
 
 

 

 

Development of 3D leaf shape: 

Utricularia gibba as a model system 

 
 

Claire Bushell 

 

 
Thesis submitted for the Degree of Doctor of Philosophy 

 

University of East Anglia 

John Innes Centre 

 

Submitted September 2016 
 

 

 

 

 

 

 

 

 

 

© This copy of the thesis has been supplied on the condition that anyone who consults 

it is understood to recognise that its copyright rests with the author and that use of 

any information derived there from must be in accordance with current UK Copyright 

Law. In addition, any quotation or extract must include full attribution.  

 

 



 

 

 

 

  



 
 

 
 

Abstract 
 

The development of diverse organ shapes involves genetically specified growth patterns 

which may differ across a tissue in rate and/ or orientation. Understanding specified 

growth is not intuitive since observed (resultant) growth rates and orientations are the 

result of specified growth combined with the effects of mechanical constraints in a 

connected tissue. Growth dynamics in leaves of Arabidopsis have previously been studied 

experimentally and modelled using a polarity field to orient growth, and regional factors 

which control local specified growth rates parallel and perpendicular to the polarity. It is 

unclear whether the mechanisms invoked for the development of 2D leaf shape can be 

applied to more complex 3D leaf shapes. In this work, I developed Utricularia gibba as a 

new model system and studied the development of U. gibba 3D epiascidiate (cup-shaped) 

leaves (known as bladders). I investigated bladder shape changes through development 

and modelled these transitions using isotropic (equal in all directions) or anisotropic 

(preferentially in one orientation) specified growth, showing that specified anisotropy is 

required to generate the full mature bladder shape. The shape of the main body of the 

bladder could be accounted for by both specified isotropic or anisotropic models.  I tested 

predictions on growth dynamics and polarity made by each model using sector analysis and 

by investigating markers of tissue cell polarity in bladders. Sector analysis supported an 

anisotropic specified growth model, while quadrifid gland and UgPIN1 analysis provided 

evidence of a polarity field in U. gibba. Together, these observations suggest a common 

underlying mechanism for the generation of 3D and 2D leaves. This work shows how 

computational modelling can be combined with experimentation in a biological system to 

allow for a better understanding of the specified growth patterns underlying the 

generation of an organ shape.  
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1 General introduction 

 

The diversity of organ shape is astounding: from flat outgrowths such as the wing discs of 

insects and flat leaves of plants, to complex 3D organs such as the heart or lung, 

carnivorous plant leaves, specialised flowers, and fruits. Understanding the processes 

behind the development of such diversity of forms presents one of the major questions in 

developmental biology and much work has been conducted to try to understand the 

principles and genetic interactions underlying morphogenesis (the generation of a 

particular shape). One of the main challenges associated with understanding the 

development of form is that patterns of growth are usually not intuitive. This is because the 

growth dynamics that we observe in a tissue can differ to those specified by the activity of 

genes due to the effect of tissue connectivity. 

 

We can explore growth hypotheses taking into account specified growth patterns and 

tissue connectivity using computer modelling. In the Growing Polarised Tissue Framework 

(GPT framework), a canvas represents a continuous sheet of growing tissue and differential 

growth rates can be specified (Green et al., 2010; Kennaway et al., 2011). Circular clones 

can be added that deform with the canvas as it grows, enabling different patterns of 

resultant growth (growth that occurs as a result of specified growth dynamics and the 

effect of tissue connectivity) on the final shape to be explored. In the example below, the 

circle has grown to become a lobed shape and some clones are elongated (Figure 1.1, A-B). 

We might assume, that programmed (or specified) growth was directional (anisotropic) 

such that growth rate oriented parallel with the elongation of the clones was highest. 

However, specified growth in this model was isotropic (equal in all directions) across the 

canvas. The lobed shape was generated by a higher areal growth rate at the sides of the 

canvas (Figure 1.1, C, red regions). Elongation of the clones near the middle is as a result of 

the constraints of the growing tissue which is mechanically connected. The two sides are 

unable to grow as fast as they would if they were free and unconnected, since the middle 

stripe is growing more slowly (Figure 1.1, C, blue), restricting their growth. This causes 

clones in side regions to elongate perpendicular with the central stripe of slower growth 

(Figure 1.1, B). This example illustrates how patterns of growth in 2D can be non-intuitive 

and how it is useful to distinguish between specified growth (growth which would occur if 

each region of tissue was disconnected from its neighbour) and resultant growth (emerging 
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growth that includes effects of tissue connectivity). The problem associated with trying to 

understand specified growth by observing resultant growth becomes amplified when we 

consider the development of 3D structures where there are no free edges and the role of 

tissue connectivity plays an even greater role. 

 

 

 

 

Figure 1.1: Resultant growth patterns can be non-intuitive. (A) Initial shape - a 2D circular 

canvas with circular clones marked which deform with the canvas as it grows. (B) End shape 

generated from (A) after growth. Black clones have deformed and are now elliptical near 

the middle regions of the canvas. (C) Specified areal growth rate mapped on the circular 

start shape where the factor MID (in the blue region) inhibits isotropic growth, and SIDE (in 

the red region) promotes isotropic growth. (D) Growth regulatory network (KRN) for the 

model where areal isotropic growth rate is promoted by MID and inhibited by SIDE. Models 

were generated using the GPT framework (Kennaway et al., 2011).  

 

 

Plants are a particularly good system in which to study the development of complex forms 

since, unlike animals, plant cells are held in place by rigid cell walls and therefore cells in 

growing plant tissue do not slide relative to each other during development. This provides 

us with a simplified system for studying the genetic control of shape where morphogenesis 
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can be described in terms of differential growth rates and orientations without the need to 

take cell movements and rearrangements into account (Green et al., 2010). 

 

1.1 Plant growth and morphogenesis 

 

Specified growth can be described by two main parameters: the growth rate (rate of 

expansion), and the growth anisotropy (the extent to which growth is biased in a particular 

orientation). These can be explored at a discrete, cellular level or at a continuous, tissue 

level. 

 

1.1.1 Plant growth at the cellular level 

 

At the cellular level, specified growth is driven by cell expansion. The major driving force of 

cell expansion is internal turgor pressure (Lockhart, 1965). Turgor pressure can be ten 

times the atmospheric pressure, generating high stresses in the cell walls (Boudaoud, 

2010). Elastic expansion in the cell wall occurs in response to turgor pressure and this 

becomes irreversible (plastic) by cell wall re-modelling which controls growth rate 

(Lockhart, 1965; Cosgrove, 2005). Cell wall synthesis and remodelling allow cells to increase 

in size and change shape in response to turgor pressure which acts isotropically, leading to 

isotropic expansion of cells with even mechanical properties, or anisotropic expansion of 

cells with uneven mechanical properties.  In plants, control of cell growth occurs through 

modifications of cell wall extensibility (Mirabet et al., 2011). Properties of the cell wall may 

be modified through the activity of enzymes such as expansins which loosen the cell wall 

(Cosgrove et al., 2002; McQueen-Mason et al., 1992), or pectin methylesterases (PMEs) 

which alter the rigidity of the cell wall (Bosch et al., 2005). One important property of the 

cell wall is cellulose reinforcement. Cellulose is laid down in microfibril layers by cellulose 

synthase enzymes which are associated with microtubule arrays in the cell. Cellulose 

stiffens the cell wall, enabling it to resist stress generated by the turgor pressure of the cell 

(Lockhart, 1965; Heath, 1974; Baskin, 2001). Cellulose deposition has been shown to 

restrict wall expansion in the direction of the microfibrils. Anisotropy of cell wall properties 

can therefore determine the orientation of cell growth, for example perpendicular to the 

walls with the most cellulose reinforcement (Williamson, 1990). In this way, cell wall 

stiffness and turgor pressure determine the extent and orientation of cell growth.  
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1.1.2 Plant growth at the tissue level 

 

Plant cells are connected via the cell wall matrix to form plant tissue. This means that cells 

are not free to expand independently, but are mechanically constrained by neighbouring 

cells. At the tissue level, growth of complex shapes can involve differential growth along 

axes (anisotropic growth). Anisotropic growth requires rates and orientations. Since the 

growing tissue is mechanically connected, differential growth rates and orientations of 

growth across a tissue can cause conflict between neighbouring regions, reviewed by Coen 

& Rebocho (2016 in press). This conflict generates stresses in the cell wall matrix which 

results in tissue deformations such as buckling and therefore changes in shape. Some 

aspects of this deformation in shape is a resultant property of growth and was not specified 

(Kennaway et al., 2011). This interaction between specified growth rates and orientations, 

and the resolution of tissue conflict has been explored using computational modelling 

(Green et al., 2010; Kennaway et al., 2011; Kuchen et al., 2012; Richardson et al., 2016; 

Sauret-Güeto et al., 2013). Through this modelling, growth hypotheses can be generated 

and tested in a cycle of modelling and biological experiments. This has been useful for 

exploring the major components underlying the generation of certain organ shapes and has 

been reviewed in Coen & Rebocho (2016 in press). Such work has found that growth across 

a tissue is rarely uniform, instead differing in rate and orientation across a growing tissue. 

For example, in the Arabidopsis leaf, growth rates decrease towards the distal tip and are 

higher in lateral domains compared to medial domains. Anisotropic growth was also found 

to vary during leaf development: growth is biased along the proximal-distal axis of the 

primordium at early stages, and it is biased along the mediolateral axis of the lamina at 

later stages (Kuchen et al., 2012).  

 

1.1.3 Control of growth rate 
 

As discussed above, growth rates in a developing plant tissue are controlled by turgor 

pressure and resistance of the cell wall. The balance between these factors is influenced by 

growth regulator genes which act to transcriptionally control genes, modify cell wall 

properties, or regulate growth hormones (such as auxin). The expression of these genes 

may differ across a developing tissue, generating regions which have different specified 

growth rates and orientations. These genetically specified growth rates influence how 

regions of tissue or cells would grow in isolation. However, the rate at which the tissue or 
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cells actually grow is affected by the mechanical connectivity of the tissue. Growth rates 

measured in a developing tissue should therefore be considered as resultant growth rates 

which arise as a combination of specified growth rate and the effect of mechanical 

constraints in the growing tissue. Two main types of resultant growth may be observed: 

anisotropic (directional) growth and isotropic growth (equal in all directions). Anisotropic 

resultant growth may arise through specified anisotropy or, indirectly due to conflict within 

the tissue (e.g Figure 1.1). It has been proposed that two types of signal might contribute 

towards coordinated tissue growth (Coen et al., 2004). The first are ‘regionalising’ signals 

which provide differences between regions of tissue, allowing growth rate and anisotropy 

to be regulated locally across a tissue. The second are ‘polarising’ signals which provide 

directional information to cells in the growing tissue, providing axial information so that 

growth specified in regions of tissue may occur preferentially in one orientation.  

 

1.1.4 Growth orientation 

 

For specified anisotropic growth to occur, axial information is required so that growth rates 

may be specified in orientations relative to a local axis within the tissue.  There are 

currently two main hypotheses for how growth orientation can be specified: through tissue 

cell polarity, or through stress-based axiality. 

 

1.1.4.1 Polarity-based axiality 

 

Polarity can be described as an asymmetry along an axis. Like most processes in 

development, this can be considered at the discrete, cellular level or at the continuous, 

tissue level.  

 

1.1.4.1.1 Cell polarity 

 

A polarised cell exhibits an asymmetry whereby certain molecules or structures are located 

preferentially towards one end of the cell. This can lead to aspects of the cell’s 

development or function occurring preferentially in one direction or along one axis. For 

example, in Caulobacter polar asymmetry generates different progeny (stalked or flagellum 

possessing swarmer) at each cell division, reviewed in Shapiro et al. (2002). Cells of 
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multicellular organisms may also be polarised. For example, in Arabidopsis thaliana, 

BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) accumulates in a polarised 

crescent at the cell periphery of asymmetrically dividing stomatal-lineage cells prior to 

division (Dong et al., 2009).  

 

1.1.4.1.2 Tissue cell polarity 

 

In many tissues, the polarity of individual cells is coordinated between neighbouring cells 

and with respect to the overall tissue axes. This coordination of cell polarity fields is 

referred to as tissue cell polarity and mathematically corresponds to a field of vectors 

associated with positions in space (a vector field) (Lawrence et al., 2007). This is evident in 

tissues which display an inherent directionality through polarised external features. For 

example, cells of the Drosophila melanogaster wing are polarised along the proximal-distal 

axis of the wing. This polarity is established as an asymmetric distribution of proteins early 

in wing development, leading to the development of a hair from a site at the distal end of 

each cell and a coordinated pattern of hairs across the wing which point proximal-distally 

(Strutt, 2001, 2002). A proximal-distal polarity pattern has also been observed in the 

distribution of the PIN-FORMED 1 (PIN1) protein in the epidermis of the Arabidopsis leaf 

which is localised towards the distal end of each cell (Scarpella et al., 2006). This 

coordinated PIN polarity may be responsible for specifying principle orientations of leaf 

growth, since patterns of PIN localisation in the developing Arabidopsis leaf primordium 

match polarity patterns employed in a model of leaf growth (Kuchen et al., 2012).  

 

Tissue cell polarity can also be coordinated in different layers of tissue. For example, while 

PIN1 polarity points distally in the epidermis of the Arabidopsis leaf, polarities in the sub-

epidermal cells of the developing midvein are proximally oriented (Scarpella et al., 2006; 

Wenzel et al., 2007). Roots also exhibit a complex polarity pattern, whereby PIN proteins 

are oriented towards the root tip in the central tissue, towards the shoot in the outer cells, 

and inwardly in the cells in between (Blilou et al., 2005). PIN proteins function as exporters 

of the plant hormone auxin. The coordinated polar distribution of PIN proteins in cells 

therefore allows for the polarised transport of auxin through a tissue (Wiśniewska et al., 

2006). These polarised patterns of PIN localisation are essential for plant morphogenesis 

since auxin distribution plays an important role in regulating cell fate and growth: for 

example, in the initiation of lateral organs, the control of leaf vascular patterning, and the 
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control of root development (Reinhardt et al., 2000; Scarpella et al., 2006; Overvoorde et 

al., 2010). 

 

1.1.4.1.3 The basis of tissue cell polarity coordination in plants 

 

Several models have been proposed for how tissue cell polarity may be generated with 

PIN1: the up-the-gradient model (Jönsson et al., 2006; Smith et al., 2006), the with-the-flux 

model (Mitchison, 1980; Stoma et al., 2008), and the indirect coupling model (Abley et al., 

2013). These are reviewed and explored experimentally by Abley et al (2016). In the up-

the-gradient model, PIN1 localises towards the neighbouring cell with the highest 

concentration of intracellular auxin (Jönsson et al., 2006; Smith et al., 2006; Bilsborough et 

al., 2011). Molecular mechanisms behind this model have been proposed and include a 

mechanical based polarity involving the detection of auxin-induced stress gradients which 

bias the cellular localisation of PINs (Heisler et al., 2010), and sensing of auxin 

concentration and transport using a chemical based mechanism (Cieslak et al., 2015).   

 

The with-the-flux model proposes that PIN1 becomes localised according to the rate of 

auxin efflux across the membrane (localising to the face of the cell which has the highest 

efflux) and may be coordinated across tissue based on gradients of auxin flux (Mitchison, 

1980; Stoma et al., 2008). Ways in which cells may sense auxin flux using biochemical 

circuits have been explored (Cieslak et al., 2015). However, predictions made by the model 

include a drop in intracellular auxin concentration during the formation of PIN1 

convergence points which is not supported experimentally (Heisler et al., 2005; Brunoud et 

al., 2012). 

 

An alternative is the indirect coupling model which does not require cells to respond to 

auxin gradients between cells or sense auxin flux. Instead, intracellular polarity 

components function to establish cell polarity without external asymmetries in auxin 

distribution (Abley et al., 2013). There are two polarity components in the model, each of 

which exist in two forms: the diffusible cytoplasmic form (A and B), and a more slowly 

diffusing form which is membrane bound (A* and B*). A* and B* are localised at opposite 

ends of the cell (A* promotes deactivation of B* and vice versa).  PIN1 is recruited to the 

membrane by A* which causes polarisation of PIN1. Coordination of PIN polarity across the 
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tissue occurs because the polarities of neighbouring cells are coupled indirectly using a 

feedback mechanism where extracellular auxin inhibits A* and therefore PIN1 recruitment.  

 

In each model, auxin dynamics can account for the coordination of tissue cell polarity. 

Testing the models using mutant Arabidopsis plants which develop outgrowths revealed 

that patterns of auxin production in growing leaves are more compatible with the with-the-

flux and indirect-coupling models than the up-the-gradient model (Abley et al., 2016). 

 

1.1.4.1.4 Modelling plant morphogenesis using polarity based axiality 

 

In a polarity-based axiality model, tissue cell polarity is generated through self-organising 

chemical signals, providing an underlying polarity field in the tissue. Growth rates may then 

be specified parallel and perpendicular to this field which is specified independently of 

growth. This may occur through cellular polarities influencing anisotropy of cell wall 

properties defining growth orientation. For example, microtubule alignment may be 

modified, or cell wall stiffness may be altered. Auxin is a strong candidate as the chemical 

signal (morphogen) for such a polarity system since it has been shown to be transported 

across tissue in a polar fashion, and is important in a number of developmental processes 

(outlined above). Models implementing polarity-based axiality have aided our 

understanding of development of a range of plant organ shapes such as the Arabidopsis 

leaf, Antirrhinum petal and whole flower, and Arabidopsis and Capsella fruit (Green et al., 

2010; Kuchen et al., 2012; Sauret-Güeto et al., 2013; Eldridge et al., 2016). These models 

were generated using the Growing Polarised Tissue (GPT) framework in which plant tissue 

is treated as a continuous sheet termed the canvas. A polarity field propagates through the 

canvas and may correspond to a tissue cell polarity field, although the setup of polarity in 

these models abstracts away from the cell level. Instead, a polarity regulatory network 

(PRN) is set up and defines the distribution of diffusible POLARISER (POL). POL propagates 

away from a plus organiser and towards a minus organiser, generating a gradient of POL 

which determines the polarity field (Kennaway et al., 2011). Once this polarity field has 

been set up, growth rates parallel (Kpar) and perpendicular (Kper) to the polarity field may be 

specified.   

 

Several candidate organiser genes have been proposed which may underlie this organiser-

based model. For example, the Arabidopsis leaf model has a proximal-distal polarity 
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pattern, with a plus organiser located at the base of the primordium (Kuchen et al., 2012).  

CUP SHAPED COTYLEDON (CUC) genes have been proposed to regulate this proximal-distal 

tissue polarity since CUC genes are expressed at the base of the leaf and CUC2 loss of 

function mutants show disrupted formation of PIN1 convergence points which are essential 

for serration development (Bilsborough et al., 2011). This suggests that CUC2 could 

regulate the serration formation through generating polarity along the proximal-distal axis 

of the leaf. Other candidate organiser genes include auxin importers such as AUX and LAX 

(Yang et al., 2006; Péret et al., 2012) (candidate minus organisers), and auxin biosynthesis 

genes such as YUCCAs (Cheng et al., 2006, 2007) (candidate plus organisers).  

 

Candidates for growth rate regulator genes in Arabidopsis have also been suggested. These 

include ROTUNDIFOLIA (ROT3) and ANGUSTIFOLIA (AN). Cell expansion along the proximal-

distal axis of the leaf is decreased in rot3 mutants (Tsuge et al., 1996; Kim et al., 1999), 

while cell expansion along the mediolateral axis of the leaf is decreased in an mutants, 

resulting in narrower leaves (Tsuge et al., 1996). AN and ROT3 may therefore be players in 

specifying growth rates parallel and perpendicular to the proximal-distal axis of polarity set 

up in the Arabidopsis leaf.  

 

1.1.4.2 Stress-based axiality 

 

An alternative hypothesis to the polarity-based system for the generation of tissue 

orientations is a stress-based axiality system whereby the axiality of a tissue is determined 

by the orientation of maximal stress patterns in cell walls. Mechanical stress (force per unit 

area) at a tissue level is evident when cuts are made in tissue and the edges of the tissue 

either close (the tissue was under mechanical compression), or they pull apart (the tissue 

was under tension) (Boudaoud, 2010). Mechanical stress is proposed to define axial 

information through positioning microtubules and modifying mechanical properties of the 

cell (Heisler et al., 2010). Heisler et al., (2010) proposed that mechanical signals could 

coordinate PIN1 polarities and microtubule orientations in the shoot apical meristem 

(SAM). If tissue is under directional stress, cortical microtubules will align parallel to the 

main stress orientation and resist this stress through modifying the cell walls parallel to the 

stress orientation, thus leading to anisotropic growth perpendicular to the orientation of 

the cortical microtubules. This indicates that there may be a complex interplay between 

chemical and mechanical signals during tissue growth regulation.  Stress-based axiality may 
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be set up using tissue geometry/morphology (Hamant et al., 2008), or through a 

mechanical feedback system which reads the stress generated by differential growth rates 

within a connected tissue (Hervieux et al., 2016) (detailed below). 

 

Models of organ emergence at the SAM which use geometry/morphology based stress 

patterns have been explored (Hamant et al., 2008). In such mechanical models, the 

epidermis is assumed to be under tension and the meristem is therefore modelled as a 

pressure vessel (a shell inflated by an inner pressure), and a feedback loop functions to link 

tissue morphology, stress patters, and microtubule-mediated cellular properties (Hamant 

et al., 2008). The flanks of the meristem are represented as a cylinder where stress is 

greater in the circumferential direction than along the meridian, leading to strongly 

anisotropic stress on the flanks of the meristem. Microtubule orientation in each 2D cell of 

the model is parallel with the local direction of principal stress. Stiffness of the wall 

material increases in walls parallel to the directions of the cortical microtubules. 

Microtubule direction is then updated, with microtubules aligning along the maximal stress 

direction. This introduces stress feedback into the system which is implemented as a 

weighted average of each cell’s directional wall stresses. Growth of primordia from the 

flanks of the SAM is initiated by a local decrease in cell wall stiffness which generates an 

outgrowth (Hamant et al., 2008) 

 

Mechanical stresses can also be generated through differential growth patterns and the 

resulting differences in mechanical stresses across a tissue have been hypothesised to 

orient growth. This has been explored and modelled for orienting anisotropic specified 

growth in the development of the Arabidopsis sepal (Hervieux et al., 2016). In this model, 

residual stresses are generated by differential rates of specified isotropic growth. These 

residual stresses are then proposed to feed back to reinforce tissue in the direction of the 

local stress, producing specified anisotropic growth. Simulations in this work show that 

orienting growth in this manner, using local stresses, does not produce a coherent pattern 

of orientations (Hervieux et al., 2016). Since growth is directed by residual stress patterns, 

growth feeds back to modify the stresses and therefore destabilise their orientations. To 

overcome this, simulations were run where orientations are specified by averaging the 

stress orientation across the sepal. A sensing mechanism for such averaging is not known 

and it is unclear how local and average stresses may be distinguished by cells.  
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1.1.4.3 Growth without axiality (isotropic growth) 

 

In some cases, models of morphogenesis have been explored using only isotropic specified 

growth. This is perhaps the simplest form of growth because no axial information is 

required. For example, proximal-distal growth of the chick limb bud can be modelled using 

specified isotropic growth and a gradient of areal growth rate which is highest near the tip 

of the bud. In this model, areal growth rate is proportional to the concentration of a growth 

factor which diffuses from the tip of the growing bud (at the apical ectodermal ridge, AER). 

Proximal-distal growth of the limb bud is controlled by the rate of growth factor secretion, 

diffusion, and decay, and the inhibition of growth at the AER (tip). Local growth is isotropic 

(Popławski et al., 2007). On the other hand, models exploring mouse limb bud 

development use specified anisotropic growth, matching observed local anisotropy in 

clonal analysis (Marcon et al., 2011). In this model, signals coming from the AER are 

thought to promote anisotropic behaviour rather than isotropic growth.  

 

Developmental stages of the liverwort Marchantia thallus have been captured using 

isotropic specified growth whereby a factor termed APEX is placed at apical regions and 

inhibits growth. Isotropic growth is promoted such that growth is highest in regions near to 

APEX, but inhibited at APEX itself. This model is able to capture outward expansion of the 

lobes, bifurcation, branching, apex divergence, and concave branch point formation (Solly, 

2015). A role for anisotropic growth was also explored for the generation of longer or wider 

thallus shapes such as the thinner thallus of Riccia fluitans (Solly, 2015).  

 

The modelling of these systems highlights the need to study growth patterns in the 

biological system as well as computational models when trying to understand specified 

growth patterns. Both examples here can be considered in 2D. Understanding growth 

dynamics of 3D organs requires even more careful analysis of growth dynamics due to 

further tissue connectivity and growth out of the plane. The GPT framework allows both 

isotropic specified growth models and anisotropic specified growth models to be explored 

and takes into account the connectivity of the tissue. Hypotheses on resultant growth of 

tissue can be made by studying clones induced early in the model and can be tested 

biologically. 
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1.2 Leaves as a model for plant growth and morphogenesis 

 

Leaves exhibit some of the greatest diversity of shapes, ranging from conventional flat 

leaves to complex 3D structures such as those seen in carnivorous plant traps which have 

evolved to attract and capture prey. Extensive work has been conducted to understand the 

development of flat leaves such as those of Arabidopsis. However, the development of 

complex plant shapes remains poorly understood.  Previously, the Arabidopsis leaf has 

been subjected to live tracking from early stages of development and a model has been 

generated which accounts for Arabidopsis leaf growth and development using polarity as 

an axiality system and regional factors which specify growth rates parallel and 

perpendicular to the local polarity (Kuchen et al., 2012). In this work, final leaf shape is 

determined by patterns of growth rates and orientations established early in development 

as well as resultant growth generated by a mechanically connected tissue (the details of 

which are discussed above) (Kuchen et al., 2012).  

 

A key question is whether common mechanisms underlie the generation of diverse and 

more complex forms. Perhaps some of the most complex leaf structures to consider are 

those of the carnivorous plants, whose complexity has fascinated biologists for centuries. 

Darwin was one of the earliest scientists to devote attention to their study, providing the 

first detailed description of eight carnivorous plants (Darwin, 1875). Now, more than 600 

species of carnivorous plant have been identified in four of the major angiosperm lineages 

and in five orders (Ellison & Gotelli, 2008). In some cases, similar complex forms have 

evolved independently, supporting the hypothesis that there may be simple principles 

underlying their development. For example, epiascidiate (cup or tubular-shaped) leaves of 

carnivorous pitcher plants have evolved four times independently: in the families 

Nepenthaceae, Sarraceniaceae, Cephalotaceae, and Lentibulariaceae (Lloyd, 1942; Ellison & 

Gotelli, 2008). Examples of epiascidiate leaves from each family are shown in Figure 1.2. 

Epiascidiate leaves are perhaps some of the most complex leaf shapes. In each case, the 

leaf develops to form a lidded vessel in which small prey are trapped and digested. The 

convergent evolution of epiascidiate leaves makes this complex leaf shape particularly 

applicable as a system to explore possible underlying simplicity in the generation of 

complex forms.  
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Figure 1.2: Epiascidiate (cup-shaped) leaves have evolved four times independently.  (A) 

Nepenthes maxima (Nepenthaceae), (B) Sarracenia (Sarraceniaceae), (C) Cephalotus 

(Cephalotaceae), (D) Utricularia gibba (Lentibulariaceae). A-C provided by Andrew Davis, 

JIC.  

 

 

1.2.1 The development of epiascidiate leaves in relation to flat leaves 

 

To relate epiascidiate leaf growth to our current understanding of leaf development, it is 

important to consider the relationship between conventional flat leaves such as those from 

Arabidopsis or Antirrhinum and 3D epiascidiate leaves. During conventional flat leaf 

development, leaf founder cells are specified on the flanks of the SAM and transform into 

the leaf primordia which undergo an elaborate developmental program to give rise to a 

fully formed leaf (Byrne, 2012). During development, three axes of polar growth are 

established; the proximal-distal axis (from the base to the tip of the leaf), the medial-lateral 

axis (from the midvein to the margin of the leaf), and the adaxial-abaxial axis (ad-ab), (from 

the upper, or ventral to the lower, or dorsal side of the leaf) (Byrne, 2012). The 

establishment of this third axis (ad-ab) has been studied extensively and we now have an 

understanding of the gene regulatory network (GRN) involved in establishing a leaf lamina 

which is flattened in the transverse plane and exhibits distinct adaxial and abaxial surfaces. 

This is reviewed in Townsley & Sinha (2012) and Yamaguchi et al (2012). Ad-ab polarity is 

established very early, before the leaf primordia begins to grow out, such that the adaxial 

domain is established on the side of the primordium closest to the SAM (Townsley & Sinha, 

2012). Early work on potato and tomato suggested that ad-ab specification was required 

for lamina outgrowth, since the loss of adaxial identity through separation of the leaf 

primordia and SAM restricted lamina outgrowth and generated radial leaves (Reinhardt et 
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al., 2005; Sussex, 1951). These findings have been supported by the study of mutants 

lacking genetic specification of adaxial and abaxial identity. One of the first genes identified 

for its role in ad-ab identity was the PHANTASTICA (PHAN) gene of Antirrhinum majus 

(Waites & Hudson, 1995). The leaves of phan mutants display a range of morphologies 

including radially-symmetrical leaves which have a complete lack of adaxial identity and fail 

to expand laterally, suggesting that PHAN promotes leaf adaxial identity and that the 

juxtaposition between adaxial and abaxial identities promotes lamina outgrowth (Waites & 

Hudson, 1995). This work paved the way for the characterisation of many genes involved in 

the establishment of ad-ab identity in the Arabidopsis leaf which is now understood to be 

controlled by a GRN involving transcription factors, small RNAs and other regulatory genes 

(Townsley & Sinha, 2012; Yamaguchi et al., 2012). In Arabidopsis the main regulatory genes 

include the adaxial specifying ASYMMETRIC LEAVES 1 (AS1), ASYMMETRIC LEAVES 2 (AS2), 

and class III HOMODOMAIN-LEUCINE ZIPPER genes (HD-ZIPs), and the abaxial fate 

promoting KANADIs and YABBYs (Townsley & Sinha, 2012; Yamaguchi et al., 2012). 

 

It is It is generally thought that the inner surface of the epiascidiate leaf is equivalent to the 

adaxial surface of a conventional flat leaf while the outside is equivalent to the abaxial 

surface (Arber, 1941; Franck, 1976; Fukushima & Hasebe, 2014; Lloyd, 1942). A number of 

theories have been proposed for the development of Nepenthes pitchers and their 

structural relationship to a conventional flat angiosperm leaf (Franck 1976). A popular 

theory which attempts to account for all epiascidiate leaves is the modified peltation 

theory. This theory makes correlations between epiascidiate leaves and peltate leaves 

which both consist of a base and a petiole with is attached to the lamina at a point away 

from the lamina margins (Franck, 1976). In this theory, the initial primordia of peltate and 

epiascidiate leaves are assumed to be similar and epiascidiate leaves acquire their tubular 

shape through specific patters of tissue growth, starting with the formation of an adaxial 

outgrowth (the querzone), followed by a secondary adaxial growth which gives rise to the 

lid. An apex remains in a dorsal position and is thought to give rise to the spur. 

Interpretations of this theory are shown in Figure 1.3 and are reviewed in Franck (1976). 

Using this hypothesis, we may consider the opening (or mouth region) of epiascidiate 

leaves as being equivalent to the margin of a conventional flat or peltate leaf. 
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Figure 1.3: Illustration of the modified peltation theory for the development of 

epiascidiate leaves.  Diagrams represent longitudinal sections of developing primordia. (A) 

Initial leaf primordium. (B) Formation of a peltate leaf through the growth of an adaxial 

outgrowth termed the querzone (QZ). (C) Modified peltation giving rise to a tubular 

epiascidiate leaf through the growth of the querzone followed by the generation of a lid (D) 

through a secondary adaxial outgrowth.  SA, shoot apex. Drawings are adapted and 

interpreted from Franck (1976). 

 

 

Studies on the development of Darlintonia californica (Sarraceniaceae family) epiascidiate 

leaves, showed that the primordium does develop an adaxial outgrowth (the querzone) 

which grows upwards to form a tube (Franck, 1975). A similar querzone (referred to as a 

cross zone) forms during primordial stages of development in the peltate leaf of 

Tropaeolum majus (Gleissberg et al., 2005). During the early stages of T. majus 

development, the abaxial identity gene TmFIL (FILAMENTOUS) (a YABBY transcription 

factor) is expressed in a narrow band on the adaxial side of the primordium, coinciding with 
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the formation of the querzone/ cross zone (Gleissberg et al., 2005). This suggests that 

evolution of the peltate leaf form may be associated with localised derepression of YABBY 

abaxial identity genes in the adaxial side of the primordium. More recently, this idea was 

explored in the development of epiascidiate leaves in Sarracenia purpurea where the 

spatiotemporal expression of abaxial FIL and adaxial PHB (PHABULOSA) (a HD-ZIPIII 

transcription factor) were explored (Fukushima et al., 2015). The primordia of S. purpurea 

begins in a similar fashion to that discussed above, starting as a relatively flat structure and 

then forming a cross zone which connects both sides of the leaf margin (Fukushima et al., 

2015). Unlike the expression patterns observed in Tropaeolum, SpFIL and SpPHB expression 

patterns were indistinguishable between the cross zone and more distal regions of the 

young leaf, and it was suggested that development relied on cell division planes rather than 

modified expression patterns of surface identity genes (Fukushima et al., 2015). Since only 

one epiascidiate leaf example has been examined in such a way, it is difficult to rule out the 

importance of ad-ab identity genes in generating the epiascidiate form or the likelihood of 

the modified peltation theory. 

 

To date, most theories have focussed on the primordial stages of epiascidiate leaf 

development and morphological events after this point have not been addressed in detail. 

To fully understand the development of epiascidiate leaves, we need to apply imaging, 

molecular genetics, and modelling methods to the morphogenesis of these complex 3D 

structures at various stages of development. One aim of this work is therefore to establish 

a new model system for the study of complex leaf shapes which can be studied through 

development from early stages to maturity. Out of the four examples of epiascidiate leaf 

evolution, the genus Utricularia (belonging to the family Lentibulariaceae and the order 

Lamiales) presents us with a promising system for study due to a number of qualities.  

 

1.3 Exploring Utricularia  
 

The genus Utricularia, commonly known as the bladderworts, is made up of over 200 

species which are spread worldwide (Lloyd, 1942; Taylor, 1994). Bladderworts are aquatic 

or terrestrial plants which lack roots and obtain their nutrition through capturing live prey 

in epiascidiate leaf traps known as bladders (Taylor, 1994; Vincent et al., 2011). Unlike most 

angiosperms, Utricularia species do not exhibit clearly defined stems, roots and leaves with 

predictable positional relationships to each other (Lloyd, 1942; Taylor, 1994; Chormanski & 



General introduction 

17 
 

Richards, 2012; Rutishauser, 2015). Rather, the main vegetative body of Utricularia species 

is made up of long, branching, stem-like structures referred to as stolons. In aquatic species 

such as U. gibba, these structures grow as dense, floating mats (shown in Figure 1.4, A) 

with other structures such as bladders and leaves, sometimes referred to as ‘leaf like 

structures’ (LLS) (Chormanski & Richards, 2012; Taylor, 1994). The leaves show 

dichotomous branching, sometimes branching twice. Bladders are sometimes formed on 

the leaves and may be associated with a single leaf or two. In some aquatic species, the 

bladders begin their development within the circinnate apex of the stolon (Figure 1.4, B) 

Inflorescences are produced on the floating matt of stolons, and project above the water 

(Figure 1.4, D). 

 

 

Figure 1.4: Utricularia gibba floating aquatic plant morphology.  (A) Vegetative body made 

up of branching stolons (St) which possess bladder traps (Tr) and leaf like structures (LLS). 

(B) Circinnate apex with young developing bladders (arrow). (C) U. gibba bladder. (D) U. 

gibba flower. Images by (A) Karen Lee, (B) Patrick Diaz, and (D) Andrew Davis.  

 

 

1.3.1 Utricularia gibba as a potential model species 
 

Utricularia offers a number of advantages as a potential model system for the study of 

morphological complexity and diversity. Utricularia represent one of the four cases where 

epiascidiate leaves have evolved. Unlike other epiascidiate leaves, the traps of Utricularia 
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are small and transparent making them amenable to imaging by confocal microscopy or 

optical projection tomography (OPT) (Lee et al., 2006). The walls of the bladders are also 

only two cells thick (Rutishauser & Brugger, 1992) which simplifies analysis. Using these 

imaging techniques on the bladders of Utricularia, preliminary work in our lab has revealed 

their overall 3D morphology as well as cellular details such as quadrifid glands on the inner 

(adaxial) surface. The bladders appear soon after germination which means that large 

numbers of plants could potentially be screened on plates for mutants. Utricularia gibba, in 

particular, has the second smallest genome known in angiosperms, with an estimated size 

88 Mb (Greilhuber et al., 2006) compared to 157 Mb for Arabidopsis. This small genome 

could allow whole genome sequencing for the isolation of genes identified by mutant 

screening to be carried out. U. gibba has a chromosome number of 2n=14, diploid, allowing 

for traditional genetic studies (Rahman et al., 2001). Furthermore, U. gibba is an aquatic 

species which is easily grown and propagated in culture and can flower in the glasshouse. 

 

1.3.2 Utricularia bladder development and morphology  

 

1.3.2.1 Mature bladder morphology 

 

The mature bladders of Utricularia species consist of a vessel shape with a lid that functions 

as a trap door. In aquatic species, the trap mechanism works via suction and has two 

phases: in the first phase, glands actively pump water out of the trap lumen, leading to a 

lower internal hydrostatic pressure. At this point the bladder has concave walls and the 

trap door (with its trigger hairs) is closed to keep the entrance watertight. When a small 

animal brushes past the trigger hairs (connected to the lid/ trap door) the lid is triggered to 

open, leading to the second phase: the bladder wall relaxes and prey is passively sucked in, 

followed by the closing of the trap door and the digestion of prey with the aid of digestive 

enzymes secreted by internal quadrifid glands (Vincent et al., 2011).  

 

Utricularia species show a wide range of mature bladder morphologies. The hollow traps 

have been described as either globose or ovoid, they may be stalked or sessile and can vary 

largely in the position of the opening or mouth region relative to the stalk: the mouth may 

be basal (adjacent to the stalk), terminal (opposite to the stalk), or lateral (in an 

intermediate position) (shown in Figure 1.5). Different species also exhibit varied dorsal, 



General introduction 

19 
 

lateral or ventral appendages, usually near the mouth region (Taylor, 1994; Rutishauser, 

2015).  

 

 

Figure 1.5: Trap diversity in Utricularia species.  (A) U. praelonga which exhibits a basal 

mouth. (B) U. gibba which exhibits a lateral mouth. (C) U. bisquamata which exhibits a 

terminal mouth. Scale bars are 500 µm. All bladders were imaged using optical projection 

tomography (OPT) and images are courtesy of Karen Lee. 

 

 

Specifically, U. gibba bladders (Figure 1.5, B) are ovoid, stalked and have a lateral mouth 

with two larger dorsal, branched appendages (antennae), and further dorsal, lateral, and 

ventral smaller appendages (Taylor, 1994). A mature U. gibba bladder is shown in various 

perspectives in Figure 1.6. Here the stalk and mouth regions (Figure 1.6, green region and 

pink arrow) are shown as well as the threshold region just below the mouth (Figure 1.6, 

purple), and the trap door and associated trigger hairs (Figure 1.6, orange and red). The 

majority of the bladder is two cells thick, apart from the threshold region which is situated 

just below the mouth opening and consists of several cell layers (Rutishauser & Brugger, 

1992). 
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Figure 1.6: Utricularia gibba bladder morphology.  Mature U. gibba bladder (A) side, (B) 

side section, (C) top, (D) entrance to the trap. Labels are stalk (st, green), mouth (Mth, pink 

arrow) antennae (a, blue), door (d, orange), threshold (thr, purple), and trigger hairs (t, 

red). Yellow structures are pyriform glands. Bladder was fixed and stained with propidium 

iodide and imaged using OPT (imaged by Karen Lee). Scale bar is 250 µm. 

