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Abstract

Small RNAs (sRNAs) are a broad class of short regulatory non-coding

RNAs. microRNAs (miRNAs) are a special class of ∼21-22 nucleotide

sRNAs which are derived from a stable hairpin-like secondary struc-

ture. miRNAs have critical gene regulatory functions and are involved

in many pathways including developmental timing, organogenesis and

development in both plants and animals. Next generation sequenc-

ing (NGS) technologies, which are often used for identifying miRNAs,

are continuously evolving, generating datasets containing millions of

sRNAs, which has led to new challenges for the tools used to predict

miRNAs from such data. There are several tools for miRNA detec-

tion from NGS datasets, which we review in this thesis, identifying a

number of potential shortcomings in their algorithms.

In this thesis, we present a novel miRNA prediction algorithm, miR-

Cat2. Our algorithm is more robust to variations in sequencing depth

due to the fact that it compares aligned sRNA reads to a random uni-

form distribution to detect peaks in the input dataset, using a new

entropy-based approach. Then it applies filters based on the miRNA

biogenesis on the read alignment and on the computed secondary

structure.

Results show that miRCat2 has a better specificity-sensitivity trade-

off than similar tools, and its predictions also contains a larger per-

centage of sequences that are downregulated in mutants in the miRNA

biogenesis pathway. This confirms the validity of novel predictions,

which may lead to new miRNA annotations, expanding and contribut-

ing to the field of sRNA research.
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Chapter 1

Introduction

Small RNAs are a broad class of short regulatory non-coding RNAs, with crucial

roles in cell biology, which have been discovered fairly recently. MicroRNAs are

a class of 22 nucleotide small RNAs which are derived from a stable hairpin-like

secondary structure. They have important gene regulatory functions, hence they

need to be identified and analysed. Existing miRNA prediction tools present var-

ious weaknesses, therefore the focus of the research presented in this thesis is the

development of miRCat2, a new microRNA prediction algorithm in next genera-

tion sequencing data. In addition, a review of the most commonly used miRNA

detection tools to date is presented. We give a detailed analysis of the results of

miRCat2, presenting computationally verified novel predictions in tomato data.

Moreover, we present a method of sRNA data analysis for identifying differentially

expressed miRNAs between distinct conditions, work done in collaboration with

biologists who have provided both small RNA sequencing data and experimental

validation of the results. We now give an overview of the thesis.

Chapter 2. We present background information related to microRNAs, then

we focus on their biogenesis and functions in the organism. We continue by

describing next generation sequencing technologies, software tools and file formats

commonly used by microRNA prediction algorithms, which are frequently referred

to throughout this thesis.

Chapter 3. We provide the basics of the algorithms for the most com-

monly used miRNA prediction tools, with a focus on miRCat [1] and miRD-

eep2 [2], because they implement some features used by miRCat2 as well. We
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then give a review of the performance of these tools, to create a clear image

of the existing competition, presenting both their advantages and their issues.

Based on this review, we choose the tools that we compare to miRCat2, to

assess its performance: miRCat [1], miRDeep2 [2], miRPlant [3] and miReap

(http://mireap.source-forge.net/). The results for this comparison are presented

in the later chapters.

Chapter 4. We design and implement a new miRNA prediction algorithm,

miRCat2, that is suitable for both plant and animal data. The algorithm was

integrated into the UEA small RNA Workbench [4] with the help of Dr. Matthew

Stocks. We present the new method used by miRCat2 to handle increasing depth

of sequencing datasets, by implementing a peak selection algorithm, which pro-

vides the miRNA candidates. The peak approach was designed in collaboration

with Dr. Irina Mohorianu. We then describe novel filters used on the selected

reads, inspired from the miRNA biogenesis features. We go on by describing the

secondary structure computation and the discriminative features searched on it.

In this chapter we also provide a detailed description of performance assessment

methods and novel miRNA verification methods used to test and benchmark our

new algorithm.

Chapter 5. We tested miRCat2 on ten plant and animal model organisms

and we present detailed results for three organisms from each Kingdom. Then

we compare miRCat2 performance with miRCat [1], miRDeep2 [2], miRPlant [3]

and miReap (http://mireap.source-forge.net/). To assess the performance of the

tools, we have calculated their sensitivity and specificity (with miRBase [5] as

reference). To better understand their predictions, we then computed the fold

change of the expression levels of their results between wild type and mutants in

the miRNA biogenesis pathway. For this experiment, amongst other five model

organisms, we also make use of A. thaliana wildtype and DCL1 mutant data,

which was sequenced by members of Dr. Tamas Dalmay’s group (Dr. Ping Xu,

Aurore Coince, Martina Billmeier). We then continue by computationally exam-

ining the miRCat2 novel predictions in the tomato dataset, on which miRCat2

obtained low specificity, to prove they are true miRNAs.

Chapter 6. We describe and apply a method of small RNA dataset analysis

and identification of microRNA differential expression, which provides a wider

2



view on the area of research on miRNAs, by explaining the use for the annotated

miRNAs and why it is important to have accurate novel miRNAs annotated. We

first present tests for checking the quality of the constructed libraries, to ensure

that the data is biologically accurate. Then we give an overview of normalisation

methods and how to choose the most appropriate one, depending on the data.

We then perform the differential expression analysis and report the miRNA se-

quences with changed expression levels. This work was done in collaboration with

Dr. Irina Mohorianu, who developed the method and supervised the analysis I

conducted, and with biologists who have provided both small RNA sequencing

data and experimental validation of the results (Adam E. Hall, Christopher Da-

costa and other members of Dr. Tamas Dalmay’s group).

Chapter 7. We discuss the work presented in this thesis, summing up the

key points of this research. We then specify possible future directions, extensions

and improvements to this work.
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Chapter 2

Background

2.1 Summary

In this chapter we give an introduction to DNA and RNA, focusing on small

RNAs. We then give a detailed description of animal and plant microRNAs,

describing their biogenesis, functioning mechanism and roles in biological sys-

tems. We continue by shortly presenting high throughput sequencing technolo-

gies, which are the bridge between biological and computational data. We then

give a brief overview of microRNA features the sequencing data might present,

which are essential for miRNA prediction algorithms. Finally, we present helper

tools and file formats commonly used by such algorithms.

2.2 DNA and RNA

DNA (deoxyribonucleic acid) is a molecule containing hereditary material, present

in all living organisms and many viruses. It is found in the nucleus of the cell

and encodes genetic instructions for development and functioning of the cell. The

information is organised into units called genes; it is stored using four chemical

bases: guanine (G), adenine (A), thymine (T) and cytosine (C), their order in

the sequence determining the information encoded [6]. Each base is attached to

a sugar and a phosphate, together forming a nucleotide (or nt for short).

DNA is structured as two strands of nucleotides coiled around each other,
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forming a 3D structured double helix [7]. To represent direction on a strand

of DNA, the terms 5’ (five prime) and 3’ (three prime) are used, based on a

chemical convention (the 5’ and 3’ carbons on the sugar). The 5’ end represents

the beginning of the strand, while the 3’ end represents the end of the nucleotide

sequence.

The two strands of DNA are called Watson and Crick strands. The Watson

strand refers to the 5’ to 3’ top strand (5’ → 3’), whereas the Crick strand refers

to the 3’ to 5’ bottom strand (3’← 5’). The coding strand is defined as the strand

of DNA that is sense to a gene of interest. The coding strand is gene dependent

and will switch back and forth across a chromosome and it is complementary

to the antisense strand. The two strands are bound to each other based on the

Watson-Crick base-pairing (A - T, C - G) [7]. DNA can replicate, using one

strand as a pattern to create a copy of the genetic material [8].

Figure 2.1: Central dogma of molecular biology [9], presenting a) the replication
of DNA, b) the transcription of DNA to RNA, c) the translation of RNA into
proteins, d) the reverse transcription of RNA into DNA and e) RNA replication.
This summarises the flow of genetic information within a biological system. Unusual flow
of information highlighted in green. (a) DNA is replicated to create a copy of itself. (b)
Information is transferred from DNA to RNA through transcription. (c) RNA is transformed
into proteins by translation. (d) Information is transferred from RNA to DNA through reverse
transcription. (e) The information is copied from one RNA to another.

After DNA replication, the information is transferred inside of the cell nucleus

to a similar molecule, RNA (ribonucleic acid). This process is called transcription

5



and it is part of the central dogma of molecular biology [10], which provides

an explanation of the flow of genetic information within a biological system.

RNA forms a key part of this dogma. A simplified representation of the central

dogma of molecular biology is presented in Figure 2.1. Summarised, the central

dogma of molecular biology states that DNA replicates to create a copy of a gene,

which is then transcribed into RNA, which is transformed into proteins through

translation. Reverse transcription (RNA to DNA) and RNA replication can also

occur, but are less common, usually associated with viruses and virus infected

cells [10].

Proteins are large complex molecules consisting of one or more long chains of

amino acids. They perform most functions in the cell and are required for the

structure and function of the cell, tissue and organ. They are involved in the

catalysing of metabolic reactions, DNA replication, responding to stimuli, and

transporting molecules from one location to another [6].

RNA has a crucial role in various biological processes, by participating in

coding, decoding, regulation and gene expression. Like DNA, RNA is also formed

as a sequence of nucleotides (guanine (G), adenine (A), uracil (U) and cytosine

(C)), but it is more often found as a single-strand, often folded onto itself (into a

secondary structure; A binds to U, C binds to G), rather than a paired double-

strand. The RNA secondary structure is often stable on its own, which means it

cannot easily jump out of the current state and fold into other conformations.

The RNA secondary structures can have various lengths and shapes, consisting

of secondary structure motifs, which represent the building blocks through which

the most complex three-dimensional RNA structures are constructed [6]. These

motifs are presented in Figure 2.2. The motifs are: duplexes, which are regions

where two strands are paired; single-stranded regions, representing a portion

of nucleotides that are not paired; hairpins, which are structures comprised of a

duplex and a loop (a bulge that binds the duplex on one of its ends); bulges, which

are regions of unpaired nucleotides inside of a duplex, while all corresponding

nucleotides on the opposite strand are paired to the nucleotides next to the bulge;

mismatches, which occur when a pair of nucleotides from each strand do not

match in a duplex, resulting in a symmetrical bulge; internal loops, which are

bulges on both strands inside of a duplex, and can be symmetrical or asymmetrical

6



(having equal or unequal number of unpaired nucleotides on each strand).

Figure 2.2: RNA secondary structure motifs. (a) Duplexes; (b) Single-stranded regions;
(c) hairpins; (d) bulges; (e) mismatches and internal loops [11].

For representing direction on a strand of RNA, the same terms are used as for

direction on DNA strands: 5’ end for the beginning of the strand (left side), and

3’ end for the end of the nucleotide sequence (right side) (see Figure 2.2, (b)).

The type of RNA containing the information for the synthesis of proteins

is called messenger RNA (mRNA) because it carries the information, from the

DNA, out of the nucleus, into the cytoplasm. Each sequence of three bases from

the mRNA, called a codon, usually codes for one particular amino acid (which

are the building units of proteins). In the cytoplasm, the process of translation is

performed. A ribosome reads the information from the mature mRNAs, translat-

ing it into amino acids and then a transfer RNA (tRNA) assembles the protein,

one amino acid at a time. The assembly continues until the ribosome encounters

a “stop” codon (a sequence of three bases that does not code for an amino acid)
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[6].

Another type of RNA is non-coding RNA (ncRNA), which is not translated

into a protein [12], but is instead a functional molecule. Examples of RNAs

belonging to this category include:

• transfer RNA (tRNA) and ribosomal RNA (rRNA) which are involved in the

process of translation;

• microRNA (miRNA; 21-22 nt), small interfering RNAs (siRNA; 20-25 nt), piwi-

interacting RNAs (piRNA; 29-30 nt) which are involved in gene regulation;

• small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA; 60-300 nt)

involved in RNA processing.

Small RNA (sRNA) is the generic name for a broad class of short regulatory

ncRNA. They usually have sequences of 19-28 nt in length and originate from

a double-stranded RNA. sRNAs function at RNA level, inducing gene silencing

by being loaded into Argonaute proteins (AGO) and targeting molecules through

specific base-pairing in a mechanism called RNA interference (RNAi) [13] (see

sections 2.3.1 and 2.3.2 for details). The RNAi machinery is conserved in most

eukaryotes and mediated by different types of sRNAs: siRNAs, miRNAs and

piRNAs. Eukaryotes are organisms consisting of a cell or cells in which the

genetic material is DNA in the form of chromosomes contained within a distinct

nucleus. Eukaryotes include all living organisms except bacteria, blue-green algae,

and other primitive micro-organisms. RNAi is involved in almost all eukaryotic

cellular processes, including host immunity and pathogen virulence [14].

2.3 What are microRNAs?

MicroRNAs (miRNAs) are a class of non-coding sRNAs that are derived from a

longer, structured primary transcript (precursor) in the shape of a hairpin [15, 16],

as illustrated in Figure 2.3. They are found in eukaryotes (e.g. animals, plants,

green algae) and some viruses, and recently miRNA-like sRNAs were also discov-

ered in fungi [17–20]. miRNAs function in post-transcriptional silencing of genes

[15, 16, 21]. These tiny, ∼22-nt RNAs need to be identified and analysed because

of their important cellular functions in gene regulation, where they control many

pathways including developmental timing, hematopoiesis (formation of blood cel-
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lular components), organogenesis and development, apoptosis (programmed cell

death), cell proliferation (cell division) and tumourigenesis [22–27]. Therefore,

miRNAs are absolutely essential to the health and development of plants and

animals.

Figure 2.3: miRNA hairpin-like secondary structure.

It is believed that miRNAs have evolved from initial RNAi machinery as a

defence mechanism against foreign genetic material inflicted by organisms such

as viruses [28]. In time, miRNAs have specialised in the fine-tuning of gene

expression, allowing organisms to develop complex traits. It has been shown

that the complexity of an organism is directly proportional to the fraction of non

coding genes of the genome, in mammals the amount of protein coding genes

being only ∼1% [29, 30]. miRNAs continue to evolve, and there are a large

amount of species-specific miRNA genes and gene families in a diverse range of

organisms, including human and primates, with a relatively low rate of loss of

the conserved miRNA families [31].

miRNAs bind to mRNA targets based on the Watson-Crick base-pairing (fully

or partially, nucleotides pairing A-U, C-G) [7]. Plant miRNAs have near-perfect

complementarity to their targets and function by cleaving them [27, 32] (see sec-

tion 2.3.2 for details). In animals, only the 6-8 nt long region (miRNA nucleotides

2 to 8), known as the ‘seed sequence’, at the 5’ end of the miRNA, will typically

bind to the target, leading to translational repression [32–34] (see section 2.3.1 for

details). The different modes of action of miRNAs in the two kingdoms, together

with the fact that there is no seeming correspondence between plant and animal

miRNA sequences, suggest that miRNAs evolved independently in the plant and

animal kingdoms, after their most recent common ancestor (which is thought to

have been unicellular), in an example of convergent evolution [28, 29, 31]. Even

so, the presence of miRNAs in all plant and animal species suggests early origins

in both lineages, facilitating the developmental patterning needed for multicellu-
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lar organisms [16].

miRNAs are encoded by endogenous genes (MIR) (originating from within the

organism/cell), the majority located in intergenic regions (>1 kilobases (kb) away

from annotated/predicted protein coding genes). MIRs are often transcribed in a

similar way to protein-coding genes. However, a considerable proportion of MIRs

are not independent transcription units. Instead, they are embedded in either

intronic or exonic sequences of known genes, both in the sense or antisense orien-

tation (from one DNA strand or its complement) [15, 35]. An intronic region is

the nucleotide sequence within a gene that is removed by RNA splicing, whereas

an exonic region represents the nucleotide sequence encoded by a gene that re-

mains present within the final mature RNA product of that gene. In addition, a

few miRNAs are produced from transposable elements (TE) in Arabidopsis and

rice [36]. A TE is a DNA sequence that can change its position within a genome,

sometimes creating or reversing mutations (via reverse transcription of DNA) and

altering the cell’s genome size [37].

Many miRNAs have been found in close proximity to other miRNAs, forming

clusters [15, 35] and several of them are perfectly conserved among species (or-

thologue miRNA genes) [38, 39]. Orthologues are genes in different species that

evolved from a common ancestral gene by speciation. Orthologues of miRNAs

differ only by a few nts and usually retain the same function in the course of

evolution. However, miRNA hairpins differ significantly outside of the miRNA

and miRNA* (the complement of the miRNA) regions, as their structure is rather

more important than the sequence. For example, miRNA families such as let-7,

lin-4, miR-1, miR-34, miR-60, and miR-87, are highly conserved between inver-

tebrates and vertebrates [35, 40–43].

To date, thousands of MIRs have been identified and stored in miRBase [5]

(http://www.mirbase.org/). The miRBase database is a searchable database of

published miRNA sequences and annotations. Each entry in the miRBase rep-

resents a predicted hairpin, portion of a miRNA transcript (precursor), with

information on the location and sequence of the mature miRNA sequence.

Animal miRNAs were first discovered in 1993 in nematodes (Caenorhabdi-

tis elegans), when lin-4 was identified to belong to a new class of sRNAs with

regulatory functions [44]. In 2000, let-7 was reported in nematodes [45] and
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shortly after, the same miRNA was found to have similar function in human [42].

In plants, the first miRNAs were discovered in 2002, when the miRNA families

miR156 through miR171 were reported in Arabidopsis thaliana [46]. Since then, a

lot of research has focused on understanding the miRNA biogenesis and function,

as well as on the detection and annotation of new miRNA genes in a variety of

animals, plants and viruses.

To detect new miRNAs, we need to understand their features and what dif-

ferentiates them from other sRNAs (e.g. siRNA, snoRNA, piRNA). Some im-

portant features of miRNAs can be extracted by observing the process through

which these sRNAs are generated in the cell.

2.3.1 miRNA biogenesis and roles in animals

The biogenesis of miRNAs in animals can be described sequentially (see Figure

2.4):

(a) endogenous miRNA genes (MIRs) are transcribed by the enzyme RNA poly-

merase II to generate a primary transcript (pri-miRNA) [47, 48]. Alterna-

tively, a host gene can be transcribed, containing the miRNA in its intronic

region. pri-miRNA are sometimes several kilobases long and contain one or

several local hairpin structures [15];

(b) the first processing step (‘cropping’) is mediated by the Drosha-DGCR8 com-

plex [49, 50]. First, the DGCR8/Pasha protein assists Drosha in substrate

recognition [51, 52], for which both the double stranded structure around the

cleavage site and the terminal loop are vital [53]. Next, Drosha cleaves the

site located approximately two helical turns (∼22 nt) from the terminal loop

[53]. The product of this nuclear processing step is a ∼70-nt pre-miRNA

(precursor), which possesses a short stem-loop plus a ∼2-nt 3’ overhang [15];

(c) a nuclear export factor (Exportin-5) recognises this structure as a signature

motif and exports it into the cell cytoplasm [54–56];

(d) the Dicer protein participates in the second processing step (‘dicing’) [57–

60]. Dicer is a highly conserved protein that is found in almost all eukaryotic

organisms, originally found to function in generating siRNAs [57, 58, 60],

that are similar in size to miRNAs (21-25 nts). Humans, mice and nematodes
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(a)

(c)

(f)

(d)

(e)

(b)

Figure 2.4: Model for microRNA biogenesis in animals. Reprinted by permission from
Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology [15], copyright 2005.

each possess only one Dicer gene [32, 61], while insects possess two Dicer

genes, only one processing miRNAs (the other being involved in RNAi) [62,

63]. The role of Dicer during miRNA biogenesis is to cut the hairpin loop-

region and produce ∼22 nts miRNA duplexes [15, 16, 64];

(e) the duplex does not persist in the cell for long and shortly after dicing is

separated [15];

(f) usually one strand is selected as the mature miRNA (most often the 5’ end),

whereas the other strand (miRNA*) is degraded. The relative thermody-
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namic stability of the two ends of the duplex determines which strand is

to be selected [65], although in some cases both miRNA and miRNA* are

stable and functional [64, 66].

After the mature miRNA is produced, it can target multiple transcripts and

vice versa (one transcript can be targeted by multiple miRNAs) [32]. miRNA

targeting in animals occurs in the following way: after the miRNA/miRNA*

duplex separation, Dicer associates with proteins which are part of the Argonaute

protein family [67–69], having a central role in RNA silencing processes. Dicer

facilitates the transfer of the selected miRNA to AGO, the mature miRNA being

incorporated into the RNA-induced silencing complex (RISC), sometimes referred

to in the literature as miRISC [70]. Bound by AGO proteins, the miRNA guides

the complex to complementary mRNA sequences to repress their expression.

The major determinant for AGO binding to its target mRNA is a 6-8 nt region

at the 5’ end of the miRNA (miRNA nucleotides 2 to 8), known as the miRNA

‘seed’ region [33]. AGO associates with this region to create the ‘seed’. Functional

target sites are usually located in the 3’ UTR of a mRNA [33]. When perfect

complementarity of the target to the seed region of the miRNA occurs, it is often

referred to as ‘canonical binding’ [34]. In the event of seed region mismatches or

bulges, 3’ supplementary binding (additional pairing in the miRNA nucleotides

12 to 16) and 3’ compensatory binding (extensive complementarity in the miRNA

3’ region) can occur and is referred to as ‘non-canonical binding’ (see Figure 2.5)

[71].

Once the miRISC complex is bound to a target, translational inhibition is

initiated through two mechanisms: translational repression [72, 73] and then

mRNA degradation through decapping and deadenylation [32–34, 74] (see Figure

2.5). Translation repression means that miRISC prevents translation of the target

mRNA into a functional protein sequence, while mRNA degradation, refers to

the decay of the mRNA molecule, initiated by miRNA targeting [32, 72, 73,

75]. The process of mRNA decapping consists of removing the 5’ cap structure

on the RNA, which leads to rapid degradation of the molecule [76]. Through

deadenylation, the poly(A) tail (stretch of RNA that has only A bases, necessary

for mRNA stability) of the mRNAs gradually gets shorter, mRNAs with shorter

poly(A) tails being translated less and degraded sooner [77]. Both mechanisms
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lead to reduced translation and therefore reduced protein production, although

translational repression does not change the mRNA expression levels within the

cell [72, 73].

If there is a high complementarity with the whole sequence, and not just a seed

match, then the target is cleaved, rather than translationally repressed. However

this happens more often in plants and extremely rarely in animals [69, 78].

At a genome-level, animal miRNA targeting is a very complex mechanism and

is likely to involve a large network of mutually interacting components. On one

hand, the regulation of a target is generally combinatorial, the mRNA expression

depending on a combination of multiple miRNAs being involved. On the other

hand, a certain miRNA can target various mRNA sequences [32, 79].

Because the region used to create the seed is so short, more than half of all

protein-coding genes in mammals are regulated by miRNAs [80]. In human, the

expression of >60% of protein-coding genes is controlled by miRNAs [81].

a

b

Figure 2.5: miRNA translationally repress their targets in animals. a) miRNA-directed
translational repression via deadenylation, decapping and 5’ to 3’ decay. b) The seed sequence
is the major determinant for target binding. In case of imperfect seed matches, additional
pairing can occur for the miRNA nucleotides 12 to 16 or an extensive complementarity in the
miRNA 3 region. Adapted with permission from Macmillan Publishers Ltd: Nature Reviews
Molecular Cell Biology [80], copyright 2013.

miRNAs have crucial roles in developmental stages, and especially they facil-

itate early development in a broad range of organisms (eg.: fish [74, 82], insects

[83], mammals [84]).
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For example, miR-430 was proved to directly regulate ∼160 mRNAs in ze-

brafish embryos, and it was also estimated to directly regulate several hundred

target mRNAs during early zebrafish development [74]. The miR-10 family di-

rectly targets Hox genes in N. tilapia, which are a family of transcription factors

that function during embryogenesis [82]. let-7 and miR-125 function in metamor-

phic processes in fly, the loss of these miRNAs resulting in temporal delays in

wing development and maturation of neuromuscular junctions in adult abdominal

muscles [83]. miR-9 and miR-124 were found to be involved in brain development

in zebrafish [85], mouse [43], rat and monkey [84].

miRNAs are also involved during adulthood in important processes such as

caste determination in honey bees (miR-184) [86]. miR-206 (part of miR-1 family)

has roles in ensuring proper organ functioning in C. elegans [41], adult mouse and

human heart [43], and miR-122 was shown to be specifically expressed in mouse

liver [43] and zebrafish [85].

miRNAs are also critical in tumourigenesis and tumour suppression in many

tissues, their activity being reported in many types of cancer. Cancer is typically

caused by uncontrolled proliferation and the inappropriate survival of damaged

cells, which results in tumour formation. Many regulatory factors switch on or off

genes that direct cellular proliferation and differentiation, miRNAs being amongst

them. In fact, half the annotated human miRNAs are associated with cancer [87].

In a study on human carcinomas, miR-21 was reported to be overexpressed

in glioblastoma (brain tumour) [88], miR-17/20/92 was found to be involved in

lung and breast cancer, all three members of the miRNA cluster accelerating

lymphomagenesis when overexpressed [23, 88]. miR-218-2 is consistently down-

regulated in colon, stomach, prostate, and pancreas cancers [88]. microRNA-34a

is tumour suppressive in brain tumours and glioma stem cells [89]. mir-125b-1,

located on chromosome 11, was found to be deleted in a subset of patients with

breast, lung, ovarian and cervical cancer [87]. Patients who were diagnosed with

a common form of adult leukaemia, often have deletions or downregulation of two

clustered miRNA genes, mir-15a and mir-16-1 [24, 90].

miRNAs also conduct other processes. In human, inhibition of nineteen

miRNA families, such as miR-95, 124 and 125 caused a decrease in cell growth,

while inhibition of miR-21 and miR-24 resulted in a profound increase in cell
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growth [22]. Similarly, miRNAs function to increase (miR-1d, 7, 148, etc) or

decrease (miR-214 in human, miR-14 in D. melanogaster) the level of apoptosis

[22, 24].

miRNAs are also responsible with adaptation to stress in almost any tis-

sue, reaction to disease [25] and ageing [91]. For example, miR-195, miR-1 and

miR-133 play roles in almost all cardiovascular diseases, while miR-126 is as-

sociated with vascular inflammation [25]. let-7 and miR-9 are associated with

Alzheimer’s disease [92]. There exist databases for a comprehensive list of disease-

associated miRNAs and more information on them: human miRNA-associated

disease database (HMDD) 1 [25]; miR2Disease 2 [93].

Because of their important functions, identifying miRNAs is crucial. miRNA

profiling might aid early stage cancer and disease diagnosis, which is essential in

many cases for treatment efficiency. Presently, researchers focus on using miRNA-

expression signatures to classify cancers, by defining miRNA markers that predict

favourable prognosis [24, 94–97]. The discovery that serum, plasma [94] and saliva

[96] contain a large amount of stable miRNAs derived from various tissues and

organs, has facilitated the research for non-invasive biomarkers for early tumour

detection.

Moreover, by discovering and understanding the miRNA functions, new treat-

ments can be explored for diseases associated with them [98–100].

2.3.2 miRNA biogenesis and roles in plants

The biogenesis and functions of miRNAs were primarily discovered by studying

Arabidopsis thaliana, a flowering plant [46], although the multitude of other 21 to

24 nt RNAs found in plants sometimes complicated their initial classification. In

plants, miRNAs are generated in a similar way to animals, in a stepwise manner

[101], with some important differences:

(a) the MIR is transcribed by RNA polymerase II [102] to generate the pri-

miRNA, which contains the miRNA hairpin [16, 36].

(b) pri-miRNAs are processed to precursor miRNAs (pre-miRNAs), containing a

1http://210.73.221.6/hmdd
2http://www.mir2disease.org/
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stem-loop structure with 2-nt 3’ overhangs at the end of stem by a dicer-like1

enzyme (DCL1) in the nucleus [46, 101, 103–105] . Homologues (descendent

from a common ancestral gene) of Drosha and DGCR8/Pasha have not been

found in plants, suggesting that the Drosha dependent stepwise processing

mode applies only to animal cells, in plants its role being assumed by DCL1

[101, 105].

In plants, four Dicer-like genes have been found in A. thaliana [106], each

having distinct roles: DCL1 generates miRNAs, DCL2 generates siRNAs as-

sociated with virus defence, DCL3 generates siRNAs that guide chromatin

modification, and DCL4 generates trans-acting siRNAs that regulate veg-

etative phase change [104, 105, 107]. Five Dicer genes were discovered in

poplar and six in rice [108], suggesting that the number of Dicer-like genes

has increased in plants during their evolution. This may reflect the differ-

ing threats and defence strategies that plants and mammals use; plants do

not have an immune system, therefore they rely on Dicers to defend them

against a multitude of viruses and transposons [108].

pri-miRNAs are usually processed by DCL1, however, besides DCL1, its

homolog DCL4 has also been shown to generate miRNAs from some pri-

miRNAs in A. thaliana [109]. In rice, the coordinative action of DCL1 and

DCL3 was reported to be required for the production of some 24-nt miRNAs

[110]. This result suggests the potential divergence of miRNA biogenesis in

different plant species [36, 108].

The structures of pri-miRNAs are essential for recognition by DCL1; the

structure should present an imperfectly paired lower stem (∼15 nt below the

miRNA/miRNA* duplex) for the initial stem-loop cleavage of pri-miRNAs.

The loop is also crucial for efficient processing [111–113].

While in animals the length and structure of the pre-miRNA hairpin is fairly

consistent, in plants it is much more variable, the precursors being quite di-

verse in structure, with variable positioning of the miRNA/miRNA* duplex

and reaching lengths from 60 up to 300 nts [114];

(c) after the pre-miRNA is formed, DCL1 excises the miRNA/miRNA* duplex

from pre-miRNAs. DCL1 is a nuclear protein, which indicates that mature

∼22-nt miRNAs are generated in the nucleus in plants [103];
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(d) the sRNA methyltransferase protein hua enhancer1 (HEN1) adds a methyl

group to the 3’ end of the miRNA/miRNA* duplex to stabilise them [36,

115].

(e) the duplex is then transported from the nucleus to the cytoplasm with the

assistance of HASTY (HST) [116, 117], a homologue of Exportin-5, where it

is separated and gives rise to the mature miRNA [21, 36].

In plants, miRNAs mainly function through their effector protein AGO, which

cleaves the target RNA and/or inhibits its translation. Similar to animals, the

strand of the miRNA/miRNA* duplex with a lower 5’-end thermostability is

preferentially loaded into AGO as the mature miRNA [118–120].

Plant miRNAs need a much higher degree of complementarity to recognise

their targets, usually across the length of their entire sequence. This leads in

most cases to AGO-induced endonucleolytic cleavage of the mRNA target [16]

(cleaving a nucleotide chain into two parts at an internal point), followed by

mRNA degradation. This process is presented in Figure 2.6. The cleavage site

is located at nucleotides 10 and 11 of the miRNA, counted from the miRNA 5’

end (see Figure 2.6). Target cleavage is considered the predominant pathway for

miRNA-mediated repression of gene expression in plants [16], but translational

repression has also been observed to a lesser extent [27, 32].

Figure 2.6: miRNAs lead to deadenylation in plants. a) miRNAs direct target cleavage
(slicing). The XRN4 enzyme in plants, together with the exosome, subsequently degrade the
sliced mRNA fragments. b) miRNA-directed cleavage of mRNAs requires extensive comple-
mentarity between the miRNA and its target site. The cleavage site is located at nucleotides
10 and 11 of the miRNA, counted from the miRNA 5’ end. Adapted with permission from
Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology [80], copyright 2013.

miRNAs have roles in many developmental processes including root initiation

and organ development (leaf, vain, flower, seed) [27]. For example, miR166 is
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involved in leaf development, reduced miR166 levels resulting in abnormal leaf

shapes and sizes [27]. miR397 is involved in lignification (process of becoming

woody as a result of the deposition of lignin in the cell walls), a process more

critical in woody plants, such as Populus [121]. miR172 is involved in proper spec-

ification of organs during flower development, plants that over-express miR172

having floral defects, such as the absence of petals and sepal transformation into

carpels [122]. Over-expression of miR319 results in plants with uneven leaf shape

and delayed flowering time [123], while over-expression of miR159a results in male

sterility [124].

miRNAs also regulate phase transition. Plants usually undergo the follow-

ing developmental phases: germination, vegetative growth, reproductive growth

and flowering [125]. Two evolutionary highly conserved miRNAs, miR156 and

miR172, have been identified as key components of plant phase changing. miR156

promotes the transition from juvenile to adult and to flowering, while miR172

targets mRNAs that encode proteins that have been shown to regulate both the

transition to flowering and flower development [125].

The importance of miRNAs during plant development has been proved in

an experiment depriving several A. thaliana plants of genes central to miRNA

function, including DCL1, AGO1, HEN1, and HYL1. Severe mutations resulted

in early embryonic arrest, and even partial loss-of-function mutants resulted in

many defects, including abnormalities in floral organogenesis, leaf morphology

(shape, structure, size), and auxiliary meristem initiation (growing tips of roots

and shoots) [126]. This suggests that plants cannot develop into functional adults

without proper miRNA regulation.

Additionally, miR172 family miRNAs were reported to be involved in metabolism

and sex determination in maize [127].

miRNAs also are responsible for diverse responses to stress: biotic - viruses or

bacteria [26, 128] and abiotic - drought, salt, cold, oxidative, nutrient deficiency

[36, 129].

miRNAs have crucial roles in adaptive responses to abiotic stress. miR168,

miR171, and miR396 were found to be responsive to high salinity, drought, and

cold stress in Arabidopsis [128]. miR393 was upregulated by cold, dehydration

and salinity treatments, while miR389a was downregulated by all of the stress
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treatments. miR395 was increased upon sulphate starvation, showing that miR-

NAs can be induced by environmental factors and not only by developmental

processes [128]. The expression of miR397 and miR169 were upregulated under

cold stress in Arabidopsis, Populus, and Brachypodium, while miR172 is signifi-

cantly downregulated in wheat in response to heat stress [128]. Expression levels

of miR156g, miR157d, miR172a,b, etc. increased under low-oxygen stress [128].

21 miRNAs belonging to 11 miRNA families have been identified to be upregu-

lated under UV-B stress [130]. Plant can experience mechanical stress, such as

when branches or stems are bent by wind or gravity. Testing mechanical stress,

miR156, miR162, miR164, etc. were downregulated but miR408 was upregulated

by tension and compression [131].

