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Abstract
Although there have been some promising results in computer
lipreading, there has been a paucity of data on which to train
automatic systems. However the recent emergence of the TCD-
TIMIT corpus, with around 6000 words, 59 speakers and seven
hours of recorded audio-visual speech, allows the deployment
of more recent techniques in audio-speech such as Deep Neural
Networks (DNNs) and sequence discriminative training.

In this paper we combine the DNN with a Hidden Markov
Model (HMM) to the, so called, hybrid DNN-HMM configura-
tion which we train using a variety of sequence discriminative
training methods. This is then followed with a weighted finite
state transducer. The conclusion is that the DNN offers very
substantial improvement over a conventional classifier which
uses a Gaussian Mixture Model (GMM) to model the densi-
ties even when optimised with Speaker Adaptive Training. Se-
quence adaptive training offers further improvements depend-
ing on the precise variety employed but those improvements are
of the order of 10% improvement in word accuracy. Putting
these two results together implies that lipreading is moving
from something of rather esoteric interest to becoming a practi-
cal reality in the foreseeable future.
Index Terms: visual-only speech recognition, computer
lipreading

1. Introduction
Notwithstanding long-term interest in human lipreading [1] and
several sci-fi predictions that computer lipreading would be an
easily realisable reality1 it turns out to have been a tricky prob-
lem. And this is despite the observation that lipreading would be
of practical use in silent speech interfaces or of utility to people
who had lost the use of their vocal chords. So far then, many re-
searchers have concentrated on audio-visual recognition, often
in noise. Noise causes the audio recognizer to fail and lipread-
ing then helps. In terms of advancing the art of lipreading, there
is now a library of techniques based around DNNs that might be
useful, but the lack of data has been discouraging to people who
wish to map those methods across to the visual domain. Hence
many lipreading system still report on isolated digits or letters,
or small vocabulary tasks such as digit strings or 100-word vo-
cabulary tasks.

Table 1 shows some more realistic and recent data. It
also shows the best performance, measured as word accuracy,
for isolated (I) and continuous speech recognition (C) task.
Also shown are the number of talkers. The first system to
report on a large vocabulary task, IBM ViaVoice [11], was
devised in 2000 and reports a word accuracy of 48.92% on
a 10,400 word vocabulary. Unfortunately, it was not a full
lipreading system since it used the visual model to rescore a

1The 1968 movie “2001: a space odyssey” for example.

Table 1: Medium-sized lipreading databases

Corpus ASR task Talker Vocab size Utt Best word accuracy (%)
LRW [2] I >100 500 500k 84.50 [3]
RM-3000 [4] C 1 1000 3k 84.67 [5]
LiLiR [6] C 12 1000 2.4k ∼53.00 [7]
AVICAR[8] I and C 100 1356 59k ∼33.00 [9]
TCD-TIMIT [10] C 59 5958 5.4k N/A
IBM ViaVoice [11] C 290 10400 18k 48.92 [11, 12]
LRS [3] C >1000 17428 118k 49.80 [3]

lattice produced from noisy audio. More recently, using data
recorded from the BBC news, the LRW task, the best result
was 84.5% accuracy but was achieved on a small vocabulary
and isolated words. For larger vocabularies the word accu-
racy drops as does, often, the number of talkers. For exam-
ple in RM-3000 and LiLiR, a continuous lipreading task with a
DNN-HMM hybrid architecture, for the single-speaker 1000-
vocabulary, 3000-word-utterance database, RM-3000 accura-
cies of 76.14% [4, 13] and 85.67% [5] are reported. For the
AVICAR data [9], which consists of isolated-words, connected-
digit and continuous speech tasks, the word accuracies range
between 24.53% and 33% on combined 4-camera using multi-
stream HMM. Recently [3], reports using an end-to-end deep
learning system with 49.8% word accuracy on 4960 hours of
BBC news audiovisual speech data (the LRS task). The data
contain 118k utterances recorded from thousands of speakers
with a vocabulary size 17,428 words. They also report on a sim-
ilar task, a professional lipreader performed only 26.2% word
accuracy 2.

