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Abstract 

Photochemical isomerization in sterically crowded chiral alkenes is the driving force for molecular 

rotary motors in nanoscale machines. Here the excited state dynamics and structural evolution of 

the prototypical light driven rotary motor are followed on the ultrafast timescale by femtosecond 

stimulated Raman spectroscopy (FSRS) and transient absorption (TA). TA reveals a sub 100 fs blue 

shift and decay of the Franck-Condon bright state arising from relaxation along the reactive potential 

energy surface. The decay is accompanied by coherently excited vibrational dynamics which survive 

the excited state structural evolution. The ultrafast Franck-Condon bright state relaxation is to a dark 

excited state, which FSRS reveals to have a rich spectrum compared to the electronic ground state, 

with the most intense Raman active modes shifted to significantly lower wavenumber. This is 

discussed in terms of a reduced bond order of the central bridging bond and overall weakening of 

bonds in the dark state, which is supported by electronic structure calculations. The observed 

evolution in the FSRS spectrum is assigned to vibrational cooling accompanied by partitioning of the 

dark state between the product isomer and the original ground state. Formation of the product 

isomer is observed in real time by FSRS. It is formed vibrationally hot and cools over several 

picoseconds, completing the characterization of the light driven half of the photocycle.  
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Introduction 

The design and synthesis of molecular machines is a major challenge for chemistry and chemical 

biology,1-5 with the stimulation and control of molecular motion at its heart. Power can be delivered 

to molecular machines both chemically and electrochemically, but the least invasive approach is 

conversion of light energy to mechanical motion.  In the 1990s, Feringa and co-workers developed a 

family of unidirectional light driven molecular motors based on a chiral sterically crowded alkene 

core.4, 6-7 These rotary motors function by successive orthogonal photochemical and thermal steps, 

where the structure and stereochemistry impose unidirectional rotation about the olefinic bond 

(Figure 1).8-10 Their synthetic versatility has opened up numerous opportunities for applications as 

light driven molecular motors in nanomachines.  Successive generations of molecular motors 

enabled control over the rate determining thermal step and operation at ever higher frequencies 

(currently exceeding 1 MHz). Recent advances have enabled the chiral centre to be dispensed with;9, 

11-13 several examples have already featured in molecular scale devices.14-17 

 

 

Figure 1. Photomolecular Rotor Photocycle. Absorption of a photon reduces the olefinic bond order 

giving rise to isomerization of 1a to yield the metastable ground state 1b.  A second thermally 

activated step completes the isomerization and reforms the initial ground state. The cycle is then 

repeated. 
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Despite the exquisite control achieved over the thermal step of their operation, the lack of synthetic 

control over the photochemical quantum yield of the power stroke (Figure 1), reduces the motor’s 

efficiency resulting in absorbed energy being dissipated as heat.9-10  Rational control by design of this 

step necessitates understanding the excited state dynamics, and how they lead to partitioning 

between isomerization and unproductive relaxation back to the original ground state. Quantum 

chemical calculations by Filatov and co-workers determined that excited state pathways for 

molecular rotors are dependent on accessible conical intersections (CIs) where efficient radiationless 

decay to the ground state occurs.18-19 These CIs were characterized by a twist about the central 

double bond and a strong pyramidalization at one of the olefinic carbon atoms. Populations were 

calculated yielding a sub-picosecond excited state lifetime and a quantum yield of ca 0.3, in 

qualitative agreement with experimental observations.  Experimentally, Conyard et al. measured 

excited state dynamics with sub 50 fs resolution time resolved fluorescence and picosecond 

transient absorption.20-21 They resolved a biphasic excited state relaxation, with a dominant initial 

fluorescence decay of <100 fs, which was assigned to excited state structural evolution from a 

