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ABSTRACT 

Introduction. The cerebellum has strong cortical and subcortical connectivity but is rarely 

taken into account for clinical diagnosis in many neurodegenerative conditions, particularly in 

the absence of clinical ataxia. The current meta-analysis aims to assess patterns of cerebellar 

gray matter atrophy in seven neurodegenerative conditions (Alzheimer’s, Parkinson’s, and 

Huntington’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, multiple system 

atrophy, progressive supranuclear palsy). 

Methods. We carried out a systematic search in PubMed (any date–14/07/2016) and a hand 

search of references from pertinent articles according to PRISMA guidelines. Authors were 

contacted to provide missing coordinate data. Peer-reviewed studies with direct comparison of 

patient and control groups, and availability of coordinate data of gray matter cerebellar 

atrophy in patients were included. These coordinates were used in an anatomical likelihood 

estimation meta-analysis. 

Results. Across 54 studies, clusters of cerebellar atrophy were found for AD, ALS, FTD, 

MSA, and PSP. Atrophy patterns were largely disease-specific, with overlap in certain areas 

of the cerebellar hemisphere, which showed marked atrophy in AD, ALS, FTD, and PSP 

(Crus I/II), and MSA and PSP (lobules I-IV), respectively. Atrophy co-located with cerebellar 

areas implicated for motor (PSP, MSA) or cognitive symptoms (FTD, ALS, PSP) in the 

diseases.  

Discussion. Our findings suggest that cerebellar changes are largely disease-specific and 

correspond to cortical or subcortical changes in neurodegenerative conditions. High clinical 

variability in PD and HD samples may explain the absence of findings for consistent grey 

matter loss across studies. Our results have clinical implications for diagnosis and cerebellar 

neuroimaging referencing approaches. 
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INTRODUCTION 
 
The cerebellum has long been regarded as critical for intact motor functioning.1 However, an 

accumulating body of evidence demonstrates that it also plays a significant role in cognitive 

and affective processing. This plethora of studies has revealed that motor functions are mostly 

localized in anterior regions, whereas cognitive processes are supported by posterior 

cerebellum. Furthermore, limbic and affective processes are most strongly associated with 

vermis and paravermis.2-5 It has been proposed that the cerebellum contributes to cognition 

and motor functioning through the formation of internal models that support coordination of 

behavior and skill learning. As a new model is formed, it may shape cortical representations 

such that once the internal model of behavior is acquired, it can be stored in the cortex and 

accessed flexibly.6 

Such processes require substantial interactions between the cerebellum and 

(sub)cortical regions. Indeed, the cerebellum has multiple reciprocal modular anatomical 

loops, not only with the motor and sensory cortices, but also with areas serving higher 

cognitive functions including prefrontal and parietal cortices.7-9 Thus, the cerebellum exhibits 

specificity in the topography of its connectivity and consequently in its function across motor, 

cognitive, autonomic, and affective domains. Damage to this brain structure could therefore 

result in a variety of impairments depending on the location. 

Recent findings demonstrate that cerebellar-cortical connectivity has implications for 

neurodegenerative diseases,10,11 which can often show a mixture of motor, cognitive, and even 

neuropsychiatric symptoms. While the cerebellum has previously received little attention in 

the study of neurodegenerative diseases without ataxia, these findings show that this may be 

unjustified. Network specific neurodegeneration with distinct patterns of regional cerebellar 

grey matter (GM) loss can be identified for Alzheimer’s disease (AD), amyotrophic lateral 
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sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Furthermore, 

these distinct patterns of cerebellar GM atrophy have been associated with dysfunction across 

several cognitive and affective domains.10-12 Finally, the cerebellum is also gradually being 

identified as potential player in manifest Huntington’s disease (HD).13-15 

The aforementioned findings demonstrate the increasing interest to elucidate the 

pattern of cerebellar atrophy across diseases and its role in pathophysiology. However, to date 

it is still not clear how cerebellar changes overlap or differ between neurodegenerative 

syndromes. The current study sets out to rectify this by conducting a systematic literature 

search and a voxel-based meta-analysis of neuroimaging data across seven major 

neurodegenerative diseases. We chose to include diseases for which the literature has 

traditionally paid little attention to the cerebellum but which warrant further investigation 

based on shared connectivity between the cerebellum and affected brain regions. This is the 

case for AD, ALS, FTD, HD, and PD. Furthermore, we were interested in comparing 

cerebellar atrophy patterns of these diseases with that of conditions for which cerebellar 

involvement has been established and that exhibit similar clinical characteristics. Therefore, 

we also included multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) in 

the meta-analysis. 

The results will clarify whether the cerebellum is involved across the whole 

neurodegenerative disease spectrum and how specific or generic the identified cerebellar 

atrophy is across conditions. We hypothesize that cerebellar atrophy in these diseases is 

specific and relates to motor and cognitive symptoms exhibited by patients. 
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METHODS 

 

Systematic Literature Search 

A systematic literature search was carried out according to PRISMA guidelines from any date 

until July 14th 2016 on PubMed. Specific search terms were used for each disease in addition 

to the common terms “voxel-based morphometry” and “structural MRI” (Supplementary 

Material 1, Table 1). A hand search of references of relevant articles was additionally carried 

out. In case data were not available in articles or supplementary material, authors were 

contacted to provide the missing information. The study inclusion criteria were as follows: 

• publication in peer-reviewed journals and written in English 

• inclusion of n≥3 patients 

• comparison of a patient group of interest (AD, ALS, FTD, HD, MSA, PD, or PSP) 

with a healthy age-matched control group 

• assessment of differences between patients and controls using voxel-based 

morphometry (VBM) and a direct comparison between groups 

• availability of coordinate data of group-level grey matter cerebellar atrophy in patients 

compared with controls, either in the article proper, the supplementary material, or 

upon request for missing data from authors.  

These criteria were chosen in order to minimize heterogeneity between studies.  

Uncertainty regarding inclusion was resolved between HMG, SS, and MH. After 

exclusion of duplicates, the search yielded 924 studies on PubMed. Additional six studies 

were identified in the hand search, leaving a total of 930 studies for screening of titles and 

abstracts. After exclusion of irrelevant studies, 373 remained for full text assessment. Fifty-

four studies met the inclusion criteria, three of which reported results for two diseases each. 
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When it became apparent that different studies used the same participant data, the study with 

the larger sample size was selected. The procedure for study selection and reasons for 

exclusion are summarized in the PRISMA flow chart in Figure 1 (see Supplementary Material 

2 for the PRISMA checklist). 

We did not include patients with ALS-FTD because we felt this would require an 

additional analysis separate from that of either ALS or FTD, for which there was insufficient 

data. Incidentally, all studies that identified cerebellar GM atrophy in FTD included patients 

with a diagnosis of behavioral variant FTD (bvFTD). Therefore, in the following the term 

FTD refers to the behavioral subtype of the disease. Finally, for the MSA sample we carried 

out the analysis across studies that included the cerebellar (MSA-C) or the parkinsonian 

(MSA-P) subtype because several studies investigated these in unison and thus not enough 

data were available for separate analyses with sufficient power. 

 

Insert Figure 1 here 

 

The primary outcome measures used in the meta-analysis were coordinates of peak 

GM atrophy in patients compared to controls. For longitudinal studies, only coordinates 

comparing the most recent brain scans of patients and controls were used for the analysis. 

Extracted data were assessed for correctness by multiple authors before data analysis. In case 

authors did not report whether coordinates corresponded to grey or white matter, the Talairach 

Client (www.talairach.org) was used to identify the label of the brain region and type of 

tissue.16 For the main analysis, all foci in Talairach space were converted to Montreal 

Neurological Institute (MNI) space using a tool from the GingerALE meta-analysis software 

(brainmap.org) that employs the icbm2tal transform.17-19 
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In addition to anatomical data, demographic and clinical data were also extracted to 

give an indication of comparability between studies and between patients and controls 

included in each comparison. Finally, in case the included studies reported results from 

analyses relating symptomatology or cognitive and motor function to patient-control 

differences in GM volume, the outcomes were included in a qualitative synthesis. 