Plants have shown change in miRNA expression levels under biotic stress, i.e.

when infected by pathogenic bacteria, viruses, nematodes and fungi. In Arabidop-

sis, the first miRNA discovered to play a role in defence against pathogens was

miR393, a miRNA which induced resistance against bacteria [132]. In a study

about the endemic rust fungus Cronartium quercuum when infecting loblolly pine,

twenty-six miRNAs were identified to take part in the defence against it. Infec-

tion with this fungus causes fusiform rust disease, which is characterised by stem

and/or branch galls. Results show that miRNAs produced around the fungal

infection at the gall immunises the uninfected stem and may provide protection

ahead of the spreading infection [133]. bra-miR158 and bra-miR1885 were greatly

upregulated when Brassica rapa was infected by Turnip mosaic virus [26, 134].

Because of their important roles in plants, profiling miRNAs and understand-

ing their functions could help researchers develop better crop strains and improve

food quality. Pathogens can have a big impact on crop production, they spread

quickly and are difficult to treat once a plant is infected [135]. miRNAs are essen-

tial in developing new crop strains with pathogen-resistance. Also, by studying

miRNAs we can improve plant resistance in hard conditions, such as draught

and soil nutrient deficiency and optimise the quantity and quality of the food

produced.
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2.3.3 Mirtrons

Mirtrons are a subtype of miRNAs, derived from short introns of the mRNA en-

coding host genes. Although many miRNAs are also located in introns, miRNAs

are differentiated by the fact that they are Drosha dependent and they are derived

from longer introns. Just like regular miRNAs, mirtrons need to be identified and

analysed, because they share the same roles in the biological processes.

In animals, mirtrons arise from the short introns, where the miRNA/miRNA*

sequences are at the splice junctions. Mirtrons are an alternative way to Drosha-

Dicer miRNA biogenesis: the spliced debranched introns with hairpin structures

equivalent to pre-miRNAs enter the miRNA processing pathway to produce ma-

ture miRNAs, avoiding Drosha-mediated pri-miRNA cleavage [136].

Mirtrons also appear in plants. All the miRNAs in plants are derived from

the sequential DCL1 cleavages from pri-miRNA to give pre-miRNA (or miRNA

precursor), but the mirtrons bypass the DCL1 cleavage and enter as pre-miRNA

in the miRNA maturation pathway [137].

2.4 Detecting miRNAs from high throughput

sequencing data

2.4.1 High throughput sequencing technologies

High-throughput sequencing (HTS), also known as next generation sequencing

(NGS) [138] is the technology that enables DNA and RNA data collection. HTS

captures millions of DNA and RNA fragments and outputs them as sequences in a

digital format, easy for processing (sequencing libraries). Over the last few years

new technologies in this field have rapidly evolved, including the development of

robust protocols for generating these sequencing libraries and building effective

new approaches for data-analysis. HTS has dramatically accelerated biological

and biomedical research, by enabling the comprehensive analysis of genomes,

transcriptomes and interactomes to become inexpensive, routine and widespread.

The first modern sequencing methods were developed in 1977, when Maxam
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and Gilbert developed a chemical method [139] and Sanger, Nicklen and Coul-

son developed the dideoxy method [140], which enabled the first sequencing of a

complete DNA molecule [141]. Most HTS technologies still rely on the Sanger

biochemistry [140, 141], having shown continuous growth in DNA sequencing

capacity and speed. This exponential growth is reflected in the growth of Gen-

Bank, the nucleotide sequence database [142], an annotated collection of publicly

available DNA sequences (see Figure 2.7).
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Figure 2.7: Growth of the nucleotide sequence database since 1981, data taken from
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt. The number of published nucleotide sequences and
the total number of base pairs of sequence (log10 scale) are plotted versus the date of publica-
tion.

There are three main HTS platforms that offer massively parallel DNA se-

quencing and are widely used at present [143]: the Illumina platform 1 [144],

PacBio RS II [145] and the Nanopore MinION Sequencing [146].

The Illumina platform [144, 147] routinely generates sequences of 51 bps (and

up to 250 bps), the read-lengths being limited by multiple factors that cause

signal decay and dephasing. The dominant error type is substitution, average

raw error-rates being on the order of 11.5%, with higher accuracy bases having

error rates of 0.1% or less [148].

1http://www.illumina.com/pages.ilmn?ID=203
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The PacBio sequencing platform [145] performs real-time sequencing and of-

fers longer read lengths than previous sequencing technologies (over 10 kb), mak-

ing it well-suited for unsolved de novo genome assemblies, transcriptome, and

epigenetics research. However, it has a much lower throughput than the Illumina

platform [145].

The MinIon platform [146] identifies DNA bases by measuring the changes in

electrical conductivity generated as DNA strands pass through a biological pore.

It is portable and suitable for real-time applications, offering read lengths up to a

few hundred thousand base pairs. However, it has higher error rates, its accuracy

ranging 65%88%. Another drawback is that its throughput flowcell run is not

very stable at the moment, ranging from below 0.1 GB to 1 GB of raw sequence

data .

The HTS technology most commonly used at present is Illumina, which is the

most advantageous for generating sRNA libraries, as it offers a good trade-off

between precision and cost efficiency [148].

2.4.2 miRNA prediction from HTS data

The rapid development of HTS technology is posing challenges for bioinformatics

in areas including data storage, increased memory for processing, sequence quality

scoring, alignment, assembly and data release. HTS data can be used to detect

miRNAs and their precursors, by providing millions of sRNA reads from only one

biological sample.

miRNA prediction from HTS data is not a new field of research. Several al-

gorithms have been published since the HTS technology was developed. Early

miRNA prediction methods, such as miRCat [1] and miRDeep [149], were de-

signed when sequencing depth was low. Initial algorithms were run on tens of

thousands of sequences, whereas nowadays, as HTS datasets are rapidly growing,

they have to deal with tens of millions of reads [150, 151]. The large datasets

have led to new challenges for the tools used to analyse such data, which struggle

with the ‘noise’ in the datasets, lowing their accuracy, and also in terms of execu-

tion time and memory requirements. Higher depth of sequencing leads to more

noise: trying to capture more sequences, technologies have an increased chance
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of picking up shorter reads, that are not relevant, artificially created reads, that

are not actually present in the biological sample, or they artificially increase the

expression levels of lowly expressed reads.

After the datasets are collected, the sRNA samples can be processed to predict

miRNAs. Properties of miRNAs, observed from their biogenesis, can be identified

in the sRNA samples.

(a) miRNA reads distribution, depicting
clear Drosha and Dicer cleavage around the
mature and star sequences.

(b) Alignment of reads corresponding to a
random degradation.

Figure 2.8: Model for alignment of reads representing (a) a miRNA reads distribu-
tion and (b) a random degradation. Different colours and direction of the arrows represent
strand origin (mapping to sense or anti-sense).

First of all, from the miRNA biogenesis we can conclude that the alignments

of small RNAs to the hairpin should be consistent with Dicer/Drosha processing,

as seen in Figure 2.8. The miRNA processing machinery is very precise, creating

patterns that can be used in identifying the miRNAs. The reads corresponding

to the miRNA and miRNA* location should be more abundant than the nearby

sequences, should have a clear cut on both sides (overlapping sequences having

start and end position very close to each other) and should originate from the same

strand. In the opposite case of a random degradation, reads can be derived from

both strands and show a more dispersed alignment to the genome, overlapping

inconsistently and having a uniform distribution.

Secondly, the miRNA precursors should have a stable hairpin-like structure,

without many gaps or additional loops on the structured stem region, as seen in

Figure 2.9.
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(a) A valid miRNA precursor (hsa-mir-
2110).

(b) Secondary structure that does not
present pre-miRNA-like features.

Figure 2.9: Examples of secondary structures depicting (a) a valid miRNA precur-
sor in shape of a hairpin (hsa-mir-2110) and (b) a secondary structure that does
not present hairpin-like features (a 300bp region of intron 1 of the FTO gene,
http://tesla.pcbi.upenn.edu/savor/ ).

2.4.3 Tools used by miRNA detection algorithms

Alignment tools

Most miRNA detection algorithms use helper alignment tools to get the alignment

of sequences to their reference genome. Some of the most commonly used ones

(that we also use) are:

(a) Bowtie 2 [152] is a command-line tool that takes a collection of FASTA files

(see Section 6.3.2) for a reference genome and creates a series of index files;

the indexing technique used in Bowtie is the key to its speed and memory

efficiency. Once it creates the index, it can be queried any number of times.

These files are then used to align short reads to the reference genome. Bowtie

2 searches for the best alignment of each read to the reference genome and

outputs the results in SAM or BAM format (see Section 6.3.2);

(b) PatMaN [153] identifies all occurrences for a short sequence within a genome-

sized database, constructing a single keyword tree of all the query sequences.

Once the tree is constructed, each sequence in the target database is evalu-
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ated base by base and compared to a list of partial matches.

Folding algorithms

To obtain the precursor secondary structure and test for its characteristic fea-

tures, miRNA detection tools resort to folding algorithms. The most efficient

and accurate are the ones in the ViennaRNA package [154].

All tools in the ViennaRNA package output the folded structure in the dot-

bracket notation and its minimum free energy (MFE). In general, the free energy

can be thought of as the energy released by folding a completely unfolded RNA

molecule. Conversely, it can be thought of as the amount of energy that must be

added to unfold a folded RNA. The minimum free energy structure of a sequence

is the secondary structure that is calculated to have the lowest possible value of

free energy that can be formed with that particular sequence of nucleotides. In

the ViennaRNA package, it is calculated using dynamic programming [154].

The ViennaRNA package contains many programs, but for miRNA detection

the most frequently used are:

(a) RNAfold - calculates minimum free energy (MFE) secondary structures of

RNAs;

(b) RNALfold - calculates all locally stable secondary structures of a long RNA

sequence with a maximal base pair span. It is a practical way of “scanning”

very large genomes for short RNA structures;

(c) RNAcofold - calculates secondary structures of two RNAs. It allows one to

specify two RNA sequences which are then folded to form a dimer structure

(two similar sequences linked together).

RANDFold

RANDFold [155] is another useful tool that many algorithms have incorporated

in their routine. RANDFold has proved that the majority of the microRNA

sequences clearly exhibit a folding free energy that is considerably lower than

that for shuffled sequences, indicating a high tendency in the sequence towards a

stable secondary structure [155].

RANDFold takes a sequence, shuffles it and refolds it many times, then com-

pares the MFE values of the original secondary structure with the values obtained
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by the random shuffling of the original sequences. It then computes a p-value

which gives some statistical confidence for whether or not the structure comes

from a real miRNA precursor (a p-value closer to 0 indicates that the precursor

has pre-miRNA properties).

Annotation databases

(a) miRBase 1 [5] - first established in 2002, miRBase is now the central online

repository for miRNA nomenclature, sequence data and annotation. The

database has the following main functions [156, 157]: (i) provides a consis-

tent nomenclature scheme, assigning names to novel miRNA genes prior to

their publication; (ii) acts as a repository for all published miRNA sequence

data, annotation, references and links to other resources (see Figure 2.10).

It also facilitates online searching and bulk download of all miRNA data;

(iii) provides human-readable and computer-parsable annotation of miRNA

sequences; (iv) provides a link to miRNA target predictions and validations

[156, 157].

miRBase has continually grown since its inception, encouraging users to

submit their results and edit new pages in the database. miRBase has grown

from 15,172 loci in 142 species (release 16, October 2010) to 24,521 loci in

206 species (release 20, June 2013) [5]. Therefore, maintaining the quality

of the miRNA sequence dataset is a significant challenge.

miRBase mapped reads from multiple public sRNA deep-sequencing exper-

iments (downloaded from databases Gene Expression Omnibus [158] and

Short Read Archive [159]) to miRNAs in miRBase and developed a web

interface to view these mappings (see Figure 2.10). The user can view all

read data associated with a given miRNA annotation, filter reads by experi-

ment and count, and search for miRNAs by tissue-specific and stage-specific

expression [157]. This was used to discriminate between true miRNAs and

other RNA, creating a set of high confidence miRNAs.

To be annotated as high confidence, a locus must meet a set of criteria,

such as: (i) at least 10 reads must map with no mismatches both to the

miRNA and miRNA* sequence; (ii) the most abundant reads from each

1http://www.mirbase.org/
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Figure 2.10: Example of information displayed by miRBase for a selected miRNA.
miRBase entry for Homo sapiens let-7a-1 stem-loop, showing information about hairpin se-
quence and structure, deep sequencing alignment, genome context and clustered miRNAs.

arm of the precursor must pair in the mature microRNA duplex; (iii) the

hairpin structure must have a folding free energy of <-0.2 kcal/mol/nt [5].

By applying these criteria, miRBase has created a set of high-confidence

miRNAs, representing 22% of the miRNAs in 38 investigated species. In

human, less than 20% passed all the criteria [5].

The user can browse or download data after filtering based on high/low

confidence (see Figure 2.11). miRBase is commonly used as a reference

dataset when predicting novel miRNAs, tools assessing their performance

based on the number of predictions from miRBase that they detect or miss.

(b) RFAM 1 [160] - is a collection of ncRNA families represented by manually

curated sequence alignments, consensus secondary structures and annotation

gathered from corresponding Wikipedia, taxonomy and ontology resources

[160]. The primary aim of RFAM is to annotate new members of known RNA

families on nucleotide sequences, particularly complete genomes (including

1http://rfam.xfam.org/
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Figure 2.11: Browsing miRNA annotations in miRBase. The user can filter the entries
based on weather they are high confidence annotations.

miRNAs, tRNA, rRNA, siRNA, snoRNA, lncRNA and other ncRNA) [161],

the current release, RFAM 12.0, containing 2,450 entries [160]. For each

RNA family, RFAM provides sequences, alignments, covariance model, trees

and secondary structure images. RFAM can be used to identify new family

members in other sequence databases and for annotating ncRNAs in genomes

or metagenomes [160].

Regarding miRNA prediction, RFAM can be used as a negative control

dataset in performance assessment experiments. Users can download a

dataset of small ncRNAs (excluding miRNAs), then check that no such

sequences are identified as miRNAs. Some miRNA prediction tools (miRD-

eep2 [2], miRAuto [162]) use RFAM to filter out tRNA, rRNA, snRNA and

snoRNA sequences from the input dataset as a preprocessing step before

identifying miRNAs.

2.4.4 Commonly used file formats

There are a series of standard file formats that are generally used in sRNA data

processing, explained below:

(a) FASTQ - is the standard format for storing the output of high-throughput

sequencing instruments such as Illumina [163]. It is a text-based format

for storing both the biological sequence (nucleotides) and its corresponding

quality scores. Both the sequence letter and quality score are each encoded

with a single ASCII character for brevity [164].

A FASTQ file normally uses four sections per sequence (see Figure 2.12).
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Section 1 begins with a ‘@’ character and is followed by a sequence identifier

and an optional description, section 2 contains the raw sequence (1 or mul-

tiple lines), section 3 begins with a ‘+’ character and is optionally followed

by the same sequence identifier, and section 4 encodes the quality values for

the sequence in section 2, and must contain the same number of symbols as

letters in the sequence (1 or multiple lines).

Figure 2.12: Example of entry in a FASTQ file.

(b) FASTA - is a text-based format for representing nucleotide or peptide se-

quences. The FASTA format consists of 2 sections for each entry. The first

section is a description line, which must begin with the greater-than (>)

symbol in the first column, containing a code and optionally a description.

The second section contains the sequence (see Figure 2.13) (can span over

multiple lines). It is recommended that all lines of text be shorter than

80 characters in length, to fit on terminal windows. The format originates

from the FASTA software package [165], but has now become a standard

in the field of bioinformatics. The simplicity of the format facilitates easy

processing of the sequences in any programming language.

Figure 2.13: Entry for human miRNA precursor hsa-let-7a-1 in fasta format.

(c) GFF - stands for General Feature Format and consists of one line per fea-

ture, each containing 9 columns of data, plus optional track definition lines,

columns being tab-delimited (see Figure 2.14). Also, all but the final field in

each feature line must contain a value;“empty” columns should be denoted
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with a ‘.’. The features are: seqname (chromosome or scaffold); source (name

of the program that generated this feature); feature (e.g. Gene, Variation,

Similarity); start position of the feature; end position; score (a floating point

value); strand (+ (forward) or - (reverse)); frame (‘0’, ‘1’ or ‘2’); attribute

(list of tag-value pairs, providing additional information). Many annotation

databases, including miRBase, keep their information in GFF format.

Figure 2.14: miRBase entry for human miRNA precursor hsa-mir-6859-1 and its
mature sequences in GFF format.

(d) PATMAN - is the format of the output file generated by the sequence align-

ment tool PatMaN [153]. The file uses one line for each entry, containing

tab-separated fields that represent the target and query sequence identifier,

the start and end position of the alignment in the target sequence, the strand

and the number of edits per match (see Figure 2.15).

Figure 2.15: Example of alignment output in PatMaN format.

(e) SAM/BAM - SAM stands for Sequence Alignment/Map format. It is a

TAB-delimited text format consisting of a header section, which is optional,

and an alignment section (see Figure 2.16). If present, the header must be

prior to the alignments. Header lines start with ‘@’, while alignment lines

do not. Each alignment line has 11 mandatory fields for essential alignment

information such as mapping position, and variable number of optional fields

for flexible or aligner specific information [166].

BAM is the compressed binary version of the SAM format. SAM/BAM file

formats are used by many alignment algorithms, including Bowtie 2.

(f) BED - is a format used to store annotated data, and has three required

fields and nine additional optional fields. The number of fields per line must
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Figure 2.16: Example of alignment output in SAM/BAM format.

be consistent throughout any single set of data. The first three required

BED fields are: chromosome, start and end of the sequence on that chromo-

some. This file format is used by BEDTools [167], a tool kit for genomics

analysis, that enable genome arithmetic operations (intersect, merge, count,

complement, and shuffle on genomic intervals from multiple files).

(g) SRA - is a compressed file format of raw data, that supports files such as

FASTQ and BAM. It is used for efficient data storage by public databases

(NCBI, EBI, and DDBJ). Users can download published raw data in SRA

format, then decompress it using the SRA toolkit [168].

2.5 Discussion

In this chapter we gave an introduction for animal and plant miRNAs, together

with their biogenesis, functioning mechanisms and roles in organisms. We then

presented high throughput sequencing technologies, helper tools and file formats

used for miRNA prediction, their existence facilitating the development of miRNA

prediction and analysis algorithms.

Because the field of miRNA and small non-coding RNA research is so complex,

many tools have been developed to aid in processing, analysing and visualising of

such data. Continuous efforts are aimed towards understanding various aspects

of miRNAs, and, as progress is achieved in this field, the need to expand and

adapt helper tools remains constant.

Although a substantial amount of research was focused on miRNAs in the last

couple of years, there are still aspects that we do not yet fully understand. In

animals, miRNA targeting can be described as a complex network of mutually

interacting elements. The complexity of interactions between miRNAs, they tar-

gets and multiple other elements during miRNA targeting, has created challenges
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for understanding the exact roles and functioning of each element involved. This

is also a difficult task for the tools offering animal target prediction and miRNA-

target interaction visualisation. Therefore, further improvements in this area

could be achieved to improve the accuracy of such tools.

In plants, miRNAs from different species have developed divergent biogenesis

pathways (being produced by homolog Dicers). The different lines of evolution

suggest that they are continuously evolving and adapting, which also means that

plant miRNAs have developed a more complex pattern for their biogenesis. This

has caused the tools trying to predict plant miRNAs to achieve lower accuracy.

miRNAs have proved to be essential in all eukaryotes, because of their crucial

roles in organ development and implication in disease. Their importance can

be also justified by the fact that they evolved independently in the plant and

animal kingdoms, in an example of convergent evolution. They have different

modes of action in the two kingdoms and no seeming correspondence between

their sequences. However, the presence of miRNAs in all plant and animal species

suggests that life as multicellular organisms could not have been sustained without

the miRNAs facilitating the developmental patterning needed.

Recently, miRNAs are widely used for understanding, diagnosing and treat-

ing various diseases, both in animals and plants. Abnormal expression levels of

certain miRNA (biomarkers) in different tissues or organs can indicate the pres-

ence of disease or cancer, helping in early diagnosis, which can be crucial for

an efficient treatment. By having a clear image of which miRNAs are involved

in certain processes, researchers can develop treatments, by controlling the up-

or downregulation of these miRNAs. Improving the current knowledge in this

area could become the basis for future medical research, which could make use of

more accurate information about organism-wide miRNA and sRNA interactions,

or individual specific details (for achieving personalised treatments).

Therefore, it is essential to continue researching miRNA discovery and analysis

methods. In the next chapter we will focus on giving a description of existing

miRNA detection software, together with a review of their performance. This is

relevant to our research, as we developed and tested our new algorithm, miRCat2,

which is the focus of this thesis, taking into consideration these previous tools

and their performance.
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Chapter 3

miRNA detection methods

3.1 Summary

This chapter gives a review of the more commonly used tools for novel miRNA

detection from HTS datasets (both for plants and animals). First, we describe the

most important features of each algorithm, focusing on miRCat and miRDeep2, to

understand how they perform miRNA prediction. Second, we give a comparison

of the tools performance, by analysing their results and assessing their sensitivity

and specificity rates, run time and memory consumption. We then present a

critique of these tools.

3.2 Overview

As miRNAs have been an important area of research over the last decade, a grow-

ing need to discover miRNA sequences and analyse their functions has arisen.

When HTS was introduced [138], it produced large amounts of data, which be-

came too much for manual processing. Biologists have asked for the help of

bioinformaticians, who started developing tools to analyse such data.

Several computational tools for identifying animal and/or plant miRNAs from

HTS data have been developed. Some of the more commonly used tools, in order

of appearance, are: miRDeep [149], miRCat [1, 4], miReap (http://mireap.source-

forge.net/), MIReNA [169], miRAnalyzer [170], miRDP (formerly known as miRDeep-
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P) [171], miREvo [172], deepBlockAlign [173], miRDeep2 [2], MaturePred [174],

miRDeep* [175], miRAuto [162], miRPlant [3], miR-PREFeR [176], Mirinho [177]

and miRA [178]. Links for their official download page, number of citations (ver-

ified on Friday 23rd September, 2016), type of interface and preferred organism

for each of these tools are presented in Table 3.1. There are tools that predict

miRNAs from other kinds of input data. For example, miRNA Digger [179] uses

degradome data. These kinds of tools are not directly comparable to the ones

mentioned above and we will not review them here.

Tool name Link Cited
Inter-
face

Orga-
nism

[149] miRDeep
*https://www.mdcberlin.de/8551903/en/research/research teams/
systems biology of gene regulatory elements/projects/miRDeep

678 CLI Animal

[1] miRCat http://srna-workbench.cmp.uea.ac.uk/tools/analysis-tools/mircat/ 281 Both Both
miReap http://sourceforge.net/projects/mireap/ N/A CLI Both
[169] MIReNA http://www.lgm.upmc.fr/mirena/index.html 87 CLI Both
[170] miRanalyzer http://bioinfo5.ugr.es/miRanalyzer/miRanalyzer.php 225 Both Both
[171] miRDP http://faculty.virginia.edu/lilab/miRDP/ 92 CLI Plant
[172] miREvo https://github.com/akahanaton/miREvo 28 Both Both
[173] deepBlockAlign http://rth.dk/resources/dba/ 13 CLI Both

[2] miRDeep2
https://www.mdcberlin.de/8551903/en/research/research teams/
systems biology of gene regulatory elements/projects/miRDeep

382 CLI Animal

[174] maturePred *http://nclab.hit.edu.cn/maturepred/ 33 CLI Plant
[175] miRDeep* http://www.australianprostatecentre.org/research/software/mirdeep-star 59 GUI Animal
[162] miRAuto *http://nature.snu.ac.kr/software/miRAuto.htm 2 GUI Plant
[3] miRPlant http://www.australianprostatecentre.org/research/software/mirplant 9 CLI Plant
[176] miR-Prefer http://www.cse.msu.edu/ leijikai/mir-prefer/ 10 CLI Plant
[177] Mirinho http://mirinho.gforge.inria.fr/ 1 CLI Both
[178] miRA https://github.com/mhuttner/miRA 0 CLI Plant
[179] miRNADigger http://www.bioinfolab.cn/ 0 CLI Both

Table 3.1: miRNA detection tools, links to their official page as declared in their
publication papers, number of citations as taken from Google Scholar on Friday
23rd September, 2016 and suitable organism to run on. * - link was not accessible on
checked date; interface type: CLI = Command Line Interface, GUI = Graphical User Interface.

To assess the performance of software tools, together with the strengths and

weaknesses of distinct algorithms, a series of metrics are generally used. When

predicting miRNAs, it is important to establish the number of real miRNAs

detected, often referred to as true positives (TP), the number of false predictions,

called false positives (FP), the number of miRNAs that were present in the input

dataset but not detected - false negatives (FN) and the number of sRNAs not

predicted that are not miRNAs - true negatives (TN).

Using these concepts, we define the following metrics for assessing the perfor-

mance of software tools:

• Sensitivity (sometimes also called recall) - is the number of predicted miRNA
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from reference dataset (eg. miRBase) divided by the total number of miRNA

reads from miRBase, present in the file.

The formula for sensitivity is: TP / (TP + FN).

• Specificity (sometimes also called precision) - is the number of predicted miRNA

in miRBase out of the total number of predicted miRNAs.

The formula for specificity is: TP / (TP + FP).

• Accuracy - is the number of total sequences that are well classified (predicted

true miRNAs and unpredicted true negatives) divided by the total number of

sequences in the input dataset.

The formula for accuracy is: TP + TN / (TP + FP + TN + FN).

The miRNA detection tools mentioned above have different approaches in

selecting their miRNA candidates, and also tend to generate distinct results.

Reviews show that many suffer from high false positives and negatives, lack of

consistency across species and high runtime and memory consumption [180–182].

These are indicators that improvements to such software are required or new

software needs to be developed.

Consequently, we have developed a new piece of software, miRCat2, as a

complete redesign of the miRCat algorithm and also including useful features

inspired from the miRDeep2 algorithm; therefore it is important to understand

how these two pieces of software work. By analysing their algorithms in more

detail, we were able to identify their strengths and weaknesses, which enabled us

to improve on their results and performances.

In this chapter we give a brief overview for each of the above existing miRNA

detection methods, focusing more deeply on miRCat and miRDeep2. We then

give a short review for the most relevant tools for this thesis.
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3.3 Algorithm description of miRNA detection

tools

3.3.1 miRCat

Here we give a review of the miRCat tool, as found in UEA small RNA Workbench

v3.2 [4]. miRCat [1, 4] is a sRNA analysis tool that predicts miRNAs from HTS

datasets, both in animals and plants. It is included in the UEA small RNA

Workbench [4], which is a collection of tools designed for the processing and

analysis of sRNA data. The Workbench includes helper tools (Adapter Removal,

Filter, Sequence Alignment), analysis tools (miRCat [1], miRProf, SiLoCo [1],

ta-siRNA prediction [1], PAREsnip [183], CoLide [184]) and visualisation tools

(RNA/Folding Annotation, VisSR). The UEA Small RNA Workbench can be run

on any operating system running Java (Windows, Linux and Mac OSX), and has

a user-friendly graphical interface or can be run from the command line.

miRCat receives two files as input: the reference genome of the studied or-

ganism and the sRNA sequence file in FASTA or PatMaN format. If the file is in

FASTA format, before processing, miRCat maps the sRNA sequences full length

to the genome. To do this, it uses PatMaN [153] (PatMaN is provided in the

dependencies archive for the tool-kit).

miRCat has two sets of default values for the parameters, one for animals

and one for plants, the values being customisable from the GUI or provided as a

configuration file in command-line mode.

The workflow of the algorithm of miRCat is summarised in Figure 3.1. Now

we present a more detailed description of its key features, as this is important

later on.

1. Candidate selection

After the input files are processed and the sRNA reads are mapped to the genome,

miRCat looks for genomic regions that have sRNAs aligned to them (sRNA loci),

containing at least one read with abundance (or read count) equal to or greater

than min abundance parameter (default five).

These loci need to meet the following criteria to be considered to contain
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genome.fa reads.fa reads.pat

(1) Candidate selection: forming clusters based on 

proximity and selecting the most abundant sRNA

(2) Compute secondary structure: create and fold 

pre-miRNAs by flanking the candidate with windows 

of various sizes

(3) Filter folds: hairpin structure and quality

Visual results predictions.csv predictions.fa

or

Figure 3.1: Flowchart diagram representing the miRCat algorithm.

a potential miRNA precursors. Firstly, each sRNA in a loci must be no more

than 50 (animals) or 200 (plants) nts away from its closest neighbour (hit dist

parameter). This way, adjacent loci are always separated by at least hit dist

nts, while sRNAs inside a cluster are situated closer on the genomic location.

Secondly, at least 90% of sRNAs in a cluster must have the same genomic orien-

tation (percent orientation). This is necessary because only on rare cases there

are equal amount of sense and antisense matches on a real miRNA precursor,

as usually the miRNA and miRNA* come from the same strand and should be

highly expressed [185].

Once a list of loci has been produced, these are further analysed to find likely

miRNA candidates. For each locus, the most abundant sRNA read is selected as

the likely miRNA. If the selected sRNA has the standard miRNA-like features,

such as the length between accepted values (min length, max length), a mini-

mum percent of G and C nts in its composition (min gc), and does not match

the genome more then genome hits times, then the software proceeds to check if

it is a true miRNA.
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2. Computing the secondary structure

Fourteen flanking sequences of different sizes (from 10 to 200 nts, empirically

determined), surrounding the sRNA on both sides are extracted from the genome

to create pre-miRNA candidates (see Figure 3.2). The flanking sequences together

with the miRNA candidate form windows of sequences of various lengths that are

later checked for the optimal secondary structures.

10 200

100 50
7575

Flanking 
windows

Genome

miRNA candidate

Excised 
precursors

Genome

miRNA candidate

Figure 3.2: Determining the secondary structure of the candidate miRNA in miR-
Cat. Multiple flanking sequences of varying lengths are used to obtain the potential precursors,
which are then folded and further processed.

Each sequence window is then folded using the RNAFold tool from the Vi-

ennaRNA package [154], producing a MFE secondary structure for the putative

miRNA. Each folded hairpin is being divided in three parts: 5’ flank (before

miRNA - could contain miRNA* and loop), miRNA, 3’ flank (after miRNA -

could contain miRNA* and loop), on which further filters are applied.

3. Folds filtering

miRCat computes discriminative features on the trimmed secondary structure

that are useful for classifying miRNAs. The most important features are:

• The number of consecutive gaps and/or mismatches between miRNA and

miRNA* must be no more than max gaps (default 3): miRNA and miRNA*

should not contain bulges larger than 3 nts [15, 65];

• The number of paired nucleotides between the miRNA and the miRNA* must

be at least min paired (17) of the 25 nucleotides centred around the miRNA

[114];

• The length of the hairpin must be at least min hairpin len (75nt for plants

and 50nt for animals), to ensure there is enough space for all miRNA biogenesis
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products (miRNA, miRNA*, loop, 3’ and 5’ overhang) [15, 114];

• The percentage of paired bases in the hairpin must be at leastmax percent unpaired

(50%) of base-pairs in the hairpin [114];

• The miRNA and miRNA* should never basepair with itself and should not

contain loops [15];

• If the hairpin structure is not perfect, then it checks to see if it should allow

complex loops (more than one bulge, pairing nts inside loop) [53, 111–113].

The adjusted minimum free energy per 100 nts (AMFE, AMFE = MFE
length of hairpin

∗
100) is then computed for the potential precursors that pass the above criteria,

to get a comparable measurement of a hairpins MFE. If the AMFE is below the

mfe param, the hairpin information is stored. Because miRNA precursors are

very stable [35], miRCat selects then the hairpin with the lowest AMFE as the

pre-miRNA candidate [65], which guarantees is the most stable secondary struc-

ture for the candidate. On this hairpin it validates the miRNA*: it finds the

possible locations of the miRNA* in the hairpin, checks the properties (no pairs

inside the sequence, minimum number of gaps, minimum no of nts paired) and

looks for its sequence among the input reads.

The total abundance for the miRNA and miRNA* from overlapping sequences

are added and their percent out of the sum of all sequences on the hairpin should

be less than the overlap parameter. This is done to ensure that the miRNA and

miRNA* locus is clearly defined and the reads do not map randomly over the

precursor.

The pre-miRNA candidate is then tested using RANDFold [155], checking if

its p-value provides statistical evidence that it is a miRNA precursor.

miRCat then outputs the information about the sequences and precursors

that passed all filters in the GUI, the user having the option of saving it to a file

(csv, FASTA).

3.3.2 miRDeep2

miRDeep2 is a sRNA analysis software tool that predicts miRNAs for animal or-

ganisms from high-throughput sequencing datasets [2]. It is built on the original
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miRDeep algorithm [149] (which is presented in Figure 3.3), adding additional fea-

tures and packages. There are several versions of miRDeep/miRDeep2, developed

and adapted by various research groups: miRDeep* [175] has a graphical user in-

terface and is used for animals, while miRDP [171] and miRPlant [3] adapted the

miRDeep algorithm for plants. These tools are explained in more detail in the

following subsections.

Figure 3.3: Flowchart diagram representing the miRDeep algorithm. Reprinted by permission
from Macmillan Publishers Ltd: Nature Biotechnology [149], copyright 2008.

As input, miRDeep2 receives a sRNA sequence file in redundant format (FASTA),

the genome of the species to be analysed (FASTA) and a file of the reads mapped

to the genome (arf format). The arf mapped file is obtained by mapping the

reads to the genome using the alignment algorithm Bowtie [186] and the mapper

tool provided in the miRDeep2 package. Optionally, the software also takes files

containing miRNA precursors, mature miRNAs for that species or for related

species (FASTA).
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Now we present the miRDeep2 algorithm in more detail.

1. Excising precursors

After the input files are read, the algorithm first parses the reads on the genome

and discards the “false reads”: it keeps only the sRNAs with length >18 nts that

map less than or equal to 5 times to the genome.

In the second step, for every sRNA, it looks 70 nts downstream on the genome

and if it encounters a read with higher counts, this sRNA is chosen. This is done

iteratively until no higher read stack is found, this way selecting the sRNA with

highest local abundance. For that read it obtains the precursor sequence by

excising twice: once including 70 nts upstream and 20 nts downstream flanking

sequences, and once 20 nts upstream and 70 nts downstream (see Figure 3.4).

