2
, yn +

h

2
k1

)
(6.6)

yn+1 = yn + hk2. (6.7)

For streamline computations, identify f with U = (u, v) ( for the 2D case).

Adaptive methods control the error at each iteration and modify the stepsize to en-

sure that the error remains under a certain tolerance. For example, the RKF45 method

uses a fourth order Runge-Kutta method as an estimator and computes the actual solu-

tion using a fifth order RK method [19]. The idea behind introducing the filter between

the ODE solver and the DG field is to reduce the computational costs by using a lower

order method, e.g. RK2 method, assuming that the filtering step is cheaper than adap-

tive error control. Previous work on tensor product filters for streamline visualisation

implied post-processing the entire field prior to streamline computations [61]. The

authors observed that for strict adaptive methods, filtering resulted in lower computa-

tional times. However, filtering the entire field adds unnecessary computational costs

since streamlines only follow a particular region of the domain. Therefore, by only

post-processing points which are used by the ODE solver, the computational times can

already be improved. In addition, replacing the tensor product filter by a Line filter

improves even further the efficiently of this post-processor. The following experiments

study symmetric filters and compare the performance of the Line filters against the 2D

filter aligned with the Cartesian axis.
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6.2 Symmetric SIAC Filters

Theorem 4.3.1 shows how Line filters can extract superconvergence provided the ap-

propriate kernel orientation and scaling are selected. Furthermore, the numerical ex-

periments from Chapter 4 revealed that in addition to smoothness recovery, these

filters reduce significantly the error from the DG approximation. This represents a

great advantage during streamline integration, where error reduction is more desir-

able than extracting superconvergence. Hence, the following experiments investigate

the potential of Line filters for accuracy enhancement. This study begins by applying

symmetric kernels for different Line filters and comparing the results against Tensor

Product filtering, both in terms of accuracy and computational costs.

The streamline experiments were done over complex analytic fields of the form:

z = x+ iy, (6.8)

u = Re(r), (6.9)

v = −Im(r), (6.10)

where the first field, CF1, was given by:

r =(z − (0.74 + 0.35i))(z − (0.68− 0.59i))(z − (−0.11− 0.72i)) (6.11)

(z − (−0.58 + 0.64i))(z − (0.51− 0.27i))(z − (−0.12 + 0.84))2, (6.12)

and the second field, CF2, by:

r =(z − (0.74 + 0.35i))(z + (−0.68− 0.19i))(z − (−0.11− 0.72i)) (6.13)

(z − (−0.58 + 0.64i))(z − (0.51− 0.27i)). (6.14)

These fields have been studied before for 2D symmetric filtering by [61] and for more

general filters by [27, 35]. The computational domain used for the simulations cor-

responded to Ω = [−1, 1] × [−1, 1], using two uniform quadrilateral meshes made of

40 × 40 and 80 × 80 elements respectively. The unfiltered solutions were obtained by

performing the L2-projection of each function (CF1 and CF2) which mimics a DG

solution at initial time.

6.2.1 Line Kernels

Recall that the proof for superconvergence (Theorem 4.3.1) relies on choosing the

rotation angle to be θ = arctan
(
hx
hy

)
. For a mesh made of uniform square elements,

this implies θ = π/4 or θ = 3π/4. Hence, both rotations were considered despite the

fact that the numerical experiments in chapter 4 indicated that applying a 3π/4-Line

filter resulted in greater (or same) error reduction. In addition, since other orientations

(see for example Figure 4.8) also allowed for error reduction, filters oriented using flow

information have also been implemented.

The first experiment was done over a DG approximation using P1 polynomials.

The filtered solutions were obtained with a K
(3,2)
Γ symmetric Line filter with scaling
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H =
√

2h, h being the DG mesh size. The flow based filters were calculated in

the following way: the first orientation (at streamline seed) was chosen to be 3π/4.

The rest of the points were post-processed using the direction given by the last two

computed streamline points or its perpendicular direction. Both the unfiltered and

filtered streamlines were computed using the RK2 method with time step dt = 0.01.

The final time was determined by the exact streamline, corresponding to the last point

inside the computational domain or when a streamline reached zero velocity. The exact

streamlines were obtained by implementing the RK4 method with time step dt = 1e−5

directly on the analytic velocity fields.

Figure 6.1 shows streamlines belonging to the velocity field CF1 (equation (6.11))

using four different filter orientations based on the underlying mesh (θ = π/4, 3π/4) and

the flow direction. Observe how the flow based filters produced a diverging streamline

for lower seed (starting at a critical point) even after mesh refinement whereas the π/4

and 3π/4 filtered streamlines converged towards the exact curve. Actually, the π/4 Line

filter performs better since for a coarse mesh (40×40 elements), the filtered streamline

moved away from the exact solution initially and eventually converged towards it.

Figure 6.2 shows another set of streamlines corresponding to the second velocity field,

CF2 ( equation (6.13)), applying the same filters. In this case, both the π/4 and 3π/4

Line filters were able to produce three converging streamlines for both meshes. Notice

that for the 40 × 40 element mesh, the unfiltered streamlines diverged in two cases.

On the other hand, the 80× 80 element mesh suggests that it is not necessary to filter

the streamlines since all the unfiltered curves have already converged towards the exact

solution. The filter aligned with the flow had a worse performance than the one aligned

tangent to it. This filter produced two diverging streamlines which follow the same

path as the unfiltered solution. On the other hand, the filter aligned tangent to the

flow produced similar curves as those obtained through the π/4 and 3π/4 orientations.

Table 6.1 shows two error estimates; the first is a local maximum computed through

the formula:

max
n=0:N

en = max
n=0:N

d(pn, p̃n), (6.15)

where d(p, p̃) denotes the Euclidean distance, pn and p̃n the exact and approximate

solutions respectively and tN = T, i.e., the final time. The global error corresponds to

the difference between the solutions at final time. The errors in this table show that

even when both the filtered and unfiltered streamlines converge, the filtered solution

has generally lower values. Regarding the differences between both filters, the numbers

are very similar, especially after mesh refinement. The results suggest that both the

π/4 and 3π/4 orientations are suitable for effective post-processing. This orientations

should be chosen (whenever possible) instead of flow aligned filters since the latter ones

require longer and more complicated computations and do not seem to produce more

accurate streamlines. Hence, for the rest of the experiments in this chapter, only the

π/4 and 3π/4 rotations will be considered.
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Figure 6.1: Streamlines along CF1 (equation (6.11)) for two meshes (N = 40×40 and

N = 80 × 80) before and after applying different symmetric Line Filters (LFs) using

the RK2 solver with dt = 0.01. ⊥ denotes tangent direction. The plots where the exact

curve cannot be seen is because it overlaps with the filtered streamline.
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Figure 6.2: Streamlines along CF2 ( equation (6.13)) for two meshes (N = 40 × 40

and N = 80 × 80) before and after applying different symmetric Line Filters (LFs)

using the RK2 solver with dt = 0.01. ⊥ denotes tangent direction. The plots where

the exact curve cannot be seen is because it overlaps with the filtered streamline.
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CF1