 

Anatomical Likelihood Estimation (ALE) Meta-Analysis 

We employed anatomical/activation likelihood estimation (ALE) using the latest GingerALE 

software version (2.3.6, brainmap.org).20,21 This version corrects an error in multiple 

comparisons correction methods that had resulted in lenient thresholding in previous 

versions.22 

The GingerALE software requires coordinate and sample size data, the latter of which 

is used to assign a relative weight to every study as it is assumed that studies with larger 

sample sizes have greater precision. The ALE meta-analysis treats every coordinate (‘focus’) 

as a spatial probability distribution centered around the given coordinate. For every 

experiment, foci are modeled as Gaussian probability distributions using a full-width half-

maximum that takes into account the sample size of the experiment. A modeled activation 

(MA) map for a given experiment is created from the probability distributions of all its foci. 

The ALE image is formed from the union of MA maps for all experiments. The null 

distribution is determined using the analytical method, where all voxels with the same MA 

values are tallied in one histogram bin until the entire MA map is summarized in this 

manner.20,21 

The current ALE algorithm takes into account both inter-subject and inter-experiment 

variability for the computation of probability distributions by employing a random-effects 
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model. As some studies may report more foci than others, ALE controls for the possible 

within-experiment effect of multiple foci from one experiment influencing the modeled 

activation of a single voxel.  

As recommended by the ALE manual, cluster-level inference was used as thresholding 

method for maximal statistical rigor. For the cluster-forming threshold, an uncorrected p-

value of .001 was chosen, whereas the p-value for cluster-level inference was .05.20,21,23 For 

visualization, results were projected on cerebellar surface-based flatmaps provided by the 

SUIT toolbox.24 

It should be noted that the ALE method does not provide a metric for study 

heterogeneity and cannot inform the reader about possible publication bias due to the fact that 

only studies with positive findings can be included in the analysis. Nonetheless, it is the most 

widely accepted method for coordinate-based meta-analysis. 

 

RESULTS 

 

A total number of n=1609 patients (AD n=369; ALS n=60; FTD n=233; HD n=104; MSA 

n=160; PD n=528; PSP n=155) and n=1471 controls (not counting twice the control subjects 

that were included in analyses for two disease groups) from k=54 studies (AD k=9; ALS k=3; 

FTD k=12; HD k=4; MSA k=8; PD k=12; PSP k=9; three of these conducted analyses on two 

diseases each, resulting in a total of 57 comparisons between a disease and a control group) 

were included in this meta-analysis. Study characteristics including age, disease duration, and 

symptom severity can be found in Supplementary Material 1, Table 2. In the vast majority of 

studies, patients and controls did not differ in age. 
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Table 1 and Figure 2 show the results of the ALE meta-analysis for all diseases that 

revealed significant GM loss. In AD, one cluster of cerebellar GM atrophy was found in the 

right hemisphere spanning Crus I and II, as well as lobule VI. 

In ALS patients, the largest cluster of GM reduction spanned parts of the vermis and 

neighboring regions in left lobule VI, Crus I, and Crus II. Another cluster in the left 

hemisphere stretched from Crus II to lobule VIIb. In the right hemisphere, one cluster was 

situated in lobule V close to the vermis and the other affected region included lobules VIIIa/b. 

The analysis of FTD-related atrophy revealed three clusters of GM loss. Two were 

located in the right hemisphere, in Crus I and Crus II, respectively, with a small portion of 

right lobule VIIb being affected as well. The third cluster spanned parts of left Crus I and II. 

The results for MSA show that regions of GM atrophy were constrained to posterior 

cerebellum. Two clusters that mirrored each other were found in left and right hemispheres in 

the medial regions of lobules I to IV. 

In PSP, three clusters were found. One was located in left lobules I-IV, partially 

covering the vermis. The second cluster showed atrophy in a small part of the lateral most left 

Crus I, extending towards lateral regions of Crus II and lobule VIIb. The final cluster was 

constrained to the inferior most part of right lobule IX.  

The analysis for HD and PD did not find any clusters that exceeded the significance 

thresholds of 576 mm3 and 488 mm3 per cluster, respectively, that were chosen in the 

permutation procedure. 
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    Table 1. Results of the ALE meta-analysis. 
Disease 
group 
 

Cluster 
size 
(mm3) 

Extent and center (MNI) Local 
extrema  
(MNI) 

P-value 
 

Label 

AD      
Cluster 1 
 
 
 

1016 
 
 
 

(26 -78 -40) to (42 -58 -24) centered at (31 -66 -33) 
 
 
 

30 -68 -38 .014 R posterior lobe, tonsil 
34 -60 -26 .011 R anterior lobe, culmen 
28 -70 -28 .009 R posterior lobe, uvula 
28 -76 -26 .009 R posterior lobe, uvula 

ALS      
Cluster 1 
 

648 
 

(-34 -80 -52) to (-26 -72 -44) centered at (-30 -76 48) 
 

-30 -76 -48 
 

.009 
 

L posterior lobe, inferior 
semi-lunar lobule 

Cluster 2 496 (12 -66 -62) to (20 -58 -54) centered at (16 -62 -58) 16 -62 -58 .009 No GM found 
Cluster 3 456 (6 -60 -18) to (14 -52 -10) centered at (10 -56 -14) 10 -56 -14 .008 R anterior lobe, culmen 
Cluster 4 448 (-8 -72 -30) to (-2 -66 -24) centered at (-5 -69-27) -4 -68 -26 .008 L anterior lobe, nodule 

FTD      
Cluster 1 
 
 
 
 
 
 
 

1736 
 
 
 
 
 
 
 

(-56 -78 -48) to (-30 -56 -34) centered at (-43 -70 -40) 
 
 
 
 
 
 
 

-46 -72 -40 
 

.011 
 

L posterior lobe, inferior 
semi-lunar lobule 

-34 -66 -40 .010 L posterior lobe, tonsil 
-54 -76 -36  .010 L posterior lobe, pyramis 
-38 -68 -42 .010 L posterior lobe, tonsil 
-52 -74 -48 
 

.008 
 

L posterior lobe, inferior 
semi-lunar lobule 

-38 -60 -42 .008 L posterior lobe, tonsil 
Cluster 2 
 

728 
 

(38 -68 -50) to (50 -56 -40) centered at (42 -61 -45) 
 

42 -60 -44 .013 R posterior lobe, tonsil 
48 -66 -48 .008 R posterior lobe, tonsil 

Cluster 3 640 (46 -72 -36) to 54 -64 -20) centered at (50 -68 -27) 52 -68 -28 .011 R posterior lobe, tuber 
50 -68 -24 .010 R posterior lobe, declive 

HD  No clusters found    
MSA      
Cluster 1 
 

1080 
 

(0 -46 -26) to (20 -34 -14) centered at (8 -38 -19) 
 

6 -36 -20 .011 R anterior lobe, culmen 
16 -40 -16 .010 R anterior lobe, culmen 

Cluster 2 560 (-10 -48 -28) to (-2 -40 -18) centered at (-7 -44 -23) -6 -44 -24 .013 L anterior lobe, culmen 

PD  No clusters found    
PSP      
Cluster 1 976 (-12 -42 -22) to (2 -32 -10) centered at (-6 -38 -16) -6 -38 -16 .014 L anterior lobe, culmen 
Cluster 2 912 (-48 -58 -50) to (-42 -42 -42) centered at (-45 -49 -46) -46 -46 -46 .011 L posterior lobe, tonsil 

-46 -54 -46 .010 L posterior lobe, tonsil 
Cluster 3 584 (4 -54 -46) to (12 -46 -32) centered at (8 -50 -38) 6 -48 -36 .009 R anterior lobe 

10 -52 -44 .008 R posterior lobe, tonsil  
Abbreviations. AD: Alzheimer’s Disease; ALS: Amyotrophic Lateral Sclerosis; FTD: Frontotemporal 
Dementia; GM: grey matter; HD: Huntington’s Disease; L: left; MNI: Montreal Neurological Institute; MSA: 
Multisystem Atrophy; PD: Parkinson’s Disease; PSP: Progressive Supranuclear Palsy; R: right. 
 