 

 

1.3.2.2 Early stages of Utricularia bladder development 

 

In many aquatic species, such as U. gibba, the early stages of bladder development occur 

within the circinnate apex. This means that the bladder primordium is hidden from view 

and the youngest stages of bladder development are obscured by a spiral of stolon tissue 

(Chormanski & Richards, 2012) making the characterisation of early stages and the 

primordia difficult. The early stages of several terrestrial and aquatic species have been 

imaged using scanning electron microscopy by Rutishauser & Brugger (1992). From their 

images it appears that the Utricularia bladder primordium begins as an outgrowth similar in 

appearance to a conventional flat leaf primordium, and then forms an invagination that 

produces the lumen. However, the stages captured by Rutishauser & Brugger are few for 

each species and it is difficult to say whether the different species are similar in their 

developmental morphology. For example, the primordial stage of the terrestrial species U. 
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alpine is described as well as a later stage with the initial formation of the invagination for 

terrestrial U. livida. However, it is unclear how these stages may relate to one another 

(Rutishauser & Brugger, 1992).  

 

No primordial stages of U. gibba have been described, possibly due to difficulties in imaging 

within the circinnate apex. Perhaps the most complete study of Utricularia bladder early 

development to date is presented in Meierhofer’s study from 1902 (Meierhofer, 1902). In 

this work, the early stages of aquatic U. vulgaris bladders which appear to develop outside 

of the circinnate apex, are illustrated in cross section. These cross sections show the growth 

of a querzone and formation of a lid, reminiscent of the modified peltation theory 

discussed above. A compilation of drawings adapted from Meierhofer (1902) is shown 

below  (Figure 1.7).  

 

 

 

 

Figure 1.7: Early stages of bladder development interpreted from Meierhofer (1902). Side 

sections of U. vulgaris bladders at various developmental stages. (A) Primordium with the 

initial formation of the querzone (Qz). (B) Formation of the hollow mouth region. (C-D) 

continued growth of the querzone and arching of the distal tip. (E) Formation of the lid/ 

trap door (d). Drawings are adapted from Meierhofer (1902).   

 

 

Studies to date provide an overview of the developing plant and bladder with no time 

series of development and no information on the later shape changes that occur during 

bladder development. Such information will be required to gain an understanding of the 

growth dynamics of the Utricularia bladders. There are also no studies performed on the 

earliest stages of aquatic species where bladders develop within the circinnate apex as in 

U. gibba. With modern methods such as confocal microscopy, it should be possible to 

investigate bladder stages which are within the circinnate apex and confirm the 

morphology of these stages. 
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1.4 The aim of this work 

 

This work aims to explore underlying principles of tissue growth in the generation of 3D 

complex forms. Specifically, with regards to isotropic or anisotropic specified growth 

patterns. This work will take an integrative approach using computational modelling, 

molecular genetic studies, and imaging techniques to characterise the developmental 

stages of the U. gibba bladder, and generate and test hypotheses on how shape transitions 

in the bladder can occur. In this context the project has a number of goals: 

 

1. To produce a detailed description of developmental stages of U. gibba bladder 

development and the shape transitions that occur. 

 

2. To generate computational models accounting for the main transitions in bladder 

shape, exploring specified isotropic and specified anisotropic growth. 

 

3. To test predictions on resultant growth rates and orientations made by the models 

to arrive at an understanding of specified growth patterns underlying U. gibba 

bladder development. 

 

4. To explore the role of tissue cell polarity in U. gibba bladder development. 

 

5. To develop U. gibba as a model system to explore the morphogenesis of complex 

leaf shape. This will involve optimising growth and life cycle conditions, protocols 

for forward and reverse genetics, and generating resources such as a fully 

sequenced genome and mutant populations. 
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2   Bladder developmental dynamics 
 

2.1 Introduction 

 

2.1.1 Utricularia bladder development 
 

The Utricularia gibba bladder meristem starts its development within the circinnate apex of 

growing stolons and the first stages of morphogenesis occur while the bladder is wrapped 

up in this spiral of tissue. Existing studies on U. gibba morphology have focussed on mature 

bladders (Poppinga et al., 2015) and any studies of younger bladders have relied on 

scanning electron microscopy (SEM) (Rutishauser & Brugger, 1992) and are limited in the 

case of U. gibba since the very early stages of bladder development occur when bladders 

are wrapped in tissue and not accessible to view (Chormanski & Richards, 2012). This has 

meant that the internal morphology and bladder shape changes through development 

have not been described in detail. In this work I aim to study the morphology and shape 

changes that occur during bladder development in time and space. This will allow me to 

generate theoretical models of U. gibba bladder development that capture the shape 

changes observed.  

 

2.1.2 Specified growth versus resultant growth 

 

The final shape of an organ is often not a direct readout of local properties specified by 

patterns of gene activities. Instead, tissue deformation also depends on mechanical 

constraints from neighbouring regions of tissue (Kennaway et al., 2011). It is therefore 

difficult to intuitively understand how patterns of gene activity relate to the final form of an 

organ. In order to consider this relationship, it is useful to distinguish between two types of 

growth: specified growth and resultant growth. Specified growth describes the growth that 

would occur if each region of tissue grew in isolation. Resultant growth describes the 

growth observed in mechanically connected tissue (which grows with mechanical 

constraints of neighbouring regions) (Kennaway et al., 2011). This is true in both plants and 

animals: models dealing with Drosophila embryo invagination make a similar distinction, 
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considering the total deformation as imposed active deformation combined with elastic 

passive deformation (Conte et al., 2008).  

2.1.2.1 Growth rates and orientations 

 

Specified and resultant growth can each be either isotropic (equal in all directions) or 

anisotropic (where growth rate is higher in one orientation). Resultant anisotropic growth 

can be generated by either isotropic or anisotropic specified growth. This was studied at 

the single cell level by Green (1965). Here, Green showed how a similar change in form 

from a cylinder to a flaring cylinder may be generated in two ways (Figure 2.1). In the first 

instance specified growth is isotropic and there is a gradient in areal growth rate where 

growth rate is highest at the top of the cylinder and lowest at the bottom (Figure 2.1, A). In 

the second instance, there is a gradient of specified anisotropic growth in which growth in 

height is greatest at the base and growth in width is greatest at the top (Figure 2.1, B). The 

final shape achieved in each case is very similar (both are flared cylinders). Clues to the 

specified growth pattern can be found by looking at the resultant growth of each segment 

of the shape. In the specified isotropy example, segments maintain their proportions but 

are larger at the top, getting smaller towards the base (Figure 2.1, A). In the specified 

anisotropy example, segments near the bottom are taller, while segments near the top are 

shorter and elongated (Figure 2.1, B). This means that resultant growth dynamics observed 

in a tissue can provide information about specified growth (Green, 1965). This work 

highlights the fact that there are multiple ways of specifying growth to produce a similar 

final shape. When trying to understand the specified growth pattern of a given form, it is 

therefore important to consider multiple specified growth patterns and make predictions 

that can distinguish between them.  
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Figure 2.1: Resultant anisotropic growth generated from specified isotropic growth and 

specified anisotropic growth.  Illustration of how a change in shape may be generated 

through (A) specified isotropic growth with a gradient in specified areal growth rates (red), 

or (B) specified anisotropic growth with gradients in specified anisotropy (blue and green 

gradients). Blue and green lines in (B) indicate the orientation in which specified growth 

rate is highest in each gradient: growth in height is greatest at the base, growth in width is 

greatest at the tip. (Green, 1965). 

 

 

2.1.2.2 The role of conflict resolution in development 

 

To understand development at a tissue level, it is important to consider the effect of tissue 

connectivity on resultant growth.  Three types of tissue interactions which can give rise to 

resultant anisotropic growth and 3D deformations have been described and modelled. 

These are reviewed in Coen & Rebocho (2016 in press) and are outlined in Figure 2.2.  
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Figure 2.2: Generation of tissue deformations through different tissue conflicts.  (Ai-Aii) 

Areal conflict. (Ai) Specified growth is isotropic and growth rate is highest in the centre of 

the square. (Aii) Final shape generated. Box shows zoomed in regions for clone size 

comparison. Clones are larger near the centre and smaller around the outside. (Bi-Bii) 

Surface conflict. (Bi) Specified growth is isotropic, and growth rate on the top surface is 
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higher than the bottom surface. (Bii) Clones on the final shape are equal in size across the 

top surface, and are smaller on the bottom surface (seen in cross section inside the black 

box).  (Ci-Cii) Directional conflict. (Ci) Specified growth is anisotropic: growth is specified 

parallel with the polarity in the purple region, and perpendicular to the polarity in the 

orange region. (Cii). Clones on the final shape are elongated parallel with the orientation of 

highest growth rate in regions of specified anisotropic growth. Clones in between these 

regions are elongated in the opposite orientation. Images provided by Xana Rebocho. 

 

 

The first type is areal conflict. Here, specified growth is isotropic and areal growth rates 

differ across the initial shape (growth rates are highest in the centre). This gives rise to a 

dome due to different regions trying to grow at different rates. This is reflected in the size 

of clones induced at the start of the model which are larger in the centre and smaller 

around the outside (Figure 2.2, A). The second type is surface conflict where specified 

growth is still isotropic, and this time growth on the top surface is higher than the bottom 

surface. This generates a dome due to the interaction between two connected surfaces 

growing at different rates. Here, clones are equal in size across the top surface, and are 

smaller on the bottom surface (Figure 2.2, B).  The third type is directional conflict whereby 

specified growth is anisotropic and different regions are specified to grow in opposite 

orientations. Clones are elongated parallel with the orientation of highest growth rate in 

regions of specified anisotropic growth. Clones in between these regions are elongated in 

the opposite orientation due to these regions being pulled by the faster growing lines of 

specified anisotropy (Figure 2.2, C).  In each case, the final dome shape is generated 

through the resolution of conflicts generated by different regions of tissue exhibiting 

different patterns of specified growth.  

 

This understanding of the relationship between specified and resultant growth is important 

for understanding the morphogenesis of plant tissue. Directional conflict has been found to 

play a key role in the development of the Antirrhinum palate where opposite orientations 

of anisotropic growth lead to a deformation of tissue out of the plane (Rebocho et al., 2016 

submitted) .  Areal conflict may be in play when auxin is applied to the margin of a leaf, and 

specified growth rate at the margin is higher than that at the centre of the leaf. This causes 

a wavy edge to emerge through the interaction between specified growth and the 

constraints of the connected tissue (Eran et al., 2004).  
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Anisotropic specified growth is more complicated than isotropic specified growth, since in 

the case of specified isotropic growth, genes need only control the local growth rate. 

However, for anisotropic specified growth to occur, orientations are also required 

(Kennaway et al., 2011). Since similar shapes can often be accounted for through specified 

isotropic growth or specified anisotropic growth, a key question is whether specified 

anisotropy and therefore axiality is required for the development of a given organ. 

 

2.1.3 Understanding morphogenesis and growth through modelling 

 

The relationship between patterns of specified growth and resultant growth are usually not 

intuitive. It is therefore useful to explore hypotheses in a modelling environment and 

generate predictions which can be tested in the biological system. The modelling 

framework GFtbox (Kennaway et al., 2011) allows the exploration of tissue growth and 

deformation to be explored through the interaction of specified growth patterns and 

resultant growth generated through the interaction between regions of connected tissue. 

This framework has provided a means to test hypotheses and explore genetic control of 

organ shape in a number of organs including the Antirrhinum flower (Green et al., 2010), 

the Arabidopsis leaf (Kuchen et al., 2012) and petal (Sauret-Güeto et al., 2013), fruit shape 

in Arabidopsis and Capsella (Eldridge et al., 2016), and the maize leaf (Richardson, 2015). 

 

GFtbox uses polarity as a working hypothesis for the setup of tissue axiality, thereby 

allowing isotropic and anisotropic growth hypotheses to be explored. It also allows a 

number of testable predictions to be made by studying the shape and size of clones 

induced before growth. These can be compared to biological data to assess hypotheses on 

specified growth patterns based on observations made on resultant growth (Kuchen et al., 

2012; Sauret-Güeto et al., 2013; Eldridge et al., 2016). 

 

In this framework, tissue is treated as a continuous sheet termed the canvas. Regional 

factors can be expressed across the canvas and can interact and propagate. Local growth 

rates can be specified by regional factors across the growing canvas. Axial information may 

be provided by a polariser regulatory network (PRN) which generates a polarity field via 

signals propagating through the canvas. This signal is anchored by tissue polarity organisers 

(polarity points away from + organisers and towards – organisers). Anisotropy can be 

introduced by specifying growth rates parallel (Kpar) and perpendicular (Kper) to the local 
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polarity through a growth regulatory network (KRN). Elasticity theory is used to compute 

the deformation of the canvas. As growth occurs through a series of small deformations, 

stresses are generated in the canvas (Kennaway et al., 2011). This allows the canvas to 

deform in response to conflicts generated during growth which can lead to anisotropic 

resultant growth even when specified growth is isotropic. This means that resultant growth 

can be studied across a canvas with mechanical constraints that can deform in 3D. 

Resultant growth of the canvas therefore depends on a combination of specified growth 

patterns and the constraints of mechanically connected tissue. Shape deformations and 

local growth rates can therefore contain features (e.g. rotations and curvature) which were 

not specified, since they are the result of the conflict caused by the interaction between 

local growth rates with the constraints of a connected tissue. 

 

2.1.4 Aim of this work 
 

The aim of this work is to characterise stages during U. gibba bladder development, to 

explore the principles of bladder morphogenesis using computer modelling, and to make 

key predictions of the mechanisms underpinning bladder morphogenesis based on models 

generated. 

 

2.2 Results 
 

2.2.1 Bladder developmental stages 
 

To investigate the early stages of U. gibba bladder development when the bladders are 

inside the circinnate apex (Figure 2.3, A), I fixed and stained several circinnate apices with 

propidium iodide and imaged them using confocal microscopy (Figure 2.3). The primordium 

is a flattened structure which looks similar to an Arabidopsis leaf primordium except for a 

small invagination which begins to form (Figure 2.3, Bii, yellow arrow). This invagination 

progresses to give rise to a flattened sphere-like bladder which is circular from the front 

and flattened from the side (Figure 2.3, C). At later stages this flattened sphere transforms 

into a shape resembling a squashed capsule or ‘caplet’ shape which appears as a horizontal 

oval from the front and as a vertical oval in side section (Figure 2.3, D). The transition to 

this caplet shape from bladder initiation is difficult to study in real time since the circinnate 
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apex masks these early stages of development, making them difficult to track.  However, 

from still images we can see how the bladder progresses through development with 

invagination and the formation of a trap door and antennae (Figure 2.3, orange), and 

threshold (Figure 2.3, pink) from the rim generated at the primordium. This is similar to 

observations made in Utricularia vulgaris over 100 years ago by Meierhofer (1902).  

 

 

 

Figure 2.3: Early stages of U. gibba bladder development in the circinnate apex.  (A) 
Circinnate apex with young bladder visible (red arrow). (B) Bladder primordium viewed 
from the side (Bi) and front oblique (Bii) in which the invagination has started to form 
(yellow arrow). (C) Young bladder after invagination (yellow arrow) viewed from the front 
(Ci) and in side section (Cii). (D) Young bladder after the formation of the trap door and 
antennae (orange) and threshold (pink) regions, viewed from the front (Di) and in side 
section (Dii). (E) Series of young bladders in side section showing some of the key 
developmental transitions including the development of the trap door and antennae 
(orange) and threshold regions (pink). Regions in (E) are marked based on appearance 
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alone and are not an indication of cell divisions in the region. (A) Scale bar is 100 µm. (B-D) 
Scale bars are 10 µm. (E) Bladders are not to scale. (B) and some sections from (E) were 
imaged and processed by Christopher Whitewoods.  
 

 

Once the circinnate apex has uncurled, bladders continue to grow and deform, eventually 

reaching maturity (Figure 2.4). To assign stages to bladder development I took the 

maximum size of a mature bladder based on its length from antennae to the furthest point 

on the back (1400 µm) and then assigned stages in increments of 1.5 fold smaller than this, 

giving size categories of 1400 µm, 933 µm, 622 µm, 415 µm, 277 µm, 185 µm, 123 µm, 82 

µm and so on. I allowed +/- 20 % of the value for each category based on bladder length. I 

found that the smallest bladders outside of the circinnate apex fell into the 185 µm 

category. Before this stage, bladders of U. gibba are within the circinnate apex. A 

convenient starting point for my analysis is when the bladders are within the 82 µm length 

category, (e.g. Figure 2.3, D). At this stage, invagination has occurred so that the bladder is 

hollow, internal biological landmarks (such as the trap door) have formed and useful 

external biological landmarks have started to form (such as the antennae).   

 

 

Figure 2.4: Utricularia gibba bladder developmental series.  Bladders staged using 1.5 fold 

decrease from maximum bladder length of 1400 µm (antennae to furthest point at the 

back) +/- 20 %. Stages 185 µm – 1400 µm are found on stolons out of the circinnate apex. 

The 82 µm stage (before the pink line) is found within the circinnate apex. Scale bar is 200 

µm. All bladders imaged using confocal microscope. Stages 185 µm-1400 µm are transgenic 

GFP line. 82 µm stage bladder is fixed and stained with propidium iodide.  

 

 

To assign times to these bladder stages and to calculate how long bladder development 

from the 82 µm stage takes, I tracked the growth of bladders daily until they reached 

maturity (Figure 2.5, A). Measurements were made from the antennae to the furthest point 
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on the back of the bladder (bladder length) (Figure 2.5, B, yellow line). As the starting size 

of each bladder was different, I used the length measurement to place each data set on a 

normalised timescale of development. I used the length measurements from one sample as 

a reference and then aligned each subsequent data series to this reference based on the 

starting length (maintaining the original time interval). I plotted the natural log of bladder 

length against time and fitted a line to the points before the plateau (up to 192 hours) 

(Figure 2.5, D). I shifted all times by 96 hours so that I could extrapolate back from my data 

to give an estimate time for younger bladders developing within the circinnate apex 

(assuming the growth rate is approximately equal throughout development). The gradient 

of the graph gives a growth rate of 1.6 % per hour which is similar to that observed for 

Arabidopsis leaf development (Kuchen et al., 2012). I was able to stage any given bladder 

size using the equation x = (y-c)/m where x is the value on the x axis, y is the value on the y 

axis, c is the y intercept, and m is the gradient. For example, the estimated time point for 

an 82 µm bladder based on this measure of length is 36 hours (Figure 2.5, D, red dotted 

line). It therefore takes approximately 170 hours for the bladder to fully develop from the 

82 µm stage, through which time, the bladder increases by over 17 times in length.  
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Figure 2.5: Bladder growth analysis.  (A) U. gibba stolon embedded in low melting point 

agarose with free stolons and bladders for growth tracking (black dotted boxes). Start and 

end represent a difference in 72 hours in this example (scale bars are 5 mm). (B) Close up 

of bladder seen in (A) at the start and end of tracking (scale bars are 500 µm). (C) 82 µm 

stage bladder viewed from the side (scale bar is 50 µm). All yellow lines show where the 

length measurements were taken (from the antennae to the furthest point at the back). (D) 

Natural logarithm of bladder length against time and fitted line on points before the 

plateau. The gradient of the line is the bladder relative growth rate in length (1.61 % per 

hour). The red triangle and dotted line gives the calculated position of an 82 µm stage 

bladder based on the extrapolation of the graph. An R2 value for the graph is also shown (R2 

= 0.9282) and gives a statistical measure of how close a regression line fits the data (R2 = 1 

indicates a perfect fit). 
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2.2.2 Characterising bladder shape change 
 

To study bladder development from the 82 µm stage to maturity in more detail, I looked at 

bladder shape change in cross sections from the front, top, and side of fixed samples using 

optical projection tomography (OPT) and confocal microscopy (Figure 2.7). The shape of 

these fixed samples reflects bladder shape in the absence of any negative pressure which 

would have been present in live specimens at later stages. This is most notable in views 

from the top where bladder walls appear convex at later stages as opposed to their 

concave appearance when the trap is set under negative pressure (it is not clear when this 

negative pressure is generated during development). Therefore, fixed samples are 

comparable to bladders in the triggered state. I made the cross sections consistent 

throughout bladder stages by always cropping to biological landmarks: front sections were 

made by cropping parallel to the stalk, from the mouth back to where the stalk intersects 

the bladder. Top sections were made perpendicular to the stalk and down to where the 

trap door of the bladder became visible. Side sections were made by cropping to the 

bladder midvein (Figure 2.6). 
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Figure 2.6:  Clipping planes used to study U. gibba bladders in cross section. Mature 

bladder with clipping planes indicated for a (A) front section, (B) top section, and (C) side 

section. Green indicates the volume left after clipping. Red indicates the volume clipped 

away. Yellow boxes indicate the clipping planes. Scale bar is 550 µm. 
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Figure 2.7: Utricularia gibba bladder shape through development.  U. gibba bladders in 

cross section from the front, top, and side. Front sections were made parallel to the stalk 

up to the stalk intersect. Top sections are down to the trap door and perpendicular to the 

stalk. Side sections are to the midvein. All bladders were fixed and stained with propidium 
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iodide. (A-D) Imaged using confocal microscopy (Scale bars are 50 µm). (E-F) Imaged using 

optical projection tomography (OPT) by Karen Lee (scale bars are 100 µm).  

 

In front section, bladders transition from an ellipse that is wider than it is tall to an ellipse 

that is taller than it is wide (Figure 2.7, left column). At the 82 µm stage, bladder width is 

approximately 25 % greater than bladder height. By maturity, bladder height is 

approximately 42 % greater than width.  I plotted the natural logarithm of bladder width 

against the natural logarithm of bladder height during bladder development and found that 

the gradient of the line was 1.29, showing that growth rate in height is about 130 % of the 

growth rate in width (Figure 2.8, B).  

 

Cross sections from the top of bladders at different stages show a transition in shape from 

an ellipse which is wider than it is deep to an ellipse which is deeper than it is wide (Figure 

2.7, middle column). At the 82 µm stage, bladder width is approximately 56 % greater than 

bladder depth. By maturity, bladder depth is approximately 83 % greater than width. I 

plotted the natural logarithm of bladder width against the natural logarithm of bladder 

depth during development and found that the gradient of the line was 1.47, showing that 

growth rate in depth is about 150 % of the growth rate in width (Figure 2.8, D).  
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Figure 2.8: Bladder growth in height, weight, and depth.  (A) Bladder viewed in cross 

section from the front at the 82 µm and 933 µm stage. Lines indicate how measurements 

were made for bladder height (blue line), and bladder width (orange line). (B) Natural log of 

bladder height plotted against the natural log of bladder width. The gradient of the fitted 

line is 1.29, showing that growth in width is less than in height. For comparison, there is a 

fitted line with a gradient of 1 (dotted green). (C) Bladder viewed in cross section from the 

top at the 82 µm and 933 µm stage. Lines indicate how measurements were made for 

bladder depth (pink line) and width (orange line). (D) Natural log of bladder depth plotted 

against the natural log of bladder width. The gradient of the fitted line is 1.47, showing that 

growth in width is less than in depth. For comparison, there is a fitted line with a gradient 

of 1 (dotted green). Bladder images are of fixed tissue stained with propidium iodide (82 

µm stage was imaged using confocal microscopy and the 933 µm stage was imaged using 

OPT by Karen Lee). All scale bars are 100 µm. 
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From the side, bladders start as vertical ellipses in cross section and become more 

elongated through development (Figure 2.7, right column). This elongation reflects the 

increase in bladder depth as well as a change in the position of the mouth relative to the 

stalk. At early stages of development, the stalk and mouth are in close proximity (Figure 

2.9, A). As the bladder develops, the stalk and mouth regions become further and further 

apart until the mouth is at roughly 90 ᴼ to the stalk (Figure 2.9, F).  

 

 

 

Figure 2.9: Stalk and mouth positions through development of the U. gibba  bladder.  

Developmental series of U. gibba bladders shown in longitudinal section. The stalk intersect 

(green dotted line and arrow) and mouth region (pink arrow) are marked along with the 

region between the stalk and mouth (purple dotted line). (A) 82 µm stage, (B) 185 µm 

stage, (C) 277 µm stage, (D) 415 µm stage, (E) 622 µm stage, (F) 933 µm stage. Bladders are 

shown at different scales for comparison. All bladders were fixed and stained with 

propidium iodide. (A-D) Confocal microscopy (E-F) Optical projection tomography (OPT). 
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For the displacement of the stalk and mouth regions to occur, the region between stalk and 

mouth (which I termed ‘chin’) (Figure 2.9, purple dotted line) must grow proportionally 

more in length, becoming over 25 times longer from the 82 µm stage to maturity. I plotted 

the natural logarithm of chin length against time. I assigned a time to each bladder based 

on bladder length and the growth curve shown in Figure 2.5. While the bladder length has a 

growth rate of 1.6 % per hour (Figure 2.5), the chin region between stalk and mouth has a 

growth rate of 2.0 % per hour (Figure 2.10, D). 

 

 

 

Figure 2.10: Growth analysis of the chin region.  Bladder viewed in cross section from the 

side at (A) the 82 µm stage (scale bar is 50 µm), and (B) the 933 µm stage (scale bar is 250 

µm). Lines indicating how measurements were made for chin length (purple dotted line) 

are shown. (C) Natural log of chin length plotted against time calculated based on bladder 

length. The gradient of the fitted line shows the growth rate of chin (2.11 % per hour). (A-B) 

Fixed tissue stained with propidium iodide and imaged using (A) confocal microscopy, or (B) 

OPT (by Karen Lee). 
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In summary, I have found that bladders go through three major shape changes: 

1.) A greater increase in height versus width. 

2.) A greater increase in depth versus width. 

3.) An elongation in the chin region (between the stalk and mouth). 

 

2.2.3 Modelling bladder shape change 
 

To explore how the major shape changes in bladder development could arise, I took a 

computational modelling approach using the Growing Polarised Tissue (GPT) framework 

(Kennaway et al., 2011; Green et al., 2010; Kuchen et al., 2012; Sauret-Güeto et al., 2013). 

 

2.2.3.1 Shape changes through isotropic and anisotropic growth 

 

To illustrate how simple shape changes may arise through specified isotropic or specified 

anisotropic growth, I first considered a 2D circular canvas (Figure 2.11). I added circular 

clones (black) which deform with the canvas as it grows so that local growth orientations 

can be studied. When specified growth is isotropic and uniform, the circular canvas simply 

grows into a larger circle, and the clones enlarge isotropically, also remaining circular 

(Figure 2.11, A).  
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Figure 2.11: 2D shape changes through isotropic and anisotropic growth.  (A-E) Isotropic 

growth models. (A) 2D circular canvas grown isotropically with uniform growth rates across 

the tissue. (B) Growth regulatory network for (C) where areal growth is promoted by the 

MID factor (red). (C) 2D circular canvas with MID factor where areal growth is promoted. 

Start and final shapes of the canvas are show with Kareal plot. Yellow box indicates zoomed 

in region where clone orientations can be viewed more clearly. (D) Growth regulatory 

network for (E) where areal growth rate is promoted by MID (red region) and SIDE (yellow 

region). (E) Start and end shape of the canvas are shown with Kareal plot. (F-O) Anisotropic 

growth models. (F) 2D circular canvas with BASE (green) and TOP (pink) factors shown. (G) 

Diffusible POLARISER (blue) which propagates from the + organiser (BASE, green) and is 

absorbed by the - organiser (TOP, pink). This generated a poarity field which is represented 

by arrows. (H) Polarity regulatory network (PRN) for anisotropic models. (I) Start and end 

shapes of the canvas grown where Kpar > Kper (J). (K) Local polarities in different regions of 

the canvas shown in (I). (L) Shape generated when the circular canvas is digitally stretched 

in one direction. (M) Final canvas shape when BASE and TOP are specified to grow 

isotropically. (N) Canvas start shape with the – organiser displaced by 90 °. The resulting 

polarity field is indicated (arrows). (O) Local polarities in different regions of the canvas 

shown in (N). (P) Start and end shape of canvas grown with displaced – organiser. Black 

clones are induced as circles from the start and deform with the canvas as it grows. Scale 

bars are 1 mm (except for in K and O where scale bar is 500 µm). 

 

 

Different shapes may be generated with isotropic growth when growth rates across the 

canvas are no longer uniform. For example, when I add a factor termed MID down the 

middle of the circle, and specify areal growth rate here to be higher than the rest of the 

canvas (Figure 2.11, C, red), the canvas deforms, becoming taller than it is wide (Figure 

2.11, C). Although specified growth is isotropic, clones are no longer circular across the 

canvas. Clones at MID are larger and more elliptical than those in the region of lower 

specified growth rate. This is because the introduction of differential growth rates causes 

areal conflict across the tissue. Where growth rate is highest at MID, tissue is constrained 

by neighbouring regions which are growing more slowly. This conflict results in the MID 

region being unable to grow as tall as would if it were not constrained. Clones in this region 

are therefore elliptical due to resultant anisotropic growth caused by areal conflict. More 

complex shapes can be created when I introduce asymmetry to the model (Figure 2.11, E). 

If I add another factor to one side of the canvas (SIDE) (Figure 2.11, E, yellow) and promote 

areal growth here, a bulge in the canvas is generated on this side. 

 

To consider specified anisotropic growth, axiality is required. To introduce axiality I set up a 

polarity field in the canvas. I added two organisers to the canvas: a plus organiser termed 
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BASE (green) and a minus organiser termed TOP (pink) (Figure 2.11, F). POL was introduced 

which can propagate throughout the canvas from the plus organiser and is absorbed by the 

minus organiser (Figure 2.11, G, turquoise). This generates a polarity field which is 

represented as arrows across the canvas (Figure 2.11, G). When areal growth rate is equal 

across the canvas but Kpar is higher than Kper, the canvas deforms to be taller than it is wide 

(Figure 2.11, I). Here, all clones are elliptical, parallel with the polarity field and are the 

same size across the canvas. This is because areal growth rate is equal across the canvas 

and growth is uniformly anisotropic. In this model, the canvas forms points at the base and 

top. This is because the polarity field is not simply pointing from the BASE to TOP but 

diverges from BASE and converges at TOP (Figure 2.11, K). Therefore, local polarities vary 

across the tissue. Since polarity is orienting growth, this introduces a difference in local 

growth orientations. This generates directional conflict in the canvas, as growth in some 

regions is oriented differently to growth in neighbouring regions. The shape is therefore 

different from simply stretching the circular canvas to make it taller (Figure 2.11, L). For the 

polarity field model, the base and top can be made smoother by specifying these regions to 

grow isotropically (Figure 2.11, M).  Asymmetry can be generated in this model simply by 

displacing the minus organiser. For example, when the minus organiser is displaced by 90 ° 

(Figure 2.11, N) the level of directional conflict increases, since there is more difference 

between the local polarities of the canvas. This causes the canvas to grow in width as well 

as in height.  

 

These simple 2D models show how deformation in shape can occur through specified 

isotropic or specified anisotropic growth and how GFtbox can be used to explore such 

deformations and make predictions on resultant growth orientations using clones which 

deform with the canvas. 

 

2.2.3.2 Setting up the canvas to model bladder shape changes 

 

To explore these principles in the context of bladder development I generated a 3D hollow 

caplet shaped canvas to use as my start shape and scaled this to an 82 µm stage bladder 

(Figure 2.12). I then explored isotropic and anisotropic specified growth to see if I could 

capture the major shape changes in bladder development by using simple growth 

parameters. 
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Figure 2.12: Canvas start shape based on measurements of an 82 µm stage bladder.  (A) 

An 82 µm stage bladder viewed from the top (Ai), front (Aii), and side (Aiii). (B) Whole 

canvas start shape viewed from the top (Bi), front (Bii), and side (Biii) and scaled to an 82 

µm stage bladder. (C) Cross sections through the top (Ci), front (Cii), and side (Ciii) of the 

same 82 µm stage bladder shown in (Ai-Aiii). (D) Cross sections through the canvas shown 

in (Bi-Biii) from the top (Di), front (Dii), and side (Diii). Height, depth, and width axes are 

shown in (A and B). (A and C) Confocal images of a fixed sample stained with propidium 

iodide. All scale bars, 20 µm. 

 

 

2.2.3.3 Isotropic bladder growth models 

 

I first explored bladder morphogenesis with isotropic specified growth, since this does not 

require any axiality and is therefore the simplest model to start with. I began with my 

caplet start shape and explored bladder shape changes using areal conflict alone. I started 

by considering a simple change in height relative to width, similar to the transition dealt 

with in 2D above (Figure 2.11, C). In the bladder, this shape transition occurs in 3D and may 

be thought of as the flattening of a capsule from the sides and a growth in height around 
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the midvein. This is illustrated in Figure 2.13. In the capsule shape (Figure 2.13, A) the blue 

circumference is larger than the red circumference. In the flattened disc (Figure 2.13, B), 

the red circumference is larger than the blue circumference. If we imagine the capsule 

shape growing into the flattened disc, more growth must occur in the red circumference 

compared to the blue circumference to account for the change in their relative sizes. This is 

very similar to the transition seen in the U. gibba bladder which becomes flattened in width 

and grows in height.  

 

 

Figure 2.13: 3D shape transitions from a capsule to a flattened disc.  (A) Capsule where 

the blue circumference is larger than the red circumference. (B) Flattened disc where the 

red circumference is greater than the blue circumference. Photographs kindly provided by 

Robert Green. 

 

 

To model this shape transition using isotropic specified growth, I introduced a MIDVEIN 

factor round the centre of the canvas (Figure 2.14, A) and diffusible factor S_MIDVEIN 

which diffuses from here (Figure 2.14, B). I then specified areal growth rate to be promoted 

relative to the local level of S_MIDVEIN so that specified areal growth was highest near the 

midvein region and lowest at the two sides.  
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Figure 2.14: Model 1-isotropic specified growth with a gradient of areal growth rates.  (A) 

Canvas start shape with MIDVEIN factor shown (red). (B) Diffusible factor S_MIDVEIN (red) 

propagates from MIDVEIN to form a gradient across the canvas (elements are shown to 

allow visualisation of white regions where the level of S_MIDVEIN is very low). (C) Growth 

regulatory network (KRN) where areal growth rate is promoted at S_MIDVEIN. (D) Canvas 

end shape with Kareal plot. (E) Cross sections from the front and top of the canvas end 

shape. Lines mark where measurements were made for height (blue line), width (orange 

line), and depth (pink line). (F) Side section through an 82 µm stage bladder with the stalk 

intersect (green dotted line and arrow), and mouth region (pink arrow) indicated. (G) 

Canvas start shape with STALK (green), and MOUTH (pink) regions which were scaled to an 

82 µm stage bladder. The pale lilac stripe is used for reference of the front view of the 

canvas. (H) Model end shape (viewed from the side) with biological landmarks, STALK 

(green) and MOUTH (pink) marked. Purple arrow indicates the region between STALK and 

MOUTH. All scale bars are 50 µm. 

 

 

This gradient in specified areal growth rates can be seen at the final stage of the model 

(Figure 2.14, D). This model grows more in height relative to width. This height is achieved 
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due to the areal conflict in the growing canvas. Regions which are closer to the midvein 

have higher specified areal growth rates, while regions further from the midvein have 

lower specified areal growth rates. This is reflected in the clone size and shape; clones 

nearest the midvein appear larger and more elliptical while clones further away from the 

midvein appear smaller and less elliptical. The end shape of the canvas is about 34 % taller 

than it is wide (figure Figure 2.14, E, front section), compared to a 42 % difference in the 

mature bladder. This restriction in the growth rate in width also causes the model to 

become 16 % deeper than it is wide (Figure 2.14, E, top section). This is substantially lower 

than the 83 % difference in depth versus width seen in the mature bladder. 

 

In side view, the canvas remains oval (Figure 2.14, D, side). To explore the displacement of 

the stalk and mouth seen in the bladder, I added two factors for visual reference. I called 

these factors STALK and MOUTH and positioned them based on measurements of the stalk 

intersect and mouth of an 82 µm stage bladder (Figure 2.14, F-G).  For ease of viewing I 

have included a visual factor at the midvein for reference (Figure 2.14, G, pale lilac) which 

runs around the centre of the canvas so that it is visible from the front but not from the 

side. When I run the model with these regions marked, STALK and MOUTH remain in close 

proximity (figure, purple arrow) and we do not see the displacement of these regions 

observed in the bladder (Figure 2.9).  

 

Displacing the STALK and MOUTH regions 

 

To generate a displacement between the STALK and MOUTH regions, I first tried increasing 

the growth rate in the region between STALK and MOUTH alone, since the resultant growth 

rate of this region is higher than that of the main body of the bladder (Figure 2.10). I added 

a factor termed CHIN to the canvas which I positioned between STALK and MOUTH based 

on an 82 µm stage bladder (Figure 2.15, A-B). I then increased areal growth at CHIN in the 

model so that it was greater than the highest areal growth rate specified in the original 

gradient from MIDVEIN. Now that I am considering biological landmarks such as the STALK 

region of the bladder, for consistency, I will always show the final canvas with the stalk 

intercept at the base to represent the same orientation as the bladder shown in (Figure 

2.9). All measurements will be made with the canvas in this orientation.  
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Figure 2.15: Model 2- isotropic specified growth with increased areal growth rate at CHIN.  

(A) Side section through an 82 µm stage bladder indicating the chin region between the 

stalk and mouth (purple dotted line and arrow). (B) Canvas start shape with added CHIN 

factor (purple), in between STALK (green) and MOUTH (pink). (C) KRN where areal growth 

rate is promoted at CHIN as well as S_MIDVEIN. (D) Canvas end shape with Kareal plot. (E) 

Canvas end shape with CHIN (purple), STALK (green), and MOUTH (pink) regions plotted. (F) 

Cross sections from the front and top of the canvas end shape. Lines mark where 

measurements were made for height (blue line), width (orange line), and depth (pink line). 

All scale bars are 50 µm. 

 

 

I found that increasing the areal growth rate at CHIN displaced the STALK and MOUTH 

regions. However, the CHIN region only increased in length by around 18 times (compared 

to 25 times in the bladder) and bulged out. This bulging of the canvas at CHIN is due to 

areal conflict which arises as the CHIN region grows faster than neighbouring regions of the 

canvas. The CHIN region is restricted in growth by connected tissue which is growing at a 

slower rate. 

 

This model does not fully achieve the change in length versus width or depth; the model 

grows to become around 19 % taller than it is wide and 52 % deeper than it is wide 
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(compared to 42 % and 82 % in the bladder). Changing parameters in the model may be 

able to solve this. 

 

These models suggest that isotropic growth with differential growth rates can achieve a 

transition from a shape that is wider than it is tall to a shape that is taller than it is wide and 

from a shape that is wider than it is deep to a shape that is deeper than it is wide. However, 

these models do not achieve the full bladder proportions. Furthermore, isotropic growth 

with higher areal growth rate at CHIN is not sufficient to generate the elongation at CHIN 

required and instead leads to a bulge in the tissue. 

 

2.2.3.4 Adding specified anisotropy to the CHIN region alone 

 

I next explored generating the displacement of STALK and MOUTH in a way that would not 

cause the canvas to bulge. Since the bulging is due to higher areal growth at CHIN, I tried 

using specified anisotropic growth in the CHIN region alone to see if directional growth 

combined with an increase in areal growth rate could generate an elongation of the CHIN 

region without causing the canvas to bulge. 

 

I first introduced axiality to this model by considering the STALK and MOUTH regions as 

plus and minus organisers respectively. This gave me an initial canvas with a polarity 

pointing from STALK to MOUTH (Figure 2.16, A). Local growth rates could then be specified 

in an anisotropic manner by specifying differences in Kpar and Kper.  To try to create a 

displacement of STALK and MOUTH, I specified anisotropic growth at CHIN where Kpar >Kper. 

