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Abstract 

We investigate experimentally the conditions under which bounded best-response and 

collective-optimality reasoning are used in coordination games.  Using level-k and team 

reasoning theories as exemplars, we study games with three pure-strategy equilibria, two of 

which are mutually isomorphic.  The third is always team-optimal, but whether it is predicted 

by level-k theory differs across games.  We find that collective-optimality reasoning is 

facilitated if the collectively optimal equilibrium gives more equal payoffs than the others, 

and is inhibited if that equilibrium is Pareto-dominated by the others, considered separately.  

We suggest that coordination cannot be explained by a single theory. 
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One-shot coordination games are interesting, not only as models of a significant class of real-

world interactions, but also as posing a puzzle for game theory.  Applied to any such game, 

the classical assumptions of best-response reasoning and common knowledge of rationality 

identify a set of two or more Nash equilibria, but do not select any one of these equilibria as 

‘the’ solution.  In many cases, however, real players of these games are remarkably 

successful at coordinating their behaviour.  The puzzle is to explain how they coordinate, and 

on which equilibrium. 

 In their attempts to explain behaviour in one-shot coordination games, game theorists 

have given particular attention to two distinct modelling strategies.  The collective optimality 

approach is exemplified by the principle of payoff dominance in Harsanyi and Selten’s (1988) 

theory of equilibrium selection and by the theory of team reasoning (Sugden, 1993; 

Bacharach, 1999, 2006).  This approach assumes that rational players appraise strategy 

profiles from the viewpoint of the players collectively.  Leaving aside complications resulting 

from isomorphisms (which will be discussed later), the payoff dominance principle selects 

the Nash equilibrium profile (if one exists) that Pareto-dominates all other such equilibria.  

Team reasoning selects the strategy profile (if one exists) that is uniquely optimal for the 

players collectively.  The bounded best response approach is exemplified by level-k theory 

(Stahl and Wilson, 1994; Nagel, 1995; Costa-Gomes, Crawford and Broseta, 2001) and 

cognitive hierarchy theory (Camerer, Ho and Chong, 2004).  This approach assumes that 

players use a limited number of stages of best-response reasoning, anchoring their beliefs on 

the assumed behaviour of strategically naïve individuals. 

 Accumulated experimental evidence suggests that neither approach can give a 

satisfactory explanation of behaviour across the whole range of coordination games.  The 

main obstacle to a unified explanation seems not to be that individuals differ in the modes of 

reasoning they use.  Instead, it is that games differ in the modes of reasoning that they evoke.  

There have been various conjectures about which properties of coordination games facilitate 

or inhibit the two kinds of reasoning.  In particular, it has been suggested that reasoning based 

on collective optimality may be inhibited if players have conflicting preferences over 

equilibria, if the collectively optimal solution gives the players unequal payoffs, or if that 

solution, although Pareto-efficient ex ante, is Pareto-dominated ex post (Crawford, Gneezy 

and Rottenstreich, 2008; Bardsley et al., 2010).  This paper reports experimental tests which 

support these conjectures.  We conclude that behaviour in coordination games is best 
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explained as resulting from two fundamentally distinct modes of reasoning, one based on 

collective optimality, the other on bounded best responses; which mode is most likely to be 

used depends on particular properties of the game being played. 

 We study a class of two-player diagonal coordination games, defined as follows.  

Each player (P1 or P2) chooses from the same set {s1, …, sm} of pure strategies, where m 2.  

If strategy sk is chosen by both players, P1’s payoff is z1,k > 0 and P2’s payoff is z2,k > 0; 

otherwise, both payoffs are zero.  Thus, there are m pure-strategy equilibria along the main 

diagonal of the payoff matrix; all off-diagonal payoffs are zero.  This class includes pure 

coordination games, defined by zi,k = zj,l for all i, j, k, l, and Hi-Lo games, defined by zi,k = zj,k 

for all i, j, k and zi,k  zi,,l for some i, k, l.  If there are strategies j, k such that z1, j > z1,k and z2, j 

< z2,k, there is conflict of interest between the players with respect to the corresponding 

equilibria, as in Battle of the Sexes games.  Diagonal coordination games present equilibrium 

selection problems in their purest form, since the only payoff information by which pure-

strategy equilibria can be differentiated from one another is contained in the equilibrium 

payoffs themselves.1  These games are relatively easy for experimental subjects to 

understand, particularly if the off-diagonal payoffs are represented as zero increments of 

money, because the amount of information that players have to process is relatively small, 

and because, even in games with a large number of strategies, the strategic structure is very 

simple.2  We focus on games in which, for each player, any differences between the positive 

payoffs on the main diagonal are small relative to differences between these payoffs and zero.  

Thus, players have a strong incentive to coordinate. 

 We simplify further by using experimental coordination games in which strategies are 

not labelled in ways that make any equilibrium strongly salient, independently of its payoffs.  

It is well known that, in pure coordination games in which one equilibrium is uniquely 

                                                           

1 It is possible that, by focusing players’ attention on equilibrium payoffs, diagonal coordination 

games may make team reasoning more salient, and strategic reasoning less salient, than in 

coordination games with non-zero off-diagonal payoffs.  Even so, we think it is a good research 

strategy to begin with the simplest games in which the two theoretical approaches have divergent 

implications. 

2 In contrast, the 33 and 44 payoff matrices used by Colman, Pulford, and Rose (2008) and Colman, 

Pulford, and Lawrence (2014) to test cognitive hierarchy and team reasoning theories seem much less 

easy for subjects to think about.  In these experiments, there is some evidence of team reasoning, but a 

large proportion of subjects behave as level-0 or level-1 cognitive hierarchy reasoners (see Sugden, 

2008 for this interpretation of the results in the earlier paper).  Since level-0 behaviour is random and 

level-1 reasoning is effectively non-strategic, these results suggest that subjects’ cognitive abilities 

may have been over-taxed. 



4 
 

salient, players are often successful in coordinating on that equilibrium as a ‘focal point’ 

(Schelling, 1960; Mehta, Starmer and Sugden, 1994).  We minimise the effects of label 

salience so as to allow a more focused investigation of the effects of variations in payoffs.  

Nevertheless, such an investigation may throw light on the reasoning by which players use 

labels to find focal points.  Most theoretical accounts of this reasoning follow one or other of 

the two approaches we have outlined.  Some explanations work by transforming a labelled 

pure coordination game into a Hi-Lo game in which the focal equilibrium payoff-dominates 

the other equilibria (Bacharach, 1993; Sugden, 1995; Casajus, 2000).  Other explanations use 

a hierarchy of cognitive levels, as in level-k theory, and assume that the non-strategic choices 

of the least sophisticated players tend to favour focal labels (Lewis, 1969: 24–36; Bacharach 

and Stahl, 2000; Crawford, Gneezy and Rottenstreich, 2008). 

 We begin with a description of how the two approaches explain behaviour in 

coordination games and with a brief review of existing evidence (Section 1).  We then present 

our experimental design.  We derive predictions from two theories – specific versions of 

team-reasoning and level-k theory – which exemplify the collective optimality and bounded 

best response approaches.  Formalising suggestions that have been made in previous 

literature, we offer three conjectures about how particular properties of diagonal coordination 

games might facilitate or inhibit reasoning about collective optimality.  We derive 

implications of these conjectures that can be tested in our experiment (Section 2).  Our results 

reveal that, as expected, neither theory is consistently successful, and confirm the 

implications of two of the three conjectures (Section 3).  We show that this conclusion would 

still stand if other recognised exemplars of the collective optimality and bounded best 

response approaches were used (Section 4).  In the light of these findings, we suggest that it 

is unlikely that any single theory will be found to explain behaviour in coordination games 

(Section 5). 

1.  Existing theory and evidence 

1.1  Payoff dominance and team reasoning 

Game theorists have often invoked the principle that rational players, faced with a problem of 

selecting among Nash equilibria, would reject any equilibrium that was strictly Pareto-

dominated by another equilibrium.  This is the principle of payoff dominance (Harsanyi and 

Selten, 1988: 80–82). 
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 In using this principle, account needs to be taken of isomorphisms in the games to 

which it is applied.  In pure game theory, it is conventional to make the implicit assumption 

that players lack a common language for identifying strategies, other than by referring to 

mathematical properties of the payoff matrix.  Given the presupposition that game-theoretic 

recommendations are common knowledge, this assumption implies that strategies that are 

isomorphic in the sense of Harsanyi and Selten (1988: 73–76) are chosen with equal 

probability.  For example, consider the diagonal coordination game G = <(10, 10), (10, 10), 

(9, 9)> (that is, a game with m = 3 in which the payoff combinations along the main diagonal 

are (10, 10), (10, 10) and (9, 9)).  Because the two (10, 10) equilibria are isomorphic with one 

another, neither of them is attainable as the determinate outcome of a recommendation that is 

common knowledge.  A 50:50 probability mix of these two equilibria is attainable, but (if 

payoffs are defined in utility units) this mix is payoff-dominated by (9, 9) (Crawford and 

Haller, 1990; Blume, 2000).  If in addition there is no common-language labelling of players, 

a similar analysis applies to isomorphisms between players.  For example, in the game G = 

<(10, 9), (9, 10), (9, 9)>, (10, 9) and (9, 10) are isomorphic with one another, and so (9, 9) is 

payoff-dominant. 

 The theory of team reasoning provides an alternative explanation of why payoff-

dominant equilibria are chosen in coordination games.  This theory was first proposed as a 

formalisation of rule utilitarianism by Hodgson (1967) and Regan (1980); it was later 

developed by Sugden (1993) and Bacharach (1999, 2006).  In this paper, we use Bacharach’s 

version of the theory, in which each player chooses her component of the team-optimal 

profile of strategies – that is, the combination of strategies that gives the best payoff to the 

players collectively (or ‘as a team’).  The implications of team reasoning and payoff 

dominance coincide for pure coordination and Hi-Lo games, but can diverge if a coordination 

game has conflicts of interest. 

 Bacharach (2006, pp. 87–88, 145) assumes that when (in a game for two players, P1 

and P2) each player ‘identifies’ with the group of both players, each recognises a common 

group utility function U(u1, u2), where u1 and u2 are the utility payoffs to P1 and P2 

individually; this function is symmetric (i.e. U(u, u) = U(u, u) for all u, u) and is strictly 

increasing in both arguments.  In applying the theory to experimental games that are played 

by anonymous players who have common knowledge only of material payoffs, we will 

assume that group utility is symmetric, strictly increasing and weakly concave in material 

payoffs.  The symmetry assumption seems unavoidable, given that the group utility function 
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is assumed to be common knowledge and the game is anonymous.  Weak concavity in 

material payoffs implies that group preferences are weakly risk-averse (as assumed by 

Bardsley et al., 2010) and weakly inequality-averse.  

 Some theorists have proposed models in which players can engage in team reasoning 

at different levels of cognitive sophistication, analogous with the levels of individual 

reasoning in level-k theory.  In these models, naïve team reasoners choose their components 

of what they believe to be the team-optimal strategy profile, but they may fail to recognise 

certain ways of achieving team optimality.  Sophisticated team reasoners are not subject to 

these limitations of rationality, but are aware that their co-players may be.  Thus, 

sophisticated team reasoners choose strategies that are team-optimal when chosen by all 

players like themselves, given the behaviour of their naïve counterparts (Bacharach, 1993; 

Bacharach and Bernasconi, 1997; Blume and Gneezy, 2010). 

 It is generally accepted among theorists of team reasoning that team reasoning is used 

only when individual players identify with the players as a group, and that group 

identification occurs only under particular conditions.  Conditions that have been 

hypothesised include the existence of a Pareto-dominated Nash equilibrium (Bacharach, 

2006), the absence of individual incentives to deviate from team-optimal solutions (Smerilli, 

2012), and positive correlation between players’ payoffs (Tan and Zizzo, 2008).  Diagonal 

coordination games necessarily satisfy the first two conditions.  In all the games we 

investigate, there is very strong positive payoff correlation.  Thus, these games are 

particularly suitable for investigating how far players use team reasoning in situations in 

which group identification might be expected to occur. 

1.2  Level-k and cognitive hierarchy theory 

Level-k theory is a theory of non-equilibrium individual reasoning.  It assumes that players 

are of different types, defined by the level of sophistication with which they reason.  At the 

lowest level, ‘level 0’ or L0, players’ decisions are non-strategic (or, in some applications, 

strategically ‘naïve’).3  Players at each higher level are assumed to know the probability 

distributions of the decisions of lower-level players, and to choose best responses to the 

                                                           

3 In principle, it would be possible to interpret ‘strategic naïveté’ to include any mode of reasoning 

that differed from conventional game theory.  In this way, principles of team reasoning could be 

incorporated into the specification of L0 behaviour, and level-k theory might then be said to ‘explain’ 

why, in a coordination game, higher-level players replicate this behaviour.  We suggest that such a 

permissive interpretation of naïveté would trivialise level-k theory. 
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decisions of players at the level immediately below their own.  Cognitive hierarchy theory 

differs by assuming that players at each level above L0 choose best responses to a probability 

mix of the decisions of all levels below their own. 

 In level-k modelling, the default assumption is that L0 choices have a uniform random 

distribution over available pure strategies; the relative frequency of L0 types is often, but not 

always, assumed to be zero (Crawford, Costa-Gomes and Iriberri, 2013: 14).  The former 

assumption implies that, in a two-player game, an L1 player chooses the strategy with the 

highest mean payoff to herself (averaging across her opponent’s strategies), which might be 

interpreted as a plausible representation of strategic naïveté.  In applying level-k theory to 

diagonal coordination games with salient labels, Crawford, Gneezy, and Rottenstreich (2008; 

henceforth ‘CGR’) assume that L0 players choose ‘payoff-salient’ strategies, and use ‘label 

salience’ to break ties if two or more strategies are payoff-salient.  They do not give a general 

definition of payoff salience but, on the most natural interpretation, an L0 player who acts on 

payoff salience behaves just like an L1 player who best-responds to uniformly random L0 

choices.  Thus, when strategies do not have salient labels, the level-k model used by CGR 

reduces to the default model except for the numbering of player types and the absence of any 

players who choose at random. 

1.3  Existing evidence 

Neither team reasoning nor level-k theory succeeds in organising the existing evidence of 

behaviour in coordination games.   