Insert Figure 2 here 

 

As evident in Figure 2 there were distinct atrophy patterns across groups as well as 

several clusters that were shared between diseases. Interestingly, one cluster in left lobules I-

IV was virtually identical in both MSA and PSP. Marked lobular overlap was found in Crus I 
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and II, which were most affected across diseases. The analyses for AD, ALS, FTD, and PSP 

all showed atrophy in these regions in both hemispheres, albeit at different locations. 

Table 3 in Supplementary Material 1 lists the results of all studies that have included 

the cerebellum in an analysis that aimed to relate regional GM loss to behavioral measures or 

clinical outcome. None of these studies found relationships between Mini Mental State Exam 

scores and other cognitive or clinical measures in AD.25-27 

 In contrast, in a mixed analysis of ALS and FTD patients, correlations between 

cerebellar GM and scores on the Addenbrooke’s Cognitive Examination Revised and 

Cambridge Behavioural Inventory Revised were found across all lobules apart from lobule 

X.11 The same study also found associations between ALS Functional Rating Score Revised 

and GM volume of right lobule V, VIIIa/b, and IX, bilateral lobule VI and VIIb, and left 

lobule VII in ALS and ALS-bvFTD patients. Further studies found that declines in memory 

performance and confrontation naming correlated with reduced cerebellar GM volume in FTD 

patients.28,29 

Despite the absence of significant GM atrophy clusters in HD identified here, 

cerebellar volume in patients correlated with changes in affective functions, symptom 

duration, and visuomotor performance.15,30,31  

In MSA patients, one study reported that cerebellar volume loss in regions that we 

identified as bilateral lobules IV-VI correlated with disease duration and that atrophy in 

lobules I-IV, V, and IX was associated with disease stage.32 Furthermore, cerebellar ataxia 

was correlated with volume decrease across widespread regions.33 

For PD, greater cerebellar atrophy was associated with decreased baroreflex 

sensitivity,34 higher UPDRS-III score, decreased connectivity between cerebellar motor 
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regions and the default mode, sensorimotor, and dorsal attention networks,12 and a decline in 

executive functions.35 

Finally, greater cerebellar atrophy in PSP patients correlated with lower Frontal 

Assessment Battery scores, greater postural instability (lobules I-IV) and disease duration 

(lobules I-IV, VIIIb),36 decreased phonological verbal and letter fluency (left lobule VI, right 

I-IV),36,37 and impaired emotion recognition and theory of mind (right Crus II).38 

 

DISCUSSION 

 

To our knowledge, this is the first study to systematically review and quantitatively perform a 

meta-analysis of GM atrophy in the cerebellum across neurodegenerative disorders. Using the 

ALE method, consistent clusters of cerebellar atrophy were identified in AD, ALS, FTD, 

MSA, and PSP, but not in HD and PD. The analysis revealed that the diseases have unique 

patterns of cerebellar atrophy, suggesting that cerebellar changes are not homogenous across 

neurodegenerative conditions, but specific to underlying pathology. Some lobular overlap was 

found in AD, ALS, FTD, and PSP (Crus I/II), as well as between MSA and PSP (left lobules 

I-IV), albeit only the latter showed an identical cluster. To simplify the interpretation of the 

results and their implications for changes in functioning across these diseases, we provide a 

diagram of functions and connectivity of the different subregions of the cerebellum (Figure 3). 

 

Insert Figure 3 here 
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Alzheimer’s Disease 

Atrophy in AD was found in a large cluster in right Crus I/II, with involvement of lobule VI. 

This atrophy in AD contradicts previous assertions that the cerebellum remains unaffected in 

the disease.39 More importantly, these regions have been implemented in cognitive and 

affective functions. Specifically, Crus I/II and lobule VI participate in the executive control 

network (ECN), the default mode network (DMN), and the salience network (SN).40 This 

atrophy pattern dovetails with the predominant cognitive impairment characteristic of AD 

including episodic and working memory decline,41 and the connections Crus I/II and lobule 

VI share with the hippocampus and prefrontal regions.42 This raises the question as to whether 

cerebellar atrophy contributes to typical cognitive deficits observed in AD.43 None of the 

studies included in our meta-analysis found correlations between cognitive decline and degree 

of cerebellar atrophy. In contrast, other authors have reported a correlation between MMSE 

scores and abstract reasoning abilities with grey matter volumes in the right cerebellar 

hemisphere, which fits with our account of right-lateralized GM loss.44,45 

Therefore, associations between cognitive impairment and cerebellar GM loss in AD 

remain inconsistent, and it is unclear as to whether such associations are causally linked to 

cerebellar degeneration or if they are due to atrophy in other brain regions typically affected 

in AD, which then impact the cerebellum. Regions of atrophy in the cerebellum are 

intrinsically connected with atrophied areas in cerebral cortex in AD and FTD, suggesting that 

atrophy spreads through brain networks.10 Clearly, the relationship between cerebellar atrophy 

and AD symptomatology warrants further study in the future. 
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Frontotemporal Dementia and Amyotrophic Lateral Sclerosis 

Results of FTD and ALS are discussed jointly as both diseases are considered to lie on a 

spectrum.11 Our analysis revealed multiple clusters of atrophy in FTD in bilateral Crus I/II. In 

ALS, Crus I/II are affected to a smaller degree and the cluster is situated in the 

vermal/paravermal region rather than the hemisphere. Atrophy clusters in ALS were also 

found in inferior cerebellum, additionally affecting hemispheric lobules V, VI, and VIII, 

reflecting greater motor impairment in ALS. 

In contrast to AD, cerebellar changes in ALS and FTD are now commonly accepted, 

having first been identified in C9orf72 mutation carriers46 and more recently, in patients with 

sporadic disease.11 Importantly, throughout the cerebellum atrophy has been found to 

correlate with cognitive, motor, and neuropsychiatric symptomatology in FTD and ALS (see 

Supplementary Material 1, Table 3).11 In particular, Crus I and lobule VI were associated with 

deficits in memory, language, executive, emotion, and visuospatial domains in bvFTD.47 

Neuropsychiatric deficits were most strongly associated with the Crus in FTD patients.11 

Moreover, connectivity of the cerebellar subregions with GM loss in FTD also 

dovetails with characteristic symptoms. Regions of Crus I/II identified here share major 

connections with prefrontal and parietal areas as part of the DMN and ECN,40 resulting in co-

activation during executive functioning, memory, and emotion processing.48 This may explain 

the relationship between cerebellar atrophy and specific cortical changes in FTD.10 The 

atrophied regions in Crus I may also be involved in the SN, which has been recognized to be 

affected by degeneration in FTD.10 

One explanation besides frontal atrophy for the lack of inhibition, depressed mood, 

and inappropriate behavior in FTD may therefore be abnormal functioning of the cerebellum 

caused by GM loss. Comparable symptoms have been shown in a variety of patients with 
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damage in similar regions of the cerebellum and have been explained on the basis of the 

dysmetria of thought hypothesis.49 This hypothesis postulates that cerebellar damage results in 

similar patterns of impairment across all domains the cerebellum is involved in, i.e. damage to 

motor regions causes dysmetria of movement, just as damage to cognitive/affective regions 

results in a dysmetria of thought, meaning that in both cases maintenance of appropriate 

behavior is defective.6 

While ALS also exhibited atrophy in cerebellar regions of the ECN (left Crus I/II), 

most clusters belonged to areas of the sensorimotor network (SMN; lobules, V, VI, VIIIb) as 

would be expected from a disease primarily characterized by motor impairments. Taken 

together, there is substantial support for the notion that cerebellar atrophy is highly specific 

and related to cortical symptomatology in FTD and ALS. Despite these exciting findings, 

future studies in the ALS-FTD continuum are clearly needed to explore how repeat 

expansions of the C9orf72 gene and sporadic forms impact on cerebellar integrity and 

associated symptomatology. 