70 20
7020

Flanking 
windows

Genome

miRNA candidate

Excised 
precursors

Genome

miRNA candidate

Figure 3.4: Selecting the potential precursor sequences in miRDeep2.

Thirdly, it maps all the reads to the previously excised precursors using Bowtie

[186]. If the optional files are given, miRDeep2 also maps the referenced mature

miRNAs to the precursors.

In the fourth step, the precursors are then folded using the RNAFold tool [154]

and the software analyses that the folds are consistent with miRNA biogenesis,

by applying a filtering step that discards potential precursors that do not have

a hairpin structure. For the remaining hairpins, optionally, randfold p-values are

calculated.

Further computations are performed on these precursors to select which might

correspond to bona-fide miRNAs (true miRNAs).

2. Core algorithm
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For the selected potential precursors, miRDeep2 then probabilistically integrates

HTS information based on a simple model for miRNA precursor processing by

Dicer. If a sequence is an actual miRNA precursor that is expressed in the HTS

sample, then one expects that one or more HTS reads correspond to one or more

of the three Dicer products: the mature miRNA sequence, the miRNA* sequence

and the loop [149].

If a file with already known miRNAs for the species is given, it defines a set

of seeds by selecting the first 7 positions of each known miRNA.

The precursors are processed using the following routine.

For each precursor it identifies the sequence corresponding to a mature miRNA,

miRNA* and loop and records its start and end positions, strand and frequency.

Then, the precursors need to pass a series of filters: all parts of the hairpin

(miRNA, miRNA* and loop) need to be identifiable; it must present no bifurca-

tions (additional hairpins on the structure); there should be a minimum of 60%

base pairing in the duplex; there should be not more than 6 nts between the

mature miRNA and the miRNA* in length; the reads mapped to the miRNA

location should be not longer than 25; the reads corresponding to the miRNA*

should be aligned where expected (± 1 nt) and 90% of the reads must map in

consistence with the Dicer processing (the three Dicer products should be clearly

delimited).

The precursors that pass the filtering step are then tested further, by com-

puting a probabilistic score for the combined compatibility of MFE, frequencies

of reads and positioning in correspondence with Dicer processing. A number of

features contribute to the score.

The basic score [149] is calculated by fitting the values from the MFE of the

hairpin and the total frequency of the miRNA, miRNA* and loop into a Gumbel

distribution [187]. The Gumbel distribution is used in statistics to predict the

chance that an event will occur, based on a number of previous samples of vari-

ous distributions. The parameters to create the Gumbel distribution describing

miRNA precursors were generated using data from C. elegans real miRNA pre-

cursors. The value given by checking the candidate hairpin against the Gumbel

distribution represents the probability of it being a real miRNA precursor. If how-

ever, the miRNA* sequence is missing, miRDeep2 then reduces the basic score
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to 0, because a strong miRNA candidate would also have the miRNA* sequence

expressed in the sample.

A series of predefined values are then added to the basic score in each of the

following cases: if the seed is preserved (the seed is made of the first 7 characters

of a miRNA; the presence of a seed will greatly contribute to the score, but its

absence will not be decisive), if the miRNA* is present and begins where expected

and if the RANDFold p-value is significant.

If the score is greater than a threshold (e.g. score >50), then the sequence is

considered a miRNA.

3.3.3 miRDP

miRDP [171], formerly known as miRDeep-P, is based on the core algorithm

of miRDeep, but has been adapted to work on plants. The flanking sequence

for excising precursors was extended to 250, to accommodate the longer plant

secondary structures. These are then processed by the miRDeep core algorithm

with a plant-specific scoring system. Additional filters for plant-specific criteria

based on known characteristics of plant miRNA genes are then applied.

3.3.4 miREvo

miREvo [172] is built on the miRDeep2 predictor and is suitable for both plant

and animal data. SmiREvo extends the miRDeep2 algorithm for evolutionary

analyses. Specifically, it uses whole-genome alignments to identify miRNA homo-

logues in related species. It also includes tools to compare expression of miRNA

homologues across species, if sRNA sequencing data are available for both species.

It uses modified prediction parameters for plant analyses.

3.3.5 miRDeep*

miRDeep* [175] is a tool with user-friendly graphic interface modelled on miRD-

eep, with improved precision of detecting novel miRNAs [175]. It introduces

new strategies for preprocessing and identifying precursor miRNAs (improved
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precursor excision), Bowtie mapping and target prediction for known and novel

miRNAs. The tool is implemented entirely in Java without requiring any pre-

dependent computational tools, making it portable and easy to install. The

computational efficiency allows it run on a desktop computer.

3.3.6 miRPlant

miRPlant [3] is a plant miRNA detection tool built on the miRDeep*, miRDeep

and miRDP tools, providing a user-friendly interface. It has customisable param-

eter set-up, an improved method of pre-miRNA selection and allows for internal

loops (multiple loops between miRNA and miRNA*), which contributed to at

least a 10% improvement in specificity compared to miRDP [3].

3.3.7 miReap

miReap (http://sourceforge.net/projects/mireap/) combines sRNA position and

depth with a model of microRNA biogenesis to discover miRNAs from HTS sRNA

libraries. miReap is a command line tool and takes as input a sRNA file (FASTA),

a file containing sRNA mapping information and the reference genome (FASTA).

The format of the sRNA mapping file should be read ID, chr ID, start, end,

strand(+/-)(delimited by tab or space), although it does not provide a tool for

obtaining the mapped file in the required format. miReap does not have extensive

documentation, being unclear for which Kingdom it was designed, but has been

previously used both on animal [180] and plant data [188–190].

miReap classifies a stem-loop hairpin as a typical pre-miRNA only when it sat-

isfied the following criteria [191]: mature miRNAs were present in one arm of the

hairpin precursors, which lacked large internal loops or bulges, and the secondary

structures of the hairpins were steady, with the free energy of hybridization less

than 20 kcal/mol.

3.3.8 MIReNA

MIReNA [169] can find miRNAs at the genome scale and from deep sequencing

data. It uses a rule-based scheme with sharp cut-offs with only five parameters to
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identify pre-miRNA/miRNA pairs. The rules are based on the following features:

the lack of base pairing in the mature miRNA, the difference in length between

the two candidate miRNA strands, the fraction of base-paired nucleotides in

the hairpin, and two measures of energetic stability. As a second filtering step,

it considers only hairpins where the sequenced RNAs map in consistence with

Drosha/Dicer processing and it can consider several potential miRNA duplexes

within one precursor structure.

It can handle four kinds of data (known miRNAs, deep sequencing data, po-

tential miRNAs occurring in long sequences, and putative pre-miRNAs containing

potential miRNAs).

3.3.9 miRanalyzer

miRanalyzer [170] first removes reads that map to known miRNAs or other tran-

scripts, considering only the remaining reads as new miRNAs. miRanalyzer uses

Bowtie [186] to map input reads to the target genome. It implements a machine

learning algorithm based on the random forest classifier that is initially trained

on a set of known miRNAs from human, rat or nematode. It considers features

like: energetics, structure, bulges and number of mapped reads. The tool has

fitted parameters for each species analysed (31 commonly used species, including

6 plants). It can also perform differential expression analysis and predict targets

using the TargetSpy tool [192].

miRanalyzer is available through a web server and also as a stand-alone ver-

sion that can be run on local machines. Apart from specifying the number of

allowable mismatches, and the acceptable P level for a credible prediction, the

user, however, is restricted from making any other parameter changes in the

algorithm.

3.3.10 deepBlockAlign

deepBlockAlign [173] provides a scoring of the read signature (read alignment and

counts), but does not evaluate the RNA structure. It uses a variant of Needleman-

Wunsch algorithm (an alignment algorithm for sequence data) [193] to identify

blocks of mapped reads that have similar features, including read begin positions
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and block height (block read count). In a second step, similar groups of blocks

are identified using a variant of the Sankoff algorithm (an alignment algorithm

for blocks of sequences) [194]. These groups of blocks should correspond to gene

loci. To predict novel miRNAs, the method finds loci that have block features

similar to known miRNAs.

While the profiles might be different for plants and animals, or specific to par-

ticular tissues or pathological conditions, the method can compare to all known

profiles from the entire miRBase database of miRNAs, giving it good coverage.

Since this method does not evaluate the RNA structure, it can predict miR-

NAs that do not have canonical structure, or whose conformation is not easily

predicted by computational methods.

3.3.11 MaturePred

MaturePred [174] is a plant specific miRNA prediction algorithm, which regards

the miRNA/miRNA* duplexes as a whole to capture more of its characteristics

and constructs a model based on SVM (support vector machines, a supervised

learning approach) to predict the position of miRNAs inside their precursors.

The proposed model considers in a total of 160 features, ranging from position-

specific features of a single nucleotide to structure-related, energy-related and

stability-related features.

3.3.12 miRAuto

miRAuto [162] is a tool that can be used to predict plant miRNA, providing a

user-friendly interface and integrated analysis. miRAuto uses database informa-

tion and predicted/statistical approaches to make its predictions, which provide

reliable results in both model and non-model plant species for conserved and novel

miRNAs [162]. miRAuto chooses its candidates based on expression analysis of

the 5’-end position of mapped small RNAs in reference sequences, to prevent the

possibility of mRNA fragments being included as candidate miRNAs.
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3.3.13 miR-PREFeR

miR-PREFeR [176] takes a genome file of a species and one or multiple sRNA

read alignment files (SAM format) of the same species as input.

The pipeline first generates candidate regions and candidate mature sequences

of each candidate region based on the alignment depth. In the next step, these

regions are folded using RNALfold. Regions with qualified stem-loop structures

are then examined using published plant miRNA annotation criteria: the sRNA

data should provide evidence of precise miRNA/miRNA* excision, criteria re-

lated to structure characteristics of the miRNA/miRNA* duplex. In addition,

expression information from multiple sRNA data samples is also used to improve

the accuracy of the prediction.

By default, the pipeline makes a checkpoint after each major step of a job,

and makes checkpoints periodically within the time-consuming folding stage. This

provides users an easy way to restart unfinished jobs. By restarting a job from the

latest checkpoint other than starting it from the beginning, a lot of time/resources

can be saved for long-running jobs on large plant genomes.

3.3.14 Mirinho

Mirinho [177] is a plant miRNA detection tool that detects pre-miRNA both with

or without an input sRNA file. It offers a novel alternative to a classical MFE

folder based on a thermodynamic Nearest-Neighbour (NN) model for computing

the MFE and predicting the classical hairpin structure of a pre-miRNA. The

free energies thus computed correlate well with those of RNAfold [154], but the

method has quadratic instead of cubic complexity and is much more efficient

in practice [177]. Mirinho uses only knowledge of the length of the loop and

stem-arms and the MFE of the pre-miRNA hairpin to classify miRNAs.

3.3.15 miRA

miRA [178] can be used to identify miRNA precursors in plants. It requires an

aligned sRNA file (SAM format) and a corresponding reference genome (FASTA

format), and evaluates precursor secondary structures and precursor processing
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accuracy. It does not require cross-species miRNA sequence conservation and

it allows for a heterogeneous miRNA precursor population (non-characteristic

secondary structures).

The miRNA detection is based first on identify genomic contigs based on

sRNA sequencing data; secondly, analysing secondary structures for every clus-

ter; lastly, verifying that RNA sequencing data-based read coverage of miRNA

precursor candidates is consistent with miRNA precursor processing resulting in

the expression of one or more mature/star miRNA duplexes.

3.4 Performance of existing miRNA detection

tools

To chose the method of miRNA detection that is appropriate for a specific ex-

periment, we need to better understand their performance. In some cases, the

user might want to get a set of results in the fastest way, other times they would

choose a method with higher accuracy even if it could run for days or weeks.

Some users are constricted by low RAM and need a tool without many technical

requirements, other times they can make full use of high performance computing

facilities.

Here we review the performance of the tools described above to give a better

idea which tool is most suitable for which cases. This will be important for the

design of our new tool.

1) miRCat was originally tested on several high-throughput plant sRNA datasets

and showed high levels of both sensitivity and specificity [1]. In an Arabidopsis

leaf dataset, miRCat predicted 89 miRNA loci using default parameters (83 of

these were known miRNA sequences and 6 were novel miRNA loci), while there

were 91 known miRNA loci with a sRNA abundance of five or more (default

threshold for miRCat) in the dataset. This showed 91.2% sensitivity and, even if

all novel predictions are considered FP, this would give a specificity of 99.93%.

We have compared miRCat to miRDeep2 on zebrafish data, using default pa-

rameters, and produced a Venn diagram, showing the intersection between the
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Figure 3.5: Venn diagram of miRCat and miRDeep2 predictions on zebrafish data.
Figure shows all miRCat and miRDeep2 predictions and their overlap with miRBase miRNAs.

two software tools and the miRBase annotations (Figure 3.5). Both tools detect

high numbers of miRBase miRNAs, miRDeep2 having 39 additional miRBase

predictions. Although there is a considerable overlap between the two tools, both

for known (120 miRNAs) and novel predictions (243 miNRAs), their results show

different numbers for both cases.

2) In the paper publishing miRA [178], the tool is compared to two plant tools:

miR-Prefer and miRDP. For each method and dataset they calculate the recall

rate (i.e. sensitivity or true positive rate) RR = TP/(TP + FN). Some of their

results are presented in Table 3.2 [178].

For both Chlamydomonas reinhardtii datasets, miRA recall rates are over

80%, the reference set being taken from a study publishing miRNAs in C. rein-

hardtii [195]. The larger number of novel miRNAs derived from the data in

Set1 compared to those from Set2 is related to the larger sequencing depth of

the former (see Table 3.2). Recall rates for miRDP and miR-PREFeR are sig-

nificantly smaller, dropping below 50% in some cases; in a direct comparison of

miRDP and miR-PREFeR, the former seems to perform better with low sequenc-

ing depth data, while miR-PREFeR outperforms miRDP with deeper sequencing

data.

The Arabidopsis thaliana results are compared to miRBase, and the recall

rates of miRA and miR-PREFeR are near identical, with miRA predicting more

50



novel miRNAs, indicating possibly more FP. This is believed to be related to

miR-PREFeR’s requirement of the existence of star-sequence associated reads,

whereas miRA does not impose a minimum expression threshold on the star se-

quence. The performance of miRDP is significantly lower than that of miRA and

miR-PREFeR, having low RR rate and high number of novel predictions.

Organism Method Nref Nrecall RR Ntot
Chlamydomonas reinhardtii
Set1 miRA 47 39 0.83 281
Set1 miRDP 47 14 0.3 964
Set1 miR-PREFeR 47 29 0.62 60
Set2 miRA 15 12 0.8 175
Set2 miRDP 15 7 0.47 51
Set2 miR-PREFeR 15 3 0.2 6
Arabidopsis thaliana
Set1 miRA 246 122 0.5 517
Set1 miRDP 246 80 0.12 695
Set1 miR-PREFeR 246 119 0.48 138

Conserved miRNA candidates - miRBase Conserved miRNA candidates - PMRD

Novel miRNA candidates

miRAuto

miRDP miREvo

miRAuto

miRDP miREvo

miRAuto

miRDP miREvo

4

4
20

5

0 3 2

7

3
18

0

0 5 2

139

4
5

18

18 1 21

Table 3.2: Performance comparison of
miRA, miRDP, and miR-PREFeR. Nref
is number of known miRNAs for the organism.
Nrecall gives the number of identified known
miRNAs. RR is the recall rate (sensitivity).
Ntot gives the total number of identified miR-
NAs. This is reproduced from [178].

Figure 3.6: Venn diagrams comparing the
performance of miRAuto, miRDP and
miREvo. The results are shown for miR-
Base and PMRD miRNAs and novel predic-
tions. This is reproduced from [162]

3) miRAuto was compared in its paper [162] to miRDP and miREvo, using sRNA

sequencing data from hot pepper fruit tissue (Capsicum annuum).

In the comparison test, small RNAs with a count of 500 or higher and 18-25 nt

in length were selectively chosen to determine the number of miRNA candidates

predicted by all three programs (see Figure 3.6). The results were compared to

annotated sequences from miRBase and PMRD [196] databases.

A total of 38 and 35 miRNAs from each database, respectively, were pre-

dicted by the three programs. Among these, 20 (52.6%, miRBase) and 18 (51.4%,

PMRD) miRNAs were predicted by all three programs, suggesting that miRAuto

performs comparably to the other two programs. For novel miRNA candidates,

a total of 206 miRNAs were predicted by the three programs. Of these, 5 (2.4%)

miRNAs were commonly predicted by all three programs, and 23 (11.2%) and

9 (4.4%) miRNAs from miRAuto/miREvo and miRAuto/miRDP, respectively.
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miRAuto predicted a higher number of novel miRNA candidates (but possible

false positives).

4) miRDeep* has benchmarked its sensitivity and specificity in detecting mature

miRNAs against miRDeep, miRDeep2, miRanalyzer, and MIReNA [175], on two

datasets, mock-treated and R1881-treated LNCaP cells (human prostate cancer

cells). For the number of predictions for each of these tools see Table 3.3.

miRDeep* miRDeep2 miRDeep miRanalyzer MIReNA
Mock treated
Known miRNA in raw RNAseq reads 240 240 240 240 240
No. predicted miRs 208 272 203 1063 162
No. predicted miRs in miRBase 173 208 164 215 77
No. predicted novel miRs 35 64 39 848 85
Precision 83.17% 76.47% 80.79% 20.23% 47.53%
Recall 72.08% 86.67% 68.33% 89.58% 32.08%
R1881 treated
Known miRNA in raw RNAseq reads 285 285 285 285 285
No. predicted miRs 237 320 235 1321 190
No. predicted miRs in miRBase 192 229 180 261 88
No. predicted novel miRs 45 91 55 1060 102
Precision 81.01% 71.56% 76.60% 19.76% 46.32%
Recall 67.37% 80.35% 63.16% 91.58% 30.88%

Table 3.3: Comparative analysis of the sensitivity and specificity of miRDeep*,
against miRDeep2, miRDeep, miRanalyzer and MIReNA. Precision = Number of
predicted miRNA in miRBase/Number of predicted miRNA. Recall = Number of predicted
miRNA in miRBase/RNAseq reads found in miRBase. This is reproduced from [175].

The majority of the highest scoring miRNAs from the results of miRDeep*,

miRDeep2 and miRDeep, are already in miRBase, and thus more likely to be

bona-fide miRNA. miRanalyzer output approximately five times more predic-

tions compared with miRDeep*, miRDeep2 and miRDeep, although had a higher

proportion of novel miRNA with higher number of reads. MIReNA predicted an

overall small number of miRNAs, but many of them are not in miRBase, both

the precision and recall of MIReNA being lower than that of miRDeep*.

In terms of precision, miRanalyzer had the lowest value with only 19.76% and

20.23%. This indicates that ∼80% of the miRNA predicted by miRanalyzer are

novel and without any validation. The precision for miRDeep* and miRDeep

was >70%, with miRDeep* having a 2.9% and 5.8% higher percentage for the

mock-treated and R1881-treated datasets, respectively (see Table 3.3).
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miRDeep* also slightly outperformed miRDeep in detecting validated miRNA

with 5.5% and 6.7% higher recall. Interestingly, miRDeep2 had lower precision

(76.47% and 71.56%) compared with the original miRDeep and miRDeep*, but

had higher recall ratio (86.67% and 80.35%).

Some miRNA, such as miR-25 and miR-200a, were found to be highly ex-

pressed in the LNCaP dataset, but were not detected by miRDeep due to im-

proper excision of the pre-miRNA region in those algorithms.

miRDeep* and miRDeep2 were also compared on data generated before and

after inducing anti-dicer in MCF-7 cells to turn off the miRNA biogenesis path-

way. The novel miRNAs predicted by miRDeep* have a lower average log(FC)

(fold change) compared with miRDeep2, which demonstrates that these novel

predictions are more likely to be generated from the miRNA biogenesis pathway.

This is further supported as the percentage of miRNA with a negative fold change

after Dicer knock-down, is greater than that of miRDeep2. However, miRDeep2

was able to predict more novel miRNA than miRDeep*.

5) MIReNA is compared with miRDeep in its paper [169], using C. elegans and

H. sapiens data. MIReNA provides a slightly lower number of predictions with

a lower sensitivity against a higher signal-to-noise ratio than miRDeep (see Ta-

ble 3.4), but overall the two tools appear complementary: by running MIReNA

one can recover a number of miRNAs in miRBase, which have been missed by

miRDeep and vice versa. MIReNA predicts 5 (4 of which are MIReNA specific)

new pre-miRNAs for C. elegans and 63 (29 of which are MIReNA specific) for H.

sapiens ; miRDeep predicts 1 (non-specific) novel pre-miRNA for C. elegans and

64 (30 of which are miRDeep specific) for H. sapiens.

This might appear because of the different ways of the potential miRNA selec-

tion between MIReNA and miRDeep at the beginning of the algorithm, that for

MIReNA is less restrictive. MIReNA accepts pre-miRNA/miRNA pairs where

each miRNA matches a read in the dataset, while miRDeep only considers those

pairs where the miRNA is most represented by reads matching the pre-miRNA.

This means that for the same pre-miRNA, MIReNA may consider several pre-

miRNA/miRNA pairs, whereas miRDeep considers only one. Another main dif-

ference is in the second filtering step of MIReNA, which considers the same ideas
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Homo sapiens

Method
Pred
precs

Sens
Signal
to
noise

Specif
in
mirbase

new precs

All Specif

miRDeep 284 70.55 08:01 31 64 30
MIReNA 266 64.42 09:01 11 63 29

Caenorhabditis elegans

Method
Pred
precs

Sens
Signal
to
noise

Specif
in
mirbase

new precs

All Specif

miRDeep 120 85.51 12:01 10 1 0
MIReNA 116 79.71 17:01 2 5 4

Table 3.4: Comparison of MIReNA and miRDeep. The table shows the number of
predicted precursors (2nd column), sensitivity (3rd), signal-to-noise ratio (4th), number of
specific (that is, captured by one method but missed by the other) miRNAs in miRbase (5th),
total number of new predicted precursors (6th) and number of new specific predicted precursors
(7th). An exact match with the miRNA in miRbase or with a read is required for the results
in the last three columns. This table was reproduced from [169].

Rice DS1 Rice DS2 A. thaliana M. truncatula P. persica
Tool miRDP miRPlant miRDP miRPlant miRDP miRPlant miRDP miRPlant miRDP miRPlant
Precision 0.82 (31/38) 0.95 (36/38) 0.7 (44/63) 0.83 (52/63) 0.405 0.51 0.22 0.66 0.2 0.55
Recall 0.22 (31/144) 0.25(36/144) 0.24 (44/181) 0.29 (52/181) 0.35 0.65 0.1 0.325 0.29 0.65

Table 3.5: Comparison of performance for miRPlant and miRDP tools. Precision
= known miRNAs/predicted miRNAs. Recall = known miRNAs/total known miRNAs. This
table was reproduced from [3].

used in miRDeep but encodes them in a set of combinatorial rules instead of

defining a probabilistic model.

6) miRPlant was benchmarked against miRDP in its publication [3]. They have

been tested on rice (two datasets), Arabidopsis thaliana, Medicago truncatula

and Prunus persica (see Table 3.5). In rice, miRPlant has better performance

than miRDP (because miRPlant uses a flexible method to form the precursor

candidates from the genomic region surrounding the sRNA reads).

For the next three organisms, the predicted miRNAs were ranked in descend-

ing order of score for each tool, and then the top 100 miRNAs from miRPlant and

miRDP were chosen for comparison. Table 3.5 shows that miRPlant consistently

outperforms the former tool in all samples.

7) miR-Prefer has been compared to mirDP, miRanalyzer, mirDeep2, mirDeep*

and MIReNA [176], Table 3.6 shows the performance of each of these tools on

two A. thaliana datasets.

miRanalyzer has the best sensitivity (explicable by the fact that it tries to

detect annotated miRNAs that are saved in its own database), but the numbers

of predictions are large on both datasets, most of these predictions are likely to be
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Dataset miR-PREFeR miRDP miRanalyzer miRDeep2 miRDeep* MIReNA
Athl-2 (two samples. Number of known miRNAs expressed 240)

Number of predicted miRs 155 1263 2182 182 2018 152
Number of expressed miRs predicted 127 86 201 64 10 35
Number of novel predictions 28 1177 1981 118 2008 117
Sensitivity 0.53 0.36 0.84 0.27 0.04 0.15

Athl-6 (six samples. Number of known miRNAs expressed: 243)
Number of predicted miRs 185 3021 13114 291 1472 411
Number of expressed miRs predicted 136 128 209 79 7 44
Number of novel predictions 49 2893 12306 212 1465 367
Sensitivity 0.56 0.53 0.86 0.33 0.03 0.18

Table 3.6: Performance comparison of miR-PREFeR, miRDP, miRanalyzer, miRD-
eep2, miRDeep* and MIReNA. A miRNA is considered to be expressed in the input dataset
if at least 20 reads were mapped to the miRNA precursor region in the dataset.

FP. miRDeep2, miRDeep* and MIReNA have low sensitivity on both datasets,

which indicates that they should not be used for annotating plant miRNA (they

were originally designed for animal data).

miR-PREFeR has the second highest sensitivity and low FP rate, most of its

predictions corresponding to previously annotated miRNAs. In all, 77.8% of the

predicted miRNAs by miR-PREFeR have the same start positions and 81% of

the predictions have the same lengths as the annotations. On the other hand,

other tools show much lower consistency with previously annotated miRNAs.

In terms of time and memory resources, miR-PREFeR achieves the fastest

runtime, while miRDP and MIReNA have long running time on both datasets.

Without manually paralleling the jobs, it is even difficult to run the two tools on

small genomes on a personal computer. miR-PREFeR uses less memory than the

other tools on both datasets.

8) A software comparison between miRDeep, miRDeep2 and miRanalyzer [181]

showed a >80% similarity of known miRNAs in each of the six biological datasets

tested upon (see Figure 3.7). The datasets are: neuroblastoma cell line, blood cell

line (PMBC), a chronic myelogenous leukemia cell line (K562), acute promyeloge-

nous leukemia cell line (HL60), a breast cancer cell line and a simulated dataset

(created using Flux Simulator [197], adding 100 known miRNAs that were ‘spiked

in’ randomly at a prevalence of 0.1%). The tools are also compared to DSAP

[198], which predicts only known miRNA signatures, so its performance will not

be covered here.
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Figure 3.7: Total numbers of miRNAs detected by miRanalyzer, DSAP, miRDeep
and miRDeep2 already identified in MiRBase. [181], by permission of Oxford University
Press.

Figure 3.8: Total numbers of novel miRNAs detected by miRanalyzer, miRDeep and
miRDeep2. [181], by permission of Oxford University Press.
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Dataset miRAnalyzer miRDeep miRDeep2
PMBC1 12 13 3
PMBC2 7 8 2.5
NB 7 9 4
K562 5 13 3
HL60 8 10 2.5
Breast Cancer 5 8 2
Simulated 13 12 3

Figure 3.9: ROC curve on performance of
miRDeep/miRDeep2 and miRanalyzer,
generated using simulated data. [181], by
permission of Oxford University Press.

Table 3.7: Calculation time in hours taken
by miRDeep, miRDeep2 and miRana-
lyzer to complete their analysis. This was
reproduced from [181].

In all cases, except the neuroblastoma dataset and the simulated dataset,

miRDeep2 generated slightly higher numbers of known miRNAs and the addi-

tional miRNAs identified were most often a miRNA from the same family and/or

precursor sequence. In the case of the novel miRNA candidates, however, there

was a lower percent overlap in the predictions; particularly, between miRAnalyzer

and miRDeep/miRDeep2 suggesting that perhaps in comparison to miRDeep,

miRAnalyzer is better suited to detect low-expressed candidates (see Figure 3.8).

Another experiment was conducted on the simulated dataset. The tools were

tested to have predicted the miRNAs at their correct mapping locations. ROC

curves were generated for the simulated dataset. ROC curves [199] are created

by plotting the TP against the FP at various threshold settings for the software

parameters, thus presenting the sensitivity as a function of FP. ROC analysis can

be used as a tool for selecting an optimal model for parameters, which would

assure the best output performance.

The ROC curves in Figure 3.9 show that miRDeep/miRDeep2 have slightly

better levels of specificity than miRanalyzer and DSAP. Based on the simula-

tion data, accuracy levels for each test were calculated at 80.4% and 75.4% for

miRDeep and miRDeep2, and 68.3% for miRanalyzer.

To determine how effective the programs were at identifying novel miRNAs,
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the study chose predictions that overlapped in each of the four programs from

the neuroblastoma dataset and validated them with Taqman RT-PCR (laboratory

technique that monitors in real-time the amplification of targeted DNA molecule).

Of the 16 overlapping predictions, 12 novel miRNAs were validated successfully.

However, the hairpins predicted by miRDeep and miRanalyzer in many cases

were discontinuous representations of each other. The predicted hairpin size

varied when compared between miRanalyzer and miRDeep (the average hairpin

length predicted by miRanalyzer was 20 bases longer).

To test time consumption of the tools, the study first broke down miRDeep

and miRDeep2 into separate tasks, and timed them individually. The amount

of time spent by miRDeep to map the reads to the target genome was ∼20%

longer than that of miRDeep2. On average, miRDeep took three times as long

to complete its analysis (10.5 h) compared with that of miRDeep2 (2.87 h) (see

Table 3.7). For miRanalyzer, which at the time was web-based, was difficult to

be sure of the result, as ones data is usually placed in a compute queue.

One area in which miRDeep and miRanalyzer both demonstrate apparent

weakness is lack of specificity to detect the precursor sequence. When examin-

ing the novel miRNAs predicted by miRDeep and miRanalyzer, two instances

were detected where precursors were predicted poorly in relation to the mature

sequence.

9) In another study [180], miRDeep, miRanalyzer, MIReNA and miReap were

compared, amongst others, on HTS datasets derived from three different genomes,

i.e. H. sapiens, G. gallus and C. elegans. Other tools included in this study were

miRExpress [200], miRTRAP [201], DSAP [198], mirTools [202], and miRNAkey

[203], which classify miRNAs based on previous annotations, but do not predict

novel ones. As they are not suitable for the scope of our analysis, we do not focus

on them.

For a runtime analysis of the software, miReap took less computational time

(10 min for G. gallus and 43 min for H. sapiens) compared with miRDeep (10

days for C. elegans and one month for H. sapiens) and MIReNA (10 days for C.

elegans and more than one month for H. sapiens).

To evaluate the sensitivity of the tools (percentage of predicted miRNAs out of
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Figure 3.10: Comparison of the sensitiv-
ity of various software tools, including
miRDeep, miRanalyzer, MIReNA and
miReap, when predicting known miR-
NAs. The percentage of predicted miRNAs
out of the total miRNAs in miRBase is shown.
[180], by permission of Oxford University Press.

Figure 3.11: Comparison of the accuracy of
various software tools, including miRD-
eep, miRanalyzer, MIReNA and miReap,
when predicting known miRNAs. The per-
centage of predicted miRNAs in miRBase is
compared with the total number of predicted
miRNAs. [180], by permission of Oxford Uni-
versity Press.

the total number of miRNAs in the reference), the results of the tools on the three

datasets were compared to a reference set comprised of either just the miRBase

annotations or miRBase annotations together with sRNAs predicted using three

or more software tools (extended reference dataset).

The number of predicted miRNAs compared to miRBase are presented in

Figure 3.10, and compared to the extended reference dataset are presented in

Table 3.8. When compared to miRBase, miRanalyzer had the highest success of

60.6% when predicting miRNAs for H. sapiens and a satisfactory high success

with C. elegans. When compared to the extended reference dataset, miReap had

the highest success of 59.85% for H. sapiens. These results suggest that different

software tools were suited to predicting miRNAs in specific datasets.

The results regarding accuracy (percentage of predicted miRNAs out of the

total number of predictions) were then calculated. When compared to miRBase

(see Figure 3.11), miRDeep had the highest success of 97.41% when predicting

C. elegans, the general ranking of the tools regarding accuracy being miRDeep,

MIReNA, miRanalyzer and miReap. When compared to the extended reference

dataset (see Table 3.9), miRanalyzer had the highest success of 100% in H. sapi-
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Table 3.8: Comparison of the sensitivity of various software tools, including miRD-
eep, miRanalyzer, MIReNA and miReap, when predicting known miRNAs, re-
ported to an extended reference dataset. Entries are shaded with black and white gradi-
ents, where black represents the highest percentage and white the lowest. [180], by permission
of Oxford University Press.

Table 3.9: Comparison of the accuracy of various software tools, including miRDeep,
miRanalyzer, MIReNA and miReap, when predicting known miRNAs, showing
the percentage of miRNAs from an extended reference dataset compared with the
total number of predictions. Entries are shaded with black and white gradients, where
black represents the highest percentage and white the lowest. [180], by permission of Oxford
University Press.

ens, while miRDeep performs best on C. elegans. All tools seem to have high

variance between datasets, thus, the performance accuracy when predicting miR-

NAs also depends on the dataset used.

Figure 3.12: Venn diagram of predicted known miRNAs by miRDeep, miReap and
MIReNA. (A) C. elegans, (B) G. gallus and (C) H. sapiens. [180], by permission of Oxford
University Press.

An intersection of the predicted known miRNAs by miRDeep, miReap and

MIReNA are shown as Venn diagrams in Figure 3.12 for the three organisms,

respectively. The highest overlap was at the intersection of predicting C. elegans,

whereas it was comparatively lower for G. gallus and H. sapiens. The prediction
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of known miRNAs in C. elegans comprised more often of sequences that originated

from genome locations close to each other (clusters of miRNAs) , whereas for H.

sapiens, they originated from different locations on the genome (they were more

discrete).

When predicting novel miRNAs, only the predictions that were detected by

three or more tools were considered as true miRNAs. This can be however par-

tially unreliable because of the differences in these tools results: one or two tools

might predict a true miRNA, but it will not be considered genuine, because it

was not predicted by a third method. Out of fourteen novel G. gallus miR-

NAs, miReap and miRDeep had the highest detection rate. For the fifteen novel

H. sapiens predictions, MIReNA had the highest frequency and miRDeep was

ranked second. Out of three novel C. elegans miRNAs predicted using three

or more software tools, MIReNA had the highest percent, followed by miReap,

miRDeep and miRanalyzer.