When it comes to deep learning there are three different
approaches: 1. the deep feature with conventional HMM as
in [14, 15]; 2. the end-to-end approach as in [2, 3]; 3. the
hybrid DNN-HMM approach with FST decoder. However in
[16] there seems to be little performance difference between
the approaches. In this paper we choose the hybrid approach
since it allows us to investigate the effect of sequence discrim-
inative training. It is known that in audio, sequence discrim-
inative training has gained a substantial 3-17% relative per-
formance of a speech transcription system [17], 7-9% in [18]
and 8.4% in [19] versus Cross Entropy (CE) training. Unlike
CE, which minimizes the expected frame error individually, se-
quence discriminative training takes the inter-frame sequence
into consideration. Here, we investigate three types of the se-
quence discriminative training criterion; Maximum Mutual In-
formation (MMI), Minimum Phone Error (MPE) and state-level
Minimum Bayes Risks (sMBR). We deploy the hybrid DNN
with a fully automatic data driven approach which means no
audio-to-phoneme alignment is needed.

2This disparity between human and automatic systems has also been
reported in [6].
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2. Corpus and dataset
Looking at Table 1 and eliminating datasets that are either iso-
lated words (I) or not available (IBM ViaVoice or LRS) we are
left with TCD-TIMIT [10] as the largest available with 59 talk-
ers and 3 professional lip speakers comprising over seven hours
of speech data. The video is recorded in two views: frontal and
30◦ view captured in a studio environment with Sony PMW-
EX3 cameras and wireless clip-on microphone. We use only
the frontal view of 59 volunteer talkers. Each talker read 98 sen-
tences selected from TIMIT. The majority of talkers (56) have
an Irish accent. The remaining three talkers are removed as pre-
scribed in [10]. Thus the total number of utterances used in
this paper are 5488 captured from 56 speakers. We also fol-
low the provided lists of non-overlapping utterances for train-
ing and evaluation in two scenarios: speaker-dependent (SD)
and speaker-independent (SI) scenarios detailed in Table 2. [10]

Table 2: Details of training set and evaluation set in TCD-
TIMIT corpus (volunteer speakers) used in our experiments

Dataset Number of speaker # Utter # Word token # VocabMale Female Total

SD Train 29 27 56 3752 30739 4959
Eval 29 27 56 1736 14360 3511

SI Train 22 17 39 3822 31290 5180
Eval 7 10 17 1666 13809 3388

Total 29 27 56 5488 47503 5958

provides a preliminary report of the accuracy using 12 viseme
classes: the best results were 34.54% and 34.77% viseme ac-
curacy in SD and SI respectively. However, authors vary con-
siderably in their choice of viseme, so for comparative studies,
viseme classlifcation and accuracy are highly problematic [20]
so, here we use word accuracy.

3. Visual speech DNN-HMMs Training
This section describes the visual speech modeling method us-
ing the hybrid DNN-HMM structure. For acoustic speech
recognition, the hybrid DNN-HMM structure is known to pro-
vide significant performance gains over the standard GMM-
HMM [21, 22, 23]. There have also been some preliminary
applications to lipreading systems [7, 5].

In the DNN-HMM hybrid approach, let X = x1, ...,xT be
the T sequence of feature vectors extracted from each video and
w be a word sequence that represented by a language model.
The likelihood of input sequence can be computed by

p(X|w) =

T∏
t=1

p(xt|st)p(st|st−1), (1)

where p(xt|st) denotes the emission probability and p(st|st−1)
is the transition probability obtained from the HMMs state
transition. The emission probability can be approximated by
p(xt|st) = p(st|xt)p(xt)/p(st), via a Gaussian Mixture
Model (GMM), in which case we have the conventional HMM
speech recognition architecture or, via a DNN. To estimate the
DNN’s posterior p(s|xt) on each state of an utterance u, the
DNN uses a pseudo log-likelihood obtained via the softmax ac-
tivation function

p(s|xut) =
exp {aut(s)}∑
s
′ exp {aut(s

′)}
, (2)

where aut(s) refers to an activation of state s at the output layer.
In which case, the pseudo log-likelihood of the visual speech

model is

log p(xut|s) = log p(s|xut)− log p(s), (3)

DNNs used in visual speech modeling have conventionally
been trained to optimize the cross-entropy (CE) between the
prediction and the target HMM-state labels using mini-batch
Stochastic Gradient Descent (mini-batch SGD) optimization
and error back-propagation (BP) algorithms [24], to provide the
posterior probability estimated of the HMM states. The HMM-
state alignments are obtained from a GMM-HMM training pro-
cess. Here, we use BP to minimize the cross-entropy between
the predicted output and the HMM-state target. This is simi-
lar to DNN-HMM training in acoustic speech recognition as in
[25].