Specified isotropic growth was maintained in the rest of the canvas. I also restricted growth 

at STALK isotropically to reflect the smaller stalk region seen in the mature bladder. 
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Figure 2.16: Model 3- isotropic specified growth with specified anisotropic growth at 

CHIN to remove bulge.  (A) Set up of a polarity field which propagates forn the + organiser 

(STALK, green) to the - organiser (MOUTH, pink). The polarity field is represented by arrows 

across the canvas. (B) PRN for the model. (C) KRN for the model where CHIN promotes Kpar 

and inhibits Kper. (D) Model with Kareal plot. (E) Model with Kaniso plot. (F) Front and top 

sections of the canvas end shape with lines showing where measurements of height (blue 

line), width (orange lines), and depth (pink line) were made. All scale bars are 50 µm. 

 

Specified areal growth rate is highest at CHIN compared to the rest of the canvas and there 

is now also specified anisotropy at the CHIN region alone. This is reflected in plots of 

resultant areal growth rate and anisotropy (Figure 2.16, D & E). The combination of 

increased areal growth and specified anisotropy at CHIN was able to generate an 
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elongation at CHIN so that the CHIN region increased in length by around 25 times (the 

same as that in the bladder). This promoted a displacement of the STALK and MOUTH 

without generating a bulge in the canvas. The canvas increases more in height versus width 

and more in depth versus width, becoming 25 % taller that it is wide and 38 % deeper than 

it is wide (compared to 42 % and 83 % in the mature bladder respectively) (Figure 2.16, F). 

The bladder therefore manages to achieve the major shape transitions but not to the full 

extent of the mature bladder. Changing the parameters used may be able to generate a 

final canvas size more comparable to the mature bladder. 

 

This modelling makes a number of predictions about bladder growth which I explored in 

more detail: 

 

1.) That anisotropic growth, and therefore axiality, is necessary to generate an 

elongation of the CHIN region. 

 

2.) Clones near the MIDVEIN are larger than those at the sides of the canvas. 

 

3.) The orientation of the clones differs across the canvas: clones near the MIDVEIN 

are perpendicular to the MIDVEIN. 

 

Model 3, prediction 1: Clones in the CHIN region are more anisotropic compared to the 

rest of the canvas. 

 

The first prediction is that specified anisotropic growth, and therefore axiality, is necessary 

to generate an elongation of the CHIN region without causing the tissue to bulge. In model 

3, clones at CHIN therefore appear more anisotropic to those on the rest of the canvas.  

 

To quantify the difference in anisotropy between the main body of the canvas and the 

CHIN region, I calculated the rate of increase in anisotropy per hour using the following 

equation: 

 

Ln(major/ minor) 

200 
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Where 200 is the total growth time (hours) of the model and it is assumed that the rate of 

increase in anisotropy is exponential (as growth is exponential). 

 

I then plotted the mean rate of increase in anisotropy per hour of the clones in the CHIN 

region versus the rest of the canvas (Figure 2.17).  

 

 

Figure 2.17: Percentage rate of increase in anisotropy per hour at the CHIN region versus 

the rest of the canvas (model 3).  (A) Model end shape viewed from the side, front 

underside, and top. The CHIN (purple), MOUTH (pink), and STALK (green) regions are 

shown. Clones are also shown (black) which start as isotropic circles and deform with the 

canvas. Scale bar is 50 µm. (B) Percentage rate of increase in anisotropy per hour at the 

CHIN region versus the rest of the canvas.  Rate of increase in anisotropy per hour = (Ln 

(major/minor))/ 200. Bars are standard error of the mean. 
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I found that the mean rate of increase in anisotropy per hour in the CHIN region of the 

model is over 8 times greater than that of the rest of the canvas (around 0.67 % per hour at 

the CHIN region compared to around 0.08 % per hour in the rest of the canvas). 

 

Model 3, prediction 2: Clones are larger near the MIDVEIN and smaller at the sides of the 

canvas. 

 

There appears to be a difference in the size of clones from the MIDVEIN and the sides of 

the canvas. Clones near the MIDVEIN appear to be larger than clones near the side of the 

canvas which appear smaller and more rounded (Figure 2.17, A). To quantify the area of 

clones in relation to their distance from the MIDVEIN, I used the level of S_MIDVEIN as a 

proxy for clone position in relation to the MIDVEIN, since S_MIDVEIN diffuses from 

MIDVEIN and creates a gradient across the canvas. The further from the MIDVEIN, the 

lower the level of S_MIDVEIN (Figure 2.18, A).   

 

To explore clone area across the canvas, I first plotted the natural logarithm of clone area 

against the level of S_MIDVEIN (Figure 2.18, B). As the level of S_MIDVEIN increases, clone 

area increases, showing that clones closest to the MIDVEIN have a larger area compared to 

those at the sides of the canvas. This is expected because the specified areal growth rate is 

set by the level of S_MIDVEIN. Smaller clones (Figure 2.18, B, green circles) are from the 

STALK region of the canvas where growth is restricted. 
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Figure 2.18: Clone area and rate of increase in anisotropy per hour in regions of the 

canvas at different distances from MIDVEIN (model 3).  (A) Model end shape shown from 

the side and top with S_MIDVEIN plot. S-MIDVEIN diffuses from MIDVEIN and creates a 

gradient across the canvas. This gives a proxy for clone position on the canvas according to 

the local level of S_MIDVEIN (higher at the MIDVEIN- red region, lower near the sides of the 
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canvas- white region). (B) Natural logarithm of clone area against the level of S_MIDVEIN. 

Data points are coloured to indicate their position on the canvas: main body of the canvas 

(grey), CHIN (purple triangles), MOUTH (pink circles), and STALK (green circles). Line was 

fitted to data from the main body of the canvas (grey diamonds). The equation of the line is 

shown where 1.6897 is the gradient of the line. The R2 value is given (where 1 indicates a 

perfect fit of the line to the data). (C) Rate of increase in anisotropy per hour for each clone 

on the main body of the canvas plotted against the level of S_MIDVEIN at that clone’s 

position. All data is from the main body of the bladder. (D) End shape of the canvas shown 

from the side, top, and back with the major axis of growth marked (black lines). Boxes show 

zoomed in regions from the top and back. Orientation of the MIDVEIN is indicated (pale 

lilac dotted line) for reference. All scale bars are 50 µm. 

 

 

Model 3, prediction 2: Clones nearest to the MIDVEIN are oriented perpendicular to the 

MIDVEIN. 

 

Clones near the MIDVEIN appear to be oriented perpendicular to the MIDVEIN (Figure 2.17, 

A, top view). To study resultant anisotropy across the canvas, and to see if clones are more 

anisotropic nearer the MIDVEIN region, I plotted the rate of increase in anisotropy per hour 

against the level of S_MIDVEIN (Figure 2.18, C). I plotted clones from the main body of the 

bladder only so that the data was not skewed by higher anisotropy in the CHIN region. 

There is a low level of anisotropy across the canvas; however, I found no correlation 

between clone proximity to the MIDVEIN and the rate of increase in anisotropy per hour. 

Most data points on the graph are below 0.2 % per hour (with the exception of one outlier).  

 

To test whether clones nearer the MIDVEIN are oriented perpendicular to the MIDVEIN, I 

plotted the major axis of growth across the canvas (Figure 2.18, D). The major axis of 

growth near the MIDVEIN at the top and back of the canvas is perpendicular to the 

MIDVEIN, compared to the major axis of growth on the sides of the canvas which, in 

general, is more parallel to the MIDVEIN. This pattern of clone orientation is due to the 

resolution of areal conflict between the tissue which is growing fastest around the 

MIDVEN, and the more slowly at the sides. The tissue in the MIDVEIN is unable to expand 

as much as it would in isolation, and so the clones are elliptical. This is similar to the clone 

elongation observed 2D when a band of high growth was included in the centre of  a 

growing circle of tissue (Figure 2.11, C).  
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Conclusions  

 

Model 3 predicts that there is a higher level of resultant anisotropy at the CHIN region of 

the bladder which arises through specified anisotropy in this region alone. The model also 

predicts that growth near the midvein is higher than at the sides of the bladder and that 

there is a low level of resultant anisotropy across the main body of the bladder which is 

oriented perpendicular to the midvein at regions closer to the midvein, and more parallel 

to the midvein at the sides. 

 

In summary, models using specified isotropic growth alone (Figure 2.14 & Figure 2.15) 

show that, while shape changes in the main body of the bladder can be partly accounted 

for with isotropic growth alone, elongation of the chin region in a pure isotropic model 

leads to a bulge in the canvas at this region. This is due to the resolution of areal conflict in 

the model.  A mixed model which has specified anisotropy at the CHIN region was 

successful at generating an elongation at the CHIN region without generating a bulge 

(Figure 2.16). This suggests that anisotropy is required to generate elongation of the chin 

region and separation of the stalk and mouth regions in the bladder. It is unclear here what 

effect anisotropy across the main body of the canvas would have on the final shape. 

 

2.2.3.5 Anisotropic bladder growth models 

 

To address what effect specified anisotropy across the main body of the bladder would 

have, I next explored modelling bladder morphogenesis with uniform anisotropic specified 

growth across the canvas. In order to transition from a caplet to a flattened disk (like that 

illustrated in Figure 2.13) using specified isotropic growth, I used an increase in areal 

growth rate at the MIDVEIN. To explore how a similar transition in 3D shape may be 

achieved with specified anisotropy alone (no difference in areal growth rate across the 

canvas), I set up a simple simulation using my caplet start shape, where I could manipulate 

the level of specified anisotropy across the whole canvas. I started by considering 

anisotropic specified growth with a polarity field from BASE to TOP (similar to that explored 

in 2D in Figure 2.11) since this is the most intuitive way to generate a preferential increase 

in height. I introduced a plus organiser at the base of the canvas and a minus organiser at 

the top (Figure 2.19, A).  
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Figure 2.19: Model 4- modelling a growth in height versus in width with anisotropic 

specified growth.  (A) Canvas start shape viewed from the front (Ai), top (Aii), and base (Aii) 

showing the presence of the factors BASE (green) and TOP (pink). Pale lilac line down 

centre is for reference in the front view. (B) POL gradient (turquoise) is shown on the 

canvas viewed from the front (Bi), and the side (Bii). (Biii) Polarity regulatory network 

(PRN): POL propagates from the + organiser (BASE, green) and is absorbed by the – 

organiser (MOUTH, pink). (C-G) Canvas viewed from the front at time 0 (C), after isotropic 

growth for 200 hours (D) or after anisotropic growth where growth in Kpar is higher than 

growth in Kper (E-G). Anisotropy increases from (E-G). (H-K) Canvas viewed from the side at 

time 0 (H) and after anisotropic growth for 200 hours (I-K) with Kpar and Kper values in (E-G) 

respectively. (L) Cross sections of model end shape where Kpar= 0.17 and Kper = 0.13. Lines 

indicate where measurements of height (blue line), width (orange line), and depth (pink 

line) where made. All arrows show the polarity field. Black clones are induced as circles 

from the start and deform with the model. All scale bars, 50 µm. 

 

 

When this model is run with isotropic growth (Kpar = Kper) the canvas grows in size but the 

shape remains the same (Figure 2.19, D). To introduce anisotropy, I specified a promotion 

in Kpar. I kept areal growth (Kpar + Kper) constant by reducing Kper whenever I increased Kpar. 

This anisotropy was sufficient to drive a transition from a start shape that is wider that it is 

tall to a final shape that is taller that it is wide (Figure 2.19, E). This transition can be 

accentuated by increasing the level of anisotropy to generate taller, thinner shapes. (Figure 

2.19, E-G). However, from the side, where the bladder becomes longer, the model simply 

grows in height, becoming taller and thinner with greater anisotropy. 

 

In the second example, the difference between Kpar and Kper (Kpar = 0.17 and Kper = 0.13) is 

equal to 1.3. This is comparable with the difference in the rate of growth in height versus 

width observed in the bladder which was 1.29 (Figure 2.8, B). Measurements made in cross 

section of this model (Figure 2.19, L) show that this model becomes 79 % taller than it is 

wide. However, the model remains 94 % wider than it is deep where the bladder becomes 

approximately 83 % deeper than it is wide by maturity. Therefore, axiality generated from a 

polarity running from BASE to TOP is not sufficient to capture both shape transitions seen 

in the bladder (height versus width and depth versus width).  

 

In order to understand how the bladder may grow, to become more elongated in side view 

and to consider an increase in depth versus width, I again considered biological landmarks 

and how these could be used to place the + and – organisers. I replaced the BASE and TOP 

organisers with the STALK (+ organiser) and MOUTH (- organiser) (Figure 2.20).  



Chapter 2 

60 
 

 



Bladder developmental dynamics 

61 
 

Figure 2.20: Model 5- changing the position of the + and – organisers to the STALK and 

MOUTH regions.   (A) side section through an 82 µm stage bladder with the stalk intersect 

(green dotted line and arrow) and mouth region (pink arrow) indicated. (B) Canvas start 

shape viewed from the side (Bi), back underside (Bii), and front (Biii). Pale lilac stripe is used 

for reference of the front view of the canvas. STALK (green) and MOUTH (pink) regions are 

shown and were scaled using the 82 µm stage bladder shown in (A). (C) POL propagates 

from the + organiser (STALK, green) and is absorbed by the – organiser (MOUTH, pink).  The 

POL gradient (turquoise) is shown on the canvas viewed from the side (Ci), back underside 

(Cii), and front (Ciii). Arrows show the polarity field. (D) Polarity regulatory network (PRN). 

(E) Canvas start shape viewed from the side (Ei) and the front (Eii). (Fi-Ji) Final canvas 

shapes viewed from the side with increasing levels of anisotropy where Kpar is greater than 

Kper. (Fii-Jii). Final canvas shapes viewed from the front with increasing levels of anisotropy 

where Kpar is greater than Kper. (A) Confocal image of a fixed bladder stained with propidium 

iodide. All arrows show the polarity field. Black clones are induced as circles from the start 

and deform with the model. All scale bars, 50 µm. 

 

 

This time, a polarity field was generated from STALK to MOUTH (Figure 2.20, C). I kept all 

other parameters the same; areal growth was kept constant and I varied uniform 

anisotropy by increasing the value of Kpar and reducing the value of Kper (Figure 2.20, E-J). To 

keep the model as simple as possible, I did not include the CHIN region. 

 

The end shape of the canvas viewed from the side (Figure 2.20, Fi-Ji), shows the canvas 

transformation in depth and height at varying levels of anisotropy compared to the start 

shape (Figure 2.20, Ei). At the lowest level of anisotropy (when Kpar =0.16 compared to Kper 

=0.14) (Figure 2.20, Fi), the canvas is still wider than it is tall and wider than it is deep. 

When anisotropy in the model was increased (Figure 2.20, Gi), the canvas became 

approximately 18 % taller than it is wide, and approximately 34 % deeper than it is wide 

(compared to 42 % and 83 % in the mature bladder respectively). This model therefore 

achieves the broad shape changes but not to the full extent of the bladder. An increase in 

anisotropy past this point causes the canvas to curl under and we see the formation of an 

indentation at the STALK-MOUTH boundary (Figure 2.20, Hi-Ji). This is because, due to the 

displacement of the minus organiser, there was more variability in the orientation of local 

polarities across the canvas. Since the local polarity influences growth orientations, there is 

variability in local growth orientations across the canvas, which introduces directional 

conflict during growth. This conflict is resolved by the curling of the canvas. The region 

between STALK and MOUTH is also much shorter on the underside of the canvas when 

compared to the distance from STALK to MOUTH round the back of the canvas. Therefore, 
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the accumulative growth of the top of the canvas is much greater than the bottom. These 

differences in accumulative growth coupled with directional conflict cause the canvas to 

deform with an arch, curling around itself. The STALK region also grows too much, 

generating a protrusion. 

 

When viewed from the front (Figure 2.20, Fii-Jii), we can see that the canvas becomes 

thinner with increased anisotropy. In the first instance (Figure 2.20, Fii), the canvas is still 

wider than it is tall. By the second instance (Figure 2.20, Gii), the canvas is approximately 30 

% taller than it is wide (compared to approximately 42 % in a mature bladder). By the third 

instance (Figure 2.20, Hii), the canvas becomes too thin when compared to a mature 

bladder.  

 

This model has demonstrated that a displacement of the plus and minus organisers, 

generating directional conflict can still allow the canvas become taller than it is wide, while 

also allowing the canvas to become deeper than it is wide. However, the canvas is not able 

to achieve full growth without curling under. Furthermore, the STALK and MOUTH regions 

remain in in close proximity; we do not see the characteristic displacement of mouth 

relative to stalk that we see in the bladder developmental series (Figure 2.9).  

 

Displacing the STALK and MOUTH regions in the anisotropic specified growth model and 

removing the protrusion at STALK 

 

To investigate how the displacement of STALK and MOUTH could be achieved, I continued 

with the model that best represented bladder shape change so far. The model that fits the 

biological scale best, does not have a pronounced curvature, and manages to capture the 

transitions in shape best, is the case where Kpar = 0.17 and Kper  = 0.13 (Figure 2.20, G). I first 

restricted the growth at STALK in order to prevent the generation of a protrusion in this 

area (Figure 2.21).  
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Figure 2.21: Restricting growth at STALK to prevent a protrusion in this region.  (A) PRN is 

the same as in previous models: POLARISER propagates from STALK (C & E, green) and is 

absorbed by MOUTH (C-E, pink).  (B) KRN: Kpar and Kper are both restricted by STALK. The 

canvas is shown at 0 hours viewed from the side (C) and front (D), and at 200 hours viewed 

from the side (E) and front (F). All scale bars are 50 µm. 

 

 

To displace the STALK and MOUTH regions, I re-introduced the CHIN factor in the region 

between STALK and MOUTH on the underside of the canvas (Figure 2.22, B purple) where I 

explored increasing growth in this region as I did when exploring isotropic growth models 

above. I first tried generating an elongation at CHIN by increasing the specified anisotropy 

in this region. I kept Kper fixed and promoted Kpar at CHIN so that the specified growth rate 

parallel to the polarity field in this region was 0.2 (Figure 2.22, E), matching the resultant 

growth rate observed in my time course (Figure 2.10). I found that this was not sufficient to 

generate the full length of CHIN (Figure 2.22, Ei). However, the STALK and MOUTH regions 

were displaced (Figure 2.22, Eiv, purple). I then increased the promotion of Kpar at CHIN so 

that the specified growth of this region was equal to 0.22, 0.26, and finally 0.28 (Figure 

2.22, F, G, H respectively). As anisotropy was increased, the CHIN region became longer and 

the STALK and MOUTH regions became further apart (Figure 2.22, Ei-Hi). Clones in this 

region which were induced from the start are longer with each increase in Kpar at CHIN 

(Figure 2.22, Eii-Hiv). When Kpar= 0.28, a CHIN region of approximately biological length is 

achieved. However, the CHIN region began to bulge outwards (Figure 2.22, Hi). This bulging 

could be remedied by an inhibition of Kper at CHIN, increasing specified anisotropy further 

(Figure 2.22, Ji). Measurements made of the model in cross section show that this model 
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grows to be 37 % taller than it is wide and 63 % deeper than it is wide (compared to 42 % 

and 83 % in the mature bladder respectively). Further alterations to the parameters may 

allow the canvas to reach mature bladder proportions.  
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Figure 2.22: Model 6- adding increased anisotropy in the CHIN region.  (A) Longitudinal 

section through an 82 µm stage bladder indicating the chin region between the stalk and 

mouth (purple dotted line and arrow). (B) Canvas with CHIN factor (purple) in between 

STALK (green) and MOUTH (pink) and scaled to the 82 µm bladder shown in (A). The canvas 

is shown viewed from the side (Bi), underside (Bii), and front (Biii). (C) The PRN is the same 

as previous models. (D) The KRN in models (E-H) where Kpar and Kper are inhibited by STLAK 

and Kpar is promoted by CHIN. (E- H) Canvas at time 200 at increasing values of Kpar at CHIN. 

Canvas viewed from the side (Ei-Hi), zoomed in on a clone at CHIN (Eii-Hii), viewed from 

underneath (Eiv-Hiv), and viewed from the front (Ev-Hv). Kpar = 0.20 (E), Kpar = 0.22 (F), Kpar 

= 0.26 (G), Kpar = 0.28 (H). (I) KRN in model (J) where Kper is inhibited by CHIN. (J) Views of 

the model in which Kper is inhibited by CHIN in same views as (E-H). All scale bars are 100 

µm. 

 

 

This model captures a change in height relative to width, as well as the change in depth 

relative to width (although not quite to biological scale), and growth of the CHIN region. I 

found that a higher specified growth rate was necessary to generate the full elongation of 

the CHIN region than the resultant growth rate measured. This is because growth of the 

tissue in this region is restrained by neighbouring tissue which is not growing as fast.  

 

Exploring the contribution of increased anisotropy and increased areal growth rate in the 

CHIN region. 

 

To understand how the final shape of this model is generated, I considered what is 

happening in terms of specified anisotropy and areal conflict in the CHIN region. By 

increasing Kpar at CHIN, while keeping Kper fixed, I have not only increased the level of 

anisotropy in this region, but I have also introduced differential growth rates across the 

canvas. This introduces areal conflict in the growing tissue and it is therefore difficult to 

know to what extent an increase in anisotropy has played on the generation of this shape, 

and to what extent the level of areal conflict had contributed. To examine this, I first 

removed areal conflict generated at CHIN, keeping the promotion in Kpar at CHIN the same 

but inhibiting growth in K per so that areal growth in this region was equal to the rest of the 

tissue (Figure 2.23). I kept the STALK region the same as an anchoring point.  This 

generated an arch in the model which can be seen from the side (Figure 2.23, B). The CHIN 

region is pinched in, due to the inhibition of Kper being so great to overcome the necessary 

promotion in Kpar at this region. Next, I removed anisotropy in the CHIN region by keeping 

Kpar and Kper equal at CHIN and increasing areal growth rate in this region so that is was 

equal to the areal growth rate in the original model  (Figure 2.23, C). When growth at CHIN 
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is purely through areal conflict, the CHIN region bulges out and does not elongate 

sufficiently. These models indicate that both anisotropy and a higher areal growth rate at 

CHIN are required to generate bladder shape. 

 

 

 

 

Figure 2.23: Exploring the contribution of specified anisotropy and areal conflict to 

generate an elongation at CHIN.  (A) The original model where growth at CHIN involves 

both anisotropy (Kpar > Kper) and areal conflict (since areal growth rate at CHIN is higher than 

the rest of the canvas). (B) The model when growth at CHIN is purely anisotropic with no 

areal conflict. Areal conflict was removed by keeping Kpar the same as in (A) and reducing 

Kper so that the areal growth rate matched the rest of the canvas. (C) The model growth 

with pure areal conflict and no anisotropy; Kpar=Kper and areal growth at CHIN is that same 

as in (A). All scale bars are 200 µm. 
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To study model 6 further, I looked at what predictions on bladder growth this model could 

make. One of the most noticeable features of the model is that clones at CHIN appear 

much more elongated compared to clones on the rest of the canvas (Figure 2.22, Jii). To 

quantify this, I plotted the mean rate of increase in anisotropy per hour at the CHIN region 

compared to the rest of the canvas (Figure 2.24).  

 

 

 

Figure 2.24: Percentage rate of increase in anisotropy per hour (model 6)  (A) Model end 

shape viewed from the side, front underside, and top. The CHIN (purple), MOUTH (pink), 

and STALK (green) regions are shown. Clones are also shown (black) which start as isotropic 

circles and deform with the canvas. Scale bar is 50 µm. (B) Mean rate of increase in 

anisotropy per hour at the CHIN region compared to the rest of the canvas.   Rate of 

increase in anisotropy per hour = (Ln (major/minor))/ 200. Bars are standard error of the 

mean. 
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The mean rate of increase in anisotropy per hour is almost 3 times higher in the CHIN 

region compared to the rest of the canvas (about 0.8 % per hour at CHIN and about 0.3 % 

per hour in the rest of the canvas) (Figure 2.24, B).   

 

Unlike model 3 where specified growth in the main body of the canvas is isotropic (Figure 

2.16), clones in model 6 appear to be even in size and appear to have even levels of 

anisotropy across the main body of the bladder (excluding the STALK region where clones 

appear more isotropic, and the CHN region where clones are more elongated). This is not 

surprising, since specified areal growth rate in the main body of the bladder is even across 

the canvas.  To quantify the clone area and level of anisotropy, I ran the model with the 

diffusible factor S_MIDVEIN so that I could compare the model with the isotropic specified 

growth model. I then plotted the natural logarithm of clone area against the level of 

S_MIDVEIN and the rate of increase in anisotropy per hour against S_MIDVEIN (Figure 

2.25). 
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Figure 2.25: Clone area and rate of increase in anisotropy per hour in regions of the 

canvas at different distances from MIDVEIN (model 6).  (A) Model end shape shown from 

the side and top with S_MIDVEIN plot. S-MIDVEIN diffuses from MIDVEIN and creates a 

gradient across the canvas. This gives a proxy for clone position on the canvas according to 

the local level of S_MIDVEIN (higher at the MIDVEIN- red region, lover near the sides of the 

canvas- white region). (B) Natural logarithm of clone area against the level of S_MIDVEIN. 
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Data points are coloured to indicate their position on the canvas: main body of the canvas 

(grey), CHIN (purple triangles), MOUTH (pink circles), and STALK (green circles). (C) Rate of 

increase in anisotropy per hour plotted against the level of S_MIDVEIN. All data is from the 

main body of the bladder. Fitted line is shown along with the equation of the line where 

0.1411 is the gradient of the line. The R2 value is given (where 1 indicates a perfect fit of the 

line to the data). (D) End shape of the canvas shown from the side, top, and back with the 

major axis of growth marked (black lines). Boxes show zoomed in regions from the top and 

back. Orientation of the MIDVEIN is indicated (pale lilac dotted line) for reference. All scale 

bars are 50 µm. 

 

 

I found no correlation between the clone area and the level of S_MIDVEIN, indicating that 

clones are roughly equal in area across the main body of the canvas (Figure 2.25, B, grey). 

Clones in the CHIN region (Figure 2.25, purple) are larger due to the promotion in Kpar in this 

region, while clones at STALK are smaller (Figure 2.25, green) due to the restriction in Kpar 

and Kper in this region.   

 

When I plotted the rate of increase in anisotropy per hour against the level of S_MIDVEIN, I 

found that clones in regions closer to MIDVEIN had a slightly higher rate of increase in 

anisotropy per hour than those further from the MIDVEIN (Figure 2.25, C). This may 

indicate that there are different levels of conflict across the canvas (possibly due to local 

polarities nearest MIDVEIN being more parallel to MIDVEIN). The lowest value here is 

about 0.2 % per hour going up to about 0.4 % per hour. 

 

To visualise the orientation of growth across the model I plotted the major axis of growth 

on the canvas. I found that the orientation of the major axis of growth followed the polarity 

pattern across the canvas and was therefore parallel to the MIDVEIN at the top and back 

(Figure 2.25, D). 

 

In summary, model 6 makes a number of predictions about bladder growth: 

 

1.) A polarity field propagating from stalk to mouth is present and orients growth 

across the bladder.  

2.) Specified growth in the chin region is higher than the rest of the tissue and is 

anisotropic (same as model 3) 

3.) Growth orientations across the canvas are parallel with the polarity field. 
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Although the model captures bladder shape changes well, there are two problems with the 

final shape of the canvas. First, the back of the canvas has a sharp curve, where in the 

mature bladder, a much smoother curve is present (Figure 2.26, Ai, red arrow). The model 

is also concave at the midvein, generating a saddle-like shape at the top (Figure 2.26, Aii, 

red arrow).  

 

To address these issues I tried introducing a gradient of anisotropy from the midvein to see 

if this could generate a more rounded back and remove the saddle shape at the top of the 

canvas. I used the diffusible factor S_MIDVEIN to generate a gradient from the midvein out 

(Figure 2.26, B). I then promoted Kpar by the local level of S_MIDVEIN (which spans across 

CHIN) to generate a gradient of anisotropy. Areal growth in the main body of the canvas 

(excluding CHIN and STALK) was maintained by normalising areal growth rate so that, in 

effect S_MIDVEIN was also inhibiting Kper.  
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Figure 2.26: Model 7- exploring a gradient of anisotropy from MIDVEIN to generate 

bladder shape.  (A) Original anisotropic model (model 6) viewed from the side (Ai), top 
(Aii), and front (Aiii). Sharp curve at the back (Ai, red arrow) and the saddle along the 
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midvein (Aii, red arrow) are indicated. (B) Caplet start shape canvas with diffusible factor 
S_MIDVEIN (red gradient). (C) Polarity regulatory network (PRN) where POLARISER 
propagates from the + organiser (STALK) and is absorbed by the – organiser (MOUTH). (D) 
Growth regulatory network (KRN) where S_MIDVEIN promotes Kpar and inhibits Kper so that 
areal growth rate is not affected. (Ei-Eiii) Canvas end shape with regions plotted. Red 
arrows for comparison with (A). (Fi-Fiii) canvas end shape with Kaniso plot. (G) Front and top 
sections of the model with lines indicating how height (blue line), width (orange lines), and 
depth (pink line) measurements were made. Black clones are induced at the start as circles 
and deform with the canvas. All scale bars are 50 µm. 
 

 

This generated a canvas with a much smoother back (Figure 2.26, Ei, red arrow) and the 

saddle shape at the top of the canvas was also remedied (Figure 2.26, Eii, red arrow). 

However, the CHIN region now protrudes more and the MOUTH region is much higher than 

before. This can be explained by anisotropy being boosted at the CHIN region even more by 

S_MIDVEIN (Figure 2.26, F). When I analysed cross sections of the model, I found that this 

model is still wider than it is tall (by about 8 %), meaning that it has not achieved the shape 

transition in height versus width observed in the mature bladder. The model does increase 

more in depth relative to width, but only becomes approximately 14 % deeper than it is 

wide.  

 

In summary, this model achieves a smoother back and does not have a saddle shape at the 

top of the canvas. However, it does not easily achieve the transitions in shape seen in the 

bladder. To compare this model to previous models presented, I looked at the resultant 

clone anisotropy and area across the canvas, as well as growth orientations (Figure 2.27).  
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Figure 2.27: Analysing clone area and rate of increase in anisotropy per hour in regions of 

the canvas at different distances from MIDVEIN (model 7).  (A) Model end shape shown 
from the side and top with S_MIDVEIN plot. S-MIDVEIN diffuses from MIDVEIN and creates 
a gradient across the canvas. This gives a proxy for clone position on the canvas according 
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to the local level of S_MIDVEIN (higher at the MIDVEIN- red region, lover near the sides of 
the canvas- white region). (B) Natural logarithm of clone area against the level of 
S_MIDVEIN. Data points are coloured to indicate their position on the canvas; main body of 
the canvas (grey), CHIN (purple triangles), MOUTH (pink circles), and STALK (green circles). 
(C) Rate of increase in anisotropy per hour plotted against the level of S_MIDVEIN. All data 
is from the main body of the bladder. Fitted line is shown along with the equation of the 
line where 0.3013 is the gradient of the line. The R2 value is given (where 1 indicates a 
perfect fit of the line to the data). (D) End shape of the canvas shown from the side, top, 
and back with the major axis of growth marked (black lines). Boxes show zoomed in regions 
from the top and back. Orientation of the MIDVEIN is indicated (pale lilac dotted line) for 
reference. All scale bars are 50 µm. 
 

 

I found no correlation between clone area and position relative to S_MIDVEIN (Figure 2.27, 

B). However, the rate of increase in anisotropy per hour is lower at regions furthest from 

the MIDVEIN and increases closer to the MIDVEIN (Figure 2.27, C). The rate of increase in 

anisotropy per hour furthest from the MIDVEIN is between 0- 0.05 % per hour, increasing 

to a rate of around 0.35 % per hour in regions closest to the MIDVEIN. This is because 

specified anisotropy is proportional to the level of S_MIDVEIN. The orientation of this 

anisotropy is parallel with the polarity field across the canvas and is therefore parallel with 

MIDVEIN (Figure 2.27, D). 

 

In summary, through specified anisotropic growth modelling, I have found that specified 

anisotropic growth can capture the shape changes that occur in the main body of the 

bladder. Areal conflict through differential growth rates is required on top of this 

anisotropy to generate the elongation of the CHIN region. A gradient in specified 

anisotropy from the MIDVEIN region out was able to generate a smoother shape but 

caused the canvas to bulge in the CHIN region due to conflict of neighbouring isotropic 

regions and was not able to easily generate all shape transitions seen in the bladder. 
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2.2.3.6 Summary of bladder shape transition models 

 

Through modelling with specified isotropic and specified anisotropic growth, I found that 

there are two broad ways in which bladder shape change can be captured. In each case, 

specified anisotropy is required for the elongation of the CHIN region. Model 3 (Figure 

2.16) uses specified isotropy with increased areal growth rate at MIDVEIN to capture shape 

transitions in the main body of the bladder, while model 6 (Figure 2.22) uses specified 

anisotropy to capture shape transitions in the main body of the bladder. It will therefore be 

necessary to consider the different predictions made by each model and test these 

predictions in order to arrive at an understanding of the specified growth patterns 

underlying shape transitions during bladder development. Table 2-1 provides a summary of 

the predictions made by each model and highlights those predictions which allow a 

distinction to be made between models when studying resultant growth patterns 

experimentally in the biological system. 

 

Table 2-1: Summary of predictions made by model 3 and model 6.  Predictions that allow 

a distinction to be made between models experimentally are indicated in green. 

 Model 3 
(Figure 2.16) 
Isotropic specified growth model 
with anisotropic specified growth in 
the CHIN region alone 

Model 6 
(Figure 2.22) 
Anisotropic specified growth model 

Polarity pattern Propagates stalk-mouth Propagates stalk-mouth 

Clone area 
across the main 
body 

Larger near the midvein, smaller at 
the sides 

Approximately equal 

Resultant clone 
anisotropy at 
chin versus the 
main body 

Higher anisotropy at chin compared 
to the main body 

Higher anisotropy at chin compared 
to the main body 

Clone anisotropy 
across the main 
body 

Low resultant anisotropy Low resultant anisotropy 

Clone 
orientations 
across the main 
body of the 
bladder. 

Perpendicular to the midvein near 
the midvein, more parallel to the 
midvein at the sides of the canvas 

Parallel to the midvein and polarity 
field across the canvas 

Clone 
orientations at 
chin 

Parallel with the midvein  (stalk-
mouth) 

Parallel with the midvein  (stalk-
mouth) 
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2.3 Discussion 
 

2.3.1 Characterising bladder shape changes through development 
 

I have generated a resource of 3D bladder images using a combination of confocal 

microscopy with fixed samples stained with propidium iodide for the youngest bladder 

stages and OPT (in collaboration with Karen Lee) for the later stages. The use confocal 

microscopy coupled with the 3D volume software VolViewer has enabled me to study 

bladder stages and shape changes through development which were not previously 

characterised and I confirmed that the early stages of U. gibba bladder development are 

morphologically similar to those reported for U. vulgaris by Meierhofer (1902). A time 

course of bladder development with bladder staging has also not previously been available. 

This is possibly due to the early stages of bladder development being masked by the tissue 

of the circinnate apex. To overcome this, I tracked bladders from stages outside of the 

circinnate apex and then extrapolated back. I also set up a staging system to enable 

characterisation through development based on bladder length rather than time after 

initiation. I showed that that the main body of the bladder grows at a rate of 1.6 % per hour 

and bladder development from around the 82 µm stage to maturity takes approximately 

170 hours (assuming that growth rate is constant).  Using this information, I was able to 

characterise three main changes through bladder development: a greater increase in 

height versus width, a greater increase in depth versus width, and an elongation in the chin 

region. I found that the chin region grows at approximately 2 % per hour, becoming around 

25 times longer from the 82 µm stage to maturity. These studies provided me with key 

information that allowed me to consider different models of growth. 

 

2.3.2 Modelling bladder development 
 

I explored the transition from an 82 µm stage caplet shaped bladder to a mature bladder by 

modelling growth using GFtbox. Here I explored specified isotropic and specified 

anisotropic growth. GFtbox was especially useful for considering shape changes in 3D due 

to the fact that the canvas is mechanically interconnected and can deform out of the plane. 

This was important when considering 3D bladder shape changes since 2D models have free 

edges and therefore cannot represent shape transitions occurring in a 3D connected tissue. 

Therefore, considering bladder shape changes in one 3D canvas was important to 
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understand how a connected tissue may behave and to make predictions on bladder 

growth while considering the whole organ. 

 

2.3.2.1 The chin region of the bladder requires specified anisotropy 

 

Through modelling bladder shape change, I found that a purely isotropic specified growth 

model is unable to generate an elongation at the chin region of the bladder without 

generating a bulge in the tissue. This is an example of where areal conflict in tissue leads to 

a 3D deformation due to the interaction of connected tissue where one region is specified 

to grow faster than neighbouring regions (Kennaway et al., 2011; Rebocho et al., 2016 

submitted).  

 

Adding specified anisotropy at the chin region was sufficient to generate elongation in 

biological proportions and avoid generating a bulge. Furthermore, I found that pure 

anisotropy with no increased areal growth caused the chin to be pinched in: to keep areal 

growth even across the canvas, Kper must be lowered to allow for the increase in Kpar. This 

suggests that both areal conflict and specified anisotropic growth are required for the 

elongation of the chin.  This also indicates that tissue axiality is required so that specified 

growth oriented parallel with the axis between the stalk and mouth may be higher at the 

chin.  

 

2.3.2.2 Shape changes in the main body of the bladder can be accounted for with 

either specified isotropic or anisotropic growth 

 

A greater increase in height versus width in the main body of the bladder can be captured 

by models in which specified growth is either isotropic or anisotropic. The key to generating 

such directional growth in a specified isotropic growth model is the presence of differential 

areal growth rates across the canvas where growth rate is highest around the midvein of 

the bladder. A greater increase in depth versus width is achieved with higher areal growth 

in the chin region which drives further elongation of the canvas. These shape changes occur 

as a result of areal conflict generated by differential growth rates in neighbouring regions 

of tissue. In the specified anisotropic model, shape change in the main body of the bladder 

relies on tissue axiality (generated using tissue polarity in the model) oriented from stalk to 

mouth, and increased growth parallel with this axiality. Increased height and depth here 
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are driven by local anisotropic growth which is parallel with the MIDVEIN across the canvas. 

These principles are comparable to the single cell examples from Green (1965) and 3D 

tissue examples reviewed in Coen & Rebocho (2016 in press) where similar deformations in 

shape may be achieved using either combinations of specified isotropic growth with 

differential areal growth rates, or anisotropic specified growth with uniform areal growth 

rate.  

 

2.3.3 Summary of predictions made by the models and future work 
 

The models presented in this chapter make a number of predictions about bladder 

development, some of which will help to distinguish between specified isotropic and 

anisotropic growth when studying the U. gibba bladder experimentally. Since a pure 

isotropic specified growth model (model 2) was unable to generate elongation of the chin 

region successfully, and the gradient of anisotropy model (model 7) was unable to increase 

more in height relative to width, I will focus on comparing two models: 

 

1.) Model 3- (Figure 2.16) Isotropic specified growth model with anisotropic specified 

growth in the CHIN region alone. 

 

2.) Model 6- (Figure 2.22) Anisotropic specified growth model. 

 

Predictions made by these models are outlined in Table 2-1. Since specified isotropic 

(model 3) or anisotropic (model 6) growth could account for the shape changes observed in 

the main body of the bladder, it is important to make predictions that can distinguish 

between the two. Both models predict low levels of resultant anisotropy across the main 

body of the bladder. In the specified isotropic growth model the resultant anisotropy near 

the midvein is perpendicular to the midvein while in the specified anisotropic growth 

model it is parallel with the midvein. This provides one potential method for distinguishing 

the models through observing local growth orientation.  