Unfiltered Line Filtering: H =
√

2h

θ = π/4 θ = 3π
4

Seed MD GE MD GE MD GE

N= 40× 40

(-.6,-.651) DIVERGED 2.1e-01 3.0e-02 DIV DIV

(-.6,-.192) 4.0e-03 9.7e-04 6.1e-03 1.6e-04 3.1e-02 8.9e-05

(-.8,-.3) 4.1e-02 4.1e-02 3.8e-02 3.8e-02 2.2e-02 2.2e-02

N= 80× 80

(-.6,-.651) DIVERGED 4.3e-02 7.3e-03 4.1e-02 7.7e-03

(-.6,-.192) 2.6e-03 1.2e-04 5.5e-04 9.6e-06 1.3e-03 5.2e-06

(-.8,-.3) 3.6e-02 3.6e-02 2.7e-02 2.7e-02 2.9e-02 2.9e-02

CF2

Unfiltered Line Filtering: H =
√

2h

θ = π/4 θ = 3π
4

Seed MD GE MD GE MD GE

N= 40× 40

(0.202,-.3) DIVERGED 1.8e-01 1.8e-01 2.7e-01 2.7e-01

(-.09,-.1) DIVERGED 2.2e-02 7.0e-03 1.0e-01 2.3e-02

(.1,-.3) 5.4e-03 5.4e-03 7.1e-03 7.1e-03 8.0e-03 8.0e-03

N= 80× 80

(0.202,-.3) 2.2e-01 2.2e-01 1.2e-02 1.2e-02 2.5e-02 2.5e-02

(-.09,-.1) 7.6e-02 1.9e-02 7.0e-03 2.5e-03 1.8e-02 5.6e-03

(.1,-.3) 7.5e-03 7.5e-03 6.8e-03 6.8e-03 6.9e-03 6.9e-03

Table 6.1: Maximum Distance (MD) taken as the greatest point distance between each

iteration and Global Errors (GE) measuring the point distance at final time comparing

unfiltered and filtered streamlines for two different Line filters over two velocity fields

(CF1 and CF2 (6.11)) and two different meshes (N = 40× 40 and N = 80× 80).
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Unfiltered π
4
-LF 3π

4
-LF
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RK2 dt=0.01

RK2 dt=0.005

RK3 dt=0.01

RK3 dt=0.005

RK4 dt=0.01

RK4 dt=0.005

Figure 6.3: Unfiltered and filtered streamlines with seed near a critical point cor-

responding to the CF1 field (equation (6.11)) for different ODE solvers (RK2, RK3,

RK4) and two time steps using 40 × 40 elements and P1 polynomials for the DG ap-

proximation.

Time Integrators and Polynomial Order

The previous experiments suggested that the DG mesh size plays a major role during

post-processing. The next question was how much the solver type and time step affected

the numerical results. Figure 6.3 studies the streamline from the first field (CF1)

starting at the critical point. All the streamlines shown in the plots were computed over

the 40×40 element mesh (notice that for the finer mesh, the RK2 method already gives

satisfactory results) using three different solvers: RK2, RK3 and RK4 (explicit) and two

different time steps: dt = 0.01, and dt = 0.005. Observe the overlap in all streamlines

regardless the ODE solver type or time step. This indicates that implementing a

higher order solver (RK3 or RK4) does not improve the streamline accuracy since the

dominant errors come from the DG approximation to the velocity field.

The velocity fields used in the experiments were computed using a P1 polynomial

basis. The results from Figures 6.1 and 6.2 show how h−refinement allows the filter to

produce satisfactory streamlines. Hence, the same experiments were performed using a

higher polynomial degree for the DG approximation (p−refinement). Figure 6.4 shows

the same streamline from Figure 6.3 using P2 polynomials for the DG approximation

and applying the RK2 method with different time steps. Notice that in this case,

the time step dt = 0.01 already produces satisfactory streamlines for the unfiltered

solution. On the other hand, a larger time step is not suitable for post-processing

since all streamlines diverge, even for the 80 × 80 elements mesh. Figure 6.5 shows

the same curve but using the RK3 solver. In this case, already at time dt = 0.1, even

the unfiltered streamline converged towards the exact solution. This confirms that the

reason why there was no improvement for the P1 polynomials after increasing the order

of the ODE solver is due to dominant errors arising from computing the velocity field

with too low order polynomial basis.
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Figure 6.4: Unfiltered and filtered streamlines with seed near a critical point corre-

sponding to the CF1 field (equation (6.11)) applying the RK2 method for three different

time steps and two meshes using P2 polynomials for the DG approximation and K
(5,3)
Γ

kernels.

Figure 6.5: Unfiltered and filtered

streamlines with seed near a critical

point corresponding to the CF1 field

(equation (6.11)) applying the RK3

method with time step dt = 0.1 using

40×40 elements and P2 polynomials for

the DG approximation and K
(5,3)
Γ ker-

nels.
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Figure 6.6: Streamlines along the field CF1 (equation (6.11)) over a 40 × 40 mesh

before and after applying π/4 Line filters with kernels made of varying number (3,4

and 5 respectively) of B-Splines of order 2. The unfiltered solution was computed using

P1 polynomials. The streamlines were computed with a RK2 solver using dt = 0.01.

The plots where the exact curve cannot be seen is because it overlaps with the filtered

streamline.

Higher Order Kernels

The last experiment in this section explores the order and number of splines used to

build the kernel. In this case, the unfiltered solution was computed using P1 polynomi-

als and the filtered solution was computed using the K
(5,3)
Γ kernel, i.e., a kernel typically

employed for DG solutions belonging to the P2 space. The SIAC kernel, K
(2k+1,k+1)
Γ , is

chosen according to the degree of the approximation space in order to ensure that the

DG order is preserved. However, this does not represent an upper limit on the number

or order of the splines that can be used, only the maximum order of accuracy that can

be achieved.

Previously, it was shown that as soon as the degree of the approximation space

increased, the unfiltered approximation could produce satisfactory streamlines at rela-

tively large time steps and mesh size (see Figure 6.4 for N = 40 × 40 and dt = 0.01).

The plots in Figure 6.6 show the resulting streamlines before and after applying three

different Line filters built with 3,4 and 5 B-Splines of order 3. Recall that the vector

field belongs to the P1 space. The filtered solutions suggest that the best kernel is the

one that uses more splines, i.e., the K
(5,3)
Γ kernel. Earlier experiments in this section

showed that applying the K
(3,2)
Γ kernel over coarse meshes (see Figure 6.1) produced

unsatisfactory streamlines. Figure 6.7 shows the numerical results after the higher

order kernel K
(5,3)
Γ to the complex fields CF1 and CF2 over a 40 × 40 uniform mesh,

using the RK2 method with time step dt = 0.01. Observe that both orientations, π/4

and 3π/4 are able to produce six converging streamlines.