The cross-entropy objective is a frame-level training cri-
terion for classification tasks and usually provides significant
performance over standard GMM-HMM acoustic modeling in
speech recognition. In visual speech model training, we use
the frame level alignment generated from a context-dependent
GMM-HMM system and the initial DNN-HMM parameters
via stacking Restricted Boltzmann Machines (RBMs) pretrain-
ing [25]. We use CE to fine-tune the DNN parameters.The CE
objective function is defined as

FCE = − 1

T

U∑
u=1

Tu∑
t=1

∑
s

lut(s) log p(s|xut), (4)

where the T here is the total number of frames from all training
utterances and lut(s) is the Kronecker delta of the target state.

4. Sequence-discriminative training
CE is the most common objective function to construct a classi-
fication based DNN-HMM model but it is based on a frame-
by-frame comparison. For lipreading where co-articulation
and context are important, effective training of a DNN-HMM
model implies consideration of a longer window. Sequence-
discriminative training techniques fine-tune the existing DNN
parameters, initially trained by CE, by using sequence-level
criteria which take into consideration the HMM topology and
language model. There are some reports in speech recogni-
tion system that apply the sequence-discriminative training in
DNN acoustic model [18, 26] and also RNN-LSTM acoustic
model [19, 27]. This work examines three criteria for sequence-
discriminative training of the DNN visual speech model: max-
imum mutual information (MMI); state-level minimum Bayes
risk (sMBR) and minimum phone error (MPE).

The MMI training criterion [28, 29] aims to maximize the
mutual information between the distributions of observation and
the reference word sequences. Let Xu represent the sequence
of visual features and wu is the word reference in an utterance
u. MMI attempts to maximise

FMMI =
∑
u

log
p(Xu|Su)kP (wu)∑
w p(Xu|Sw)kP (w)

, (5)

where Su is the state sequence corresponding to the correct
word wu and k is the model scaling factor. The sum of de-
nominator is practically computed from a decoding lattice in-
stead of all the possible word to enhance the computational ef-
ficiency, where the decoding lattice generates via the weak lan-
guage model. We also apply the frame rejection proposed by
[18] to avoid infinite gradients, caused by missing words in the
denominator lattice.



The sMBR/MPE training criteria aim to minimize the ex-
pected error, measured at state-level (sMBR [30]) or phone-
level (MPE, [31]), between the sequence of visual features and
the word sequence of each training utterance. Specifically,
sMBR/MPE attempts to minimize

FMBR/MPE =
∑
u

log

∑
w p(Xu|Sw)kP (w)A(w,wu)∑

w
′ p(Xu|Sw

′ )kP (w′)
,

(6)
where A(w,wu) is the raw accuracy between the word se-
quence w and the reference wu. The raw accuracy refers to the
number of correct state labels in sMBR and the phone labels in
MMI.

5. Decoding lipreading
A language model (LM) and lexicon model are essential to a
speech recognizer and lipreading system. The lexicon model
used in this work is the Irish accent phoneme pronunciation dic-
tionary provided in TCD-TIMIT corpus that contains 156,516
word entries adapted from the CMU dictionary. The LM helps
discriminate similar input patterns of words found in the lex-
icon and also reduce the search cost. For the LM, we use a
the statistical based n-gram model where we train a word bi-
gram from TCD-TIMIT provided text. To make it fair we use
only text provided in the training set, thus we have two bi-gram
LMs; one for SD and one for SI. We know already that longer
n-grams mean better performance but extending the number of
word n-grams can be too strict and will lead to difficulty in find-
ing an appropriate parameter for visual speech modeling. Here
we evaluate our LM by computing the perplexity of SD (35.16)
and SI (33.10) evaluation sets against their LM with no out-of-
vocabulary words found in both cases.