 

Huntington’s Disease 

We did not find any clusters that survived corrections for multiple comparisons in HD. 

However, studies have shown decreased corticocerebellar functional coupling in HD and 

revealed associations of cerebellar atrophy with impaired gait and motor score, deficits in 

emotion recognition, and working memory.13,31,50 Cerebellar changes thus seem to be related 

to clinical symptomatology of HD. Given that the basal ganglia, one of the major affected 

regions in HD, shows strong connectivity with the cerebellum this may not be surprising.51 

Nonetheless, few studies have investigated the involvement of the cerebellum in HD. A recent 

review on HD has summarized cerebellar findings in the disease, which include reduced total 
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cerebellar volume, atrophy in both anterior and posterior lobes, and neuronal cell loss in 

cerebellar cortex and deep nuclei.14 These anatomical changes explain several motor-related 

HD symptoms including but not limited to ataxia, dysarthria, and impaired gait balance. 

Given the clear evidence of cerebellar involvement in HD, the small sample size in our 

analysis likely contributed to the failure to identify consistent regions of atrophy. Likewise, 

large clinical variability inherent in HD patients with respect to symptom phenotype and 

cortical neuronal degeneration may also impact the consistency of cerebellar atrophy.52 Such 

heterogeneity cannot be dealt with in a sample as small as the one in this study. Future studies 

should further investigate the role of the cerebellum in HD. 

Parkinson’s Disease 

Our meta-analysis surprisingly revealed no cerebellar involvement in PD patients. Despite the 

cerebellum being involved in tremor,53 no motor areas of the cerebellum emerged in our 

analysis. This surprising finding could be due to diverse clinical presentations of patients in 

the different studies, as the level of cognitive impairment in PD seems to play a large role in 

the presence of cerebellar atrophy.12 Indeed, when extracting the data from the PD studies, it 

became apparent that especially those patients with concurrent cognitive impairment (e.g., 

PD-mild cognitive impairment patients) exhibit cerebellar atrophy. One could speculate, 

therefore, that the cerebellar changes in PD are more related to cognitive deficits than motor 

symptoms, per se. Clearly, such a controversial notion needs to be investigated further in the 

future. Along these lines, a recent study found that GM differences in Crus I – a region that is 

involved in cognitive rather than motor functions – could differentiate PD from controls with 

95% accuracy.54 Another recent study lends further support for the importance of PD-related 

changes in Crus I, revealing reduced negative functional coupling between the right Crus I 

and the subthalamic nucleus in the resting state.55 
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Multiple System Atrophy and Progressive Supranuclear Palsy 

In MSA and PSP, previous studies have shown that cerebellar atrophy is most common in the 

white matter of the cerebellar peduncles.56,57 Here we find consistent clusters of GM atrophy 

in MSA lobules I-IV. Studies have shown that this atrophy correlates with gait and balance 

impairments and longer disease duration32,33. Indeed, these regions are confined to the anterior 

lobe of the cerebellum, which is involved in sensorimotor processing and shares connections 

with the spinal cord, brainstem, and cortical areas responsible for sensorimotor functions and 

postural stability.4,58  

We did not identify any regions implicated in cognitive functions that were affected in 

the cerebellum in MSA and none of the studies showed correlations between cerebellar 

atrophy and cognitive symptoms, suggesting that cerebellar involvement in MSA may be 

limited to the motor domain. However, the absence of clusters in posterior regions could be a 

consequence of the small sample size of our meta-analysis.  

Inspection of the ALE summary data revealed that two out of the three MSA studies 

that included only MSA patients of the Parkinsonian variant did not contribute to the clusters 

of GM atrophy identified here. This suggests that our findings could have been driven by 

MSA patients of the cerebellar type in the mixed patient studies and that the pattern of 

cerebellar atrophy in MSA-P patients differed too much from that in MSA-C to contribute to 

the clusters in this analysis. 

For PSP one cluster was identified in left lobules I-IV at the same location as in MSA. 

Studies have found atrophy in these regions to be related to postural instability and 

phonological changes in PSP.36 A second cluster is located in right lobule IX. Atrophy in 

lobule IX has been found to be related to oculomotor deficits in lesion patients.59 Indeed, 

ocular motor impairment is a prominent and early feature of PSP in patients with Richardson 
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syndrome (the most common subtype of PSP), who exhibit slowed vertical saccades.60 It is 

also in line with the prominent decrease in white matter volume of the superior cerebellar 

peduncle in PSP, which connects the cerebellum with the thalamus, which then in turn 

projects to the frontal eye field.61 However, lobule IX has also been linked to the DMN and 

affective and memory functions and may therefore also play a role in mood changes in PSP.40 

Finally, the third cluster in PSP covered a region of left Crus I/II and lobule VIIb that 

has been implicated in the ECN, which fits with executive dysfunction being the most 

common cognitive symptom in the disease.62 Based on these findings, the cerebellum may be 

involved not only in motor symptoms of PSP but also in cognitive-affective changes. 

However, few studies have found correlations between cerebellar GM and clinical scales in 

PSP. Therefore, this notion needs to be more thoroughly investigated in the future. 

While only motor functions correlated with cerebellar GM volume in MSA patients, 

both cognitive and motor deficits in PSP patients were associated with atrophy across studies. 

This is in line with the patterns of cerebellar atrophy we find in these diseases, as only 

posterior regions were affected in MSA, whereas posterior and anterior regions of the 

cerebellum were involved in PSP. 

 

Summary and Limitations 

Our results demonstrate distinct patterns of cerebellar GM loss across most of the 

neurodegenerative diseases investigated here. In addition, our combined plot showed that 

there exists some overlap in atrophy patterns. These findings suggest that cerebellar changes 

are highly disease-specific and correspond to the cortical or subcortical changes 

characteristically reported in each disease.10 Lobular overlap between ALS and FTD in Crus 
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I/II further corroborates this notion as both diseases lie on a spectrum. Similarly, the shared 

cluster between MSA and PSP can be explained on the basis of the clinical motor 

characteristics found in both diseases like impairments in posture and balance. 

Despite these novel and exciting findings, there are limitations to our study: i) the 

employed meta-analytical tool (ALE) does not weight clusters based on effect or cluster sizes 

and does not consider null findings; nonetheless, ALE is the most validated and accepted 

method of coordinate-based meta-analysis; ii) inspection of excluded studies revealed that 

cerebellar atrophy was often present in the figures of the studies but the peak coordinates and 

cluster sizes were not reported. Despite repeated contacts with authors, we could not obtain 

the data for some studies and thus, our results very likely underestimate the cerebellar 

atrophy; iii) our results might have been affected by the inclusion of different disease stages 

across conditions; iv) most importantly, our meta-analysis is limited by the small sample sizes 

for each disease group, especially in ALS and HD, which was due to the absence of direct 

patient-control comparisons of structural brain changes in many identified studies which had 

to be excluded. Future studies are therefore needed to validate our findings, in particular once 

studies report cerebellar changes more consistently.  