 Proponents of the theory of team reasoning have pointed particularly to two bodies of 

evidence.  The first is that the payoff-dominant equilibrium is almost always chosen in two-

strategy Hi-Lo games (e.g. Bardsley et al., 2010).  Intuitively, it is hardly surprising that 

people behave in this way; but this fact requires a theoretical explanation, and the theory of 

team reasoning provides one.  However, the same observation can also be explained by level-

k theory. 

 In an attempt to discriminate between these explanations, Bardsley et al. (2010) ran 

two experiments using Hi-Lo games with nondescript labels in the sense of Bacharach (2006: 

16) – that is, labels that are distinct, but do not differ in ways that can be described using 
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predicates that come to mind easily.4  The two experiments (run in Amsterdam and 

Nottingham respectively) had similar designs but used different labels.  A typical example of 

Bardsley et al.’s games has the array of payoff vectors <(10, 10), (10, 10), (10, 10), (10, 10), 

(9, 9)>.  Because of the isomorphism between the (10, 10) equilibria, (9, 9) is team-optimal, 

but the strategies leading to (9, 9) would not be chosen by level-k reasoners at L1 and above.  

In the Amsterdam experiment, large majorities of subjects chose team-optimal strategies in 

games of this type, but in the Nottingham experiment, contrary to both theories, all strategies 

were chosen with approximately the same frequency.  In both experiments, the Hi-Lo games 

were interspersed with pure coordination games, and the latter used different labels in the two 

experiments.  Bardsley et al. speculate that there was some tendency for the modes of 

reasoning used in pure coordination games to spill over to Hi-Lo games.  Because the focal 

points in the Amsterdam pure coordination games were labelled in ways that made them ‘odd 

ones out’, this may have primed players to think of the unattractive uniqueness of the (9, 9) 

equilibrium as a means of coordination.  The suggestion is that, in the absence of such 

priming, players may fail to recognize the focality of an equilibrium that is Pareto-dominated 

ex post.  This is one of the conjectures that our experiment was designed to test. 

 The second body of evidence is of players using salient labelling features to identify 

focal points in pure coordination games.  As we noted in the Introduction, some explanations 

of the underlying reasoning assume that players use the payoff dominance principle or team 

reasoning, while others assume level-k reasoning.  Much of the evidence from pure 

coordination games is consistent with both theories, but some evidence suggests that the 

salient properties that are used to solve coordination problems are not always the same as the 

properties that stand out for indifferent or naïve individuals, and that might therefore be 

expected to be favoured by L0 players.  The latter properties can be elicited in non-strategic 

‘just pick’ problems, in which choice options are identical except for labelling and lead with 

certainty to exactly the same outcome (Bardsely et al., 2010).5  Intuitively, one might expect 

non-strategic responses to favour labels with positive connotations (for example, ‘smiley’ 

                                                           

4 Bardsley and Ule (2017) use ‘risky coordination games’ to discriminate between the two 

explanations.  In these games, as in Hi-Lo games, the payoff matrix is symmetrical, the players’ 

interests are perfectly aligned, and the pure-strategy equilibria (along the main diagonal) are Pareto-

ranked.  However, the off-diagonal payoffs are such that level-k reasoners would not reach the team-

optimal solution.  Bardsley and Ule’s experimental results support the theory of team reasoning. 

5 Bardsley et al. interpret this as evidence in support of team reasoning and contrary to level-k theory.  

For an alternative interpretation, see Crawford, Costa-Gomes, and Iriberri (2013: 48–49). 
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faces rather than ‘sad’ ones), but labels with uniquely negative connotations are often 

effective as focal points (Rubinstein, Tversky and Heller, 1996).  When odd-one-out labels 

are focal points in pure coordination games, L0 specifications which assume a bias towards 

such labels do not perform well when applied to other types of game (Hargreaves Heap, Rojo 

Arjona and Sugden, 2014).  Taken together, the evidence points to some form of reasoning in 

which each player looks for a solution that is good ‘for us’, and which recognises uniqueness 

among labels as an effective coordination device.  In other words, something like team (or 

payoff-dominance) reasoning seems to be implicated in players’ use of focal points in pure 

coordination games. 

 However, there is also evidence suggesting that the power of focal points is restricted 

to pure coordination games.  CGR report experiments on ‘X-Y’ games – diagonal 

coordination games with m = 2, where the equilibria are isomorphic to one another but one 

has a uniquely salient label.  They find that players coordinate with a high degree of success 

when these are pure coordination games, but that when there is even a small degree of 

conflict of interest, coordination rates are no better than would result from random choice.  

Isoni et al. (2013) investigate a class of ‘tacit bargaining’ games that are formally equivalent 

to X-Y games but framed differently.  In these games, coordination is significantly better than 

random, even when there are conflicts of interest (contrary to CGR’s level-k model), but 

conflicts of interest still reduce coordination rates (contrary to the theory of team reasoning).  

The tendency for conflicts of interest to weaken the power of focal points is inconsistent with 

team reasoning, even if one allows for the possibility that some team-reasoning players are 

naïve.  (In order to use a focal point in a pure coordination game, a team-reasoning player 

must be able to recognise the uniqueness of its label, and to recognise that this uniqueness 

can be used as a means of coordination.  A player with these capacities would presumably be 

capable of using the same focal point in the presence of a small conflict of interest.)  

However, this pattern can be explained by a level-k model in which L0 choices are governed 

by payoff and label salience.   

 CGR also report experiments on a class of ‘pie games’.  These are diagonal 

coordination games with m = 3, where one strategy has a uniquely salient label.  (Equilibria 

are represented as slices in a pie diagram; two slices have the same colour, and the third slice 

is coloured differently.)   One of these games, ‘AM1’, can be described by the array of payoff 

vectors <(6, 5), (5, 6), (5, 5)*>, where the asterisk denotes the salient label.  Game ‘AL1’ is 

described by <(10, 5), (5, 10), (5, 5)*>.  In AM1 and AL1, the strategy with the salient label 



10 
 

was chosen by 90 per cent and 83 per cent of subjects respectively, consistently with team 

reasoning but not with CGR’s level-k model.6  However, the theory of team reasoning failed 

in game ‘AM3’, described by <(6, 5), (5, 6), (7, 5)*> and in game ‘AM4’, described by <(6, 

7), (7, 6), (7, 5)*>.  In both these games, team reasoning theory predicts the choice of the 

saliently labelled strategy, but this choice was made by only 29 per cent of subjects in AM3 

and by only 7 per cent in AM4.7 

 Notice that this body of evidence cannot be explained simply by hypothesising that 

players try to coordinate on focal points, and that the determinants of focality differ across 

games.  If the concept of focality (in a two-player game) is to be used in a non-trivial way, it 

must refer to some property by virtue of which a pair of strategies stands out for both players, 

and which each of them uses with the intention of coordinating with the other.8  In most of 

the cases in which players of coordination games behave consistently with level-k theory but 

not with team reasoning, that behaviour is not plausibly explained as an attempt to reach a 

focal point.  For example, consider CGR’s X-Y games, played by University of Chicago 

students, in which the pure-strategy equilibria are labelled ‘Sears Tower’ and ‘AT&T 

Building’.  It seems undeniable that the ‘Sears Tower’ label, which refers to a prominent 

Chicago landmark, stands out for both players, irrespective of whether the equilibrium 

payoffs for the players are equal or unequal.  The effect of introducing small payoff 

inequalities is not to make a different equilibrium stand out as a means of coordination; it is 

to make players less likely to use the fact that ‘Sears Tower’ stands out when reasoning about 

which strategy to choose, and hence to fail to coordinate at all. 

  The evidence we have reviewed suggests that two distinct modes of reasoning – one 

based on bounded best responses, the other on collective optimality – are used in 

coordination games.  A plausible conjecture, compatible with the evidence from AM3 and 

                                                           

6 Bett et al. (2016) report similar results from experiments on diagonal coordination games that are 

similar to AL1 and AL2 except for the absence of salient labels.  In games described by <(6, 7), (7, 6), 

(x, x)>, the proportion of subjects choosing the strategy consistent with (x, x) when x equalled 6.5, 6 

and 5 was respectively 100 per cent, 100 per cent, and 77.8 per cent.    

7 The relevant predictions of team reasoning theory are explained in Section 2.2 below. 

8 Game theorists sometimes use the term ‘focal point’ to describe any equilibrium (in a game with 

multiple equilibria) on which players in fact succeed in coordinating.  Clearly, this ex post concept of 

focality has no explanatory value.  Another usage, specific to level-k and cognitive hierarchy theory, 

is to define an equilibrium as a focal point if the corresponding strategies are chosen with high 

probability by L0 players.  But the evidence we have cited shows that, in some coordination games, 

there is successful coordination on strategies that are not favoured at L0.  
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AM4 and from X-Y games with conflicts of interest, is that reasoning about collective 

optimality is inhibited if the players’ material payoffs in the team-optimal equilibrium are 

unequal.  CGR (p. 1456) invoke a similar idea when they suggest that the use of team 

reasoning is negatively affected by ‘payoff conflict’.  Our experiment was designed to test 

this conjecture. 

2.  Experimental design and hypotheses to be tested 

2.1  The games used in the experiment 

In our experiment, each subject played eighteen diagonal coordination games, modelled on 

CGR’s pie games.  Each game is defined by an array of three strategies <s1, s2, s3> for each 

of players P1 and P2.  In each game, the corresponding array of payoff vectors is <(x, y), (y, 

x), (v, w)>, satisfying x  y > 0, v  w > 0 and {x, y}  {v, w}.  This definition imposes the 

restriction that the payoff vectors for the s1 and s2 equilibria are symmetric with one another, 

but that both are distinct from that for the s3 equilibrium.9 

 Figure 1 shows an example of the payoff display that was used to describe games to 

subjects.  The game used in this example (G2 in the experiment) has x = 10, y = 9, v = 8 and 

w = 7; payoffs are in euros.  (The strategy labels ‘s1’, ‘s2’ and ‘s3’ were not seen by subjects, 

but have been added to aid interpretation.)  The payoff display was made up of three circles, 

which we will call ‘left’, ‘right’ and ‘bottom’.  The text in each circle showed the payoffs in 

one of the three pure-strategy equilibria, referring to the players only as ‘you’ and ‘the other’ 

to ensure that there was no commonly-known and payoff-independent labelling by which the 

players could be separately identified.  All circles were the same colour (a feature that 

differentiates our experiment from CGR’s).  There were three experimental treatments, A, B, 

and C, which differed only in respect of which equilibrium was shown in which position.  In 

treatment A, the payoffs of the s1, s2 and s3 equilibria were shown to both players in the left, 

right and bottom circles respectively.  The payoff displays for treatments B and C were 

generated by rotating the treatment A display counterclockwise through 120 and 240 degrees.  

In each game, each player independently chose one of the circles by clicking on it.  If they 

                                                           

9 Six of our games have x > y and v > w.  In these games, s1 and s2 are not completely isomorphic with 

one another, because the player who gets the higher payoff in the s1 (respectively: s2) equilibrium gets 

the higher (respectively: lower) payoff in the s3 equilibrium.  Such asymmetries can be relevant for 

level-k reasoning, but we thought it unlikely that they would be salient for players who were looking 

for a focal point for coordination.  We discuss this issue further in Section 3.1. 



12 
 

both chose the same circle, their payoffs were as stated on that circle; otherwise the payoff to 

both players was zero. 

[Figure 1 near here] 

 Notice that the only labelling feature that distinguished (x, y) from (y, x) was the 

positioning of the corresponding circles in the payoff display. Our working assumption, 

which we will call positional non-salience, was that this feature would not be sufficiently 

salient for players to be able to use it as an effective coordination device.  However, by using 

the three different treatments, we were able to investigate whether strategy choices were 

influenced by the positioning of the circles. 

 Some readers may be surprised that we did not use scrambled labels (in the sense of 

Crawford and Haller, 1990), for example, by randomising the three rotations of the payoff 

display independently for each player in each game.  But in such a design, (x, y) and (y, x) are 

no longer the payoff vectors of two equilibria that result from distinct (although isomorphic) 

combinations of strategy choices by the two players.  Each player has only two strategically 

meaningful options – either to choose the (v, w) circle, or to choose one of the other two.  If  

both players make the first choice, the outcome is (v, w); if both make the second choice, and 

irrespective of which of the two relevant circles each player clicks on, the outcome is a 

0.5:0.5 probability mix of (x, y) and (y, x).  For the values of v, w, x and y used in our 

experiment, the effect of scrambling would be to reduce our 33 games to 22 Hi-Lo games.  

Since team reasoning and level-k theories make the same predictions for Hi-Lo games, that 

would defeat the object of our experiment. 

 The payoff vectors of the games G1–G18 used in the experiment are shown in Table 

1.  The rows and columns of this table provide a structure for classifying the games.  This 

structure reflects the conjectures that the experiment was designed to test.  Each row contains 

games characterised by a different combination of equality (x = y, v = w) or inequality (x > y, 

v > w) in the equilibrium payoffs.  Each column contains games characterized by a different 

relation between the equilibrium payoffs.  The s3 equilibrium is strictly Pareto-dominated by 

both the s1 and s2 equilibria in games with y > v.  It is weakly Pareto-dominated if y = v and 

either x > y or v > w; it is weakly Pareto-dominating if w = x and either x > y or v > w; and it 

is strictly Pareto-dominating if w > x.  If either v > x  y > w or x > v  w > y, the s3 
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equilibrium is not Pareto-comparable with the other equilibria.10  Because of the requirement 

that the s3 equilibrium has a distinct payoff vector, the combination of x = y and v = w implies 

that the s3 equilibrium is either strictly Pareto-dominated or strictly Pareto-dominating, and so 

three cells of Table 1 are necessarily empty.  If x > y and v > w, Pareto non-comparability 

implies either x > v > w > y (making the s3 equilibrium unambiguously more equal than the 

others) or v > x > y > w (with the opposite effect).  As we were interested in whether 

considerations of payoff equality affected subjects’ propensities to use team reasoning, we 

included games representing both these cases (G9 and G10).  Apart from this exception, there 

is exactly one game in every cell that is consistent with the general restrictions we have 

imposed on payoffs. 

[Table 1 near here] 

 Since our objective was to investigate the respective conditions under which 

individuals are most likely to use collective-optimality and bounded best-response modes of 

reasoning, we need to know what each of these modes imply about behaviour in our games.  