98



K
(5,3)
Γ : θ = π

4
, µ =

√
2

CF1 CF2

−0.5 0 0.5

−0.5

0

0.5

 

 

−0.5 0 0.5

−0.5

0

0.5

 

 

Exact

Filtered

Unfiltered

K
(5,3)
Γ : θ = 3π

4
, µ =

√
2

CF1 CF2

−0.5 0 0.5

−0.5

0

0.5

 

 

−0.5 0 0.5

−0.5

0

0.5

 

 

Exact

Filtered

Unfiltered

Figure 6.7: Streamline fields before and after applying two symmetric Line Filters

with orientations θ = π/4, 3π/4 using a kernel with five B-Splines of order 3 (degree

2). The unfiltered solution was computed using P1 polynomials using 40×40 elements.

The streamlines were obtained through a RK2 solver with time step dt = 0.01. The

plots where the exact curve cannot be seen is because it overlaps with the filtered

streamline.
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6.2.2 Line Kernels vs Tensor Product Kernels

From the previous experiments, it was concluded that Line filters should be aligned

according to the mesh structure. Furthermore, the results suggested that the π/4 Line

filter gave optimal results. Here, the performance of this filter was compared against

the traditional 2D filter aligned with the Cartesian axis. Figure 6.8 shows streamlines

corresponding to the CF1 and CF2 fields respectively using a P1 polynomial basis

for the DG approximation and applying the SIAC kernel: K(2k+1,k+2), k = 1. The

plots for the first field show that the Tensor Product Filter (TPF) handles the coarser

meshes better than the Line Filter (LF). On the other hand, as soon as the mesh

is refined, both filters have similar behaviour. Figure 6.9 shows streamlines filtered

with the higher order Line kernel (K
(5,3)
Γ ) compared to the Tensor Product kernel

(K(3,2) ⊗ K(3,2)) using a 40 × 40 mesh. In this case, the Line filter outperforms the

tensor product filter. This is clear for the streamline from field CF1 with seed at

the critical point. Table 6.2 shows two error estimates; the Maximum Distance was

obtained through the formula (6.15) and the Global Error (GE) corresponds to the

distance between the points at final time. For the case N = 40× 40, the higher order

filter clearly had the best performance. Observe that the magnitude of the errors in

field CF1 for such filter are significantly lower except for the last seed. The other

Line filter produced similar results than the Tensor Product filter except for the first

streamline (seed (-0.6,-0.651)). The second field shows similar results: the higher order

filter has the greatest error reduction, especially for the 40 × 40 mesh. In all cases,

the filters successfully increase the accuracy of the curves compared to the original

streamlines.

The results in Table 6.3 show the computational times taken by each filter to post-

process each streamline. The difference between the computational times between both

meshes is not very large. Actually, for some streamlines, using a finer mesh resulted in

faster computations as it can be seen for the times taken by each filer to post-process

the last seed in both fields. On the other hand, the difference between the elapsed

times taken by the Tensor Product filter compared to the Line filters is very large.

Line filters use a one-dimensional convolution and this results in great reduction of the

computational costs compared to 2D filters. The higher order Line filter requires longer

simulation times compared to the other Line filter but still remain very low compared

to Tensor Product filter. These type of filters increase the support since they use more

splines and are of higher order. Therefore, they are less robust than the lower order

Line filter in terms of the area of the domain where they can be employed. However, the

results show that they are most effective when reducing the error. Whenever possible,

higher-order filters should be implemented.
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Figure 6.8: Comparison of the performance between the Cartesian axis Tensor Product

Filter (TPF) and the π/4-Line Filter (LF) over two velocity fields (CF1, CF2) and two

different meshes (N = 40 × 40 and N = 80 × 80) using K(3,2) kernels over a P1 DG

solution. The cases where the black curve (exact) cannot be seen is because it overlaps

with the filtered solution.
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CF1

Unfiltered K(3,2) ⊗K(3,2) K
(3,2)
Γ K

(5,3)
Γ

θ = 0, µ = 1 θ = π
4
, µ =

√
2

Seed MD GE MD GE MD GE MD GE

N= 40× 40

(-.6,-.651) DIVERGED 9.1e-2 1.5e-2 2.1e-1 3.0e-2 3.3e-4 1.9e-4

(-.6,-.192) 4.0e-3 9.7e-4 3.8e-3 5.3e-5 6.1e-3 1.6e-4 2.2e-4 9.5e-6

(-.8,-.3) 4.1e-2 4.1e-2 4.1e-2 4.1e-2 3.8e-2 3.8e-2 5.4e-2 5.4e-2

N= 80× 80

(-.6,-.651) DIVERGED 3.3e-3 5.8e-4 4.3e-2 7.3e-3 1.7e-3 1.1e-3

(-.6,-.192) 2.6e-3 1.2e-4 1.5e-5 4.2e-6 5.5e-4 9.6e-6 1.3e-4 7.5e-7

(-.8,-.3) 3.6e-2 3.6e-2 2.7e-2 2.7e-2 2.7e-2 2.7e-2 2.1e-2 2.1e-2

CF2

Unfiltered K(3,2) ⊗K(3,2) K
(3,2)
Γ K

(5,3)
Γ

θ = 0, µ = 1 θ = π
4
, µ =

√
2

Seed MD GE MD GE MD GE MD GE

N= 40× 40

(0.202,-.3) DIVERGED 1.8e-1 1.8e-1 1.8e-1 1.8e-1 3.8e-2 3.8e-2

(-.09,-.1) DIVERGED 3.7e-2 1.1e-2 2.2e-2 7.0e-3 4.8e-3 4.8e-3

(.1,-.3) 5.4e-3 5.4e-3 7.7e-3 7.7e-3 7.1e-3 7.1e-3 6.9e-3 6.9e-3

N= 80× 80

(0.202,-.3) 2.2e-1 2.2e-1 9.5e-3 9.5e-3 1.2e-2 1.2e-2 1.0e-4 1.0e-4

(-.09,-.1) 7.6e-2 1.9e-2 6.1e-5 2.3e-5 7.0e-3 2.5e-3 2.9e-3 2.9e-3

(.1,-.3) 7.5e-3 7.5e-3 6.8e-3 6.8e-3 6.8e-3 6.8e-3 4.2e-3 4.2e-3

Table 6.2: Maximum Distance (MD) computed using equation (6.15) and Global

Error (GE) corresponding to the distance between the points at final time comparing

unfiltered and filtered streamlines along the fields CF1 and CF2 (equations (6.11)

and (6.13)) using a Tensor Product and two Line filters over two different meshes

(N = 40 × 40 and N = 80 × 80). The DG approximation was computed using P1

polynomials and all the streamlines were obtained through a RK2 method with time

step dt = 0.01.
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Figure 6.9: Streamlines before and after applying the 2D Cartesian axis aligned Filter