The current meta-analysis benefits from specificity resulting from the strict selection 

criteria we used by only including direct comparisons of patients and controls, rather than 

considering correlation analyses that may include additional variables. Furthermore, through 

personal contact with authors we obtained additional coordinate data that had not been 

included in previous whole-brain meta-analyses of the diseases investigated here. 
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In summary, consistent patterns of cerebellar atrophy can be found for AD, ALS, FTD, 

MSA, and PSP with atrophy being highly disease-specific and relating to cognitive, 

sensorimotor, and affective symptoms in the respective disorder. Particularly for ALS and 

FTD, cerebellar atrophy is related to clinical rating scales and specific atrophy patterns can be 

identified for different phenotypes along the disease spectrum.11 In contrast, for AD the 

relationship between clinical assessment and cerebellar GM is inconsistent. Finally, motor 

symptoms in MSA, particularly MSA-C, have been linked to cerebellar changes, whereas the 

role of the cerebellum in symptom generation of PSP is less clear. Furthermore, the patterns 

of cerebellar GM decline may at least in part be explained on the basis of connectivity with 

cortical and subcortical regions that are the main affected regions in the diseases. However, it 

is currently still unclear whether cerebellar atrophy in these diseases is a result of Wallerian 

degeneration due to cortical or subcortical changes, or whether it has a separate origin and 

contribution in the neurodegenerative processes. Regardless, this increasing evidence of 

cerebellar atrophy has implications for neuroimaging referencing and diagnosis. Most studies 

use the cerebellum as a reference region for cortical investigations. Thus, cerebellar atrophy 

may need to be taken into account, for example when considering PET uptake loads in such 

analyses. We hope these findings will pave the way for future investigations into the 

cerebellum and its role in neurodegeneration. 
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Figure 1. PRISMA flowchart of study selection and reasons for exclusion. Abbreviations. AD: Alzheimer’s 
Disease; ALS: Amyotrophic Lateral Sclerosis; FTD: Frontotemporal Dementia; GM: grey matter; HD: 
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reference for structural 
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- No direct comparison 
between patients and 
controls (k=59) 
- No GM data (k=41) 
- No coordinate data 
(k=64) 
- Coordinate data available 
but no significant findings 
in GM for cerebellum 
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Huntington’s Disease; MND: Motor Neuron Disease; MSA: Multisystem Atrophy; PD: Parkinson’s Disease; 
PSP: Progressive Supranuclear Palsy. 
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Figure 2. Structural atrophy in the cerebellum in AD, ALS, FTD, MSA, PSP and the overlay across these diseases. Atrophy map of each disease is color coded in the 
overlay, corresponding to the colored box on top of the individual atrophy map. Atrophy is displayed on surface-based flatmaps provided by the SUIT toolbox.24 
Abbreviations. AD: Alzheimer’s Disease; ALS: Amyotrophic Lateral Sclerosis; FTD: Frontotemporal Dementia; GM: grey matter; MSA: Multisystem Atrophy; PSP: 
Progressive Supranuclear Palsy.		
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Figure 3. Diagram of functions and connectivity of the human cerebellum.  
This diagram is a simplified approximation of cerebellar connectivity and function. The map shows a synthesis 
of the results of several connectivity analyses.7,8,40 Please note that this diagram is meant to provide a general 
overview and is therefore limited to four major networks. A detailed account of cerebellar topography that 
exceeds the scope of one figure can be found in Buckner et al. (2011).7 Cortical and subcortical regions included 
in each network are as follows: Sensorimotor network: sensorimotor cortex (M1/S1), premotor cortex, 
supplementary motor area, anterior cingulate cortex, occipital cortex, insula, lentiform and caudate nucleus, 
ventral thalami, rostral left red nucleus. Default mode network: dorsomedial prefrontal cortex, medial prefrontal 
cortex, superior parietal cortex, angular gyrus, posterior cingulate, retrosplenial cortex, medial temporal lobe, 
ventral temporal cortex. Executive network: dorsolateral and dorsomedial prefrontal cortex, orbitofrontal cortex, 
caudal cingulate cortex, superior parietal cortex, angular and supramarginal gyri, left caudate nucleus. Salience 
network: medial frontal cortex, dorsolateral prefrontal cortex, frontoinsular cortex, thalamus, red nuclei.40 
Functions are listed based on two meta-analyses,2,4 one functional imaging study,5 and the other studies listed 
above.7,8,40 Abbreviations: L: left, R: right. 
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Supplementary Material 1 
 
Supplementary Table 1. Search terms for the systematic literature search in PubMed. The 
common terms are listed in the last row and were the same for all disease groups.  

Supplementary Table 2. Characteristics of studies included in the coordinate-based meta- 
analysis.  

Supplementary Table 3. Summary of studies that included the cerebellum in analyses 
assessing associations between regional grey matter decrease and clinical or behavioral data.  
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Supplementary Table 1: Search terms for the systematic literature search in pubmed. The common terms 
are listed in the last row and were the same for all disease groups.  

Disease Search terms  Publication dates 
AD Title/Abstract (“AD” OR “Alzheimer”) 

AND common terms 
Any date – July 14th 
2016 

ALS Title/Abstract (“ALS” OR “amyotrophic lateral 
sclerosis” OR ”motor neuron disease” OR 
“MND” OR “Lou Gehrig” OR “Charcot”) 
AND common terms 

FTD Title/Abstract (“frontotemporal dementia” OR 
“FTD” OR “frontotemporal lobar 
degeneration” OR “FTLD”) AND common 
terms 

HD Title/Abstract (“Huntington” OR “HD”) AND 
common terms 

MSA Title/Abstract (“MSA” OR “multiple system 
atrophy”) AND common terms  

PD Title/Abstract (“PD” OR “Parkinson”) AND 
common terms 

PSP Title/Abstract (“PSP” OR “progressive 
supranuclear palsy”) AND common terms 

Common terms: 
(“VBM” OR “voxel-based morphometry” OR “structural MRI”) 
Filter: humans 

Abbreviations. AD: Alzheimer’s disease; ALS: amyotrophic lateral sclerosis; FTD: frontotemporal dementia; 
FTLD: frontotemporal lobar degeneration; HD: Huntington’s disease; MND: motor neuron disease; MSA: 
multiple system atrophy; PD: Parkinson’s disease; PSP: progressive supranuclear palsy.  
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Supplementary Table 2. Study characteristics of records included in the coordinate-based meta-analysis. 
Authors Diagnosis N patients 

(% female) 
N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 
 

MMSE patients 
± SD 

Disease 
Duration 
(years ± SD) 

Coordinates 
(MNI) 

Guo et al 
(2016)1 

AD 34 (44) 34 (53) 62±6 64±5 NS NA 3±3 -32 -72 -29 
-31 -60 -19 
27 -71 -28 
27 -76 -26 

Ossenkoppele 
et al (2015)2  

Typical AD 58 (39) 61 (38) 64±9 64±8 NS 23±4 NA -39 -82 -33 
46 -73 -36 

Colloby et al 
(2014)3 

AD 47 39 79±9 77±6 NS 21±4 NA -33 -43 -24 
42 -43 -26 
21 -85 -35 
39 -79 -44 
-41 -48 -32 

Serra et al 
(2014)4 

AD 48 (35) 20 (65) 71±6 70±6 NS 19±3 4±3 -12 -86 -24 

Möller et al 
(2013)5 

Late onset AD 120 (46) 71 (50) 72±5 71±4 NS 21±5 NA 33 -60 -27 
30 -69 -38 
12 -61 -23 
26 -49 -47 
-26 -48 -45 
-34 -48 -45 
-30 -42 -42 
10 -67 -36 

Canu et al 
(2011)6 

AD 17 (82) 13 (46) 77±6 73±7 NS 21±5 NA 32 -64 -36 
42 -59 -25 
-29 -70 -39 
-36 -67 -32 

Lehmann et al 
(2011)7 

Typical AD 30 (53) 50 (66) 69±9 63±10 <.005 19±5 5 8 -49 -30 

Mazere et al 
(2008)8 

AD 8 (63) 8 (75)  80±7 74±3 NS 24±2 NA -44 -65 -42 
27 -66 -11 
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Farrow et al 
(2007)9 