 

Another means to distinguish the models is by predictions made regarding clone size. In the 

specified isotropic model (model 3), clones near the midvein are larger where areal growth 

rates are higher, and smaller at the sides of the canvas where areal growth rates are lower. 

In the specified anisotropic growth model (model 6), clones are of approximately equal 

area across the main body of the canvas.  
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These predictions may be tested by looking for biological evidence in the developing U. 

gibba bladder. Growth dynamics may be examined by tracking bladder growth and cell 

division patterns and by performing sector analysis (Kuchen et al., 2012; Sauret-Güeto et 

al., 2013). The presence of a polarity field may be investigated by looking at molecular 

markers of polarity such as PIN1 ( Kuchen et al.,2012; Kennaway et al., 2011).  
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3 Testing model predictions 
 

3.1 Introduction 
 

Models presented in the previous chapter make a number of predictions about bladder 

development. Some predictions (such as the requirement for axiality) are made by each 

model. Other predictions allow a distinction to be made between models where either 

specified isotropic growth or specified anisotropic growth underlies the development of the 

main body of the bladder. In this chapter, I will test these predictions in the biological 

system. 

 

3.1.1 Markers of polarity 
 

Models 3 and 6 presented in the previous chapter both predict the requirement of axiality 

to specify anisotropy for development of the bladder chin region. These models assume 

that axiality is based on a polarity system, using a diffusible factor (POLARISER) to set up a 

polarity field across the canvas, against which growth orientations may be specified 

(Kennaway et al., 2011). There is evidence global axes exist in tissues (Bouyer et al., 2001; 

Strutt, 2001, 2002; Grebe, 2004) and we can assess the orientation of this axiality by 

studying markers of cellular polarities. 

 

3.1.1.1 External markers of polarity 

 

A number of these markers are visible on the epidermal surface of cells. This has enabled 

the study of tissue polarisation (the ability of cells to polarize within a plane of a tissue 

layer), also known as planar polarity (or tissue-cell polarity).  

 

There is extensive evidence for planar polarity in animals including the coordinated bristles 

and hairs across the body of Drosophila (Adler, 2002), and on the body of the milkweed bug 

Oncopeltus (Lawrence, 1966). Many studies have been done to understand the set up and 

maintenance of this tissue polarity in the Drosophila wing and gene products controlling 

planar cell polarity (PCP) signalling have been characterised including those encoded by 

approximately ten core PCP genes (Wang & Nathans, 2007). The system involves the Fat/ 
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Dachsous/ Four-jointed (Ft/ Ds/ Fj) signalling system which aligns an apical non-

centrosomal microtubule (MT) network (Harumoto et al., 2010). This is achieved by 

gradients of Fj and Ds expression which lead to an excess of Ft activity on the proximal side 

of each cell and Ds activity on the distal side of each cell. This polarisation of Ft and Ds 

activity in the cell leads to the organisation of proximal-distal MT tracks. Plus-ends of MTs 

are biased towards the end of cell with either high Fj or high Ds expression depending on 

the predominant Pk-Sple protein isoform, Pricklepk (Pk) or Pricklespiny-legs (Sple), present: MT 

plus-ends are biased towards areas of high Fj expression in the presence of PK, and high 

levels of Ds expression in the presence of Sple (Olofsson et al., 2014) This allows the system 

to function in cells of the eye, wing and abdomen where Ft and Ds gradients differ and 

provides a continual directional bias for polarisation. These MT alignments then lead to 

polarised, plus-end directed trafficking of vesicles containing Dishevelled (Dsh) and Frizzled 

(Fz) to the distal side of the cell where Fz signalling eventually leads to the specification of 

prehair formation (Adler, 2002). 

 

In Arabidopsis roots a similar phenomenon can be observed in the planar polarity of root 

hair cells which initiate close to the basal ends of hair-forming cells and point towards the 

peak of auxin at the root tip (Grebe, 2004).  ROP GTPases have been suggested to be 

involved in the polarising mechanism since they exhibit polar localisation close to the basal 

end of epidermal cells (Grebe, 2004). Experiments have also shown that planar polarity of 

root cell hairs requires the combined activity of AUX1, EIN2, and GNOM genes: the 

Arabidopsis aux1;ein2;gnomeb triple mutant has loss of polarity and mis-localisation of ROP 

(Fischer et al., 2006). This mutant lacks the auxin influx carrier (AUX1), the ethylene 

signalling protein (EIN2), and the GNOM protein which is required for polar plasma-

membrane localisation of PIN1 and PIN2 auxin efflux carriers.   Auxin is thought to play a 

key role in the planar polarity of root hair positioning since the local application of auxin 

coordinates polar hair positioning towards the source in the aux;ein2;gnomeb triple mutant  

(Fischer et al., 2006). In barley, hairs on the adaxial surface of the lemma point distally 

towards the lemma tip, and this polarity is disrupted in the Hooded mutant where hairs 

point proximally below the first ectopic flower. These orientations correlate with the 

pattern of SISTER of PIN1 (SoPIN1) localisation observed in the tissue (Richardson et al., 

2016). 
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The trichomes of Arabidopsis also display polarity, with branching events closely related to 

the leaf axis: the first branching event occurs in the proximal-distal leaf axis and the second 

branching event takes place only at the distal end. This means that the trichome has a 

single branch pointing towards the leaf base and two branches pointing towards the leaf tip 

(Bouyer et al., 2001). A number of trichome mutants, some of which exhibit trichomes 

which are randomly oriented have been characterised (Bouyer et al., 2001). However, the 

mechanisms underlying trichome polarity are poorly understood.  

 

3.1.1.2 PIN proteins as markers of polarity 

 

The polar localisation of PINs (auxin efflux carriers) within a tissue may provide a readout of 

axiality if this axiality is determined by a polarity based system coordinated by auxin. This 

marker of polarity is especially useful when studying young tissue when epidermal PIN 

expression is high. The coordinated polar localisation of PIN proteins has been used to 

study plant tissue-cell polarity in embryonic tissue, roots (Grebe, 2004) and developing 

leaves and petals (Kuchen et al., 2012; Sauret-Güeto et al., 2013). 

 

3.1.2 Evidence for resultant anisotropy in the cells of developing 

tissues. 
 

The models also make predictions on resultant anisotropy, the most striking of which was 

in the chin region of the bladder where clones appeared much more elongated and the rate 

of increase in anisotropy per hour was predicted to be much higher than the rest of the 

tissue and oriented parallel with the axis between stalk and mouth. 

 

Evidence of resultant anisotropy can be explored in developing tissues by studying 

resultant anisotropy at the cell shape and cell division level. Cells may grow anisotropically, 

becoming long and thin (Figure 3.1, A). In this case anisotropic growth may be inferred in 

regions of tissue where individual cells have higher levels of anisotropy. However, if 

division occurs following the shortest wall algorithm reviewed by Prusinkiewicz & Runions 

(2012), then isotropy of individual cells will be maintained in regions of tissue growing 

anisotropically (Figure 3.1, B). This means that anisotropy cannot be assessed by cell shape 

alone but by patterns of division too. 
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Figure 3.1: Resultant anisotropy at the cell shape and cell division level.  (A) Diagram 

illustrating anisotropic growth of a cell in the absence of division where the final cell shape 

is anisotropic. (B) Diagram illustrating anisotropic growth of a cell in the presence of 

division along the shortest wall where isotropy of individual cells is maintained. 

 

 

Resultant anisotropy can be studied in developing tissue in a number of ways. These 

include image segmentation of cells (Federici et al., 2012) which can give information on 

cell shape anisotropy across a tissue when individual samples are studied or give 

information on cell division patterns too if used in conjunction with a time course data set. 

This method of analysis requires the ability to image structures in such a way that cell 

outlines are clear, and the ability to computationally fit a surface to the structure and 

segment it. Tracking also requires good cell definition for microscopy as well as the need 

for keeping the tissue alive while growing in an imaging chamber.   

 

Another method used to study cell lineages is sector analysis. Sectors may be heat shock 

induced fluorescent sectors (Kuchen et al., 2012; Sauret-Güeto et al., 2013; Eldridge et al., 

2016). This method of sector generation uses Cre-loxP recombinase which was identified in 

bacteriophage P1 (Sternberg & Hamilton, 1981). In this system, site specific recombination 

requires two components; the 34 bp loxP sequence at which recombination occurs and the 

Cre recombinase protein which recognises and binds loxP sites, catalysing the 

recombination of DNA (Sternberg & Hamilton 1981; Hoess et al., 1982; Abremski & Hoess 

1984). This system has been developed and successfully used in Arabidopsis (Gallois et al., 

2002; Kuchen et al., 2012; Sauret-Güeto et al., 2013). The system used in Arabidopsis is 

based on the transformation of two separate constructs. One construct consists of a uidA 

gene which is flanked by loxP sites and inserted between a 35S promoter and GFP (35S:lox-

uidA-lox-GFP). The second construct is Cre recombinase under the control of the promoter 
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of a Heat Shock Protein 18.2 (Sieburth et al., 1998) (hsp18.2::Cre). Before heat shock, only 

the first marker gene (uidA) is expressed. Induction of Cre recombinase by a 38 °C heat 

shock leads to recombination of the lox sites which are in the same orientation. This causes 

the excision of uidA as a circular piece of DNA and therefore the activation of GFP in 

random cells. The daughter cells of these cells inherit GFP expression under the control of 

the 35S promoter, leading to sectors of GFP expressing cells across the tissue. This system 

can be altered so that marker genes of choice can be used in place of uidA and GFP (Figure 

3.2).  

 

 

Figure 3.2: Diagram illustrating the cre-loxP based system for the generation of sectors in 

plant tissue.  Transgenic plants contain a reporter construct consisting of the lox-flanked 

marker gene 1 inserted between the 35S promoter and marker gene 2, and a heat shock 

inducible Cre recombinase. After heat shock, Cre recombinase is activated which catalyses 

the recombination of the loxP sites flanking marker gene 1. This causes the excision of this 

marker gene because the lox sites are in the same orientation. Marker gene 2 is then 

activated in random cells and their descendants, forming a sector. 
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Since sectors are generated from a single cell, they provide information on growth 

orientations and anisotropy at both the cell shape and division level. The extent of cell 

shape anisotropy can be inferred by comparing cell number anisotropy (by calculating 

anisotropy based on the cell number in the major and minor axis of each sector) to 

anisotropy in length in the major and minor axis of each sector.  

 

3.1.3 Aim of this work 
 

The aim of this work is to test the hypotheses made by isotropic and anisotropic growth 

models described in the previous chapter by exploring polarity and growth dynamics of 

developing U. gibba bladders. 

 

3.2 Results 
 

3.2.1 Sector analysis 
 

3.2.1.1 Generating a heat shock inducible sector line in U. gibba 

 

Sector lines which use the heat shock inducible system are normally generated by 

transforming separate plants with either the marker genes or the inducible Cre construct 

and then crossing these plants. This is suited to plants such as Arabidopsis which has a 

short life cycle and can be crossed readily. However, the life cycle of U. gibba is more 

unreliable and flowering was limited to the summer months when plants flowered 

successfully in the glasshouse. Because of this, a slightly different system is more appealing 

whereby a single construct can be generated through modular Golden Gate cloning. This 

technique allows for flexible creation of single binary transformation vectors through 

progressive cloning. This involves the generation of level 0 (L0) modules (synthesised 

components) which are combined to make level 1 (L1) components (transcriptional units), 

which in turn are combined to make L2 constructs (multigene units) (Weber et al., 2011). 

The Golden Gate cloning system is based upon the bacterial type IIS endonuclease 

restriction enzymes Bsal, Bpil, and ESp3I which cut downstream of a specific recognition 

site. Specific 3’ and 5’ overhangs (termed fusion sites) are designed in such a way that 

fragments cut by the same type IIS endonuclease can be linearly ligated by T4 ligase in a 

specific order (Weber et al., 2011). 
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I collaborated with Annis Richardson and Samantha Fox who together designed a heat 

shock Cre construct for the lab using Golden Gate cloning (see materials and methods for 

details). Christopher Whitewoods performed Golden Gate reactions to generate the 

construct for U. gibba. I also collaborated with Minlong Cui who successfully developed a 

transformation protocol for U. gibba and performed all transformations. 

 

3.2.1.2 Generating a sector data set 

 

I heat shocked U. gibba tissue containing a range of bladder sizes at 45 °C for 6-8 minutes. I 

then imaged bladders at the 622 µm and 933 µm stage, two or four days after heat shock 

(2 DAHS, 4 DAHS). Based on growth analysis presented in chapter 1, I inferred the sizes of 

observed bladders at the time of heat shock (Figure 3.3). 
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Figure 3.3: Heat shock timings based on bladder stage.  Bladder developmental series 

(stages 82 µm- 1400 µm). (A) Stages heat shocked (yellow star) and imaged 4 days after 

heat sock (DAHS) (blue arrow). (B) Stages heat shocked (yellow star) and imaged 2 DAHS 

(Red arrow). Scale bar is 200 µm. 

 

 

I imaged bladders from the side to capture any sectors in view and so that a length 

measurement could be made for staging purposes. I then manually turned the bladder to 

the appropriate view to image any sectors that were near the midvein or in the chin region.  

 
 

Figure 3.4: Imaging bladders in multiple views to capture sectors on a 3D structure.  Heat 

shock inducible bladders imaged from the side (A), top (B), and underside (C). Tissue was 

heat shocked at 45 °C for 6-8 minutes and then imaged 2 or 4 DAHS by confocal 

microscopy. 
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3.2.1.3 Sector overview 

 

I first looked at this data to gain some broad information on cell division and cell growth in 

the bladder.  

 

Cell division 

 

To look at cell division, I separated sectors from bladders in the 622 µm and 933 µm 

categories and plotted the mean number of cells in these sectors at 2 and 4 days after heat 

shock (Figure 3.5).   

 

 
Figure 3.5: Mean number of cells per sector at 2 DAHS and 4 DAHS.  Red shows data from 

bladders imaged 2 DAHS. Blue shows data from bladder imaged 4 DAHS. Bars show 

standard error of the mean, taking sample size into account. 

 

 

In each case, there are more cells in sectors imaged 4 DAHS than in sectors images 2 DAHS 

(Figure 3.6). Division rates inferred by this data are of the order of ~1 division every 2-3 

days.  

 

Visual evidence suggests that cell division rate at earlier stages may be higher than at later 

stages. For example, bladders imaged at 5 DAHS show a 933 µm bladder compared to a 

415 µm bladder (Figure 3.6). Here, the 415 µm stage bladder would have been heat 
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shocked at around the 54 µm stage, while the 933 µm bladder would have been heat 

shocked around the 123 µm stage. The 415 µm bladder (Figure 3.6, white arrowhead) has a 

much larger region of GFP which contains many more cells than the sectors on the 933 µm 

bladder. This patch of GFP covers more than 50 % of the side of the 415 µm bladder. 

Assuming this region is one sector, this suggests that division rates at very early stages 

(before the 82 µm caplet stage) are much higher. More analysis of early stages would need 

to be done to be conclusive.  

 

 

 

Figure 3.6: Sector cell numbers 5 DAHS on bladders imaged at the 933 µm and 415 µm 

stage.  (Left) bladder imaged at the 933 µm stage 5 DAHS (heat shocked after the 82 µm 

caplet stage at approximately the 123 µm stage). (Right) Bladder imaged at the 415 µm 

stage 5 DAHS (heat shocked before the 82 µm stage at approximately the 54 µm stage). 

Scale bar is 200 µm.  

 

 

Cell expansion 

 

To study cell expansion in the bladders, I calculated the average cell area per sector by 

dividing the sector area by the number of cells in the sector. I measured sector area in 

VolViewer by clicking round the sector using the ‘magnetic lines’ tool in the VolViewer 
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measure panel. I then used the ‘faces’ tool to fill the outline with triangles and obtained 

sector area information by taking the sum of these triangle faces (Figure 3.7).  

 

 

Figure 3.7: Calculating sector area on a 3D volume.  (A) GFP sector on the side a bladder 

imaged 2 DAHS. (B) Sector in (A) after an outline has been attached to the 3D volume and 

filled with triangles (blue). Sector area is given from the sum of the area of these triangles. 

Scale bar is 40 µm. 

 

 

I then plotted the natural logarithm of the average cell area in a sector against the natural 

logarithm of the bladder length (Figure 3.8). I found that as bladder length increases, the 

average cell area also increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Average cell area versus bladder length. Natural logarithm of the average cell 

area (sector area/ cell number) against the natural log of the bladder length and fitted line. 

Red diamonds are data collected 2 DAHS. Blue squares are data collected 4 DAHS. 
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These preliminary results indicate that cell division rate is in the order of ~ 1 division per 1-

2 days, and that cell division rate may decrease through development. Cell size increases 

exponentially between the 622 µm and 933 µm stages. More data is required to validate 

results and to look at earlier stages where bladders have been heat shocked younger and 

imaged at younger stages. This would give more information on cell division rates and cell 

expansion through earlier developmental stages. 

 

3.2.1.4 Testing predictions made by the models 

 

I set out to test a number of predictions made by model 3 (specified isotropic growth in the 

main body of the bladder) and model 6 (specified anisotropic growth in the main body of 

the bladder) presented in chapter 2. These predictions include: 

 

1.) A higher level of anisotropy in the chin region of the bladder compared to the main 

body of the bladder, with clones at the chin region oriented parallel with the axis 

between the stalk and mouth (predicted by both models). 

 

2.) Larger sectors near the midvein and smaller sectors at the sides of the bladder 

(predicted by model 3) or approximately equal sized sectors (predicted by model 

6). 

 

3.) Sectors oriented perpendicular to the midvein near the midvein, and parallel to the 

midvein at the sides of the bladder (predicted by model 3) or sectors oriented 

parallel to the midvein across the bladder (predicted by model 6). 

 

3.2.1.4.1 Studying sector anisotropy at the chin region  

 

To test predictions made by the models in chapter 2, I first considered growth in the chin 

region. To achieve elongation of this region without causing the canvas to bulge, the 

models required increased areal growth and higher specified anisotropy at CHIN. This led to 

higher levels of resultant anisotropy in the CHIN region compared to the rest of the canvas. 

If this is the case in the bladder, I would expect sectors in the chin region to also have 

higher levels of resultant anisotropy than the main body of the bladder.   
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To study resultant anisotropy in the chin region versus the main body of the bladder, I first 

compared the shapes of sectors found in these regions. At first glance, sectors in the chin 

region appear more elongated when compared to sectors across the main body of the 

bladder (Figure 3.9, C and D). To study this more quantitatively, I calculated the rate of 

increase in anisotropy per hour of sectors across the bladder. I opened the PNG image 

stacks in VolViewer and rotated the volume so that the sector of interest was flat to view 

and took a snapshot of the sector face on with a scale bar present. I then opened sector 

images in Image J and set the scale based on the known length of the scale bar. I used the 

polygon selection tool to draw around the sector and fitted the best fitting ellipse to the 

sector using the Fit Ellipse tool (Figure 3.9, E and F). I then extracted the major and minor 

measurements which are the primary and secondary axis of the ellipse. To calculate 

anisotropy, I took the natural logarithm of major/minor. This gave me anisotropy 

measurements based on the length of the major and minor axes. I also counted the 

number of cells that the major and minor lines crossed to give me an anisotropy value 

based on cell number. For this calculation I took the natural logarithm of the major cell 

number/minor cell number. To allow me to compare this data directly to the model, I 

calculated the rate of increase in anisotropy per hour: 

 

(Ln(major/minor)) 

h 

 

Where h is the number of hours since heat shock and it is assumed that the rate of increase 

in anisotropy is exponential (as growth is exponential). 
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Figure 3.9: Sectors in the main body of the bladder and at the chin region.  (A) Bladder 

with the main body region defined (purple). (B) Bladder viewed from the side and 

underside with the chin region defined (purple). (C) Example sectors from the main body of 

the bladder. (D) Example sectors from the chin region. (E) Example sector from the main 

body with fitted ellipse and major and minor axes marked. (F) Example sector from the chin 

with fitted ellipse and major and minor axes marked. (A-B) Scale bars are 550 µm. (C-F) 

Scale bars are 50 µm. 
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Anisotropy of sectors: limitations 

 

Measurements made here are approximate measurements of the flattened image and do 

not take bladder curvature into account. Calculations may overestimate the rate of 

increase in anisotropy per hour for the following reasons; the anisotropy calculation 

assumes that the initial cell that was heat shocked was isotropic (equivalent to a circular 

clone in the model). However, it is likely that cells across the bladder had some level of 

anisotropy at the time of heat shock.  There may also be artificial anisotropy due to the 

irregularity of cell shapes. Since cells are not perfect circles, there is always a long axis. 

There may also be a level of noise due to cell divisions giving a bias, for example, after one 

division there will be a 2:1 ratio of cells in the major: minor axis. Therefore, sectors with 

fewer cells offer more bias.  

 

3.2.1.4.2 Anisotropy in the main body of the bladder compared to the chin region 

 

To study sector anisotropy across the main body of the bladder versus the chin region, I 

plotted the mean rate of increase in anisotropy per hour for these regions. These 

calculations are based on the length and cell count of the major/ minor lines of each fitted 

ellipse (Figure 3.10).  
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Figure 3.10: Average rate of increase in anisotropy per hour in the main body of the 

bladder and at the chin region.  (A) Example sector from the main body of the bladder with 

fitted ellipse in white. (B) Example sector from the chin region of the bladder with fitted 

ellipse in white. (C) Bar graph showing the mean rate of increase in sector anisotropy per 

hour of sectors across the main body of the bladder (grey) and at the chin region (purple). 

Sector anisotropy is calculated in terms of major and minor lengths and in terms of cell 

number in the major and minor axis of each sector. All sectors in this graph were imaged 4 

DAHS on 933 µm bladders. Bars show standard error of the mean, taking into account 

sample size. Scale bars are 50 µm. 
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The mean rate of increase in anisotropy per hour based on sector length measurements 

and cell number is greater at the chin region than in the main body of the bladder (Figure 

3.10, purple compared to grey bars). Calculations based on sector length measurements 

show that the mean rate of increase in anisotropy per hour is almost 3 times greater in the 

chin region compared to the main body of the bladder (approximately 0.5 % per hour in the 

main body of the bladder, and approximately 1.5 % per hour in the chin region). When I 

compare these values to those predicted by the model (Table 3-1) I find that the mean rate 

of increase in anisotropy per hour in the main body of the bladder and the chin region are 

higher than predicted by either model (models 3 and 6). Values obtained from the bladder 

data are closer to those predicted by model 6 (the anisotropic specified growth model) 

where the average rate of increase in anisotropy per hour was also about 3 times greater in 

the chin region compared to the rest of the canvas. Model 3 (the isotropic specified growth 

model with anisotropic specified growth at CHIN alone) predicted that the rate of increase 

in anisotropy in the chin region would be more than 8 times that in the main body of the 

bladder. As mentioned above, calculations in the bladder assume that cells are isotropic 

when heat shocked (at the 277 µm stage in this case). If the cells in each region have some 

anisotropy at this stage then the calculations will overestimate the rate of increase in 

anisotropy per hour.  

 

Table 3-1: Comparing predictions made by the models to sector data.  Values for the rate 

of increase in anisotropy per hour are shown and are calculated using: (Ln 

(major/minor))/ h (where h is the model run time or the time since heat shock).  

 

Model/ data Main body Chin 

Model 3 0.08 % per hour 0.67 % per hour 

Model 6 0.3 % per hour 0.8 % per hour 

Bladder data  0.5 % per hour 1.5 % per hour 

 

 

To study the contribution of cell shape, I looked at the resultant anisotropy based on cell 

number (Figure 3.10). In the main body of the bladder there is little difference between the 

rate of increase in anisotropy per hour based on sector length or cell number (around 0.5 % 

per hour and 0.4 % per hour respectively). However, in the chin region the rate of increase 

in anisotropy per hour based on sector lengths is approximately 2 times greater than that 

calculated based on the number of cells along the major and minor axis of the sector 
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(approximately 1.5 % per hour and 0.8 % per hour respectively) (Figure 3.10). This suggests 

that cell shape heavily contributes to anisotropy in the chin region. It is not clear from this 

data when cells become longer and thinner. This may also indicate that division rate at the 

chin region is lower than the rest of the bladder, since division following a shortest wall 

algorithm would lead to less anisotropic cells. More data is required to explore these ideas. 

 

This analysis of sectors in the chin region versus the main body of the bladder suggests that 

resultant growth at the chin is more anisotropic than the rest of the bladder. Since a pure 

isotropic model cannot account for such resultant anisotropy, this supports a model where 

growth is specified to be anisotropic at chin. Values of the rate of increase in anisotropy per 

hour obtained from sector data were closer to that predicted by the specified anisotropic 

model (model 6). However, it is unclear from this analysis, the extent to which specified 

isotropy/ anisotropy may play a role in the generation of the main body of the bladder. 

 

3.2.1.4.3 Sector area across the bladder 

 

As discussed in chapter 2, models with specified isotropic (model 3) or specified anisotropic 

(model 6) growth make a number of predictions on resultant growth across the main body 

of the bladder. The first prediction considers sector area across the main body of the 

bladder. A specified isotropic growth model predicts that sectors are larger nearer the 

midvein and become progressively smaller towards the sides of the bladder since greater 

areal growth rate at the midvein is required. While for specified anisotropic growth models, 

sector area across the bladder can be roughly even (assuming even areal growth rate 

across the canvas).  

 

To enable me to test these predictions and study sectors in the bladders from the sides of 

the bladder to the midvein, I defined a number of bladder zones for analysis which I 

numbered 1-4 (where 1 is at the centre of the side, and 4 is closest to the midvein). I made 

a template ellipse with these zones marked. I then resized the template for each individual 

bladder and assigned each sector with a position from 1-4. In cases where a sector crossed 

two zones, I labelled it based on the zone in which the majority of the sector area sat 

(Figure 3.11). 
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Figure 3.11: Bladder zones 1 to 4 from the centre side to the midvein.  (A) Bladder imaged 

2 DAHS with a GFP sector indicated (blue arrow). (B) Bladder with zone template overlaid 

showing zones 1-4 which run around the circumference of the bladder from the centre of 

the bladder side to the midvein. The same sector as in (A) is indicated (blue arrow) and falls 

into zone 2. Scale bar is 150 µm. 

 

 

I looked at the average sector area in each zone at 2 and 4 DAHS.  To overcome having a 

small data set, I normalised the data for bladder size by dividing sector area by bladder 

length2 (as a proxy for bladder area) so that I could combine my data across different 

bladder sizes. I did this because I did not have a way to take the curvature of the bladder 

into account for a bladder area calculation. This gave me a sector area normalised for 

bladder size and a series of zones across the bladder which I could compare to data from 

the models where clone position was given by the level of S_MIDVEIN diffusing from 

MIDVEIN. Therefore, zone 1 is equivalent to areas with lower levels of S_MIDVEIN in the 

model, and zone 4 is equivalent to areas with higher levels of S_MIDVEIN in the model. 

 

To test predictions on sector area made by the models I plotted the normalised sector area 

against the bladder zone. If specified growth is isotropic with areal conflict driving the 

transition in shape, I would expect there to be an increase in sector size from zone 1 to 4. 

This is because a greater areal growth rate is required at MIDVEIN to drive the transitions in 

shape in an isotropic growth model (model 3). If growth is anisotropic with no areal conflict 

(equal growth rates across the main body of the bladder), I would expect sector area to be 

approximately equal across the bladder.  
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Figure 3.12: Sector area against bladder zone.  Sector area normalised for bladder size 

against bladder zone. (A) Sectors on bladders images 2 DAHS. (B) Sectors on bladders 

imaged 4 DAHS. Bars show standard error of the mean. 

 

 

 

 

 



Testing model predictions 

101 
 

Sector area does not increase from zone 1 to zone 4 at 2 or 4 DAHS (Figure 3.12). 

Therefore, this data does not support the specified isotropic growth model. Sectors in zone 

1 may be larger compared to zones 2 to 4. However, more data is required here to make 

stronger conclusions and to test for statistical significance. 

 

3.2.1.4.4 Sector anisotropy across the bladder 

 

The models also make a number of predictions on sector anisotropy across the main body 

of the bladder. The specified isotropic growth model (model 3) predicts low levels of even 

resultant anisotropy across the main body of the bladder with a rate of increase in 

anisotropy per hour less than 0.2 % per hour. The specified anisotropic model (model 6) 

predicts that the rate of increase in anisotropy per hour ranges from around 0.2 % per hour 

closest to the midvein to around 0.4 % per hour at the sides of the bladder furthest from 

the midvein.  

 

To test these predictions, I used the same method described above for calculating the rate 

of increase in anisotropy per hour of each sector. I then plotted the rate of increase in 

anisotropy per hour against the bladder zone. I pooled my data and made calculations 

based the measured length of the major and minor axis and in terms of the number of cells 

in the major and minor axis (Figure 3.13).  
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Figure 3.13: Mean rate of increase in anisotropy per hour across the main body of the 

bladder.  (A) Mean rate of increase in sector anisotropy at bladder zones 1-4 where the 

major and minor lengths were measured. (B) Mean rate of increase in sector anisotropy at 

bladder zones 1-4 where the number of cells along the major and minor axes were 

counted. Calculations were based on the major and minor axes of a fitted ellipse on each 

sector. Error bars show standard error of the mean. 
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I found no correlation between bladder zone and the mean rate of increase in sector 

anisotropy per hour in terms of sector length or cell count in the major and minor axes of 

the sectors (Figure 3.13, A & B). Values based on length measurements of the major and 

minor axis range between around 0.6 % per hour and about 1 % per hour. This is greater 

than that predicted by either model where values ranged from < 0.2 % per hour to around 

0.4 % per hour.  This could mean that the rate of increase in anisotropy per hour across the 

main body of the bladder is higher than that predicted by the model. However, this higher 

level could partly be due to cells being anisotropic at the time of heat shock and therefore 

an overestimation of the rate of increase in anisotropy per hour. Data on cell shape at the 

time of heat shock is necessary to investigate this further. 

 

This data suggests that there is a level of anisotropy which is roughly even across the main 

body of the bladder. Although more data would need to be collected to confirm this. I 

found no evidence for a gradient of anisotropy from the midvein, and therefore no support 

for a gradient of specified anisotropy model (model 7). Since the level of anisotropy in the 

data is higher than that predicted by either the isotropic (model 3) or anisotropic (model 6) 

specified growth models, it is not clear from this analysis alone which is more likely. 

However, the models also make a clear prediction on the orientation of this anisotropy 

which I can test.  

 

3.2.1.4.5 Growth orientations   

 

The specified isotropic growth model (model 3) predicts that the major axis of growth in 

regions closest to the midvein is perpendicular to the midvein, and on the sides of the 

bladder is more parallel to the midvein. The specified anisotropic growth model (model 6) 

predicts that the major axis of growth across the bladder is parallel with the midvein, and 

parallel with the local polarity. In all models which achieve an elongated CHIN region, the 

major axis of growth at the chin is predicted to be parallel with the midvein and the axis 

between the stalk and mouth. 

 

To explore growth orientations in the bladder, I fitted each bladder confocal image to an 

outline of a bladder back, top, side, or chin and marked the fitted ellipse of each sector 

along with its major axis. I used landmarks such as the mouth, stalk, and midvein to 

position the sector and compared multiple views of the bladder where possible. This gave 
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me a rough sector map where I could look at sector orientations globally across the bladder 

(Figure 3.14). I marked the midvein (Figure 3.14, black dotted line) for reference of 

orientation to compare to the models. 

 

 

 

Figure 3.14: Exploring the major axis of growth based on the anisotropy of sectors.  

Outline of a bladder (red dotted line) viewed from the back (A), top (B), side (C), and chin 

(D) where St = stalk, Mth = mouth. The orientation of the midvein is indicated (black dotted 

line). Fitted ellipses of each sector are shown along with their major axis (coloured ellipses 

and lines). Numbers are a reference for each sector analysed. Ellipses and bladder outlines 

are not to scale and show the approximate position based on landmarks. Data is a pooled 

from heat shocked plants images 2 and 4 DAHS and on a range of bladder sizes (622 µm – 

933 µm stages). 
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On the back and top (Figure 3.14, A-B), sectors appear to be oriented approximately 

parallel with the midvein in general. This supports a specified anisotropic model. Sectors on 

the side generally appear to be parallel with the midvein across the tissue, also supporting 

a specified anisotropic model. Some sectors in Figure 3.14, C appear to overlap at 

orthogonal angles. This is a product of the data analysis method whereby bladders of 

different sizes were overlaid and resized for analysis. The precise location of sectors 

relative to one another is therefore not accurate. However, each sector aligns parallel with 

the proposed local polarity pattern. More data would confirm the patters observed here 

and remove any cell division bias. At the chin region, sectors are oriented parallel to the 

midvein, as predicted by models with specified anisotropy in this region and a polarity field 

pointing from stalk to mouth. 

 

This data suggests that there is a pattern of orientations associated with the anisotropy of 

the sectors. This suggests that the anisotropy that we see is not entirely artificial due to cell 

division or shape bias (which one would expect to give rise to a random pattern of 

orientations based on the major axis).  The major axis of the sectors is generally parallel 

with the midvein, supporting a specified anisotropic model. Sectors in the chin region are 

oriented parallel with the axis between stalk and mouth, supporting specified anisotropy in 

this region based on an axis parallel with the midvein.  

 

3.2.1.4.6 Summary of sector analysis data 

 

A key prediction made by the models was that, for elongation of the chin region to occur, 

specified growth in this region must be anisotropic with the major axis of growth parallel 

with the midvein. The models predict higher rate of increase in anisotropy per hour in the 

chin region. I found that clones in the chin region of the bladder had a rate of increase in 

anisotropy per hour of 1.5 %, compared to 0.5 % per hour in the main body of the bladder. 

This supports the hypothesis that the chin region has higher anisotropic growth than the 

rest of the bladder.  

 

A defining feature of the specified isotropic growth model is that clones nearer the centre 

of the side are smaller and clones closer to the midvein are larger. This is due to the 

differential areal growth rate across the canvas which drives the shape transition in the 
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model and is highest near the midvein. In contrast, the specified anisotropic model predicts 

clones which are approximately even in area across the main body of the bladder. I found 

no correlation between sector area and position relative to the midvein, suggesting that 

specified anisotropic growth across the bladder (as in model 6) is more likely. However, 

more data is required to be more conclusive.  

 

I also found a low level of sector anisotropy across the bladder which was approximately 

even across zones. This makes model 7 with a gradient of specified anisotropy from the 

midvein an unlikely solution. It is not clear how much of this anisotropy derives from cells 

being anisotropic at the time of heat shock. However, a plot of growth orientations 

studying the major axis of the fitted ellipse for each sector, suggests that there is a 

consistent pattern across the tissue. Growth appears to be oriented parallel to the midvein 

across the tissue as predicted by a specified anisotropic growth model (model 6), opposed 

to an isotropic specified growth model (model 3) which predicts clones at the midvein to be 

perpendicular to the midvein.  

 

This data supports a model where specified growth is uniformly anisotropic across the main 

body of the bladder, with higher levels of anisotropy at the chin region. For specified 

anisotropy to drive growth, axiality is required. Therefore, to test the hypothesis that 

growth is through specified anisotropy, I will consider how this axiality may be generated. 

 

3.2.2 Axiality via tissue polarity 
 

In the models, axiality is provided by a polarity field that is set up using diffusible 

POLARISER which diffuses across the canvas from a plus organiser and is absorbed by a 

minus organiser. Models with specified anisotropic growth in any region of the canvas 

make the prediction that the polarity field propagates from stalk to mouth (or vice versa) 

and is present from at least the 82 µm stage. Since the model makes key predictions on a 

polarity based axiality system, I decided to explore these predictions first as a means of 

generating axiality. To explore axiality during development, I looked for markers of cellular 

polarities.  

 

3.2.2.1 Quadrifid glands as external markers of tissue polarity in U. gibba 
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One marker that I explored was the quadrifid glands that line the inner surface of the 

bladder (Figure 3.15, A). These glands consist of a basal cell, a pedestal cell, and 4 terminal 

cells which from a cross-like arrangement. At later stages of bladder development, the 

terminal cells of quadrifid glands have a clear direction and orientation which can be 

defined through the angles between each of the cells. Two opposite obtuse angles and two 

opposite acute angles allow an orientation to be assigned (parallel with the obtuse angles) 

to each quadrifid gland (Figure 3.15, Bi). Then each of the acute angles can be studied, and 

in most cases, a direction can be assigned with an arrow pointing towards the widest of the 

acute angles (Figure 3.15, Bii).  

 

 

 

Figure 3.15: Quadrifid glands on the inner surface of the bladder can be assigned an 

orientation and a direction.  (A) Bladder stained with toluidine blue with quadrifid glands 

visible on the inner surface (blue cross shaped structures). (B) A single quadrifid gland from 

(A). (Bi) An orientation can be assigned (pink line) parallel with the two widest angles of the 

quadrifid cells (yellow). (Bii) Direction can be assigned by comparing the remaining two 
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angles (blue and orange) and placing an arrow head at the wider of the two (orange) for 

consistency. Bladder image taken by Karen Lee on a light microscope. Scale bars are 50 µm. 

 

To get an overall picture of quadrifid gland polarity across the bladder, I used OPT 3D 

imaging in collaboration with Karen Lee. To remove any bias in selecting the direction of 

the arrows, I collaborated with Jake Newman who wrote a MATLAB function which 

automatically assigns a direction based on comparing the distances between points at the 

tips of each cell (see materials and methods for more details). This allowed me to generate 

a map of arrows across a bladder. 

 

The models predict a polarity field which propagates from the bladder stalk and points 

towards the bladder mouth (or vice versa) in arching patterns across the bladder side (see 

chapter 2). If a polarity field propagating from the stalk exists in the bladder, I would 

therefore expect to see a similar pattern in the polarity of the quadrifid glands across the 

bladder side. To test this, I explored the polarity of the quadrifid glands at the sides of the 

bladder (Figure 3.16). I looked at a 933 µm and 622 µm stage bladder on both sides to see if 

patterns were consistent. 

 

I found that the quadrifid glands lining the sides of the bladder had a coordinated pattern 

of orientation and direction, with the majority of arrows pointing away from the stalk 

region and towards the mouth region in a similar arching pattern as predicted by the model 

(Figure 3.16). The polarity pattern of the quadrifid glands appears to be consistent across 

each side of the bladders analysed when the 933 µm and 622 µm stage bladders are 

compared. The occasional arrow points in the opposite direction to those surrounding it. 

There doesn’t appear to be a pattern associated with these arrows that would suggest a 

convergence or divergence point in the tissue since they are dispersed across the bladder. 

These could be errors in the analysis due to the 3D nature of the quadrifid glands. A more 

detailed analysis would be able to clarify the finer details of the pattern. In all cases, the 

orientation of the glands is consistent. 
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Figure 3.16: Quadrifid gland polarity at the sides of bladders.  (Ai) Side section of a 933 µm 

stage bladder imaged using OPT. Quadrifid glands are visible on the inner surface. (Aii) 

Arrows indicating the polarity of the quadrifid glands. (B) Outlines of a 933 µm stage 

bladder viewed from the right (Bi) and left (Bii) sides. (C) Outlines of a 622 µm stage 

bladder viewed from the right (Ci) and left (Cii) sides.  Arrows show quadrifid gland polarity.  

Bladder stalk (St), mouth (Mth), and antennae (a) are labelled. Scale bars are 100 µm.  
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I next looked at the top surface of the bladder. The models predict that the polarity field 

runs parallel to the midvein at the top, pointing towards the mouth of the bladder. To test 

this I studied the quadrifid glands in this region of a 933 µm and 622 µm stage bladder 

(Figure 3.17).  