Based on this analysis, the study recommends MIReNA as the first choice for

nematode and mammal datasets. Combinations of miReap, miRDeep and miR-

analyzer can also be used with nematode, but miRDeep can also be used with

mammals. In vertebrates, miReap was the first choice, while miRDeep can also

be integrated in the analysis. miRDeep has better performance when predict-

ing novel miRNAs for C. elegans, because it used C. elegans data for parameter

estimation. However, MIReNA had better performance when predicting novel

miRNAs with C. elegans and H. sapiens compared with miRDeep.

3.5 Discussion

We will now give a summary for the performance of each of the tools, based on

the reviews above.

miRCat [4] has achieved a 91.2% sensitivity on its test dataset [1]. miRCat and

miRDeep2 both show good percentages of known miRNAs detected, also having

a considerable overlap of predictions. However, they both show high numbers of

novel predictions (and possibly FP).

miRDeep2 [2] has generally a high sensitivity and specificity on a broad range

61



of animal datasets [2]. It has higher sensitivity than miRDeep* [175] and mi-

Ranalyzer [181], but has a slightly lower specificity than miRDeep* [175]. In a

comparison with miRAnalyzer and miRDeep, miRDeep2 generated higher num-

bers of known miRNAs and the novel predictions were often from an annotated

miRNA family [181].

miRPlant [3] has shown better rates of both sensitivity and specificity than

miRDP in four organisms tested [3].

miReap needs less runtime to complete its analysis, requiring between 10 and

43 minutes, when compared to miRDeep and MIReNA, which took several days,

in one case even more than one month [180]. It achieves the highest sensitivity

in human datasets, compared to miRDeep and miRAnalyzer, but does not out-

perform the other tools constantly. miReap also presents the lowest specificity in

all tested datasets, suggesting it might suffer from high rates of FP [180].

miRDeep [149] has high specificity, especially when run on C. elegans datasets

(because it uses C. elegans as a model for parameter estimation) [180]. However,

miRDeep was proved to miss some highly expressed miRNAs because of improper

precursor excision [175, 181]. It has become inefficient in time consumption,

taking ∼20% longer than miRDeep2 for mapping the reads to the target genome

[181]. Moreover, it is 3 times slower overall, on average taking about 10.5 h to

complete its analysis, compared to 2.87 h required by miRDeep2.

miRDeep* [175] has a better specificity than miRDeep2 and miRDeep, and

also better sensitivity than miRDeep [175]. Analysing its results using Dicer

mutant data, miRDeep* had a lower fold change average and a higher percent

of negative fold change on novel predictions than miRDeep2, suggesting that its

novel predictions are more likely to be TP [175].

miRDP [171] is more suitable for datasets with low sequencing depth, however

it has a general low sensitivity and high number of novel predictions (FP) [178].

miRA [178] has a sensitivity of over 80% on its test dataset, performing better

than miRDP and miR-Prefer. However, it has high number of novel predictions,

lacking in specificity (FP) [178].

miR-Prefer [176] performs well in datasets with high sequencing depth, be-

cause it requires the star sequence to be present on the precursor as well [178]. It

performs poorly in datasets with low sequencing depth [178]. It has a better sen-
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sitivity than miRDP and low FP rate, most of the predictions corresponding to

known miRNAs [176]. miR-Prefer achieves the fastest runtime and less memory

when compared to miRDP, miRAnalyzer, miRDeep2, miRDeep* and MIReNA

[176].

miRAuto [162] performs similarly to miRDP and miREvo for detecting known

miRNAs, however it has the highest number of novel predictions, most of which

are uncommon with the other tools [162]. This suggests it might allow FP

amongst its predictions.

miRAnalyzer [170] has a high sensitivity (∼ 90%) [175, 176]. This is achieved

because it tries to detect annotated miRNAs that are saved in its own database

[176]. It has 5 times more predictions than miRDeep*, having the lowest speci-

ficity rate (∼ 20%) when compared to miRDeep*, miRDeep, miRDeep2 and

MIReNA. Although a large proportion of the novel miRNAs have high num-

ber of reads, there is little overlap with the results of miRDeep and miRDeep2

[181], suggesting it is very likely that they are FP [175, 176]. It has also been

reported that it might predict the hairpins poorly, varying in length and structure

[181].

MIReNA [169] has shown low sensitivity and specificity rates [169, 175]. This

might be explained by the fact that MIReNA is not very restrictive in its candidate

selection at the beginning of the algorithm, but also because it considers several

precursors for one candidate [169]. When compared to miRDeep, the results they

generate are complementary, MIReNA detecting known miRNAs that miRDeep

misses and vice versa [175]. In terms of resources used, it takes longer time and

more memory to complete its tasks, being slower than miR-Prefer [176], miRDeep

and miReap [180].

All the tools reviewed generate different results from the same input, showing

preferences for certain datasets (possibly being over-trained and/or more suited

for a specific organisms) [169, 180]. For example, miRDeep performs best on C.

elegans data [180], miRDeep2 and miReap perform best on human data [180, 181].

In a study on plant datasets involving miRAuto, miRDP and miREvo, out of a

total of 206 novel predictions detected by the three tools, only 5 sequences (2.4

%) were found in the intersection of all three of the results [162], suggesting

that these tools look for distinct criteria that do not generate the same output.
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In a study on miRDeep, miReap and MIReNA, there was a high percentage of

overlap in C. elegans, which significantly decreased in H. sapiens and G. gallus

[180], showing inconsistency of performance across different organisms.

This suggests that further improvements to such software are still required, to

achieve a decrease of the false positive and false negatives rates and consistency

across species. At the moment, when conducting a miRNA prediction project,

it is recommended to use multiple miRNA prediction tools, then analyse their

combined results, which requires more effort and resources. Also, these tools vary

from plants to animals, but also from organism to organism, making it difficult

for the user to select the most appropriate tool depending on the case. Therefore,

there is the need for a single tool that can provide reliable results, for a wide range

of organisms. For this reason we decided to develop miRCat2, presenting a new

miRNA detection algorithm, which achieves the above mentioned goals.

Considering the performance of each tool reviewed above, but also based on

popularity and frequency of usage, we selected the following tools to benchmark

against our new algorithm: miRCat [4], miRDeep2 [2], miRPlant [3] and miReap.

We have selected miRCat, because it presents good sensitivity and specificity

rates, and it is suitable both for animals and plants, but also because we want

to improve on its initial algorithm. miRDeep2 is at the moment one of the

most popular tools for animal miRNA prediction, having high percentages for

sensitivity and specificity. miRPlant is the equivalent of miRDeep2 for plant

data, as it is developed on its algorithm, and shows better performance than

miRDP, therefore miRPlant is more suitable for our testing. miReap is widely

used both in animal and plants, having good results in some organisms, although

it can lack in consistency. By developing miRCat2, we want to improve on their

results, by achieving an increased accuracy over these tools.

3.6 Summary

In this chapter we gave an overview of the most commonly used miRNA detection

tools from HTS datasets. We presented the key factors of their algorithms, then

compared their performance, gathering information from a suite of reviews. Based

on these factors, we evaluated the strengths and weaknesses of each algorithm
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and we have chosen to benchmark our new tool, miRCat2, against miRCat [4],

miRDeep2 [2], miRPlant [3] and miReap. We will give a complete analysis and

details about this benchmarking in Chapter 5.
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Chapter 4

Developing and testing the

miRCat2 algorithm

Part of the work presented in this chapter is submitted as part of the manuscript

“miRCat2: Accurate prediction of plant and animal microRNAs from next-generation

sequencing datasets”, Claudia Paicu, Irina Mohorianu, Matthew Stocks, Ping Xu,

Aurore Coince, Martina Billmeier, Tamas Dalmay, Vincent Moulton and Simon

Moxon.

4.1 Summary

As previously mentioned, many miRNA prediction methods, such as miRCat [4]

and miRDeep2 [2], were designed when sequencing depth was typically orders of

magnitude smaller than the output from the current generation of sequencers. As

the size of HTS datasets are rapidly increasing [150, 151], the older algorithms

struggle in terms of memory consumption and run time. The reviews we consid-

ered in the last chapter also show that many older methods suffer from high false

positive and false negative rates and lack of consistency across species [180–182].

These are indicators that new algorithms for miRNA prediction are required.

In this chapter we begin by presenting a new algorithm, miRCat2, for identi-

fying new miRNAs from HTS data in both plants and animals, which addresses
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some of the issues mentioned above. We then give technical details about its

implementation, as we have incorporated miRCat2 into the UEA sRNA Work-

bench [4]. Next we present the methods used for testing the miRCat2 algorithm

and benchmarking its results against other commonly used software. We also de-

scribe several methods of computationally assessing the validity of novel miRNA

predictions. The results for these methods are presented in the next chapter.

4.2 miRCat2 algorithm

We begin by describing the miRCat2 algorithm. In Figure 4.1 we give an overview

of its key features. After mapping the reads to the genome, the algorithm first

selects reads based on abundance significance (read counts), then filters based

on read alignment patterns and secondary structure of the putative pre-miRNA

hairpin are applied in the subsequent steps. We now give a detailed description

of the algorithm.

4.2.1 Candidate selection

As the size of HTS datasets is rapidly increasing [151], previous methods, such as

miRCat, can have systematic issues choosing miRNA candidates. For example,

miRCat groups sequences on proximity on the reference genome sequence (all

sequences within x nt from each other form a group), and selects one candidate

from each group (see Chapter 3, Section 3.3.1). miRDeep2 has a similar approach

to miRCat, looking 70 nts upstream and downstream the genome of every read

and selecting the most abundant sRNA in the area (see Chapter 3, Section 3.3.2).

In larger datasets, these methods become inefficient, firstly, because higher

coverage leads to a greater number of candidate groups. Many groups will not

contain a bona fide miRNA, but will be tested anyway, greatly increasing compu-

tational runtime. Secondly, higher coverage leads to more low-abundance noise in

sRNA sequencing datasets which may be a signal of random RNA degradation.

As the number of genome mapping reads increases it has the effect of lengthen-

ing the miRCat group length and can join together two unrelated groups. More

than one genuine miRNA can be located in a single miRCat group, but only one
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genome.fa reads.fa
reads.pat

(optional)

(1) Select candidates: selects only the reads 

with statistically significant abundance

(2) Filter on: number of mapping locations, size 

class distribution, Drosha and Dicer clear-cut

(3) Compute secondary structure (RNALfold) 

and filter folds: hairpin structure and quality

plots.pdf predictions.csv predictions.pat

Figure 4.1: Workflow of the miRCat2 algorithm. The inner light-blue boxes represent
processes, the outer dark-blue boxes are input and output files. The file formats are: .fa, fasta;
.pat, PatMaN output; .csv, csv spreadsheet. These steps are explained in the following sections.

miRNA will be predicted from each group selected. In this way, genuine miR-

NAs can be overlooked. The same issue is found in the miRDeep2 upstream or

downstream lookup for miRNA candidates.

miRCat2 implements a method of candidate selection specially designed to

deal with high depth datasets. As sequencing depth increases, degradation prod-

ucts may obscure miRNA peaks (see Figure 4.2). To cope with this, we focus

on selecting all the peaks at any given genomic location, while discounting reads

that are at or below a background level that we compute from the data.

There are multiple peak calling algorithms which focus on detecting peaks

in ChIP-seq data (protein interactions with DNA) [204–215]. These methods

generally classify into three categories. The first type [204, 205] involves taking

a moving average of sequence reads within a fixed or variable-width window and

scanning the window through the entire genome, then a randomization scheme

is used to determine the null distribution, to estimate the false discovery rate.

The second class of algorithms [209, 216] use the same approach for finding peaks
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********************************************************************************************************************************************************************************  

                    TCGGACCAGGCTTCATTCCTCT 35 -                                                                                                    GGATGTTGTCTGGCTCGACA 1 - 

                      GGACCAGGCTTCATTCCTC 2 -                                                                                                     GGGATGTTGTCTGGCTCGACA 751 - 

                     CGGACCAGGCTTCATTCCTC 10 -                                                                                                    GGGATGTTGTCTGGCTCGAC 6 - 

                    TCGGACCAGGCTTCATTCCTC 31720 -                                                                                                 GGGATGTTGTCTGGCTCGA 1 - 

                    TCGGACCAGGCTTCATTCCT 125 -                                                                                                    GGGATGTTGTCTGGCTCG 1 - 

                    TCGGACCAGGCTTCATTCC 1232 -                                                                                                    GGGATGTTGTCTGGCTC 2 - 

                  CGTCGGACCAGGCTTCATTCC 19 -                                                                                                    GGGGGATGTTGTCTGGCT 1 - 

                    TCGGACCAGGCTTCATTC 35 -                                                                                                                                                                                      

A) 

********************************************************************************************************************************************************************************* 

                              GACGGACCGTCGTGCCT 3 -  CTTCGTTCCAAAACACTTCAACT 1 +     GGGTACTGGGATCGACT 3 +                    AGCACGGACCGTCGTAGATACGAC 1 + 

                  ACGAAGACCCTCGACGGACCGTCG 2 -                   ACACTTCAACTCTGAAATCTGGG 1 +                                    CACGGACCGTCGTAGATACGA 1 + 

           TTTTGGAACGAAGACCCTCGACGG 1 -                                  ATCCCAGTACCCAGATTTCAGAGT 1 - 

                                                                 ACACTTCAACTCTGAAATCTGGGT 3 + 

                                                                  CACTTCAACTCTGAAATCTGGGT 1 + 

                                                                          CTCTGAAATCTGGGTAC 1 +

B) 

Figure 4.2: Distribution of reads for a known miRNA locus A) and a random locus
on the genome with incident degradation reads B). For each incident read we present,
on the right, its abundance (read count),and the matching strand (+/-). A) Distribution of
reads for sly-MIR166c (S. lycopersicum), on chromosome 1, positions 84381885 - 84382061.
This shows the expected miRNA locus pattern, with a characteristic two-peak alignment cor-
responding to the 5’/3’ miRNAs. B) Random distribution of reads for S. lycopersicum, on
chromosome 1, positions 2076029 - 2076206. The lack of location, size class or abundance
specificity, corroborated with the lack of a hairpin-like secondary structure, indicates that this
alignment doesn’t correspond to a miRNA locus.

but then make inferences based on a probabilistic model in order to assess the

significance of the peaks, usually using a Poisson probability model. The third

type [207] uses fitting Hidden Markov models, a more complicated approach then

the previous ones. For more generic peak detection algorithms, the following

reviews can be very helpful [217–220]. However, these algorithms are not specific

for sRNA data and do not take into consideration any of the miRNA-specific

features.

Therefore we decided to implement our own way of detecting abundance peaks

in genome-aligned sRNA data. It is known that miRNAs and their complemen-

tary miRNA* sequence generally have significantly higher abundances in HTS

datasets than non-miRNAs [35]. When aligning miRNA reads from an HTS

experiment back to the pre-miRNA locus we see characteristic peaks forming,

corresponding to the 5 and 3 miRNA sequences (Figure 4.2, A)). We can use

this information to select a restricted group of sequences as candidates, on which

further computation is performed.

By implementing a method to detect “peaks” of reads, we have improved the

accuracy of the results and also eliminated the need for an additional parameter

which sets a minimum required abundance for the predictions. Results showing
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the accuracy of miRCat2 are presented in Chapter 5 in more detail.

Selecting the candidate miRNA loci

To identify putative miRNA loci based on “peaks” of reads (sequences with read

counts above the background level), we use the following procedure (Figure 4.3).

a) The genome is split into windows of size lw nts (default 300 nts for animals,

500 for plants), consecutive windows having an overlap of lo nts (100 nts) (Figure

4.3.(A));

We have chosen these default values using empirical observation, applying

the following reasoning. By having a window of 300/500 nts we are certain that

the whole miRNA precursor can be contained on that window, considering the

miRBase precursors have a mean length of 70 nts in animals and 200 nts in

plants [5]. However, we need to make sure that we capture the context of the

reads where the sRNA is located, therefore we need the window to be larger

than just the precursor. By having an overlap of 100 nts we make sure that

adjacent windows are not isolated, but they influence each other, to better define

the context of sRNAs. The windows without any coverage are discarded.

b) Each window is split into subwindows of size lsw (20 nt) and the mapped

reads are assigned to subwindows based on location (to which subwindow they

have most nts aligned, see Figure 4.3.(B)).

Each subwindow should have the length 13 < lsw < 25, so it can cover at

least a half of the longer miRNAs, but not exceed the length of a miRNA. As

sequences tend to overlap, by empirical observation, we have found that the most

effective value for this parameter is 20.

c) Each window is compared with a simulated perfect random uniform distribu-

tion (RUD) on genome location, using the Kullback-Leibler divergence (KLD)

[221] (Figure 4.3.(C)).

Generally, for any two probability distributions Q and P , the KLD of Q from

P , denoted DKL(P‖Q), is a measure of the information lost when Q is used to

70



500

100
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Figure 4.3: Selection of candidate miRNA loci step by step in miRCat2. (A) Splitting
the genome in windows; (B) Assigning reads to subwindows based on location; (C) Comparing
the distribution of reads, P, with and a RUD, Q; (D) selecting peak as miRNA candidate,
removing it; (E) Recalculating the KLD on newly obtained distribution.
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approximate P . It is computed using:

DKL(P‖Q) =
∑
i

|ln
(
P (i)

Q(i)

)
|P (i) (4.1)

where i is the index of an observation. To use it for sRNA data, this distance

can provide statistical evidence concerning whether a distribution of reads on a

genome window has a random uniform distribution or not. If not, then the tested

distribution of reads could contain peaks. This entropy has been successfully used

before for sRNA analysis, for determining a threshold above which the sRNA

dataset does not have a strand bias [222].

In the algorithm of miRCat2, Q represents the simulated RUD, P represents

the distribution of reads on the current window and each subwindow i is an ob-

servation. The probabilities for each subwindow are calculated from the read

abundances: P(i) =
∑

rsw∑
rw

, where rsw represents the abundance of the reads map-

ping to the subwindow and rw represents the abundance of the reads mapping to

the window, after a default offset of 1 has been added to each subwindow (empir-

ically determined), to avoid allowing lowly expressed reads to look like they are

peaks. The probability for the RUD is calculated using the following equation:

Q(i) = 1
nosw

, where nosw represents the total number of subwindows contained in

a window;

d) The closer the score of the KLD is to 0, the closer the distribution of reads

on the tested window is to a uniform distribution, which implies that it does not

contain a peak. If the distribution is a RUD, then it is unlikely that a miRNA

has evidence of expression at that genomic location and the window is discarded.

If the KLD is greater than a threshold (rud val), then the current window

contains at least one peak (the method can detect multiple peaks). In this case,

the subwindow with the greatest probability is identified and the most abundant

sRNA is selected (Figure 4.3.(D)). The KLD is applied again on a restricted area

around this sRNA (plateau range) to avoid detecting a peak that is actually

a plateau (multiple neighbouring subwindows that are all highly expressed, see

Figure 4.4). If this filter is passed, the sRNA is removed from the distribution

and saved as a miRNA candidate for further investigation;

72



Figure 4.4: Distribution of sRNA reads that would cause a peak detection that is
actually a plateau.

e) The KLD is recalculated with this newly obtained distribution (Figure 4.3.(E)).

If the new KLD is still greater than the threshold, steps (c) to (e) are repeated

until we reach an RUD (no more peaks). All removed sRNAs are miRNA candi-

dates and are analysed in the subsequent filtering steps of the algorithm, which

we describe in the next section.

Example of calculating steps (c) to (e).

To calculate the KLD on the reads distribution from Figure 4.3.(C), consider Q to

be the RUD, P to be the distribution of reads and i the index of the subwindow.

For simplicity, all the reads that do not have a number next to them have an

abundance of 1. Each subwindow has its total abundance above it (sum of reads

abundances incident to the subwindow).

We consider Q to be a perfect RUD, thus, the probability for each subwindow

for Q will be the same: Q(i) = 1
20

= 0.05 (because we have 20 subwindows).

For P , the total abundance on the window is 32, and after we add an offset of

1 for each subwindow, we have a total abundance of 52. For the 4th subwindow,

the probability is P (4) = 21
52

= 0.403.

After calculating each P (i), we apply the KLD formula (equation 4.1) and we

obtain DKL(P‖Q) = 1.6912 > rud val (default value of rud val = 1.23, empiri-

cally observed), therefore P must contain a peak. In Figure 4.3.(D), the peak’s

location is identified (subwindow i = 4) and the most abundant sRNA from that

subwindow is selected and removed (sRNA with abundance 9). This sRNA is

saved separately for further computations.

After the sRNA removal, a new read distribution is obtained, as seen in Figure

4.3.(E). Each P (i) is recalculated (P (4) = 12
43

= 0.27) and the KLD is computed
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Figure 4.5: Example of a miRNA size class distribution vs. a random degradation
size class distribution. Y-axis represents total counts, X-axis represents the size of the sRNA
plotted.

again, the new value being DKL(P‖Q) = 1.2115 < rud val. In this case, there

are no more peaks and the algorithm would start processing the next window on

the genome. If the DKL(P‖Q) would have been > rud val, steps (c) to (e) would

have been reapplied for this distribution.

4.2.2 Filtering the sequences

After miRNA candidates are selected, potential false-positive predictions are ex-

cluded from down-stream analysis using a rule-based approach.

First, we discard the sequences that map to the genome more than repeats

times as high-confidence miRNAs [5] are unlikely to be derived from repetitive

regions of the genome (this parameter is user configurable, with a default value

of 25).

Second, a size class distribution filter is applied, allowing us to focus on

reads between 21 to 23 nt, which is the expected miRNA range. To check if

the most enriched size class on the window containing the miRNA candidate is

within the range, we compute the KLD on size classes, comparing the sRNA size

class distribution (P) to a RUD on all size classes (Q) [184]. This is biologically

appropriate because miRNAs tend to have significantly greater abundance than

near-by sRNAs in their region [35]. For example, in Figure 4.5 the size class dis-

tribution of a miRNA is compared to a random degradation size class distribution

(data simulated by assigning equal probabilities to all subwindows in the RUD).
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The sequences contributing to the sRNA size class distribution are all the

reads incident to the potential putative miRNA precursor (located±max fold len
on each side of the miRNA candidate). A size class can take values from min size

(default 16) to max size (35), as sequences originating from sRNA data should

have lengths between these bounds. Here also, the KLD is calculated after adding

a default offset of 1 to each size class (empirically determined), to deal with lowly

expressed reads.

If the KLD result is > rud val, then the size class distribution is different

from random and contains a peak. We investigate whether the most abundant

size class falls between 21 to 23 nts (the peak consists of sequences from the

miRNA size range), otherwise the sRNA locus is discarded. Since a small set

of annotated miRNAs in miRBase fall outside of this size range these values are

configurable (min len, max len). If this criteria is met, the sRNA is saved for

further analysis, otherwise it is discarded.

Third, to check whether the candidates have a miRNA-like alignment of in-

cident reads, we also apply a filter that selects only sequences with evidence of

precise processing of the pre-miRNAs by the miRNA biogenesis machinery,

Drosha (animals) and Dicer (plants and animals) [15, 16, 21], as described in

Chapter 2. Drosha processing excises the pre-miRNA hairpin from the primary

transcript with high precision, Dicer then cleaves the hairpin loop giving rise the

mature miRNA duplex. This should reflect in the alignment of sequences as the

presence of one or two peaks corresponding to the miRNA/miRNA*. This fil-

tering step ensures that the majority of reads aligned to the miRNA/miRNA*

location have a high overlap (are variants of each other), and have the same ge-

nomic orientation. The distribution of reads of a genuine miRNA should have a

similar shape to that shown in Figure 4.2,A) compared to a locus generated from

random RNA degradation (Figure 4.2, B)).

To implement this filter, we define a cluster as all sequences that map to the

same genomic location, having the start and the end of the mapping position

within clear cut nts of each other. We chose clear cut to be 3 nts to account for

the isomiRs that may also be generated during the miRNA biogenesis (sequences

that have variations of a few nts with respect to the reference miRNA sequence)
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Figure 4.6: Example of alignment of reads grouped on clusters computed on S.
lycopersicum data. Each red square represents a separate cluster.

[223]. isomiRs should contribute to the expression level of the miRNA, as they

are often active in the cell, having the same roles as the putative miRNA [223].

The rules we use for a sRNA sequence s (with sRNA beginning position bs

and ending position es) to be considered to belong to a cluster C (with cluster

beginning position bC and ending position eC) are:

• if bs ≥ bC and es ≤ eC , then the sRNA alignment is completely inside the

cluster boundaries, therefore s ∈ C;

• if bC ≥ bs and eC ≤ es, then the sRNA alignment is completely covering the

cluster location, therefore s ∈ C;

• if (bs−bC ≤ clear cut and bs−bC ≥ 0) or (es−eC ≤ clear cut and es−eC ≥ 0),

then the sRNA alignment is with clear cut nts to the right or left from the

cluster location, therefore s ∈ C.

• we define mids to be mids = (es−bs)
2

+ bs and midC to be midC = (eC−bC)
2

+

bC . If |midC −mids| ≤ clear cut, then the middle of the sRNA alignment is

with clear cut nts to the right or left from the middle of the cluster location,

therefore s ∈ C;

• otherwise s /∈ C.

Using the rules stated above, we identify all clusters on the window corre-

sponding to each selected miRNA candidate, s. An example of such clustering is

presented in Figure 4.6. Next, to evaluate the existence of a precise excision (e.g.

resulting from Drosha and/or Dicer cleavage), we use the following criteria:

• on the cluster containing s, if the sum of the abundances of all sequences with

same start and end positions (±clear cut nts) as s represent clear cut percent%
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Figure 4.7: Distribution of sequences with a miRNA-like structure on S. lycoper-
sicum data. The first sequence, encoded with #, is the candidate sRNA, (s). The red dotted
lines delimit the start and end position of the candidate sRNA. The numbers on the right of
each sequence represent their read abundance.

of the total abundance of the cluster (95 % in animals, 92 % in plants, chosen

by empirical observation), then s is kept for subsequent analysis; otherwise, it

is discarded;

• on the adjacent clusters to the cluster containing s, if the sum of the abun-

dances of all sRNAs from adjacent clusters that overlap with s with more than

clear cut nts represents less than overlap percent% of the total abundance of

the s cluster (5%), then s is kept for further analysis; otherwise, it is discarded.

Example of deciding if a sRNA allignemnt respects the precise pro-

cessing of Dicer and/or Drosha.

Consider the distribution of reads for the candidate from Figure 4.7, that has

been grouped into clusters, such that the second cluster C contains the miRNA

candidate sequence s. The total abundance of cluster C is 79, and there is one

sequence that does not respect the precise Dicer and/or Drosha processing: the

first top sequence from C ( ACGACGGACCATCATGAGCACGACG , abundance

3), because its start is 4 nts smaller than the start of s. All the other sequences

in C respect the criteria. We now calculate the percentage of the sequences that

respect the criteria to be 76
79

= 96.2% ≥ 95%, so s respects the first part of the

criteria.

Then, we calculate the sum of all sRNAs from adjacent clusters that overlap

with s with more than 3 nts. In the cluster on the left of C, we identify the

sequence that fits this rule ( CTGGGTCGACGGATCCCACGACGG , abundance

2). The cluster on the right does not have a significant overlap with s. We now
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calculate the percentage of sequences from overlapping adjacent clusters to be
2
79

= 2.53% ≤ 5%, so s respects the second part of the criteria. Therefore, s is

saved for further analysis.

4.2.3 Computing the secondary structure

Most existing methods for miRNA prediction extract a fixed, arbitrary flanking

region containing the miRNA candidate and fold it using RNA secondary struc-

ture prediction tools (such as RNAFold [154]) to identify a suitable hairpin-like

precursor [1–3]. However, this approach is highly dependent on the length of the

flanking region; therefore choosing an optimal length is a critical step to predict

the correct secondary structure.

To address this, we employ RNALfold [154], previously used by miR-PREFeR

[176] and miRA [178] (a modified version of RNALfold), which folds a large

window efficiently, giving all possible structures contained within that region.

RNALfold is more efficient than RNAFold on larger sequences, as its algorithm

has the time complexity of O(n ∗ l2) compared to O(n3) for RNAFold, where n is

the length of the sequence and l is the maximum length of the folded subsequence.

RNALfold outputs as result a list containing all possible local secondary struc-

tures within the selected region, in dot-bracket notation,and their corresponding

minimum free energies (MFE, in kcal/mol). To be able to compare the stability of

two folds of differing lengths, we calculate the adjusted minimum free energy per

100 nts (aMFE) for each secondary structure, as follows: aMFE = MFE
fold len

∗ 100.

To detect the most appropriate secondary structure in miRCat2, we consider

a window of max fold len nts (100 nts for animals, 250 nts for plants) on each

side of the miRNA candidate and use it as the input, ensuring that the window

is of sufficient length to capture the pre-miRNA structure on either side of the

miRNA candidate.

The secondary structures that contain the miRNA candidate (see Figure 4.8)

are kept for subsequent filtering based on the properties of miRNA precursors

(see Figure 2.9 for miRNA precursor features).

The filters on the secondary structure include checking for:

• the minimum fold length: the folds should not be shorter than min fold len,
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Figure 4.8: RNALFold results that overlap with the position of miRNA hsa-mir-34a
and passed all precursors filters (H. sapiens data). The folds are represented in the
dot-bracket notation, together with their calculated aMFE.

to ensure there is enough space for the miRNA/miRNA* duplex and the loop

[15, 114];

• maximum aMFE: miRNA precursors are highly stable, therefore it is important

that their secondary structure has a low aMFE. A valid fold should have an

aMFE lower than max amfe [65].

• a hairpin-like structure: the fold should present a duplex, with the miRNA

position aligned to the miRNA* (with a 3’ overhang of 2 nts) and loop [15]. If

there are sequences corresponding to the miRNA* position, it is checked that

they align where expected.

• number of consecutive unpaired nts in the miRNA position: there should not

be more than gaps miRNA consecutively unpaired nucleotides on the location

of the miRNA [15, 65] .

• the existence of multiple bulges in the loop area: in animals, the loop should be

represented as a single bulge. In plants, however, as the hairpins are longer and

the structures are more complex, we allow that loops contain up to no loops

bulges [53, 111–113].

• the existence of loops inside of miRNA and miRNA*: the miRNA and miRNA*

sequence should never fold onto itself. If there is a loop inside one of these areas,

the hairpin is not valid [15].

• percentage of nts paired on fold: there should be a minimum ofmin pared perc%

nts that are paired on the hairpin. This is particularly important for longer

precursors (e.g. in plants), where areas outside the miRNA/miRNA* duplex

should also pair, to insure the stability of the secondary structure [114].

• number of nts paired on miRNA and miRNA*: the duplex should have a

minimum of min pared nucl nts paired [15, 32].
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• orientation of reads on fold: a minimum of min orientation% from all the

reads that align to the hairpin location should originate from the same strand

(sense or antisense) [47, 48].

• fuzzy alignment of reads on fold: checks that reads correspond to a clear prod-

uct of miRNA biogenesis. The hairpin can be divided into the following regions:

start of hairpin to miRNA, miRNA, miRNA to loop, loop, loop to miRNA*,

miRNA*, miRNA* to end of hairpin. Although we checked for precise cutting

by Dicer and/or Drosha around the miRNA/miRNA* position, it does not en-

sure that the other areas are clearly delimited. Each read is tested to have the

start and the end within one of the above categories (±clear cut nts if limits

are exceeded). This filter ensures that at least fuzzy% of all reads on the

hairpin fall clearly into one category.

• randfold p-value: optionally, randfold [155] can be applied, and the hairpin

should have a maximum p-value of pV al (default 0.05; a smaller p-value means

that the hairpin has pre-miRNA properties with more confidence). Because

randfold takes a significant amount of time to run and the miRCat2 algorithm

classifies miRNA precursors with high accuracy disregarding this filter, we de-

cided to let this be an optional step, set by the user.

Full details about each of these parameters (whether they are configurable

or not, default values for animals and plants and the justification for the chosen

values) are listed in Appendix A.

If there is more than one subwindow that passes all filters, the one with the

lowest aMFE is considered to be the true precursor. This guarantees that the

most stable secondary structure is chosen for the candidate, as true miRNA pre-

cursors are very stable [35].

Scoring the predicted precursors

miRCat2 computes a score for the output precursor, which is calculated based on

the miRDeep2 model [149] (see Chapter 3, Section 3.3.2 for details). miRDeep2

calculates the basic score by fitting the values from the MFE of the hairpin and

the total abundance of the miRNA, miRNA* and loop into a Gumbel distribution

[187], using parameters generated from C. elegans real miRNA precursors. If the

miRNA* sequence is missing, miRDeep2 then reduces the basic score to 0. To

80



this value, miRDeep2 next adds a series of hard-coded values, based on a series

of criteria.

We have used the same parameters as miRDeep2 to characterise the Gumbel

distribution describing a miRNA precursor, and we calculate the score based

on it. If the miRNA* is missing, however, instead of using a value of 0, we

reduce it to a tenth of the score’s initial value. This is necessary because a

prediction without a complementary precursor sequence is less likely to be a true

miRNA; nevertheless, there are cases where only one miRNA is sequenced, while

the miRNA* is not present in the dataset. Therefore we do not reduce the score

to 0, but only decrease its value. This way, the score remains proportional to

the MFE and total abundance of the hairpin. We do not add any further fixed,

predefined values.

The miRCat2 score represents the probabilistic confidence that the prediction

is a true miRNA precursor, but it does not influence the output of the method.

When filtering the results based on this score as a post-processing step (at a

default cut-off value of 5, empirically determined), we observed that miRCat2

performs well irrespective of this filtering (for more details see Chapter 5). This

suggests that the core algorithm is robust and therefore we feel that it is unnec-

essary to implement this as a post-processing filtering field. It can rather be used

as a ranking criteria for the results, a higher score meaning the prediction has a

higher probability of being a true miRNA.

4.3 Implementation

The miRCat2 algorithm has been incorporated into the UEA small RNA Work-

bench [4] (with the help of Dr. Matthew Stocks) and is written in Java, version

1.8+; for optimal results, we recommend using the latest, stable, Java version.