Early stage AD 7 11 78±7 71±4 .014 25±4 4 25 -40 -29 
-24 -36 -29 

Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

ALSFRS-R score ± 
SD 

Disease 
Duration 
(years ± SD) 

Coordinates 
(MNI) 

Tan et al 
(2014)10 

ALS 23 (39) 16 (50) 61±12 64±5 NS 37±8 4±5 1 -70 -56 
-30 -76 -48 
-5 -69 -27 

Mioshi et al 
(2013)11 

ALS 22 (27) 18 (50) 60±12 64±5 NS 35±11 3±3 16 -62 -58 

Thivard et al 
(2007)12 

Sporadic ALS 15 (40) 25 (44) 52±9 45±12 NS 30±6 3±1 10 -56 -14 
 

Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

Disease Duration 
(years ± SD) 

 Coordinates 
(MNI) 

Ahmed et al 
(2016)13 

bvFTD 19 (47) 25 (48) 62±8 66±8 NS 6±4 40 -58 -42 

Guo et al 
(2016)1 

bvFTD 33 (42) 34 (53) 61±7 64±5 NS 3±3 -27 -63 -25 
-24 -73 -28 
-26 -49 -21 
-32 -67 -40 

Tan et al 
(2014)10 

bvFTD 23 (35) 16 (50) 62±10 64±5 NS 4±2 -15 -54 -35 
-22 -76 -35 

Irish et al 
(2014)14 

bvFTD 19 (42) 19 (61) 64±8 68±5 NS 4±2 -50 -70 -38 
34 -78 -54 
24 -40 -30 

Premi et al 
(2014)15 

FTD (n=18, 
54% bvFTD) 

33 12 66±7 NA NS 3±2 -40 -36 -36 
-55 -77 -36 
-53 -76 -48 
46 -40 -37 
53 -67 -26 

Irish et al 
(2013)16 

 

bvFTD 15 (40) 15 (33) 64±9 65±4 NS 3±2 -50 -50 -52 
-38 -58 -42 
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Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

Disease Duration 
(years ± SD) 

 Coordinates 
(MNI) 

Lillo et al 
(2012)17 

bvFTD 15 (27) 18 (50) 62±7 65±5 NS 3 -40 -68 -42 
42 -60 -46 

Whitwell et al 
(2012)18 

FTD-C9orf72 
with behavioral 
variant 

19 (53) 40 (50) 55 58 NAa 6 -45 -75 -41 
-6 -79 -27 
-39 -40 -28 

Lee et al 
(2011)19 

bvFTD-CBD 3 (40) 44 (50) 66 69±5 NAa 8 29 -86 -41 
35 -82 -46 

Knutson et al 
(2008)20 

Frontal variant 
[i.e. bv]FTD 

25 (48) 14 (50) 60±8 61±6 NS NA 26 -86 -38 
50 -68 -34 
-24 -86 -40 
-16 -88 -36 

Seeley et al 
(2008)21 

bvFTD 15 (53) 45 (49) 62±10 68±8 NS 6±3 48 -67 -48 

Grossman et 
(2004)22 

Non-aphasic 
[i.e. bv] FTD 

14 25 63±12 69±9 NS 4±3 11 -85 -52 

Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

UHDRS-III Disease 
Duration 
(years ± SD) 

Coordinates  
(MNI) 

Wolf et al 
(2015)23 

Manifest HD 20 
(43) 

20 
(35) 

49±9 47±9 .56 25±12 3±2 44 -62 -26 

Scharmüller et 
al (2013)24 

Symptomatic 
HD 

18 18 45±3 49±10 NAa 31±18 4± 3 -6 -36 -18 
8 -36 -18 
-21 -52 -14 
22 -49 -15 
-21 -55 -14 
20 -66 -14 
45 -60 -59 
-21 -57 -45 
22 -60 -47 
-21 -52 -47 
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3 -54 -39 
0 -51 -35 
3 -36 -20 
6 -36 -17 
3 -60 -35 
2 -54 -36 
-21 -52 -14 
22 -49 -15 
3 -36 -20 

Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

UHDRS-III Disease 
Duration 
(years ± SD) 

Coordinates  
(MNI) 

Gomez-Anson 
et al (2009)25 

Preclinical HD 20 21 33±9 33±9 NS 3±2 NA -19 -57 -61 
22 -55 -62 
21 -55 -63 
-23 -57 -64 
-31 -74 -44 

Tabrizi et al 
(2009)26 

HD stage 2 46 123 51±9 46±10 NAa NA NA -27 -61 -25 
27 -69 -35 

Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

Disease Duration 
(years ± SD) 

Coordinates  
(MNI) 

Planetta et al 
(2015)27 

MSA-P 14 (43) 14 (36) 65±9 62±8 NS 7±3 -2 -67 -27 

Shigemoto et 
al (2013)28 

MSA-P 20 (65) 30 (67) 63±8 63±8 NS 4±2 44 -51 -41 
40  -73  -15 
27  -49  -15 
-42  -59  -24 
-21  -80  -19 

Minnerop et al 
(2010)29 

MSA-P (n=4); 
MSA-C (n=10) 

14 (50) 14 (50) 61±3 59±5 NAa 3±2 2 -36 -18 
-20 -58 -56 
28 -64 -54 

Tzarouchi et 
al (2010)30 

MSA-P 11 (18) 11 (27) 62±12 65±10 NAa 5±3 5 -59 -12 
-3 -66 -14 
3 -29 -4 
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-8 -45 -22 
7 -51 -38 

Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

Disease Duration 
(years ± SD) 

Coordinates  
(MNI) 

Chang et al 
(2009)31 

MSA-C (n=10); 
MSA-P (n=13) 

26 (46) 37 (39) 59±9 56±9 NS NA -41 -50 -54 
17 -40 -16 
25 -36 -47 

Minnerop et al 
(2007)32 

MSA-P (n=16); 
MSA-C (n=32) 

48 (44) 46 (52) 62±6 59±6 NAa 5±2 -19 -55 -10 
10 -57 -44 
-9 -68 -8 
25 -75 -40 
-7 -48 -4 

Brenneis et al 
(2006)33 

MSA-C 13 (38) 13 61±6 61±4 NS 4±1 -40 -49 -29 
50 -61 -40 
-6 -44 -24 
7 -44 -24 

Specht et al 
(2005)34 

MSA-C 14 (64) 13 (62) 59±7 55±7 NS 4±1 9 -36 -20 

Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

UPDRS-III 
score 

HY  
score 
 
 

Disease 
Duration 
(years  
± SD) 

Coordinates  
(MNI) 

Chen et al 
(2016)36 

Idiopathic PD 23 (35) 15 (67) 61±7 56±9 .21 29±14 2±1 4±5 36 -55 -44 
-45 -46 -38 

O’Callaghan 
et al (2016)36 

PD 78 (32) 51 (73) 67±8 66±8 NS 32±15 2±1 6±4 -24 -64 -63 

Zeng et al 
(2016)37 

Probable PD 45 
(49) 

40 (55) 62±11 60±9 .44 28±12 NA 5±2 39 -65 -36 
-33 -69 -35 
3 -47 -11 

Gerrits et al 
(2014)38 

PD 93 (34) 46 (39) 63±10 61±8 NS 25±10 2 NA 26 -87 -39 

Lee et al 
(2014)39 

PD-MCI  15 (33) 25 (48) 73±6 70±3 NS 17±8 2 2±2 -28 -40 -19 
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Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

UPDRS-III 
score 

HY  
score 
 
 

Disease 
Duration 
(years  
± SD) 

Coordinates  
(MNI) 

Rektorova et 
al (2014)40 

PD 126 (40) 25 (48) 67 58 .001 NA 3 6 -32 -82 -25 

Xia et al 
(2013)41 

PD 32 (47) 25 (44) 70±9 67±8 NS NA 2±1 NA 27 -70 -71 

Hong et al 
(2012)42 

PD (subgroup 
without 
subjective 
memory 
complaints) 