 

 

 
 
Figure 3.17: Quadrifid gland polarity at the top of bladders.  (Ai) Bottom section of a 933 

µm stage bladder imaged using OPT showing the top surface of the bladder with quadrifid 

glands and associated arrows marking their polarity. (B) Outline of a 933 µm stage bladder 

viewed from the top. (C) Outline of a 622 µm stage bladder viewed from the top. Arrows 

show quadrifid gland polarity. Bladder stalk (St), mouth (Mth), and antennae (a) are 

labelled.  Scale bars are 100 µm.   
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Arrows marked on the inner surface of the top of the bladder show that quadrifid glands 

are oriented parallel with the midvein and then appear to diverge towards the antennae at 

the front (clearest in Figure 3.17, C). The direction of the arrows in this region is generally 

towards the mouth (or antennae) and away from the back. However, there are a few 

arrows nearer the midvein which point backwards (away from the mouth). I see these 

arrows in both samples. This could suggest that polarity at the midvein points in the 

opposite direction to the rest of the tissue.  

 

A key prediction in the model is that polarity propagates from the stalk of the bladder. I 

would therefore expect the polarity of the quadrifid glands around the stalk region to point 

away from the stalk in a radial fashion. Unfortunately, this region was very blurred in the 

scans so I was only able to look at the 622 µm stage (Figure 3.18). 

 

 

 
 

Figure 3.18: Quadrifid polarity at the stalk of the bladder.   Outline of the bottom of a 622 

µm stage. Arrows show quadrifid gland polarity. Bladder stalk (St) and mouth (Mth) are 

labelled.  Scale bars are 100 µm.   

 

 

Quadrifid glands across the stalk region appear to point in all directions away from the stalk 

(Figure 3.18). Quadrifid glands behind the stalk, generally point towards the back of the 

bladder, while those on the stalk region point towards the mouth. Analysis of more 

samples is required here to confirm this pattern and to capture more regions, such as the 

chin region, which were too blurred in the scans to analyse. 
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3.2.2.1.1 Summary of quadrifid gland analysis 

 

Analysis of quadrifid gland polarity across the bladder suggests that the broad pattern of 

polarity (from stalk to mouth) is consistent with model predictions. Polarity at the top of 

the bladder is parallel with the midvein, as predicted by the model, and then diverges 

towards the antennae at the front. This, suggests that there may be two minus organisers 

for the generation of the antennae. Quadrifid glands at the stalk appear to point away from 

the stalk, consistent with a model where the stalk acts as the plus organiser for polarity. 

However, more data in this region is needed. 

 

The orientation of the quadrifid glands is coordinated across the bladder (when we 

consider the lines alone) and is also consistent with the model. However, the direction 

(arrow heads) shows some quadrifid glands pointing in the opposite direction (away from 

the mouth). It is not clear whether this is patterned or if there are errors in the analysis 

which could be due to the 3D spacing of the cells. More analysis is needed to look into this. 

Not all quadrifid glands have a clear direction, since the two acute angles can be very 

similar to each other. This method of studying tissue polarity is therefore limited. 

 

The model also predicts that this polarity pattern is set up from an early stage. However, 

quadrifid glands are not visible at very early stages and are therefore not useful as markers 

of axiality in younger stages of development. To study earlier stages, I looked at a marker 

for polarity that is present at earlier stages such as the polar localisation of PIN proteins. 

 

3.2.2.2 PIN polarity 

 

Assuming that a polarity based axiality system is present in the developing bladder, PIN1 

auxin transporters may be used as markers of cell polarity. The coordination of these cell 

polarities across the tissue (tissue cell polarity) may therefore indicate the orientation of 

axiality.  

 

3.2.2.2.1 PIN protein phylogeny in U. gibba  

 

In order to use PIN1 localisation as a tissue cell polarity marker, I first looked for candidate 

PIN proteins in U. gibba. I performed blast searches within the published U. gibba genome 

(Ibarra-Laclette et al., 2013) and the genome of the U. gibba Bergh Apton (BA) line 
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sequenced by our lab. I then performed a protein sequence alignment (ClustalW), and 

compared all U. gibba PIN homologous with known PIN sequences from Arabidopsis 

thaliana and Antirrhinum majus, as well as candidate PIN sequences from asterid 

angiosperms; Solanum lycopersicum and Mimulus guttatus. I then identified the 

intracellular domain sequence (between amino acids ‘EYRGA’ to ‘PNTYSS’) based on 

published sequence information (Křeček et al., 2009) and removed it so that I was left with 

the conserved sequence for each protein. I aligned these sequences and generated a guide 

phylogenetic tree to identify U. gibba PIN1 homologues (Figure 3.19). I found three 

homologous of PIN1 in U. gibba which I termed UgPIN1a, UgPIN1b, and UgPIN1c. In each 

case, the protein homolog was found in both the published (Ug_lcl) genome and the 

genome sequenced by our lab (Ug_TG). I confirmed the sequence of each U. gibba PIN1 

homolog by PCR before proceeding.  
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Figure 3.19: Guide phylogenetic tree of PIN proteins.  Tree was constructed using Mega5. 

Conserved regions of protein sequence were aligned and a Neighbour-Joining tree was 

constructed using 500 bootstrap replicas, Jones-Taylor-Thornton (JTT) model, and pairwise 

deletion. Abbreviations are as follows: Ug, Utricularia gibba; Am, Antirrhinum majus; At; 

Arabidopsis thaliana; Solyc, Solanum lycopersicum; mgv, Mimulus guttatus. Red dotted box 

indicates the PIN1 family. 

 

 

A further PIN clade, termed Sister-of-PIN1 (SoPIN1) has been identified and is present in all 

angiosperms except for Brassicaceae. In Brachypodium SoPIN1 has been found to be highly 

expressed in the epidermis and polarised towards regions of high auxin concentration while 

the other PIN1 homologues are implicated in vascular patterning and were more highly 

expressed in internal tissues (O’Connor et al., 2014). To see if any of the UgPIN1 

homologues were more closely related to SoPIN1, I collaborated with Devin O’Connor to 

extend my initial phylogenetic analysis to other species. This analysis suggests that UgPIN1a 

is in the PIN1 clade, while both UgPIN1b and UgPIN1c are in the SoPIN1 clade (Figure 3.20). 

This possible duplication in SoPIN1 genes is not uncommon: Solanum lycopersicum also has 

SoPIN1 duplication (Martinez et al., 2016). Based on SoPIN1 localisation observed in 

Brachypodium, UgPIN1c and UgPIN1b may be localised to the epidermis and therefore be 

more useful markers of tissue polarity that UgPIN1a which may be more vascular.  
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Figure 3.20: Analysing the relationship of the three UgPIN1 proteins to the PIN1 clade and 

the Sister-of-PIN1 (SoPIN1) clade.  Guide phylogenetic tree generated by Devin O’Connor 

showing the placement of UgPIN1a (green), UgPIN1b (blue), and UgPIN1c (orange) in either 

the PIN1 or the SoPIN clade. 
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3.2.2.2.2 U. gibba PIN antibody production 

 

Antibodies against UgPIN1a, b, and c were raised against potentially antigenic peptide 

sequences derived from the sequence of each UgPIN1 protein. Peptide sequences were 

selected based on their surface probability and antigenicity. A number of potential peptides 

were found that combined the right requirements: epitope accessibility in the native 

protein, high antigenicity, and a good hydrophilic/ hydrophobic residue ratio. I chose 

peptide sequences found in the intracytosolic loop domain of PIN1 (Wang et al., 2014). This 

is important since hydrophilic regions located outside of the membrane, are exposed in 

aqueous solution, and are therefore more accessible to the antibody. I also chose regions 

of the protein which aligned with other successful PIN1 antibodies from Arabidopsis and 

Antirrhinum (Figure 3.21). Antibodies were produced by Cambridge Research Biochemicals 

(CRB). 



 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.21: Peptide sequences for antibodies against PIN1 in Utricularia gibba, Arabidopsis thaliana, and Antirrhinum majus.  Protein sequence 

alignment for PIN1 proteins focussing on the intracytosolic loop sequence marked for the various peptide sequences. (Red) peptide sequence successfully 

used in the generation of an antibody against AtPIN1 (Barbier De Reuille et al., 2006). (Blue) Peptide sequence used to raise antibodies against UgPIN1b. 

(Orange) Peptide sequence used to raise antibodies against UgPIN1c. (Pink) Peptide sequence used to raise successful antibodies for the 

immunolocalisation of AmPIN1 (Xana Rebocho). (Purple) Peptide sequence used to raise the commercial Arabidopsis AP-20 antibody. (Green) Peptide 

sequence used to raise antibodies against UgPIN1a. Guide protein alignment was generated in BioEdit by performing a ClustalW multiple alignment.
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3.2.2.2.3 Setting up immunolocalisations in U. gibba 

 

Several factors are important for successful immunolocalisation of proteins. These include 

fixation of the tissue, tissue integrity, tissue permeabilization, antibody specificity, antibody 

hybridisation efficiency, and signal/ background ratio. From work in our lab with 

Antirrhinum, we found that permeabilization of the tissue can be one of the most limiting 

steps. I decided to start by addressing this in U. gibba. 

 

Permeabilization treatments 

 

To set up an immunolocalisation protocol for Utricularia gibba, I first tested different 

permeabilization treatments using a HISTONE 3 (H3) commercial antibody. I used an Alexa 

647 secondary antibody as I found that excitation around 633 nm produced the least auto 

fluorescence in fixed U. gibba tissue. I first tested tissue fixed in FAA (Formalin Acetic 

Alcohol) plus triton which is a popular fixative for immunolocalisations. For tissue 

permeabilization, I treated sectioned tissue with either Proteinase K or boiled slides in an 

antigen retrieval solution (Figure 3.22). The full protocol can be found in the materials and 

methods of this thesis. 

 

I found that the Alexa 647 secondary antibody gave a clear signal that was above any 

background fluorescence, producing clear rings of H3 signal. Both Proteinase K treatment 

and boiling in antigen retrieval solution were successful. However, I found results from 

boiling more consistent, which is also the case for Antirrhinum tissue (Xana Rebocho, 

personal communication). No signal was observed in controls where either no primary or 

no secondary antibody was used. These results indicate that fixation in FAA is suitable for 

U. gibba and that the tissue is permeable and is capable of hybridisation for nuclear 

proteins.  

  



Chapter 3 
 

120 
 

 

Figure 3.22: Optimising the immunolocalisation protocol in U. gibba using a H3 antibody.  

(A) Bladder sections from the front (Ai) and side (Aii) treated with Proteinase K. Signal is H3. 

(B) Bladder sections from the front (Bi) and side (Bii) boiled in an antigen retrieval solution. 

(C) Negative controls where (Ci) no primary antibody was used, and (Cii) no secondary 

antibody was used. The mouth (Mth) and lumen (Lu) of the bladder are marked.  Secondary 

antibody is Alexa 647. Scale bars are 10 µm. 

 

 

Tissue fixation 

 

The next limiting step to consider is the fixation of the tissue. I found that FAA plus triton 

was a good fixative for the localisation of the nuclear protein H3 but it is not clear whether 

this will be suitable for the cross linking of membrane proteins such as PIN1 in U. gibba. I 

therefore tested the UgPIN1 antibodies on U. gibba tissue fixed in either, FAA with triton 

and DMSO, a pre fixation in methanol acetic acid followed by FAA with triton and DMSO, 
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zinc formalin fixative, or paraformaldehyde (Figure 3.23). I used a 1:200 dilution of each 

antibody (combining the 2 antibodies from the different rabbits for each UgPIN1).  

 

 

 

Figure 3.23: Testing different fixatives with U. gibba bladder tissue for the 

immunolocalisation of UgPIN1.  U. gibba bladder tissue fixed in FAA, MAA into FAA, zinc 

formalin, or paraformaldehyde (i-iv respectively). Immunolocalisation performed with 

antibodies against (A) H3, (B) UgPIN1a, (C) UgPIN1b, or (D) UgPIN1c. Signal is shown in red. 

Blue is calcofluor staining of the cell wall.  Scale bars are 20 µm. 

 

 

H3 signal is good in each case, indicating that all the fixatives explored are suitable for 

immunolocalisation of nuclear proteins. However, UgPIN1 signal is more variable. Tissue 

fixed with FAA plus triton and DMSO or with a pre fixation in methanol acetic acid gave the 
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clearest UgPIN1 signal (Figure 3.23). Tissue fixed in paraformaldehyde or zinc formalin had 

messy signal for each of the three UgPIN1s and I had to use a higher laser power to observe 

anything here (Figure 3.23). Overall, I found that alcohol based fixatives worked best for 

immunolocalisation of UgPIN1.  

 

In all cases there is some non-specific signal, especially in the L1 layer of the bladder where 

it is not clear if the signal is real. To check if the antibodies are recognising the PIN1 protein 

and are not just binding to other cell membrane proteins, I performed an 

immunolocalisation of each of the UgPIN1 antibodies against Antirrhinum majus floral 

tissue (since we know that this tissue is very successful in AmPIN1 immunolocalisation by 

Xana Rebocho) (Figure 3.24). I found that each of the UgPIN1 antibodies gave a similar 

pattern in Antirrhinum tissue to the AmPIN1 antibody (Figure 3.24). This suggests that the 

antibodies are binding to PIN1 protein and are therefore promising. This indicates that the 

background seen in the U. gibba tissue may be due to other factors which I was unable to 

identify. 

 

 
Figure 3.24: Immunolocalisation of UgPIN1a, b, c on Antirrhinum majus floral tissue.  (A) 

AmPIN1a, (B) UgPIN1a, (C) UgPIN1b, (D) UgPIN1c. PIN1 signal is shown in red. Blue is 

calcofluor staining of the cell wall. Scale bars are 20 µm.  

 

 

To see if I could get a better signal to background ratio I performed titrations of the 

antibodies for each UgPIN1 in tissue fixed in FAA plus triton and tissue fixed with a pre 

fixation in methanol acetic acid and transferred to FAA plus triton (Figure 3.25 and Figure 

3.26).  
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Figure 3.25: Titrations for UgPIN1 antibodies in U. gibba bladder tissue fixed in FAA plus 

triton plus DMSO.  All tissue was fixed in FAA + triton. (A) Immunolocalisation of H3. (Bi-

Biii) Immunolocalisation of UgPIN1a, titrations of 1:200, 1:500, 1:1000. (Ci-Ciii) 

Immunolocalisation of UgPIN1b, titrations of 1:200, 1:500, 1:1000. (Di-Diii) 

Immunolocalisation of UgPIN1c, titrations of 1:200, 1:500, 1:1000. H3 and UgPIN1a, b, c 

signal shown in red. Blue is calcofluor staining of the cell wall. Scale bars are 10 µm 
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Figure 3.26: Titrations for UgPIN1 antibodies on tissue fixed in methanol acetic acid and 

transferred to FAA plus triton and DMSO.  All tissue was pre fixed in MAA and then 

transferred to FAA + triton. (A) Immunolocalisation of H3. (Bi-Biii) Immunolocalisation of 

UgPIN1a, titrations of 1:200, 1:500, 1:1000. (Ci-Ciii) Immunolocalisation of UgPIN1b, 

titrations of 1:200, 1:500, 1:1000. (Di-Diii) Immunolocalisation of UgPIN1c, titrations of 

1:200, 1:500, 1:1000. H3 and UgPIN1a, b, c signal shown in red. Blue is calcofluor staining of 

the cell wall. Scale bars are 10 µm. 
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The positive control worked well in each case with strong H3 signal. There is also PIN1 

signal visible in tissue fixed with either FAA or with a pre fixation in MAA. Overall, the tissue 

appears to have been preserved better with a pre fixation in MAA, indicating that this 

method of fixation may be better for preserving bladder structure. The results are not 

consistent across UgPIN1a, b and c between experiments; sometimes UgPIN1c appears to 

give the most promising signal, other times UgPIN1a and b give the most promising signal. 

This suggests that the success or failure of the immunolocalisation may be due to tissue 

variability rather than the antibody.  There are also some regions of tissue in which I see 

more PIN1 signal, such as the cells in the mouth region of the bladder. Cells in the L1 layer 

of the bladder also tend to have PIN1 signal, although it is not clear whether this is specific 

signal.  A concentration of 1:500 looked best for UgPIN1a and UgPIN1b, while a 

concentration of 1:200 looked most promising for UgPIN1c. However, there is still 

background present. 

 

To see if I could reduce the background fluorescence I tried testing the antibodies produced 

in different rabbits separately, as one may be giving cleaner signal that the other in each 

case. 
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Figure 3.27: Comparing antibodies for each UgPIN1 raised in different rabbits.  (Ai-Aii) 

Immunolocalisation of UgPIN1a using antibodies raised in two different rabbits (1 and 2). 

(Bi-Bii) Immunolocalisation of UgPIN1b using antibodies raised in two different rabbits (1 

and 2). (i-Cii) Immunolocalisation of UgPIN1c using antibodies raised in two different 

rabbits (1 and 2).  Pink stars indicate which antibody gave the best signal between those 

raised in different rabbits. UgPIN1 signal is shown in red. Blue is calcofluor staining of the 

cell wall. Scale bars are 20 µm. 
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For each UgPIN1 (a, b, c) one antibody gave better results across multiple bladder sections 

(Figure 3.27, pink stars). The pattern observed was very similar to that when the antibodies 

from two rabbits were combined, but the background was reduced slightly. I also tried goat 

serum in place of BSA as a blocking agent before adding the secondary (as the secondary 

antibody was raised in goat) but this made no difference to the signal/background ratio. To 

improve tissue structure further I tried fixing tissue with no vacuum treatment. The 

immunos were still successful but the tissue structure was not further improved. I next 

tested the best antibody against each UgPIN1 against a negative control (the pre immune 

bleed before the antigenic peptide is injected in the rabbit) (Figure 3.28). I found no signal 

in the control tissue treated with the pre-immune in place of the primary PIN1 antibody. 

This indicates that the signal observed is real in each case. Again, the signal was very 

variable in quality across samples.  

  



Chapter 3 
 

128 
 

 

Figure 3.28: UgPIN1 antibodies and pre-immune negative control.  Immunolocalisations 

with the following: (Ai) UgPIN1a primary antibody; (Aii) UgPIN1a pre-immune negative 

control; (Bi) UgPIN1b primary antibody; (Bii) UgPIN1b pre-immune negative control; (Ci) 

UgPIN1c primary antibody; (Cii) UgPIN1c pre-immune negative control. UgPIN1 signal is 

shown in red. Blue is calcofluor staining of the cell wall.  Microscope and laser settings used 

were the same for each antibody and its corresponding pre-immune control. The pre-

immune samples were also checked with higher laser power and no signal was seen (not 

shown). Scale bars are 20 µm. 
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3.2.2.2.4 Summary of immunolocalisation progress in U. gibba 

 

I found that immunolocalisation of nuclear proteins such as histone H3 worked well in U. 

gibba tissue. However, I found it more difficult to obtain good, clear signal using the 

UgPIN1 antibodies. Each of the three UgPIN1 antibodies gave some signal but the quality of 

signal was variable across samples (although any general patterns appeared to be 

consistent). This difficulty could be due to tissue preservation issues. Since UgPIN1 is a 

membrane protein, it is possible that tissue fixation was not homogenous across the 

bladder tissue. The L1 layer of the bladder often appeared collapsed and in some cases the 

cell membrane appeared to be detached from the cell wall. I tested a number of fixatives 

and found that alcohol-based fixatives were most successful for UgPIN1 

immunolocalisation, despite the fact that ethanol-based fixatives can lead to plasmolysis of 

cells. A pre fixation in methanol acetic acid followed by fixation in FAA + triton + DMSO 

worked best, although with room for improvement.  

 

Evidence suggests that the signal observed is real and that the UgPIN1 antibodies are 

specific to the PIN1 protein: the pattern observed in Antirrhinum tissue is as expected for 

PIN1 with each of the UgPIN1 antibodies. The pre-immune controls gave no signal, 

suggesting that the signal from the UgPIN1 antibodies is real. Some areas of tissue seem to 

give clearer signal than others. I consistently see patterns of PIN1 in the chin and threshold 

cells (just below the mouth). The L1 layer is often bright but appears much less specific. 

Older tissue also appears bright and not as specific.  

 

In conclusion, there is more work to be done, perhaps testing different methods of fixation 

such as cryofixation where samples are frozen and therefore fixation does not rely on the 

fixative entering the membrane of the cells. Since I have promising and consistent signal in 

the chin and threshold cells I decided to analyse some of the clearest images to see what 

patterns of PIN1 I could observe. 
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3.2.2.2.5 UgPIN1 patterns in developing bladders 

 

I took some of the clearest images generated from all of the above UgPIN1 

immunolocalisation experiments to look at PIN1 patterns, and tried to infer the cellular 

PIN1 polarity or axiality in developing U. gibba bladders. The most consistent region where 

I saw clear signal was at the chin and threshold cells (just below the mouth) of the bladder. 

The models predicted that a polarity field in this region would point from stalk to mouth 

with an axiality parallel to the midvein. To look at this, I used calcofluor staining of the cell 

wall to assign polarity to the PIN1 patterns (with the arrow head pointing towards the cell 

membrane where PIN1 is localised). Where this was not clear, I assigned axiality based on 

the localisation of PIN1. 

 

I first looked at side sections of bladders (most of them in the 123 µm stage which is one 

stage after the model begins) (Figure 3.29). 
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Figure 3.29: UgPIN1 patterns at the bladder chin and threshold in side section.  Side 

sections of U. gibba bladder (approx. 123 µm stage). (Ai-Aii) UgPIN1a immunolocalisation. 

(Bi-Bii) UgPIN1a immunolocalisation. (Ci-Cii) UgPIN1b immunolocalisation. White lines 

indicate the inferred axiality of the UgPIN1 signal. White arrows show the inferred polarity. 

Scale bars are 10 µm. 

 



Chapter 3 
 

132 
 

PIN1 polarity in the chin and threshold regions points away from stalk and towards the 

mouth opening (Figure 3.29). Where polarity could not be assigned in these regions, axiality 

was parallel with the midvein. To confirm this data, I looked for more evidence of PIN1 

localisation in the threshold region (Figure 3.30, purple) in front section (Figure 3.30).  

 

 

Figure 3.30: UgPIN1 patterns at the bladder threshold in front section.  (A-B) U. gibba 

bladder fixed and stained with propidium iodide. Views indicate where the section in (C) 

was made. (Ai) U. gibba bladder viewed from the side (oblique). (Aii) U. gibba bladder 

cropped from the front, viewed from the side. (Bi) Front section generated in (Aii) viewed 

from the front. Bladder threshold is marked in pink. (Bii) Bladder side section with 

threshold cells marked in pink. (Ci) U. gibba bladder sections from the front (approx. 123 

µm stage) with UgPIN1c signal shown (red) and calcofluor staining of the cell wall (blue). 

(Cii) Close up of the threshold cells from (Ci). White lines indicate the inferred axiality of the 

UgPIN1c distribution. Scale bars are 10 µm. 
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I also found some PIN1 signal in the threshold region viewed in front section. I was unable 

to assign any polarity to my images in this view since the calcofluor staining of the cell wall 

was not bright enough in the tiny cells of the threshold. However, the inferred axiality in 

this region is consistent with that found in side section. The axiality is parallel with the 

midvein and runs between stalk and mouth. 

 

3.2.2.2.6 Summary of PIN1 exploration in U. gibba 

 

There are three PIN1 proteins in U gibba, UgPIN1a, UgPIN1b, and UgPIN1c. I designed 

antigens from within the intracytosolic loop of each UgPIN1 from which antibodies were 

raised in rabbit. I found that each UgPIN1 antibody produced signal in U. gibba tissue, 

although this was sometimes messy and the quality of signal varied between samples. 

More work will need to be done to further optimise conditions for tissue fixation to better 

suit U. gibba bladder tissue. 

 

The signal that I observed in the chin and threshold of the bladder was consistent 

throughout samples with good signal and the inferred axiality and polarity at these regions 

runs from stalk to mouth, parallel with the midvein. These results agree with models where 

axiality in the chin region is required to generate the elongation at the chin without causing 

a bulge in the tissue. More experiments would need to be performed to study PIN1 polarity 

in other regions of the bladder, and to confirm the patterns at the chin and threshold. 

 

3.3 Discussion 
 

3.3.1 Evidence for axiality in mature and developing bladders 
 

The models predict that anisotropic growth and therefore axial information are required 

for the elongation of the chin region of the bladder. In the models, this axiality was 

provided by a polarity field propagating from stalk to mouth. I found that the quadrifid 

glands on the inner surface of bladders have a patterned orientation across the bladder 

which is parallel to the midvein on the sides and top of the bladder, and appears to radiate 

around the bladder stalk intersect These quadrifid glands also have a coordinated polarity 

between the stalk and mouth of the bladder. Since the quadrifid glands are only visible at 

later stages of development (from just before the 622 µm stage) this pattern of inferred 
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axiality and polarity gives possible evidence of a readout of an underlying polarity based 

system much like that seen with hairs in Drosophila (Adler, 2002) and root hairs in 

Arabidopsis (Grebe, 2004). Although the overall pattern agrees with that predicted by the 

model, I was not able to obtain good enough resolution to study the quadrifid glands lining 

the chin region. This region is of particular interest, since the models predict that axiality in 

this region is essential. 

 

Axiality was also predicted to be set up early in bladder development. Preliminary results 

on the localisation of UgPIN1 proteins as an earlier readout of axial information suggest 

that polarity at the chin and threshold region of young U. gibba bladders is oriented away 

from the stalk region and towards the mouth. This is consistent with models where 

specified anisotropic growth at CHIN drives the elongation of the CHIN region and prevents 

it bulging during growth. More bladder stages need to be studied to confirm these results.  

 

3.3.2 Anisotropic growth in bladder development 
 

3.3.2.1 Anisotropy at the chin region 

 

In concurrence with model predictions, analysis of growth at the chin region compared to 

the main body of the bladder indicates that growth in the chin is more anisotropic. If we 

assume that cells were approximately isometric at the time of heat shock then the rate of 

increase in anisotropy per hour of sectors in the chin region is 3 times higher than that in 

the main body of the bladder (1.5 % per hour compared to 0.5 % per hour respectively). 

This is more similar to the difference predicted in the specified anisotropic growth model 

(model 6) where the rate of increase in anisotropy per hour was also 3 times higher in the 

CHIN region compared to the main body of the canvas. In contrast, the isotropic specified 

growth model (model 3) predicted the rate of increase in anisotropy in the chin region to 

be 8 times greater than the main body of the bladder. 

 

The rate of increase in anisotropy per hour calculated based on sector length at the chin is 

almost twice as much as that calculated based on cell count along the major and minor 

axes, indicating that cell shape in this region contributes to anisotropy. Sectors in the chin 

region also appear to be made up of files of cells with more cells in one orientation than 
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the other.  This suggests that anisotropy in the chin region is at both the cell shape level 

and at the cell division level, although more data is required to draw stronger conclusions. 

The orientation of sectors at the chin region is parallel with the midvein and the pattern of 

UgPIN1 polarity observed in younger bladders. This concurs with models where specified 

growth in the CHIN region is anisotropic and growth rates are highest parallel to a polarity 

field propagating from stalk to mouth. 

 

3.3.2.2 Anisotropy across the main body of the bladder 

 

There is evidence for weak anisotropy across the main body of the bladder which appears 

to be oriented parallel with both the midvein, and the implied polarity given by quadrifid 

gland analysis. The fact that sectors near the midvein are oriented parallel with the midvein 

rather than perpendicular to the midvein lends support to model 6 where specified growth 

in the main body of the bladder is anisotropic. Specified isotropic growth is also unlikely to 

drive growth in the main body of the bladder, since there was no correlation between 

sector area and distance from the midvein. This does not support model 3 where specified 

growth in the main body of the bladder is isotropic, since clones near the midvein are 

predicted to be larger than those at the sides of the bladder in this case. Specified 

anisotropy across the bladder is therefore a more likely explanation for the growth patterns 

observed. Tracking experiments would also provide data on growth rates in specific regions 

of tissue, allowing this to be explored in more detail. 

 

3.3.3 Axiality and growth orientations beyond the model 
 

Analysis of quadrifid gland polarity indicates a divergence of polarity towards the antennae 

at the top front of the bladder. This was not predicted by the models and suggests that 

there may be two minus organisers (one at each antenna). This may be important for the 

formation of auxin maxima prior to the initiation of antenna outgrowths at the front of the 

bladder. It would therefore be interesting to study UgPIN1 localisation at the time of 

antennae initiation to see if there are observable convergence points. 
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3.3.4 Conclusions and future work  
 

This work aimed to test hypotheses made by specified isotropic and anisotropic growth 

models described in the previous chapter to see if axiality was important for the generation 

of bladder shape and to what extent specified anisotropic growth may play in bladder 

development. The models provided clear predictions on axiality, growth rate, and growth 

orientation. The data presented in this chapter supports models where specified growth at 

the chin region is anisotropic. Since this relies on the presence of tissue axiality it will be 

important to confirm the preliminary data provided by analysis of UgPIN1 localisation. I 

found that UgPIN1 immunolocalisation was not always successful and that the structural 

preservation of young bladders was problematic. Other fixation methods such as 

cryofixation may therefore be useful in future work. Another option is to study transgenic 

transcriptional UgPIN1 reporter lines to see if PIN patterns are clearer. This may have other 

complications, since it would be necessary to view whole bladders rather than sections, 

and at young stages bladders are wrapped up in the tissue of the circinnate apex and are 

difficult to view live. 

 

This work has provided some evidence that a polarity-based axiality system may be 

involved in bladder development. Axial patterns and inferred polarities concur with polarity 

patterns predicted by models where axiality is implemented through a polarity system. The 

models predict that polarity is set up using a plus organiser (which promotes production of 

POLARISER) found at the stalk of the bladder, and a minus organiser (which promotes 

degradation of POLARISER) found at the mouth region. Evidence of these regions would 

therefore further support a polarity based axiality model. Assuming polarity is set up by 

auxin, plus organisers could be auxin biosynthesis genes such as YUCCAs (Cheng et al., 

2006). Minus organisers may be composed of auxin importers such as AUX and LAX genes 

which encode proteins that actively transport auxin from the extracellular space into the 

cytoplasm (Parry et al., 2001; Yang et al., 2006; Péret et al., 2012). Future work 

investigating the expression patterns of these genes would therefore provide useful 

information. 

 

Since the levels of resultant anisotropy across the main body of the bladder are low, it is 

difficult to distinguish between a model where specified growth in the main body of the 

bladder is either isotropic or anisotropic. Sector analysis also has limitations concerned 

with not knowing the shape of cells at the time of heat shock. These issues could be dealt 
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with by tracking bladder growth live. One option is to use a tracking chamber which has 

been used by the lab in the past (Kuchen et al., 2012). Again this may prove complicated 

due to the problems associated with imaging young bladders while they are developing 

inside the circinnate apex tissue.  However, later stages may be traceable in this way. 

 

To carry out my investigations I set up a number of techniques and tools for U. gibba 

including immunolocalisation and the generation of transgenic lines using Golden Gate 

cloning (the latter of which was done in collaboration with Minlong Cui, Annis Richardson, 

Samantha Fox, and Christopher Whitewoods). In order to explore the genetic basis of some 

of the ideas presented above, there are a number of other techniques and resources that 

will be useful, particularly concerning forward and reverse genetics. For example, in situ 

hybridisation would be useful to study the expression patterns of candidate genes. 

Mutagenesis experiments may also help to identify new candidate genes involved in 

bladder development. 
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4 Developing Utricularia gibba as a model system 
 

4.1 Introduction 

 

In the previous chapters, models for Utricularia gibba bladder development have been 

explored and hypotheses generated by these models tested. These models make several 

predictions about potential factors which may control growth. For example, plus and minus 

organisers of polarity, and a factor in the chin region of the bladder where anisotropic 

growth is specified. There are also a number of hypotheses about the genes involved in the 

generation of epiascidiate bladder shape from the primordium. To investigate the identity 

of such genes and to study their expression patterns spatially, a number of techniques need 

to be developed in U. gibba.  These include the ability to use forward and reverse genetics 

to identify novel genes and explore candidates based on knowledge from other systems.  

 

4.1.1 Genomic and transcriptomic resources 

 

A reference genome is a key requirement when setting up a new model system. U. gibba 

has been reported to have a small genome which is predicted to be around 88 Mbp 

(Greilhuber et al., 2006), even smaller than Arabidopsis at 157 Mbp (Bennett et al., 2003). 

The chromosome number of U. gibba has also previously been reported (n=14) which is 

one of the lowest number of chromosomes known in Utricularia species (Rahman et al., 

2001). A transcriptome of U. gibba has been published (Ibarra-Laclette et al., 2011) which is 

useful for predicting genes.  

 

This work aims to sequence the whole genome of U. gibba. Our lab has five different U. 

gibba accessions avaliable. Since we do not know the history of these accessions, we do not 

know which one is most likely to be homozygous (and therefore which is best for the 

generation of a haploid reference genome). We could therefore sequence each line and 

choose the most homozygous by comparing the assemblies.  Illumina next-generation 

sequencing (NGS) platforms generate sequencing data which consists of several millions of 

short sequences (reads) which are between 50-150 bp long. Sequencing is carried out by 
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SBS (sequencing by synthesis) whereby DNA bases are identified as they are incorporated 

into a nucleic acid chain by their unique fluorescent signal.  This method is high throughput. 

During this work a genome of U. gibba was published with some annotation which 

provided us with a useful comparison (Ibarra-Laclette et al., 2013).  

 

4.1.2 Forward and reverse genetics 

 

Forward genetics involves the identification of a given phenotype, followed by the study of 

the genetic basis of this phenotype. In contrast, a reverse genetic study begins with a 

candidate gene/ multiple candidate genes and the phenotypic effect of these genes is 

investigated. 

 

4.1.2.1 Identifying candidate genes using mutagenesis  

 

Forward genetic screens are useful for identifying novel genes involved in a biological 

process.  This approach begins with a random mutagenesis. Different mutagens can be 

used according to the experimental requirements and may be physical, biological, or 

chemical (Koornneef, 2002). X-rays cause mutations by introducing breaks in double-

stranded DNA, causing large deletions of pieces of chromosome, or chromosomal 

rearrangements (Vrieling et al., 1985). Transposon (insertional) mutagenesis involves the 

use of transposable elements (TEs) which are mobilized in the genome and insert randomly 

within coding regions, or in non-coding DNA where they may affect intron splicing or gene 

expression (Alonso et al., 2003). This technique has the benefit that genes are likely to be 

knocked out and the position of the TE insertion can be easily detected by PCR and the 

region of genome can then be cloned. A popular chemical mutagen is ethyl 

methanesulfonate (EMS) which introduces random single point mutations in the genome. 

Most substitutions (99 %) are G/C to A/T substitutions (Greene et al., 2003) caused by a 

biased alkylation of guanine residues which leads to the production of the unusual base O6-

ethylguanine which pairs with T instead of C (Jansen et al., 1995). This therefore leads to 

base changes following replication. About 50 % of mutations are expected to be missense 

mutations where incorrect amino acids are incorporated into the protein sequence as a 

result. This may or may not alter protein function (Greene et al., 2003; Kurowska et al., 

2011). Approximately 5 % of mutations caused will produce truncated proteins due to the 
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introduction of a premature stop codon or splice site mutation. This is more likely to 

generate a severe phenotype which is more readily selected for in forward genetic screens 

(Greene et al., 2003; Kurowska et al., 2011). 

 

Reverse-screening may also be carried out following EMS mutagenesis using TILLING 

(targeting induced local lesions in genomics) which involves screening for point mutations 

in a gene of interest (Colbert et al., 2001; McCallum et al., 2000). TILLING populations have 

been set up in a number of plant species, including wheat, Brassica rapa, Arabidopsis, and 

maize (Till et al., 2004; Uauy et al., 2009; Stephenson et al., 2010). 

 

4.1.3 Life cycle of a model plant  

 

For genetic studies such as mutagenesis to be performed, a relatively short life cycle is 

advantageous. In an ideal situation, the seed to flowering time of an individual is as short as 

possible. In U. gibba, this is limited by very low germination efficiency.  

 

4.1.3.1 Improving germination efficiency 

 

A number of treatments and conditions have been reported to improve the germination of 

seeds from different species. These often work by breaking different types of seed 

dormancy which prevents germination during periods of unfavourable seedling growth. A 

number of different types of dormancy exist, including physiological, morphological, 

physical, and chemical (Baskin & Baskin, 1998). Methods to break dormancy and improve 

germination may be related to the natural environment in which the plant grows. For 

example, physical dormancy may be broken by heat, smoke and darkness treatment, in 

species living in fire-prone ecosystems (Keith, 1997; Moreira & Pausas, 2012). The 

germination of other plants including pines and milkweed may be improved by 

stratification (cold treatment) which simulates natural conditions before germination 

(Oegema & Fletcher, 1972; Skordilis & Thanos, 1995; Bratcher et al., 1993). A number of 

plant hormones have also been shown to improve germination. For example, gibberellic 

acid (GA) can overcome a germination requirement for far-red wavelength light in species 

of Asteraceae (Plummer & Bell, 1995). GA has also been shown to weaken a mechanical 

restraint of endosperm cells in tomato to permit germination (Groot & Karssen, 1987). 
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Cytokinins have also been found to improve germination, possibly due to the alleviation of 

stress factors (Nikolić et al., 2006) and have been found to reverse the inhibition of GA 

induced germination by abscisic acid (Khan, 1968). Ethephon (an ethylene releasing 

compound) has been found to improve germination efficiency in species such as Echinacea 

(Sari et al., 2001). It is thought that ethylene is involved in seed maturation (Matilla, 2000). 

This work will involve testing some of these treatments with the aim to improve the 

germination efficiency of U. gibba seeds in culture. 

 

4.1.4 In situ hybridisation 

 

Once candidate genes are identified, we need to study their biological relevance in the 

system of interest. The spatial expression of genes is of particular relevance when testing 

predictions of gene activity made by developmental models. One method to look at spatial 

expression patterns of genes is RNA in situ hybridisation. This method uses a 

complementary RNA probe to localise a specific mRNA sequence in a section (or whole 

piece) of tissue. A detection label is added to the probe so that signal can be observed 

under the microscope. This label is often digoxigenin (Dig) (Farquharson et al., 1990) which 

can be detected by incubation with an alkaline phosphatase- conjugated anti-digoxigenin 

antibody followed by an alkaline phosphatase NBT/BCIP chromogenic reaction. The 

hydrolysis of BCIP by alkaline phosphatase leads to the production of indoxyl which 

dimerises to form lucoindigo which is then oxidised by NBT to form insoluble, blue BCI 

(5,5’-dibromo-4,4’-dichloro indigo). NBT is reduced to form insoluble purple DF 

(diformazan), forming NBT-DF. Therefore, a dark purple precipitate is made (a mixture of 

NBT-DF and BCI) (Wolf et al., 1968; Trinh et al., 2007). This stain can be visualised easily by 

light microscopy. 
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4.1.5 Aim of this work 

 

The aim of this work is to set up a number of resources and techniques in U. gibba to 

further the development of this plant as a new model system and to continue investigating 

predictions made by modelling in previous chapters. This will involve the following: 

 

1.) Whole genome sequencing of the U. gibba lines in the lab. 

 

2.) Setting up an EMS mutagenesis experiment for U. gibba. 

 

3.) Improving the germination efficiency of U. gibba seeds (to shorten the life cycle of 

U. gibba in the lab). 

 

4.) Optimising an RNA in situ hybridization protocol for U. gibba to allow the spatial 

expression of genes of interest to be studied. 

 

The results presented in this chapter are part of a work in progress and many of the 

experiments started are beyond the scope of this thesis. 