K(3,2)⊗K(3,2) with the usual scaling H = h and the π/4-Line Filter K
(5,3)
Γ with scaling

H =
√

2h, h being the DG mesh size corresponding to the 40× 40 elements mesh.
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K(3,2) ⊗K(3,2) K
(3,2)
Γ K

(5,3)
Γ

Seed 40× 40 80× 80 40× 40 80× 80 40× 40 80× 80

CF1

(-.6,-.651) 2504.5 2595.1 446.6 461.5 795.7 795.0

(-.6,-.192) 2066.3 2098.1 376.8 390.4 638.2 666.6

(-.8,-.3) 131.5 104.1 30.9 19.1 47.4 32.9

CF2

(.202,-.3) 1329.4 1452.1 237.0 242.8 400.9 415.7

(-.09,-.1) 2434.4 2368.7 442.1 433.8 741.3 741.7

(.1,-.3) 776.7 509.2 150.9 93.1 243.5 155.3

Table 6.3: Computational times (seconds) taken to post-process each streamline for a

Tensor Product filter and two π/4-Line filters of order 2 and 3 respectively.
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6.3 Boundary Filters

As discussed earlier, symmetric filters may not be possible to implement everywhere

in the domain. For example, for solutions over domains that do not assume periodic

boundary conditions, such filters can not be implemented near the boundaries. There-

fore, this section investigates one sided filters. In addition to boundary line filters

and revisiting the idea from [64], filters along the streamline were also implemented.

That is, boundary filters whose support spreads downstream along the curve. The

experiments were performed along the same velocity fields than the symmetric kernels

(equations (6.11) and (6.13)) and this study begins by investigating the first kind of

filters: boundary line filters.

6.3.1 Boundary Line Filters

The following experiments were performed by implementing purely one-sided (bound-

ary) filters, assuming every point was a boundary point. This means that the kernel

has its support shifted totally towards one side and it is expected to produce the

worst results (see Chapter 2). This situation is very unlikely to happen for all the

post-processing points along a streamline curve and in practice, these filters should be

position-dependent, allowing a transition towards symmetric kernels whenever possible.

Nevertheless, in order to understand how much accuracy is lost, all the post-processing

points were computed using a purely one-sided kernel.

The numerical results from the previous section together with the theoretical error

estimates (Theorem 4.3.1) indicate that the filters should be aligned with the mesh,

either at π/4 or 3π/4. Consider a XLi left sided filter (see Figure 2.3). Then, there are

four possible rotations: π/4, 3π/4 and the opposite directions, i.e., 5π/4 and 7π/4.

Notice that these orientations could also be identified with right sided filters along the

previous orientations. Figures 6.10 and 6.11 show the resulting streamlines before and

after applying these filters over a DG solution using P1 polynomials and implementing

the XLi kernel corresponding to r = 2, ` = 2 in equation (2.28). The unfiltered and

filtered streamlines were obtained through the RK2 solver with dt = 0.01. From these

results, it is difficult to conclude whether there is an optimal orientation. The 3π/4

orientation seems to produce the worst results since it is the only case where for the field

CF1, the streamline starting at the critical point still diverges after mesh refinement.

On the other hand, the 7π/4 orientation produced highly accurate streamlines for that

field. However, this filter had the worst performance for the 40× 40 mesh and actually

produced a diverging streamline which already converged towards the true solution

before filtering. The 5π/4 orientation lead to the best results for the second field, CF2.

This filter produced the most accurate streamlines for the coarser mesh.
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Figure 6.10: Streamlines along the velocity fields CF1 and CF2 ( equations (6.11)

and (6.13)) for two different meshes (N = 40× 40 and N = 80× 80) before and after

applying boundary filters with orientation θ = π/4 and θ = 3π/4.
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Figure 6.11: Streamlines along the velocity fields CF1 and CF2 (N = 40 × 40 and

N = 80× 80) before and after applying boundary filters with orientation θ = π/4 and

θ = 3π/4.
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Figure 6.12: Location of the quadrature points using a linear reconstruction (red)

compared to their exact location on the curve.

6.3.2 Filtering Along the Streamline

Filtering along the streamline curve implies spreading the kernel support along the

curve. When using explicit ODE solvers, i.e., schemes where each iteration step uses

information only from previously computed points, a purely right sided filter should be

applied. The implementation is very similar to Line-filters. In fact, a line filter could

be seen as a particular case, when the streamline curves are straight lines. Let

Γ(t) = (Γx(t),Γy(t)), with Γ(0) = (x, y), (6.16)

be the parametrization of the streamline by the arc-length parameter. Since this curve

is unknown, it is reconstructed by interpolation of previously computed points. The

filtering convolution is then given by:

u?h(x, y) = K ? uh(Γ(t0)) =
1

H

∫ ∞
−∞

K

(
−t
H

)
uh (Γ(t)) ‖Γ′(t)‖dt, (6.17)

and Algorithm 4 illustrates how to solve this equation numerically. There are two

functions in this algorithm, get arc length(si, si+1) and find kernel break co-

ordinates (si, si+1, local arc) , which depend on the type of curve reconstruction.

Here, two types of interpolation will be discussed which were used to approximate the

curve between every two consecutive points.

Curve Reconstruction

The curve from equation (6.16) consists of a union of curves given by streamline points.

For simplicity and efficiency, the best way to reconstruct the streamline would be

using linear interpolation. However, depending on the trajectory of the streamline,

this could result in a excessive low order approximation. Since the convolution is

solved using Gaussian Integration, the quadrature points where the kernel and field are

evaluated can be far from the actual streamline as shown in Figure 6.12). Alternatively,

the curve could be reconstructed by cubic interpolants using Hermite polynomials.

These particular type of cubic spline curves use information from the derivative of

the function. In a streamline, the values are readily available since they are used by

the ODE solver when evaluating the velocity field. These points can be identified as

interpolation nodes.

Let x1 < . . . < xN be an ordered knot sequence such that for a given function g,

the following pairs

{g(xi), g
′(xi)}Ni=1
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Algorithm 4 Arc length Convolution

{si} ← collect sufficient streamline points to fit kernel support

N ← Total streamline points

scaling ← Get unscaled kernel scaling

total arc = 0

break no = 1

Integral = 0

i = 0

while break no < total kernel breaks do

arc length = get arc length(si, si+1)

+ + i

if total arc+ arc length > scaling then

local arc = (scaling − total arc)/(arc length)

si ← find kernel break coordinates(si, si+1, local arc)

points matrix← collect break

total arc = 0

+ + break no

else

local arc+ = arc length

end if

while ID(si)! = ID(si+1) do

s = (si, si+1)

do

e← ID(si)→ get edge

while s ∩ e = ∅
points matrix← get intersection point(s,e)

end while

end while

for p = 0 : dim( points matrix)− 1 do

Integral+ = evaluate convolution(points matrix(p), points matrix(p+ 1))

end for
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are known The cubic Hermite polynomial H3(x) that interpolates the function g is a

combination of local cubic polynomials,

{Pi(x), x ∈ [xi, xi+1], i = 1, . . . , N − 1}

satisfying the following two conditions:

Pi(xi) = g(xi), Pi(xi+1) = g(xi+1),

P ′i (xi) = g′(xi), P
′
i (xi+1) = g′(xi+1).