15 (53) 25 65±8 66 NS 18±8 NA 2±2 1 -66 -1 

Nishio et al 
(2010)43 

PD with 
cognitive 
impairment 

13 (7) 13 (46) 68±6 63±5 NS 22±6 3±0 6±6 -22 -48 -32 

Lehericy et al 
(2010)44 

Guadeloupean 
PD 

9 (33) 9 (44) 68±10 67±5 NS 41 NA 7±4 -8 -48 -10 
16 -46 -12 
32 -44 -32 

Camicioli et al 
(2009)45 

PD 43 (44) 43 (44) 71±4 71±5 NS 14±7 
(dopamine 
responsive) 
3±3 
(dopamine 
non-
responsive) 

2±1 8±5 -16 -53 -21 
20 -59 -20 
7 -61 -38 

Pereira et al 
(2009)46 

PD 36 (61) 20 (50) 73±6 73±7 NS 27±13 3±1 12±5 
 

-34 -44 -42 
-14 -72 -32 
10 -88 -33 
-26 -74 -54 
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Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

UPDRS-III 
score 

HY  
score 
 
 

Disease 
Duration 
(years  
± SD) 

Coordinates  
(MNI) 

Piattella et al 
(2015)47 

PSP 16 16 68±6 NA NS 27±17 3±1 3 10 -64 -24 
 

Wang et al 
(2015)48 

PSP 24 (25) 23 (39) 64±7 61±6 .07 NA 3 4±3 -6 -36 -16 
 

Sandhya et al 
(2014)49 

PSP 10 (10) 8 (38) NA NA NA NA NA NA -16 -29 -17 
-38 -39 -31 
-44 -47 -43 
23 -90 -20 
-4 -80 -17 
9 -83 -17 
-50 -68 -31 

         
 

 -41 -77 -22 
-44 -69 -22 
41 -49 -54 
47 -48 -44 
48 -56 -49 
15 -33-19 
1 -38 -11 
33 -80 -48 
40 -79 -41 

Giordano et al 
(2013)50 

PSP 15 (47) 15 (47) 69±1 66±6 NS 38±4 4±1 3±1 -21 -56 -32 
9 -52 -44 

Lagarde et al 
(2013)51 

PSP 21 (62) 18 (65) 66±7 68±5 NS NA NA 4±2 21 -84 -27 
-46 -55 -47 

Ghosh et al 
(2012)52 

PSP 23 22 71±9 71±8 NS 34±16 NA 3 -34 -88 -44 
46 -70 -56 
-46 -44 -48 
-48 -60 -58 
-8 -40 -18 
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Authors Diagnosis N patients 
(% female) 

N controls 
(% female) 

Age 
patients 
± SD 

Age 
controls 
± SD 

p-value age 
difference 

UPDRS-III 
score 

HY  
score 
 
 

Disease 
Duration 
(years  
± SD) 

Coordinates  
(MNI) 

Lee et al 
(2011)19 

PSP-CBS 5 (40) 44 (50) 69 69±5 NS NA NA 8 10 -41 -25 
14 -55 -35 

Agosta et al 
(2010)53 

PSP 
parkinsonism 
(n=10) 
PSP Richardson 
Syndrome 
(n=10) 

20 (70) 24 (46) 65 64 NS 33 3.0 4 32 -49 -18 

Cordato et al 
(2005)54 

PSP 21 (33) 25 (36) 70±6 72±7 NAa 23±10 4±1 4±3 6 -48 -35 

Abbreviations. AD: Alzheimer’s disease; ALS: amyotrophic lateral sclerosis; ALSFRS-R: ALS Functional Rating Scale – Revised; (bv)FTD: (behavioural variant) 
frontotemporal dementia; CBD: corticobasal degeneration; HD: Huntington’s disease; HY: Hoehn and Yahn; M: motor score; MCI: mild cognitive impairment; MMSE: Mini 
Mental State Exam; MNI: Montreal Neurological Institute; MSA: multiple system atrophy; MSA-C: MSA cerebellar subtype; MSA-P: MSA Parkinsonian subtype; NA: not 
available; NS: not significant; PD: Parkinson’s disease; PSP: progressive supranuclear palsy; SD: standard deviation; UPDRS-III: Unified Parkinson’s Disease Rating Scale, 
motor subscore; UHDRS-III: Unified Huntington’s Disease Rating Scalem motor subscore. aAuthor report controls and patients as age-matched but do not report whether a 
statistical test confirmed this for the patient group included in this study. 
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Supplementary Table 3. Summary of studies that included the cerebellum in analyses assessing associations between regional grey matter 
decrease and clinical or behavioral data. 
Study Analysis Result Disease Duration 
Alzheimer’s 
Disease 

   

Colloby et al 
(2014)3 

Correlation of cognitive and clinical measures (CAMCOG, 
MMSE, NPI, UPDRS III, CAF scores) with volume loss 

No significant findings in any brain region NA 

Möller et al (2013)5 Correlation between regional GM reductions and dementia 
severity measured using MMSE 
  

No significant findings in cerebellum NA 

Farrow et al (2007)9 Partial correlations (controlling for global grey matter 
volume and age) between GM volume and ADAS-TES  

No significant findings in cerebellum 25±4 

Amyotrophic 
Lateral Sclerosis 
and 
Frontotemporal 
Dementia*  

   

Tan et al (2014)10  
*(both patient 
groups were 
included in the 
analysis) 

Correlation of GM volume loss with measures of 
cognitive, neuropsychiatric, and motor function as 
measured with ACE-R, CBI-R, and ALSFRS-R (motor 
analysis included only ALS and ALS-bvFTD patients; 
bvFTD patients were excluded) 

ACE-R scores correlated with grey matter volumes of the 
cerebellum in bilateral lobules I-IV, V, VI, VII (Crus I), VII (Crus 
II), VIIb, and right VIIIa, VIIIb, IX 
 
CBI-R measures were associated with grey matter volumes in 
right lobule V, and bilateral lobule VI and VII (Crus I) 
 
ALSFRS-R scores correlated with grey matter volumes in right 
lobule V, VIIIa, VIIIb, and IX, in bilateral lobule VI and VIIb, 
and left lobule VII 

4±5 (ALS) 
4±2 (FTD) 
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Study Analysis Result Disease Duration 
Frontotemporal 
Dementia 
Irish et al (2013)16  Correlation of GM intensity decrease and episodic 

memory recall performance  
No significant findings in cerebellum for episodic memory 
dysfunction in C9orf72 FTD patients 
 
In sporadic FTD, memory performance correlated with GM 
intensity decrease in bilateral cerebellum 

3±2 

Knutson et al 
(2008)20  

Correlation of caregiver burden and NPI scores with GM 
atrophy 
 

No significant findings in cerebellum NA 

Grossman et al 
(2004)22 

Correlations of GM atrophy with confrontation naming Correlations between GM loss in cerebellum and confrontation 
naming performance only in patient subgroups of corticobasal 
degeneration with FTD and non-aphasic FTD 

4±3 

Huntington’s 
Disease 

   

Wolf et al (2015)23 Correlation of GM volume decrease with UHDRS score No significant findings in cerebellum 3±2 

Scharmüller et al 
(2013)24 

Correlations of GM volume with affect recognition 
intensity, symptom severity as measured with UHDRS, 
and disease duration 

Lower anger ratings were correlated with reduced GM volume in 
vermal and lateral cerebellar areas 
 
Degree of anger misclassification was associated with reduced 
GM volume of vermal lobule III and hemispheric lobule III 
 
Positive correlation between volume of vermal lobule VI and 
UHDRS independence score, indicating that patients with more 
GM volume have smaller impairment 
 