 

4.2 Results 

4.2.1 Sequencing and assembly of the U. gibba genome  

 

We had five different U. gibba accessions available: Burgh Apton (BA), Carnivorous Plant 

Society (CPS), Morley, Bonn, and Czech. In order to obtain genomic sequence information 

and to establish the best accession to work with, I sent DNA isolated from each line to 

TGAC, Norwich for sequencing. Sequencing of a single library for each line was performed 

using Illumina HiSeq (100 bp paired end reads). A summary of the data is below (Table 4-1). 
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Table 4-1: Summary of U. gibba accession sequencing.  The average coverage assumes an 

88 Mbp genome based on (Greilhuber et al., 2006). 

 

Sample/ 

accession 

Library 

ref. name 

Mean 

library 

insert size 

No. of 

read pairs 

(2x100 bp)  

Average 

coverage  

Size of 

assembly 

(Mbp) 

No. of 

scaffolds 

N50 

length 

BA LIB2632 466 bp 56,776,681 130x 154 66,189 15,336 

CPS LIB2633 624 bp 49,512,928 114x 166 110,611 16,524 

MORLEY LIB2634 537 bp 65,682,078 150x 166 54,168 14,731 

BONN LIB2980 531 bp 83,487,071 189x 225 106,532 7,704 

CZECH LIB2981 532 bp 76,016,915 173x 174 83,772 11,341 

 

 

4.2.1.1 Choosing a U. gibba accession reference genome 

 

To set up U. gibba as a model system, we required a single reference genome. When 

studying assemblies there are a number of genome properties to consider when selecting 

an assembly for use. These include: the level of heterozygosity, completeness of the 

genome, and the quality of the assembly (the extent to which the genome is subdivided 

into scaffolds). Once data had been generated for the de novo assembly of each of the five 

accessions, choosing a U. gibba genome was a compromise between these metrics.  

 

Heterozygosity is a confounding factor in reference generation, particularly in non-inbred 

lines, as the ultimate goal is typically to reduce a diploid individual to a haploid reference 

genome. The presence of heterozygous polymorphism can interfere with this process. To 

study the heterozygosity of the assemblies, the k-mer profile of each library was assessed. 

K-mers are sub-sequences of length k and can be used to explore properties of uniqueness 

and coverage within a read set. Using a k-mer size of 31 bp, Figure 4.1 shows a plot of the 

number of distinct k-mer sequences that align to the reference genome (coverage). 

Different colours indicate the different lines sequenced. For each line, a peak close to 0 

consists of rare k-mers that reflect sequencing error.  The first peak of the graph after this 

error peak indicates the heterozygous content while the second peak, which has 

approximately double the coverage, indicates the homozygous content. This is due to the 

fact that at a heterozygous site where there are two alleles, there will be two different k-

mers, whereas for homozygous content, there will be two identical k-mers, producing 
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double the coverage.  In selecting the best assembly, there were two key concerns: the 

overall coverage level and the balance between haploid (homozygous) and diploid 

(heterozygous) scaffolds. When sequence coverage is low, it can be difficult to make a clear 

distinction between error (rare k-mers) and the peaks of homozygous and heterozygous 

signal are less well separated. This situation is illustrated by the CPS accession, where 

coverage is low and it is difficult to distinguish between the two peaks (Figure 4.1, yellow). 

Coverage is better in the BONN and CZECH accessions but both have a skewed profile 

where the heterozygous peak is considerably higher than the homozygous peak (Figure 4.1, 

blue and purple). During sequence assembly, reads are assembled into scaffolds, which are 

eventually merged to form larger scaffold assemblies. In the case of BONN and CZECH, 

there are multiple scaffolds which contain the same sequences (redundancy), but are yet to 

be assembled. This means that k-mers appear to map multiple times more than compared 

to how they would map against a fully assembled genome sequence. This gives a falsely 

high impression of the heterozygosity of the genome based on k-mer analysis.  The BA and 

MORLEY assemblies have approximately equal heterozygous and homozygous content 

peaks, although this profile does suggest that substantial redundancy persists and that 

overall genome size is likely over-estimated (Figure 4.1, red and green). 
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Figure 4.1: k-mer profiles for each U. gibba accession.  k= 31. Plot was generated by Daniel 

Mapleson at TGAC.  

 

 

Further considerations in selecting the optimal reference are the fragmentation level and 

completeness of the assembly. The fragmentation level can be assessed by looking at the 

total number of scaffolds and the N50 value. The scaffold N50 length is a weighted median 

statistic where 50 % of the entire assembly is contained in scaffolds equal to or larger than 

this value. When comparing assemblies of similar sizes, a large N50 value and a low number 

of scaffolds, relative to the expected chromosome level is preferable.  The assemblies with 

the highest N50 values are CPS (16,527) and BA (15,336) (Table 4-1). The assemblies with 

the least scaffolds are Morley (54,168) and BA (66,189) (Table 4-1). In this sense, BA may 

the most favourable line. However, these are still preliminary assemblies based on low 

depth sequencing.  
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Based on this analysis the BA accession was chosen. The assembly of BA has one of the 

higher N50 values, and lower number of scaffolds indicating that the genome is spread 

across fewer and larger scaffolds (Table 4-1). It is also one of the lines which showed fairly 

even homozygous and heterozygous content as opposed to mostly heterozygous content 

(Figure 4.1). 

 

4.2.1.2 Comparing the BA assembly to the published LangeBio genome 

 

During this work, another group published a U. gibba genome (LangeBio) (Ibarra-Laclette et 

al., 2013). This was a useful comparison to our BA assembly and enabled us to check that 

we had captured similar information from the genome.  

 

4.2.1.2.1 Completeness of the BA and LangeBio genomes 

 

To study the completeness of the BA genome in comparison to the published LangeBio 

genome, CEGMA (core eukaryotic genes mapping approach) analysis was performed by 

TGAC. This analysis identifies the presence/ absence of a set of few hundred eukaryotic 

proteins that would be expected in the genome. The table below summarises the data for 

each genome (Table 4-2). This provides a rough indication that the BA and LangeBio 

genomes are comparable and are not missing a large extent of gene content.  

 

Table 4-2: CEGMA completeness analysis of the BA genome and published genome. 

 

Genome Genes with complete presence 

 (%) 

Genes with partial presence 

(%) 

LangeBio (published) 96 98 

BA accession (TGAC) 95 98 

 

 

4.2.1.2.2 Exploring the larger size of the BA assembly 

 

The size of the assembly for all accessions was larger than the published genome size (82 

Mbp) (Ibarra-Laclette et al., 2013). In the case of BA, the assembly size was 154 Mbp. To 
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investigate possible causes of this discrepancy, TGAC mapped the BA assembly to the 

published U. gibba genome. They found that 40 % of the BA genome did not map to the 

published assembly.  This might reflect extensive divergence between the accessions used 

for genome assembly (such that reads from BA contained too many sequence differences 

from the reference to be mapped to their homologous alleles). It might also reflect a 

contribution of symbiont or other contaminant genomes in the BA read set. Read pairs that 

could not be mapped to the LangeBio reference genome were run through a de novo 

assembly pipeline at TGAC and a putative origin of any large contigs was assessed by 

BLAST. No major contribution of any specific microbial or other non-Utricularia lineage was 

detected.  

 

K-mer profiles were also used by TGAC to explore the relationship between the BA and 

LangeBio assemblies (Figure 4.2) K-mer profiles were produced using the KAT tool which 

can be found at: https://documentation.tgac.ac.uk/display/KAT/KAT+Home. 31 bp k-mers 

were generated from the TGAC (BA) reads. The k-mer spectra show the number of specific 

31-mers showing a given coverage value within a set of reads. The plot is further 

decomposed to reveal the number of times each individual k-mer is found within a 

reference assembly (indicated by the different colours within the profiles) and gives an 

estimation on the redundancy in the genome. A k-mer with coverage close to zero most 

likely contains a sequence error, whereas the two major peaks correspond to heterozygous 

and homozygous coverage. The similarity in size of the two peaks when the k-mers are 

mapped to each genome highlights the extent of BA heterozygosity (Figure 4.2, A & C, main 

profile). 
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Figure 4.2: Assembly duplication histograms based on k-mers from the BA assembly.  

31 bp k-mers are from the TGAC (BA) reads. K-mer count is plotted against k-mer coverage 

in the LangeBio (published) assembly (A & B) and the TGAC (BA) assembly (C & D). Plots are 

further decomposed to reveal the number of times each k-mer is found within a reference 

assembly: 0x (black), 1x (red), 2x (orange), 3x (green), 4x (blue), and 5x (purple). B & D are 

‘no-absent’ plots which do not include those 31-mers not found in the reference assembly. 

Plots were generated by Daniel Mapleson at TGAC.  
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The number of BA-derived k-mers that are absent from the reference genome assembly 

(Figure 4.2, A & C, black) is more substantial in the LangBio assembly (Figure 4.2, A, black) 

 than the BA assembly (Figure 4.2, C, black), consistent with the observation that a sizeable 

proportion of the BA-derived reads are absent from the LangeBio assembly. Duplication 

levels are higher in the BA assembly (colours), indicating an increased degree of 

redundancy in the BA assembly, perhaps not surprising given the greater size of the 

assembly. This redundancy may be due to different reads not being collapsed together 

propery in the assembly or due to gene dupliction within the genome. The similarity of the 

main second (homozygous) peak in the no-absent plots (Figure 4.2, B & D) suggests that 

both assemblies contain most of the same core content, in line with the CEGMA analysis. 

 

4.2.1.3 Summary 

 

The BA accession assembly was chosen due to its lower heterozygosity compared to the 

other assemblies and its higher N50 and lower scaffold number. Comparisons were made 

between the BA assembly and a newly published LangeBio assembly (Ibarra-Laclette et al., 

2013) and were comparable in CEGMA analysis, indicating that both have a good level of 

completeness. The assembly size of the BA genome was larger than that of the published 

assembly (154 Mbp compared to 82 Mbp). This is partly due to an apparent greater degree 

of heterozygosity in the BA assembly compared to the LangeBio assembly. Also, more 

redundancy in the BA genome may contribute to its larger size. This redundancy may 

indicate gene duplications or may be due to artefacts in the assembly. To improve these 

data a higher depth sequencing run could be performed on the BA line to generate a higher 

quality genome assembly.  

 

4.2.2 U. gibba EMS mutagenesis 
 

I took a forward genetic screen approach to identify novel genes associated with bladder 

development. U. gibba is particularly amenable to a mutagenesis screen since it is diploid, 

self-fertile, the bladders appear soon after germination for screening, and it has a small 

genome which has been sequenced in our lab as well as elsewhere (Ibarra-Laclette et al., 

2013). The BA accession was chosen based on the reference assembly discussed above 
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which will enable us to compare the genome of any mutants generated with that of the 

wild type. I set up EMS mutagenesis in U. gibba in collaboration with Karen Lee.  

 

4.2.2.1 Setting up the mutagenesis 

 

We decided to mutagenize U. gibba tissue rather than seed since the germination of U. 

gibba seeds was very low (see 4.2.3). The ability to readily propagate U. gibba makes this a 

suitable technique since tissue can be treated with EMS and then broken up and each piece 

grown as an individual (M1). Since the plants self-fertilize, seeds from individual pods of M1 

can then be collected and sown as families for screening of the M2 generation. The overall 

process is illustrated below (Figure 4.3). For germination of the M2 generation, I had to 

improve the germination efficiency of U. gibba seeds (see 4.2.3). 
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Figure 4.3: Mutagenesis plan.  Tissue can be treated with EMS and then propagated to 

generate multiple M1 plants. The M1 plants self-fertilise and seeds can be collected from 

these plants and sown (M2 generation). M2 seedlings can be screened for mutant bladder 

phenotypes. Red text indicates a hypothetical mutation which segregates in M2 plants.  
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4.2.2.2 Mutagenesis experiment 1 

 

To find a suitable EMS concentration we considered concentrations used in other EMS 

mutagenesis experiments.  In Arabidopsis, 0.2 % EMS is optimal (Till et al., 2003), while in 

Brassica rapa 0.3 % EMS is optimal (Stephenson et al., 2010), and in Capsella rubella 0.25 % 

and 0.3 % EMS are optimal (Eldridge, 2014). Since we used tissue rather than seeds it was 

difficult to predict what dose would be optimal so we started by treating tissue with either: 

0.01 % EMS, 0.05 % EMS, 0.1 % EMS, 0.15 % EMS, 0.2 % EMS, or 0.25 % EMS. After 

propagation we had approximately 4500 M1 plants in total. We observed that EMS 

treatment had been effective, since plant survival was affected by EMS treatment: higher 

concentrations of EMS led to lower survival rates of plants, and therefore more plants were 

discarded (Figure 4.4). 

 

 

Figure 4.4: Percentage of discarded M1 plants after treatment with different 

concentrations of EMS.  

 

 

Plants began to flower after approximately 3 months in the glasshouse, however only 7.5 % 

of all plants produced seed.  This was probably due to the plants taking 3 months to flower, 

missing the growing season with no supplementary lighting available in the glasshouse, and 

possibly due to disruption of the flowers during watering. In general, we found that plants 

in the brighter areas of the glasshouse produced the most flowers and seeds across all EMS 

concentrations. We tried moving some plants to a lit glasshouse which was heated 
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between 15 °C and 20 °C for 2 months. This improved the number of plants producing seed 

to approximately 20 %.  

 

4.2.2.3 Mutagenesis experiment 2 

 

We decided to set up a second mutagenesis so that we could propagate the tissue and 

transfer the M1 plants to the glasshouse earlier in the year for growth and flowering in the 

following summer months. We also used a lit, heated glasshouse when available. We 

focussed on 0.1 %, 0.15 %, and 0.2 % EMS treatments because at 0.15 % and 0.2 % EMS 

treatment the percentage of unhealthy plants increased to around 10 %, indicating that the 

EMS treatment had a deleterious effect. Since we could not yet assess the full effect on 

fertility (because only 7.5 % of plants produced seed), we included a treatment category of 

0.1 % EMS in case higher concentrations affected fertility significantly more. 

 

4.2.2.4 Analysis of plant fertility from mutagenesis experiments 1 and 2 

 

Once the M1 treated plants from both mutagenesis experiments had flowered, seed pods 

were collected and the number of seeds within a pod was scored. To see what effect EMS 

concentration had on fertility, the number of seeds per pod was studied for those plants 

which flowered and produced seed (Figure 4.5). 
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Figure 4.5: Seed production in plants treated with different concentrations of EMS.  The 

number of seeds per pod was counted from plants treated with increasing concentrations 

of EMS. 

 

 

No plants treated with 0.25 % EMS in the first experiment produced seed. There is a 

decrease in fertility of M1 plants as the concentration of EMS increases (Figure 4.5). This 

indicates that the mutagenesis was successful. Since the total number of seeds was quite 

low (c. 14,000 across all conditions), we decided to screen all families (individual pods) for 

mutant phenotypes. 

 

4.2.2.5 Forward screens  

 

M2 seedlings from both mutagenesis experiments were screened for mutant phenotypes. 

Screens were carried out with Christopher Whitewoods, Karen Lee and Jamie Spooner. 

Each pod was considered a family, since the plant is likely chimeric and therefore pods from 

flowers originating from the same plant were considered separate families. Some 

segregating mutant phenotypes observed are shown below including mutants with long 

spurs on their flowers, deformed bladders, and mutants completely lacking bladders 

(Figure 4.6). Other mutant phenotypes included flowers containing multiple carpels and 

bladders which appeared to be unable to capture prey. Some wt: mutant ratios within a 

family were low. This is due to the low seed number available.  
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Figure 4.6: Examples of segregating M2 Utricularia gibba mutants.  (A) Long spur mutant 

compared to wt flower (B). (C) Deformed bladder mutant compared to a wt bladder (D). 

Dark colouration in C is sometimes noted in wt bladders and may be due to an increase in 

anthocyanin production. (E) A mutant which does not make bladders compared to a wt 

plant with bladders along the stolon (F).  

 

Any families with mutant phenotypes were kept and grown for flowering to study the M3 

generation to check for further segregation of the phenotype.  
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4.2.3 Improving U. gibba germination efficiency 
 

Efficient seed germination is important for the success of a model plant since genetic 

studies rely on the ability to cross plants and study following generations. This was of 

particular importance for the mutagenesis screen in which an M2 generation was required 

for screening. The germination efficiency of U. gibba seeds in the lab was very low, with 

only 11 % of all seeds sown germinating (within approximately 6 months). This may be 

partly due to seed pods not being mature at collection. However, only 20 % of seeds 

germinated from those pods which showed germination. To improve germination, I first 

tried storing and germinating seeds at different temperatures and using different culture 

medium. However, this did not improve germination efficiency.  

 

I then tried a number of hormone treatments which have been reported to improve 

germination in other species. These included cytokinins (Nikolić et al., 2006), gibberellic 

acid (GA) (Bell et al., 1995; Eghobor et al., 2015), and ethylene (Matilla, 2000; Sari et al., 

2001). All seeds were sown onto a layer of solid MS medium and covered with liquid MS 

medium containing either no hormone (control), 30 µM gibberellic acid, 1.6 µM or 7 µM 

zeatin (cytokinin), or 1 mM ethephon (which decomposes to ethylene) (Figure 4.7). Each 

group had between 120 and 200 seeds.  

 

 

Figure 4.7: Testing different hormone treatments to improve U. gibba seed germination 

efficiency.  Seeds were treated with either 30 µm gibberellic acid (GA), 1.6 µM or 7µM 

zeatin (a cytokinin), or 1 mM ethephon. The percentage of seeds which germinated within 

35 days is shown. Each group had between 120 and 200 seeds. 
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At 35 days after sowing, no seeds had germinated in the control group or from the group 

treated with GA. Only 0.5 % of seeds germinated in the group treated with 7 µM zeatin. 

However, 20 % of seeds treated with 1 mM ethephon germinated (Figure 4.7). I decided to 

test different concentrations of ethephon to see if it could consistently improve 

germination. 

 

I tested 0.1 mM, 1 mM, and 10 mM ethephon concentrations for the germination of U. 

gibba seeds. Prior to sowing, seeds were kept dry at room temperature.  I counted the total 

number of seeds germinated by day 60 after sowing (Figure 4.8). I found that 75 % of seeds 

sown in media containing 0.1 mM ethephon and almost 56 % of seeds sown in media 

containing 1 mM ethephon germinated compared to only 18 % of seeds in control media 

containing no ethephon. Increasing the ethephon concentration to 10 mM prevented seeds 

from germinating. There is also a drop from 75 % to 56 % germination between 0.1 mM 

and 1 mM ethephon, suggesting that higher concentrations are not as effective at 

promoting germination.  

 

 

 

Figure 4.8: Improving the germination efficiency of U. gibba seeds with ethephon.  50 

seeds were sown on solid MS media and covered with liquid MS media containing different 

concentrations of the ethylene releaser ethephon. The number of seeds germinated over a 

60 day period was recorded.  
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This initial test was done on seeds from two different lines of U. gibba (CPS and BA). I 

repeated the experiment to check results in the BA line only (since we decided to work on 

this line as it was less heterozygous). This time I recorded the date of each seed 

germination so I could compare the germination efficiency at 30 days and 60 days after 

sowing. I also studied the morphology of the seedlings to assess whether ethephon 

treatment had any deleterious effect on seedling growth or development (Figure 4.9). The 

percentage of seeds germinating in the first 30 days after sowing increases from 12 % in 

the control to around 60 % when sown in 0.1 mM ethephon. At 1 mM ethephon, 

germination in the first 30 days was around 42 %, and by 10 mM ethephon, no seeds 

germinated. This indicates that ethephon improves the overall germination of U. gibba 

seeds and also speeds up the time it takes for seeds to germinate. The total percentage 

germination of the control in this experiment was higher than before (36 % germination by 

day 60 compared to 18 % in the first experiment). This indicates that there is variability in 

the germination efficiency of U. gibba seeds. This may be due to the conditions that the 

parent plant was grown in, the time since collection that seeds were sown, the storage 

conditions of seeds, and the line of U. gibba (in the second experiment, only BA seeds were 

studied, while in the first experiment CPS seeds were also sown). The morphology and 

growth of seedlings does not appear to be affected by ethephon treatment (Figure 4.9, B).  
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Figure 4.9: Improving germination in the BA U. gibba line.  (A) Percentage of seeds 

germinated by day 60 after sowing in media containing different concentrations of 

ethephon. Green indicates % of seeds germinated by day 30 after sowing. Purple indicates 

% of seeds germinated between day 30 and day 60 after sowing. (B) Seedlings germinated 

in the control (0 mM ethephon) and 0.1 mM ethephon, imaged five days after germination.  

 

 

4.2.3.1 Summary  

 

Overall, these experiments show that the ethylene releasing compound ethephon can 

improve U. gibba germination by up to 500 % in a 30 day period (Figure 4.9). I found that 

0.1 mM ethephon was the most successful concentration and that this treatment does not 

affect the growth or morphology of U. gibba seedlings. 
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4.2.4 Optimising an RNA in situ hybridisation protocol in U. gibba 
 

RNA in situ hybridisation is a useful technique for the study of gene expression patterns in 

tissue. This technique allows the spatial patterning of candidate gene expression to be 

studied using RNA probes which bind to specific mRNA sequences in preserved tissue and 

have an attached label for visualisation.  

 

The success of RNA in situ hybridisation relies on a number of factors. The first is the 

fixation of the tissue and the preservation of mRNA in the tissue.  The second is the design 

of a probe which must specifically bind to the mRNA sequence of interest. Another 

important factor is the digestion of proteins in the tissue so that they do not mask the 

sequence being detected, and increasing the permeabilization of tissue so that the probe 

has access to the target sequence. I first explored different fixatives: I tried fixing circinnate 

apex tissue (which contains young bladders) in 4 % paraformaldehyde or Formalin Acetic 

Alcohol (FAA) plus triton, as both have been successful in a number of species in the lab. I 

used vacuum infiltration to improve penetration of the fixative. 

 

To test the in situ hybridisation protocol, I decided to look at genes with expected patterns 

of expression. I designed a probe against the YABBY transcription factor FILAMENTOUS 

FLOWER (FIL) which is expressed on the abaxial surface of some eudicot leaves (Sawa et al., 

1999; Siegfried et al., 1999) and on the abaxial (outer) surface of Sarracenia epiascidiate 

leaves (Fukushima et al., 2015). I would therefore expect FIL expression on only one surface 

of the U. gibba bladder. While this provides an expected pattern of expression to test the in 

situ protocol with, it is also interesting to reveal the identity of each surface of U. gibba in 

the context of epiascidiate leaf development (Fukushima & Hasebe, 2014). I first identified 

two UgFIL homologs in U. gibba by performing blast searches (tblastn) using the 

Arabidopsis protein sequences against the published U. gibba transcriptome (at this time 

no genome information was available). I checked the hits from the U. gibba transcriptome 

by performing blastx searches using the candidate nucleotide sequence against the NCBI 

SWISS-PROT protein database and then performing a reciprocal blast search with the top 

hit. Later genome analysis revealed a further two FIL homologs (Figure 4.10).  
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Figure 4.10: Guide phylogenetic tree of YABBY transcription factors.  Tree was constructed 

using Mega5. Conserved regions of protein sequence were aligned and a Neighbour-Joining 

tree was constructed using 500 bootstrap replicas, the Jones-Taylor-Thornton (JTT) model, 

and pairwise deletion. Orange box indicates homologues of FIL/YAB3. Four homologs of 

FIL/ YAB3 are indicated in yellow. Pink arrows indicate those homologs also found in 

published transcriptome data.  

 

 

I designed antisense RNA probes against UgFIL1 and UgFIL2 based on the transcript 

sequences I had available at the time. I was successful in making a probe against UgFIL1. 

However, the transcript available for UgFIL2 was not complete (only 296 bp long) and I was 

unable to successfully clone UgFIL2.  I performed an in situ hybridization using the probe 

for UgFIL1. I labelled the probe with an anti-digoxigenin antibody covalently linked with the 

enzyme alkaline phosphatase (AP). This allows for mRNA detection by the addition of BCIP 
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and NBT where BCIP is cleaved in the presence of NBT, leading to a blue precipitate where 

AP is present.  

 

I followed the current protocol from the lab which was modified from Coen et al. (1990) 

and uses pronase to digest proteins in the sliced tissue (see materials and methods for 

details). Overall, I found the success of the in situ hybridization very variable across both 

fixations; some sections had signal while others did not, some had high levels of 

background, and some tissue was preserved better than others. The best examples of 

signal are shown below (Figure 4.11). The signal was very faint after one overnight 

incubation in buffer 6 (containing NBT and BCIP). I performed an extra overnight incubation 

in fresh buffer 6 which improved the signal. There appears to be expression of UgFIL on the 

outer layer of cells (Figure 4.11, pink arrows).  UgFIL expression is also seen in cells of the 

threshold (Figure 4.11, white arrow) and on the lower cells of the trapdoor (Figure 4.11, 

yellow arrow). It is not clear from these images where the expression of UgFIL in the 

threshold and trap door stops and therefore where the ad-ab boundary may be. Based on 

the approximate location of the cross section (Figure 4.11, C) I can get a rough idea of 

where I do see UgFIL expression in these regions and make a prediction on the boundary 

(Figure 4.11, D). More sections would need to be studied to confirm this. In general, I found 

that tissue fixed in FAA had better preservation than that fixed in paraformaldehyde (Figure 

4.11, A & B comparison). There is still room for improvement with tissue preservation so 

that cell layers may be more distinguishable. 
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Figure 4.11: Expression of UgFIL1 in U. gibba young bladders fixed in either 4 % 

paraformaldehyde or FAA.  Sections are from the back of a young bladder, towards the 

mouth. (A) Tissue was fixed in FAA. (B) Tissue was fixed in 4 % paraformaldehyde. (C) Side 

section of a young bladder indicating the positions of the sections from (Ai-Aiv) (orange 

lines). (D) Side section of a young bladder indicating the corresponding regions of UgFIL 

expression around the outside layer of the main body of the bladder (pink arrowhead), at 

the trap door (yellow arrowhead) and at the threshold (white arrowhead). Orange in (D) 

indicates the proposed region of FIL expression based on this data. Scale bars are 20 µm.  

 

 

To further develop the protocol, I designed a control probe against U. gibba HISTONE 4 

(UgH4) to check a different pattern of expression against FIL expression. I found eight 

homologs for H4 in U. gibba I designed probes for the two most closely related to H4 from 

Antirrhinum and Arabidopsis (Figure 4.12). I obtained successful PCR products for a 

fragment of Scf00915:10384..10692 (UgH4 most homologous to Arabidopsis H4) and 

continued with these products to generate a UgH4 RNA probe.  
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Figure 4.12: Guide phylogenetic tree of H4.  Tree was constructed using Mega5. Conserved 

regions of protein sequence were aligned and a Neighbour-Joining tree was constructed 

using 500 bootstrap replicas, the Jones-Taylor-Thornton (JTT) model, and pairwise deletion. 

Eight homologs of H4 are indicated in blue. Blue arrows indicate those homologs used to 

design probes based on close homology to Antirrhinum H4 (AmH4) and Arabidopsis H4 

(Histone_H4) shown in pink. 
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Since tissue fixed in FAA gave the most promising results in the first in situ experiment, I 

decided to continue working with this fixative. I tried using longer cycles of vacuum 

treatment in the vacuum infiltration processor (VIP) machine when embedding samples to 

see if this would improve the structural preservation of the tissue. I also tried using 

proteinase K in place of pronase to see if I could obtain a stronger signal and less 

background. To be sure any signal was real, and to explore where any background may be 

coming from, I included three separate negative controls; a sense probe which is not 

complimentary to the target sequence, no probe, and no anti-digoxigenin-AP antibody. The 

results are shown below (Figure 4.13). 

 

The tissue was more structurally intact than before, indicating that the fixation was more 

successful. There was very little background signal, with no background observed in any of 

the negative controls. There is some signal in young bladder tissue and in apex tissue visible 

(Figure 4.13, Ai & Bi). The expression patterns observed are as expected for H4 which is an 

S-phase specific marker and is usually expressed in patches similar to that observed (Wu et 

al., 2005). These results indicate that the tissue is permeable and that protein digestion 

with proteinase K is successful. Tissue layers also appear more distinct. 
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Figure 4.13: Expression of UgH4 in U. gibba bladder and circinnate apex tissue.  (A) U. 

gibba bladder sectioned from the back. (B) U. gibba circinnate apex tissue. (Ai & Bi) 

Hybridisation with the UgH4 antisense probe. (Aii & Bii) Hybridisation with the UgH4 sense 

probe (negative control). (Aiii & Biii) Negative control with no probe. (Aiv & Biv) Negative 

control with no anti-digoxigenin-AP antibody. All scale bars are 20 µm. 
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4.3 Discussion  

 

4.3.1 Practicalities of U. gibba as a model system 

 

4.3.1.1 Propagating U. gibba tissue 

 

In this chapter I have presented a number of resources and methods set up for the 

development of U. gibba as a new model system. During this set up, I found the ability to 

propagate U. gibba tissue particularly useful since it allowed me to quickly collect tissue at 

my convenience for any given experiment. Since bladders of all developmental stages could 

be found on a single plant at any given time, I was also able to perform large scale tissue 

collection of bladders for in situ hybridisations without the need for mass plant growth. 

 

4.3.1.2 Germination time of U. gibba seeds 

 

One of the main issues with U. gibba was the low efficiency at which U. gibba seeds would 

germinate. After exploring a range of treatments and growing conditions, I found that the 

ethylene releaser, ethephon, could significantly improve U. gibba seed germination without 

affecting seedling morphology. Ethylene has been found to stimulate germination in a 

number of species, including Echinacea (Sari et al., 2001). Endogenous ethylene was found 

to stimulate or accelerate germination in species such as Chenopodium album (Saini et al., 

1985), Amaranthus retroflexus and aged Striga lutea and Brassica napus seeds, reviewed by 

Matilla (2000). The application of ethylene was also found to break heat induced dormancy 

in lettuce (Stewart & Freebairn, 1969). It has been suggested that ethylene production may 

be essential for alleviating heat induced dormancy in some seeds. However, the 

mechanism by which this may work is not understood (Matilla, 2000). 

 

4.3.2 Generating a reference genome for U. gibba  

 

We now have two reference assemblies (the BA assembly sequenced by TGAC, and the 

LangeBio, published assembly). The published assembly has the advantage that it has a set 

of predicted genes associated with it. However, the BA assembly is valuable for finding 
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homologous genes with more sequence similarity to the plant available for tissue collection 

and experiments. It is useful to use the sequence of the plant we are growing for primer 

and antibody design to ensure the best sequence match. The BA genome appeared to have 

a high level of heterozygous content. Future work may therefore include filtering the BA 

assembly to remove some of this heterozygous content and selfing the BA line through 

multiple generations to obtain a more homozygous line for sequencing. Furthermore, a 

higher depth sequencing run could be performed on the BA line to generate a higher 

quality genome assembly. 

 

4.3.3 In situ hybridisations 

 

I made progress with setting up an in situ hybridisation protocol that worked in U. gibba. I 

observed promising signal with probes against UgFIL and UgH4. The use of proteinase K in 

place of pronase appeared to give cleaner signal, although these have not been tested side 

by side. I found that fixing tissue in FAA led to better tissue preservation than fixation in 

paraformaldehyde. This concurs with similar observations made when comparing different 

fixatives for immunolocalisation in U. gibba. However, variability in the success of in situ 

hybridisation suggests that fixation may not always be successful in preserving bladder 

structure and/or RNA. One possibility for the future is to try alternative fixatives and 

fixation methods. For example, tissue may be snap frozen and then embedded in a support 

medium for thin cryosectioning and then rapidly fixed in 4 % paraformaldehyde prior to 

hybridisation. 

 

Preliminary results indicate that UgFIL may be expressed on the outer layer of cells of the 

U. gibba bladder. This agrees with the idea that the outside layer of epiascidiate leaves 

corresponds to the abaxial surface of a conventional flat leaf, as found in Nepenthes and 

Sarracenia (Fukushima & Hasebe, 2014). Future work looking into the expression of surface 

identity genes in U. gibba may also include looking at adaxial specification genes such as 

PHABULOSA (PHB) and at abaxial identity genes in the KANADI family which are expressed 

in adaxial domains in both eudicots and monocots, reviewed in (Fukushima & Hasebe, 

2014). 
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4.3.4 Mutagenesis 

 

Mutagenesis of U. gibba enabled the setup of the first forward genetic screen in U. gibba 

and this generated some promising, segregating mutants. Since I was able to improve 

germination over the course of this work, it is also now also possible to perform 

mutagenesis on seed from U. gibba which has the benefit of speeding up the initial process 

of EMS treatment since thousands of seeds can be readily treated at once without the need 

to propagate large quantities of tissue afterwards. This high throughput approach should 

lead to the generation of more mutant phenotypes. 

 

Future work will involve screening the M3 generation (from selfed- M2 plants) to check for 

segregation of mutant phenotypes in the next generation. One advantage of U. gibba is 

that M2 plants may be kept growing in culture while M3 seedlings are screened. This 

means that heterozygotes can be identified based on segregation of M3 offspring. 

Offspring from segregating populations can then be sequenced and the SNPs (single 

nucleotide polymorphisms) in wild type and mutant plants can be compared. Mapping 

mutations by sequencing will be made easier by the generation of a linkage map which 

compiles scaffolds and provides chromosome information.  

 

4.3.5 Summary 

 

Overall, this work provides future researchers working with U. gibba with some useful 

techniques and vital resources for further study of the genetic basis of development in 

U. gibba. 
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5 Main discussion 
 

5.1 Summary of work 
 

In this work I used an integrative approach to study the development of complex leaf shape 

in Utricularia gibba. I generated models exploring the extent to which specified isotropic 

and anisotropic growth could account for the shape changes observed in U. gibba bladder 

development. I tested predictions made by these models to arrive at an understanding of 

the growth mechanisms underlying U. gibba bladder development. Overall, I found that 

specified anisotropic growth, and therefore tissue axiality is required for the development 

of the U. gibba bladder. 

 

5.2 Evidence for specified anisotropy in the U. gibba bladder  
 

5.2.1 Evidence for specified anisotropy based on modelling and 

geometry  
 

In chapter 2, I showed that specified anisotropy is required for the elongation of the chin 

region of the bladder. A pure specified isotropic growth model could not account for the 

elongation of the chin region of the bladder: an increase in areal growth rate at chin alone 

generated a bulbous chin. This bulging of the tissue is caused by the resolution of areal 

conflict in the canvas, generated by differential areal growth rates in neighbouring regions.   

When specified anisotropy was included in the model, the chin region was able to elongate 

without buckling. Not all biological shapes require specified anisotropy to explain their 

morphogenesis. For example, A model for Coleochaete scutata thallus morphogenesis 

shows how irregularities in shape can be generated through specified isotropic growth 

when cell wall bending properties are altered, or when cell ablation is used to trigger an 

outgrowth (Dupuy et al., 2010). Developmental stages of Marchantia thallus growth are 

also captured by a model using isotropic specified growth (Solly, 2015). Models of U. gibba 

bladder development therefore give an important example where specified anisotropy is 

required for the generation of the final organ shape.  

 



Chapter 5 
 

174 
 

Although development of the bladder chin region required specified anisotropy in the 

models, I found that using either specified isotropy or specified anisotropy could explain 

the shape changes observed in the main body of the bladder. This reflects the fact that 

similar shapes may be generated through specified isotropic or anisotropic growth (Green, 

1965) and the resolution of different types of conflicts (Coen & Rebocho, 2016). This is also 

evident in models exploring embryonic limb bud development where models using 

specified isotropic growth (Popławski et al., 2007) and specified anisotropic growth 

(Marcon et al., 2011) have been explored, and only through clonal analysis could local 

anisotropy be confirmed (Marcon et al., 2011). It was therefore necessary for me to make 

predictions which could be tested to validate one growth mechanism over another. 

Through studying clonal patterns on the growing canvas of each model, I found that I could 

make several predictions that would allow me to distinguish between models based on 

clone anisotropy, orientation, and size. This highlights a major benefit of modelling to 

generate hypotheses for biological study with respect to understanding the underlying 

principles of growth. 

  

5.2.2 Evidence for specified anisotropy based on experimental 

observations 
 

Sectors in the chin region were anisotropic, with their major axis parallel to the axis 

between the stalk and mouth. This pattern of anisotropy is consistent with a specified 

anisotropy model, where sectors are expected to elongate parallel to the orientation of 

tissue growth. There is anisotropy in the chin region of the bladder at the cellular as well as 

at the sector level. This is evident when I look at the cell shape in the sectors from the chin 

region and when I compare the rate of increase in anisotropy per hour in terms of cell 

number and in terms of the major and minor length (the rate of increase in anisotropy per 

hour is less in cell number than in sector lengths). At the cell level, this indicates that cells 

in the chin region are growing and dividing more anisotropically than cells in the rest of the 

bladder. 

 

When studying the main body of the bladder I found no evidence for increased sector area 

near the midvein (predicted by the specified isotropic growth model), suggesting that 

specified anisotropic growth across the bladder is more likely to drive the shape transitions 

observed. These shape transitions included a greater growth in height relative to width and 
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a greater growth in depth relative to width. The flattening of the bladder in width is 

therefore achievable with uniform specified anisotropy and uniform areal growth across 

the main body of the canvas (excluding the chin region). A similar transition in shape is 

seen in the fruit of Capsella rubella which starts as a cylinder and becomes flattened 

medially (Eldridge et al., 2016). Modelling suggested a higher relative growth rate parallel 

to a proximal- distal polarity (Kpar) at the midvalve regions of the developing Capsella 

gynoecium (Eldridge et al., 2016). The complex 3D transitions in shape of the U. gibba 

bladder and the C. rubella gynoecium both require specified anisotropic growth. However, 

unlike that proposed in the Capsella gynoecium, an increase in Kpar at the midvein of the 

bladder relative to its sides is not required.  

 

5.3 Polarity as a common mechanism for orienting growth in 

plants 

 

Specified anisotropic growth requires the presence of tissue axiality so that growth 

orientations may be specified in relation to a local axis. The model assumes that axiality is 

based on a polarity system, using a diffusible factor to set up a polarity field across the 

canvas, against which growth orientations may be specified (Kennaway et al., 2011). I 

found evidence of tissue polarity in the U. gibba bladder through the analysis of the 

coordinated polarity of quadrifid glands and the localisation of UgPIN1 proteins. This 

polarity pattern is oriented from the stalk to the mouth of the bladder, concurring with that 

predicted by bladder models.  

 

The polarity field observed in U. gibba may be considered as a proximal-marginal polarity 

field if we consider the modified peltation theory for the evolution of epiascidiate leaves 

(Franck, 1976), whereby the mouth of the bladder is equivalent to the margin of a peltate 

leaf and the petiole is displaced to the centre of the abaxial surface. This proximal-marginal 

polarity is different form the proximal-distal polarity modelled and experimentally 

observed in Arabidopsis thaliana leaves (Kuchen et al., 2012). This difference may indicate 

a shift in polarity in the evolution of peltate leaves from conventional flat leaves (proximal-

distal to a proximal-marginal polarity) (Figure 5.1). It would therefore be interesting to look 

for evidence of a proximal-marginal polarity field in peltate leaves and other epiascidiate 

leaves. The Arabidopsis petal also shows some shift in polarity, where there is a divergence 
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of polarity at the distal end of the petal rather than a convergence point at the tip. This 

polarity field may be an intermediate case, where a divergent polarity field is thought to 

arise through a broad minus organiser along the distal margin of the developing petal 

(Sauret-Güeto et al., 2013).  

 

 

 

Figure 5.1: Polarity in conventional flat, peltate, and epiascidiate leaves.  (A) Proximal-

distal polarity in an Arabidopsis conventional flat leaf (Kuchen et al., 2012). (B) 

Hypothesised proximal-marginal polarity of a peltate leaf. (C) Proximal-marginal polarity in 

a Utricularia gibba epiascidiate leaf. A plus (green) and minus (pink) organiser of polarity is 

shown in each case.  