Each polynomial Pi(x) can be obtained from its Newton form:

Pi(x) =Pi(xi) + (x− xi)[xi, xi]Pi + (x− xi)2[xi, xi, xi+1]Pi

+ (x− xi)2(x− xi+1)[xi, xi, xi+1, xi+1]Pi.

The following table gives the divided differences when these polynomials are applied

to streamlines, identifying y with g and (u, v) with the velocity field.

[ ]Pi [ , ]Pi [ , , ]Pi [ , , , ]Pi

xi yi

v(xi, yi)

xi yi

yi+1−yi
xi+1−xi

−v(xi,yi)

xi+1−xi

yi+1−yi
xi+1−xi

v(xi+1,yi+1)+v(xi,yi)−2
(
yi+1−yi
xi+1−xi

)
(xi+1−xi)2

xi+1 yi+1

v(xi+1,yi+1)− yi+1−yi
xi+1−xi

xi+1−xi

v(xi+1, yi+1)

yi+1 yi+1

Assuming that g ∈ C(4)[x1, xN ], the interpolation error of a Cubic Hermite Polynomial

is bounded by

|g(x)−H3(x)| ≤
(
xi+1 − xi

2

)4

max
xi≤x≤xi+1

|g(4)(ξx)|
4!

More information on Hermite interpolation can be found in [17, Ch. 4].

Note 6.3.1. The implementation given in Algorithm 4 computes intersection points

assuming a linear parametrization of the streamline curve. The intersection algorithm

described in chapter 5 assumes straight segments so the implementation should change

for higher degree curves.

Note 6.3.2. The inter-points of the ODE solver are not included during curve recon-

struction. For example, the two stage RK2 solver:

k1 = f(xn, yn) (6.18)

k2 = f

(
xn +

h

2
, yn +

h

2
k1

)
(6.19)

yn+1 = yn + hk2 (6.20)
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requires evaluating the field at the point yn + hk1
2

which does not necessarily belong to

the streamline. In practice, although that point is also filtered, curve reconstruction is

done using the nodes yn and yn+1 alone.

Numerical Results

The experiments performed on these filters included different types of curve recon-

struction and kernel scalings. Since the kernel support follows the streamline curve,

the scaling is no longer required to be H =
√

2h. Therefore, the simulations were

also carried out using smaller scaling corresponding to H = h, h being the DG mesh

size. The unfiltered streamline was computed using P1 polynomials and all the filters

consisted of a XLi kernel made of 3 B-Splines and a general Spline of order 2, i.e.,

equation (2.28) with r = 2, ` = 1. All the streamlines were computed with the RK2

solver with time step dt = 0.01.

Figures 6.13 and 6.14 show streamlines before and after applying these filters using

Hermite and Linear interpolants. Just like in previous experiments, the performance

of these filters strongly depends on the mesh resolution. Observe how for the first field

(Figure 6.13), when using N = 40 × 40 elements, all the filtered streamlines starting

at the critical point diverge from the exact curve and follow the path of the unfiltered

streamline. On the other hand, increasing the order of the curve reconstruction seems to

improve the solutions: in both fields, the filter implemented with Hermite interpolation

produced more accurate streamlines. Regarding the scaling, the larger value, µ =
√

2

produced better results with the exception of the second field (CF2) using the mesh

N = 40× 40.

The previous results suggested that Hermite interpolation should be used over linear

interpolation. On the other hand, this type of interpolation increases the computational

costs. This is reflected in Table 6.5, which shows the computational times taken by this

type of filter. Observe how using Linear interpolation implies significantly lower values

than Hermite interpolation. However, the time step employed by the ODE solver was

relatively large (dt = 0.01) so this types of curve reconstruction should be applied since

it provides higher accurate streamlines.

In the final study, filtering along the streamline using Hermite interpolation was

compared to Boundary Line filtering oriented along the flow direction and its tangent.

Figure 6.15 shows the results from implementing these filters along the velocity field

CF1 and CF2. The plots suggest that filtering along the streamline yields to better

results than when applying a Boundary Line filter oriented along the same direction.

On the other hand, the tangent flow aligned filter had a better performance. Observe

how for the case N = 80 × 80 and CF1, this filter is able to converge towards the

exact streamline for the one starting at the critical point whereas the flow aligned

filter diverges alongside the unfiltered curve. Figure 6.16 compares filtering along the

streamline with the Boundary Line Filters from section 6.3 that gave best results, i.e.,

the 5π/4 and 7π/4 rotations. For the finest mesh, the filter along the streamline behaves
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Unfiltered π
4

SLF ⊥flow-BLF 7π
4

BLF FAS-H

Seed MD FD MD FD MD FD MD FD MD FD

CF1

(-.6,-.651) DIVERGED 4.3e-2 7.3e-3 3.7e-2 1.6e-2 3.9e-2 1.6e-2 2.5e-3 1.6e-3

(-.6,-.192) 2.6e-3 1.2e-4 5.5e-4 9.6e-6 1.9e-3 1.5e-4 6.0e-4 2.2e-4 6.9e-3 2.6e-3

(-.8,-.3) 3.6e-2 3.6e-2 2.7e-2 2.7e-2 1.7e-2 1.7e-2 2.7e-2 2.7e-2 3.0e-2 3.0e-2

CF1

(0.202,-.3) 2.2e-1 2.2e-1 1.2e-2 1.2e-2 7.0e-2 7.0e-2 1.9e-1 1.9e-1 2.5e-1 2.5e-1

(-.09,-.1) 7.6e-2 1.9e-2 7.0e-3 2.5e-3 2.1e-2 2.1e-2 1.7e-2 1.7e-2 2.9e-2 2.9e-2

(.1,-.3) 7.5e-3 7.5e-3 6.8e-3 6.8e-3 7.2e-3 7.2e-3 2.7e-3 2.7e-3 3.1e-2 3.1e-2

Table 6.4: Maximum Distance (MD) taken as the greatest point distance from all the

iterations and Global Errors (GE) measuring the point distance at final time comparing

unfiltered and filtered streamlines along the fields CF1 and CF2 (equations (6.11) and

(6.13)) using a 80×80 mesh. The filtered solutions were obtained through a Symmetric

Line Filter (SLF), two Boundary Line Filters (BLFs) oriented along the 7π/4 direction

and tangent to the flow respectively and a Filter Along the Streamline using Hermite

interpolation. The streamlines were computed using the RK2 solver with dt = 0.01.

similarly to the 7π/4 Boundary Line filter, outperforming the 5π/4 rotation. On the

other hand, applying the filters on the mesh made of 40 × 40 suggests that the latter

rotation, 5π/4 gives the best results. Finally, Table 6.4 shows the errors comparing

these filters with the symmetric kernel for the mesh N = 80 × 80. The values show

how although in general, applying symmetric filters leads to better post-processing,

accuracy enhancement is still possible for the one-sided filters.