Our lipreading decoder comprises the visual speech DNN-
HMM model, the TCD-TIMIT pronunciation dictionary and the
word bi-gram language model. We generate the decoding graph
as a finite-state transducer (FST) via the Kaldi toolkit [32]. The
decoding graph represents the components of a speech recog-
nizer as an FST with weights (a WFST). It contains a set of
context-dependent states with weighted arcs between the indi-
vidual states. The weights are the incorporation of the visual
speech model and the LM scores. The visual speech model
score comes from the DNN and the LM score from the bi-gram
LM. The graph is generated by HCLG = min(det(H ·C·L·G))
where · means WFST composition of HMM structure (H),
phonetic context-dependency (C), lexicon (L) and language
model or grammar (G). Since FSTs are finite-state machines,
they operate on symbols where the input symbols correspond
to context-dependent HMM states and the output symbols are
words. To decode, each arc of HCLG is traversed for each in-
put feature and state-level arcs are created for the visual speech
cost and the graph costs so called a lattice. The detail of lattice
generation can be found in [33]. Beam width pruning is ap-
plied every 25 frames where we use 13.0 for the Viterbi pruning
beam and 8.0 for the lattice beam and the visual speech model
scale is 0.1. The lattice that contains the entire surviving path
is re-scored by applying the bigram LM with the scaling factor
over the range 5-15. Only the lowest word error rates after LM
re-scoring are used.

6. Experiments and results
In our experiments, we evaluate the word accuracy of lipread-
ing systems in two scenarios: the speaker-dependent scenario

where all 56 speakers are seen in the training and speaker-
independent where we evaluate on speakers unseen during train-
ing. All experiments use the phoneme unit since this is known
to give the better word accuracy than visemes [7, 20].

6.1. Visual speech features

There is much discussion as to the optimal feature for lipread-
ing (see [34] for example). Here we are not too concerned with
the feature vector since the dataset already provides a region-
of-interest (ROI) which is meant to contain the lips so we se-
lect a data-compressive image-based feature known as eigen-
lips. The supplied ROIs have slight variations in size by frame
so we scale them to 128 × 256 pixels, the eigenlip feature is
then extracted via Principal Component Analysis (PCA). Thirty
dimensions are retained covering 85% of the principal compo-
nent variances. To construct the PCA, 25-ROIs images of each
training utterance are randomly selected to be the set of train-
ing images. There are around 4000 training utterances hence
around 100k images in total were used to compute the eigen-
analysis.

6.2. Beseline DNN model trained on CE

The CD-DNNs are trained and optimized by minimizing frame-
based cross-entropy between the prediction and the target PDFs
which are the “tied-state context-dependent label”. These PDFs
are generated from the Speaker Adaptive Training (SAT) sys-
tem, then aligned into every frame. There are 1798 PDFs used
in SD, and 1756 PDFs used in SI. The feature which we adopted
for all DNN training process is based on a 40-dimensional
feature-space MLLR (fMLLR, known as constrained MLLR
[35]) feature with mean and variance normalization, where
the fMLLR obtained via LDA+MLLT (LDA followed by a
maximum-likihood linear transform) projection of 15 frames
spliced of Eigenlip feature. The CD-DNNs model is trained
on six hidden layers with 2048 neurons per layer, where we use
the sigmoid non-linearity function in each neuron. The input
layer is the fMLLR feature with temporal splicing of ±n con-
secutive frames where n = (0, ..., 6). The model is initialized
by a stacking of RBMs with three iterations on a single-GPU
machine. The learning rate for RBM training is 0.4 and ap-
plying L2 penalty (weight decay) at 0.0002. The learning rate
for fine-tuning has been set to 0.008 with dropout 0.1. We use
the minibatch SGD for fine-tuning with the 256 minibatch size.
The results are reported as the mean of 10-fold cross-validation
word accuracy where 10% of whole training set were used as a
development set in each training fold. We evaluate the perfor-
mance of models on the speaker-dependent (SD) and speaker-
independent (SI) sets from TCD-TIMIT.

Table 3: Lipreading word accuracy with varieties of machine
learning. The feature pre-processing in each GMM training
step is similar to [7].