Each of them can be formulated in a range of alternative theoretical models.  We will focus 

on two specific theories, representative of the two approaches.  After reporting our findings in 

relation to these theories, we will consider whether our main conclusions are sensitive to our 

choice of representative theories. 

 In the following two sections, we present predictions derived from the representative 

theories.  We emphasise that our prior expectation, based on the existing evidence 

summarised in Section 1.3, was that neither theory would perform well across all eighteen 

games.  Our interest was in the pattern of successes and failures that we would find.                 

2.2.  Predictions of the theory of team reasoning 

We use Bacharach’s (1999, 2006) theory of team reasoning as the representative of the 

collective optimality approach.  We assume that the group utility function is symmetrical, 

increasing and weakly concave in material payoffs (see Section 1.1 above). 

 The payoff vectors of games G1–G18 were chosen so that, given that there is 

positional non-salience, the choice of s3 by both players is the uniquely team-optimal strategy.  

                                                           

10 There are two further possibilities, not represented in our experiment: (i) that the s3 equilibrium 

Pareto-dominates one but not both of the other equilibria, and (ii) that the s3 equilibrium is Pareto-

dominated by one but not both of the other equilibria. 
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To see why, notice that if neither s1 nor s2 has a uniquely salient distinguishing feature, the 

team-optimal choice must be either (i) that both players choose s3 or  (ii) that each player 

independently randomises between s1 and s2, choosing each of these strategies with 

probability 0.5.  Let Z(z1, z2) be the group utility function defined with respect to the players’ 

material payoffs z1 and z2, normalized so that Z(0, 0) = 0.  Then group utility is Z(v, w) in 

case (i) and (using the symmetry assumption) Z(x, y)/2 in case (ii).  Given that x  y > 0 and v 

 w > 0, it is sufficient for unique team-optimality of (i) that Z(w, w) > Z(x, x)/2.  Since, by 

weak convexity, Z(x/2, x/2)  Z(x, x)/2, it is sufficient that Z(w, w) > Z(x/2, x/2) or (using 

increasingness) w > x/2.  In our games, the value of w is never less than 0.7x.11  Thus, the 

theory of team reasoning (as we have formulated it) predicts that, in every game, the 

proportion of s3 choices is 1 for both players.  These implications are recorded in the first 

column of Table 2. 

[Table 2 near here] 

 In games G9 and G11–G18, the assumed properties of group utility imply Z(v, w)  

Z(x, y) = Z(y, x).  This inequality is strict for G12–G18, and is also strict for G9 and G11 if 

group utility is strictly concave.  Thus, since the s3 equilibrium can be uniquely identified by 

its payoffs alone, s3 is team-optimal in these games independently of how strategies are 

labelled.  In the remaining games, the conclusion that s3 is team-optimal could in principle be 

reversed if either s1or s2 had a uniquely salient label.  However, for s1 or s2 to be team-

optimal, the salience of its label must be extremely pronounced.  For example, consider G3 = 

<(10, 10), (10, 10), (9, 9)>. Suppose that if both players follow the rule ‘Choose whichever of 

s1 or s2 has the more salient label’, each player identifies s1 as ‘more salient’ with independent 

probability q, where q > 1/2.  Then the probability that this rule will lead to coordination is 

given by q* = q2 + (1 – q)2.  Given our assumptions about group utility, s1 is team-optimal if 

and only if q*  0.9, or equivalently, q  0.95.  Since it seemed unrealistic to expect this 

degree of correlation between players’ judgements about which of two positions in the payoff 

display was more salient, we thought it reasonable to assume positional non-salience when 

designing tests of the theory of team reasoning.  However, if significant number of players do 

not choose s3, our design allows us to investigate whether (for subjects as a whole, and/or at 

                                                           

11 In our notation, CGR’s games AM1, AM3 and AM4 satisfy the condition w > x/2, making s3 team-

optimal independently of the salience of its label.  In their AL1 game, the s3 equilibrium (5, 5)* is 

team-optimal if Z(5, 5) > Z(10, 5)/2.  This inequality is implied by symmetry, increasingness and 

weak concavity. 
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the individual level) there are systematic asymmetries in the distribution of choices between 

s1 and s2.  

 In testing the theory of team reasoning, our null hypothesis is that subjects choose 

strategies at random.  Our alternative hypothesis is thus:  

Hypothesis 1 (team reasoning):  In each of games G1–G18, the aggregate 

proportion of s3 choices is greater than 1/3. 

This hypothesis is conservative: one might reasonably argue that if the theory of team 

reasoning were ‘really’ true, the aggregate proportion of s3 choices in each game would be 

much greater than 1/3.  No deterministic theory of human decision-making can be expected 

to yield absolutely correct predictions, but one might at least hope that such a theory would 

out-predict the hypothesis that individuals choose at random.  

2.3 Predictions of level-k theory 

Our representative bounded best-response theory is level-k theory, specified such that L0 

choices are uniformly distributed over the three strategies.  The only assumption we make 

about the distribution of levels of reasoning in the population is that the proportion of players 

at L1 or higher is greater than 0.  We also assume that utility payoffs are the same as (or 

linear transformations of) material payoffs.   The proportions of s3 choices predicted by this 

specification of level-k theory, disaggregated by players’ levels of reasoning, are shown in 

Table 2.  The derivation of these predictions is explained in Appendix 1 [intended for online 

publication].12  

 As in our tests of team reasoning, our null hypothesis is that subjects choose strategies 

at random: 

Hypothesis 2 (level-k reasoning): In each of games G1–G7, G9 and G11, the 

aggregate proportion of s3 choices is less than 1/3.  In each of games G8, G10 and 

G12 – G18, the aggregate proportion of s3 choices is greater than 1/3. 

This hypothesis, like Hypothesis 1, is conservative.   Nevertheless, the two hypotheses 

contradict one another for nine of the games we investigate.  This leaves plenty of room for 

each of the theories to fail.  

                                                           

12 Level-k theory has additional implications, shown in Appendix 1 but not in Table 2, about the 

distribution of choices between s1 and s2.  Since the theory of team reasoning has no corresponding 

implications (it predicts that s1 and s2 are not chosen), we focus on predictions about s3 choices. 
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2.4  Three conjectures 

Our objective was to test conjectures about the conditions under which each theory was more 

or less likely to work well.  We will formulate these conjectures in terms of conditions that 

might facilitate or inhibit team reasoning – that is, make team reasoning more or less likely.  

But this is merely a matter of wording: in the context of our investigation, facilitating team 

reasoning is the same thing as inhibiting level-k reasoning (and conversely).  Our background 

assumption, supported by the existing evidence reviewed in Section 1.3, is that behaviour in 

diagonal coordination games is explained by some (as yet, not fully known) combination of 

the two theories. 

 The payoff vectors of the games in the experiment were chosen to allow us to 

investigate the following three conjectures, informed by the previous literature: 

Conjecture 1: Other things being equal, equality of material payoffs in the team-

suboptimal equilibria (i.e. x = y) inhibits team reasoning. 

In terms of Table 1, Conjecture 1 proposes that within any column (that is, holding constant 

the Pareto-dominance relationships between equilibria), team reasoning is more likely in a 

game in the second row than in a game in the first, and more likely in a game in the fourth 

row than in a game in the third.  The underlying intuition is that it is psychologically easier to 

think of oneself as playing one’s part in a joint action if the alternatives to so acting lead to ex 

post payoff inequality. 

Conjecture 2: Other things being equal, equality of material payoffs in the team-

optimal equilibrium (i.e. v = w) facilitates team reasoning. 

Thus, within any column of Table 1, team reasoning is more likely in a game in the third row 

than in a game in the first, and more likely in a game in the fourth row than in a game in the 

second.  The underlying intuition is that it is psychologically easier to think of oneself as 

playing one’s part in a joint action if all participants benefit from it equally.  Given that the 

payoff vectors of the s1 and s2 equilibria are symmetric, as in our set-up, it is natural to think 

of v = w as equivalent to ‘the players benefit equally from their both choosing s3’.  This 

equivalence would be less obvious in a diagonal coordination game such as <(10, 5), (10, 5), 

(11, 11)>, in which the team-suboptimal equilibria are not symmetric.  

Conjecture 3: Other things being equal, team reasoning is inhibited if, ex post, 

each of the team-suboptimal equilibria strictly or weakly Pareto-dominates the 

team-optimal equilibrium (i.e. [y > v] or [x > y = v] or [y = v > w]). 
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Thus, within any row of Table 1, team reasoning is more likely in a game in the third column 

than in a game in the first or second.  The intuition is that, when two equilibrium payoff 

vectors are isomorphic and neither has a uniquely salient label, some individuals may lack the 

cognitive sophistication to recognise that the best attainable strategy for the players jointly is 

to choose the uniquely unattractive equilibrium. 

 Conjectures 1–3 are formulated in terms of the modes of reasoning that players use, 

not the choices that they ultimately make.  Since our experimental design does not allow us to 

elicit modes of reasoning independently of decisions, these conjectures can be tested only in 

terms of their implications for players’ strategy choices.13  More specifically, these 

implications refer to variations in the proportion of s3 choices between pairs of games which 

differ along particular dimensions.    

 Consider any pair of games (G, G) such that (‘condition 1’) exactly one of 

Conjectures 1–3 proposes that team reasoning is more likely in G than in G (and, by 

implication, that level-k reasoning is less likely).  Assume (‘condition 2’) that level-k theory 

predicts that s3 choices are equally or less likely in G than in G.  Then if the relative 

frequencies of the two modes of reasoning were constant across the two games, s3 choices 

would be equally or less likely in G.  (Recall that the theory of team reasoning predicts that 

s3 is chosen with probability 1 in all games.)  Assume also (‘condition 3’) that level-k theory 

implies that, in G, s3 is chosen with probability less than 1 by players at some level higher 

than L0.  Then, if the relevant conjecture were true, the greater use of team reasoning in G 

might induce a higher proportion of s3 choices than in G.  Thus, pairs of games that satisfy all 

three conditions can be used to test whether the proportion of s3 choices changes from G to G 

in a direction that is consistent with a specific conjecture but not consistent with the 

assumption that each mode of reasoning is used with constant frequency.  Using all such pairs 

of games, we construct the following hypotheses: 

Hypothesis 3.1 (consistency with Conjecture 1):  In each of the pairs of games (G1, 

G2), (G3, G4), (G5, G6), (G8, G9) and (G8, G11), the proportion of s3 choices is 

higher in the second game than in the first.  

                                                           

13  It is possible to use experimental designs which elicit modes of reasoning independently of 

decisions.  For example, van Elten and Penczynski (2015) reconstruct players’ modes of reasoning in 

coordination games from the texts of ‘recommendation’ messages that they send to other players.  

One of their findings is that ‘TR3’ messages that refer to the difficulty of coordinating on one of two 

isomorphic equilibria are very uncommon.  This finding gives some support to Conjecture 3. 
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Hypothesis 3.2 (consistency with Conjecture 2):  In each of the pairs of games (G1, 

G3), (G2, G4), (G6, G67), (G9, G11), (G10, G11) and (G13, G14), the proportion 

of s3 choices is higher in the second game than in the first.  

Hypothesis 3.3 (consistency with Conjecture 3):  In each of the pairs of games (G2, 

G9), (G6, G9), (G4, G11) and (G7, G11), the proportion of s3 choices is higher in 

the second game than in the first.  

2.5  Experimental procedures 

A total of 126 subjects participated in the experiment at the CEEL Lab of the University of 

Trento in April 2014.  Seven sessions were conducted, each with eighteen participants.  

Subjects were undergraduate students (52.0 per cent from economics and management, 50.0 

per cent females, 91.6 per cent Italians).  The experiment was programmed using the z-Tree 

platform (Fischbacher, 2007).  The instructions for the experiment (reproduced in the original 

Italian and in English translation in Appendix 2 [intended for online publication]) were 

provided to subjects in written form, and were also read aloud by the experimenter to ensure 

that they were common knowledge.  Participants’ understanding of the instructions was 

checked using a short questionnaire; we did not proceed with the experiment until all 

participants had answered all questions correctly. 

 Each subject played games G1 to G18 in the eighteen consecutive ‘rounds’ of the 

experiment.  There was no feedback until all eighteen rounds had been conducted.  In each 

round, subjects were matched anonymously; each matched pair of co-players then played one 

of the games, with the same treatment (A, B, or C, corresponding with different rotations of 

the payoff display) for both players.  One co-player in each pair played as P1, the other as P2; 

but (as explained in Section 2.1), games were described to subjects only in terms of ‘you’ and 

‘the other’.  Co-players were rematched between games in such a way that each pair of 

subjects were co-players in no more than two games.  The order in which the games were 

played by different subjects were counterbalanced to control for order effects.  Each subject 

played nine games as P1 and nine as P2, and played six games in each of the three 

treatments.14 

                                                           

14 The matching of co-players, assignment of games to rounds and treatments, and assignment of 

subjects to player roles were predetermined for each session.  This protocol is explained in Appendix 

3 [intended for online publication]. 
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 At the end of the experiment, one of the eighteen rounds was randomly selected and 

subjects were paid according to the outcome of the game they had played in that round.  

Average earnings for each participant were €6.23.  Each subject also received a show-up fee 

of €3.  The average length of a session was approximately 40 minutes.15 

3.  Results 

In this Section, we consider those features of the results that are most relevant for tests of the 

two theories and of our three conjectures.  The full results of the experiment, with strategy 

choices disaggregated by game, player role and treatment, are presented in Appendix 4 

[intended for online publication]. 

3.1.  Tests for effects of labelling and non-isomorphism 

Hypothesis 1, which states implications of the theory of team reasoning, was derived under 

the assumption that any asymmetries between s1 and s2 were insufficiently salient to be 

effective coordinating devices.  We need to check whether our observations are consistent 

with that assumption. 

 We do this by investigating how far the aggregate choices of players who did not 

choose s3 were skewed towards one or other of s1 or s2.  If, contrary to our assumption, it was 

team-optimal for players to use asymmetries between s1 and s2 as a means of coordination, 

one would expect a very high degree of skew in these choices.  The distributions of choices 

between s1 and s2 in each of the eighteen games are shown in Table 3.  In games in which s1 

and s2 are isomorphic (that is, either v = w or x = y), any systematic asymmetries between the 

frequencies with which they are chosen can be explained only as the result of labelling.  