Linear Interpol. Hermite Interpol.

Seed 40× 40 80× 80 40× 40 80× 80

CF1

(-.6,-.651) 137.7 179.6 295.0 798.3

(-.6,-.192) 290.9 241.1 960.3 731.7

(-.8,-.3) 17.8 18.0 34.3 36.1

CF2

(.202,-.3) 77.7 65.9 416.8 321.5

(-.09,-.1) 347.0 280.8 1124.4 828.9

(.1,-.3) 17.57 28.2 47.5 81.7

Table 6.5: Computational times (seconds) taken to post-process each streamline using

a filter along the streamline with Hermite and linear interpolation respectively.
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Figure 6.13: Streamlines along the first velocity fields (CF1, equations (6.11)) for

two different meshes before and after filtering along the streamlines using linear and

Hermite interpolation for the curve reconstruction.113



Linear Hermite

N=40× 40

µ = 1

−0.5 0 0.5

−0.5

0

0.5

 

 

−0.5 0 0.5

−0.5

0

0.5

 

 

Exact

Filtered

Unfiltered

µ =
√

2

−0.5 0 0.5

−0.5

0

0.5

 

 

−0.5 0 0.5

−0.5

0

0.5

 

 

Exact

Filtered

Unfiltered

N=80× 80

µ = 1

−0.5 0 0.5

−0.5

0

0.5

 

 

−0.5 0 0.5

−0.5

0

0.5

 

 

Exact

Filtered

Unfiltered

µ =
√

2

−0.5 0 0.5

−0.5

0

0.5

 

 

−0.5 0 0.5

−0.5

0

0.5

 

 

Exact

Filtered

Unfiltered

Figure 6.14: Streamlines along the second velocity fields (CF2, equations (6.13)) for

two different meshes before and after filtering along the streamlines using linear and

Hermite interpolation for the curve reconstruction.114
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Figure 6.15: Streamlines along two velocity fields (CF1 and CF2) before and after

applying a Filter Along the Streamline using Hermite reconstruction (FAS-H) compared

to Right Boundary Line Filters (RBLFs) aligned with the flow (middle) and tangent

to the flow (right). All the filters were computed with the scaling H =
√

2h.
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Figure 6.16: Streamlines along two velocity fields (CF1 and CF2) before and after

applying Filter Along the Streamline using Hermite reconstruction (FAS-H) compared

to Boundary Line Filters (BLFs) using 5π/4 and 7π/4 orientations. All the filters were

computed with the scaling H =
√

2h.
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6.4 Closest Point Approach

The error estimates given in Tables 6.1, 6.2 and 6.4 were taken as the maximum differ-

ence between the exact and approximated streamline at each iteration. For unsteady

flows, the distance between the points at each iteration (time step) is important since

the solution changes with time. However, for steady flows, alternative error measure-

ments could be taken. Figure 6.17 shows a streamline where the error at final time

would be very large. However, if the final time for computing the filtered streamline

was extended, an overlap between the curves overlap as shown in Figure 6.18. The

plots in this figure were computed using the domain boundaries as the stop criteria,

i.e., streamline points were computed until they exited Ω = [−1, 1] × [−1, 1]. Based

on this approach, the following estimate was proposed in order to quantify the error

between the streamline curves.

Denote by A and B the exact and approximated curves. Given a point b ∈ B,

define the distance from the point to the other curve by:

d(b, A) = inf
a∈A

d(a, b),

where d(a, b) is the Euclidean distance. The following error estimate:

eB(A) = sup
b∈B

d(b, A), (6.21)

gives the maximum distance between the streamlines, ignoring the instant distance

between the points. Although this measurement is not suitable for time dependent

flows, for steady flows it gives a more accurate estimate of the actual distance between

the curves. The idea is based on the Hausdorff distance, which is defined by:

d(B,A) = sup {dB(A), dA(B)} , (6.22)

except that is only computed from one curve to the other, i.e. imposing:

dA(B) ≤ dB(A).

Otherwise, applying the Hausdorff distance of the streamlines shown in Figure 6.17

would give the distance between the curves at final time. Table 6.6 shows error esti-

mates before and after filtering with a line filter and a filter along the streamline using

Hermite interpolation. For each streamline, two errors were computed using equations

(6.15) and (6.6). Observe that this closest point approach gives lower errors for all

cases. This type of measurement could be employed as an error estimate since it pro-

vides information regarding how close the streamlines remain remain with respect the

exact solution.

6.5 Discussion

This chapter explored the applications of Line filtering during flow visualisation. Ear-

lier numerical studies (Chapter 4) demonstrated the ability of these filters to recover
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Figure 6.17: Streamlines corresponding to the second field CF2 with seed at (.202,-.3)

adding the time dimension. Observe how the exact streamline has a longer trajectory

and that although the filtered streamline is delayed, it remains close to the exact

solution.
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Figure 6.18: Streamline from Figure 6.17 ( without the time variable) with different fi-

nal times, allowing a larger time for the filtered streamline showing the overlap between

the curves.
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CF1

Unfiltered Filtered

π
4
-SLF FAS-H

Seed max(en) dB(A) max(en) dB(A) max(en) dB(A)

N= 40× 40

(-.6,-.651) DIVERGED 2.1e-1 1.0e-1 DIVERGED

(-.6,-.192) 4.0e-3 2.4e-3 6.1e-3 1.9e-3 3.2e-2 1.8e-2

(-.8,-.3) 4.1e-2 4.6e-3 3.8e-2 3.8e-3 1.8e-2 1.1e-2

N= 80× 80

(.202,-.3) DIVERGED 1.8e-1 1.9e-3 DIVERGED

(-.09,-.1) DIVERGED 2.2e-2 7.0e-3 3.2e-2 2.8e-2

(.1,-.3) 5.4e-3 5.4e-3 7.1e-3 7.1e-3 6.6e-2 3.4e-2

CF2

Unfiltered Filtered

π
4
-SLF FAS-H

Seed max(en) dB(A) max(en) dB(A) max(en) dB(A)

N= 40× 40

(-.6,-.651) DIVERGED 4.3e-2 1.1e-2 2.5e-3 2.5e-3

(-.6,-.192) 2.6e-3 9.8e-4 5.5e-4 4.1e-4 6.9e-3 6.9e-3

(-.8,-.3) 3.6e-2 6.2e-3 2.7e-2 3.6e-3 3.0e-2 3.3e-3

N= 80× 80

(.202,-.3) 2.2e-1 2.8e-3 1.2e-2 7.1e-4 2.5e-1 6.0e-3

(-.09,-.1) 7.6e-2 1.9e-2 7.0e-3 2.1e-4 2.9e-2 2.9e-2

(.1,-.3) 7.5e-3 7.5e-3 6.8e-3 6.8e-3 3.1e-2 3.1e-2

Table 6.6: Error estimates using the greatest point distance from all the iterations

(max(en)) given by equation (6.15) and using the maximum point-to-curve distance

(dB(A)) given by equation (6.21). The filtered solutions were computed with a sym-

metric line filter (sfl) and a filter along the streamline using Hermite reconstruction

(FAS-H). The DG approximation was computed using P1 polynomials and all the

streamlines were obtained through a RK2 method with time step dt = 0.01.
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smoothness and increase the accuracy from the original DG solution. Here, the filters

have been applied to more general vector fields (including singularities) and once again,

the results suggest that this post-processor enhances the accuracy from the original so-

lution, leading in this case, to more accurate streamlines.