Symptom duration in months showed negative correlation with 
GM volume of hemispheric lobule X 

4± 3 

Gomez-Anson et al 
(2009)25 

Correlations of GM volume with visuomotor performance 
and CAG number 

Negative correlations between focal volume loss on VBM and 
visuomotor performance (the 15-Objects test, time to achieve the 

NA 
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Study Analysis Result Disease Duration 
task) in right cerebellum (corrected p<.05) 

No significant findings in cerebellum for CAG number 

Multiple System 
Atrophy 

   

Shigemoto et al 
(2013)28 

Correlation of GM loss and disease duration and severity No brain regions showed significant correlations 4±2 

Chang et al (2009)31 Correlation of CVLT-MS memory scores with GM 
atrophy 

No significant findings in cerebellum NA 

Minnerop et al 
(2007)32 

Correlations of GM loss and disease duration In both MSA-C and MSA-P patients, GM loss was correlated 
with disease duration in cerebellar vermis and adjacent parts of 
cerebellar hemispheres 

5±2 

Brenneis et al 
(2006)33 

Correlation of GM densities with cerebellar ataxia score Negative correlation between GM density and cerebellar ataxia 
score in cerebellar hemispheres 

4±1 

Parkinson’s 
Disease 

   

Chen et al (2016)35 Partial correlation using demographic data, cardiovascular 
data, and circulatory epithelial progenitor cell levels 
(controlled for age and sex) 

Left lobule VIIa GM volume correlated positively with baroreflex 
sensitivity and negatively with numbers of epithelial progenitor 
cells 

4±5 

O’Callaghan et al 
(2016)36 

Correlated average cerebellar atrophy score against 
average resting state connectivity separately between each 
cerebellar module (motor and cognitive) and resting state 
networks (default mode, frontoparietal, ventral attention, 
the dorsal attention and sensorimotor network) 

Correlation between GM atrophy and UPDRS-III 
 
Correlation of extent of cerebellar atrophy with relative loss of 
connectivity between the motor cerebellum and default mode, 
sensorimotor, and dorsal attention network  

Correlation of cerebellar atrophy with increase in connectivity 
between motor cerebellum and frontoparietal network  

6±4 
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Study Analysis Result Disease Duration 
Correlation of atrophy in cognitive cerebellum with loss of 
connectivity with sensorimotor network 

Zeng et al (2016)37 Partial correlation between GM densities and UPDRS 
score, controlling for age 

No significant findings in cerebellum 5±2 

Gerrits et al 
(2014)38 

Correlations between GM volume and visuospatial 
learning and memory score, and executive functioning 

No significant findings in cerebellum  NA 

Camicioli et al 
(2009)45 

Correlations between CVLT-II long delay free recall z-
scores and executive functions with GM volume 

No significant findings in cerebellum for CVLT-II long delay free 
recall scores  
 
Correlation between GM volume and executive function in left 
cerebellum 

8±5 

Pereira et al 
(2009)46 

Correlation between performance on facial recognition 
test, VFDT, and recognition memory test 

No significant findings in cerebellum 12±5 
 

Progressive 
Supranuclear Palsy 

   

Giordano et al 
(2013)50 

Correlations of FAB score, disease duration, phonological 
verbal fluency, PIGDs, UPDRS-III, and TPTC with GM 
volume 

No significant findings in cerebellum for UPDRS-III performance 
 
Higher FAB score correlated positively with larger GM volume in 
cerebellum 
 
Disease duration was positively associated with GM loss in 
bilateral cerebellum 
 
PIGDs was negatively correlated with right cerebellum volume 
 
Phonological verbal fluency was positively correlated right 
cerebellum volumes 

3±1 
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Study Analysis Result Disease Duration 
Lagarde et al 
(2013)51  

Correlations of GM density and environmental 
dependency 

No significant findings in cerebellum 4±2 

Ghosh et al (2012)52 Correlations of GM atrophy and voice emotion recognition 
performance and theory of mind task 

GM atrophy correlated with performance in voice emotion 
recognition in cerebellum 
 
Theory of mind task performance correlated negatively with grey 
matter atrophy in cerebellum 

3 

Agosta et al. 
(2010)53 

Correlation of GM volume and BNT, Letter Fluency, and 
Category Fluency 

No significant findings in cerebellum for BNT and Category 
Fluency 
 
Letter Fluency performance was associated with GM loss in left 
cerebellum 

4 

Cordato et al 
(2005)54 

Correlations of UPDRS-motor subscore, frontal behavioral 
disturbance, disease duration, and MMSE with GM loss 

No significant findings in cerebellum for frontal behavioral 
disturbance and motor scores 
 
No significant findings for MMSE and disease duration in any 
brain region 

4±3 

Abbreviations. ACE-R: Addenbrooke’s Cognitive Examination Revised; ADAS-Cog: Alzheimer’s Disease Assessment Scale-Cognitive; ADAS-TES: Alzheimer’s Disease 
Assessment Scale – Total Error Score; ALS: amyotrophic lateral sclerosis; ALSFRS-R: Amyotrophic Lateral Sclerosis Functional Rating Score-Revised; BNT: Boston Naming 
Test; (bv)FTD: (behavioral variant) frontotemporal dementia; CAF: Clinical Assessment of Fluctuation; CAG: cytosine-adenin-guanine; CAMCOG: Cambridge Cognitive 
Examination; CBI-R: Cambridge Behavioural Inventory-Revised; CVLT(-MS): California Verbal Learning Test(-Mental Status); FAB: Frontal Assessment Battery; FEW: 
Family-wise error; GM: Gray matter; MMSE: Mini Mental State Exam; MSA-C: multiple system atrophy-cerebellar type; MSA-P: multiple system atrophy-parkinsonian type; 
NA: not available; NPI: Neuropsychiatric Inventory; PIGDs: Postural Instability Gait Disturbance sub-score; TPTC: Ten Point Clock Test; UHDRS: Unified Huntington’s 
Disease Rating Scale; UPDRS: Unified Parkinson’s Disease Rating Scale; VFDT: Visual Form Discrimination Test.
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 # Checklist item  Reported on 

page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, 
participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key 
findings; systematic review registration number.  

3 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  4-5 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, 
outcomes, and study design (PICOS).  

4-5 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration 
information including registration number.  

NA 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, 
publication status) used as criteria for eligibility, giving rationale.  

5-6 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional 
studies) in the search and date last searched.  

5 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.  Supplementary 
Material 1, 
Table 1 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in 
the meta-analysis).  

5-6; Figure 1 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for 
obtaining and confirming data from investigators.  

5-6 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 
simplifications made.  

6 
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Section/topic # Checklist item  Reported on 
page #  

Risk of bias in individual 
studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the 
study or outcome level), and how this information is to be used in any data synthesis.  

7 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  6 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2
) for 

each meta-analysis.  
6-7 

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within 
studies).  

7 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which 
were pre-specified.  

NA 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each 
stage, ideally with a flow diagram.  

6,7; 
Fig 1 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide 
the citations.  

Supplementary 
Material 1, 
Tables 2&3 

Risk of bias within studies  19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  NA (not 
possible for 
ALE) 

Results of individual studies  20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group 
(b) effect estimates and confidence intervals, ideally with a forest plot.  

NA (ALE 
provides only 
combined 
data); study 
coordinates in 
Supplementary 
Material 1, 
Table 2 (input 
data) 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  Table 1, Figure 
2 
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From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 
doi:10.1371/journal.pmed1000097  

For more information, visit: www.prisma-statement.org.  

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  NA (not 
possible for 
ALE) 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).  NA (but 
qualitative 
synthesis on 
11, in 
Supplementary 
Material 1, 
Table 3) 

DISCUSSION   

Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups 
(e.g., healthcare providers, users, and policy makers).  

12-18 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified 
research, reporting bias).  

17-18 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.  12-18 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the 
systematic review.  

20 