When s1 and s2 are not isomorphic, it is also conceivable that players could coordinate on one 

of them by using payoff information (for example, by following the rule ‘Choose whichever 

of s1 or s2 favours the player who is also favoured by s3’).  For each game and each treatment, 

we test the null hypothesis that each of s1 and s2 is equally likely to be chosen; we report the 

p-value for a two-tail binomial test.  For games in which the two strategies are not 

isomorphic, we also report this test for data pooled across all three treatments, to check 

                                                           

15 The experiment reported in this paper was preceded by a pilot experiment, using a smaller set of 

games and with different subjects.  The pilot is reported by Faillo, Smerilli and Sugden as ‘The roles 

of level-k and team reasoning in solving coordination games’, Working Paper 6-13 of Cognitive and 

Experimental Economics Laboratory, University of Trento (2013). 
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whether players used payoff asymmetries between s1 and s2 as coordination devices.16  The 

pooled tests show no significant asymmetries.   

[Table 3 near here] 

 Although there are relatively few individual game/treatment pairs in which label-

based asymmetries are statistically significant, the aggregate data suggest small but 

systematic asymmetries in treatments A and B.  In treatment A, s1 was shown in the left circle 

and s2 in the right.  Summing over all eighteen games, there are 347 (non-independent) 

observations of choices of s1 or s2; 218 of these (62.8 per cent) are of s1.  In treatment B, s1 

was shown in the bottom circle and s2 in the left.  Of the 372 choices of s1 or s2, 150 (40.3 per 

cent) are of s1.  In contrast, there was no consistent asymmetry in treatment C, in which s1 

was shown in the right circle and s2 in the bottom, where the 361 choices of s1 or s2 were 

almost equally divided between s1 (172 choices) and s2 (189 choices).  However, the 

asymmetries observed in treatments A and B fell far short of the levels that would make 

deviations from s3 team-optimal.  (For example, the 218: 129 asymmetry in treatment A 

implies a probability of coordination of only 0.533.) 

   This leaves the possibility that some subjects had the mistaken belief that, with high 

probability, their own sense of which of the three positions (left, right or bottom) was most 

salient would be shared by their co-players.  Such subjects might choose s1 or s2 in the belief 

that this was team-optimal, even though in fact it was not.  But if this were the case, one 

would expect that team-reasoning subjects would systematically favour whichever position 

they thought most salient.  We tested, for each subject separately, whether subjects’ choices 

in the eighteen games were distributed non-randomly over the three positions.  The null 

hypothesis of a random distribution was rejected for only nine of the 126 subjects (at 5 per 

cent significance in a two-sided chi-squared goodness of fit test).  It seems that few if any 

subjects considered the use of position as a means of coordination. 

3.2  Tests of Hypotheses 1 and 2 

The data relevant for tests of Hypotheses 1 and 2 are reported in Table 4. 

[Table 4 near here] 

                                                           

16 There are six such games (G2, G6, G9, G10, G13 and G16).  For all these games except G13, level-

k theory predicts that, when aggregated across players, s1 and s2 choices are equally probable, 

irrespective of the distribution of levels of reasoning (see Appendix 1, Table A1.1).   
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 A striking feature of these data is the wide variation in the proportion of s3 choices 

across games, ranging from 1.6 per cent in G2 to 96.8 per cent in G18.  In every game, this 

proportion is significantly different from the random-choice benchmark (in all but two cases, 

with p < 0.01).17  These differences are as predicted by Hypothesis 1 in eleven games (G4, 

G7, G9 and G11–G18), but are in the unpredicted direction in the other seven games.  They 

are as predicted by Hypothesis 2 in twelve games (G1, G2, G3, G5, G6 and G12–G18), but 

are in the unpredicted direction in the other six games.  There are two games (G8 and G10) 

for which both hypotheses are disconfirmed.  Thus, in line with the mixed results of previous 

studies and with our prior expectation, the pattern of observed deviations from the random-

choice benchmark cannot be adequately explained by either of the theories we are 

considering. 

3.3  Tests of Hypotheses 3.1–3.3 

Table 5 lists the fifteen pairs of games that are relevant for tests of Hypotheses 3.1–3.3.  For 

each pair, the table shows which hypothesis implies that the proportion of s3 choices 

increases as one moves from the first game in the pair to the second.  It also shows the level-k 

prediction of the change in the proportion of s3 choices (derived from Table 2).  The 

corresponding team-reasoning prediction is always ‘no change’.  In cases in which the level-k 

prediction is ‘no change’, the hypothesis that is being tested is a strict implication of the 

corresponding conjecture (since in these cases, an increase in the relative frequency of team 

reasoning would imply an increase in the proportion of s3 choices).  When the level-k 

prediction is ‘decrease’, the hypothesis that is being tested is stronger than the corresponding 

conjecture (since an increase in the relative frequency of team reasoning might be offset by 

the reduction in s3 choices by subjects who consistently use level-k reasoning); thus, 

confirmation of the hypothesis gives particularly strong support to the conjecture.  Of course, 

these fifteen tests are not independent of one another, but each test, considered in isolation, is 

a valid test of the relevant hypothesis.     

[Table 5 near here] 

                                                           

17 Our tests are two-tail tests of the null hypothesis that the probability that a randomly-selected player 

of the relevant game chooses s3 is 1/3.  One might reasonably argue that, for any given game, a game 

theorist who specifically proposes one of the two theories is entitled to use a one-tail test of the 

hypothesis that this probability differs from 1/3 in the direction predicted by the proposed theory.  

However, from the viewpoint of an observer who is not proposing any particular theory and simply 

looking for possible regularities, randomness is the natural null hypothesis, and two-tail tests are 

appropriate.  In fact, the results of our two-tail tests are so strong that one-tail tests are unnecessary.  
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 Conjectures 2 and 3 are very strongly supported by the data.  In each of the ten tests 

of Hypotheses 3.2 and 3.3, there is an increase in the proportion of s3 choices, consistent with 

the relevant conjecture.  In nine of these cases, the increase is statistically significant, always 

at the 1 per cent level; these include two cases in which level-k theory predicts a decrease.  In 

contrast, we do not find consistent support for Conjecture 1.  In the five tests of Hypothesis 

3.1, the conjectured increase in the proportion of s3 choices is observed in three cases, in two 

of which it is significant at the 1 per cent level, but there are significant decreases in the two 

other cases.   

 A comparison between behaviour in G9 and G10 may give further insight into the 

relationship between payoff inequality and team reasoning.  In each of these games, the s1, s2 

and s3 equilibria all give unequal payoffs and are not Pareto-comparable.  The difference 

between the two games concerns the degree of inequality.  In G9, the s3 equilibrium is less 

unequal than the others; in G10, it is more unequal.  Level-k theory implies that s3 is more 

likely to be chosen in G10 (see Table 2).  However, we observe a much higher proportion of 

s3 choices in G9 (69.0 per cent compared with 19.8 per cent, (McNemar’s chi=45.76, 

p<0.001).  This result suggests that team reasoning may be facilitated if the team-optimal 

equilibrium, although itself unequal, is less unequal than the other equilibria.    

3.4.  Regression analysis 

As a further attempt to identify patterns in the data, we estimate a random effect probit model 

with a binary dependent variable assuming value 1 if subject i chooses s3 in round t and 0 

otherwise.  Three regressors capture characteristics of the games which, according to 

Conjectures 1–3, can affect the probability of choosing s3: equality of payoffs in the team-

suboptimal equilibria (variable x equal to y), equality of payoffs in the team-optimal 

equilibrium (variable v equal to w), and having a team-optimal equilibrium that is Pareto-

dominated, ex post, by each of the two team-suboptimal equilibria (variable Pareto 

dominated).  Additional regressors capture other potentially relevant characteristics of games: 

having a team-optimal equilibrium that ex post Pareto-dominates each of the team-

suboptimal equilibria (variable Pareto dominating), playing the game as player P1 (variable 

Player P1), playing a game in which s3 is either in the left circle (variable s3 left) or in the 

right circle (variable s3 right), and the ratio between the average payoffs of the two team-

suboptimal equilibria and the payoffs of the team-optimal equilibrium (variable Average 

payoff ratio).  We control also for gender, age and nationality of subjects, the number of 
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previous experiments in which they have already participated, and the university course in 

which they are enrolled.  

 The results are reported in Table 6. 

[Table 6 near here] 

 This analysis provides support to each of the three conjectures.  Consistently with 

Conjectures 1 and 2, it is confirmed that, ceteris paribus, the probability of choosing s3 is 

positively affected by equality of payoffs in the team optimal equilibrium (variable v equal to 

w) and negatively affected by equality of payoffs in the suboptimal equilibria (variable x 

equal to y).  Consistently with Conjecture 3, this probability is lower in games in which the s3 

equilibrium is Pareto-dominated ex post by the other two equilibria than in games in which 

the equilibria are not Pareto-comparable (variable Pareto dominated). 

 Additionally, the probability of choosing s3 is greater in games in which the s3 

equilibrium Pareto-dominates the other two equilibria ex post than in games in which the 

equilibria are not Pareto-comparable (variable Pareto dominated); and Average payoff ratio 

has a strong and significant negative effect on the probability of choosing s3.  These effects 

might be evidence of further factors that affect players’ propensity to use team reasoning.  It 

would be plausible to conjecture that team reasoning is more likely when the team-optimal 

equilibrium is Pareto-dominant, and is also more likely, the higher the average payoff in the 

team-optimal equilibrium relative to that in the team-suboptimal equilibria.  However, the 

observed effect of Pareto-dominance is also an implication of level-k theory, and Average 

payoff ratio may simply be picking up a general tendency for players to favour strategies with 

high potential payoffs to themselves individually.  We also find a marginally significant 

negative effect of s3 being in the right circle.  The Player P1 variable has no significant 

effect, despite the fact that v > w in eleven of the eighteen games.  Thus, although payoff 

inequality in the team-optimal equilibrium inhibits team reasoning, there is no evidence that 

the strength of this effect differs between the two players. 

3.5.  Individual heterogeneity 
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Recall that there are nine games (G1–G7, G9 and G11) in which level-k and team reasoning 

have opposite implications about the choice of s3.
18  Across these games, there is extreme 

variation in proportion of s3 choices, ranging from 1.6 per cent in G2 to 88.9 per cent in G11.  

Clearly, the vast majority of subjects behaved in accordance with level-k theory in some of 

these games and in accordance with team reasoning in others.  In some of these games, 

however, there was considerable heterogeneity in individual behaviour.  It is therefore 

relevant to ask whether there is an individual-specific component to players’ propensities to 

use team reasoning and if so, how important that component is. 

 Given the patterns that we have found in our aggregate data, it would be surprising if 

there were no component of this kind.  We have identified certain general properties of games 

which tend to facilitate or inhibit team reasoning.  It would be natural to expect individuals to 

differ in their susceptibility to these factors.  Since our subjects were not selected to be a 

representative sample of any population, measures of the distribution of ‘susceptibility’ in the 

subject pool may not tell us much that is useful about the world outside the lab.  However, 

were we to find that subjects could be divided into discrete types, each with a sharply distinct 

mode of behaviour, that might provide useful clues for future research. 

 As a first step in screening the data, we construct a null hypothesis based on the 

extreme assumption that, in each game considered separately, the probability of choosing s3 

is the same for all players and is equal to the relative frequency observed in the experiment.  

Given this assumption, any observed heterogeneity of behaviour within any given game 

would be entirely due to random noise.  We then find the actual number of s3 choices made 

by each subject in the eighteen games of the experiment and examine the cumulative 

frequency distribution of these numbers.  We compare this observed distribution with the 

benchmark distribution implied by the null hypothesis, given the actual number of subjects in 

our sample. 

 Figure 2 plots the observed distribution and shows the 95 per cent confidence limits of 

the benchmark distribution.  It is clear from inspection that the two distributions are different: 

the observed distribution has more weight in the tails, indicating that (as one would expect) 

there is some individual heterogeneity.  Statistically, this difference is highly significant (2 

                                                           

18 Apart from one minor exception, level-k theory implies that s3 is never chosen by players at level L1 

or above in any of these games.  The exception is that in G5, P1 players at L1 are predicted to choose 

s3 with probability 1/3. 
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=195.35, p < 0.001).19  Nevertheless, the observed distribution is quite close to the 

benchmark distribution, with the same general S-shape, indicative of the absence of discrete 

subject types.20 

 [Figure 2 near here] 

 A similar analysis can be carried out separately for each of Conjectures 1, 2 and 3.  

Take the case of Conjecture 1.  There are five pairs of games, namely (G1, G2), (G3, 

G4), (G5, G6), (G8, G9) and (G8, G10), for which Conjecture 1 implies that we should find 

more s3 choices in the second game than in the first.  In any one of these pairs of games, a 

subject’s choices are in accordance with Conjecture 1 if she does not choose s3 in the first 

game but does so in the second.  We find the actual number of cases in which each subject 

behaves in accordance with Conjecture 1 and examine the cumulative frequency distribution 

of these numbers.  We compare this observed distribution with the benchmark distribution 

implied by the null hypothesis, given the actual number of subjects in our sample.  The 

results are shown in Figure 3a.  Corresponding results for Conjectures 2 and 3 are shown in 

Figures 3b and 3c. 

[Figures 3a, 3b and 3c near here] 

 In the case of Conjecture 1, we cannot reject the null hypothesis that observed 

heterogeneity is the result of random noise (2 =4.08, p = 0.395).  In the other two cases, 

there are significant differences between the observed and benchmark distributions (for 

Conjecture 2, 2 =14.91, p = 0.011; for Conjecture 3, 2 =14.98, p = 0.004).  The observed 

distributions have more weight in their tails than the benchmark distributions do, indicating 

some degree of individual heterogeneity.  Again, however, there is little indication of discrete 

subject types.21 

                                                           

19 The confidence limits shown in Figure 2 were derived by simulation.  For this, we generated 200 

distributions with n=126 by assigning to each hypothetical subject in each distribution a probability of 

choosing s3 in each game equal to the observed frequency of s3 choice in that particular game.  Our 

chi-squared tests compare the observed distribution of relative frequencies of ‘number of s3 choices’ 

with the benchmark distribution.   