Line filters using the symmetric kernel showed excellent performance and the low

computational times associated with them make them great candidates for engineering

applications. In general, the streamlines computed with these filters had the same

accuracy than those obtained through a Tensor Product filter, which requires a more

complicated implementation and larger computational times. However, the experi-

ments suggested that mesh resolution has a stronger effect on Line filters, showing how

over coarse meshes, applying Tensor Product filters results in more accurate stream-

lines. On the other hand, this limitation was overcome by increasing the order and

number of B-Splines employed to build the Line kernel, producing a solution that

matched the quality of the one obtained through the Tensor Product filter.

Boundary Line filters resulted in less effective post-processing. This was expected

since previous numerical results on one-sided filters already showed that they cannot

reduce the error as much as the symmetric kernel. However, the Boundary Line Filters

were included as preliminary work, to give an idea of their behaviour. The length

of this thesis allowed the development of theoretical estimates of symmetric filtering

alone and one-sided filtering was left as future work. The experiments suggest that

these filters (in particular filters along the streamline) can be suitable for accuracy

enhancement during flow visualisation. In many cases where the unfiltered streamline

diverged from the exact solution, the filtered curve converged back towards the exact

curve. From this study it was not possible to conclude whether a particular orientation

or type of boundary filter could give optimal results because there are many possible

configurations. For instance, there is no guarantee that the kernel scalings used here

(h = h, H =
√

2h) are the appropriate ones for flow aligned filters. In fact, it could

be possible that since the rotation angle changes, the kernel scaling should also vary

within the filter location.

The ODE solver employed for most simulations corresponded to the RK2 method.

This is a relatively low order method for streamline computations which are generally

done using higher order solvers (RK3, RK4) in order to ensure convergence. However,

the theory for ODE solvers assumes analytic fields and does not account for the error

introduced by the numerical method that was employed to compute the vector field.

Hence, applying the RK3 or RK4 solver over a field obtained with low degree polyno-

mials can result ineffective since no accuracy is gained from using a higher order solver.

For example, the RK4 method uses information from higher order derivatives which

are not available when producing a DG solution with a P1 or P2 polynomial basis. In

addition, since the filter has to be applied at each stage, lower number of stages is

desirable. For example, implementing the RK4 method would double the number of

filtering points per time step. This usually can be counter-balanced by enlarging the

time step but the value used in the experiments (h = 0.01) is already relatively large,
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so the RK2 solver seems suitable for these filters.
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Chapter 7

Conclusions and Future Research

The theory and applications of SIAC filters in multidimension has traditionally em-

ployed a tensor product structure constructed using one-dimensional kernels. In addi-

tion, the tensor product has always been done along the Cartesian axis, resulting in a

filter whose support has fixed shape and orientation. This thesis has challenged these

assumptions, leading to the investigation of rotated filters: tensor product filters with

variable orientation. Furthermore, combining this approach with previous experiments

on lower-dimension filtering, a new and efficient type of post-processor has been de-

veloped: SIAC Line filters. These filters transform the integral of the convolution into

a line integral, reducing significantly the computational times and complexity of the

algorithm design. A solid theoretical background for SIAC Line filters has been devel-

oped and in Theorem 4.3.1, superconvergent error estimates similar to those for tensor

product filtering were proven. Using this one-dimensional approach, SIAC filters can

be applied to multidimensional fields in an efficient way, becoming an attractive tool

for the scientific community.

The development of SIAC Line filters began with the idea of 2D rotated filters. The

numerical results suggested that rotated filters preserve the properties of SIAC filtering

in terms of superconvergence and smoothness recovery. Compared to the Cartesian

axis aligned filter, however, these filters resulted in less effective error reduction. In

practice, smoothness recovery and error reduction are more relevant features. Hence,

it was concluded that the original Cartesian axis aligned filter was already optimal.

Nevertheless, implementing these filters has contributed towards the general application

of SIAC filters; designing a filter that allows for post-processing in any direction has

lead to the development of a very robust algorithm.

As a starting point, rotated filters were applied to very simple models and imposing

uniform squared meshes. Previous studies have shown that the Cartesian axis aligned

filter looses accuracy as the mesh becomes less uniform or when applied to non-linear

problems. This thesis employed uniform meshes only but the rotated filters should be

investigated over more general arbitrary meshes. It still remains a question whether the

mesh conditions or the nature of the hyperbolic problem would imply that alternative

orientations or kernels with non-orthogonal inner axis would be more suitable.

Theorem 4.3.1 provides superconvergent error estimates for SIAC Line filters. In
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addition, the numerical results revealed that, in general, the filtered solution has lower

error than the original DG solution. This was first studied globally and locally over

DG solutions alone. Later, during flow visualisation, the filters were applied to general

velocity fields (containing singularities) with a view to improve the field conditions

where streamlines were being computed. The results that the filter performs efficiently

for this type of post-processor and produces highly accurate streamlines in cases where

the unfiltered streamline diverged from the exact solution.

During the investigations of SIAC Line filters for visualisation, several types of

kernels were implemented. Furthermore, the numerical results were compared against

tensor product filtering so that the impact from reducing the dimension could be esti-

mated. The experiments suggested that Line filters with symmetric kernels produced

streamlines as accurate as those computed using a Tensor Product filter (aligned with

the Cartesian axis). However, it was observed that the mesh resolution had a stronger

effect on Line filters. The studies over coarse meshes showed that applying Tensor

Product filters consistently resulted in more accurate streamlines. This limitation was

overcome by increasing the degree and number of splines employed to build the Line

kernel. As a result, streamline computations using higher degree Line filters matched

(if not improved) the results from the 2D filter. Although increasing the number and

order of the B-Splines enlarges the support, the computational times still remain very

low compared to tensor product filtering. Thus, Line filtering becomes a promising

alternative for post-processing in multidimensions.