The Workbench also includes helper tools (Adapter Removal, Filter, Sequence

Alignment), analysis tools (miRCat [1], miRProf, SiLoCo [1], ta-siRNA predic-

tion [1], PAREsnip [183], CoLide [184]) and visualisation tools (RNA/Folding

Annotation, VisSR). The Workbench and miRCat2 can be run on any operating

system running Java (Windows, Linux, Mac OSX).

miRCat2 can be executed either through the user-friendly interface or from
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the command line. Two sets of default parameters are provided, one for animals

and one for plants, although the user can adjust these parameters (see Appendix

A). The default parameters were set according to rules generally applicable to

the annotated miRNAs from miRBase [5], for the specific kingdom. A list of all

parameters and their default values is given in Appendix A.

miRCat2 requires as input a reference genome and a set of sRNA sequencing

data (FASTA format, non redundant, adaptors trimmed; the files can be pro-

cessed from FASTQ to the necessary format using the UEA sRNA Workbench

[4]). It automatically maps the sequences to the reference genome using PatMaN

[153], full length, with 0 gaps and no mismatches to create a mapped file, which

can be used in later runs. The sequences that do not map are discarded. The

user can optionally give the mapped sequences in PatMaN format as input, to

speed up the processing: if a PatMaN file is given as input, the mapping step is

skipped.

The output of miRCat2 is automatically saved as:

• a PatMaN file, containing the miRNA coordinates predicted

• a csv file, containing additional information about the miRNA*, hairpin and

existing annotation of the sequence. The columns displayed are: “Precursor

Score, Chromosome, Sequence, Abundance, Start, End, Strand, Mismatches,

Hairpin Sequence, Hairpin Dot-Bracket, Hairpin Start, Hairpin End, Hairpin

MFE, Hairpin aMFE, p-Value, Star Sequence, Star Abundance, Star Start,

Star End, miRBase Precursor”.

• a PDF file including, for every prediction, coverage plots of mapped abundances

(see Figure 4.9, A)).

• a text file containing, for every prediction, the read alignments on the precursor

(see Figure 4.9, C)).

Additionally, the user can also export parts of the results to different file

formats: mature miRNA sequences to FASTA, precursor sequences to FASTA,

precursor secondary structure to png (see Figure 4.9, B)).

miRCat2 uses RNALfold from the ViennaRNA package for folding of the

secondary structure [154] and randfold for optionally calculating the statistical

significance of the precursor structure [155]. All dependencies are included in

the download package and no extra installation is required. The code can be

82



downloaded from http://srna-workbench.cmp.uea.ac.uk/downloadspage/, where

users can also find the documentation and example files.
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GCAGGGGTTTGGGGAAACGGCCGCTGAGTGAGGCGTCGGCTGTGTTTCTCACCGCGGTCTTTTCCTCCCACTCTTGG

........TTGGGGAAACGGCCGCTGAGTGAG............................................. 39

........TTGGGGAAACGGCCGCTGAGTGA.............................................. 14

........TTGGGGAAACGGCCGCTGAGTG............................................... 2

........TTGGGGAAACGGCCGCTGAGT................................................ 3

..............................................TCTCACCGCGGTCTTTTCCTCC......... 1

................................................TCACCGCGGTCTTTTCCTCCCAC...... 6

................................................TCACCGCGGTCTTTTCCTCCCA....... 7

................................................TCACCGCGGTCTTTTCCTCCC........ 5

................................................TCACCGCGGTCTTTTCCTCC......... 2

................................................TCACCGCGGTCTTTTCCTC.......... 1

...................................................CCGCGGTCTTTTCCTCCCACT..... 1

.................................................CACCGCGGTCTTTTCCTCCCACT..... 17

.................................................CACCGCGGTCTTTTCCTCCCAC...... 94

.................................................CACCGCGGTCTTTTCCTCCCA....... 22

.................................................CACCGCGGTCTTTTCCTCCC........ 2

.................................................CACCGCGGTCTTTTCCTCC......... 3

.(((((((..(((((((.((((((..((((.((.(((.....))).)).)))))))))).)))))))..))))))). -36.2

A) B)

C)

Figure 4.9: Output of miRCat2 for a predicted sequence corresponding to hsa-mir-
2110 (chromosome 10), depicting A) precursor coverage plots, B) precursor sec-
ondary structure and C) alignment of incident reads. A) Precursor coverage plots,
showing the total abundance of mapped reads for each nucleotide. B) Precursor secondary
structure, colour-coded for each nucleotide type (A - green, C - orange, G - red, T - black).
C) Alignment of incident reads on the precursor; the numbers of the right represent the read
abundance. The last line presents the secondary structure in dot-bracket notation, together
with its MFE.
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4.4 Performance assessment methods

In this section we describe the methods we used to test miRCat2 and also to

assess its performance. We have applied the below explained methods on miR-

Cat2 and compared it to miRCat [1], miRDeep2 [2], miRPlant [3] and miReap

(http://mireap.sourceforge.net/). Results of the tests conducted are described in

the next chapter.

4.4.1 Data

To assess miRCat2, we ran it on multiple organisms and benchmarked the re-

sults against other commonly used miRNA detection tools, miRCat (version

srna-workbenchV3.2), miRDeep2 (version miRDeep2.0.0.7), miRPlant (version

miRPlant V5) and miReap (version mireap 0.2). The datasets for each organ-

ism considered were taken from the following sources: Danio rerio [224], Homo

sapiens [91, 225–229], Mus musculus [230–235], Caenorhabditis elegans [236],

Drosophila melanogaster [237], Heliconius melpomene [238], Xenopus laevis [239]

(animal datasets), Solanum lycopersicum [240, 241], Glycine max [242] and Ara-

bidopsis thaliana [243] (plant datasets). We have downloaded these datasets from

GEO [158] or SRA [168] databases. We also generated an A. thaliana dataset

as described below. Information about the genomes used, accession numbers of

small RNA datasets, trimmed adapter sequences and number of reads in each

dataset can be found in supplementary file Supplementary DataSources.xlsx.

One set of A. thaliana wildtype and DCL1 mutant data, each condition con-

taining three replicates, was also created in our lab. The plants were grown,

harvested and then sequenced by biologists in the Dalmay laboratory. The

raw FASTQ files and processed csv files are publicly available on Gene Expres-

sion Omnibus (GEO) [158] under accession number GSE90771 (GSM2412286 to

GSM2412288 are the wild type samples and GSM2412289 to GSM2412291 are

the DCL1 mutant samples).
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4.4.2 Data processing

All samples downloaded from GEO [158] were processed as follows: files were

transformed to FASTA format (using the sratoolkit-2.4.2 [168]). 3’ adapters were

trimmed and sequences longer than 16 nt were kept for the subsequent steps.

All A. thaliana samples that we sequenced were transformed from FASTQ to

FASTA format, then the 3’ adapters and the HD tags were trimmed (using the

UEA small RNA Workbench) and sequences longer than 16 nt were kept for the

subsequent steps. Next, all files were collapsed into non-redundant format (for

each sRNA we kept the sequence and its abundance). Then the files were aligned

full length, with 0 gaps and 0 mismatches to the respective reference genome

using PatMaN [153]. For miRDeep2, the reads were mapped using mapper.pl; to

make the results comparable with the other methods used, the sequences which

mapped with mismatches were discarded. All software was run on the processed

datasets with their default parameters.

4.4.3 Specificity and sensitivity assessment

To assess the specificity and sensitivity of the miRCat2 method (metrics defined in

Section 3.2), we chose miRBase [5] as the reference miRNA annotation database.

Although miRBase itself is not perfect (it might miss real miRNAs and contain

false entries) [244], it is the standard miRNA annotation database and therefore,

the most commonly used.

We downloaded from miRBase v21 the files containing mature sequences for

each organism and mapped the test datasets against them (using PatMaN, full

length, with 0 gaps and 0 mismatches), to determine which miRNAs are actually

present in the file (which miRNAs were expressed in the sequenced sample). We

consider all the miRNAs that have at least one sequence mapped to it, regardless

of their read count (might contain reads with a low counts), to be expressed in

the sample. In this way, we created the reference miRNA dataset for each test

file.

Using this reference dataset, we computed the software specificity and sen-

sitivity. The specificity was calculated using the formula TP / (TP + FP), and

the sensitivity using the formula TP / (TP + FN) (see Section 3.2).
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For the organisms for which miRBase provides a high-confidence miRNA an-

notation dataset, we determine the number of high-confidence and low confi-

dence miRNA precursors from miRBase, along with the number of novel miRNA

predictions. For calculating the specificity and sensitivity in these cases, both

high-confidence and low confidence miRNA constitute the TP dataset together.

4.4.4 Fold change computation

The fold change of a sequence represents the difference in expression level of the

same sequence in two samples. It is useful to calculate the fold change between

wild type and mutant samples, to determine which sequences are differentially ex-

pressed (DE) in the mutant data. The differential expression is a strong indicator

that the respective sequences are interacting with the mutated genes (are regu-

lated by their activity). Because we compare to mutants in the miRNA biogenesis

pathway, we can be quite confident that the sequences that are down-regulated

in the mutant datasets represent bona-fide miRNAs.

Therefore, to validate miRNA predictions, we estimate fold changes between

wild type and mutants of the miRNA biogenesis pathway. To do this, we use the

following procedure.

Each experiment is processed individually, because their sequencing of data

was designed separately. By one experiment we mean all the sRNA libraries (or

samples) that were sequenced together for a specific organism, and it includes

all conditions sequenced (the wildtype samples and the mutant samples, where

present).

For estimating fold changes between wild type and mutants of the miRNA

biogenesis pathway, we consider only the genome mapping reads. To compare

datasets with different sequencing depths, we normalize all abundances using

the RPM method (reads per million) [245] to the median total count (MTC) of

each experiment [246, 247]. Briefly, we sum the abundances of genome mapping

reads in each sample to obtain the total for each library; next we calculate the

median of total counts for each comparison (the MTC value). We normalize the

abundance of each read using: normalized count = count
total library count

∗MTC [246].

We use MTC to keep the values close to their biological level, while a flat million
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value could reduce or inflate them artificially. We repeat this procedure for all

experiments.

To create a control dataset, as suggested in [226], containing reads whose

abundances are unlikely to be affected by the mutations on the miRNA path-

way, the reads in each experiment were mapped to a file containing tRNAs

and snoRNAs of the respective species, using PatMaN, full length, with 0 gaps

and 0 mismatches. The control file was created downloading tRNAs and snoR-

NAs from the RFAM database [160] through the RNAcentral web service [248]

(http://rnacentral.org/). For each RFAM transcript, we compute its abundance

as the algebraic sum of the normalized abundances of mapped reads, for each

condition.

We then calculate the log2 fold change using the normalized abundances of

all predicted miRNAs, from each tool. The log2 fold change for each miRNA

is calculated for each set of replicates as the ratio between the median value of

normalized abundances from the mutant samples to the median value of normal-

ized abundances from the wildtype (control) samples. We use an offset approach,

adding a count of 10 to both numerator and denominator, to avoid divisions

by zero and cases where lowly expressed sequences appear to be differentially

expressed [222]. This value was chosen empirically, although experiments have

shown that most frequently the optimal offset resides between a count of 8 and

15 [249]. Next, we compare the percentage of reads that are significantly down

regulated in the mutant samples (≥ 2-fold downregulated).

Because we compare wildtype samples with miRNA biogenesis pathway mu-

tant samples, we expect the miRNAs in the mutant datasets to be significantly

downregulated, and therefore, DE. In a previous novel miRNA annotation study

a cut-off of 30% difference was considered sufficient to classify a sequence as

downregulated [226]. We thus take a strict cut-off of a 2-fold change (100% dif-

ference) to be the threshold for considering a sequence DE, to be confident that

the sequence is indeed downregulated.

We then plot the cumulative percent of the log2 fold change for each of the

tools’ results and control sequences, and compare the percentage of reads that

are significantly down regulated in the mutant files (≥ 2-fold downregulated).

An example of such plot is presented in Figure 4.10. The percentage of miRNA
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Figure 4.10: Example of cumulative plot on the log2 fold change between wildtype
and mutant data. Results are shown for a comparison of wildtype H. sapiens data [225] to
a Dicer mutant.

predictions that are DE can be found by intersecting the line in -1 on the x-axis

with the curve for the cumulative distribution of the log2 fold changes for the

respective tool (in -1 on the x-axis will be the percentage of sequences with a

2-fold change or lower).

For tools with high prediction accuracy we expect to see a significant differ-

ential expression (downregulation in the mutant samples i.e. have a fold change

lower than or equal to -1) for the majority of the predicted miRNAs. As a con-

trol dataset containing reads independent of the miRNA biogenesis pathway, we

use RFAM tRNA and snoRNA transcripts (see Section 4.4.4 for details on how

the control dataset was computed). As expected, their expression level is not de-

creased in the mutant samples; moreover, in the animal datasets the expression of

these transcripts is upregulated, due to the stochasticity of the sequencing tech-

nology. In plant samples we observe little differential expression for the control

sequences, as the biogenesis of plant sRNAs is more complex. We should ob-

serve that all tools lead to a significantly different curve compared to the control

dataset.

We produce cumulative plots on the results for each tool, considering: all the

results (to have an overall comparison of the output of each method), only the
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novel predictions (to validate novel miRNAs) and miRNAs present in the file

but not detected by each tool (to check if the missed miRNAs presented or not

miRNA features). Full results are presented in Chapter 5.

4.4.5 Validating novel predictions

To validate new predictions, we considered the following methods:

Comparing to known miRNAs of other species - Many miRNAs are highly

conserved among species [38, 39], therefore, if a sequence is annotated as a miRNA

in one species, it is very likely that there are orthologues of the miRNA in a related

species (genes in different species that evolved from a common ancestral gene by

speciation).

To check if novel predictions have already been annotated in other species, we

mapped them to all known mature miRNAs from the same Kingdom, using Pat-

MaN [153], full length and allowing 0 gaps and 1 mismatch (there can be a one nt

disparity between the sequences, to allow for isomiRs and small variations). All

novel predictions that correspond to at least one annotated miRNA in another

species are considered to present strong evidence of being a bona-fide miRNA.

Finding the miRNA gene source by comparing to all genome annota-

tions - because miRNA genes are transcribed from introns or intergenic regions

[15, 16, 36, 47, 48], we can use this information to check whether or not the novel

predictions have the same origin. To check the source of these sequences, we

downloaded all available annotations on the respective genome (GFF file con-

taining the loci for protein coding genes, exons, introns, sRNAs) and produces

the intersection with the results of miRCat2, using bedtools (intersect) [167]. The

predictions that have the same source as the miRNA genes (introns or intergenic

regions) are more likely to be genuine miRNAs.

Detection of the same novel miRNA in multiple samples - If the exper-

iment has replicates for the same condition, classifying the same sequence as a

miRNA multiple times (in the replicates) presents evidence of it being a miRNA.

It is highly unlikely that a FP should present miRNA-like features in multiple
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samples (if a sequence is a true FP, then it must presented miRNA-like features

for a specific dataset by change). This method has been successfully used before

in a study of novel miRNA annotation [250]. In this way, the new detections are

not restricted only to conserved genes, but novel miRNAs that are species-specific

or tissue-specific can be validated.

Pooling of multiple samples - In another study [226], the replicates have been

pooled together, to create a richer context for the sequences. For example, the

miRNA sequence could be expressed in one sample and the miRNA* sequence

could be expressed in another sample, but never together. By pooling the repli-

cates both the miRNA and the miRNA* would appear on the precursor, giving

strong evidence of miRNA biogenesis processing. If a sequence is present in both

samples, their counts are added. The novel miRNAs predicted from pooled sam-

ples would present a higher confidence that they originate from a true miRNA.

This method is efficient especially for validating lowly expressed sequences, that

could look like FP because of their low read counts. However, the increased

depth of the pooled datasets could obscure the miRNA signal in some cases, by

increasing the read counts for all sequences in a miRNA locus.

4.5 Summary

In this chapter we presented miRCat2, a new miRNA prediction algorithm, which

is suitable both for animal and plant data. The miRCat2 algorithm was designed

to handle datasets with high sequencing depth, detecting “peaks” of highly abun-

dant reads in the datasets. These reads are then checked to have a miRNA-like

size class distribution and present an alignment in accordance with Dicer/Drosha

processing. The secondary structure is then computed, on which further filters

are applied, to verify that it folds into a hairpin. The results are then output

with a ranking score together with visual plots for easy analysis.

In the next chapter we shall use the methods that we just described to assess

the performance of miRCat2 and to computationally verify its novel predictions.
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Chapter 5

miRCat2 results

Part of the work presented in this chapter is submitted as part of the manuscript

“miRCat2: Accurate prediction of plant and animal microRNAs from next-generation

sequencing datasets”, Claudia Paicu, Irina Mohorianu, Matthew Stocks, Ping Xu,

Aurore Coince, Martina Billmeier, Tamas Dalmay, Vincent Moulton and Simon

Moxon.

5.1 Summary

In this chapter we evaluate the performance of our new algorithm, miRCat2,

comparing it with miRCat, miRDeep2, miRPlant and miReap, which are the

most commonly used tools that we found to have the best performance amongst

current software. To benchmark these tools, we have measured their specificity

and sensitivity. We then conducted cumulative plots on the fold changes between

wild type and mutants in the miRNA biogenesis pathway, calculated on the results

of each tool. Next, we investigated the new predictions of miRCat2 in more detail,

to assert whether they are likely novel miRNAs or false positive predictions.

92



5.2 Specificity and sensitivity assessment

To assess the specificity and sensitivity of miRCat2, miRCat [4], miRDeep2 [2],

miRPlant [3] and miReap (http://mireap.source-forge.net/), we generated results

by running all software with their default parameters on multiple organisms. The

data used is described in Section 4.4.1. We filtered the output of each tool as

recommended by their authors (miRCat2: no filtering, miRCat: no filtering,

miRDeep: filter by score cut-off of 0, miRPlant: filter by score cut-off of 4,

miReap: no filtering).

For each method and input dataset we determined the number of high-confidence

and low confidence miRNA precursors from miRBase v21 [5], the number of

novel miRNA predictions, sensitivity (percentage of miRBase annotated miR-

NAs within the output) and specificity rates (percentage of miRNAs detected

out of the total number of miRNAs expressed in the sample file). The specificity

and sensitivity were calculated using the formulas defined in Section 3.2. The av-

erages for each organism are presented in Table 5.1, for animal data and in Table

5.2, for plant data; full results for each individual dataset for the organism pre-

sented in the Table 5.2 and for the other organisms mentioned in Section 4.4.1 can

be found in supplementary file Supplementary Results.xlsx. The supplementary

file consists of raw numbers of predictions and percentages for the two metrics

per individual file, and averages on each tool. We used miRBase as a reference

of accepted/studied miRNAs, although we acknowledge its caveats [244].

To calculate the sensitivity and specificity, any miRNA precursor from miR-

Base that has at least one sequence mapped to it, is considered to be expressed

in the sample. This includes very lowly expressed miRNAs, which are difficult to

predict, resulting in overall low sensitivity rates.

Comparing the prediction accuracy of miRCat2 with miRCat and miRDeep2/

miRPlant, we observe that miRCat2 has comparable specificity to other meth-

ods, whilst achieving an improved sensitivity. In particular, we predict a higher

number of known miRNAs, whilst avoiding an increase in the number of false

positives. For example, in M. musculus, miRCat2 detects 41 more miRNAs than

miRDeep2, which has the highest specificity, while predicting only 21 additional

(potentially novel) miRNAs. Analysing the results for animal data (Table 5.1), we
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Animals

Organism Tool
High-conf.
miRNAs

Low-conf.
miRNAs

Novel
predictions

Specificity
(%)

Sensitivity
(%)

H. sapiens miRCat2 159 83 72 78.6 (±9.1) 30.6 (±3.3)
(23 datasets) miRCat 122 67 27 87.9 (±5.8) 23.9 (±2.5)

miRDeep2 149 61 14 94 (±2.7) 26.5 (±4.5)
miReap 148 108 227 52.3 (±14.3) 32.5 (±7.4)

M. musculus miRCat2 147 25 23 90.5 (±7.5) 39.8 (±3.2)
(21 datasets) miRCat 124 20 20 88.5 (±8.3) 33.5 (±1.9)

miRDeep2 117 14 2 98.6 (±2) 29.7 (±7.2)
miReap 114 21 134 48.7 (±12.3) 31.6 (±8.5)

D. rerio miRCat2 141 145 42 93.6 (±2.4) 88.6 (±2.3)
(2 datasets) miRCat 101 88 26 87.9 (±0.3) 58.2 (±2.5)

miRDeep2 120 111 27 89.7 (±1.3) 71.5 (±3.0)
miReap 137 132 43 86.2 (±0.2) 82.9 (±0.2)

Table 5.1: Performance comparison of benchmarked tools on animal data (on aver-
age). miRCat2 performs well consistently, having a good specificity and sensitivity trade-off,
while miRCat and miReap struggle in terms of specificity. miRDeep2 has good specificity, but
lacks in sensitivity.

observe the miRCat2 has the best sensitivity in M. musculus and D. rerio, while

on H. sapiens data it ranks second to miReap. However, we observe that miReap

achieves this improved sensitivity for H. sapiens at a cost to specificity (with

26.3% lower than miRCat2), since it makes a large number of new predictions

(155 more than miRCat2), which may be false positives.

For plant data (Table 5.2), miRCat2 offers the second best sensitivity in all

three cases, with close percentages to the first predictor (which is miRPlant in

A. thaliana, and miRCat in S. lycopersicum and G. max ).

Another important fact is that miRCat2 predicts the greatest number of high

confidence miRBase miRNA annotations in all of the tests conducted. This is

an indicator that miRCat2 is more likely to predict true miRNAs, that the other

tools might miss.

In terms of specificity, miRCat2 presents the highest rates in D. rerio, and

miRDeep2 performs best in H. sapiens and M. musculus. miRCat2 has the second

best rate in M. musculus, being close to miRDeep2 (∼8%) and to miRCat, the

next highest tool for H. sapiens data (∼9%). In plants, miRCat2 has the highest

specificity for A. thaliana and second best for S. lycopersicum and G. max, where

miRPlant performs better. Both miRDeep2 and miRPlant achieve an improved

specificity because of the post-filtering of the results based on the miRNA score
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Plants

Organism Tool
High-conf.
miRNAs

Low-conf.
miRNAs

Novel
predictions

Specificity
(%)

Sensitivity
(%)

A. thaliana miRCat2 66 44 8 93.6 (±2.7) 38.3 (±2.7)
(7 datasets) miRCat 51 57 167 40.9 (±9) 37.9 (±1.8)

miRPlant 62 52 7 93.3 (±5.4) 39.3 (±14.9)
miReap 6 8 121 14.5 (±8.5) 4.9 (±0.6)

S. lycopersicum miRCat2 15 13 233 11.6 (±5) 44.2 (±12.8)
(14 datasets) miRCat 14 16 1204 2.7 (±1.1) 48 (±4.8)

miRPlant 11 7 45 30.3 (±7) 28.9 (±13.1)
miReap 4 5 1619 0.7 (±0.3) 13.6 (±3.2)

G. max miRCat2 N/A 129 269 32.7 (±3.8) 34.9 (±1.1)
(2 datasets) miRCat N/A 149 865 15.4 (±4.5) 40.2 (±0.8)

miRPlant N/A 80 74 52 (±0.7) 21.6 (±4.9)
miReap N/A 25 2243 1.2 (±0.3) 6.8 (±0.8)

Table 5.2: Performance comparison of benchmarked tools on plant data (on average).
miRCat2 performs well consistently, having a good specificity and sensitivity trade-off, while
miRCat and miReap struggle in terms of specificity. miRPlant has good specificity, but lacks
in sensitivity.

values, as this removes from the analysis the predictions with lower confidence.

In all organisms other than H. sapiens, miReap performs poorly, especially in

plants, where both sensitivity and specificity are very low. However, miReap has

been used for plant miRNA detection in studies such as [188–190], but they only

published conserved miRNAs and lab validated predictions, giving no information

about the performance of the tool during the conducted experiments.

The low standard deviations (for more detailed plots see Figure 5.1) for miR-

Cat2 present overall favourable numbers, which for sensitivity are second lowest

in animals, and for specificity are lowest in A. thaliana and second lowest of all

tools for M. musculus datasets, which means its predictions are more reliable

and stable from dataset to dataset of the same organism (little fluctuations in

results between datasets of same origin). The other tools generally tend to have

the standard deviation high for one metric and low for the other. For example,

miRDeep has a low standard deviation for specificity, but high for sensitivity in

M. musculus data, miRCat has a high value for specificity, but a low value for

sensitivity in A. thaliana, while miReap has the highest values for both metrics

in H. sapiens and M. musculus, but the lowest in D. rerio, S. lycopersicum and

G. max.

The results for specificity and sensitivity, together with the standard deviation
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values are a solid indicator that miRCat2 performs overall more consistently than

miRCat, miRDeep2, miRPlant and miReap. This suggests that the method used

by miRCat2 is more robust. We used miRBase as a reference of accepted/studied

miRNAs, although it is a collection of predicted miRNAs and not all sequences

have been validated [5]. Therefore, we next use an objective, biologically mean-

ingful test, by computing the differential expression of the results of the tools

between wildtype and mutant in the miRNA biogenesis pathway samples.
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Figure 5.1: Standard deviation for specificity and sensitivity.
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5.3 Performance assessment using fold change

computation between wildtype and miRNA

biogenesis mutant data

Because miRBase is likely to contain false positives and to compensate for the lack

of in-depth miRNA annotations for some model organisms [244], we investigated

whether or not the mature miRNAs predicted by each tool were dependent on

Dicer/DCL1, Drosha and DGCR8 processing, which are key factors in miRNA

biogenesis. This is a more robust method of validating the tools predictions.

The reasoning behind this was that we would expect bona-fide miRNAs to have

reduced expression in Dicer, Drosha, DGCR8 mutants versus wildtype samples.

We consider a sequence as being down-regulated in the mutant dataset if the

normalized expression is at least two fold lower in the mutant. We have calculated

the fold change and conducted cumulative plots on it as explained in Section 4.4.4.

To check the quality of the datasets, we produced correlation plots between

the expression levels in wild type and mutants for miRBase miRNAs (see Figure

5.2). If the experiment was created successfully, we expect to see higher counts in

the wildtype dataset than in the mutant, therefore the plots should show a shift of

the sequences above and parallel to the diagonal, and this pattern can be observed

in the majority of cases (for example, the pattern can be certainly distinguished in

the plot for S. lycopersicum). However, for D. rerio the pattern is not very clear,

in G. max and M. musculus the sequences seem to group around the diagonal,

rather than being shifted above, but in all cases more than a half of the sequences

are plotted above the diagonal. This suggests that these datasets contain overall

lower percentages of differential expression amongst miRNAs, therefore the tools

results might also have lower percentages when plotted. We noticed that in the

H. sapiens wildtype vs. Drosha mutant, there are some miRNAs that appear

below the diagonal (more highly expressed in the mutant). This is likely because

they might be mirtrons or have a Drosha-independent biogenesis pathway and

therefore appear to be more highly expressed in a miRNA depleted background

[225, 251, 252].

In Figure 5.3 we compare the performance of miRCat2, miRCat, miRDeep,

98



●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●●

●
●

● ●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

● ●●●
●

●

●

●●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●
●●●

●

●

● ●

●

●● ●
●

●

●●●

● ●

● ●●

●

●
●●

●

●●

●

● ●

●

●●

●

●●

●●

●

●

● ●

●●

●
●

● ●●●

●●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●
●

●● ●

●

●

●

●

●

●
●

●●

●●

● 0
5

10
15

20

A
)

log2(x$D2WTA)

M
ut

an
t (

lo
g2

)

05101520
95

9 
to

ta
l m

iR
N

A
s

95
.8

3%
 o

ve
r 

di
ag

on
al

0.
08

 −
 fc

 m
ed

ia
n

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●●●●● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●●●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●● ●

● ●

●

●

●

● ● ●●

●

●

● ●
●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

● ●
●

●
●

●
●●

●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●

●● ●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●●

●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●●

●

●

0
5

10
15

20

B
)

log2(x$D2WTA)

M
ut

an
t (

lo
g2

)

98
4 

to
ta

l m
iR

N
A

s
79

.2
7%

 o
ve

r 
di

ag
on

al
0.

07
 −

 fc
 m

ed
ia

n

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
● ●

●

●

●

●
●

●
●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

● ●●
●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●
●●

●
●

●
●

●

●●
●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●●

●●
●

●

●●

●●
● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●
●

● 0
5

10
15

20

C
)

log2(x$D2WTA)

M
ut

an
t (

lo
g2

)

42
5 

to
ta

l m
iR

N
A

s
86

.1
2%

 o
ve

r 
di

ag
on

al
0.

1 
−

 fc
 m

ed
ia

n

●●●

●●

●●
●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●●●

●

●
●

●

●●●●●●

●●

●

●

●

●●

●●●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●
●●●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

● ●●

●

●●●●

●

●

●

●

●

●●●●●●●

●

●●

●●

●

●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●●●

●

●

●●

●

●
●

●

●●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

0
5

10
15

20

D
)

log2(x$D2WTA)

M
ut

an
t (

lo
g2

)

32
6 

to
ta

l m
iR

N
A

s
67

.4
8%

 o
ve

r 
di

ag
on

al
0.

37
 −

 fc
 m

ed
ia

n

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

0
5

10
15

20

E
)

log2(x$D2WTA)

M
ut

an
t (

lo
g2

)

05101520
27

8 
to

ta
l m

iR
N

A
s

64
.0

3%
 o

ve
r 

di
ag

on
al

0.
54

 −
 fc

 m
ed

ia
n

●
●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●
● ●●

●

●

●

●

● ●●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

0
5

10
15

20

F
)

log2(x$D2WTA)

M
ut

an
t (

lo
g2

)

27
5 

to
ta

l m
iR

N
A

s
66

.1
8%

 o
ve

r 
di

ag
on

al
0.

46
 −

 fc
 m

ed
ia

n

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
5

10
15

20

G
)

log2(x$D2WTA)

M
ut

an
t (

lo
g2

)

77
 to

ta
l m

iR
N

A
s

88
.3

1%
 o

ve
r 

di
ag

on
al

0.
29

 −
 fc

 m
ed

ia
n

●

●

●

●

●
●●●●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●● ●
●●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

● ● ●

●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●
●●

●
●

●●●
●

●

● ●

●

●
●

●● ●●●

●

●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

● ●
●

●
● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

0
5

10
15

20

H
)

log2(x$D2WTA)

M
ut

an
t (

lo
g2

)

49
7 

to
ta

l m
iR

N
A

s
71

.0
3%

 o
ve

r 
di

ag
on

al
0.

63
 −

 fc
 m

ed
ia

n

Wildetype (log2)Wildetype (log2)

F
ig

u
re

5.
2:

C
o
rr

e
la

ti
o
n

p
lo

ts
o
f

n
o
rm

a
li

z
e
d

a
b

u
n

d
a
n

c
e
s

fo
r

e
x
p

re
ss

e
d

m
iR

B
a
se

m
iR

N
A

s
in

th
e

w
il

d
ty

p
e
,

c
o
m

p
a
re

d
to

m
u

ta
n
t

sa
m

p
le

s.
W

e
p

re
se

n
t

re
su

lt
s

fo
r
H
.
sa
p
ie
n
s

(s
u

b
p

lo
ts

(A
)

D
ic

er
a
n

d
(B

)
D

ro
sh

a
k
n

o
ck

-o
u

t)
,
M
.
m
u
sc
u
lu
s

(s
u

b
p

lo
t

(C
))

,
D
.
re
ri
o

(s
u

b
p

lo
t

(D
))

,
A
.
th
a
li
a
n
a

(s
u

b
p

lo
ts

(E
)

a
n

d
(F

))
,
S
.
ly
co
pe
rs
ic
u
m

(s
u

b
p

lo
t

(G
))

a
n

d
G
.
m
a
x

(s
u

b
p

lo
t

(H
))

.
T

h
e

p
lo

ts
gi

ve
in

fo
rm

at
io

n
ab

ou
t

th
e

p
er

ce
n
ta

ge
o
f

m
iR

N
A

s
th

a
t

a
re

m
o
re

a
b
u

n
d

a
n
t

in
th

e
w

il
d

ty
p

e
(a

b
ov

e
d

ia
g
o
n

a
l)

a
n

d
th

e
m

ed
ia

n
fo

ld
ch

an
ge

,
w

h
er

e
a

fo
ld

ch
an

ge
of

0.
5

m
ea

n
s

th
e

se
q
u

en
ce

is
d

ow
n

-r
eg

u
la

te
d

in
th

e
m

u
ta

n
t.

(A
)
H
.
sa
p
ie
n
s

w
il

d
ty

p
e

v
s.

D
ic

er
k
n

o
ck

-o
u

t.
(B

)
H
.
sa
p
ie
n
s

w
il

d
ty

p
e

v
s.

D
R

O
S

H
A

k
n

o
ck

-o
u

t.
(C

)
M
.
m
u
sc
u
lu
s

w
il

d
ty

p
e

v
s.

D
G

C
R

8
k
n

o
ck

-o
u

t.
(D

)
D
.
re
ri
o

w
il

d
ty

p
e

v
s.

D
ic

er
k
n

o
ck

-o
u

t.
(E

-F
)
A
.
th
a
li
a
n
a

w
il

d
ty

p
e

v
s.

D
ic

er
k
n

o
ck

-d
ow

n
.

(G
)
S
.
ly
co
pe
rs
ic
u
m

w
il

d
ty

p
e

v
s.

D
C

L
1

k
n

o
ck

-d
ow

n
.

(H
)
G
.
m
a
x

w
il

d
ty

p
e

v
s.

D
C

L
1

k
n

o
ck

-d
ow

n
.

99



miReap and miRPlant with and without filtering. For miRCat2, we have used

a score cut-off of five (empirically observed to separate most new predictions

from already annotated miRNAs). The filtering has some impact both on miR-

Cat2 and miRDeep2 in H. sapiens. In plants however we observe that miRCat2

performs well irrespective of this filtering, with a particularly large impact for

miRPlant. For comparability purposes, we computed the cumulative plots of

log2 fold changes only on unfiltered outputs (see Figure 5.4).