20 The slight irregularity at high values of ‘number of s3 choices’ suggests the possibility that a small 

minority of subjects (less than 10 per cent) might belong to a discrete type that always uses team 

reasoning. 

21 A further method of screening for subject heterogeneity is to look for patterns in the correlation 

between proportions of s3 choices in pairs of games.  The matrix of correlation coefficients is reported 

in Appendix 5 [intended for online publication].  This matrix shows a general tendency for positive 
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3.6.   Learning 

It is also relevant to ask whether, over the course of the experiment, there was any significant 

trend in subjects’ propensities to act according to the theory of team reasoning.  Because the 

order in which games were played was randomized, it is sufficient to look for trends in the 

proportion of s3 choices.  In fact, there is no significant trend.  

4.  Discussion 

Our key findings concern cross-game variations in players’ propensities to choose s3 that are 

inconsistent both with the theory of team reasoning and with level-k theory.  Specifically, we 

find that the frequency of s3 choices is influenced by the extent of payoff inequality in the s1, 

s2 and s3 equilibria.  Equality of s3 payoffs and (possibly to a lesser extent) inequality of s1 

and s2 payoffs tend to induce more s3 choices.  In addition, s3 choices tend to be less frequent 

if, ex post, the payoffs in the s3 equilibrium are Pareto-dominated by those of other two 

equilibria than if the equilibria are not Pareto-comparable.   We have argued that these effects 

are consistent with plausible conjectures about the conditions under which players are more 

likely to use one or other of the two modes of reasoning we have considered.  Our provisional 

conclusion is that a satisfactory theory of behaviour in coordination games needs to include 

both collective optimality reasoning and bounded best response reasoning. 

 So far, however, we have shown only that the effects we have observed are 

inconsistent with the theory of team reasoning and with level-k theory.  Are we entitled to 

claim that this is true of the collective optimality approach in general and of bounded best 

response approach in general? 

 We need to consider a wide range of variant theories.  To keep the exposition 

uncluttered, we do not present the predictions of all these theories for all the games in the 

experiment.  Instead, we focus on four games, G1, G3, G7 and G11, which together 

encapsulate the problem of finding a single explanatory theory.  For all these games, team 

reasoning theory predicts the choice of s3, while level-k theory predicts that s3 will not be 

chosen at any level above L0.  The team reasoning prediction fails badly in G1 and G3, with 

                                                           
correlation, indicative of heterogeneity, but we do not discern any specific pattern to suggest that 

subjects can be divided into discrete types.   
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only 11.9 per cent and 13.5 per cent of players choosing s3; the level-k prediction is similarly 

unsuccessful in G7 and G11, where 69.0 per cent and 88.9 per cent of players chose s3.  

Similar failures of the two theories have been observed in previous experiments (see Section 

1.3 above). 

 First, we ask whether any variant of the bounded best response approach could 

explain the choice of s3 in G7 and G11.  Two obvious candidates are cognitive hierarchy 

theory and CGR’s ‘payoff and label salience’ specification of L0 behaviour (described in 

Section 1.2 above).  But consider the condition (Condition X) that x > v, w (that is, for each 

player, the better payoff from s1 or s2 is strictly greater than the payoff from s3).  Notice that 

Condition X holds for G7 and G11 (as it does for G1, G2, G3, G4, G6 and G9).  It is easy to 

see that, given Condition X, cognitive hierarchy theory replicates the level-k implication that 

s3 is not chosen by either player at any level above L0.   Under the same condition, s3 is 

payoff-dominated for both players.  Thus, even if s3 were label-salient, CGR’s tie-breaking 

rule would never make it the modal choice at L0 for either player, and so s3 would not be 

chosen at any level above L0.  Notice also that if Condition X holds, the implications of 

level-k theory are independent of attitudes to risk.   

 Another possibility is that players use level-k reasoning but are averse to inequality, as 

in the theories of Fehr and Schmidt (1999) and Bolton and Ockenfels (2000), with the result 

that utility payoffs differ from material ones.  But if inequality aversion is to induce L1 

reasoners (and thereby higher-level reasoners) to choose s3 in G7, we require that at least one 

player prefers the outcome in which both players receive a material payoff of 9 to the 

outcome in which she receives 10 and her co-player receives 9.  This would be an 

extraordinarily high degree of aversion to advantageous inequality, implying a preference for 

unilaterally burning one’s own money whenever one is better off than others – a possibility 

that Fehr and Schmidt rule out as ‘very implausible’ (p. 824). 

 More intuitively, it is hard to think of any plausible account of why players choose s3 

in G7 and G11 which does not refer to players’ perceptions of properties of strategy pairs as 

potential objects of coordination.  The most obvious explanations of this behaviour use one or 

both of two facts – that the s3 equilibrium is the only pure-strategy equilibrium with equal 

payoffs, and that, because of isomorphism, the s1 and s2 equilibria are not attainable.  But 

these are considerations that are relevant to players who are consciously trying to coordinate 

on some equilibrium, and not to players who are thinking only about best responses to one 

another’s given strategy choices.         
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 We now ask the opposite question: Is there any variant of the collective optimality 

approach that can explain why s3 is not chosen in G1 and G3?  Recall that our specification of 

team reasoning theory already allows for inequality aversion and risk aversion.  Within the 

collective optimality approach, the most obvious alternative to team reasoning is a theory 

which uses payoff dominance as a principle of equilibrium selection.  Because of the 

isomorphism between s1 and s2, the crucial issue in a payoff-dominance analysis is whether 

the pure-strategy s3 equilibrium gives higher expected utility to both players than the Nash 

equilibrium mix of s1 and s2.  In general, the Nash equilibrium mix of two isomorphic 

strategies can be different from the team-optimal mix, but this is not the case if, as in G1 and 

G3, both players are indifferent between the corresponding pure-strategy equilibria.  In order 

for s3 to be payoff-dominant in G1 and G3, it is sufficient that the certainty of eight units of 

material payoff is preferred to a lottery which gives ten units with probability 0.5 and zero 

otherwise.  This requires only that players are not extreme risk-seekers. 

 More intuitively, it seems obvious that if the s3 equilibrium is strictly Pareto-

dominated by both the other pure-strategy equilibria, any plausible theory of bounded best-

response reasoning will imply that players of G1 and G3 will not choose s3.  But this intuition 

cannot be carried over to collective-optimality reasoning unless players believe that one or 

other of the s1 and s2 equilibria is attainable.  As we showed in Section 3.1, our subjects’ use 

of the relative positions of the three circles is not consistent with their having that belief. 

 A final possibility (mentioned in Section 1.2 above) is that the population of players is 

a mixture of naïve and sophisticated team reasoners.  Consider a model in which naïve 

players do not recognise the difficulty of coordinating on one of two isomorphic equilibria, 

and simply choose any strategy associated with an equilibrium that is team-optimal ex post.  

Such players would choose s1 or s2 in G1 and G3.  Sophisticated players who attached a 

sufficiently high probability to their co-players being naïve would then avoid s3, despite its 

team-optimality.  A model of this kind could organise the main patterns in our data.  

However, as explained in Section 1.3, it would not explain the tendency, observed in other 

experiments, for conflicts of interest to reduce the power of focal points. 

5.  Conclusion 

Game theorists have proposed two very different ways of modelling players’ reasoning in 

coordination games.  One approach, exemplified by level-k theory, assumes boundedly 

rational best-response reasoning by individual players.  An alternative approach, exemplified 
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by the theory of team reasoning, assumes that players select strategies by using some 

criterion of collective optimality.  Previous authors have speculated that both approaches may 

play some role in explaining observed behaviour, but we believe that our paper is the first to 

translate these speculations into testable conjectures about which properties of coordination 

games facilitate or inhibit these two modes of reasoning and then to carry out the tests. 

 Our experimental results support the hypothesis that both modes of reasoning are used 

in coordination games, and that which mode is more likely to be used depends on the 

particular characteristics of the game being played.  Considered alongside the findings of 

previous experiments, our results suggest that a one-theory-fits-all approach is unlikely to 

provide a satisfactory explanation of behaviour in coordination games.  What is needed is a 

theory of how the mode of reasoning that players use is influenced by properties of the 

particular coordination game they are playing.  The conjectures we have proposed in this 

paper, and the supporting experimental evidence we have reported, are first steps in this 

enterprise.   
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Table 1: Games used in the experiment 

 

Payoff 

(in)equality 

s3 strictly Pareto-dominated 

y > v 

s3 weakly Pareto-dominated 

y = v and (x > y or v > w) 

s3 not Pareto-comparable 

v > y and x > w 

s3 weaklyPareto-dominating 

w = x and (x > y or v > w) 

s3 strictly Pareto-dominating 

w > x 

x = y, v > w G1= <(10,10), (10,10), (9,8)> G5= <(10,10), (10,10), (10,9)> G8= <(10,10), (10,10), (11,9)> G12= <(10,10), (10,10), (11,10)> G15= <(10,10), (10,10), (12,11)> 

x > y, v > w G2= <(10,9), (9,10), (8,7)> G6= <(10,9), (9,10), (9,8)> 
G9= <(12,9), (9,12), (11,10)> 

G10=<(11,10),(10,11),(12,9)> 
G13= <(10,9), (9,10), (11,10)> G16= <(10,9), (9,10), (12,11)> 

x = y, v = w G3= <(10,10), (10,10), (9,9)> n.a. n.a. n.a G17= <(10,10), (10,10), (11,11)> 

x > y, v = w G4= <(10,9), (9,10), (8,8)> G7= <(10,9), (9,10), (9,9)> G11= <(11,9), (9,11), (10,10)> G14= <(10,9), (9,10), (10,10)> G18= <(10,9), (9,10), (11,11)> 
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Table 2: Predicted proportions of s3 choices 

 

        Proportion of s3 choices predicted by: 

        _________________________________________________________________ 

        Team reasoning      Level-k theory for level and player:    

    L0  L1  L2  L3, L4, …. 

Game        P1 and P2  P1     P2 P1     P2 P1     P2 P1     P2 

___________________________________________________________________________ 

G1        1   1/3    1/3 0       0  0       0  0       0  

G2        1   1/3    1/3 0       0  0       0  0       0  

G3        1   1/3    1/3 0       0  0       0  0       0  

G4        1   1/3    1/3 0       0  0       0  0       0  

G5        1   1/3    1/3 1/3    0  0       0  0       0  

G6        1   1/3    1/3 0       0  0       0  0       0  

G7        1   1/3    1/3 0       0  0       0  0       0  

G8        1   1/3    1/3 1       0  0       1  1       0  

G9        1   1/3    1/3 0       0  0       0  0       0 

G10        1   1/3    1/3 1       0  0       1  1       0 

G11        1   1/3    1/3 0       0  0       0  0       0  

G12        1   1/3    1/3 1       1/3 1       1  1       1 

G13        1   1/3    1/3 1       1/2 1       1  1       1 

G14        1   1/3    1/3 1/2    1/2 1       1  1       1 

G15        1   1/3    1/3 1       1  1       1  1       1 

G16        1   1/3    1/3 1       1  1       1  1       1 

G17        1   1/3    1/3 1       1  1       1  1       1 

G18        1   1/3    1/3 1       1  1       1  1       1 

__________________________________________________________________________ 
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Table 3:  Distribution of choices between s1 and s2 
 

 

  distribution of choices over (s1, s2) 

__________________________________________________________________ 

 

  treatment A treatment B treatment C      all treatments 

game  (left, right) (bottom, left) (right, bottom)      (not reported if  

                  s1, s2 isomorphic) 

___________________________________________________________________ 

 

G1      (25, 12) ** (13, 25) * (17, 19)  

G2†  (21, 20)  (22, 19)  (19, 23)      (62, 62) 

G3     (21, 14)  (12, 24) * (24, 14)  

G4     (12, 10)  (10, 12)  (6, 21)*** 

G5      (27, 7)*** (16, 21)  (18, 18)  

G6†   (24, 15)  (17, 25)  (19, 19)      (60, 59) 

G7     (8, 8)  (5, 6)  (4, 8)   

G8      (26, 8)*** (10, 25)** (18, 17) 

G9†     (8, 6)  (5, 10)  (2, 5)      (15, 21) 

G10†  (21, 10)* (17, 19)  (14, 20)      (52, 49) 

G11    (2, 1)  (3, 3)  (2, 3) 

G12    (11, 5)  (11, 15)  (16, 6)*  

G13†  (2, 2)  (3, 4)  (0, 5)*      (5, 11) 

G14  (0, 0)  (0, 2)  (0, 1)  

G15  (7, 6)  (5, 5)  (9, 4) 

G16†  (2, 2)  (0, 3)  (4, 4)      (6, 9) 

G17  (1, 0)  (1, 2)  (0, 1) 

G18  (0, 1)  (0, 2)  (0, 1) 

 ____________________________________________________________________ 

Note:  Games in which s1 and s2 are non-isomorphic, allowing meaningful ‘all treatments’ 

tests, are marked by †.  The total number of subjects (including those who chose s3) in each 

treatment was 42. Asterisks report two-sided binomial tests of the hypothesis that s1 and s2 are 

chosen with equal probability; *, ** and *** denote rejection at 10, 5 and 1 per cent 

significance levels. 
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Table 4:  Observed percentages of s3 choices 

 

   

payoff      s3 strictly            s3 weakly                      s3 not Pareto- s3weakly Pareto-      s3 strictly 

(in)equality      Pareto-dominated      Pareto-dominated        comparable Pareto-dominating      Pareto-dominating 

      y>v            y = v and                      v > y and x > w w = x and                      w > x 

                                        (x > y or v > w)  (x > y or y > w) 

____________________________________________________________________________________________________________ 

x = y, v > w      11.9# # # (G1)            15.1# # # (G5)          17.5# # # (G8) 49.2*** (G12)       71.4*** (G15) 

x > y, v > w      1.6# # # (G2)             5.6# # # (G6)          69.0*** (G9)  87.3*** (G13)       88.1*** (G16) 

                         19.8 # #   (G10) 

x = y, v = w      13.5# # # (G3)                                                                             96.0*** (G17) 

x > y, v = w      43.7** (G4)           69.0*** (G7)          88.9*** (G11) 97.6*** (G14)      96.8*** (G18) 

_____________________________________________________________________________________________________________ 

 

Note:  For all games, n = 126.  Asterisks and hashes report two-sided binomial tests of the null hypothesis that s3 is chosen with probability 

1/3. 