Model Feature processing Feature dim Word accuracy (%)
(±frame splicing) SD SI

CI-GMM ∆ + ∆∆ 90 1.04 3.84
CD-GMM ∆ + ∆∆ 90 5.79 4.76
CD-GMM LDA-MLLT 40 19.53 19.56
CD-GMM SAT FMLLR 40 28.79 24.57

40 (±0) 44.73 39.00
120 (±1) 47.61 43.52
200 (±2) 48.89 43.52

DNN FMLLR 280 (±3) 48.61 43.61
400 (±4) 48.35 42.58
440 (±5) 48.74 42.97
520 (±6) 47.66 42.62



Table 3 presents the baseline results using the DNN model
optimized on CE with various dimensions of the FMLLR in-
put feature compared to the GMM-SAT model. We clearly see
the learning ability of the DNN systems even with no spliced
features (n = 0) by a 15.94% increase in accuracy on SD
(from 28.79% to 44.73%) and 14.43% on SI (from 24.57%
to 39.00%). The benefit of augmenting the neighboring con-
text frames brings further improvement in the accuracy (at least
2.88% on SD and 3.58% on SI) compared to using the current
frame alone. However, increased splicing does not monotoni-
cally increase performance. Here, the best performance of base-
line SD is 48.89% with ±2 context and SI is 43.61% with ±3
context. We use ±3 as a splicing context for the further exper-
iments because it archives the best performance on SI which is
the more realistic task.

6.3. Sequence discriminative training experiments

We conduct experiments on sequence discriminative training on
top of the DNN model initiallised by CE via the three training
criteria, sMBR, MPE, and MMI. First, decoding lattices and
alignments of training data are needed. Here, the DNN trained
on the CE criterion has been used as a seed model to decode
training utterances by utilizing a unigram language model. The
DNN model trained on CE are used for generating the posterior
probability, then the raw state accuracy of each sentence in the
lattice is computed. These steps are essential because it gives
us the actual performance of the current visual speech model
by decoding the training data itself with fewer constraints in
the language model so we can identify the errors that need to
be improved via sequence discriminative training criteria dis-
cussed in Section 4. We set the learning rate to 1× 10−5, while
acoustic-scale and LM-scale are 0.1 and 1.0 respectively as in
[18].

Table 4: Comparisons of three sequence-discriminative training
criteria sMBR, MPE, and MMI with and without DNN realign-
ment against the DNN baseline (280 dimensional FMLLR). The
DNN realignment means updating the target label derived from
the alignments generated by the DNN baseline model.

Model Training objective DNN realignment Word accuracy (%)
SD SI

Beseline Cross-entropy - 48.61 43.61
sMBR CE + sMBR Yes 53.96 48.32

No 53.89 48.16
MPE CE + MPE Yes 54.18 48.48

No 53.47 48.55
MMI CE + MMI Yes 51.75 45.83

No 51.76 46.36

Table 4 shows the word accuracy before and after applying
sequence discriminative training. The significant improvement
can be seen in all cases compared to CD-DNN trained on CE
with no significant different between with/without DNN align-
ment update.

We also examine the word accuracy when increasing the
number of training iterations. Results in Figure 1 illustrate the
performance variation with training iteration and alignment up-
date. The 0th iteration means CE. For the SD configuration,
sMBR and MPE have small changes after the sixth-iteration,
while MMI still increases. However, the best result of SD is
56.59 % obtained from the 10-iteration of sMBR (7.98% higher
than CE). For the SI configuration the highest word accuracy
is 51.29% at the eighth-iteration of sMBR (7.68% higher than
CE).
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Figure 1: Comparison of lipreading performance of SD and SI
systems among three discriminative training criterion; sMBR,
MPE, and MMI when we increase the training iterations. The
best performance of SD is 56.59% on the 10th-iteration of
sMBR and that of SI is 51.29% on 8th-interaton of sMBR. (Note:
0th-iteration means baseline DNN)

7. Conclusions
We have built a successful lipreading system using DNNs and
sequence discriminative training. Comparing our result with the
baseline system, a conventional HMM, we see that performance
has increased from around 4% word accuracy to around 51% in
speaker independent mode. Looking in more detail, significant
improvements are obtained using FMLLR, the DNN rather than
a GMM, some temporal stacking (n = ±1,±2) and the use
of sequence discriminative training. The sequence discrimina-
tive training converges quickly (two or three iterations) but the
method does not matter very much (sMBR, MPE, MMI). We
think that if we had more data then the methods would differ
and possibly more iterations would give grater benefit.
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Figure 2: Accuracy in SD vs SI for a variety of talkers.

As usual with lipreading systems the identity of the talkers
can be very significant, the range of talker accuracy in Figure 2
is between 20% and 80% accuracy: a wide range. We see this
as an important clue that DNNs are better model of the com-
plex density of lipreading features but are not yet capable of
modeling that variation by identity. This therefore remains an
important topic for future work.
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