For tools with high prediction accuracy we expect to see a significant differ-

ential expression (downregulation in the mutant samples i.e. have a fold change

lower than or equal to -1) for the majority of the predicted miRNAs. As a con-

trol dataset containing reads independent of the miRNA biogenesis pathway, we

use RFAM tRNA and snoRNA transcripts (see Section 4.4.4 for details on how

the control dataset was computed). As expected, their expression level is not de-

creased in the mutant samples; moreover, in the animal datasets the expression of

these transcripts is upregulated, due to the stochasticity of the sequencing tech-

nology. In plant samples we observe little differential expression for the control

sequences, as the biogenesis of plant sRNAs is more complex. All tools produce

a substantially different cumulative differential expression curve compared to the

control dataset; miRCat2 performs better than other tools in all but one of the

experiments, because it presents the largest fraction of predictions that are down-

regulated in the mutants. In H. sapiens vs. Dicer knock-out sample (see Figure

5.4,(A)), we observe that miRCat2 is a close second to miRCat, while in plant

data there is a substantial gap between miRCat2 and the other tools.

The plots confirm the validity of the predictions, especially for S. lycopersicum,

where miRCat2 shows a low specificity when detecting annotated miRBase miR-

NAs. This could be explained by the fact that miRBase has not been updated

recently and currently only contains 77 annotated precursors in S. lycopersicum

(miRBase v21), so these novel predictions might be real miRNAs which have not

yet been annotated.

We next produced cumulative plots only for those sequences that were not

previously annotated in miRBase and therefore are potential newly predicted

miRNAs (see Figure 5.5). Here we still see a significant downregulation of pre-

dicted miRNAs in the mutant samples, although to a lesser extent than the plots
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including all predictions. We observe no change in the ranking of the tools, miR-

Cat2 performing better than the other tools in each of the experiments. In M.

musculus we notice a drop for all tools in the percentage of sequences with at least

a 2 fold change, which can be explained by the low number of novel predictions,

where any sequence predicted has a large influence on the result. The high per-

centage of differentially expressed sequences among novel predictions, especially

in plants, indicate that these sequences are likely to be bona-fide miRNAs.

To examine the low overall sensitivity rates, we have conducted cumulative

plots on the miRNAs present in the dataset, but not detected by each tool. We

expect these to have low counts, suggesting that they are very lowly expressed in

the sample. Alternatively these sequences could be misannotations in miRBase

and therefore do not show features consistent with canonical miRNA structure

and biogenesis and therefore their expression would not be affected in the mutant

datasets. Consequently, we expect to see a less significant change between the

wildtype and mutant samples in the cumulative plot. In this case, a curve closer

to the control line would indicate that the miRNAs missed by the tool were not

changed in the mutants and therefore potentially should not have been predicted.

Looking at these plots (see Figure 5.6), we can observe a clear change in the

shape of the lines for each tool (especially for miRCat2), suggesting that these

miRNAs might not present the canonical miRNA features or were lowly expressed

in the datasets analysed. Also, it is notable that miRCat2 consistently performs

well, having the lowest value of DE amongst the miRBase miRNAs that were not

identified in seven out of eight cases. This suggests that miRCat2 is less prone

to false positives and false negatives than other methods, because it detects more

miRNAs that are DE in the mutant data and because it successfully identifies

the miRNAs that are DE, that other tools miss.
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Figure 5.3: Comparison of filtered vs not filtered results for H. sapiens (subplots (A) and
(B)) and A. thaliana (subplots (C) and (D)) data. In each plot we represent the cumulative
distribution of differential expression for predictions conducted with miRCat2, miRCat, miRD-
eep2/miRPlant and miReap. The results were filtered based on the recommended cut-off of
the score for miRDeep2 (0) and miRPlant (4) and a value of 5 for miRCat2, empirically de-
termined. We observe that for both plant and animal data, the filtering has an effect on the
performance of the tools. (A) H. sapiens wildtype vs. DROSHA knock-out, before filtering.
(B) H. sapiens wildtype vs. DROSHA knock-out, after filtering. (C) A. thaliana wildtype
vs. DCL1 knock-down, before filtering. (D) A. thaliana wildtype vs. DCL1 knock-down, after
filtering.
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5.4 Run time and memory requirements

To test the memory requirements and run time of miRCat2, miRCat, miRDeep2,

miRPlant and miReap, we monitored the execution of the tools on two datasets

(H. sapiens and A. thaliana). We ran the tools on a Linux server with CentOS

5.11 operating system, 144GB of memory and 2 Intel Xeon X5550 processors.

The memory consumption and run time for each tool are presented in Table 5.3.

For this test we monitor the tools only after the initial read mapping step (to

measure precisely only the miRNA prediction algorithm), using JConsole [253] for

Java based tools (miRCat2, miRCat and miRPlant) and the Linux top command,

for the others (miRDeep2, miReap).

H. sapiens (Control2, A.thaliana (Arab WTA
34.450.792 seq.) 6.698.043 seq.)

Memory Time Memory Time
Tool (GB) (h:m:s) (GB) (h:m:s)

miRCat2 12.89 3:50:37 16.3 2:30:39
miRCat 19.94 00:28:31 6.992 00:04:07

miRDeep2 0.37 5:15:32s N/A N/A
miRPlant N/A N/A 1.2 00:55:00

miReap 61 00:45:43 2.1 00:03:22

Table 5.3: Performance comparison of run time and memory consumption between
miRCat2, miRCat, miRDeep2, miRPlant and miReap. The number of sequences rep-
resent genome mapped sequences in each file.

It is notable that for miRCat and miRCat2, the user can define the memory

constraints it wishes the tool to be run with. That is, it is possible for these tools

to be run on a desktop with only 4GB of RAM (in the detriment of runtime). For

the purpose of this test, we allowed up to a maximum of 64GB and monitored how

much memory each software actually consumes. For miRPlant, the memory used

is predefined to 1.2GB and cannot be modified by the user, which forces the Java

Virtual Machine (JVM) to swap the RAM to be able to do its processing, which

substantially increases the run time of miRPlant. Therefore, larger datasets can

take a long time to run for miRPlant (for example, running miRPlant on the G.

max datasets took more than 1 week each).

Comparing the performance of the tools on the H. sapiens dataset, which

is a fairly large input, containing approximately 34.5 million reads, we observe
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that miRDeep2 consumes the least amount of memory (0.37GB), followed by

miRCat2 in second place (12.89GB). It is notable that the low RAM needed is

however achieved by sacrificing run time, the two also having the highest run

time. We also see that miReap has the highest memory consumption (61GB),

using over 40GB more than miRCat (19.94GB), while also consuming almost

twice the time to complete its processing, compared to miRCat.

Looking at the performance of the tools on the A. thaliana, which is a rather

small input, containing approximately 6.7 million reads, we observe that miRCat2

has both the highest run time and memory consumption. miRCat has the second

highest RAM requirement, but it is achieved substantially faster, having the

second lowest run time. While miReap has both low RAM and time consumption,

miRPlant achieves the lowest memory consumption by increasing its processing

time.

Next we compared the results between the runs on the two datasets, to see

the scaling of the algorithms from a small input (A. thaliana) to a larger input

(H. sapiens), containing 5.2 times more sequences. We observe that both miR-

Cat and miReap suffer a considerable increase both in memory and in run time

consumption in the larger dataset. miRCat required approximately 3 times more

memory and 7 times more runtime, while miReap needed 30 times more RAM

and 15 times longer processing time. miRDeep and miRPlant are suitable only

for one of the datasets and they are not directly comparable. We notice that

for miRCat2, the memory requirement does not change, while the run time is

increased only by 1.4 times. This suggests that miRCat2 is scaling better and is

more suited for larger inputs (which lead to a larger number of mapped unique

genomic locations), without needing proportional amounts of resources.

H. sapiens (Control2, A.thaliana (Arab WTA
34.450.792 seq.) 6.698.043 seq.)

Memory Time Memory Time
miRCat2 (GB) (h:m:s) (GB) (h:m:s)

DB on disk 12.89 3:50:37 16.3 2:30:39
DB in memory 18.1 0:52:52 15.5 0:32:37

Table 5.4: Performance comparison of run time and memory consumption for miRCat2, when
constructing the database in memory or on disk. The number of sequences represent genome
mapped sequences in each file.

107



The high processing time for both datasets for miRCat2 is partially due to

the way the UEA small RNA Workbench is implemented: to decrease memory

requirements, the data is stored in a local database (DB) (created at each run).

This decreases the RAM consumed (especially for large datasets), but it adds

to the run time, because it need to access the disk every time a query is sent

to the database. However, this is not a substantial issue in practice, since it

performs similarly to other current software and the user might choose to let it

run overnight.

To avoid long run times, the user has the option to run the Workbench con-

structing the database in memory, which decreases the runtime. This is however

recommended only if the user can make use of large amounts of RAM. In table 5.4

we compare the performance of miRCat2 when constructing the database on the

disk with constructing it in memory. We observe that its runtime is substantially

smaller in the second case. While the memory consumption is only slightly in-

creased during the processing of miRCat2, we must mention that a larger amount

of RAM was required for the database construction for the H. sapiens dataset

(35.1GB).

5.5 Validation of novel miRNAs for miRCat2

To investigate the new predictions made by miRCat2, besides the fold change

computation, we conducted a series of tests on the S. lycopersicum data to pro-

vide arguments that these new predictions are real miRNAs. The methods used

for these tests are described in Section 4.4.5. We have chosen the S. lycoper-

sicum dataset because it has the lowest specificity of all datasets upon which we

tested miRCat2 when compared to miRBase, the low specificity suggesting that

miRCat2 allows for FP. These tests confirm that there are many novel miRNAs

amongst these predictions, which have not yet been annotated. All the tests be-

low were conducted on S. lycopersicum sample WT1 (for which we also generated

cumulative plots), to have a better understanding of the data.

Plots describing secondary structure and alignment information

miRCat2 outputs pdf files containing graphical representation of the hairpin
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structure and plots with the alignment of sequences on the secondary struc-

ture. Using these plots, the user can check if the prediction presents the required

miRNA features (hairpin structure and alignment depth and distribution - see

Section 2.4.2). An example of a successful such prediction and of a more ques-

tionable prediction are presented in Figure 5.7 and Figure 5.8, respectively.

GCTTGTTGTCTCTCCCTCAAGGGCTCCTCTTCAAGATCCTTATAAACAAGAAAGCATGAGGGGGAGGAGTTCTTGTAGGGTGAGACAACAAGA

.....TTGTCTCTCCCTCAAGGGCT.................................................................... 1

......TGTCTCTCCCTCAAGGGCTCCT................................................................. 1

......TGTCTCTCCCTCAAGGGCTCC.................................................................. 23

...................................................................AGTTCTTGTAGGGTGAGACAAC.... 14

...................................................................AGTTCTTGTAGGGTGAGA........ 1

.(((((((((((.((((.((((((((((((((((((((............)))))))......))))))))))))))))).))))))))))). -50.7

A)
B)

C)

Figure 5.7: Output of miRCat2 for a successful prediction (chromosome 10). The
information shown contains A) precursor coverage plots, B) precursor secondary structure and
C) alignment of incident reads.

Comparing to known miRNAs of other species

Comparing the new S. lycopersicum predictions to other plant miRNAs, we have

found that 54 out of the 190 new predictions for the S. lycopersicum dataset

are likely homologs of miRNAs that are annotated in other plant species (28.4%

of the new predictions). Table 5.6 gives information about these sequences, to-

gether with one example of a homologue annotated miRNA (most predictions

have more than one corresponding annotated miRNA). This is a strong indicator

that these loci represent bone-fide miRNA genes. A full list of homologs for each

new miRNA prediction can be found in Supplementary Homologs.xlsx
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A)
B)

C)
CGCTGCTCATTTTTGGTTGTGACATTGATAGTGTATCAACGTTTCGAGGCCTTTTAGAAAGTAAAAAATATGGAGAAGTGAATTTTGGAGCACCCGTGATCAACGTTCAGGTAGGCTACGGTTTCTCTTCTTAGATTGAACTCGAACATGTGAATGCATGTTGATTAGTTGGGATTTGGGTTGGGTAGTT

AAGGCCTCGAAA.................................................................................................................................................................................. 3

AAGGCCTCGAAACGTTGAT........................................................................................................................................................................... 1

AAGGCCTCGAAACGTTGATACACT...................................................................................................................................................................... 7

...........................................................................AAGTGAATTTTGGAGCACCCGTGA........................................................................................... 1

.........................................................................................................TTCAGGTAGGCTACGGTTTCTC............................................................... 2

.............................AGTGTATCAACGTTTCGAGGCC........................................................................................................................................... 2

..............................GTGTATCAACGTTTCGAGGCCT.......................................................................................................................................... 5

..............................GTGTATCAACGTTTCGAGGCC........................................................................................................................................... 3

................................GTATCAACGTTTCGAGGCCTTT........................................................................................................................................ 2

................................GTATCAACGTTTCGAGGCC........................................................................................................................................... 1

...............................TGTATCAACGTTTCGAGGCCTT......................................................................................................................................... 3

...............................TGTATCAACGTTTCGAGGCCT.......................................................................................................................................... 1

............................TAGTGTATCAACGTTTCGAGGCCT.......................................................................................................................................... 3

............................TAGTGTATCAACGTTTCGAGGC............................................................................................................................................ 1

...................................TCAACGTTTCGAGGCCTTTTAG..................................................................................................................................... 1

..................................ATCAACGTTTCGAGGCCT.......................................................................................................................................... 1

......................................ACGTTTCGAGGCCTTTTAGAAA.................................................................................................................................. 1

..........................................TTCGAGGCCTTTTAGAAAGTA............................................................................................................................... 1

...........................................TCGAGGCCTTTTAGAAAGTAAA............................................................................................................................. 1

............................................CGAGGCCTTTTAGAAAGTA............................................................................................................................... 1

............................................................................................................................CTCTTCTTAGATTGAACTCGAA............................................ 3

.......................................................................................................................................TTGAACTCGAACATGTGAATGCA................................ 29

.......................................................................................................................................TTGAACTCGAACATGTGAATGC................................. 1

.......................................................................................................................................TTGAACTCGAACATGTGAA.................................... 1

........................................................................................................................................TGAACTCGAACATGTGAATGCA................................ 26

.....................................................................................................................................GATTGAACTCGAACATGTGAATGCA................................ 1

.........................................................................................................................................GAACTCGAACATGTGAATGCAT............................... 2

......................................................................................................................................ATTGAACTCGAACATGTGAATGCA................................ 58

....................................................................................................................................AGATTGAACTCGAACATGTGAA.................................... 5

...................................................................................................................................TAGATTGAACTCGAACATGTGAA.................................... 2

..................................................................................................................................TTAGATTGAACTCGAACATGTG...................................... 2

........................................................................................................................................................AATGCATGTTGATTAGTTGGGATT.............. 1

...............................................................................................................................................................GTTGATTAGTTGGGATTTGGGT......... 1

....................................................................................................................................................................TTAGTTGGGATTTGGGTTGGGTA... 2

.((((((((.(((.((((.(((((((((((.(((((..((((((((((..(.....................((((((.(((..(((.(((...(.(((.......))).)...))).))).))).)))))).....)..)))))).))))..))))))))))))..)))).)))).))).)))))))). -46.8

Figure 5.8: Output of miRCat2 for a more questionable prediction (chromosome 10).
The information shown contains A) precursor coverage plots, B) precursor secondary structure
and C) alignment of incident reads.

Detection of the same novel miRNA in multiple samples

We have also checked to see if the same sequence was predicted in other S. ly-

copersicum samples. We have run miRCat2 on all 4 samples of the same S.

lycopersicum experiment and intersected the results. We then counted the new

predictions from sample WT1 that have been predicted in more than one dataset.

170 out of the 191 new predictions (89%) are detected in more than one sam-

ple, 79 (41.3%) of these predictions having low counts (counts under 50). This

presents evidence of them being true miRNAs [250], because it is highly unlikely

that a FP should present miRNA-like features in multiple samples (if a sequence

is a true FP, then it must present miRNA-like features for a specific dataset

by change). Details about these novel predictions that were detected in multi-

ple samples, including information about their abundances in the other samples
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where they have been predicted can be found in supplementary file Supplemen-

tary Multiple Samples.xlsx.

Pooling of multiple samples

We pooled together 4 samples of S. lycopersicum and created a single FASTA

file containing all sequences, adding the counts of the same sequence if found in

multiple datasets. Then we run miRCat2 on the newly obtained data. We ob-

tained similar results to the previous method, where we checked the predictions

in all samples after individual runs. After intersecting the WT1 with the pooled

sample results, we found that 166 out of the 191 new predictions (86.9%) in WT1

sample are detected in the pooled sample as well, 77 (40.3%) of which having

low counts in the original file (counts under 50). This is strong evidence that the

overlapping predictions, especially the lowly expressed reads, are true miRNAs.

We show the predictions that have been predicted both in WT1 and in the pooled

samples in supplementary file Supplementary Pooled Samples.xlsx.

Finding the miRNA gene source by comparing to all genome annota-

tions

We have downloaded available S. lycopersicum annotated genome regions from

the Sol Genomics website 1 [254], containing protein coding regions and sRNAs.

The annotated genomic regions were produced by Infernal 2, adding to the miR-

Base entries and containing a total of 391 miRNAs. These annotations comple-

ment miRBase and give a wider view of existing S. lycopersicum miRNAs. We

produced the intersection of the novel predictions of miRCat2 with the GFF an-

notation file, bedtools (intersect) [167]. The number of predicted sequences that

overlap with annotated regions are shown in Table 5.5:

miRNA 21 intron 15 intergenic 137
gene 13 3’ and 5’ UTR 3 tRNA 1

Table 5.5: Intersection of novel predictions with annotated genes of the S. lycopersicum genome.

The first line in Table 5.5 shows sequences with an origin that could cor-

1ftp://ftp.solgenomics.net/tomato genome/annotation/ITAG2.3 release/
2http://infernal.janelia.org/
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respond to a miRNA genes, while on the second line, the sequences have an

origin that does not correspond to miRNA biogenesis. There are 21 novel pre-

dictions that correspond to miRNAs annotated by Infernal, but are not present

in miRBase, which confirms that improvements could be made to the current

version of miRBase [5, 244]. Moreover, 15 loci were predicted from intronic re-

gions and 137 from intergenic regions, from where miRNAs are usually generated

[15, 16, 36, 47, 48]. This information, together with their incident read alignment

and secondary structure, gives us good reason to believe they could be real miR-

NAs that the miRCat2 algorithm detected. Therefore, we conclude that out of

190 total novel predictions, 173 predictions (91.05%) have a miRNA-like origin

for the S. lycopersicum dataset analysed.
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Chromozome Sequence Count Start End Strand
Homolog
miRNA
in other species

SL2.40ch10 TCGGACCAGGCTTCATTCCCC 79714 3321909 3321929 + ath-miR166a-3p
SL2.40ch10 ATGGGTAGCACAAGGATTAATG 1070 62182533 62182554 + sly-miR6027-5p
SL2.40ch03 TCTCGGACCAGGCTTCATTCC 119585 292999 293019 - gma-miR166h-3p
SL2.40ch03 TCCAAAGGGATCGCATTGATC 8 7461884 7461904 + gma-miR393h
SL2.40ch03 TAGCCAAGGATGACTTGCCT 13 9591894 9591913 + tcc-miR169g
SL2.40ch03 CTGAAGTGTTTGGGGGAACTC 53 30608183 30608203 + aly-miR395i
SL2.40ch03 CTGAAGTGTTTGGGGGAACTC 53 30608715 30608735 + aly-miR395i
SL2.40ch03 TCGGACCAGGCTTCATTCCCC 79714 46023561 46023581 - ath-miR166a-3p
SL2.40ch03 TCGATAAACCTCTGCATCCAG 1695 58491605 58491625 + ath-miR162a-3p
SL2.40ch03 TTGACAGAAGATAGAGAGCAC 8015 61720039 61720059 + smo-miR156c
SL2.40ch03 TTTGGATTGAAGGGAGCTCTA 64876 61786222 61786242 + osa-miR159a.1
SL2.40ch03 TTGGACTGAAGGGTTTCCTTC 1352 61794716 61794736 + stu-miR319-3p
SL2.40ch02 TGCCTGGCTCCCTGTATGCCA 210 16516665 16516685 - mes-miR160g
SL2.40ch02 CTGAAGTGTTTGGGGGAACTC 53 27508523 27508543 - aly-miR395i
SL2.40ch02 CTGAAGTGTTTGGGGGAACTC 53 27508705 27508725 - aly-miR395i
SL2.40ch02 CTGAAGTGTTTGGGGGAACTC 53 27526675 27526695 - aly-miR395i
SL2.40ch02 CTGAAGTGTTTGGGGGAACTC 53 27533088 27533108 - aly-miR395i
SL2.40ch02 TATTGGCCTGGTTCACTCAGA 78 27921894 27921914 - ath-miR170-5p
SL2.40ch02 TTGACAGAAGATAGAGAGCAC 8015 29897683 29897703 + smo-miR156c
SL2.40ch02 TTGACAGAAGATAGAGAGCAC 8015 47055512 47055532 + smo-miR156c
SL2.40ch01 TCGGACCAGGCTTCATTCCCC 79714 79167141 79167161 + ath-miR166a-3p
SL2.40ch01 TGCACTGCCTCTTCCCTGGCT 85 82801320 82801340 - smo-miR408
SL2.40ch01 TTGGCATTCTGTCCACCTCC 269 84522987 84523006 + vvi-miR394a
SL2.40ch12 TTCCACAGCTTTCTTGAACTT 1957 2899110 2899130 + vvi-miR396b
SL2.40ch12 TGTCGCAGATGACTTTCGCCC 828 6988948 6988968 - sly-miR1919c-5p
SL2.40ch12 TTGGACTGAAGGGTTTCCTTC 1352 39442963 39442983 + stu-miR319-3p
SL2.40ch12 TTGGACTGAAGGGAGCTCCCT 13907 47456665 47456685 - ppt-miR319a
SL2.40ch00 TTCCACAGCTTTCTTGAACTG 20754 12537520 12537540 + vvi-miR396b
SL2.40ch00 CTGAAGTGTTTGGGGGAACTC 53 17038754 17038774 - aly-miR395i
SL2.40ch11 TATGTTCTCAGGTCGCCCCTG 607 47382919 47382939 - stu-miR398a-3p
SL2.40ch07 TGACAGAAGAGAGTGAGCAC 832 324087 324106 + osa-miR156k
SL2.40ch07 TAGCCAAGGATGACTTGCCT 13 2174513 2174532 + tcc-miR169g
SL2.40ch07 TAGCCAAGGATGACTTGCCT 13 2180718 2180737 + tcc-miR169g
SL2.40ch07 TGACAGAAGAGAGTGAGCAC 832 48503782 48503801 + osa-miR156k
SL2.40ch06 AAGCTCAGGAGGGATAGCGCC 45 1372252 1372272 - cca-miR390
SL2.40ch06 TCGGACCAGGCTTCATTCCCC 79714 33130363 33130383 + ath-miR166a-3p
SL2.40ch06 TCGATAAACCTCTGCATCCAG 1695 39463195 39463215 + ath-miR162a-3p
SL2.40ch06 TGATTGAGCCGTGCCAATATC 30 40810831 40810851 + bna-miR171g
SL2.40ch05 CTGAAGTGTTTGGGGGAACTC 53 1703003 1703023 + aly-miR395i
SL2.40ch05 CTGAAGTGTTTGGGGGAACTC 53 1705348 1705368 + aly-miR395i
SL2.40ch09 TGAAGCTGCCAGCATGATCTA 66 59575910 59575930 + osa-miR167d-5p
SL2.40ch09 TGAAGCTGCCAGCATGATCTA 66 59584688 59584708 + osa-miR167d-5p
SL2.40ch09 TGAAGCTGCCAGCATGATCTA 66 63883415 63883435 + osa-miR167d-5p
SL2.40ch09 TCGGACCAGGCTTCATTCCCC 79714 64446634 64446654 - ath-miR166a-3p
SL2.40ch08 TCGGACCAGGCTTCATTCCCC 79714 2978492 2978512 + ath-miR166a-3p
SL2.40ch08 TGACAGAAGAGAGTGAGCAC 832 49143120 49143139 - osa-miR156k
SL2.40ch08 GCTCACTGCTCTATCTGTCACC 53 49143294 49143315 - zma-miR156l-3p
SL2.40ch08 TGACAGAAGAGAGTGAGCGC 10 49143362 49143381 - ath-miR156a-5p
SL2.40ch08 TGACAGAAGAGAGTGAGCAC 832 49143604 49143623 - osa-miR156k
SL2.40ch08 TGACAGAAGAGAGTGAGCAC 832 49143859 49143878 - osa-miR156k
SL2.40ch08 TGACAGAAGAGAGTGAGCAC 832 49276200 49276219 + osa-miR156k
SL2.40ch08 TAGCCAAGGATGACTTGCCT 13 52708635 52708654 + tcc-miR169g
SL2.40ch08 TTGGACTGAAGGGAGCTCCCT 13907 61949534 61949554 - ppt-miR319a
SL2.40ch08 TTGCTGCCGACTCATTCATCCA 78 61949641 61949662 - smo-miR319

Table 5.6: New predictions in S. lycopersicum that have homologs in other plant species (only
one example shown). Homologoues sequences were obtained by matching miRCat2 new predic-
tions to all mature miRNAs from miRBase with one missmatch.
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5.6 Conclusions

We have presented a new tool for miRNA prediction, miRCat2, applicable on

both plants and animals, which can be run both from the UEA small RNA

Workbench graphical interface and from the command line. The miRCat2 output

offers useful information about its predictions, implementing new features for

users to better visualise and analyse its results. It produces descriptive plots

depicting the secondary structure and the alignment of sequences on the hairpin,

which constitute valuable information for easy manual processing and validation

of the predictions. Another feature is that miRCat2 can be easily integrated

into bioinformatics workflows available from the Workbench for a more complex

analysis of the data.

We tested miRCat2 on ten model organisms and compared its results with

four commonly used tools for miRNA discovery (miRCat, miRDeep2, miRPlant

and miReap). miRCat2 shows a good trade-off between sensitivity and specificity

(relative to miRBase annotation), performing well in both metrics, while other

tools generally performed well only for one of these measures. More specifically,

miRDeep2 and miRPlant had good specificity rates, but lacked in sensitivity

(annotated miRNAs are not predicted). miReap had a good sensitivity in animals,

but lacked in specificity, allowing a high number of new predictions, which could

potentially contain false positives.

To evaluate the accuracy of the predictions we used the miRBase annotations

and the objective and biologically meaningful mutant test (using Dicer/DCL1,

Drosha, DGCR8 mutants). This approach alleviated the lack of in-depth miRNA

annotations for some model organisms [244]. We have shown using the compar-

ison of wildtype and mutant datasets, in the cumulative plots, that miRCat2

generally performs better than all other tools tested, both overall and when con-

firming novel annotations. The tool also remains consistent in its predictions

across all animal and plant data whilst the other tools tend to perform better

only on some of the organisms: miRCat and miRDeep2 perform well in H. sapiens

and D. rerio, while miRPlant performs well in A. thaliana.

Advantages of other tools also include, for example, high specificity rates for

miRDeep2 and miRPlant and high sensitivity in plants for miRCat and in H.
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sapiens for miReap. Based on the cumulative plots, miRCat and miRDeep2

perform well in animal datasets tested (H. sapiens, M. musculus, D. rerio), and

miRPlant in the A. thaliana datasets. In terms of resource usage, miRCat and

miReap perform best at run times, while miRDeep2 and miRPlant require the

least memory for their processing.

miRCat2 is based on a new peak selection and feature-filtering algorithm. This

means that it can only detect miRNAs with conservative secondary structures

and miRNA-specific features. In animals, the pre-miRNAs have a well-defined

structure with little fluctuations, making the detection of miRNAs easier. In

plants, however, there is a higher degree of variability in miRNA hairpin length

[114] and hairpins can contain multiple loops and additional smaller hairpins [21,

36]. These features make the plant miRNA detection challenging. Therefore, rule-

based tools, such as miRCat2, miRCat, miRDeep2, miRPlant and miReap, may

perform poorly on plant data, missing miRNAs with uncharacteristic features or

allowing a large number of false positives. The results for plant data show that

miReap performs poorly, displaying low sensitivity and specificity and also the

poorest performance on the comparison with mutant datasets. This indicates

high false positive and false negative rates and, although it performs better on

animal data, miReap should probably not be used for plant miRNA prediction.

Another criterion that influences the outcome of miRCat2 is the read abun-

dance of a miRNA locus: miRCat2 may miss miRNAs that are lowly expressed in

the input samples due to the calculations used to test against a random uniform

distribution, for the identification of peaks. Nevertheless the detection of low

abundance miRNAs is a common issue for all miRNA prediction tools. This is

not necessarily a disadvantage, as low read counts would suggest that the miRNA

may not be expressed in that particular sample. In another sample where the

miRNA is more highly expressed it is more likely that it would be predicted.

The quality of the input datasets can also have a great impact over the results

of miRCat2. For aligning the sRNA sequences to the reference genome, miRCat2,

as well as miRCat, use PatMaN [153], because of its efficiency in aligning short

sequences to large databases. However, PatMaN does not compute any quality

checks over the alignments, i.e. it finds all the possible matches for a sequence,

irrespective of how many times or in which region of the genome it was matched.
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Therefore, short or poor quality sequences might be aligned multiple times, likely

even to loci they did not originate from, increasing the level of noise and making

the processing more prone to error. Other miRNA prediction tools, such as

miRDeep and miRPlant, use Bowtie2 [152] for sequence alignment, which allows

the user to customise the maximum number of times a sequence can be matched

to the reference genome. Moreover, if the user wishes to align with gaps, it

uses a seed approach to ensure the correctness of the method, and outputs the

gaped alignment locations only if no full alignments were found. This can offer

further insurance for the quality of the mappings. For these reasons, miRCat

and miRCat2 can be affected stronger by the poor quality of the input datasets.

While this does not affect their ability to classify real miRNAs, it can result

in lower specificity, allowing more predictions. This may be one of the reasons,

amongst others, for their poor specificity in the soybean and tomato datasets.

miRCat2 generates a score as a mean of ranking its predictions and performs

well irrespective of a filtering based on this score. This suggests that the core

algorithm is robust.

In terms of run time, miRCat2 compares favourably with miRDeep2, although

miReap was faster. For example, on a H. sapiens dataset, containing approxi-

mately 34.5 million reads, miRCat2 generated the results in 3h50m, while miRD-

eep2 generated the results in 5h15m (all tests performed on a Linux server with

CentOS 5.11 operating system, 144GB of memory and 2 Intel Xeon X5550 pro-

cessors). In terms of memory usage, the amount allocated for one miRCat2 run

is user-defined making it versatile to run on a wide range of specifications.

In conclusion, miRCat2 provides improved identification and characterization

of new miRNAs over a range of organisms, that are not predicted by other tools. It

should therefore contribute to a better, more in depth understanding of miRNAs,

both in plants and animals.

5.7 Summary

In this chapter we have presented the results of miRCat2, compared to miR-

Cat, miRDeep2, miRPlant and miReap. We have presented the sensitivity and

specificity of the tools when compared to miRBase, then we have compared their
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performance by calculating the fold change in mutants in the miRNA biogenesis

pathway. After all the tests conducted, we conclude that miRCat2 performs the

most consistently of all tools, having higher statistics in both in animal and plant

data.

After discovering new miRNAs and adding them to miRBase, biologists can

make good use of them, by studying their roles in the organisms. If these se-

quences were not annotated, real miRNAs would be overlooked, therefore it is

very important to have an image of existing miRNAs as close to reality as possi-

ble. In the next chapter we give an example of how these predicted miRNAs are

analysed and studied, and present the results for a study of miRNAs in colorectal

cancer. The chapter provides a wider view on the area of research on miRNAs

and emphasises the importance of having accurate miRNAs annotations, and

therefore the need for miRCat2.
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Chapter 6

sRNA and miRNA differential

expression analysis to study the

effects of sulphoraphane

treatment on human colorectal

cancer

This analysis is submitted as part of the manuscript “Sulforaphane modulates

microRNA expression in colorectal cancer cells to potentially implicate the regu-

lation of the CDC25A, HMGA2 and MYC oncogenes”, C A Dacosta, C Paicu, I

Mohorianu, W Wang, P Xu, T Dalmay, Y Bao”

I have conducted the bioinformatics analysis of the sRNA sequencing data under

the supervision of Dr. Irina Mohorianu
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6.1 Summary

In this chapter we describe an applied method of conducting analysis of HTS

sRNA datasets (generated in Dr. Tamas Dalmay’s laboratory). We describe the

evaluation of the quality of the sequencing data and how to identify and assess

the effect of technical issues occurred either during the library preparation or

the sequencing. Next, we give an overview several normalization approaches and

select the most appropriate one for this data. Lastly, we explain a procedure

for conducting differential expression and identifying the sRNAs that have major

roles in the studied conditions. This analysis framework provides an objective

overview of the genome-wise expression study. In particular for miRNA studies, it

facilitates the identification, with reasonably high accuracy, of a small number of

candidate sRNAs which may be linked to the gene regulation. This is of relevance

to this thesis as it shows how miRNA predictions can be used in the study of

diseases and cancer.

6.2 Introduction

The analysis of sRNA datasets can facilitate the identification of sRNAs which

play a role in certain biological processes or diseases. A clear image of the se-

quences involved provides researchers with a better understanding of the func-

tioning of the organism. The conclusions resulting from such studies, i.e. the set

of regulatory sRNAs and the understanding of their mode of action, can then

be used, for example, to develop new treatments for diseases (for animals), or to

improve quality of products and resistance to pathogens (for plants).

The experimental design of sRNA data consists of multiple conditions: con-

trol, treatment or mutant. Usually, experiments have control samples, which

are the made from the unaltered cell line/tissue/organism to be studied (wild-

type) and can be used as reference, to objectively identify differential expression

between the treatment and the control.

Each condition in the experiment can consist of one or multiple libraries (tech-

nical or biological replicates). As the HTS sequencing cost has decreased over

time, it is more common nowadays to have multiple technical replicates for each
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condition, as this gives a better overview of the biological reality, it offers statis-

tical significance for the analysis conducted and it can reduce both FP and FN

rates [246, 255].

Because a series of errors can be introduced both during library preparation

and HTS sequencing [148, 246, 256–258], it is highly important to check the

quality of the libraries produced. The correctness of the results is dependant on

the quality of the datasets, otherwise they could be misleading. It is assumed

that only 81% of sequences would be free of errors for a successful sequencing

experiment [256], thus, we need to make sure we only include the reads that are

likely to be correct. A description of the most common possible errors is given in

Section 6.3.1.