*, ** and *** denote rejection at 10, 5 and 1 per cent significance levels when observed proportion is greater than 1/3.  #, ## and ###  

denote rejection at 10, 5 and 1 per cent significance levels when observed proportion is less than  1/3. 
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Table 5:  Tests of Hypotheses 3.1–3.3    

    effect predicted      percentages of 

game pair test of      by level-k theory    s3 choices      2 

____________________________________________________________________________________ 

 

G1, G2  Hypothesis 3.1 no change   (11.9, 1.6)  11.27### 

G3, G4  Hypothesis 3.1 no change   (13.5, 43.7)  28.88*** 

G5, G6  Hypothesis 3.1 decrease    (15.1, 5.6)  6.55## 

G8, G9  Hypothesis 3.1 decrease    (17.5, 69.0)  49.71*** 

G8, G10  Hypothesis 3.1 no change   (17.5, 19.8)  0.29 

 

G1, G3  Hypothesis 3.2 no change   (11.9, 13.5)  0.22 

G2, G4  Hypothesis 3.2 no change   (1.6, 43.7)  51.07*** 

G6, G7  Hypothesis 3.2 no change    (5.6, 69.0)  78.05*** 

G9, G11  Hypothesis 3.2 no change   (69.0, 88.9)  21.55*** 

G10, G11 Hypothesis 3.2 decrease    (19.8, 88.9)  76.45*** 

G13, G14 Hypothesis 3.2 decrease    (87.3, 97.6)  8.89*** 

 

G2, G9  Hypothesis 3.3 no change   (1.6, 69.0)  85.00*** 

G6, G9  Hypothesis 3.3 no change   (5.6, 69.0)  74.42*** 

G4, G11  Hypothesis 3.3 no change   (43.7, 88.9)  51.57*** 

G7, G11  Hypothesis 3.3 no change   (69.0, 88.9)  18.94** 

____________________________________________________________________________________ 

Note:  2-statistics for McNemar test for paired s3 proportions.   *, ** and *** denote rejection at 10, 5 

and 1 per cent significance levels when observed effect is an increase.  #, ## and ### denote rejection at 

10, 5 and 1 per cent significance levels when observed effect is a decrease.  Paired t-tests on differences 

between s3 proportions give the same results.  
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Table 6: Regression analysis  

 Random effect probit 

coefficients 

(standard errors) 

Average marginal 

effects 

   

x equal to y –0.56*** 

(0.78) 

–0.13 

 

 

v equal to w 1.13*** 

(0.08) 

 

0.26 

 

Pareto dominating (βPDing ) 0.65*** 

(0.12) 

 

0.15 

 

Pareto dominated (βPDed )   –0.35*** 

(0.13) 

 

–0.81 

 

Player  P1 0.01 

(0.07) 

 

0.03 

 

s3  left –0.11 

(0.08) 

 

–0.02 

 

s3 right –0.17* 

(0.09) 

 

–0.04 

 

Average payoff  ratio –5.43*** 

(0.80) 

 

–1.24 

 

Experiments -0.01* 

(0.01) 

 

–0.003 

 

 

Economics 0.07 

(0.10) 

 

0.01 

 

Nationality 0.35* 

(0.18) 

 

0.08 

 

Gender –0.22** 

(0.10) 

 

–0.05 

 

Age –0.03 

(0.02) 

 

–0.007 

 

 

Constant 5.87 

(0.98) 

 

 

 

βPDing – βPDed 

           

                 1.00*** 

                (0.20) 

                    

                        

n= 1944; Log likelihood  = –823.02; Wald chi2=603.46 

The dependent variable takes value 1 if the choice is the one predicted by team reasoning (s3) theory and 0 otherwise.  

Player P1: dummy variable taking value 1 if the subject plays as P1;  x equal to y: dummy variable taking value 1 if 

the subject plays a game in which x=y; v equal to w: dummy variable taking value 1 if the subject plays a game in 

which v=w; Pareto dominated: dummy variable taking value  1 if the subject plays a game in which s3  is Pareto 

dominated (weakly or strongly) ex-post, by s1 and s2;  Pareto dominating : dummy variable taking value  1 if the 

subject plays a game in which s3  Pareto-dominates (weakly or strongly), ex-post, s1 and s2; s3 left:  dummy variable 

taking value  1 if the subject plays a game in which s3 is in the left circle; s3 right:  dummy variable taking value  1 

if the subject plays a game in which s3 is in the  right circle; Average payoff ratio: ratio between the average of P1’s 

and P2’s payoffs in s1 and the average of their payoffs in s3; Experiments: number of previous experiments the 

subjects has  participated in; Economics: dummy variable taking value 1 if the subject is enrolled in 

economics/management university courses; Nationality: dummy variable taking value 1 if the subject is Italian; 

Gender: dummy variable taking value 1 if the subject is female; Age: subject’s age. 

 

*** significant at 1%; ** significant at 5%; * significant at 10% 
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Figure 1: Payoff displays for a typical game (G2) 
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Figure 2: Relative frequency of number of s3 choices in games G1-G18 

 

 

The graph shows the cumulative relative frequency of the number of s3 choices in the 

eighteen games of the experiment.  The bars show the 95 per cent confidence limits of the 

benchmark distribution.  
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Figure 3:  Relative freqency of number of choices in accordance with 

Conjectures 1, 2 and 3 

a: Choices in accordance with Conjecture 1 

 

 

b:  Choices in accordance with Conjecture 2 
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c:  Choices in accordance with Conjecture 3  

 

In each panel the graph shows the cumulative relative frequency of the number of choices 

in accordance with the relevant conjecture.  The bars show the 95 per cent confidence 

limits of the benchmark distribution.  
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FOR ONLINE PUBLICATION ONLY 

 

Appendix 1:  Predictions of level-k theory  

Table A1.1 shows the predictions of level-k theory for each of nine cases, defined by the 

relative values of the parameters v, w, x and y, under the assumption that L0 choices are 

uniformly random.  Although predictions are shown only for levels up to L3, the predictions 

for L4, L6, … are always the same as for L2 and those for L5, L7, … are always the same as 

for L3.  These cases are not exhaustive, but they include all our games G1–G18.  Given the 

assumption that L0 choices are random, and given the assumption that whenever two or more 

strategies have the same expected payoff they are chosen with equal probability, the 

derivation of the figures in the table is straightforward. 

 

Table A1.1:  Level-k predictions 

 

game(s)   player  proportion of choices that are (s1, s2, s3) 

     L0  L1  L2  L3 

__________________________________________________________________________________________ 

Case1: x =y>v 

(G1, G3) 

   P1  (1/3, 1/3, 1/3) (1/2, 1/2, 0) (1/2, 1/2, 0) (1/2, 1/2, 0) 

   P2  (1/3, 1/3, 1/3) (1/2, 1/2, 0) (1/2, 1/2, 0) (1/2, 1/2, 0) 

Case 2: x>v, x >y 

(G2, G4, G6, G7,  

G9, G11) 

   P1  (1/3, 1/3, 1/3) (1, 0, 0)  (0, 1, 0)  (1, 0, 0) 

   P2  (1/3, 1/3, 1/3) (0, 1, 0)  (1, 0, 0)  (0, 1, 0) 

Case 3: x=y=v>w 

(G5) 

   P1  (1/3, 1/3, 1/3) (1/3, 1/3, 1/3) (1/2, 1/2, 0) (1/2, 1/2, 0) 

   P2  (1/3, 1/3, 1/3) (1/2, 1/2, 0) (1/2, 1/2, 0) (1/2, 1/2, 0) 

 

Case 4: v>x =y >w 

(G8) 

   P1  (1/3, 1/3, 1/3) (0, 0, 1)  (1/2, 1/2, 0) (0, 0, 1) 



45 
 

   P2  (1/3, 1/3, 1/3) (1/2, 1/2, 0) (0, 0, 1)  (1/2, 1/2, 0) 

Case 5: v>x>y >w 

(G10) 

   P1  (1/3, 1/3, 1/3) (0, 0, 1)  (0, 1, 0)  (0, 0, 1)  

   P2  (1/3, 1/3, 1/3) (0, 1, 0)  (0, 0, 1)  (0, 1, 0) 

Case 6: v>x =w  =y 

(G12) 

   P1  (1/3, 1/3, 1/3) (0, 0, 1)  (0, 0, 1)  (0, 0, 1) 

   P2  (1/3, 1/3, 1/3) (1/3, 1/3, 1/3) (0, 0, 1)  (0, 0, 1) 

Case 7: v>x =w >y 

(G13) 

   P1  (1/3, 1/3, 1/3) (0, 0, 1)  (0, 0, 1)  (0, 0, 1) 

   P2  (1/3, 1/3, 1/3) (0, 1/2, 1/2) (0, 0, 1)  (0, 0, 1) 

Case 8: x=v=w>y 

(G14) 

   P1  (1/3, 1/3, 1/3) (1/2, 0, 1/2) (0, 0, 1)  (0, 0, 1) 

   P2  (1/3, 1/3, 1/3) (0, 1/2, 1/2) (0, 0, 1)  (0, 0, 1) 

Case 9: v w>x 

(G15, G16, G17, G18) 

   P1  (1/3, 1/3, 1/3) (0, 0, 1)  (0, 0, 1)  (0, 0, 1) 

   P2  (1/3, 1/3, 1/3) (0, 0, 1)  (0, 0, 1)  (0, 0, 1) 

_________________________________________________________________________________________ 
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Appendix 2:  Instructions 

 

 

 

Welcome to this experiment on decisional processes and thank you for 

participating in it. 

The experiment will last approximately 40 minutes. 

You will receive 3 euro for your participation. You can gain more money, 

depending on your choices and on choices of other participants. 

Your answers and your choices will be completely anonymous. The experimenters 

are not able to associate your choices and your answers to your name. 

We ask you to pay attention to the instructions that will appear on your screen. 

They will be read aloud by one of the experimenters. 

If you have any doubts or questions about anything related to the experiment raise 

your hand: one of the experimenters will come. 

Click on ‘continue’ to proceed. 
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During the experiment you will be asked to make choices. The main characteristics 

of the choices can be described through an example. 

First of all you will be matched with another person in this room. You will never 

know the identity or the other person, nor will he/she know your identity. 

On the screen of your computer will appear a figure similar to the one you are now 

seeing above. The numbers on the figure, which are only examples, represent the 

payments in euro for each combination of choices. 

Click on ‘continue’ to proceed. 
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You must choose one of the three options by clicking on one of the three circles on 

the figure. 

The person you are matched with must do the same. 

If your choice does not correspond to the choice of the other person, you will both 

get 0 euro. 

If both of you choose the same option, each of you will obtain the payment which 

is in the circle. 

Click on ‘continue’ to proceed. 
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So, if both of you choose the top left circle, you will get 7 euro and the other will 

get 8 euro. 

If both of you choose the top right circle, you will get 7 euro and the other will get 

7 euro. 

If both of you choose the bottom circle, you will obtain 10 euro and the other will 

get 7 euro. 

If you choose different circles, both of you will get 0 euro. 

Click on ‘continue’ to proceed. 
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The experiment. 

The experiment consists of 18 rounds. In each round you must make decisions on 

figures similar to the ones you have seen before. 

At the beginning of each round you will be matched with a person, and you will 

see a figure with different payments. 

Notice that in each round you will be matched with a different person. 

As in the previous example, if you and the other person choose the same circle, 

you will get the corresponding amount. If you and the other person choose a 

different circle the payment will be 0 euro. 

At the end of each round you will not receive any feedback on the results. 

At the end of the experiment, one of the rounds will be randomly selected, and you 

will receive the corresponding payment associated to that round. 

In particular before starting the experiment one participant will draw a ticket from 

a box containing 18 tickets numbered from 1 to 18. 

The ticket (without being opened) will be given to the experimenter. 

At the end of the experiment you will know the selected round. 

Click on ‘continue’ to proceed. 
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At the beginning of each round the figure with three circles will be shown. 

Before making your choice you must wait for 20 seconds. 

In order to select a choice it is sufficient to click on the selected circle. If you want 

to change your choice, you must click again on the selected choice in order to 

deselect it, then you can click on the other choice. 

When your decision is definitive you must click on the ‘ok’ button, in order to go 

to the following round. 

Click on ‘continue’ to proceed. 
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Before starting the experiment, you will participate in a trial session with 3 rounds. 

In each round you will be asked to choose an option and to answer a question, 

which is on the sheet on your table. 

The choices made in this session will not affect your final payment. 

At the end of this session we shall correct the questions and we shall clarify any 

doubts. After that we shall proceed with the experiment. 

Click on ‘continue’ to proceed. 
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Appendix 3: Matching procedure 

The following tables report the details of the procedure used to match subjects and to define the sequences of games played by each subject in the 18 rounds. We 

start with the procedure used in SESSION 1.  Columns 1-18 are subjects, rows 1-18 are rounds.  The entry in each cell is the number of the game (G1–G18) that is 

played by the relevant subject in the relevant round.  In each game, in each round, one subject from 1to 9 is paired with one from 10 to 18. 