 

 

I found evidence of UgPIN1 polarity in the chin and threshold regions of the bladder which 

was consistent with the stalk-mouth polarity predicted by the model and observed with the 

quadrifid glands. This observation supports the idea that polarity fields (polarity-based 

axiality) may be established at the cellular level through the asymmetric cellular localisation 

of PIN auxin transporters (Abley et al., 2016). Models using the feedback of averaged 

residual stresses have been able to generate tissue axiality (in an alternative stress-based 

axiality model). However, the mechanism behind the sensing of average stresses across a 

tissue is unknown (Hervieux et al., 2016). Another stress-based axiality model treats 

meristem tissue as a pressurised cylinder which is under tension and inflated by an inner 

pressure. This model has geometric induced stresses which are higher in the 

circumferential direction than along the meridian (Hamant et al., 2008). At maturity, the 

bladder is under negative pressure (is under constriction) (Llorens et al., 2012). It is unclear 

at which point in development this negative pressure begins to act and what role it may 

play in generating stresses in the developing tissue. It would be interesting to explore the 

pressure at early stages of bladder development and implement this pressure in stress-

based models and compare resultant models to the observed tissue growth dynamics.  
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5.4 A means to generate Utricularia trap diversity 
 

The traps of different Utricularia species show a great degree of variation in their 

morphology and several features can be used for species identification. One feature is the 

position of the mouth relative to the stalk (Rutishauser & Brugger, 1992; Taylor, 1994). The 

mouth position in Utricularia species can be either basal (adjacent to the stalk), terminal 

(opposite to the stalk), or lateral (in an intermediate position) (Taylor, 1994). Examples of 

Utricularia species with these mouth positions are shown in Figure 5.2. Examples of each 

case are present in both terrestrial and aquatic species (Rutishauser & Brugger, 1992; 

Taylor, 1994). 
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Figure 5.2: Mouth position in different Utricularia species.  Examples of Utricularia species 

exhibiting different mouth positions where the mouth is either basal (adjacent to the stalk), 

lateral (intermediate position), or terminal (opposite to the stalk). The stalk (green 

arrowhead), mouth (pink arrowhead), chin (purple line), and back (orange line) regions of 

each bladder are shown. Images are not to scale. Images are adapted from drawings from 

Taylor (1994). 

 

 

I found that specified anisotropic growth was essential for obtaining elongation of the chin 

region and therefore the displacement of the mouth relative to the stalk. When modelling, 

I found that the length of the chin region could easily be altered by changing the degree of 

specified anisotropy and areal growth rate at chin. Diversity in bladder morphology could 
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therefore be accounted for by the relative levels of specified anisotropy in the chin and 

back regions (Figure 5.2, purple and orange lines). At very early stages, the mouth 

positioning on the primordia of U. livida (exhibiting a terminal mouth at maturity) appears 

to be similar to that observed in U. gibba (exhibiting a lateral mouth at maturity) 

(Rutishauser & Brugger, 1992). Both start with a mouth slit forming at approximately 90 ° 

to the primordial stalk. This similarity in initial mouth position on two bladders which 

exhibit different mouth positions at maturity suggests that the initial position of the mouth 

indentation may be similar for each type of bladder and that differential growth after this 

controls the final position of the mouth relative to the stalk. This requirement for 

differential growth indicates that specified anisotropy is required in each case, because 

differential areal growth alone is not sufficient to displace the mouth and stalk. Some 

Utricularia species are dimorphic, exhibiting bladders which differ morphologically in the 

positioning of the mouth. For example, U. hydrocarpa and U. vulgaris possess bladders with 

a lateral mouth and bladders with a basal mouth, indicating that a simple underlying 

mechanism could account for the control of chin length. It would be interesting to compare 

the two bladder types from each plant, possibly by using RNA sequencing which may help 

to identify genetic regulators in chin length. 

 

There are other cases where variations in the final shape of a plant organ are due to 

differences in relative dimensional growth at later stages of development. For example, 

shape differences in acutely lobed, roundly lobed, and orbicular peltate leaves of 

Tropaeolum are due to differential growth in the lobes and sinuses and each mature leaf 

shape begins with the same initial shape (Whaley & Whaley, 1942). 

 

 

5.5 Other epiascidiate leaves 
 

The primordia of other epiascidiate leaves have a similar structure to that of Utricularia. 

For example, the primordium of Sarracenia is a flattened structure which develops a hollow 

on the adaxial side of the primordium, above the adaxial ridge. Growth in the margin and 

the adaxial ridge generates a hollow structure in the distal portion of the primordium and 

continued growth forms the pitcher shape (Fukushima et al., 2015). The formation of a 

tube in this way is similar to the growth of the chin and back region in U. gibba. Similar 

factors may control the growth of pitcher shapes through specified anisotropic growth. It 
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would be interesting to model shape transitions in other epiascidiate leaves to see to what 

extent specified isotropic growth can account for different epiascidiate leaf shapes or 

whether specified anisotropy is required in each case.  

 

5.6 Future directions 
 

5.6.1 Testing the models further 
 

The work described in this thesis has developed hypotheses for bladder development and 

evolution through computational modelling and experiments. I found that the 

development of the bladder shape requires specified anisotropic growth. Future work will 

include collecting more sector data at the chin region of the bladder to complete the 

current data set and confirm growth rates and orientations in the live system. Tracking 

experiments and cell segmentation analysis could also be used to analyse cell shape across 

the bladder, for a more accurate calculation of the rate of increase in anisotropy per hour 

(currently, these calculations assume cells are isotropic at the time of heat shock). This is 

difficult to verify in the chin region, since the bladder is tightly wrapped up. Dissection of 

the antennae and mouth region may be necessary to study this in more detail. 

 

Future work will also involve confirming the polarity pattern in the chin region by using 

confocal microscopy to analyse the polarity of quadrifid glands in the chin region, as this 

region often had bad resolution in the OPT scans. More work looking at the localisation of 

UgPIN1 across the bladder would also be useful to validate the preliminary results 

presented here. This may include further optimisation of the immunolocalisation protocol, 

for example trying cryofixation, purification of antibodies, and the exploration of transgenic 

lines expressing fluorescent proteins under UgPIN1 promoters. One challenge associated 

with this work is the fact that young bladder stages are found wrapped up in the circinnate 

apex of growing stolons. A possible solution is to look into terrestrial species of Utricularia 

such as U. livida and U. bisquamata in which bladders develop on stolons without a 

circinnate apex, making them more easily accessible to study.  
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5.6.2 Elucidating the genetic basis of bladder growth  
 

A key question is how genes control the factors in the model.  In the modelling framework, 

factors that control growth and polarity are generalised, abstracting from specific genetic 

components. This allowed me to explore the core mechanisms controlling bladder shape 

without the complication of genetic interactions. There are no published studies on the 

genetic pathways that control bladder development and so genetic interactions would 

need to be based on studies done in Arabidopsis. A key area of the model is the chin 

region. Since there are no published gene expression patterns in U. gibba, there are no 

clear candidate genes that could carry out the role of the CHIN factor. Future work may 

include identifying such genes by comparative RNA sequencing, comparing the chin region 

of the bladder to the main body of the bladder following microdissection as well as 

comparative studies between different bladder types on dimorphic species which exhibit 

bladders with lateral and basal mouths. Mutants with a truncated or elongated chin region 

may also be identified through further mutant screens and subsequent sequencing could 

be used to identify candidate genes responsible for controlling increased growth parallel to 

the polarity field here. Cell wall modifying enzymes such as expansins which loosen the cell 

wall or pectin methylesterases (PMEs) which alter the rigidity of the cell wall (McQueen-

Mason et al., 1992; Cosgrove et al., 2002; Bosch et al., 2005) may be important for the 

elongation of the chin region at the cellular level where I see longer and thinner cells 

compared to the rest of the tissue. 

 

Other candidate genes for bladder shape development include homologs of Arabidopsis 

ROT3 and AN which regulate growth rates in the proximal-distal and mediolateral axis of 

the Arabidopsis leaf respectively (Tsuge et al., 1996; Kim et al., 1999). Generating knock out 

mutants of these genes in U. gibba may produce plants with more or less elongated 

bladders if these genes play a role in specifying growth rates parallel and perpendicular to 

the axis of polarity. It is unclear how they may function in the context of a proximal-

marginal polarity as opposed to a proximal-distal polarity.  

 

The expression of candidate organiser genes such as CUC, AUX, LAX and YUCCA may be 

explored using fluorescent reporter constructs or in situ hybridisation. This would give 

further evidence for a polarity based axiality system where I would expect auxin 

biosynthesis genes such as YUCCAs, and CUC which is expressed at the base of the 

Arabidopsis leaf, to be expressed near the stalk intersect, and auxin importers such as AUX 
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and LAX to be expressed near the mouth of the bladder. It would also be interesting to 

explore the expression of these candidates in peltate leaves to test the hypothesis that 

peltate leaves may have a proximal-marginal polarity. 

 

Broader approaches may also be taken to find candidate genes. For example, it may be 

interesting to perform comparative RNA sequencing on the bladderless mutant identified in 

the mutagenesis screen and its wild type sibling. Microdissection of very young bladders 

may also allow RNA sequencing of a developmental series of younger bladders or of 

specific regions of bladders, such as the chin. 

 

5.6.3 Exploring the early stages of bladder development  
 

In this work I have focussed on the U. gibba bladder shape transitions that occur between 

the 82 µm stage and maturity. It would be interesting to explore the earlier stages of 

bladder development to better understand epiascidiate leaf development from the 

primordium. For this work, it may also be useful to also explore terrestrial species 

mentioned above, in which the bladders develop on stolons without a circinnate apex, 

making them more accessible to tracking, whole-mount immunolocalisation and in situ 

studies. However, the genome sizes of these species are larger: 239 Mbp and 308 Mbp for 

U. livida and U. bisquamata respectively (Veleba et al., 2014), and protocols for key 

methods such as transformation would need to be investigated.  

 

5.7 Concluding remarks 
 

I have characterised the main stages of growth in a new model system, Utricularia gibba, 

and have used this information to generate models of bladder growth, exploring the extent 

to which specified isotropic and specified anisotropic growth can account for bladder 

shape. I have tested predictions made by these models, by performing sector analysis and 

by finding evidence of tissue cell polarity in the bladder. Through this analysis I have arrived 

at a model of bladder development which uses specified anisotropic growth across the 

bladder. I have developed a number of techniques and resources which support U. gibba as 

a new model system. Using this ground work and further predictions made by the model, it 

should be possible to identify key genes involved in the development of bladder shape. This 

work shows how different specified growth patterns can be explored using computational 
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modelling and how these models are able to make a number of predictions in relation to 

resultant growth patterns. These resultant growth patterns can be tested in the biological 

system to distinguish between models and therefore provide an understanding of the 

specified growth patterns underlying the generation of an organ shape. This allows the 

exploration of specified growth dynamics within connected tissue which are not intuitive. 

More generally, this work supports the hypothesis that plant growth and development is 

based on orienting growth against a polarity field which may have a similar molecular 

mechanism across plants. 
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6 Materials and methods 

 

6.1 Plant material and growth  

 

6.1.1 Tissue culture 

 

Plant material was grown in liquid MS plant tissue culture media (0.22 % Murashige and 

Skoog Medium (Duchefa Biochemie M0233), 2.5 % sucrose, pH 5.8) and maintained (in 

culture) in a controlled environment room at 25 °C long day conditions (16 hours light/ 8 

hours dark cycles).  

 

6.1.2 Glasshouse conditions 

 

Plant material was grown in the glasshouse to induce flowering for seed collection. Plants 

were grown in containers containing a 2 cm layer of sphagnum moss and sand mix, topped 

up with reverse osmosis water.  

 

6.1.3 Seed sterilisation 

 

Utricularia gibba seeds were washed for 5 minutes in 70 % ethanol, 0.1 % SDS, followed by 

a wash in sterile water. Seeds were then transferred to 4 % Parazone bleach, 0.2 % triton 

100 for 10 minutes and then washed 3 times with sterile water. 

 

6.1.4 Seed germination 

 

Seeds were sown in pots containing a layer of solid culture medium (0.22 % Murashige and 

Skoog Medium (Duchefa Biochemie M0233), 2.5 % sucrose, 0.3 % agar, pH 5.8) topped up 

with liquid MS culture medium containing 0.1 mM ethephon (Sigma C0143).  To make 

ethephon containing media, a concentrated 2.5 M ethephon solution was first made in a 
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pH 3 buffer (41 mM disodium hydrogen phosphate, 79 mM citric acid) and then diluted in 

liquid media to a final concentration of 0.1 mM ethephon. Seedlings were germinated at 25 

°C long day conditions (16 hours light/8 hours dark cycles). Once seeds had germinated, 

seedlings were removed from ethephon containing media and grown in MS liquid media as 

described above. 

 

6.1.5 Time course of U. gibba bladder growth 

 

U. gibba stolons were embedded in low melting point agarose and then covered with liquid 

MS medium. Plants were kept sterile in a closed petri dish sealed with micropore tape and 

grown at 25 °C long day cycles.  Each bladder was imaged every 24 hours by light 

microscopy, keeping track of the position of each bladder by imaging the whole plate for 

reference. Growing bladders were imaged until they reached maturity or until they were no 

longer visible due to other tissue growing over them. Measurements were made from the 

antennae to the furthest point on the back of the bladder (bladder length). At some time 

points bladders twisted and turned out of view in the media and so a measurement could 

not be made. Growth arrest occurred in bladders which were close to the cut edge of a 

stolon, so only bladders which were near growing tips were included for analysis. Length 

measurements were used to place each data set on a normalised timescale of development 

to overcome different starting sizes of bladders. 

 

6.2 General methods 

 

6.2.1 Searching for homologous genes in U. gibba  

 

Sequences of candidate genes/proteins from Arabidopsis thaliana were found by searching 

the NCBI database (http://www.ncbi.nlm.nih.gov/). A tblastn (protein to translated 

nucleotide) query was then performed against the published (LangeBio) U. gibba genome 

(Ibarra-Laclette et al., 2013) and the genome of the Bergh Apton (BA) line sequenced in our 

lab. Browsers with BLAST functionality for each genome were made by TGAC and can be 

found at: 

 

http://www.ncbi.nlm.nih.gov/


Materials and methods 

187 
 

Langbio: http://tgac-browser.tgac.ac.uk/ugibba_langbio/  

 

BA: http://tgac-browser.tgac.ac.uk/ugibba_tgac/  

 

Sequences were obtained from the published LangeBio genome in the following way: the 

scaffold position obtained from the above BLAST search the browser above (e.g. 

Scf00203:12578..15717) was entered into a Jbrowse browser  to find the predicted gene 

number. Sequence information was then obtained by selecting the predicted gene region 

and selecting ‘view details’. The Jbrowse browser can be found at: 

 

http://apollo.tgac.ac.uk/Utricularia_gibba_4_1_19475_browser 

 

Sequence information in the BA line was obtained by searching for the relevant scaffold 

(based on the scaffold number given in the BLAST search) and performing BLAST searches 

using the scaffold sequence in general databases such as those found at NCBI. Exons were 

then predicted based on alignments with relevant hits. This generated a predicted coding 

sequence which could be confirmed by sequencing.  

 

Sequences from U. gibba with good homology were used in a blastx 

(translated nucleotide to protein) against the UniProtKB/Swiss-Prot(swissprot) database 

within NCBI to check that the hits returned were the protein of interest. Reciprocal blast 

searches were performed with the best hit. 

  

6.2.2 Propidium iodide staining 

 

6.2.2.1 Propidium iodide staining for optical projection tomography 

 

The propidium iodide staining protocol for whole-mount imaging (Truernit et al., 2008) was 

followed to stain U. gibba bladders and circinnate apexes for Optical Projection 

Tomography (OPT). 

 

Tissue was fixed in pre-cooled 50 % methanol, 10 % acetic acid and stored at 4 ᴼC for up to 

1 month. Samples were then washed with water twice before being dehydrated to 80 % 

http://tgac-browser.tgac.ac.uk/ugibba_langbio/
http://tgac-browser.tgac.ac.uk/ugibba_tgac/
http://apollo.tgac.ac.uk/Utricularia_gibba_4_1_19475_browser
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ethanol through 40 %, 60 %, 80 % Ethanol (x 2 each). Tissue was then incubated in an 80 °C 

water bath for 10 minutes, followed by rehydration through 60 %, 40 %, 20 % ethanol, 

water (x2 each). Samples were incubated for 12 hours in alpha-amylase solution (20mM 

sodium phosphate buffer, (pH7), 2 mM NaCl, 0.25 mM CaCl2, 0.3mg/ml alpha-amylase from 

Bacillus licheniformis (Sigma Aldrich A4551) at 37°C. Samples were washed with water (x 3) 

and incubated with 1 % periodic acid (Sigma Aldrich, 3951) for 1 hour at room temperature 

in the fume hood. Tissue was washed again with water (x 2) and then incubated with Shiff 

reagent with propidium iodide (100mM sodium metabisulphite and 0.15M HCl; propidium 

iodide to a final concentration of 100 mg/mL) for 2 hours. Samples were washed with 

water (x2) and then kept in water at 4 °C overnight. 

 

6.2.2.2 Propidium iodide staining for confocal imaging 

 

Samples were treated as above for OPT with the following extra steps. After the final water 

wash, tissue was mounted onto glass coverslips with added Frame-Seal Incubation 

Chambers (BIO-RAD, SLF0601). A drop of ½ chloral hydrate solution was added to cover the 

tissue and samples were incubated over night at room temperature. Excess chloral hydrate 

was removed and samples were correctly spaced on the cover slip. Samples were mounted 

in Hoyer’s solution and a slide was placed on top to ensure samples were close to the 

coverslip for imaging. 

 

6.2.3 Optical projection tomography 

 

 OPT was performed by Karen Lee using the protocol published in (Lee et al., 2006). 

Visualisation of OPT scans was achieved using a freely available software package 

VolViewer which enables interaction of volumes in 3D and is available at 

http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/VolViewer#Description. 

  

http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/
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6.2.4 U. gibba DNA extraction 

 

6.2.4.1 DNA extraction  

 

gDNA was extracted from U. gibba using the DNeasy Plant Mini Kit (Qiagen, 69104) 

following the manufacturers protocol. Excess liquid media was removed from U. gibba 

tissue using clean paper towels. Tissue was then frozen in liquid nitrogen and ground to a 

fine powder in liquid nitrogen using a pre-cooled pestle and mortar. A 1.5 ml microfuge 

tube was then filled to the 0.25 ml mark with ground tissue and 400 µl of Buffer AP1 and 4 

µl RNase A was added to the tissue. Samples were vortexed and then incubated at 65 °C for 

10 minutes. Next, 130 µl Buffer P3 was added and samples were incubated for 5 minutes 

on ice, followed by centrifugation at 16, 500 x g for 5 minutes. The lysate was pipetted into 

a QIAshredder spin column placed in a 2 ml collection tube and samples were then 

centrifuged for 2 min at 14,000 rpm. The flow-through was transferred to a new tube and 

1.5 volumes of Buffer AW1 was added and mixed by pipetting. Next, 650 µl of the mixture 

was transferred into a DNeasy Mini spin column placed in a 2 ml collection tube and 

samples were centrifuged for 1 minute at 8000 rpm. The flow through was discarded and 

this stepwas repeated with the remaining sample. The column was then washed with 500 

µl Buffer AW2 and centrifuges at 8000 rpm (this was done twice). DNA was eluted in 100 µl 

buffer AE which was added to the column followed by incubation at room temperature for 

5 minutes and then centrifuged for 1 minute. The elution was passed through the column a 

second time to obtain higher concentrations of DNA.  

 

6.2.4.2 DNA extraction for whole genome sequencing 

 

gDNA was extracted from U. gibba plants for sequencing using the DNeasy Plant Maxi Kit 

(Qiagen, 68163). Excess liquid media was removed from U. gibba tissue using clean paper 

towels. Tissue was then frozen in liquid nitrogen and ground to a fine powder in liquid 

nitrogen using a pre-cooled pestle and mortar. A 50 ml centrifuge tube was filled to the 5 

ml mark with crushed tissue and 5 ml preheated Buffer AP1 and 10 µl RNase A were added 

to the tube. Samples were vortexed vigorously until no tissue clumps were visible and then 

incubated for 10 minutes at 65 ᴼC. During incubation, tubes were inverted several times. 

The protocol was then followed as per the manufacturer’s instructions. DNA was eluted in 
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500 µl buffer AE which was passed through the column twice. DNA was then precipitated 

by adding 2 volumes of 100 % EtOH and 1/10 volume 3 M NaAc. Samples were incubated 

for 30 minutes at -20 ᴼC and then centrifuged at 20,000 x g for 5 minutes at 4 ᴼC. The 

supernatant was then discarded and the pellet was washed with 800 µl 70 % EtOH by 

gentle pipetting. Samples were centrifuged again for 5 minutes and the EtOH was removed 

carefully. Another wash with 70 % EtOH was performed, samples were centrifuged and the 

EtOH was removed. The pellet was left for the EtOH to evaporate and then resuspended in 

100 µl H₂O.  

 

6.2.5 U. gibba RNA extraction 

 

U. gibba material was collected from plants grown in culture. Excess liquid media was 

removed using clean paper towel. Material was then frozen in liquid nitrogen before being 

crushed to a fine powder in liquid nitrogen using a pre-cooled pestle and mortar. A pre-

cooled microcentrifuge tube was filled to the 0.1 ml mark with crushed tissue and RNA was 

extracted using the RNeasy Plant Mini Kit (Qiagen, 74904) following the manufacturer’s 

instructions. On-column DNase digestion was performed. RNA was eluted in 30 µl RNase-

free water which was passed through the column twice.   

 

6.2.6 cDNA synthesis 

 

cDNA was synthesised from U. gibba RNA using the SuperScript® III First-Strand Synthesis 

System kit (Invitrogen, 18080051) as per the manufacturer’s instructions. Incubations were 

carried out on a G-STORM® Thermocycler (GT40361). 

 

 A 10 µl reaction containing 1 µg RNA, 0.5 µl B26 oligo(dT) + adapter primer (100 µM stock), 

1 µl 10 mM dNTP mix, and DEPC-treated water up to 10 µl, was incubated at 65 ᴼC for 5 

minutes and then transferred to ice for 1 minute. A cDNA synthesis mix was then prepared 

as stated in the manufacture’s protocol. The RNA/primer mix was added to 10 µl of cDNA 

synthesis mix and incubated at 50 ᴼC for 50 minutes. The reaction was terminated at 85 ᴼC 

and then chilled on ice. Each tube was then incubated with 1 µl of RNase H at 37 ᴼC for 20 

minutes. Once complete, 10 µl of the cDNA synthesis reaction was taken and added to 90 



Materials and methods 

191 
 

µl H2O and stored at -20 ᴼC. The remaining cDNA synthesis reaction was stored at -80 ᴼC for 

later use. 

6.2.7 Polymerase chain reaction (PCR) 

 

PCR reactions were carried out using the Taq DNA Polymerase kit (Qiagen, 201205). A 20 µl 

reaction was set up containing 1x PCR buffer, 200 µM of each dNTP, 5 mM of each primer, 

1-500 ng template DNA, plasmid or cDNA, 2 units Taq DNA polymerase. A standard PCR 

program was used as follows; 94 ᴼC for 3 minutes, followed by 35 cycles of 94 ᴼC for 1 

minute, 58 ᴼC for 1 minute (annealing temperature), and 72 ᴼC for 1 minute (extension 

time). Then a single step of 72 ᴼC for 10 minutes and a hold step at 12 ᴼC. The annealing 

temperature and elongation time were altered according to primer melting point and 

length of target respectively. Annealing temperature was set to approximately 5 ᴼC below 

the Tm of the primers. Extension time was set to 1 minute per kb of DNA.  All PCR reactions 

were carried out on a G-STORM® Thermocycler (GT40361). Amplified products were 

analysed via 1 % agarose gel electrophoresis. 

 

6.2.7.1 Colony PCR 

 

Single colonies were picked using a sterile p2 tip. The tip was then touched in the bottom 

of a dry microcentrifuge tube and 10 µl sterile H₂O was added. The sample was then 

incubated at 99 ᴼC for 10 minutes. The colony PCR reaction was then set up using the mix 

as described for PCR above with 1 µl colony/H₂O mix in place of DNA. A PCR program was 

used as described for PCR above. 

 

6.2.8 Transformation of E. coli cells 

 

One Shot® TOP10 chemically competent E. coli (Invitrogen, C4040) were used. Cells were 

thawed on ice and then 2 µl of plasmid was added to 20 µl of cells. The reaction was 

incubated on ice for 10 minutes and then transferred to a 42 ᴼC water bath for a 30 second 

heat shock. The reaction was returned to ice for 2 minutes and then 250 µl SOC medium 

(Invitrogen, 2 % Tryptone, 0.5 % Yeast Extract, 10 mM NaCl, 2.5 mM KCL, 10 mM MgCl₂, 10 
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mM MgSO4, 20 mM glucose) was added. Transformed cells were then incubated for 1 hour 

at 37 ᴼC and plated on selective LB (lysogeny broth) media for growth overnight at 37 ᴼC. 

 

6.2.9 Plasmid preparation 

 

Plasmids were purified from 6 ml of overnight liquid E. coli culture using the QIAprep® Spin 

Miniprep kit (Qiagen, 27106) according to the manufacturer’s protocol. Plasmid DNA was 

eluted in 50 µl of elution buffer which was passed through the column twice. The plasmid 

concentration was measured using a NanoDrop 1000 spectrophotometer (Thermo 

Scientific) as per the manufacturer’s instructions.  

 

6.2.10  Sequencing reactions 

 

Sequencing reactions of plasmids were carried out using the BigDye® Terminator v3.1 Cycle 

Sequencing Kit (Thermo Fisher Scientific, 4337455). A 10 µl reaction was set up with 2 µl 

ready reaction mix (BigDye v 3.1), 1 µl Big Dye sequencing buffer, 1 µl of 5 mM primer, 500 

ng plasmid, up to 10 µl with H2O. Amplification was carried out using the following cycles 

on a G-STORM® Thermocycler (GT40361); 96 ᴼC for 60 seconds, followed by 25 cycles of 96 

ᴼC for 10 seconds, 55 ᴼC for 10 seconds, 60 ᴼC for 4 minutes, followed by a hold step at 12 

ᴼC. Reactions were sent to Eurofins Genomics for sequencing. 

 

6.3 Generating a heat shock inducible sector line in U. gibba 

 

6.3.1 Golden Gate cloning 

 

A construct for the heat shock inducible line was produced using Golden Gate assembly 

(Weber et al., 2011) in collaboration with Annis Richardson, Samantha Fox, and Chris 

Whitewoods. Golden Gate cloning uses a modular approach which allows for flexible 

stacking of large gene constructs into a single binary transformation vector (Engler et al., 

2014). Cloning starts with basic modules (promoters - P, 5’ UTR - U, signal peptides - S, 

coding sequences - C, and terminators - T) termed level 0 (L0). These L0 components are 
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combined to make transcriptional units (L1 modules), which are then combined to make 

multigene constructs (L2 constructs) which can be transformed into the plant. The system 

is based on the fact that bacterial type IIS endonuclease restriction enzymes BsaI, Bpil and 

ESp3l can cut downstream of their recognition sites. In Golden Gate, specific sequences are 

placed at the cut sites to generate known overhangs which are specific to individual 

modules. This means that modules may be ligated by T4 ligase in a specific, predetermined 

order (Weber et al., 2011). 

 

The final construct consists of an NPTII (neomycin phosphotransferase II) cassette 

conferring kanamycin resistance (position 1), a Cre recombinase under a heat shock 

inducible promoter (position 2), an mCherry coding sequence flanked by two loxP sites and 

under a 35S promoter, followed by an eGFP coding sequence (position 3), and an end linker 

(Figure 6.1). This construct will be referred to as EC71194. 

 

 

 

 

 

 



Chapter 6 
 

194 
 

 

Figure 6.1: Construct for the heat shock inducible sector line (construct EC71194).  The 

construct consists of The L2 backbone vector (pAGM4723-1) containing a kanamycin 

bacterial resistance cassette (nptII).  The left and right boarders (LB and RB) are indicated. 

These regions are where transfer into the plant is initiated and terminated. The information 

transferred to the plant includes an nptII cassette conferring kanamycin resistance 

(orange), a Cre recombinase under a heat shock inducible promoter (blue) (which has a U5 

intron inserted- black), an mCherry coding sequence (red) flanked by two loxP sites (pink) 

and under a 35S promoter (grey), followed by an eGFP coding sequence (green) and an end 

linker (dark blue).  



 

 
 

Position 1

pICSL11024 pNOS-KAN

pL1V-R2 (EC47811) pL0M-PU-pHS18.2 pL0M-SC-Cre-U5-Cre pL0M-T-AtHsp

pL2V-pAGM4723-1 (Kan)

pL1V-R3 (EC47822 ) pL0M-P-35S (EC41388) LoxP-mCherry module pL0M-S-ER-Targ pL0M-C1-eGFP pL0M-C2-HDEL pL0M-T-Act2 (EC44300)

pL1V-loxPrev (EC10161) pL0M-S-ER-Targ pL0M-C1-mCherry pL0M-C2-HDEL pL0M-T-35S (EC41414)

End Linker

pL1M-ELE-3 (EC41766 )

Position 2

Position 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Heat shock inducible sector construct components.  The pAGM4723-1 backbone vector was used. Components that make up the final level 2 

(L2) construct are indicated. Positions 1-3 and the end linker are level 1 (L1) modules which are assembled from L0 components on individual backbone 

vectors. pL0M (red) indicates plasmid level 0 components, pL1V (blue) indicates plasmid level 1 modules, and pL2V (green) indicates the final level 2 

construct. The ‘P, U, S, C, T’ nomenclature refers to that explained in (Weber et al., 2011). An additional step was required to generate the LoxP-mCherry 

module. 
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An outline of the components used in the creation of the construct is shown in Figure 6.2 

and details are as follows. The L2 backbone vector (pAGM4723-1) containing a kanamycin 

bacterial resistance cassette, and the L1 module NPTII plant resistance cassette 

(pICSL11024 (pICH47732::NOSp-NPTII-OCST)) placed in position 1, were obtained from The 

Sainsbury Laboratory (TSL) (http://synbio.tsl.ac.uk/). The remaining L1 modules were 

assembled using a protocol modified from (Weber et al., 2011); as detailed below, ‘P, U, S, 

C, T’ nomenclature refers to that explained in (Weber et al., 2011). 

 

In position 2, the heat shock protein 18.2 (HS18.2) promoter- PU unit, was fused to a Cre-

U5-Cre coding sequence- CS unit, followed by the HS18.2 terminator from Arabidopsis. A 

U5 intron from the A. thaliana U5 small nuclear ribonucleoprotein component (Engler et 

al., 2014) was included in the Cre coding sequence to prevent it being expressed and 

recombining during heat shock bacterial transformation. The position 2 components were 

assembled on a pL1V-R2-47811 backbone obtained from ENSA. 

 

In position 3, a 35S promoter - P unit, was fused to a loxP-mCherry module – U unit (see 

below for details), followed by an ER targeting signal sequence- S unit, an eGFP coding 

sequence – C1 unit, an ER retention signal (HDEL) sequence – C2 unit, and an Actin 2 

terminator –T unit. The position 3 components were assembled on a pL1V-R3-10161 

backbone obtained from ENSA. 

 

The loxP-mCherry module, was assembled in an additional step where we cloned an ER 

targeting signal sequence- S unit, followed by an mCherry coding sequence – C1 unit, an ER 

retention signal (HDEL) sequence – C2 unit, and a 35S terminator – T unit, between two 

loxP sites that were previously added to a pL1V backbone. This is detailed further in 

(Richardson, 2015). 

 

Finally, an ELE end linker was obtained from ENSA, John Innes Centre, Norwich (pL1M-ELE-

3-41766).  

 

  

 

 

http://synbio.tsl.ac.uk/
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6.3.2 Testing the transgenic lines 

 

6.3.2.1 Screening for expression of GFP and mCherry before heat shock 

 

Lines were screened for GFP and mCherry fluorescence and any lines which had GFP 

fluorescence before heat shock were discarded (Figure 6.3).  

 

 

Figure 6.3: Screening heat shock inducible lines for mCherry and GFP expression before 

heat shock.  Example tissue is shown for lines 16 (A-B) and 15 (C-D). Line 16 shows mCherry 

signal (A) and not GFP signal (B) before heat shock. Line 15 shows mCherry (C) and GFP (D) 

signal before heat shock. Images are not to scale.  

 

 

6.3.2.2 Single copy analysis 

 

Single copy analysis was performed by iDnaGENETICS, Norwich. Samples were analysed by 

qPCR using a multiplexed taqMan reaction assaying for NPT2 and the 35S promoter. A 

single copy positive control gene, CNX3 (cofactor of nitrate reductase and xanthine 

dehydrogenase), was also used. CNX3 was reported to be single copy in U. gibba (Ibarra-

Laclette et al., 2013) and this was confirmed by BLAST analysis within the TGAC and 

LangeBio genome assemblies. This procedure allows the identification of single copy 

transgenic plants in the first generation. The results of this analysis are shown in Table 6-1. 
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Numbers less than 1 may be due to chimeric plants. Plants from each line were put in the 

glasshouse for flowering so that the next generation could also be screened. No plants had 

produced seed at the time this thesis was written. 

 

Table 6-1: Single copy analysis results.  

Line Copies NPT2 Copies 35S 

EC71194-1 0 0.25 

EC71194-2 1.5 1 

EC71194-11 <1 0.5 

EC71194-12 1 0.5 

EC71194-13 0 1 

EC71194-14 1 1 

EC71194-15 1 1 

EC71194-16 1 1 

EC71194-17 1 1 

EC71194-18 3 1-2  

 

 

Lines EC71194-16 and -17 were used for further heat shock tests and experimental 

optimisation since they exhibited mCherry signal and no GFP signal before heat shock and 

had single copy numbers. All data presented in this thesis was collected using line 16. 

 

6.3.2.3 Optimising the heat shock protocol 

 

Heat shocking at 45 °C for between 6 - 8 minutes gave a good spread of GFP induced 

sectors on the bladder. Less time and the frequency of bladders containing sectors was 

very low. Any higher and bladders were more likely to have too many sectors so that it was 

hard to tell if an area of GFP signal was a single sector or was comprised of multiple sectors. 

 

Some individual plants of the selected lines showed large patches of GFP expression before 

heat shock while others did not. It was not clear whether this was because recombination 

had occurred accidentally through heat shock or another unknown mechanism in culture. 

To minimise this effect in my experiments, plants were regularly screened for GFP/ RFP and 

sub-divided frequently. In each experiment, only plants which did not show GFP signal 
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before heat shock were used. Control tissue (from the same plant) which was not heat 

shocked was observed in parallel in each experiment. If there was GFP expression in the 

control sample, heat shocked tissue from the same parent plant was discarded.  

 

6.4 Heat shock of the inducible transgenic line 

 

Growing tips of the heat shock inducible line, containing a range of bladder sizes, were 

collected at approximately 2-3 cm in length. The growing tips were placed in six well plates, 

each well containing 5 ml MS media and 4-6 growing tips. Plates were sealed and floated in 

a 45 °C water bath for 6-8 minutes. Heat shocked tissue was left to grow at 25 °C for 2 or 4 

days before imaging using confocal microscopy (Leica SP5 II confocal) with standard 

settings for GFP, mCherry and bright–field imaging. Bladders were imaged from the side to 

allow for staging and to capture visible sectors. Bladders which had sectors close to the 

midvein or under the mouth were rotated under the coverslip or cut to allow for imaging at 

multiple angles.  Sectors with fainter GFP signal in surrounding cells were discarded from 

analysis. 
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6.5 Quadrifid gland polarity analysis  

 

Bladders were incubated overnight in 10 ml water with two drops of 2.5 % w/v Toluidine 

blue. And were then directly embedded in agarose and scanned in water using OPT as in 

(Lee et al., 2006) but with no BABB clearing or fixation (as this resulted in a loss of stain).  

 

Quadrifid glands were then analysed in VolViewer software freely available at 

http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/VolViewer#Description 

with the aid of a Matlab function written by Jake Newman. The tip of each quadrifid arm 

was selected using the Measuring Editor tool, adding vertices to each tip (V1-V4) (Figure 

6.4). To do this, clipping planes were used to enable a close view of each quadrifid gland. 

Vertices were always added with V1 and V2 as a pair along the long axis of the gland and V3 

and V4 being a pair on the opposite long axis (defined by a wider angle between the arms 

in this axis) (Figure 6.4, A). The Matlab function then compares the distance between V1 

and V3 (d1) and the distance between V2 and V4 (d2) (Figure 6.4, B, orange and blue lines). 

A line is added through the centre of each of the pairs of these points and an arrowhead is 

assigned to the end of the quadrifid with the greatest distance. In the example in Figure 

6.4, d2 > d1 and so the arrowhead is positioned at the d2 end (Figure 6.4, C, red line and 

arrowhead). This eliminates any bias of polarity assignment. The initial orientation of the 

quadrifid gland is chosen by eye (based on the obtuse angles between opposite arms). This 

orientation is very clear by eye and so carries much less bias.  

 

 

 

 

http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/
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Figure 6.4: Automated assignment of direction in quadrifid gland analysis.  (A) The 

orientation of the quadrifid gland was first determined by eye based on two opposite 

obtuse angles between quadrifid arms (green angles). Vertices are then marked in pairs (V1 

and V2 on one side and V3 and V4 on the other). (B) The distance between V1 and V3 (d1) 

and between V2 and V4 (d2) are compared. (C) A central line is placed in the middle of the 

vertices and an arrowhead is added to the end greatest distance between vertices. In this 

example d2 > d1. Comparisons between vertices and addition of the arrow head and centre 

line is performed automatically using a Matlab function written by Jake Newman. 

 

 

6.6 Computational modelling 

 

All models were produced using the Growing Polarised Tissue (GPT) Framework (Kennaway 

et al., 2011) within software called GFtbox which is available as a MATLAB application from 

http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/Software.  

General methods and parameters are given below and relate to models described in 

chapter 2. Table 6-2 gives an overview of the models presented in chapter 2 by number for 

reference. Throughout this section, models will be referred to by the numbers indicated 

here. These are the same numbers used to describe the models in chapter 2.  

 

 

 

http://cmpdartsvr3.cmp.uea.ac.uk/wiki/BanghamLab/index.php/Software
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Table 6-2: Model number reference table.  Model number is provided along with a 

description of the specified growth patterns associated with the model and an image of the 

final canvas shape generated (viewed from the side). 
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6.6.1 The canvas 

 

All bladder models used the same starting canvas which was a ‘caplet’ (flattened capsule) 

shape (Figure 6.5). The start shape was based on the default capsule shape found in GFtbox 

and was set up in such a way that the height of the bladder was parallel to the y axis, the 

depth of the bladder was parallel to the x axis, and the width of the bladder was parallel to 

the z axis. The initial canvas was wider than it was tall, and taller than it was deep, with the 

following dimensions; 55 µm x 68 µm x 84 µm. The canvas started with 2528 total finite 

elements. The canvas was hollow and the thickness was set to 20 µm with the ‘direct’ 

option selected. The mesh editor settings were altered after the thickness of the canvas 

was set to obtain the correct dimensions of the canvas. These settings are shown in Figure 

6.5.  
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Figure 6.5: Canvas start shape for bladder models.  Canvas measurements were based on 

an 82 µm stage bladder. (A) Mesh editor settings used to generate the ‘caplet’ start shape 

based on the default ‘capsule’ shape. Parameters were set to the values shown to give rise 

to a start shape which was 84 µm wide in the z axis, 55 µm deep in the x axis, and 68 µm 

high in the y axis (B-C) where (B) is the canvas viewed from the front, and (C) is the canvas 

viewed from the side. (D-E) Canvas viewed in front section (D) and side section (E). The 

thickness of the canvas was set to 20 µm with the ‘direct’ option selected. The mesh was 

refined so that the start shape consisted of 2528 finite elements. 
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6.6.2 Regulatory networks 

 

At the start of each simulation, three regulatory networks are set up; a polariser regulatory 

network (PRN), a gene regulatory network (GRN), and a growth regulatory network (KRN).   

 

PRN 

The PRN controls the activity of + organisers and – organisers which generate polarity 

information in a graded fashion across the canvas. Polarity points away from + organisers 

and towards – organisers. Propagation of this polarity is implemented through a signalling 

factor termed POLARISER (POL) which is produced and degraded at organisers. The 

production and degradation of POL is regulated by the PRN. A background rate of 

production and degradation of POL can also be present throughout the canvas.  