In contrast, boundary Line filters resulted in less effective post-processing. This was

studied for streamline visualisations and only experimentally. The results suggested

that these filters (in particular filters along the streamline) enhance the field conditions

but the kernel design should be improved. For all the cases where the original DG

solution diverged, a particular boundary filter was able to produce a solution which

converged back towards the exact curve. However, it was not possible to determine a

suitable filter for all streamlines. The length of this thesis allowed the development of

theoretical estimates for symmetric filtering and boundary filtering was left as future

work. From the numerical studies alone, it is not possible to conclude whether a

particular orientation or filter type could give optimal results. Furthermore, these type

of filters offer many possible configurations. For instance, there is no guarantee that

the kernel scalings used here (H = h,
√

2h) are the appropriate ones for flow aligned

filters. In fact, it is possible that since the rotation angle changes, perhaps the kernel

scaling should also vary within the filter location.

Finally, the experiments confirmed that Line filters can be combined with relatively

simple ODE solvers. Streamline computations are typically done through higher order

solvers such as the RK4, which is fourth order. However, most simulations performed

here employed the RK2 solver which using two stages, only gives second order. Since

the filter has to be applied at each stage, this affords a great advantage. For example,

if one wishes to implement the RK4 method, this implies doubling the number of

filtering points per time step. Although higher order solvers allow for larger time steps,
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the streamline experiments presented here were computed using dt = 0.01, which is

already a relatively large step. In addition, it was observed that the RK3 and RK4

solvers were inefficient for DG fields computed using low degree polynomials. For such

cases, dominant errors come from the field data itself and implementing the RK3 or

RK4 method gave exactly the same streamlines than the RK2 method. Therefore,

it was concluded that the solver should require as low number of stages as possible.

Furthermore, for low mesh resolution problems, rather than increasing the order of the

solver, the kernel should increase the order and number of B-Splines.

7.1 Future Resarch

This thesis provides a solid background on a family of SIAC filters with variable support

orientation. The investigations were performed over tensor product kernels as well as

line kernels. The length of this research has allowed for development of the mathemat-

ical formulation of these filters together with the implementation but has limited the

study to linear hyperbolic problems over uniform meshes. In order for these filters to

to become a suitable tool for CFD applications, investigations on non-linear problems

involving unstructured meshes should be carried out.

SIAC filters have already been applied to a wide variety hyperbolic problems such

as the advection equation with variable coefficient as well as the non-linear Burgers

equation. However, for non-linear problems, error estimates for the divided differences

of the DG solution do not exist, so the theory for SIAC filtering strongly relies on

results from the linear case. On the other hand, it has been shown computationally

how the filter increases the smoothness and accuracy order from the DG solution, even

in the presence of a shock. Hence, the next step for the rotated filters is to change the

type of hyperbolic problem as well as introduce solutions containing shocks.

Moreover, the original tensor product filter has already been implemented over

triangular elements in 2D and tetrahedral elements in 3D. For structured triangular

meshes and linear hyperbolic problems, it is possible to prove that the filtered solution

achieves 2k + 1 order, both theoretically and computationally. The numerical exper-

iments performed on the Line filters were limited to quadrilateral elements. Based

on the existing proofs for tensor product filters, theoretical and computational work

should be done over triangular elements. This would provide a solid foundation for

extending the applications of Line filters to solutions over general meshes, including

curvilinear elements.

One of the most challenging questions around SIAC filtering is the problem of

finding the optimal scaling that allows for greatest error reduction. This presents

big limitations when the filters are applied over non-uniform meshes. The existing

theoretical error estimates over such meshes suggest a scaling that in practice, is not

optimal in terms of the magnitude of the error. Furthermore, this choice is based on the

underlying mesh itself and does not consider flow features. Several numerical examples

shown in this thesis suggested that, leaving superconvergence aside, in terms of error
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reduction, Line filters can obtain satisfactory results for alternative scaling choices

based on the mesh as well as the flow. This could help in designing the right scaling

when the filter is applied together with a ODE solver during streamline computations.

Furthermore, the rotated filters using tensor product kernels were tested over uniform

quadrilateral meshes. For such structures, a kernel aligned with the Cartesian axis is

also aligned with the elements. On the other hand, introducing unstructured triangular

meshes destroys this alignment. Rotated filters should be tested over such meshes since

the Cartesian axis aligned would no longer be under optimal conditions. This could

lead to cases where a rotated kernel outperformed the original axis aligned one.

Flow features such as vorticity, involve performing computations on the field itself

as well as its derivatives. The investigations on SIAC filters have already extended

to derivative filtering and there are available theoretical and numerical results. Line

filters revealed that when using the appropriate rotation and scaling, it is possible to

recover smoothness in any direction even though the support is fixed. Therefore, in

the future, it should be explored whether it is possible to obtain similar results on

the field derivatives. In addition, flow visualisation experiments were done only over

streamlines. The velocity fields employed during the experiments represented steady

flows but the filter should not be limited for such cases alone. The applications of Line

filters should extend to unsteady flows, introducing the post-processing step parallel to

vector field computations, enhancing the field conditions where for example, streaklines

are being calculated.

The notion of directional divided difference discussed in chapter 4 is not necessarily

restricted to the 2D space. Although the theoretical error estimates given in Theorem

4.3.1 were done for the two dimensional case, they should extend to higher dimen-

sions. The goal of Line filtering is to be possible to post-process in three dimensions

so that this technique can be applied in real-world problems. However, since adding a

dimension implies a whole new possible set of filtering orientations, due to lack of time,

the theory and experiments were limited to the 2D case, leaving higher dimensions for

future research. In addition, the theoretical error estimates for the Line filters pre-

sented here have only considered symmetric kernels. During streamline visualisation,

one-sided kernels were also introduced but these type of kernels were only studied ex-

perimentally. Applying Line filters to physical problems requires post-processing over

computational domains that do not necessarily involve periodic boundary conditions.

Therefore, this technique should ensure effective post-processing near the boundary.

With the existing proofs for one-sided filtering, theoretical estimates for boundary Line

filters should be developed. This would lead to a robust and suitable post-processor

extending their potential to a wider set of problems.

Regarding the implementation of the filter, the point-scan algorithm should be

improved; during the computation of the kernel breaks and mesh intersection points,

the algorithm uses lines to join the points building the kernel support. Although

this computation is exact for line filtering, the same does not apply for the filters

implemented along the streamline since their support expands along the curve. It
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was observed that applying Hermite interpolation for the curve reconstruction resulted

in more accurate streamlines compared to those filtered using Linear interpolation.

However, the interpolation nodes location corresponding to kernel or DG mesh breaks

is not exact, since at the moment, that step is done joining the points by straight

segments. In the future, the algorithm should include curve intersection routines that

would allow for determining more accurately the location of the integral breaks.

Finally, SIAC Line filters should not be restricted to DG methods alone. The

applications of these filters should be extended for example, to Finite Element or

Finite Difference Methods. This will bring the filter closer to applications to turbulent

models obtained through RANS or LES.
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