STEP 1: 

We  assigned games 1 – 18 to player 10, using a random sequence  : 

round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

______________________________________________________________________________________________________________________________________________________________________ 

1          11 

2          8 

3          1  

4          3 

5          6 

6          17 

7          4 

8          10 

9          7 

10          16 

11          14 

12          12 

13          15 

14          18 

15          5 

16          13 

17          9          

18          2 

_____________________________________________________________________________________________________________________________________________________________________ 
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STEP 2: 

We used the same random sequence to assign games to players 11-18 (with a shift for each column): 

  

round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

______________________________________________________________________________________________________________________________________________________________________ 

1          11 2 9 13 5 18 15 12 14 

2          8 11 2 9 13 5 18 15 12 

3          1 8 11 2 9 13 5 18 15 

4          3 1 8 11 2 9 13 5 18 

5          6 3 1 8 11 2 9 13 5 

6          17 6 3 1 8 11 2 9 13 

7          4 17 6 3 1 8 11 2 9 

8          10 4 17 6 3 1 8 11 2 

9          7 10 4 17 6 3 1 8 11 

10          16 7 10 4 17 6 3 1 8 

11          14 16 7 10 4 17 6 3 1 

12          12 14 16 7 10 4 17 6 3  

13          15 12 14 16 7 10 4 17 6 

14          18 15 12 14 16 7 10 4 17 

15          5 18 15 12 14 16 7 10 4 

16          13 5 18 15 12 14 16 7 10 

17          9 13 5 18 15 12 14 16 7  

18          2 9 13 5 18 15 12 14 16 

______________________________________________________________________________________________________________________________________________________________________ 

 

 

 



55 
 

 

STEP  3:  

Using the original sequence we filled in a diagonal for opponents (from players 1 to 9) for player 10: 

  

round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

______________________________________________________________________________________________________________________________________________________________________ 

1 11         11 2 9 13 5 18 15 12 14 

2  8        8 11 2 9 13 5 18 15 12 

3   1       1 8 11 2 9 13 5 18 15 

4    3      3 1 8 11 2 9 13 5 18 

5     6     6 3 1 8 11 2 9 13 5 

6      17    17 6 3 1 8 11 2 9 13 

7       4   4 17 6 3 1 8 11 2 9 

8        10  10 4 17 6 3 1 8 11 2 

9         7 7 10 4 17 6 3 1 8 11 

10 16         16 7 10 4 17 6 3 1 8 

11  14        14 16 7 10 4 17 6 3 1 

12   12       12 14 16 7 10 4 17 6 3  

13    15      15 12 14 16 7 10 4 17 6 

14     18     18 15 12 14 16 7 10 4 17 

15      5    5 18 15 12 14 16 7 10 4 

16       13   13 5 18 15 12 14 16 7 10 

17        9  9 13 5 18 15 12 14 16 7  

18         2 2 9 13 5 18 15 12 14 16 

______________________________________________________________________________________________________________________________________________________________________ 
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STEP 4: 

We repeated step 3 for opponents of player 11 - 18: 

  

round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

______________________________________________________________________________________________________________________________________________________________________ 

1 11 2 9 13 5 18 15 12 14 11 2 9 13 5 18 15 12 14 

2 12 8 11 2 9 13 5 18 15 8 11 2 9 13 5 18 15 12 

3 18 15 1 8 11 2 9 13 5 1 8 11 2 9 13 5 18 15 

4 13 5 18 3 1 8 11 2 9 3 1 8 11 2 9 13 5 18 

5 2 9 13 5 6 3 1 8 11 6 3 1 8 11 2 9 13 5 

6 8 11 2 9 13 17 6 3 1 17 6 3 1 8 11 2 9 13 

7 3 1 8 11 2 9 4 17 6 4 17 6 3 1 8 11 2 9 

8 17 6 3 1 8 11 2 10 4 10 4 17 6 3 1 8 11 2 

9 10 4 17 6 3 1 8 11 7 7 10 4 17 6 3 1 8 11 

10 16 7 10 4 17 6 3 1 8 16 7 10 4 17 6 3 1 8 

11 1 14 16 7 10 4 17 6 3 14 16 7 10 4 17 6 3 1 

12 6 3 12 14 16 7 10 4 17 12 14 16 7 10 4 17 6 3  

13 4 17 6 15 12 14 16 7 10 15 12 14 16 7 10 4 17 6 

14 7 10 4 17 18 15 12 14 16 18 15 12 14 16 7 10 4 17 

15 14 16 7 10 4 5 18 15 12 5 18 15 12 14 16 7 10 4 

16 15 12 14 16 7 10 13 5 18 13 5 18 15 12 14 16 7 10 

17 5 18 15 12 14 16 7 9 13 9 13 5 18 15 12 14 16 7  

18 9 13 5 18 15 12 14 16 2 2 9 13 5 18 15 12 14 16 

______________________________________________________________________________________________________________________________________________________________________ 
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STEP 5: 

We assigned the games to the three treatments. Each game is played three times, by three different pairs, in each treatment.  

Treatment - A, B or C - is in parentheses. 

  

round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

_______________________________________________________________________________________________________________________________________________________________________ 

1 11(A) 2(A) 9(A) 13(A) 5(A) 18(A) 15(A) 12(A) 14(A) 11(A) 2(A) 9(A) 13(A) 5(A) 18(A) 15(A) 12(A) 14(A) 

2 12(B) 8(B) 11(B) 2(B) 9(B) 13(B) 5(B) 18(B) 15(B) 8(B) 11(B) 2(B) 9(B) 13(B) 5(B) 18(B) 15(B) 12(B) 

3 18(C) 15(C) 1(C) 8(C) 11(C) 2(C) 9(C) 13(C) 5(C) 1(C) 8(C) 11(C) 2(C) 9(C) 13(C) 5(C) 18(C) 15(C) 

4 13(A) 5(A) 18(A) 3(A) 1(A) 8(A) 11(A) 2(A) 9(A) 3(A) 1(A) 8(A) 11(A) 2(A) 9(A) 13(A) 5(A) 18(A) 

5 2(B) 9(B) 13(B) 5(B) 6(B) 3(B) 1(B) 8(B) 11(B) 6(B) 3(B) 1(B) 8(B) 11(B) 2(B) 9(B) 13(B) 5(B) 

6 8(C) 11(C) 2(C) 9(C) 13(C) 17(C) 6(C) 3(C) 1(C) 17(C) 6(C) 3(C) 1(C) 8(C) 11(C) 2(C) 9(C) 13(C) 

7 3(A) 1(A) 8(A) 11(A) 2(A) 9(A) 4(A) 17(A) 6(A) 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 11(A) 2(A) 9(A) 

8 17(B) 6(B) 3(B) 1(B) 8(B) 11(B) 2(B) 10(B) 4(B) 10(B) 4(B) 17(B) 6(B) 3(B) 1(B) 8(B) 11(B) 2(B) 

9 10(C) 4(C) 17(C) 6(C) 3(C) 1(C) 8(C) 11(C) 7(C) 7(C) 10(C) 4(C) 17(C) 6(C) 3(C) 1(C) 8(C) 11(C) 

10 16(A) 7(A) 10(A) 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 16(A) 7(A) 10(A) 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 

11 1(B) 14(B) 16(B) 7(B) 10(B) 4(B) 17(B) 6(B) 3(B) 14(B) 16(B) 7(B) 10(B) 4(B) 17(B) 6(B) 3(B) 1(B) 

12 6(C) 3(C) 12(C) 14(C) 16(C) 7(C) 10(C) 4(C) 17(C) 12(C) 14(C) 16(C) 7(C) 10(C) 4(C) 17(C) 6(C) 3(C)  

13 4(A) 17(A) 6(A) 15(A) 12(A) 14(A) 16(A) 7(A) 10(A) 15(A) 12(A) 14(A) 16(A) 7(A) 10(A) 4(A) 17(A) 6(A) 

14 7(B) 10(B) 4(B) 17(B) 18(B) 15(B) 12(B) 14(B) 16(B) 18(B) 15(B) 12(B) 14(B) 16(B) 7(B) 10(B) 4(B) 17(B) 

15 14(C) 16(C) 7(C) 10(C) 4(C) 5(C) 18(C) 15(C) 12(C) 5(C)  18(C) 15(C) 12(C) 14(C) 16(C) 7(C) 10(C) 4(C) 

16 15(A) 12(A) 14(A) 16(A) 7(A) 10(A) 13(A) 5(A) 18(A) 13(A) 5(A) 18(A) 15(A) 12(A) 14(A) 16(A) 7(A) 10(A) 

17 5(B)  18(B) 15(B) 12(B) 14(B) 16(B) 7(B) 9(B) 13(B) 9(B) 13(B) 5(B) 18(B) 15(B) 12(B) 14(B) 16(B) 7(B)  

18 9(C) 13(C) 5(C) 18(C) 15(C) 12(C) 14(C) 16(C) 2(C) 2(C) 9(C) 13(C) 5(C) 18(C) 15(C) 12(C) 14(C) 16(C) 

_______________________________________________________________________________________________________________________________________________________________________ 
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STEP 6: 

Subjects' roles were randomly assigned.  

* = P1 

  

round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

________________________________________________________________________________________________________________________________________________________________________ 

1 11(A) 2(A) 9(A) 13(A) 5(A) 18(A) 15(A) 12(A) 14(A) 11(A)* 2(A)* 9(A)* 13(A)* 5(A)* 18(A)* 15(A)* 12(A)* 14(A)* 

2 12(B) 8(B) 11(B) 2(B) 9(B) 13(B) 5(B) 18(B) 15(B) 8(B)* 11(B)* 2(B)* 9(B)* 13(B)* 5(B)* 18(B)* 15(B)* 12(B)* 

3 18(C)* 15(C)* 1(C)* 8(C)* 11(C)* 2(C)* 9(C)* 13(C)* 5(C)* 1(C) 8(C) 11(C) 2(C) 9(C) 13(C) 5(C) 18(C) 15(C) 

4 13(A) 5(A) 18(A) 3(A) 1(A) 8(A) 11(A) 2(A) 9(A) 3(A)* 1(A)* 8(A)* 11(A)* 2(A)* 9(A)* 13(A)* 5(A)* 18(A)* 

5 2(B) 9(B) 13(B) 5(B) 6(B) 3(B) 1(B) 8(B) 11(B) 6(B)* 3(B)* 1(B)* 8(B)* 11(B)* 2(B)* 9(B)* 13(B)* 5(B)* 

6 8(C)* 11(C)* 2(C)* 9(C)* 13(C)* 17(C)* 6(C)* 3(C)* 1(C)* 17(C) 6(C) 3(C) 1(C) 8(C) 11(C) 2(C) 9(C) 13(C) 

7 3(A)* 1(A)* 8(A)* 11(A)* 2(A)* 9(A)* 4(A)* 17(A)* 6(A)* 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 11(A) 2(A) 9(A) 

8 17(B)* 6(B)* 3(B)* 1(B)* 8(B)* 11(B)* 2(B)* 10(B)* 4(B)* 10(B) 4(B) 17(B) 6(B) 3(B) 1(B) 8(B) 11(B) 2(B) 

9 10(C) 4(C) 17(C) 6(C) 3(C) 1(C) 8(C) 11(C) 7(C) 7(C)* 10(C)* 4(C)* 17(C)* 6(C)* 3(C)* 1(C)* 8(C)* 11(C)* 

10 16(A)* 7(A)* 10(A)* 4(A)* 17(A)* 6(A)* 3(A)* 1(A)* 8(A)* 16(A) 7(A) 10(A) 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 

11 1(B)* 14(B)* 16(B)* 7(B)* 10(B)* 4(B)* 17(B)* 6(B)* 3(B)* 14(B) 16(B) 7(B) 10(B) 4(B) 17(B) 6(B) 3(B) 1(B) 

12 6(C) 3(C) 12(C) 14(C) 16(C) 7(C) 10(C) 4(C) 17(C) 12(C)* 14(C)* 16(C)* 7(C)* 10(C)* 4(C)* 17(C)* 6(C)* 3(C)*  

13 4(A)* 17(A)* 6(A)* 15(A)* 12(A)* 14(A)* 16(A)* 7(A)* 10(A)* 15(A) 12(A) 14(A) 16(A) 7(A) 10(A) 4(A) 17(A) 6(A) 

14 7(B) 10(B) 4(B) 17(B) 18(B) 15(B) 12(B) 14(B) 16(B) 18(B)* 15(B)* 12(B)* 14(B)* 16(B)* 7(B)* 10(B)* 4(B)* 17(B)* 

15 14(C)* 16(C)* 7(C)* 10(C)* 4(C)* 5(C)* 18(C)* 15(C)* 12(C)* 5(C)  18(C) 15(C) 12(C) 14(C) 16(C) 7(C) 10(C) 4(C) 

16 15(A)* 12(A)* 14(A)* 16(A)* 7(A)* 10(A)* 13(A)* 5(A)* 18(A)* 13(A) 5(A) 18(A) 15(A) 12(A) 14(A) 16(A) 7(A) 10(A) 

17 5(B)  18(B) 15(B) 12(B) 14(B) 16(B) 7(B) 9(B) 13(B) 9(B)* 13(B)* 5(B)* 18(B)* 15(B)* 12(B)* 14(B)* 16(B)* 7(B)*  

18 9(C) 13(C) 5(C) 18(C) 15(C) 12(C) 14(C) 16(C) 2(C) 2(C)* 9(C)* 13(C)* 5(C)* 18(C)* 15(C)* 12(C)* 14(C)* 16(C)* 

_______________________________________________________________________________________________________________________________________________________________________ 
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Example 

In SESSION 1, subject 1 in round 16 plays game G15, with the display of treatment A, as player P1, and she is paired with subject 13.  In round 12 she plays game 

G6, with the display of treatment C, as player P2, and she is paired with subject 17 (see step 6 table). 

In each of the other six sessions we randomized the positions of the rows keeping the distribution of treatments across rows (for example, see the final table for 

session 2 below). 