 

GRN 

A GRN controls the activity of regional factors described below. Each identity or signalling 

factor had a production rate, diffusion rate, and decay rate.  

 

KRN 

The KRN controls the influence of identity and signalling factors on specified growth rates 

parallel (Kpar) and perpendicular (Kper) to local polarity. Growth rates in Kpar and Kper can be 

promoted at a given factor using the function pro: 

 

   Pro(k, X) = 1 + KX 

 

Growth rates can be inhibited at a given factor using the function inh: 

 

   Inh(k, X) = 1/ (1 + kX) 

 

Where ‘X’ is the factor and ‘k’ is the coefficient of promotion or inhibition of that factor.  

 

The KRN can also specify the growth rate in thickness (Knor). Growth rates on each surface 

of the canvas (a and b) may also be specified. 
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6.6.3 Simulation details 

 

The models each run for a total 30 simulation steps where each step represents 10 hours. 

The model starts at -100 hours and runs to time 200 hours. At each iteration (simulation 

step), calculations are made which combine the regulatory and mechanical systems in the 

following order (Kennaway et al., 2011): 

 

1.) Calculate values and distribution of factors (calculated from their specified 

interactions designed in the GRN/PRN). 

 

2.) Calculate the extent of factor diffusion (as designed in the GRN/PRN). 

 

3.) Calculate the growth tensor field (specified by the KRN). 

 

4.) Calculate the resulting displacement of each finite element vertex to obtain the 

computed growth field. 

 

5.) Calculate the region of identity factor expression in the new volume after growth 

from the displaced field. This involves the concentrations of diffusible factors to be 

diluted in proportion to the amount of growth, and where regions of immobile 

factors enlarge, new volumes inherit the factor.  

 

Stresses are discarded after each time-step in all models presented in this work. This is 

assumed to correspond to plant growth where new material is incorporated into a wall 

depending on the amount of resultant growth that has occurred, the original properties of 

the wall will be restored and the stresses will be relaxed (and therefore do not accumulate) 

(Green et al., 2010). 

 

6.6.4 Factors 

 

Regional factors were added to models by specifying values at each vertex of the finite 

elements. Factors were used to set up polarity, specify regional growth rates and generate 

visual plots on the canvas. Identity factors (iFACTORNAME) have a fixed value, while signalling 
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factors (sFACTORNAME) propagate through the canvas over time. Gradients of signalling factors 

may be fixed at defined realtime points. Visual factors (vFACTORNAME) have a fixed value but 

do not have any effect on growth in the canvas. It is assumed that factor levels do not 

dilute with growth. Table 6-3 gives an overview of all factors used in the bladder models 

along with their position on the canvas, their value, and their relevance in each model. 

Table 6-4 summarises the final parameters for the diffusible factors used in the models 

presented along with the applicable model numbers. 
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Table 6-3: Factors used in the Utricularia gibba bladder models.  The position of each 

factor is described along with the x, y, and z coordinates associated with values at each 

vertex of the finite elements.  Factors shaded in green contribute to make the factor 

referred to as STALK in chapter 2. Factors highlighted in bright green are those factors used 

as plus organisers in the setup of polarity. Factors highlighted in bright pink are those 

factors used as minus organisers in the setup of polarity. 

 

Factor Position x (:, 1) y (:, 2) z (:, 3) Present in 

models: 

Value 

iMIDVEIN Midvein 

 

n/a n/a > -4 & < 4 1, 2, 3, 7 1 

sMIDVEIN Produced at 

iMIDVEIN and 

diffuses across 

the canvas. 

n/a n/a n/a 1, 2, 3, 7 0-1 

vMID Midvein n/a n/a > -3 & < 3 All 1 

iCENTSTALK At the centre of 

the stalk 

intersect. 

> 12 < -15 > -12 & < 12 1, 2, 3, 5, 6, 

7 

1 

sCENTSTALK Produced and 

diffuses from 

iCENTSTALK  

n/a n/a n/a 1, 2, 3, 5, 6, 

7 

0-1 

iSTALK Generated 

where the value 

of sCENTSTALK > 0.2 

n/a n/a n/a 1, 2, 3, 5, 6, 

7 

1 

iMOUTH In the mouth 

region, 

equivalent to 

the mouth 

opening of the 

bladder. 

> -10 & < -5 < -10 > -25 & < 25 1, 2, 3, 5, 6, 

7 

1 

iCHIN In a band 

between 

iNEWSTALK and 

iMOUTH. 

> -5 & < 2 < 2 > -23 & < 23 2, 3, 6, 7 1 

POLARISER  Produced at 

iCENTSTALK and 

degraded at 

iMOUTH 

n/a n/a n/a 3, 4, 5, 6, 7 0-1 

iBASE At the base of 

the canvas 

> -5 & <5 < -15 > -20 & <20 4 1 

iTOP At the top of 

the canvas 

> -5 & < 5 > -15 > -20 & <20 4 1 
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Table 6-4: Summary of parameters for the diffusible factors in the U. gibba bladder 

models.  Parameters associated with POLARISER are shown in blue. Parameters associated with 

sCENTSTALK are shown in green. Parameters associated with sMIDVEIN are shown in red.   

 

Parameter Description Value Units Relevant models 

DPOL  Diffusion rate of POLARISER  100 mm2 h-1 3, 4, 5, 6, 7 

µPOL Decay rate of POLARISER  0.001 h-1 3, 4, 5, 6, 7 

bPOL Maximum POLARISER level 1  3, 4, 5, 6, 7 

DCENTSTALK Diffusion rate of sCENTSTALK  10 mm2 h-1 1, 2, 3, 5, 6, 7 

µCENTSTALK Decay rate of sCENTSTALK 0.001 h-1 1, 2, 3, 5, 6, 7 

bCENTSTALK Maximum sCENTSTALK level 1  1, 2, 3, 5, 6, 7 

DMIDVEIN Diffusion rate of sMIDVEIN 5 mm2 h-1 1, 2, 3, 7 

µMIDVEIN Decay rate of sMIDVEIN 0.001 h-1 1, 2, 3, 7 

bMIDVEIN Maximum sMIDVEIN level 1  1, 2, 3, 7 

 

 

6.6.4.1 Setting up the STALK region  

 

The STALK region of the canvas was set up to represent the stalk intersect of the bladder. 

To set this region up as a smooth curved region rather than a rectangle, a diffusible factor 

was used (sCENTSTALK) which diffuses from iCENTSTALK which is present in a small region in the 

centre of the final STALK region. iSTALK is then positioned at realtime >= -1 in the region 

where sCENTSTALK is greater than 0.2.  

 

6.6.4.2 Polarity parameters 

 

In models 3, 4, 5, 6, and 7, a polarity field was used to allow anisotropic growth to be 

specified in at iCHIN (model 3), or across the whole canvas (models 4, 5, 6, and 7). The 

parameters for POLARISER were a diffusion rate of 100 and a background degradation rate 

of 0.001. POLARISER was produced at plus organisers with a value of 1 and degraded at 

minus organisers to a value of 0. The resulting gradient of POLARISER was fixed: 

 

m.morphogenclamp(((iPLUS ==1)|(iMINUS ==1)), polariser_i ) = 1; 
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6.6.5 Growth parameters 

 

Growth parameters for each model are given below. For a reference of each model by 

number see Table 6-2 above. Specified growth on the a and b surfaces of the canvas was 

equal in all cases. Multiple values of Kpar and Kper are given where different parameters 

were explored.  

 

Model 1 growth parameters 

 

Kpar = 0.10 .pro(sMIDVEIN) 

 

Kper = 0.10 .pro(sMIDVEIN) 

 

Knor = 0.01 

 

Model 2 growth parameters 

 

Kpar = 0.10 .pro(sMIDVEIN, iCHIN) 

 

Kper = 0.10 .pro(sMIDVEIN, iCHIN) 

 

Knor = 0.01 

 

Model 3 growth parameters 

 

Kpar = 0.10 .pro(sMIDVEIN, iCHIN) .inh(sCENTSTALK) 

 

Kper = 0.10 .pro(sMIDVEIN, iCHIN) .inh(sCENTSTALK) 

 

Knor = 0.01 

  



Materials and methods 
 

211 
 

Model 4 growth parameters 

 

Kpar = either 0.16, 0.17, 0.18  

 

Kper = either 0.14, 0.13, 0.12 

 

Knor = 0.01 

 

Model 5 growth parameters 

 

Kpar = either 0.16, 0.17, 0.18, 0.19, 0.20  

 

Kper = either 0.14, 0.13, 0.12, 0.11, 0.10  

 

Knor = 0.01 

 

 

Model 6 growth parameters 

 

Kpar = 0.17 .pro(iCHIN) .inh(sCENTSTALK) 

 

Kper = 0.13 .pro(iCHIN) .inh(sCENTSTALK) 

 

Knor = 0.01 

 

Model 7 growth parameters 

 

Kpar = 0.13 .pro(iCHIN, sMIDVEIN) .inh(sCENTSTALK) 

 

Kper = 0.13 .pro(iCHIN, sMIDVEIN) .inh(sCENTSTALK) 

 

Knor = 0.01 
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6.7 Tissue fixation and preparation for in situ hybridisation 

and immunolocalisations on sliced tissue  

 

U. gibba circinnate apexes were collected into either 4 % paraformaldehyde (PBS pH 7, 

Water, 16 % paraformaldehyde solution (Electron Microscopy Sciences, 15710) with 4 % 

DMSO and 0.1 % Triton X) or FAA (50 % ethanol, 5 % acetic acid, 3.7 % formaldehyde (sigma 

Aldrich, F8775), water, 1 % DMSO and 0.1 % Triton X), for in situ hybridisation or 

immunolocalisation respectively. Tissue in solution was placed under vacuum pressure for 

three rounds of 10 minutes, or until the samples dropped to the bottom of the solution. 

Samples were incubated at 4 ° C overnight. 

 

Samples were removed from the paraformaldehyde and washed with cold 0.85 % saline for 

30 minutes at 4 °C, followed by a cold 50 % ethanol/0.85 % saline solution for 3 hours at 4 

°C. Samples were then transferred to 70 % ethanol/0.85 % saline for a further 3 hours. The 

solution was then replaced with fresh 70 % ethanol/0.85 % saline and samples were stored 

at 4 °C. The FAA solution was removed and replaced with cold 50 % ethanol for 3 hours at 4 

°C, followed by cold 70 % ethanol for 3 hours at 4 °C. The solution was then exchanged for 

fresh 70 % ethanol and samples were stored at 4 °C. 

 

All samples were transferred to mesh biopsy cassettes (Sakura) in 70 % ethanol. These 

were placed in a Tissue-Tek® vacuum infiltration processor (VIP) machine (Sakura) with the 

following programme: 
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Table 6-5 Tissue- Tek® VIP machine program for paraffin embedded samples 

Step Solution Time 

(hours) 

Temperature 

(°C) 

Pressure/Vacuum 

cycle (P/V) 

Agitation 

1 70 % EtOH 4 35 on on 

2 80 % EtOH 4 35 on on 

3 90 % EtOH 4 35 on on 

4 100 % EtOH 4 35 on on 

5 100 % EtOH 4 35 on on 

6 100 % EtOH 4 35 on on 

7 Xylene 4 35 on on 

8 Xylene 4 35 on on 

9 Xylene 4 35 on on 

10 Paraffin Wax 4 60 on on 

11 Paraffin Wax 4 60 on on 

12 Paraffin Wax 4 60 on on 

13 Paraffin Wax 4 60 on on 

 

Samples were then embedded in blocks of paraffin wax using the Tissue-Tek® TEC (Sakura) 

embedding machine and kept at 4 °C until sectioning.  

 

Samples embedded in wax blocks were sliced in 8 µm thick ribbons using a microtome 

(Reichet-Jung 2030). Tissue slices were mounted on Polysine™ microscope slides (VWR, 

631-0107) with water. Slides were left to dry on a 37 °C hotplate for 48 hours to ensure the 

slices were dry and flat on the slide. Once dried, slides were stored covered at 4 °C. 

 

6.8 Immunolocalisations 

6.8.1 Antibodies  

 

Details on the homology of UgPIN1a, b, and c, and the design of the UgPIN1 antibodies can 

be found in chapter 3. UgPIN1 sequences were confirmed using PCR before probe design.  

 

Four different primary antibodies were used in this work. The HISTONE 3 (H3) (D1H2) XP 

Rabbit commercial antibody was used as a positive control for the immunolocalisation 
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protocol (New England Biolabs, 4499S). Antibodies against UgPIN1a, b, and c were 

designed during this project and produced by Cambridge Research Biochemicals, raised in 

rabbit. Table 6-6 gives information on each of the UgPIN1 antibodies.  

 

 

Table 6-6: UgPIN1 antibodies.  The target sequence for each antibody is shown along with 

the amino acid numbers in the UgPIN1a, b, or c protein sequence. 

 

Antibody Target sequence Amino acids 

UgPIN1a VSPIRTRSPEGEE 284-296 

 

UgPIN1b RQSSYANPGLDEEN 278-291 

 

UgPIN1c SPRHSNFGNSGFDEEN 276-291 

 

 

 

Standard anti-rabbit Alexa 647, and anti-rabbit Alexa 594 conjugated secondary antibodies 

were used (from Life Technologies). 

 

6.8.2 Immunolocalisation protocol 

 

The protocol published in Conti & Bradley, (2007) was followed with the following 

modifications. Tissue was fixed in either formaldehyde acetic acid solution (FAA), or with a 

pre-fixation in methanol acetic acid followed by FAA fixation. Details of these fixatives are 

given above (6.7). All blocking solutions contained 3 % BSA (Bovine Serum Albumen, Sigma 

Aldrich) instead of 5 % milk. Blocking was carried out in 3 % BSA in PBS with 0.3 % triton X 

for 3 hours. Antibodies were diluted with 3 % BSA in PBS. The dilutions used for each 

antibody are shown in Table 6-7. In some cases a range of dilutions was explored so the 

table gives the dilution which produced the clearest signal in each case. All secondary 

antibodies were used in a 1:200 dilution. The primary antibody was incubated overnight at 

4 °C. The secondary antibody was incubated for 3 hours at room temperature. The final 

BCIP/NBT staining steps in the Conti & Bradley, 2007 protocol were not followed, since the 
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secondary antibodies used were fluorescently tagged. Slides were additionally stained with 

0.1 % calcofluor (Fluorescent Brightener 28, Sigma, F3543) for 20 minutes. 

 

 

Table 6-7: Dilutions used for each primary antibody.  Antibodies were diluted in 3 % BSA in 

PBS. 

 

Antibody Dilution 

UgPIN1a 1:500 

UgPIN1b 1:500 

UgPIN1c 1:200 

H3 1:200 

 

6.8.3 Imaging  

 

Samples were mounted with 1 % DABCO (1,4-diazabicyclo[2.2.2]octane) (Sigma, D2, 780-2) 

and imaged on the Leica SP5 II confocal microscope. Standard settings for Alexa 594 and 

Alexa 647 fluorophore detection were used. Calcofluor was detected using the 405 nm 

laser with PMT detectors set to 400 nm-480 nm. Sequential scans were used to image 

calcofluor signal and Alexa 594/ 647 alternately in one scan.  

 

6.9 In situ hybridisations 

 

6.9.1 Probe design 

 

Homologues of my genes of interest were found in the published U. gibba genome or 

transcriptome using phylogenetic analysis. Protein sequences were identified using a local 

BLAST of sequences from Arabidopsis. A range of published genomes were searched to 

make the phylogenetic analysis more robust. Sequences with good homology to candidate 

genes were converted to FASTA format and aligned using CLUSTALW (Thompson et al., 

1994). A neighbour joining tree was then generated based on the protein sequences using 

Mega5 (Tamura et al., 2011). The JTT model was used with pairwise deletion and 500 

bootstrap replications. The correct target sequence was then identified based on this 



Chapter 6 
 

216 
 

phylogeny. Primers were designed to amplify approximately 500 bp unique fragments of 

the target gene in varying positions. 

 

6.9.2 Probe production 

 

Fragments of the target gene were amplified from purified Utricularia gibba cDNA by PCR 

using primers described in Table 0-1. The fragment was then cloned into the pCR®4-TOPO® 

vector using the Invitrogen Life Technologies TOPO®TA Cloning® kit according to the 

manufacturers guidelines. The ligation product was transformed into One Shot® TOP10 

chemically competent E. coli (Invitrogen, C4040) using heat-shock as described in the 

manufacturer’s protocol. Cells were plated on selective LB media containing 50 µg/ml 

kanamycin. Colonies were analysed using colony PCR. Chosen colonies were streaked onto 

new LB plates containing 50 µg/ml kanamycin. Single colonies were then selected and 

grown overnight in LB/ kanamycin broth, shaking at 30 ᴼC. Plasmids were extracted from 6 

ml of culture using the QIAprep Spin Miniprep kit (Qiagen, 27106) as per the 

manufacturer’s instructions. Clones were validated via sequencing. 

 

RNA probes were produced using the protocol published in Coen et al. (1990) with the 

following modifications. The T7 or T3 transcription start site and the probe coding 

sequence were amplified using PCR. The PCR product was then purified using the QIAGEN 

QIAquick PCR purification kit (QIAGEN, 28106) as per the manufacturer’s instructions.  

Approximately 1 µg of purified PCR product was digoxigenin-UTP labelled using T7 or T3 

RNA polymerase. Probes were washed in 70 % EtOH and resuspended in 50 µl RNAse free 

H2O and then stored at -20 ᴼC. 
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6.9.3 In situ hybridisation protocol 

 

The protocol used was based on that published in Coen et al. (1990) and is as follows. Slides 

were placed in metal racks and rehydrated in the following solutions in order: 

 

Solution Time 

Histoclear 10 min 

Histoclear 10 min 

100 % EtOH 1 min 

100 % EtOH 1 min 

95 % EtOH 1 min 

85 % EtOH, 0.85 % saline 1 min 

50 % EtOH, 0.85 % saline 1 min 

30 % EtOH, 0.85 % saline 1 min 

0.85 % saline 2 min 

PBS 2 min 

 

Sections were then treated with pronase or proteinase K to digest the cell wall proteins. 

The enzymatic reaction was stopped using glycine and sections were then dehydrated 

through an ethanol series as follows: 

 

Solution Time 

Pronase (0.125 mg/ml in pronase buffer: 50 mM Tris-HCl pH 

7.5, 5mM EDTA) 

Or  

Proteinase K (10 µg/ml in pronase buffer) 

12 min 

 

 

15 min 

Glycine (0.2 % in PBS) 3 min  

PBS 2 min 

4 % Paraformaldehyde in PBS  10 min 

PBS 2 min 

PBS 2 min 

Acetic anhydride (5 µl/ ml in 0.1 M triethanolamine, pH 8) 10 min 

PBS 2 min 

0.85 % saline 2 min 
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30 % EtOH, 0.85 % saline 1 min 

50 % EtOH, 0.85 % saline 1 min 

85 % EtOH, 0.85 % saline 1 min 

95 % EtOH 1 min 

100 % EtOH 1 min 

100 % EtOH Kept at 4 ᴼC for up to 2 

hours  

 

 

Probes were prepared for hybridisation of each slide with a mix of 2 µl probe, 2 µl RNAse 

free H2O, and 4 µl deionised formamide per slide. Probes were denatured at 80 ᴼC for 2 

minutes and then kept on ice. The probe solution was then made up to 100 µl/ slide by 

adding the appropriate volume of hybridisation buffer (hybridisation salts with a final 

concentration of 300 mM NaCl, 10 mM Tris-HCl pH 6.8, 10 mM NaPO4, 5 mM EDTA added 

to 50 % deionised formamide, 25 % dextran sulphate, 1.25 % tRNA, 2.5 % Denhardt’s salts 

(Thermo Scientific, 1 % BSA, 1 % Ficoll, 1 % polyvinylpyrrolidone in water), 8.75 % H2O). 

Ethanol was allowed to evaporate from the slides and 100 µl hybridisation buffer/probe 

solution was added to each slide. Slides were then covered with a plastic coverslip (Sigma, 

Hybri-slips H0 784-1006A) avoiding bubbles. Slides were placed in a humid chamber lined 

with paper soaked in 2X SSC, 50 % formamide, the chamber was sealed and incubated at 50 

ᴼC overnight for hybridisation. 

 

Slides were soaked in 2x SSC until the coverslips could be removed easily. Slides were 

washed in 0.2x SSC at 55 ᴼC for 35 minutes. Slides were then washed twice more in pre 

heated 0.2x SSC at 55 ᴼC for 25 minutes. Incubation in the following solutions was then 

carried out to digest any excess probe that was not hybridised: 

 

Solution Time Temperature 

NTE buffer (500 mM NaCl, 10 mM 

Tris-HCl pH 7.5, 1 mM EDTA) 

5 min 37 ᴼC 

NTE buffer 5 min 37 ᴼC 

NTE buffer with 20 µg/ ml RNase A 30 min 37 ᴼC 

NTE buffer 5 min RT 

NTE buffer 5 min RT 
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Antibody staining was carried out through the following solutions at room temperature: 

 

Solution Time 

Buffer 1 (100 mM Tris-HCl pH 7.5, 150 M NaCl) 5 min 

Buffer 2 (0.5 % blocking reagent (Roche) in buffer 1) 1 hour 

Buffer 3 (1 % BSA, 0.3 % Triton X-100 in buffer 1) 30 min 

Buffer 4 (Anti-digoxigenin-AP (Sigma, A7906) 1:3000 in buffer 

3) 

90 min 

Buffer 1 with 0.3 % Triton X-100 4 x 25 min 

Buffer 1  5 min 

Buffer 5 (buffer 5a (100 mM Tris-HCl pH 9.5, 100 M MaCl) + 

buffer 5b (0.5 M MgCl2) 

5 min 

Buffer 6 (buffer 5 + 2 µl/ ml NBT and 1.5 µl/ ml BCIP) Overnight in dark or until 

signal develops 

 

To stop development of the signal further, slides were washed with water and then kept in 

water at 4 ᴼC. Slides were imaged using a Leica DM6000 microscope. 
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6.10   Whole genome sequencing of U. gibba 

 

6.10.1  DNA extraction for sequencing 

 

DNA was extracted as described in 6.2.4.2. The concentration of DNA was assessed by 

Qubit analysis following the manufacturer’s protocol for the Qubit dsDNA BR Assay Kit. The 

DNA concentrations obtained are shown below. 

 

Sample Concentration 

(ng/µl) 

BA 89.8 

CPS 84.8 

Morley 57.0 

Bonn 51.0 

Czech 87.8 

 

 

6.10.2  Sequencing 

 

Sequencing was carried out by TGAC, Norwich. An Illumina barcode DNA TruSeq library was 

generated and then sequencing was performed on the Illumina HiSeq 2000 platform using 

100 bp paired end reads. The service included data QC, basecalling and formatting.  

 

6.11  EMS mutagenesis of U. gibba tissue 

 

6.11.1  Treating plant tissue with EMS 

 

U. gibba (BA line) plants were grown up in sterile culture for EMS treatment. Plant material 

was treated with; 0.01 %, 0.05 %, 0.010 %, 0.15 %, 0.2 %, or 0.25 % EMS (ethyl 

methanesulphonate) diluted in 0.02 % tween 20 (Sigma-Aldrich, P9416). Treatment was 

carried out on propagated U. gibba tissue which was divided into pieces that were just 
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small enough to fill approximately half of a 50 ml falcon tube. Tissue was incubated with 

the EMS solution overnight in 50 ml falcon tubes which were continually agitated for 18 

hours. Treated tissue was then passed through a series of 10 x 20 minute washes in 40 ml 

0.02 % tween. Finally, tissue was washed twice in water. Plants were initially placed in the 

growth room under standard growth conditions and incubated overnight in water. Tissue 

was then divided further into separate M1 plants in the glasshouse (each division consisted 

of approximately 5 cm of stolon. 
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Appendices 

 

Appendix 1: Oligonucleotides used in this project 

 

Table 0-1 describes all oligonucleotides used in this project. 

 

Table 0-1: Oligonucleotides used in this work. 

 

Gene and Scaffold ref Description/use 5’-3’ primer  

UgFIL1  

(Scf00036:146709..148057) 

Used to amplify a 

UgFIL1 probe for in situ 

hybridization. 

Designed from 

published genome 

sequence. 

Forward: GCTCTGCTATGTTCATTGCCAAGTC 

Reverse: CACATCATCTCCCTCCTGCTGG 

UgH4 

(Scf00351:42131..42439) 

Used to amplify a UgH4 

probe for in situ 

hybridization. 

Designed from 

published genome 

sequence. 

Forward: GTCTGGACGAGGCAAGGGC 

Reverse: CTAACCGCCGAATCCGTACAGAG 

UgPIN1a 

(Ug_TG_Scf59) 

Sequencing primers 

used to confirm 

UgPIN1a sequence in 

the BA line genome 

before antibody design. 

Primer set 1 

Forward: GAGACTCTGTTGCCGCATTG 

Reverse: CTGACTTACAGCCCCAGGAC 

 

Primer set 2 

Forward: GTACCACGTGATGACGGC 

Reverse: GGTAGTAGAGGAGTGCCACG 

 

Reverse to start  

CCGATTCCATTTCCACTTC 

 

Forward to stop  

GAAGAAAGGGAAAGGGATGC 

 

Reverse to stop 

GTGAACATGTAATCCATTCATCATCC 

 

UgPIN1b 

(Ug_TG_Scf234) 

Sequencing primers 

used to confirm 

UgPIN1b sequence in 

the BA line genome 

Primer set 1 

Forward: CTTGCAGTCCCATCTCCTTG 

Reverse: CATTGCTTCACCTGCTGTG 
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before antibody design. Primer set 2 

Forward: GATCTCCCTCACAGACCTCTATC 

Reverse: TGATTGGGAGGGCTATCAAC 

 

Reverse to start  

GATGTCGCCCGCAGTATCTG 

 

Forward to stop  

CCCACAAGTGTGATGACGAG 

 

Middle forward 

ACTTGTCATGGGCATTCCTC 

 

Middle reverse  

CCAATGAGGCTGGAGTATGTG 

 

UgPIN1c 

(Ug_TG_Scf6792) 

Sequencing primers 

used to confirm 

UgPIN1c sequence in 

the BA line genome 

before antibody design. 

Primer set 1 

Forward: GAGACTTGCAGGTTTCAACAAAG 

Reverse: CGAATCCTTGTCTGAATGAACC 

 

Primer set 2 

Forward: TGTCCTTGCAGCTGTTGTTC 

Reverse: CCCCAACAGGATGTAGTACACG 

 

Reverse to start  

TCAACATTCTCGCACCTCTG 

 

Forward to stop  

CTTACTCCAGCCTCATTGGC 

 

Middle forward 

GGACAAGATGGGAAGATCCA 

 

Middle 2 forward 

TTTCGGGAACTCAGGATTTG 

 

Middle reverse 

GAAGATCTTTGCCGACATCATG 
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Appendix 2: Confirmed UgPIN1 sequences  

 

The sequences below were confirmed by PCR using primers described in Table 0-1. 

 

UgPIN1a 

ATGATCTCTCTTACAGACCTCTACCATGTCCTTGCAGCTGTTGTTCCTCTCTACGTTGCAATGATTCTG

GCGTATGGATCAGTGAAATGGTGGAAAATTTTCACCCCTGATCAGTGCTCTGGGATCAACAGATTC

GTTGCACTTTTCGCTGTTCCTCTTCTCTCGTTCCACTTCATCTCCACCAATAATCCCTACGCCATGAAC

TACCGCTTCATCGCCGCCGACACTCTGCAGAAACTCATTGTTCTTGCTGTTCTGGCTGTCTGGTCCAG

ACTCAGCTCCAGGGGATCCCTTGAATGGTCCATTACACTGTTTTCTTTGTCAACTCTCCCAAACACGC

TGGTTATGGGCATCCCTCTTCTGAAAGGGATGTACGGAGACTTCTCTGGGAGTTTAATGGTCCAGA

TTGTTGTGCTTCAATGCATCATCTGGTACACCTTGATGCTCTTCTTGTTTGAGTACAGAGGTGCGAG

AATGTTGATCGCTGAGCAGTTTCCAGACACTGCTGGTGACATTATTTCGTTCAGAGTTGATTCGGAC

ATCATTTCTTTGGATGGTAAGGAGCCATTACAGACGGAAGCGGAAGTTGGACAAGATGGGAAGAT

CCATGTTACTGTCCGAAAATCAGCGAGTTCCAGGTCTGAAATCTTTTCAAGAAGATCACACGGTCCG

AACTCCGGTCTCTCTTTGACACCCCGTCCCTCCAATTTGACAAACGCAGAGATTTACTCTCTTCAGTC

ATCCCGAAATCCAACACCAAGGGGCTCCAGTTTCAATCACACCGATTTCTATTCAATGGTGAACGGT

AAAAGCGCCTTGAGTGCTAGTCCAAGGCATTCCAATTTCGGGAACTCAGGATTTGATGAGGAGAAT

CAAGTACGAGTCACCGGCGGTTATGGTGGTTCTGCAGCCGCCGGAATATTCTCTCCGGCTACCGGA

CCTAATGCGAAAAAGAAGGCAAACGGGCATGATGTCGGCAAAGATCTTCACATGTTTGTGTGGAG

TTCAAGTGCTTCTCCAGTTTCTGAAGGAGGGATCCATGTTTTCAGAGGAGGCGAATATGGAAATGA

GGTCACCGTGGGACCTCATCCTAAAGAGTATGATGATTTCGGGAGAGAAGAGTTCAGCTTCGGGA

ACAAACATGGACCAAATGGCCCAGATGCATCTAAACTCGCATCGAGCTCCACGGCGGAGCTCCGAA

CCAAGAGCGGTGGCGATGCCAAGGCGAATGCCATGCCGCCCACCAGTGTGATGACGAGGCTGATT

CTGATCATGGTTTGGAGAAAGCTGATCAGAAATCCCAACACTTACTCCAGCCTCATTGGCCTCACCT

GGTCTCTAGTCTCGTTCAGATGGCACATTGAGATGCCTGTTATCGTTGCCAAATCGATTTCCATCCTG

TCTGATGCCGGCCTCGGGATGGCGATGTTTAGTCTCGGTTTGTTCATGGCGCTTCAGCCAAAGATCA

TCGCCTGCGGGAAGTCGATCGCCGCCTTCTCGATGGCCATCCGGTTCCTCACAGGCCCGGCCGTCA

TGGCTGCAGCATCGATAGCCGTTGGACTGAGAGGCGTGCTGCTGCACGTCGCAATAGTACAGGCC

GCTCTTCCACAAGGAATCGTCCCCTTCGTCTTCGCAAAGGAGTACAACGTTCACCCCGACATTCTCA

GCACCGGGGTGATCTTCGGAATGCTGATAGCGCTCCCCATAACTCTCGTGTACTACATCCTGTTGGG

GTTGTGA 

 

 

UgPIN1b 

 

ATGATCTCCCTCACAGACCTCTATCATGTCCTGACCGCGGTGGTTCCTCTCTACGTGGCCATGATTTT

GGCTTATGGCTCGGTGAAGTGGTGGAAGATCTTCACCCCGGACCAATGCTCCGGCATCAACAGATT

TGTCGCCCTTTTTGCCGTTCCATTGCTCTCTTTCCATTTCATCTCCACCAACAATCCCTATGCCATGAA

CTACCGTTTCATAGCCGCTGACACTTTGCAGAAACTCATAGTTCTTGCAGTTCTCGCAGTCTGGTCCA

GGCTGAGCTCCAGAGGTTCCCTTGAATGGTCCATTACTCTCTTTTCCTTGTCCACACTACCGAATACA
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CTTGTCATGGGCATTCCTCTCTTGAAAGGGATGTACGGCGACTTCTCCGGGAGTTTAATGGTCCAGA

TCGTTGTTCTCCAGTGCATCATTTGGTACACATTGATGCTGTTCTTGTTTGAGTTCAGAGGAGCGAG

GATGCTTATTGCTGAACAGTTCCCAGATACTGCGGGCGACATCATTTCTTTCAGGGTTGATTCAGAC

ATTATTTCGTTGGACGGGAGAGATCCTCTCCAGACGGAGACGGAGGTTGGTGAAGACGGCAAGAT

TCACGTGACTGTTCGAAAATCAGCCAGCTCGAGATCTGAAATCTTCTCAAGAGGATCGCATGGTCC

GAAGTCGGGACTCTCCTTGACTCCTCGTCCGTCTAACTTAACCAATGCCGAGATTTACTCACTTCAAT

CGTCGAGAAATCCTACCCCAAGAGGCTCCAGTTTCAACCACGCTGATTTCTATACGATGGTGAACG

GGAAAAACGCTATCAGTCACAGTCCAAGGCAATCGAGTTATGCGAACCCTGGATTAGATGAGGAG

AACCAATCACGAGTTAACACTAACGCAGGAGGTGGATATGCTCCTCCTGCAACCACCGGAATATTC

TCTCCTGCTGCGAAAAAGAAGGCGAACGGTCACGAAAGCAGCAAGGATCTTCACATGTTTGTCTGG

AGTTCGAGTGCTTCTCCAGTTTCCGAACGAGGGATTCATGTCTTCCGAGGAGGTGAATATGGGAAT

GAGCTTAACTTGGGACCTCATCCTAAAGAATACGATGAGTTTGGGCGAGATGACTTCAGCTTCGGG

AACAAACAAGGTGCTGATCCACTGAAGCTGGGATCAAGCTCCAAGGCTGAGCTCCGGACAAAAAG

TGGAAACGACGACACGAAACCGGCGGCCATGCCACCCACAAGTGTGATGACGAGACTGATTCTGA

TCATGGTGTGGCGGAAGCTGATCAGAAATCCCAACACATACTCCAGCCTCATTGGCCTCACTTGGTC

CTTGGTCTCATTCAGGTGGCATCTTGAGATGCCGGCCATAGTTGCAAAATCTATTTCCATCCTGTCA

GACGCTGGTCTAGGAATGGCTATGTTTAGTCTTGGACTGTTCATGGCGCTGCAGCCTAAAATCATTG

CCTGTGGTAACTCCGTGGCGGCCTTTTCCATGGCGGTTCGCTTTCTTACTGGACCGGCAGTCATGGC

TGCAGCTTCCGTTGCGGTAGGACTAAGGGGCGTGCTCCTACGTGTGGCGATTGTGCAGGCTGCTCT

TCCGCAAGGAATAGTCCCTTTCGTGTTTGCCAAGGAGTACAATGTGCATCCCAAGATCCTTAGCACT

GGGGTGATATTTGGAATGTTGATAGCCCTCCCAATCACCCTAGTGTATTACATCCTACTGGGGCTCT

GA 

 

 

UgPIN1c 

 

ATGATAAGTTCCAAGGACTTGTACCACGTGATGACGGCGATGGTGCCGTTGTACGTTGCCATGGCA

TTGGCCTACGCCTCCGTCAAGTGGTGGAAGATATTCACGCCGGAACAGTGCTCCGGCATCAACCGC

TACGTGGCCCTCTTCGCCGTCCCTCTTCTCTCCTTCCATTTCATTGCTACAAACGATCCCTACGCCATG

AATTTCAGGTTCATAGTAGCCGATACGCTGCAGAAGCTGATGATTCTCGGGATCCTCTCTCTGTACG

TGAGGTTCAGCAGACAGGGCTCCTTCGAACAGACCATTACCTTCTTCTCCCTCTCCACCCTCCCCAAC

ACCCTGGTGATTGGGATCCCGTTGCTGGAAGGGATGTACGGCGAGTTTTGCGGAGGACTGATGGT

GCAGATCGTGGTGCTGCAGTGCATCATCTGGTACACTCTGATGCTCTTCATGTTCGAGTATAGGGCC

GCCATGATTCTCATATCCGATCGCTTCCCGGAGACGGCTGATTCGATCATTTCGATCCGCGTGGAAT

CCGACGTGGTATCTCTCCAGCAGGAGCAGCCGCTGGAGACGGTGGTGGGAGATGTCAGAGAAGA

CGGCAAGTTCCACGTCACGGTGAGGCTATCGAATGCCGAGATCTACTCCGTTCAATCCTCGATGAA

TCCGACGCCCCGGGGATCCAGCGCGCGATCCACGTCTCCAATAAGAAAATTAGATGCGGGTGGCC

CTGAAGCGGATCCAGTCTTCCTCGGGAGCTCAACGGGCTCCTCTGTTTCCGGCAGAGTTTTCGTTGC

CAGCCCAACACATCATCATCATCATCATCATCATGCGAAGGAAATCAGATTTGTTTCTCCCATCAGA

ACAAGATCCCCGGAAGGGGAGGAAATGGAAGTGGAAATGGAATCGGAAAAGAGTCCAACAGATG

ATTTGGCGGAGAAGAAAGGGAAAGGGATGCCTCCCACCAAAGTAATGACGAGGCTGTTACTCGTT

ATGGTTTGGCGGAAGCTTATAAGGAATCCCAACACTTACTCCAGCTTCATTGGCCTCTTCTGGTCTCT

CATCTCCTTCAGGTGGGAGGTGGAGATGCCTCCCATAGTCGCCAAGTCCATCTCCATCTTATCTGAT

ACGGGACTCGGCATGGCCATGTTCAGCCTCGGGCTGTTCATGGCGTTGCAACCGAGGATGATAGC
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ATGCGGGAAGACGATGGTGACCTTTGCCATCGCCGTGAGATTCATCATCGGCCCCGCCTTCATGGC

CATCGCTTCTCTCATCTCCGGCATCGGCGGCGTCCTCCTAAGTGTCGCAATCGTTCAGGTTATATTCG

GGATGCTGCTAGCGGTACCCGTGGCGCTCCTCTACTACCTCGTCCTGGGGCTGTAAGTCAGTGTAT

GTAA 
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Appendix 3: In situ hybridisation probe sequences 

 

The probes below were amplified using primers described in Table 0-1. 

 

UgFIL1 probe sequence 

 

GCTCTGCTATGTTCATTGCCAAGTCTGTGACACCGTTCTCGCGGTGAGTGTTCCCTGCACGAGCTTG

TTCAAGACGGTGACTGTGAGATGCGGCCACTGCACCACTCTCCTCTCTGTGTATATGAGGACGCCG

CTTCATCCCGCCGGCGCCCACCAACTTCTTCAGGGCCACCCCTTCTTCTCCCCTCAGAACCTCTTGGA

GGAGATCAGGAATTCTCCAGCAAATGTGTTCATCAACCAGCCCAACCCCAACCCTGTCCGCAGCGG

CAGCATCGATGAGCTCCCCAAGCCACCTGCTGCTAATCGACCGCCGGAGAAAAGACAGCGAGTCCC

CTCCGCCTACAACCGCTTCATCAAGGACGAGATCCAACGCATCAAGGCTGGAAACCCTGATATCAG

TCACAGGGAGGCCTTCAGTGCAGCTGCCAAAAACTGGGCCCACTTTCCGCACATCCACTTCGGTCTC

ATGCCCGACCAGCCGGTGAAGAAGACGAATGTGTGCCAGCAGGAGGGAGATGATGTG 

 

 

UgH4 probe sequence 

 

GTCTGGACGAGGCAAGGGCGGAAAGGGACTTGGAAAGGGCGGTGCAAAGCGTCACCGGAAGGT

TCTACGGGACAACATCCAGGGGATCACGAAGCCTGCAATACGCCGTCTGGCCAGAAGAGGCGGCG

TCAAACGTATTTCTGGCCTGATCTACGAGGAAACCCGCGGAGTTCTCAAGATTTTCTTGGAGAATGT

CATACGCGATGCCGTCACCTACACCGAGCACGCGCGGAGGAAGACGGTTACCGCCATGGACGTCG

TTTACGCTCTGAAAAGACAAGGCCGAACTCTGTACGGATTCGGCGGTTAG 
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