There are a series of tools that perform HTS sRNA dataset processing, quality

assurance and analysis of sRNA experiments. Amongst the most commonly used

are: RNA-SeQC [259] (quality check), RSeQC [260] (quality check), Kraken [261]

(quality check and datasets processing), UEA sRNA Workbench [4](datasets pro-

cessing, data visualisation tools, expression profiling [184]), SeqAssist [262] (qual-

ity check), sRNAtoolbox [263] (expression profiling and differential expression),

FastQC [264] (FASTQ files quality check).

These tools use different methods and provide help when conducting sRNA

analysis, however, they lack functionalities (e.g. different tools offer quality check

of different criteria). In addition, these tools do not offer a full framework. In

the next section, we describe our methods for performing quality check on sRNA

datasets, normalization for expression levels and differential expression, which

have been successfully used before for HTS sRNA data, on an extended time-

course analysis of sRNAs during tomato development and many others [222, 265–

267]. The methods we used have been recently implemented as a pipeline of

tools for sRNA data analysis, which can be found in the UEA sRNA Workbench

[4, 249], providing an end to end processing and sRNA analysis.

6.2.1 Datasets

We applied the methods described below in a study on the effects of sulforaphane

(SFN) on the expression of microRNAs in human (H. sapiens) colorectal ade-
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(A) Lane 1 (Caco-2 Libraries) (B) Lane 2 (CCD-841 Libraries)
Library
Name

Index
Primer

Treatment
New file
Name

Library
Name

Index
Primer

Treatment
New file
Name

LIB 1 1 8 h SFN B1 LIB 10 1 8 h SFN Y1
LIB 2 2 8 h SFN B2 LIB 11 2 8 h SFN Y2
LIB 3 3 8 h SFN B3 LIB 12 3 8 h SFN Y3
LIB 4 4 Control A1 LIB 13 4 Control X1
LIB 5 5 Control A2 LIB 14 5 Control X2
LIB 6 6 Control A3 LIB 15 6 Control X3
LIB 7 7 24 h SFN C1 LIB 16 7 24 h SFN Z1
LIB 8 8 24 h SFN C2 LIB 17 8 24 h SFN Z2
LIB 9 9 24 h SFN C3 LIB 18 9 24 h SFN Z3

Table 6.1: Library names and information for two sequencing experiments datasets (Caco-2 cell
line, CCD-841 cell line). SFN = sulforaphane.

nocarcinoma Caco-2 cells and non-cancerous colorectal CCD-841 cells, to help

ascertain the roles of microRNAs in the anti-cancer effects of sulforaphane. Data

was generated by Christopher Dacosta (who is part of Dr. Tamas Dalmay’s

group) for Caco-2 cell line and CCD-841 cell line, to determine miRNA differen-

tial expression induced by the effects of sulforaphane in colorectal cancer.

Caco-2 and CCD-841 cells were treated for 8 or 24 h with sulforaphane or

DMSO (dimethyl sulfoxide) alone (control). Final DMSO concentrations were

0.05%. Total RNA was then isolated, and microRNAs were cloned as cDNA-

based libraries. The libraries were then subject to deep sequencing. Two experi-

ments were produced, one for each cell line (one for Caco-2, one for CCD-841 cell

line), the library names, conditions and corresponding file names can be seen in

Table 6.1. Each experiment has three replicates for each of the three conditions:

control (unchanged cells samples), 8 hours after treatment with sulforaphane and

24 hours after treatment with sulforaphane. The data can be accessed online

and downloaded from GEO database [158] under accession number GSE89363

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89363).

To describe this method, we will explain it step by step by performing the

analysis on the Caco-2 libraries (for simplicity, we will refer only to this one

experiment for quality check, normalization and differential expression analysis,

then give an overview and results for the CCD-841 Libraries, as well).
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6.2.2 Statistical concepts

Boxplots are used in descriptive statistics as a simple, convenient way of repre-

senting data in a plot, giving information about the range, the median and the

quartiles of the data. It is produced by drawing a rectangle between the second

and third quartiles, usually with a vertical line inside to indicate the median

value. The lowest and highest values are shown as vertical lines either side of

the rectangle (whiskers), indicating variability outside the quartiles. During this

work, we generate standard box plots, where the whiskers extend to 5% and 95%

of the data, respectively. If there are outliers in the data, they may be represented

as individual points. Box plots are non-parametric, displaying variation of data

in samples without making any assumptions of the statistical distribution. The

spacings between the different parts of the box indicate the degree of dispersion

(spread) and skewness in the data, and show outliers [268].

MA plots [269] is a visual representation of two datasets which have been trans-

formed into the M (log ratio) and A (mean average) scale. It is used to create a

visual representation of differential expression between two samples (by plotting

the log fold change (M) against the average read count(A)). This plot is used to

determine if a normalization method can correct technical biases [270] (after the

normalization, there should be little to no DE between replicates in the MA plots).

The Jaccard similarity index [271] is a statistical method of comparing two

samples by observing the proportion of members that are common and the pro-

portion of members that distinct. It is defined as the size of the intersection

divided by the size of the union of two sample sets, A and B:

J(A,B) =
|A ∩B|
|A ∪B|

(6.1)

The Jaccard similarity index can take values in the interval [0, 1] where 0 means

that there is no similarity between the samples, and 1 means that the samples

are identical.
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6.3 sRNA datasets processing and quality check

6.3.1 Errors and biases when constructing sRNA libraries

Library preparation is extremely important, because the method used can sig-

nificantly affect the diversity and abundance of the sRNA that are sequenced

[258]. If biases were introduced during this step, relative read counts for different

sequences within the same library can be affected. Some sequences present in the

biological samples may even be absent in the libraries because of preparation bias

[246].

Errors and biases can also occur in the sequencing step. The most commonly

used HTS technologies for sRNA datasets, the Illumina [144] and SOLiD [272]

platforms, create their libraries by ligating RNA adapters of known sequence to

the 5’ and 3’ ends of single molecules in a purified sRNA population [258]. The

adapter-ligated sequences are reverse-transcribed, amplified by PCR to increase

the depth of the library, applied to the platform and amplified again to form

millions of clusters of DNA of the same sequence, which are then sequenced in

parallel [246].

The steps of adapter ligation, reverse transcription and PCR amplification

have the potential to induce errors. Adapter ligation is the most important one,

as the ligation efficiency is very sensitive to nucleotide base composition at the

ligation site and to sRNA modifications. The identity of at least the three 3’-most

nucleotides of the sRNA sequence affects ligation efficiency, with a different base

preference at each position (5’-nucleotide: A > G ∼ C > U; middle nucleotide:

A > C > U > G; 3’-nucleotide: A > C > G > U) [273]. There are many

studies that focus to solve the adapter bias problem, developing new adapters

[265, 274–276] or developing new treatments for improving ligation with one of

the adapters (the 3’- or 5’-adapter) [276]. Another method to avoid this issue is

to use a ligation-independent library preparation [277], but this method is not

perfect, either [246]. Because of this preference, some sRNAs are more likely to

be ligated than others, resulting in having higher probability of being sequenced.

Errors also occur during reverse transcription and amplification. The 2’-O-

methylation of sRNA (sRNA have a methyl group added to the 2’ hydroxyl of the
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nucleotide) reduces the efficiency of reverse transcription [274]. The step of PCR

amplification can be a problem with sequences that have very low or very high GC

content, reducing the likelihood that these sequences will be represented in the

final population. Techniques that do not require the initial library amplification

have been developed for DNA sequencing and RNA sequencing, providing a less

biased library preparation for low GC sequences [278, 279].

Another type of error that HTS technologies suffer from, is introducing sub-

stitutions, additions or deletions of nucleotides in the sequenced reads [148]. Al-

though this types of error have low impact (11.5% to 0.1% error rate), it is

important to be aware of such errors and make sure they do not affect the overall

quality of the samples.

Because of these errors and biasses that can occur during library preparation

and sequencing, it is important to check the quality of the datasets, before per-

forming further analysis. The quality check also ensures there have been no errors

and biases introduced throughout the processing of the datasets (by programming

errors).

6.3.2 Quality check on FASTQ files

The sequencing companies provide the data as files in FASTQ format (for details

on the file format see Section ). Each nucleotide in a sequence has a Phred

quality score associated with it (encoded with a single ASCII character), which

represents the probability for a given nucleotide of being one of the four bases.

If an ambiguous base exists (low confidence in any particular nucleotide), it is

usually denoted with an “N” in the sequence.

To check if the sequencing quality of the libraries (Caco-2 cell lines, for file

names and information for each library see Table 6.1) were up to a high standard,

for each file, we conducted the following procedure: we calculated the FASTQ

quality score at each nucleotide for all sequences, then generated standard box

plots using R [280] (as described in Section 6.2.2). The box plots can be seen in

Figure 6.1.

We expect to see the boxplots representing high Phred quality scores, in this

case all positions having the lower quartile at a high value of at least 64%, which
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Figure 6.1: Boxplots for the Phred score per nucleotide, for each library. Replicates are based on
the same line and can easily be compared. The boxplots show good quality score per nucleotide
for all files.
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FASTQ ->FASTA Proportions (%)
Condition File total accepted rejected accepted rejected

Control
A1 19,985,254 19,973,288 11,966 99.94 0.06
A2 26,152,561 26,136,918 15,643 99.94 0.06
A3 16,176,855 16,167,508 9,347 99.94 0.06

8h SFN
treatment

B1 16,002,804 15,993,315 9,489 99.94 0.06
B2 14,603,739 14,594,340 9,399 99.94 0.06
B3 13,554,322 13,545,464 8,858 99.93 0.07

24h SFN
treatment

C1 23,029,947 23,016,183 13,764 99.94 0.06
C2 22,223,346 22,210,160 13,186 99.94 0.06
C3 26,035,997 26,020,325 15,672 99.94 0.06

Table 6.2: Statistics for transforming files from FASTQ to FASTA format. After
transforming from FASTQ to FASTA format, the proportions of accepted/rejected reads were
calculated.

means the data was sequenced with high accuracy. It is normal that there are

slightly lower values at the beginning and at the end of the reads, mainly because

the HD adapters [265, 266] are found in those specific areas, whereas in the area

of the actual sequence (20-25 nts in the middle) there are the higher confidence

score interval: 70-75%.

Another sign of good quality is a small degree of dispersion on the boxplots

(distance between the quartiles), which represents the variation in confidence

between reads. If there was a large variation, it would mean some reads (or

nts within some reads) were sequenced with high confidence, while other were

sequenced with low confidence. The datasets present low variance 2-4%, assuring

consistency and overall high quality.

To transform the FASTQ files to FASTA files, we used a custom made perl

script, that selects the id and sequence for each read and outputs it in FASTA

format. If the sequence of the read contains an “N” (ambiguous base), the read is

discarded. At the end, the script returns the total number of reads in the file, the

accepted reads and the rejected reads (the ones containing “N”s). These numbers

are helpful to make sure there is a low percentage of sequences with ambiguous

bases, assuring the libraries were built with accuracy of sequencing. The numbers

for transforming the FASTQ files to FASTA for the libraries can be seen in Table

6.2, all samples having an acceptance percentage of over 99.9%, with only ∼0.06

rejection rate.

The total counts of each library assures the sequencing succeeded with very
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high depth, all of them having tens of millions of reads. The replicates have

close total counts amongst each other, which could give better chances of having

a high degree of similarity, as expected. There is a significant gap in the total

count between A2 and A3, however this can possibly be fixed using normalization

methods.

Having analysed the boxplots and the statistics from transforming FASTQ

files to FASTA, which present low percentages of sequences containing “N”s,

we conclude that they give a good overview of the sequencing quality, assuring

that all of the libraries from the investigated experiment were made with high

confidence.

6.3.3 Adapter removal

The libraries were constructed using HD (high definition) adapters [265, 266,

275, 276] which can reduce the ligation bias, by synthesizing, besides the adapter

sequence, an additional 4 random bases on each side of the RNA sequence, called

the HD tag (the signatures are assigned all possible combinations of 4 nucleotides

in equal amount). The HD adapters are more efficient because sRNAs can anneal

to a pool of different sequences (represented by the HD tag-adapter combination)

instead of a single adapter sequence. Libraries generated with HD adapters were

found to recover more different sRNA sequences and the abundance of a sRNA

sequence read correlated in quantity with the real expression level [265, 276].

The adapters are introduced artificially because they are necessary for se-

quencing, but they are not part of the studied organism, therefore they must be

removed before mapping the sequences to the genome. To do this, the first 8 nts

of the 3 adapters were identified (sequence TGGAATTC) and trimmed, then four

nucleotides on the 5’ and 3’ ends of the reads were removed (which corresponded

to the NNNN tags on the HD adapters), using the UEA small RNA Workbench

[4].

The data presented in the Table 6.3 summarizes the proportion of reads at

each step of adapter removal. After trimming the adapter sequence, all libraries

have a high percentage of over 92% of the reads with lengths over 16 nts, which is

an indicator of efficient adapter ligation [281]. Looking at sequences with length
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After adapter removal Proportions (%) Sum (%)
After HD
tag removal

Proportions
(%)

Condition File >16 ≤16 >16 ≤16 >16

Control
A1 18,594,759 789,750 93.10 3.95 97.05 16,534,880 82.74
A2 24,722,116 48,093 94.59 0.18 94.77 23,917,718 91.45
A3 15,463,203 77,505 95.64 0.48 96.12 15,215,090 94.05

8h SFN
treatment

B1 14,818,006 155,644 92.65 0.97 93.62 14,253,093 89.07
B2 13,486,309 190,311 92.41 1.30 93.71 12,868,213 88.12
B3 12,628,998 303,665 93.23 2.24 95.48 12,234,317 90.26

24h SFN
treatment

C1 21,928,868 348,282 95.28 1.51 96.79 20,327,308 88.26
C2 21,045,058 580,709 94.75 2.61 97.37 19,459,528 87.56
C3 24,137,624 773,688 92.76 2.97 95.74 21,543,196 82.74

Table 6.3: Statistics for trimming the HD adapters. After the adapter removal step, the
proportions of sequences with lengths smaller or greater than 16 were calculated. Fragments
smaller that 16 nts are counted to verify a potential adapter-adapter contamination. The sum
represents the total percentage of sequences that contained the adapter sequence. After the
HD tag removal, the proportions of sequences with length greater than 16 were calculated. All
percentages were calculated out of the total number of sequences in the FASTQ file.

below 16 nts, the proportions vary between 0.18% (A2) and 3.95% (A1). Column

“Sum” in Table 6.3 represents the total number of sequences in the FASTA file

that contained the adapter sequence, regardless of its length, concluding that

only a small number of reads did not present it.

We then created size class distribution histograms (Figure 6.2) on all sequences

after adapter removal, to better understand what kind of sRNAs the data con-

tains.

In the plots for the short sequences, we can determine a clear peak at length

8 (see Figure 6.2,a). These sequences are most probably originating from an

adapter-adapter ligation, considering the fact that the sequences should still

present the HD tags (NNNN) on both 3’ end and 5’ end. In the two treat-

ment conditions (B and C), we can also observe a higher number of sequences

with lengths between 11 and 16, which most likely are adapter-adapter dimers.

However, it is expected to have such sequences, and it does not affect the analysis,

because their overall proportion out of the total number of reads is small (0.18%

to 3.95%, see Table 6.3).

In the plots on the sRNA inserts, we can detect a clear peak between lengths 29

and 32 (see Figure 6.2,b). This is the expected distribution for a successful sRNA

sequencing project, because between these lengths reside the miRNAs (which will
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a: Size class distribution of sequences with lengths smaller than 16.
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b: Size class distribution of sequences with lengths greater than 16.

Figure 6.2: Size class distribution of sequences with lengths smaller (a) or grater (b)
than 16, after adapter removal. The plots depict the lengths of sequences on the x-axis
against the total number of sequences with the specified length on the y-axis. Each condition
is plotted separately, to facilitate the comparison of replicates.

be 21-24 nts after the HD tag removal: 21 + 4 (5’ HD tag) + 4 (3’ HD tag) =

29) and it is expected that the miRNA size class is the most enriched size class

of sRNAs in the dataset.

After checking the adapter removal step, we proceeded with validating the

trimming of the HD signatures. The proportions of sequences with length greater

than 16 after the HD tag removal are also high, with values between 82.74% (A1

and C3) and 94.05% (A3). The proportion of accepted reads changes slightly after

the HD tag trimming, suggesting that there were short sequences amongst the

reads (which are discarded, because they are most likely degradation products)

(see Table 6.3).

The files were then converted from redundant to non-redundant FASTA for-
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mat, in which the reads with the same sequence are collapsed, each unique se-

quence being output only once, together with its total count. We then computed

the complexity of each dataset, by dividing the number of non-redundant se-

quences to the number of redundant sequences [222]. The values for redundant,

non-redundant number of sequences and the dataset complexity can be seen in

Table 6.4.

The complexity can take values in the interval (0, 1], a value closer to 1 mean-

ing that the sequences have low abundances, with the majority having counts of

1. A value closer to 0 means that the sequences have high abundances, with many

sequences being highly expressed (presumably miRNAs). All the datasets in the

experiment present extremely low complexities, 0.03-0.05%, which validates the

high depth of the sequencing (see Table 6.4).

We created size class distribution histograms after the HD tag removal, on

redundant and non-redundant sequences, then plotted the complexity for each

dataset (Figure 6.3).

The size class distribution plots on the redundant data confirm that the most

enriched class is indeed the miRNA size-class (21-24 nts long). The highest peaks

are at lengths 22-23 nts, which are the most frequent lengths for H. sapiens miR-

NAs. The size class distribution histograms on the non-redundant data should

ideally look like the distribution for A1 and B2, with low level for size 17, ris-

ing until sizes 22-23, then decreasing again. While there are low levels for sizes

greater than 25 for all libraries, some present high levels between sizes 17 and 20.

These sequences might be degradation products (possibly resulting from miRNA

degradation). Because they have low read counts they are not a concern at this

stage in the analysis. The plots depicting the complexity of the datasets show a

deep valley at sizes 21-24, suggesting the sequences of these sizes are the most

abundant in the dataset, much more abundant than the other sizes (see Figure

6.3).

Following these tests at each step of the adapter removal, we observe that all

libraries have high percentages of accepted reads with at least 16 nts in length,

after trimming both the 3’ adapter and the HD tag. Then we found the miRNA

size class (21-24 nts) to be the most enriched size class in all datasets, and also

having the lowest complexity (few sequences having high read counts). These are
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Figure 6.3: Size class distribution of sequences after HD adapter removal, consider-
ing redundant and non-redundant counts. The plots depict the lengths of sequences on
the x-axis against the total number of sequences with the specified length on the y-axis. The
complexity represents the number of non-redundant sequences divided by the number of redun-
dant sequences. Each condition is plotted separately, to facilitate the comparison of replicates.

strong indicators that all libraries have a good quality after this step.

6.3.4 Genome matching

The FASTA files in non-redundant format were matched full length against the

human genome (version 38) using PatMaN [153] allowing 0 mismatches and 0

gaps. It is important to validate the proportion of genome matching sequences,

to make sure there was no contamination (e.g. other organisms, bacteria) during

the preparation of the libraries in the laboratory and we perform the analysis on
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After HD tag removal Genome matching
Proportions
(%)

Condition File Red NR Compl Red NR Compl Red NR

Control
A1 16,534,880 679,579 0.041 13,539,159 377,735 0.028 81.88 55.58
A2 23,917,718 892,076 0.037 19,211,757 487,753 0.025 80.32 54.68
A3 15,215,090 573,254 0.038 12,200,936 270,743 0.022 80.19 47.23

8h SFN
treatment

B1 14,253,093 698,662 0.049 11,096,534 344,527 0.031 77.85 49.31
B2 12,868,213 567,364 0.044 10,258,639 304,402 0.030 79.72 53.65
B3 12,234,317 627,355 0.051 9,484,717 335,746 0.035 77.53 53.52

24h SFN
treatment

C1 20,327,308 755,610 0.037 16,136,765 379,296 0.024 79.38 50.20
C2 19,459,528 773,920 0.040 15,459,590 382,986 0.025 79.44 49.49
C3 21,543,196 820,294 0.038 17,208,841 415,426 0.024 79.88 50.64

Table 6.4: Number of sequences in redundant (Red) and non-redundant (NR) for-
mats after HD tag removal and after genome matching. The complexity (Compl)
represents the number of non-redundant sequences divided by the number of redundant se-
quences, after each step. The proportions represent the percentage of sequences that mapped
to the genome.

reads free of sequencing errors [256].

The number of redundant and non-redundant sequences, complexity and pro-

portions of sequences that matched to the human genome are presented in Table

6.4. The percentages are calculated out of the total number of sequences in the

FASTA file, after HD adapter trimming.

Compared to the previous step, we observe a major decrease in complexity

for all datasets (for example, from 0.041% to 0.028% for A1), which means the

majority of the sequences that matched to the genome are sequences with low

complexity levels (and high read counts), and that a large number of sequences

with low counts did not originate from the H. sapiens cell line. This logic is also

confirmed by the proportion of non-redundant reads that matched to the genome:

∼ 50% in all libraries.

However, the redundant proportion of mapping reads is very high for all

datasets: from 77.53% in B3 to 81.88% in A1. This is a good indicator that

the majority of reads, and especially the high abundance reads originate from the

desired organism.

In the next step, we eliminate reads with low sequence complexity from

the non-redundant FASTA files [257]. A read has a low sequence complexity

if it is represented in proportion of at least 75% only by one nucleotide (e.g.

AAAAAAAAAACAATAAAAAAAAA) or a combination of only 2 nucleotides
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Genome matching Proportions (%)
Condition File Red NR Compl Red NR

Control
A1 12,249,604 83,644 0.007 83.12 53.15
A2 17,264,912 149,208 0.009 81.48 54.46
A3 11,123,437 62,451 0.006 81.44 46.01

8h SFN
treatment

B1 9,954,438 88,639 0.009 79.47 50.00
B2 9,329,583 69,063 0.007 80.85 52.57
B3 8,370,321 91,143 0.011 78.89 53.78

24h SFN
treatment

C1 14,503,754 89,972 0.006 80.65 47.86
C2 13,727,533 93,375 0.007 80.71 47.40
C3 15,457,968 93,581 0.006 81.18 47.11

Table 6.5: Number of sequences in redundant (Red) and non-redundant (NR) formats, com-
plexity (Compl) and proportions of genome matching after eliminating reads with low sequence
complexity.

(e.g. ACACACACACACACACACACACACAC). It is recommended to remove

such sequences [257] and this should not affect the results of the analysis, as these

sequences are generally low abundance, do not match to functional sRNAs, and

most often do not originate from the biological sample, but are an artefact of

sequencing.

After eliminating reads with low sequence complexity, we recalculated the

number of redundant and non-redundant sequences, complexity and proportions

of sequences that matched to the human genome (see Table 6.5). In this case,

we notice the complexities of the datasets have dropped even lower (for example,

from 0.028% to 0.007% for A1), while the proportion of redundant mapping reads

has increased (for example, from 81.88% to 83.12% for A1). This suggests that

the reads with low sequence complexity that we filtered out were lowly expressed

and were not matching the human genome, therefore the decision of removing

them from further analysis is beneficial.

To check that the size class distribution has not been affected by filtering out

the reads with low sequence complexity and genome matching, we have replotted

it and is presented in Figure 6.4. We observe there has been no change in the

shape of the plots, keeping the same features for lengths 21-24: a high peak for

the redundant sequences and a deep valley for the complexity charts. This proves

the data has good quality after genome matching.

To sum up, the high proportion of sequences mapping to the human genome

and low complexities, together with the high proportion of 21-24mers in the
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Figure 6.4: Size class distribution of sequences after eliminating reads with low
sequence complexity and matching to the genome, considering redundant and non-
redundant counts. The plots depict the lengths of sequences on the x-axis against the total
number of sequences with the specified length on the y-axis. The complexity represents the
number of non-redundant sequences divided by the number of redundant sequences. Each
condition is plotted separately, to facilitate the comparison of replicates.

datasets, are strong indicators that the libraries were constructed with good qual-

ity up to this point.

6.3.5 Replicates validation

Replicates are samples made from the same biological condition, therefore they

should be very similar to each other. They should contain the same sRNA se-

quences and the same sequence should have fairly close abundances in different
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A1 A2 A3 B1 B2 B3 C1 C2 C3
A1 1 0.852 0.812 B1 1 0.828 0.764 C1 1 0.874 0.898
A2 0.852 1 0.820 B2 0.828 1 0.807 C2 0.874 1 0.857
A3 0.812 0.820 1 B3 0.764 0.807 1 C3 0.898 0.857 1

Table 6.6: The Jaccard similarity index in top 1000 non-redundant sequences from each library.
The replicates from each condition are compared with each other.

A1 A2 A3 B1 B2 B3 C1 C2 C3
A1 1 0.285 0.182 B1 1 0.218 0.228 C1 1 0.218 0.220
A2 0.163 1 0.139 B2 0.294 1 0.282 C2 0.208 1 0.212
A3 0.211 0.281 1 B3 0.238 0.219 1 C3 0.208 0.210 1

Table 6.7: The fraction of sequences in the intersection of each two samples. The fractions are
calculated from the total non-redundant sequences of each library on each row. For example,
the number of sequences found in the intersection between A1 and A2 represent 0.285 of the
total sequences in A1 and 0.163 of the total sequences in A2.

A1 A2 A3 B1 B2 B3 C1 C2 C3
A1 1 0.247 0.349 B1 1 0.282 0.272 C1 1 0.261 0.259
A2 0.664 1 0.406 B2 0.172 1 0.244 C2 0.279 1 0.262
A3 0.215 0.089 1 B3 0.287 0.412 1 C3 0.278 0.263 1

Table 6.8: The fraction of sequences in the specific difference of each two samples. The fractions
are calculated from the total non-redundant sequences of each library on each column. For
example, A1 has 0.664 specific sequences when compared to A2, while A2 has 0.247 specific
sequences when compared to A1.

replicates. If this does not hold, we might need to remove one or multiple repli-

cates from one condition, because they are not statistically similar.

To compare the similarity between the replicates, we first computed the Jac-

card similarity index on top 1000 most abundant sequences. We computed the

index in this way, because these are the most important in the samples (with

highest counts and low possibility of being false entries).

Because we expect the replicates to be alike, we want their Jaccard similarity

index to be as high as possible. Table 6.6 shows the Jaccard similarity index for

the three conditions. For Condition A, there is a high similarity between A1 and

A2 (0.852), but A3 has a slightly lower value when compared with both A1 and

A2 (∼0.81). In condition B, B3 seems to have a lower similarity to the others,

with fairly low coefficient of only 0.764 when compared to B1. In condition C all

three replicate comparisons have high similarity (0.857 - 0.898).

To check in more detail the replicates similarity, we then computed the frac-
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Figure 6.5: Examples of MA plots, on raw expression levels, after genome matching. The shape
in panel (A) is a good distribution, while in panel (B) is a bad distribution when comparing
replicates.

tions of sequences in the intersection of the datasets and in their specific differ-

ences (in one of the samples, but not the other). In the case for intersection,

it is better if the fractions are larger (see Table 6.7). We notice that A2 has a

low percentage both when compared to A1 and A3. Conditions B and C have

good intersection fractions. In the case for specific difference, it is better if the

fractions are smaller (see Table 6.8). A1 and A3 have very high percentages of

specific sequences, and also B2 has a large percentage when compared to B3.

Condition C has very good fractions for all samples.

In the next step, we produced MA plots (using R [280], as described in Section

6.2.2) to check if there are DE sequences amongst replicates. Because the same

sequence should have fairly the same expression level in different replicates, we

expect there are only few cases of DE. It is normal to have DE sequences for

low counts, because any small difference would make the read seem differentially

expressed in this case (e.g. a sequence with counts of 1 and 2 would seem DE).

MA plots are also a good indicator if the samples are normalizable (if by applying

a normalization method, the technical errors, such as DE, can be corrected).

In Figure 6.5 we present examples of MA plots that depict a high (A) and a

low (B) similarity when comparing two replicates. If two replicates are similar,

the points in the MA plot should be centred around the horizontal line in 0 (the

red line) or around a line parallel to it. It is acceptable to have points outside the
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blue lines (horizontal lines at 0.5 and -0.5), especially closer to the smaller values

on the x-axis, but the points should converge to a tighter distribution towards the

larger values, resulting in a fan-like overall shape (Figure 6.5, (A)). However, it is

recommended that the fan is not too wide [282]. If the distribution is not centred

around a horizontal line, being skewed below or above it (like in Figure 6.5, (B)),

then one of the samples has DE sequences that cannot possibly be corrected

through normalization: by trying to normalize the data so that the expression

levels of DE sequences between two replicated are corrected, it is likely that other

sequences would become DE as a results of the normalization. Therefore, samples

that present such malformed MA plots should be avoided, because they do not

present consistency in expression levels throughout their dataset.

We generated MA plots, comparing all replicates from each condition, dividing

the data by size (corresponding to miRNA lengths, from 21 to 24 nts, as we

are most interested in miRNAs). The MA plots comparing all replicates for all

conditions are presented in Appendix B, Figures 1, 2 and 3.

For condition A, we can see the MA plot for A1 and A2 at size class 24 is

suboptimal, however, because miRNAs with length of 24 represent only a small

fraction of H. sapiens miRNAs, we decided it is not an issue. Looking at the

MA plots between A2 and A3, and A1 and A3 we can observe in all cases a very

wide fan, without a clear convergence of the points on the horizontal line. This

indicates there might be a similarity issue between them, A3 possibly being the

outlier (because it is common to both cases).

For condition B, the comparison between B1 and B3 has a very large fan,

with a poor distribution of points, even towards larger numbers on the x-axis,

suggesting these two datasets are not very similar. For condition C, all MA plots

have a nice distribution, suggesting all three replicates are highly alike.

To further check the DE between the replicates, we produced box plots on the

offset fold change (fc), grouped by size classes (see Figure 6.6). We expect the

median lines for each box to be aligned inside each plot, ideally on the horizontal

line in 0 (meaning that the majority of sequences are not DE), or parallel to

it (meaning that the DE expression can be corrected through normalization).

Another sign of good quality are small boxes (little variance in expression levels).

Looking at the box plots for condition A, we observe the median lines have
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Figure 6.6: Box plots on the offset fold change between replicates. The box plots were created
separately for each size class (20-24 nts).

a wavy shape in the comparison between A1 and A3, which is a sign of poor

similarity, and also hard to correct through normalisation, suggesting that one of

these two samples might have issues. The medians are aligned well for comparing

A1 to A2 and A2 to A3, the fact that they are slightly below, respectively above

the red line is not a problem. In condition B, the boxes are aligned nicely, however,

they are very wide in the comparison between B1 and B3, suggesting variance

from sequence to sequence. The boxplots in condition C present no faults.

After carefully analysing the Jaccard similarity indexes, the intersection and

the specific difference fractions, the MA plots and the box plots on the offset
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miRNAs rRNAs snoRNAs tRNAs
Condition File Red % Compl Red % Compl Red % Compl Red % Compl

Control
A1 69.86 0.0021 3.24 0.0309 0.46 0.0576 1.09 0.0203
A2 70.64 0.0018 2.28 0.0344 0.37 0.0572 1.06 0.0299

8h SFN
treatment

B1 68.51 0.0023 2.49 0.0375 0.37 0.0657 1.35 0.0346
B2 71.82 0.0022 1.50 0.0321 0.21 0.0708 0.77 0.0461
C1 71.35 0.0018 3.33 0.0266 0.41 0.0577 1.54 0.0195

24h SFN
treatment

C2 72.65 0.0019 3.38 0.0281 0.40 0.0611 1.56 0.0193
C3 71.06 0.0018 3.67 0.0274 0.47 0.0556 1.62 0.0183

Table 6.9: Proportions and complexity of redundant sequences that mapped to mature miRNAs,
precursor miRNAs, rRNAs, snoRNAs and tRNAs. Mature and precursor miRNAs are shown
only once, since their numbers are extremely close.

fold change between replicates, we decided to eliminate samples A3 and B3 from

the analysis, as they appear to have the least similarities with the other samples

from their respective conditions. Keeping them in the analysis could influence

and distort the results, because they are not statistically consistent with the other

replicates.

6.3.6 Datasets composition

Next, we checked for the composition of the data in the remaining samples, to

ensure the reads correspond to functional sRNAs and not to other genome regions,

which are not of interest to this analysis (e.g. coding regions). We expect that

the majority of sequences would come from miRNAs and miRNA precursors, and

only a smaller part should belong to other categories (rRNA, tRNA, snoRNA).

To find the exact proportion of reads that belong to each of the above men-

tioned sRNA types, we mapped the reads to H. sapiens mature miRNAs and

their precursors (taken from miRBase) [5], and to rRNA, tRNA and snoRNA

datasets taken from RFAM [160]. All libraries were aligned full length using Pat-

MaN [153], allowing up to 2 mismatches and 0 gaps. Instead of requiring a strict

match to miRBase sequences, we allowed up to 2 mismatches when mapping the

read sequences to H. sapiens annotations from miRBase, to account for post-

transcriptional modifications and different isomiRs (sequences that are 1-2 nts

shorter/longer than the canonical miRNA, possibly with different 5 and 3 ends).

One downside of this is that reads for different miRNAs that are very close in

sequence (e.g. hsa-let-7a-5p and hsa-let-7f-5p) can be mixed up, but this can be
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easily corrected by checking the individual sequences. In this way we make sure

that different isomiRs (that could be more abundant than the miRBase forms

[283]) were not missed, as well as to allow for any artefacts of library preparation

and the possibility of some sequencing errors.

The proportion of redundant sequences that mapped to mature miRNAs,

miRNA precursors, rRNAs, snoRNAs and tRNAs, together with their complexity,

are presented in Table 6.9. While the percentage of miRNA mappings are very

high (from 68.51% in A3 to 72.65% in C2), and their complexity is very low

(∼0.002 in all samples), the other sRNAs have percentages of under 5% and much

higher complexities (at least 10 times higher than miRNAs). The high levels of

miRNAs, together with the similar proportions of miRNAs between replicates is

a good indicator of datasets quality [246].
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Figure 6.7: Size class distribution histograms for mature miRNAs, miRNA precursors, rRNAs,
snoRNAs and tRNAs, on redundant sequences, after genome matching. The sequences were
aligned full length to miRBase and RFAM annotations using PatMaN, allowing up to 2 mis-
matches and 0 gaps.