This matching structure is characterized by the following desirable features: 

1. Each game is played 9 times, in 9 different rounds. 

2.  Each subject plays all 18 games. 

3.  Each subject plays 2 games against each of 9 different opponents. 

4.  The order in which games are played is different for each subject.  

5.  The order in which subject play as P1 or P2 is randomized. 

6.  Each player plays 6 games in each display. 
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Matching structure used in SESSION 2 (original position of the row is in brackets) 

  

round   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

__________________________________________________________________________________________________________________________________________________________________________________ 

1 [3]  18(A)* 15(A)* 1(A)* 8(A)* 11(A)* 2(A)* 9(A)* 13(A)* 5(A)* 1(A) 8(A) 11(A) 2(A) 9(A) 13(A) 5(A) 18(A) 15(A) 

2 [18]  9(B) 13(B) 5(B) 18(B) 15(B) 12(B) 14(B) 16(B) 2(B) 2(B)* 9(B)* 13(B)* 5(B)* 18(B)* 15(B)* 12(B)* 14(B)* 16(B)* 

3 [4]  13(C) 5(C) 18(C) 3(C) 1(C) 8(C) 11(C) 2(C) 9(C) 3(C)* 1(C)* 8(C)* 11(C)* 2(C)* 9(C)* 13(C)* 5(C)* 18(C)* 

4 [7]  3(A)* 1(A)* 8(A)* 11(A)* 2(A)* 9(A)* 4(A)* 17(A)* 6(A)* 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 11(A) 2(A) 9(A) 

5 [15]  14(B)* 16(B)* 7(B)* 10(B)* 4(B)* 5(B)* 18(B)* 15(B)* 12(B)* 5(B)  18(B) 15(B) 12(B) 14(B) 16(B) 7(B) 10(B) 4(B) 

6 [5]  2(C) 9(C) 13(C) 5(C) 6(C) 3(C) 1(C) 8(C) 11(C) 6(C)* 3(C)* 1(C)* 8(C)* 11(C)* 2(C)* 9(C)* 13(C)* 5(C)* 

7 [9]  10(A) 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 11(A) 7(A) 7(A)* 10(A)* 4(A)* 17(A)* 6(A)* 3(A)* 1(A)* 8(A)* 11(A)* 

8 [2]  12(B) 8(B) 11(B) 2(B) 9(B) 13(B) 5(B) 18(B) 15(B) 8(B)* 11(B)* 2(B)* 9(B)* 13(B)* 5(B)* 18(B)* 15(B)* 12(B)* 

9 [17]  5(C)  18(C) 15(C) 12(C) 14(C) 16(C) 7(C) 9(C) 13(C) 9(C)* 13(C)* 5(C)* 18(C)* 15(C)* 12(C)* 14(C)* 16(C)* 7(C)* 

10 [8]  17(A)* 6(A)* 3(A)* 1(A)* 8(A)* 11(A)* 2(A)* 10(A)* 4(A)* 10(A) 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 11(A) 2(A) 

11 [1]   11(B) 2(B) 9(B) 13(B) 5(B) 18(B) 15(B) 12(B) 14(B) 11(B)* 2(B)* 9(B)* 13(B)* 5(B)* 18(B)* 15(B)* 12(B)* 14(B)* 

12 [12]   6(C) 3(C) 12(C) 14(C) 16(C) 7(C) 10(C) 4(C) 17(C) 12(C)* 14(C)* 16(C)* 7(C)* 10(C)* 4(C)* 17(C)* 6(C)* 3(C)* 

13 [16]  15(A)* 12(A)* 14(A)* 16(A)* 7(A)* 10(A)* 13(A)* 5(A)* 18(A)* 13(A) 5(A) 18(A) 15(A) 12(A) 14(A) 16(A) 7(A) 10(A) 

14 [11]   1(B)* 14(B)* 16(B)* 7(B)* 10(B)* 4(B)* 17(B)* 6(B)* 3(B)* 14(B) 16(B) 7(B) 10(B) 4(B) 17(B) 6(B) 3(B) 1(B) 

15 [13]   4(C)* 17(C)* 6(C)* 15(C)* 12(C)* 14(C)* 16(C)* 7(C)* 10(C)* 15(C) 12(C) 14(C) 16(C) 7(C) 10(C) 4(C) 17(C) 6(C) 

16 [10]  16(A)* 7(A)* 10(A)* 4(A)* 17(A)* 6(A)* 3(A)* 1(A)* 8(A)* 16(A) 7(A) 10(A) 4(A) 17(A) 6(A) 3(A) 1(A) 8(A) 

17 [6]  8 (B)* 11(B)* 2(B)* 9(B)* 13(B)* 17(B)* 6(B)* 3(B)* 1(B)* 17(B) 6(B) 3(B) 1(B) 8(B) 11(B) 2(B) 9(B) 13(B) 

18 [14]  7(C) 10(C) 4(C) 17(C) 18(C) 15(C) 12(C) 14(C) 16(C) 18(C)* 15(C)* 12(C)* 14(C)* 16(C)* 7(C)* 10(C)* 4(C)* 17(C)* 

__________________________________________________________________________________________________________________________________________________________________________________ 
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FOR ONLINE PUBLICATION ONLY 

 

Appendix 4:  Full results of experiment 

The full results are shown in Table A4.1 below.  For each game G1 to G18, there is a panel 

reporting the frequencies of the choices made by the 126 subjects, disaggregated by player 

role (P1 or P2) and treatment (A, B or C).  Choices are classified according to whether the 

chosen strategy was displayed in the left (L), right (R) or bottom (B) circle.  In each panel, at 

the top of each ‘treatment’ column, the payoffs of the three pure strategy equilibria are shown 

in the order L, R, B.  In all cases, the cell that reports the frequency of s3 choices (i.e. the 

choice predicted by the theory of team reasoning) is shaded grey.   

 For example, consider game G2, in which the payoffs were x = 10, y = 9, v = 8, w = 7.  

In Treatment A, the left, right and bottom circles respectively displayed the s1, s2 and s3 

equilibria.  This is represented as <(10, 9), (9, 10), (8, 7)>.  Of the 21 subjects in the P1 role in 

this treatment, 10 chose L (i.e. s1), 10 chose R (i.e. s2), and 1 chose B (i.e. s3).  Of the 21 

subjects in the P2 role in this treatment, 11 chose L (i.e. s1), 10 chose R (i.e. s2), and 0 chose B 

(i.e. s3).  In Treatment B, the left, right and bottom circles respectively displayed the s2, s3 and 

s1 equilibria.  This is represented as <(9, 10), (8, 7), (10, 9)>.  Of the 21 subjects in the P1 role 

in this treatment, 11 chose L (i.e. s1), 0 chose R (i.e. s2), and 10 chose B (i.e. s3).  And so on.  

 At the bottom of each panel, the ‘coordination rate’ is reported for each treatment.  

This is the number of pairs of co-players in which both players chose the same circle, 

expressed as a percentage of the 21 pairs. 
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  Table A4.1:  Choice frequencies 

(Shaded cells show s3 choices.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

GAME G1 GAME G2

Treatment A Treatment B Treatment C Treatment A Treatment B Treatment C

<(10,10), (10,10), (9,8)> <(10,10),(9,8), (10,10)> <(9,8),(10,10),(10,10)> <(10,9), (9,10), (8,7)> <(9,10),(8,7), (10,9)> <(8,7),(10,9),(9,10) >

L 15 13 3 L 10 11 0

P1 R 4 4 7 P1 R 10 0 8

B 2 4 11 B 1 10 13

TOT 21 21 21 TOT 21 21 21

L 10 12 3 L 11 8 0

P2 R 8 0 10 P2 R 10 1 11

B 3 9 8 B 0 12 10

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%) 

38.1 33.3 38.1 38.1 47.6 38.1

GAME G3 GAME G4

Treatment A Treatment B Treatment C Treatment A Treatment B Treatment C

<(10,10), (10,10), (9,9)> <(10,10),(9,9), (10,10)> <(9,9),(10,10),(10,10) > <(10,9), (9,10), (8,8)> <(9,10),(8,8), (10,9)> <(8,8),(10,9),(9,10) >

L 10 14 2 L 7 5 5

P1 R 6 2 10 P1 R 6 13 3

B 5 5 9 B 8 3 13

TOT 21 21 21 TOT 21 21 21

L 11 10 2 L 5 7 10

P2 R 8 4 14 P2 R 4 7 3

B 2 7 5 B 12 7 8

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%)

52.4 38.1 52.4 28.6 23.8 47.6

GAME G5 GAME G6

Treatment A Treatment B Treatment C Treatment A Treatment B Treatment C

<(10,10), (10,10), (10,9)> <(10,10),(10,9), (10,10)> <(10,9),(10,10),(10,10)> <(10,9), (9,10), (9,8)> <(9,10),(9,8), (10,9)> <(9,8),(10,9),(9,10)>

L 12 11 4 L 9 14 3

P1 R 5 1 8 P1 R 9 0 8

B 4 9 9 B 3 7 10

TOT 21 21 21 TOT 21 21 21

L 15 10 2 L 15 11 1

P2 R 2 4 10 P2 R 6 0 11

B 4 7 9 B 0 10 9

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%)

47.6 38.1 33.3 52.3 57.1 61.9
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GAME G7 GAME G8

Treatment A Treatment B Treatment C Treatment A Treatment B Treatment C

<(10,9), (9,10), (9,9)> <(9,10),(9,9), (10,9)> <(9,9),(10,9),(9,10)> <(10,10), (10,10), (11,9)> <(10,10),(11,9), (10,10)> <(11,9),(10,10),(10,10)>

L 3 3 12 L 11 12 4

P1 R 3 16 3 P1 R 4 2 8

B 15 2 6 B 6 7 9

TOT 21 21 21 TOT 21 21 21

L 5 3 18 L 15 13 3

P2 R 5 15 1 P2 R 4 5 10

B 11 3 2 B 2 3 8

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%)

33.3 66.6 57.1 38.1 38.1 52.3

GAME G9 GAME G10

Treatment A Treatment B Treatment C Treatment A Treatment B Treatment C

<(12,9), (9,12), (11,10)> <(9,12), (11,10), (12,9)> <(11,10), (12,9), (9,12)> <(11,10), (10,11), (12,9)> <(10,11), (12,9), (11,10)> <(12,9), (11,10), (10,11)>

L 4 5 17 L 7 14 3

P1 R 2 13 1 P1 R 8 1 4

B 15 3 3 B 6 6 14

TOT 21 21 21 TOT 21 21 21

L 4 5 15 L 14 5 5

P2 R 4 14 1 P2 R 2 5 10

B 13 2 5 B 5 11 6

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%)

57.1 57.1 61.9 57.1 23.8 38

GAME G11 GAME G12

Treatment A Treatment B Treatment C Treatment A Treatment B Treatment C

<(11,9), (9,11), (10,10)> <(9,11), (10,10), (11,9)> <(10,10), (11,9), (9,11)> <(10,10), (10,10), (11,10)> <(10,10), (11,10), (10,10)> <(11,10), (10,10), (10,10)>

L 2 0 19 L 8 9 9

P1 R 0 19 1 P1 R 1 9 8

B 19 2 1 B 12 3 4

TOT 21 21 21 TOT 21 21 21

L 0 3 18 L 3 6 11

P2 R 1 17 1 P2 R 4 7 8

B 20 1 2 B 14 8 2

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%)

85.7 71.4 85.7 57.1 19 33.3
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GAME G13 GAME G14

Treat.A Treat.B Treat.C Treat.A Treat.B Treat.C

<(10,9), (9,10), (11,10)> <(9,10), (11,10), (10,9)> <(11,10), (10,9), (9,10)> <(10,9), (9,10), (10,10)> <(9,10), (10,10), (10,9)> <(10,10), (10,9), (9,10)>

L 0 1 16 L 0 1 21

P1 R 1 18 0 P1 R 0 20 0

B 20 2 5 B 21 0 0

TOT 21 21 21 TOT 21 21 21

L 2 3 21 L 0 1 20

P2 R 1 17 0 P2 R 0 20 0

B 18 1 0 B 21 0 1

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%)

80.9 71.4 76.2 100 90.5 95.2

GAME G15 GAME G16

Treat.A Treat.B Treat.C Treat.A Treat.B Treat.C

<(10,10), (10,10), (12,11)> <(10,10), (12,11), (10,10)> <(12,11), (10,10), (10,10)> <(10,9), (9,10), (12,11)> <(9,10), (12,11), (10,9)> <(12,11), (10,9), (9,10)>

L 4 2 18 L 1 2 15

P1 R 2 18 2 P1 R 1 19 3

B 15 1 1 B 19 0 3

TOT 21 21 21 TOT 21 21 21

L 3 3 11 L 1 1 19

P2 R 4 14 7 P2 R 1 20 1

B 14 4 3 B 19 0 1

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%)

53.2 61.9 61.9 90.5 85.7 61.9

GAME G17 GAME G18

Treatment A Treatment B Treatment C Treatment A Treatment B Treatment C

<(10,10), (10,10), (11,11)> <(10,10), (11,11), (10,10)> <(11,11), (10,10), (10,10)> <(10,9), (9,10), (11,11)> <(9,10), (11,11), (10,9)> <(11,11), (10,9), (9,10)>

L 1 2 21 L 0 0 21

P1 R 0 19 0 P1 R 0 21 0

B 20 0 0 B 21 0 0

TOT 21 21 21 TOT 21 21 21

L 0 0 20 L 0 2 20

P2 R 0 20 0 P2 R 1 19 0

B 21 1 1 B 20 0 1

TOT 21 21 21 TOT 21 21 21

Coord. Rate (%) Coord. Rate (%)

95.2 90.5 95.2 95.2 90.5 95.2
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Appendix 5: Correlation between s3 choices in each pair of games 

 

  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 

G1                                     

G2 0.1494*                                   

G3 0.357*** 0.136                                 

G4 -0.027 0.016 0.1677*                               

G5 0.529*** -0.054 0.483*** -0.013                             

G6 0.125 0.246*** 0.310*** 0.205** 0.091                           

G7 0.034 0.085 0.063 0.451*** 0.042 0.087                         

G8 0.412*** 0.276*** 0.369*** -0.025 0.390*** 0.253*** 0.082                       

G9 -0.125 0.085 -0.037 0.070 -0.102 -0.063 0.109 -0.144                     

G10 0.002 0.096 0.037 0.004 0.013 0.314*** -0.097 0.190** -0.140***                   

G11 -0.026 0.045 -0.008 0.158* -0.133 0.086 0.309*** -0.170* 0.418*** -.204**                 

G12 0.177** 0.129 0.2154** -0.322*** 0.250*** 0.108 -0.199** 0.341*** 0.247 0.028 -0.006               

G13 0.067 0.048 0.011 -0.049 -0.039 0.093 -0.101 0.113 0.054 0.070 0.017 0.28***             

G14 -0.103 0.020 -0.091 -0.073 -0.225** 0.038 0.233*** 0.072 0.121 -0.053 0.110 0.153* -0.060           

G15 0.178** 0.080 0.096 -0.364*** 0.217** 0.000 -0.271*** 0.198** 0.109 0.182** -0.112 0.411*** 0.233*** -0.099         

G16 0.060 0.047 0.073 -0.220** 0.086 0.089 -0.193** 0.040 0.072 0.121 0.026 0.214** 0.301*** -0.057 0.418***       

G17 0.075 0.026 -0.039 -0.149 0.086 0.049 -0.048 0.094 0.040 -0.001 -0.072 0.119 -0.078 0.235*** 0.141 -0.075     

G18 -0.213** 0.023 -0.061 -0.115 -0.050 0.044 0.172* 0.083 0.075 -0.023 0.080 0.178** -0.069 0.565*** -0.014 0.073 0.195**   

Pearson correlation index between choices in row game and column game;                   

  *, ** and *** denote rejection at 10, 5 and 1 significant levels (Ho: correlation =0)                    

 