Generating the size class distribution histograms for the functional sRNA

mappings (see Figure 6.7), we observe the clear peak at lengths 21-23 both for

mature and precursor miRNAs. For rRNAs, snoRNAs and tRNAs we detect

large amounts of sequences of 17-19 nts, which are most probably degradation
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products. The plots suggest that the majority of 17-19 nt sequences in all datasets

are derived from tRNA, rRNA and snoRNA loci (and not miRNA loci) [246].

However, there are also some small peaks at lengths 24, 29 and 31-32, respectively,

which correspond to the respective functional sRNAs. This ensures the datasets

have the required sRNA composition.

6.3.7 Quality check conclusions

We have checked the quality of the datasets after each processing step. First, we

checked the quality of the FASTQ files, then all FASTQ files were converted to

FASTA format, and sequences containing ‘N’s were discarded. Next, the adapter

sequence was identified and trimmed, and the ‘NNNN’ sequences corresponding

to the HD tag were removed. Then the files were converted from redundant to

non-redundant format. The resulting reads were matched full length against the

human genome, before and after eliminating reads with low sequence complexity.

For each of these steps we confirmed that high proportions of the valid sequences

have passed the processing. We produced size class distribution histograms and

complexity line plots to check that the most enriched size class, with the lowest

complexity is the miRNA size class. All samples passed these filters.

We then checked for the replicates similarity and consistency, by calculating

the Jaccard similarity index, the fraction of sequences in the intersection and in

the specific difference, and by producing MA plots and box plots on the offset

fold change between replicates, grouped on size classes. After these steps, we

decided it is beneficial for the analysis to eliminate samples A3 and B3 from

further processing, as they do not present the expected features of similarity

when compared to their replicates. We then checked that the datasets contain a

high percentage of sequences corresponding to annotated miRNAs.

6.4 sRNA datasets normalisation methods

Sample variations can occur, including between-sample differences such as li-

brary size (i.e. sequencing depth) [245] as well as within-sample sequence-specific

effects related to sequence length [284] and CG content [285]. To correct these er-
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rors and differences among replicates and make samples from different conditions

comparable, we need to first normalize the data. There are several normaliza-

tion methods that are suitable for sRNA data [247], the most commonly used

being RPM (reads per million) [245, 286], Quantile normalization [287, 288] and

Bootstrapping [249, 282, 289, 290].

Because the normalisation is data-dependent (one method can be more suit-

able than the others for certain datasets), we need to check which method is best

suited for these samples. RPM is inefficient in some cases, because it ignores

the number of distinct reads within each sample [246]. Quantile normalisation

is limited by the fact that it assumes a similar distribution of abundances per

distinct reads among all libraries being normalized [246], which may lead to over-

correction and increased within-condition variability [247]. Bootstrapping can

lead to over- or underrepresentation of certain sequences [246]: by over-selecting

particular reads, the proportions between sequences within the same sample can

be altered. The method that corrects the most differences between replicates will

be chosen as the most appropriate normalisation method.

6.4.1 RPM normalisation

The RPM method [245, 286] originally consists in dividing the read abundance

by the total count of the library, and then multiplying it by an a priori defined

normalization total (when the method was first proposed, the total was 1 million)

(i.e. equation 6.2 and 6.3).

normalized read count =
read count

total library count
∗ 1000000 (6.2)

normalized read count =
read count

total library count
∗MTC (6.3)

The total library count is the redundant count, computed by adding the counts

of all sequences in that library. Equation 6.2 is applied on all sequences to get

the normalised counts.

Because the total counts of the libraries are so large, each having tens of

millions of reads (see Table 6.5), using a flat million value for normalisation would
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artificially decrease the expression levels, possibly distorting them. Therefore, we

use the median total count (MTC) instead (equation 6.3), which is defined as the

median value for all library total counts in the experiment.

After normalising all samples, we replotted the MA plots and box plots on the

offset fold changes between replicates, to evaluate its effect on the FC between

replicates. The box plots are presented in Figure 4, showing all medians aligning

on the horizontal line in 0: RPM corrected the issue for condition A, where

comparisons A1 to A2 and A2 to A3 would be below, respectively above the line.

The rest of the box plots present the same features as before normalisation. The

MA plots are presented in Figures 5, 6 and 7. We notice a good distribution of

the points for comparisons A1 to A2, B1 to B2 and all comparisons in condition

C, the other ones having a very wide fan.

The box plots and the MA plots show that RPM is a suitable method for

normalizing the datasets.

6.4.2 Quantile normalisation

Quantile normalization [287, 288] is used to make two distributions identical

in statistical properties. The Quantile normalisation is performed by pooling

together all sequences from all samples (even if they are not expressed in all of

them), then sorting the samples, then overriding each value with the average

(usually, arithmetic mean) of the values from all samples for a specific rank. The

highest value in all cases becomes the mean of the highest values, the second

highest value becomes the mean of the second highest values, and so on. At the

end, all samples will have the same distribution.

We performed quantile normalization on all samples and produced box plots

(see Figure 8) and MA plots (see Figures 9, 10 and 11). Although the MA plots

show the required shapes, in the box plots we notice that the medians are not

aligned on the horizontal line in 0, as expected, both for condition A and condition

B. This occurs because of the presence of a much higher proportion of 0 counts

in certain samples.

Therefore, the quantile normalisation method can be used for this data, but

is suboptimal.
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6.4.3 Bootstrapping normalisation

Bootstrapping [249, 289, 290] is used in statistics as a resampling technique and

can be used for normalisation by randomly selecting sequences until a predefined

number of reads (or a percentage) have been chosen. This method favours the

more abundant reads as more likely to be picked, while the less abundant ones

are more likely to be eliminated. This can be helpful, because low count reads are

more likely to be false positives, are more often dataset specific and can appear

as differentially expressed between replicates.

Before After bootstrapping

Condition File % Red 95% 90% 85% 80% 70% 60% 50%
Min
total

Control
A1 83.12 83.12 83.12 83.12 83.12 83.13 83.11 83.11 83.14
A2 81.48 81.48 81.48 81.49 81.48 81.48 81.48 81.48 81.49
A3 81.44 81.44 81.44 81.43 81.44 81.44 81.46 81.44 81.44

8h SFN
treatment

B1 79.47 79.47 79.46 79.46 79.47 79.47 79.47 79.46 79.46
B2 80.85 80.85 80.85 80.85 80.84 80.85 80.85 80.86 80.84
B3 78.89 78.89 78.88 78.89 78.88 78.89 78.88 78.90 78.88

24h SFN
treatment

C1 80.65 80.65 80.66 80.65 80.66 80.65 80.67 80.65 80.65
C2 80.71 80.71 80.71 80.71 80.71 80.72 80.71 80.70 80.70
C3 81.18 81.18 81.18 81.18 81.18 81.19 81.18 81.17 81.19

Table 6.10: Proportions of sequences that map to the genome after bootstrapping at different
percentages.

We performed bootstrapping at the following percentages: 95%, 90%, 85%,

80%, 70%, 60%, 50%, to check whether the resampling distorted the proportions

of reads within the same sample. If this is not the case, then the proportion of

sequences that map to the genome after each step of bootstrapping should be

consistent (the presence and proportion of the mapping sequences is not affected,

only their counts might be decreased). In Table 6.10 we present the proportion

of mapping sequences after each step of bootstrapping, which remain consistent.

Box plots for offset fold changes between replicates after bootstrapping to 50%

and 70% are presented in Figures 12 and 13.

However, we must choose the most appropriate percentage for the data, which

should keep the read counts as close as possible to their original counts (the

highest possible percentage). Therefore, we chose to apply bootstrapping to the

minimum total (MT) of the libraries (total count of the B3 library). The MT
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is the highest number that allows us to apply bootstrapping on all samples (we

cannot select more than 100% for the MT sample), and because it represents

more than 50% of the total in each of the samples, and it statistically correct to

use it (see Table 6.10) [249]. Bootstrapping at the MT values means resampling

all libraries, such that each of them will have a total of MT sequences.

Box plots on the data after bootstrapping to the MT value are presented in

Figure 14 and MA plots are presented in Figures 15, 16 and 17. While the box

plots look reasonable, all MA plots are skewed to a side, not respecting the fan

shape. Because this happens in all sample comparisons, even in condition C,

which presents very high similarities between replicates, we decided that boot-

strapping is not a suitable method for normalizing the data.

6.4.4 Normalization methods conclusions

We have normalised the data using three techniques: RPM, quantile normaliza-

tion and bootstrapping. For each normalisation method, we generated box plots

and MA plots, to see which method is most suitable for the data in the libraries.

By analysing the plots we found the RPM normalisation to correct the most errors

for the replicates, and therefore we continued the data analysis based on the RPM

normalised read counts. The box plots and MA plots have also confirmed that

the decision of eliminating A3 and B3 from the analysis is appropriate, because

no normalization method succeeded in correcting their errors.

6.5 sRNA differential expression analysis

To find DE miRNA sequences, we have selected all the reads mapping to miRNAs

(by mapping the samples to miRBase mature miRNAs, as described above) and

used the offset fold change method [291, 292] on their RPM normalised counts.

This technique of calculating the differential expression has been compared

to two other methods: unusual ratio [293], and modified SAM [294] in a paper

publishing FiRePat [295], a tool for studying expression patterns, and showed that

there is a good agreement between the methods, with more than 90% overlap

between the outputs of each these techniques [295]. Other papers comparing
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methods for differential expression analysis are [296], [297] and [292]. Because of

its simplicity, we used the offset fold change method to identify DE sequences.

We now review this method.

First, we added an offset of 20 to all read counts (value was chosen by empirical

observation), to avoid lowly expressed reads being taken as DE reads.

Second, we compared the expression levels from each two conditions (A to B,

A to C and B to C). If there is a two fold change in the expression levels (one

condition has at least double the number from the other condition), then the read

is considered DE. To make the comparison, there are two methods of deciding

the expression level of a read for a condition, based on one or multiple replicates:

• Median or average - if there are at least three replicates, the median of the

read counts from the replicates can be chosen for each sequence as the most

representative value for the condition. If there are at least two replicates, the

average between them can be used as the value for the respective condition.

Then the values of the medians/means are compared directly.

• Confidence intervals - is a more stringent way of calculating the DE. For each

sequence, we determine an interval in which the condition can take value, by

selecting the minimum and the maximum read count from the replicates of

the respective condition, which will be the limits of the confidence interval for

the respective condition. If there is only one sample per condition, confidence

intervals can be derived by adding and subtracting 10% of each read count

to create a maximum and minimum value. After we calculate the confidence

intervals for both conditions that we want to compare, if the intervals overlap,

then we compare their mean value. If not, then we compare the minimum value

from the higher interval to the maximum value of the lower interval.

Figure 6.8 shows the confidence intervals for comparing the expression levels

of hsa-miR-27b-5p in conditions A and B. Because the confidence interval in

condition A is higher and non-overlapping with the interval in condition B, the

minimum value of A (1330) is compared to the maximum value of B (410), and

because there is more than a two fc, it results that this miRNA is downregulated

in condition B.

We used confidence intervals to make the comparisons and the DE sequences

are presented in Table 6.11. It is noticeable that for each comparison, all miRNAs
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Figure 6.8: Confidence interval for a hsa-miR-27b-5p for conditions A and B.

DE type in
second condition

A and B A and C B and C

Downregulated hsa-miR-27b-5p
hsa-miR-25-5p
hsa-miR-4286
hsa-miR-339-3p
hsa-miR-33b-3p
hsa-miR-27a-5p

Upregulated hsa-miR-10a-5p
hsa-miR-10b-5p
hsa-miR-182-5p
hsa-miR-146a-5p
hsa-let-7a-5p
hsa-let-7f-5p

hsa-miR-4286
hsa-miR-10a-5p
hsa-miR-10b-5p

Table 6.11: Differentially expressed sequences corresponding to miRNAs. Sequences in bold
represent miRNAs that were found DE in more than one comparison.

are either up- or downregulated, but not mixed. This suggests that all miRNAs

are influenced in the same way by the treatment: after 8h SFN treatment (B), all

miRNAs suffer a decrease in levels, but after 24h SFN treatment (C), all miRNAs

experience a growth of expression. The fact that some miRNAs are found DE

both in comparison A to C and B to C (hsa-miR-10a, hsa-miR-10b) is evidence

that these miRNAs might have actual roles in colorectal cancer.

miRNA Cond. DE type miRNA Cond. DE type miRNA Cond. DE type
hsa-miR-26a-5p A UP hsa-miR-10a-5p B DOWN hsa-miR-26a-5p B DOWN
hsa-miR-141-3p A DOWN hsa-miR-10b-5p B DOWN hsa-miR-26a-5p C DOWN
hsa-miR-27a-3p A DOWN hsa-miR-192-5p B DOWN hsa-miR-26a-5p C UP

Table 6.12: miRNAs that are DE between replicates of the same condition.
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We checked to see if there are any DE miRNAs between replicates from the

same condition, to make sure the DE between conditions is correct (see Table

6.12). We notice that miRNAs hsa-miR-27a-3p, hsa-miR-10a-5p, hsa-miR-10b-

5p are all DE between replicates of the same condition, which means there could

probably be some issues with their sequences and cannot be very confident about

their DE between conditions at this point. Full results are presented in Supple-

mentary Lane1 DE.xlsx.

However, we found many sequences that corresponded to one mature miRNA,

with little variations from the original miRNA sequence (isomiRs). For example,

in Table 6.13 are presented some of the hsa-miR-10a-5p and hsa-miR-10b-5p

isomiRs that were found to be DE. When comparing conditions A and C, we

found 15 distinct sequences that were DE and 22 distinct sequences that were not

DE corresponding to hsa-miR-10a-5p, all presenting high abundances (over 100

reads). In this case, how do we chose which sequence is the most representative

for each miRNA?

miRNA isomiR

hsa-miR-10a-5p
hsa-miR-10b-5p

TACCCTGTAGAACCGAAT
TACCCTGTAGAACCGAA
TACCCTGTAGAACCGAATTT
TACCCTGTAGATCCGAATT
TACCCTGTAGATCCGAATTT
TACCCTGTAGATCCGAAT
TACCCTGTAGAACCGAATT
TACCCTGTAGATCCGAA

Table 6.13: Differentially expressed isomiRs corresponding to hsa-miR-10a-5p and hsa-miR-
10b-5p.

IsomiRs may be 1 or 2 bases longer/shorter than the canonical miRBase se-

quence, with shifted 5 and 3 ends, because Drosha and Dicer may cut imprecisely,

but usually 1 or 2 specific isoforms are dominant [283]. In most cases, about 60-

70% of reads seem to be from sequences that exactly match the canonical miRBase

sequence, however, interestingly, there are some cases where an isomiR with 1 or

2 bases missing/extra at each end is actually more dominant [283]. miRBase

currently cannot distinguish between different isomiRs, and the single canonical

sequence that it lists is what seemed to be the most dominant form at the time

that it was added to miRBase. However, the isoform that is dominant can vary
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between different tissue and cell types, perhaps due to the presence of different

enzymes that post-transcriptionally modify the mature miRNAs [283].

DE type in
second condition

A and B A and C B and C

Downregulated 10 sequences:
hsa-miR-33b-3p
hsa-miR-27b-5p
hsa-miR-4286

21 sequences:
hsa-miR-625-3p
hsa-miR-3135b
hsa-miR-339-5p

1 sequence:
hsa-miR-4517

Upregulated 0 sequences 9 sequences:
hsa-miR-1827
hsa-miR-6130
hsa-miR-98-5p

7 sequences:
hsa-miR-1827
hsa-miR-6130
hsa-miR-1297

Table 6.14: Top 3 miRNAs with largest offset fold change for each comparison and DE type.

Therefore, we decided to collapse all sequences corresponding to a miRNA

(adding all isomiRs counts) and perform the DE analysis for non-redundant miR-

NAs. In this way, all isoforms account for the expression level of a miRNA. For

this reason, this method is preferred to redundant miRNA reads in some stud-

ies [246]. After re-comparing all conditions, we found a different number of DE

miRNAs (which are presented in Table 6.14). In comparing conditions A and

B, most miRNAs have still appeared as DE (5 out of 6), but only two miRNAs

in comparing conditions A and C and none in comparing B and C. However,

other miRNAs have come up as DE, both up- and downregulated, proving that

collapsing the isomiR count has a large influence on the miRNA expression levels

(full results are presented in Supplementary Lane1 DE.xlsx).

6.6 Analysis on the CCD-841 libraries

We applied the same methods for processing and analysing the data for the CCD-

841 libraries. FASTQ files were converted to FASTA, and sequences containing

‘N’s were discarded. Next, the adapter sequence was identified and trimmed,

and the ‘NNNN’ sequences corresponding to the HD tag were removed. Then the

files were converted from redundant to non-redundant format. The resulting reads

were matched full length against the human genome, before and after eliminating

reads with low sequence complexity.

During quality check, we found low proportions of reads that presented the
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adapter sequences for libraries X2 (70.5%) and Y3 (58.6 %), which suggests there

might have been a problem during the adapter ligation step for these samples.

After genome mapping, we found an incredibly low proportion of reads from

Y1 (8.6%) and Y2 (5.9%) that originated from H. sapiens tissue, suggesting

that errors were probably introduced while preparing these samples (possibly

contamination from other organisms).

Looking at the size class distribution histograms after trimming the adapter

sequence and the HD tag, we observed that conditions X and Z had peaks at read

lengths 22 and 23, while the peak in condition Y was shifted towards lengths 20

and 21, suggesting the reads captured were more likely degradation products and

sRNA fragments rather than functional sRNA. Because of the extreme mapping

percentages and the most enriched size classes detected in the samples, which do

not correspond to the expected results (the miRNA size classes), samples Y1 and

Y2 were eliminated from further analysis.

To check the similarity between replicates, we computed the Jaccard similar-

ity index, MA plots and box plots on fold change. Although overall the Jaccard

similarity index was fairly consistent, it presented lower values than in the previ-

ous experiment (∼ 0.60 - 0.75), the lowest value being between Z2 and Z3 (0.46).

The composition of the datasets was as expected, containing high amounts of

miRNAs.

The box plots have the correct alignment of the median lines both for condition

X and Z, although the MA plots do not present the expected distribution, being

skewed in condition X ad having very large fans in condition Z. After normalising

all samples with RPM, quantile and bootstrapping techniques and generating MA

plots and box plots for all normalisation methods, we observed that bootstrapping

was the most appropriate option for this data, although no method succeeded in

correcting all errors.

We then identified the differential expressed sequences by applying the offset

fold change method (offset value 20), using confidence intervals, on redundant

mature miRNA matches. We found 32 sequences downregulated between X and

Y, 2 sequences down- and 37 sequences upregulated between X and Z and 55

sequences upregulated between YZ.

However, we cannot be very confident in the results of this analysis, because
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the quality check proved that some of these libraries contain construction errors,

the replicates showed very low similarity between them in conditions X and Z,

while condition Y lacked in having multiple replicates, and the normalisation

methods could not compensate for these errors.

Quality check tables, size class distribution histograms, the Jaccard similarity

indexes are presented in Supplementary Lane2 QC.xls; MA plots and box plots

are presented in Appendix C; the results for the DE analysis are presented in

Supplementary Lane2 DE.xls.

6.7 Results

Without sRNA dataset analysis, biologists would have to look at possibly hun-

dreds of miRNAs, which is impossible in practice, due to time and financial

constraints. Therefore, bioinformatics dataset analysis has became a standard

procedure for selecting the most important sequences to be then checked in the

laboratory.

The results of the analysis for both experiments (Caco-2 libraries, CCD-841

libraries) were sent to Christopher Dacosta, who analysed the DE sequences and

performed Northern Blots to confirm the activity of the miRNAs in the studied

cell lines. The Northern Blot is a technique used in molecular biology research

to study gene expression by detection of RNA in a biological sample [8].

For the Caco-2 experiment, he was able to confirm that let-7f-5p, let-7g-5p

and miR-10a-5p were upregulated, whereas miR-193b-3p was downregulated by

SFN treatment in Caco-2 cell line. He then proved by luciferase assays that let-

7f-5p is able to bind to the 3’-UTRs of CDC25A and HMGA2, which are two

oncogenes in colorectal cancer.

For the CCD-841 experiment, however, he was not able to validate the dif-

ferentially expressed miRNAs in the laboratory, suggesting they might appear as

DE due to technical errors and therefore, the results of the DE analysis might

not reflect the real expression levels.
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6.8 Discussion

Although this method of performing sRNA analysis proved its efficiency, it has

its limitations too. The way of calculating the DE involves no statistical evidence

that the difference in the expression levels is significant. Therefore, the procedure

relies on the pre-processing and normalisation methods to correct the potential

errors, and it becomes imperative that the proper methods for these steps are

chosen, depending on the data. However, the pre-processing and normalisation

methods cannot always ensure that the expression levels have been fully corrected

to their biological values. This can provide a logical explanation for the fact that

the DE sequences found in some bioinformatics analysis cannot be validated in

the laboratory (e.g. the case of the CCD-841 experiment above).

A similar sRNA data analysis, using a slightly different approach, was con-

ducted on a study on miRNA activity in non-tumorigenic MCF10A cell line, after

inducing DNA damage at 4h, 24h and 48h [298]. This work was performed under

the supervision of Dr. Simon Moxon, in collaboration with Dr. Adam Hall, who

provided the small RNA sequencing data.

After the datasets were processed, the similarity between replicates was checked

using correlation indexes and correlation plots. Sequences were normalised using

the RPM method and then differentially expressed miRNAs were called using

the edgeR package [299]. The edgeR package uses a Poisson model to estimate

the dispersion between replicates and the model can separate biological variation

from technical variation, giving a p-value as the statistical confidence that a se-

quence is DE [299]. For this study, a p-value of 0.05 was used as a cut-off to

analyse microRNAs that were upregulated following DNA damage.

The results of this study were successfully published in the following paper

[298], where I figure as co-author.

In this chapter we have presented a method for sRNA dataset processing,

quality assurance and differential expression analysis. We have discussed about

potential errors that might occur during library preparation, sequencing and

through normalising the data. We have therefore proved that quality check,

replicates validation and choosing the correct normalisation method are essential

for conducting a correct differential expression analysis. We have then described
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a method of calculating the differential expression, and presented the results for

miRNAs in redundant and non-redundant format. These results were analysed

and validated biologically through Northern Blots.
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Chapter 7

Conclusions and future work

7.1 Summary

In this thesis we have presented a review of the most commonly used miRNA

prediction tools, and then we developed a new miRNA prediction algorithm,

miRCat2, which identifies miRNAs from HTS datasets in both plants and an-

imals. We have tested miRCat2 on ten model organisms and benchmarked it

against four similar tools (miRCat [1], miRDeep2 [2], miRPlant [3] and miReap

(http://mireap.source-forge.net/)), showing that we achieve an improved per-

formance. We have then presented a practical use for the annotated miRNAs,

describing and applying a method of sRNA datasets quality checking and miRNA

differential expression analysis.

We now present some possible improvements and future extensions to miR-

Cat2, before summing up the key points of this research.

7.2 Future work

Future extensions might be implemented to improve the performance of miR-

Cat2 or to add functionality and innovative features. We present these possible

improvements below:

• Decreasing the run time - miRCat2 is currently implemented as a single-

threaded process, but the miRNA candidates are processed individually, and
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do not depend on one another. Therefore, it is possible to integrate multi-

threading in the application, which could substantially decrease its run time.

• Performing analysis on multiple datasets - currently, miRCat2 can be

run only on one dataset at a time. We could make use of the fact that the

UEA small RNA Workbench provides an easy way of constructing a database

using multiple replicates from the same organism, and run miRCat2 on multiple

datasets. The results obtained would be more informative and the predictions

would have better confidence that they are true miRNAs if they were predicted

from multiple samples.

• Auto-updating values for the parameter set - the current parameter

values were chosen based on the sequencing data and on features observed

from miRBase entries (for the respective Kingdom). As these technologies are

continuously evolving and changing, the values for the recommended default

parameters might become obsolete, although the user can manually change

them. A new feature could be implemented, that would analyse annotated

miRNA sequences and extract their features, to auto-update and redefine the

set of default parameters.

• Integrating miRCat2 in predefined pipelines - the UEA small RNA

Workbench contains many useful analysis tools, with which the user can define

custom pipelines (order of tools for data processing). It would be useful to

have a set of predefined pipelines in which miRCat2 would be integrated. For

example, after running miRCat2 on plant data, its results could be given as

input to PAREsnip [183] (if degradome data is also available), to have their

targets predicted. Alternatively, the results of miRCat2 can be included as

reference miRNAs when running the differential analysis tool [249].

7.3 Conclusions

We have presented miRCat2, and showed that the predictions made by miRCat2

are more accurate than those made by similar software. Furthermore, miRCat2

performs consistently throughout all tested organisms, while the other tools tend

to perform efficiently in only some of the datasets.
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miRNAs have a very complex mechanism of functioning, to which new dis-

coveries are still being added. The comparison of miRNA profiles (over different

conditions and treatments) reveals differentially expressed loci, giving a better

understanding of their function in biological processes. Therefore, the accurate

classification of miRNAs can have a crucial impact in multiple areas of research

of high importance, such as disease and cancer research or crop improvement.

miRCat2 could successfully be used to classify miRNAs, that will be used for

important future research projects. For example, in animals, there is a strong

focus on using miRNAs expression for developing new treatments, but also as

biomarkers in disease and cancer diagnosis, which is essential in many cases for

treatment efficiency. In plants, researchers can use the discovered miRNAs to

develop new strains of crops with pathogen-resistance or to improve plant re-

sistance in unfavourable growing conditions, such as draught and soil nutrient

deficiency, this way optimising the quantity and quality of food produced. These

are important current and future issues that the sRNA and miRNA research can

address.

Although most tools perform miRNA classification quite accurately, miRNA

target prediction remains an open problem. Current tools predict hundreds of

potential targets for each miRNA sequence, lacking in precision, which makes the

validation of the results in the laboratory near impossible. Therefore, improve-

ments to such software or new software is required, and miRNA target prediction

is an important area on which miRNA research will focus on in the near future.

HTS technologies are continuing to evolve, requiring improvements for the

tools used to analyse such data, to keep up with their progress. miRCat2 has

an efficient method of dealing with increasing HTS sequencing dataset size, at

the same time facilitating the expansion of sRNA knowledge and the exciting

discovery of novel miRNAs, that are missed by other methods. In this way,

miRCat2 contributes to the characterisation and understanding of miRNAs, both

in plants and animals, expanding the broad field of miRNA and sRNA research.
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Appendix A

Here we present the parameters used by the miRCat2 algorithm. We show both

the user-configurable and the predefined parameters, together with their default

values in animal and in plant data and the justification for the proposed default

value.
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User-configurable parameters

Parameter
name

Description Default
value

animals

Default
value
plants

Justification for value

min len Minimum length of a miRNA 20 20 Includes sequences that fall out of
the regular miRNA size class

max len Maximum length of a miRNA 24 23 Includes sequences that fall out of
the regular miRNA size class

min fold len Minimum length of a hairpin 40 45 Lower value than minimum fold
length for most organisms

max fold len Maximum length of a hairpin 100 250 Higher value than maximum fold
length for most organisms

max amfe Maximum value for the AMFE for a
miRNA precursor

-22 -22 Empirically determined

complex Complexity of sequence 0.90 0.90 Empirically determined
gaps miRNA Maximum number of consecutive gaps on

the hairpin on the miRNA location
4 4 Empirically determined

repeats Maximum number of times a sRNA can
map to the genome (usually miRNAs map
to a limited number of locations)

25 25 a miRNA sequence does not map
repeated times to the reference
genome

pVal Threshold for the RANDfold output value 0.05 0.05 Statistically significant value
complex loop If a hairpin with multiple loops between

the miRNA and miRNA* is allowed
false true Complex secondary structures

have been previously seen in
plants, but never in animals. If
a complex loop is permitted, it
should not contain more than 3
loops.

no loop Maximum number of bulks in the loop area
of the precursor

0 3 Empirically determined

clear cut -
percent

Percent of incident reads that should fall
between the same start and end positions
as the miRNA

0.95 0.92 Empirically determined, plant
data is more variable

RANDfold If RANDfold should be computed false false Results are accurate without it
and it slows the algorithm. Re-
comended if wanting to further re-
strict the results

Table 1: Parameters involved in the algorithm of miRCat2, that are user-
configurable. The parameters are presented with their default values and the justification
for using the respective value, for both animal and plant data.
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Predefined parameters (user cannot change)

Parameter
name

Description Default
value

animals

Default
value
plants

Justification for value

min orien-
tation

Percent of the reads that have the same
strand on the hairpin

0.8 0.8 Empirically determined

min pared -
perc

Minimum percentage of nts that should be
paired on a hairpin

0.5 0.5 Empirically determined

min pared -
nucl

Minimum number of nts that should be
paired on a hairpin

15 15 Empirically determined

overlap per-
cent

Maximum percent of sRNAs in an adja-
cent cluster overlapping with the miRNA
cluster in order to be considered a clear cut

0.05 0.05 Empirically determined

fuzzy Percent of all reads aligned to the hair-
pin that should map in accordance to
Dicer/DCL1 and Drosha products

0.9 0.9 Empirically determined

min fold len Minimum length of a hairpin 40 45 Minimum length of the miRNA,
miRNA* and loop added together

window Number of nts a split of the genome has. 300 500 Large enough to contain a
miRNA hairpin but small enough
to represent a significant local
context of reads

subwindow Number of nts a split of the window has. 20 20 It can cover at least a half of the
longer miRNAs (25nts), but not
more than then maximum length

window -
overlap

Number of nts two adjacent windows over-
lap

100 100 ensures that adjacent windows
are not isolated, but they influ-
ence each other

depth Number of iterations to perform the KLD
on genome location if removing a sRNA
does not bring it closer to a RUD

4 4 Empirically determined

rud val Threshold for the KLD below which we
consider the distribution to be a RUD

1.23 1.23 Empirically determined

min loop Minimum number of nts that the loop
should have

3 3 Empirically determined

clear cut Number of nts a sRNA can be shifted re-
garded to a miRNA in order to be consid-
ered to have the same start/end (isomir)

3 3 Empirically determined

under clear -
cut

Percent of sRNA in a cluster with the same
cut in order to be considered a clear cut.
This is considered if the clear cut percent
fails on one of the sides of the miRNA

0.7 0.7 Empirically determined

min size Minimum length of a sRNA in the file 16 16 Sequences smaller than 16 nt are
adapter-adapter sequences and
should not exist in the dataset

max size Maximum length of a sRNA in the file 40 40 There are usually very few se-
quences with length over 40 in a
sRNA dataset

offset Value added to the reads distribution in
order to avoid division by 0

1 1 Minimum read abundance

offset low Value added to the reads distribution in or-
der to avoid division by 0 when read abun-
dance is low

offset*0.9 offset*0.9 Offset becomes more significant
than actual read abundances

plateau -
range

Number of subwindow to be included in
the local peak detection on both sides of
the miRNA candidate

4 6 Empirically determined

3‘overhang Number of nts the miRNA* is shifted com-
pared to the miRNA

2 2 miRNA biogenesis

Table 2: Predefined parameters involved in the algorithm of miRCat2, that cannot
be changed by the user. The parameters are presented with their default values and the
justification for using the respective value, for both animal and plant data.
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Appendix B

Here we present the MA plots and box plots produced for the analysis of sRNA

sequencing libraries in a study on the roles of microRNAs in the anti-cancer effects

of sulforaphane. We produced plots in order to check the quality and consistency

of the replicates, and also for each of the normalisation methods, to assert which

one is the most suitable for the analysed data. We present the results for Lane

1, conditions A, B and C.
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Figure 1: MA plots comparing the offset fold change between replicates from condition A,
before normalisation, grouped on size classes.
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Figure 2: MA plots comparing the offset fold change between replicates from condition B, before
normalisation, grouped on size classes.
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Figure 3: MA plots comparing the offset fold change between replicates from condition C, before
normalisation, grouped on size classes.
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Figure 4: Box plots on the offset fold change between replicates, after normalisation using RPM,
grouped on size classes.
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Figure 5: MA plots comparing the offset fold change between replicates from condition A, after
normalisation using RPM, grouped on size classes.
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Figure 6: MA plots comparing the offset fold change between replicates from condition B, after
normalisation using RPM, grouped on size classes.
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Figure 7: MA plots comparing the offset fold change between replicates from condition C, after
normalisation using RPM, grouped on size classes.
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Figure 8: Box plots on the offset fold change between replicates, after normalisation using the
quantile method, grouped on size classes.
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Figure 9: MA plots comparing the offset fold change between replicates from condition A, after
normalisation using the quantile method, grouped on size classes.
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Figure 10: MA plots comparing the offset fold change between replicates from condition B,
after normalisation using the quantile method, grouped on size classes.
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Figure 11: MA plots comparing the offset fold change between replicates from condition C,
after normalisation using the quantile method, grouped on size classes.
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Figure 12: Box plots on the offset fold change between replicates, after normalisation using the
bootstrapping method at 50%, grouped on size classes.
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Figure 13: Box plots on the offset fold change between replicates, after normalisation using the
bootstrapping method at 70%, grouped on size classes.
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Figure 14: Box plots on the offset fold change between replicates, after normalisation using the
bootstrapping method at minimum total, grouped on size classes.
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Figure 15: MA plots comparing the offset fold change between replicates from condition A,
after normalisation using the bootstrapping method at minimum total, grouped on size classes.
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Figure 16: MA plots comparing the offset fold change between replicates from condition B,
after normalisation using the bootstrapping method at minimum total, grouped on size classes.
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Figure 17: MA plots comparing the offset fold change between replicates from condition C,
after normalisation using the bootstrapping method at minimum total, grouped on size classes.
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Appendix C

Here we present the MA plots and box plots produced for the analysis of sRNA

sequencing libraries in a study on the roles of microRNAs in the anti-cancer effects

of sulforaphane. We produced plots in order to check the quality and consistency

of the replicates, and also for each of the normalisation methods, to assert which

one is the most suitable for the analysed data. We present the results for Lane

2, conditions X, Y (where Y has more than one valid replicate) and Z.
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Figure 18: Boxplots for the FASTQ score per nucleotide, for each library. Replicates are based
on the same line and can easily be compared. The boxplots show variable quality score per
nucleotide in some files.
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