Franck-Condon excited bright state to a dark state on the S1 potential energy surface. The weak 

dependence of bright state decay time on solvent viscosity was consistent with motion along a 

coordinate which does not displace a large solvent volume, such as the pyramidalization coordinate 

identified in calculations.  The S1 dark state was observed in transient absorption to relax to the S0 

ground state in ca 1.5 ps. The appearance of the 1.5 ps decay as a component in the bright state 

fluorescence was interpreted as an equilibration between the two states.20-21 Superimposed on the 

fluorescence decay were oscillations arising from coherent excitation of vibrational modes in the S1 

state.20  

Following these early investigations of excited state dynamics, there have been a number of 

developments in research calculating the temporal evolution of nuclear and electronic structure on 

the excited state potential energy surface of the prototypical molecular rotor 1a (Figure 1) and 

related molecules.22-28 Some new and potentially more efficient motors have been described.22, 29-30 
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In many of these calculations the nature and structure of the dark state plays a key role, yet remains 

a topic of debate.25, 28 Here we combine femtosecond stimulated Raman spectroscopy (FSRS) and 

transient absorption (TA) experiments with 100 fs time resolution to resolve the excited state 

structural dynamics of 1a.31  These two complementary techniques have been shown to provide high 

levels of detail in resolving structural dynamics in a number of photochemical and photobiological 

reactions.32-35 In particular, resonant FSRS (and its time domain analog36-40) provides the time 

dependent vibrational signature of the resonant transient states.  

Applied to 1a, FSRS yields new experimental insight into molecular structural evolution associated 

with motor photochemistry. Very recently the first calculations of the vibrational spectrum of the 

dark excited electronic state of 1a were reported, and compared with picosecond transient IR data 

This represents an important first step in characterising dark state structure, but the early time IR 

spectra were dominated by low lying electronic transitons.25 Here using FSRS we provide a well 

resolved Raman spectrum of the dark state between 200 fs and 100 ps after excitation. A feature of 

resonance enhanced FSRS is that it yields a spectrum unperturbed by ground state bleaches or other 

sources of transient IR absorption.41  Thus, these FSRS data provide an essential test of future 

calculations. The TA data are consistent with earlier fluorescence studies, but detailed analysis of TA 

and FSRS together reveals an important role for intramolecular vibrational redistribution (IVR) in 

each photochemical step. Further, the FSRS data characterize the formation of vibrationally hot 1b 

from the dark state in real time, while TA data reveal the persistence of vibrational coherence 

following conversion of the light to dark state. 

Results and Discussion.  

The TA data for 1a in cyclohexane (Figure 2A) show two excited state absorptions bands at 760 nm 

and 550 nm. Within 100 fs the 760 nm transition shifts to higher energy and decays to a nonzero 

final value. Simultaneously the 550 nm band gains amplitude, reaching a maximum at 120 fs.  A 

more accurate time constant for this primary step cannot be obtained, as it is close to the 
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instrumental time resolution, but a 100 fs timescale is consistent with time resolved fluorescence 

studies of 1a, which had a dominant decay time of 80 fs.20-21  Thus, the 760 nm TA can be assigned to 

the fluorescent (bright) Franck-Condon excited state. Beyond 120 fs both bands decay uniformly 

with a time constant of 1.6±0.2 ps to the baseline, leaving a long lived transient absorbing below 500 

nm (Fig. 2). This long lived transient is assigned to formation of 1b, which has its absorption onset 

below 500 nm (Fig. S8). As previously noted,21 1b is formed directly as the 1.6 ps excited state 

intermediate decays; consistent with that, an isosbestic point is observed at 480 nm persisting over 

the first 1 ps (Fig 2A). The isosbestic point is absent at later times, being replaced by a monotonic 

decay.  The loss of the isosbestic point is ascribed to vibrational cooling in the ground state of 1b, 

which is formed from the 550 nm absorbing excited state with considerable excess energy. As the 1b 

ground state cools the hot-band contribution to the red edge absorption (ca 480 nm) will decrease, 

thus modifying the shape of the spectrum. 

These TA data are consistent with the previous model developed on the basis of time resolved 

fluorescence and picosecond TA.20-21 The newly observed ultrafast decay in the 760 nm TA band is 

assigned to the short lived bright state.  Its decrease in amplitude and blue shift reflects the ultrafast 

structural distortion as the Frank-Condon excited state evolves towards a dark state, to which the 

rapidly rising 550 nm TA is assigned. These states establish an equilibrium and decay in parallel with 

the 1.6 ps decay constant.  The dark state partitions via a CI to either the original ground state, 1a, or 

the metastable state, 1b. The principal conclusions concerning population dynamics on the excited 

state potential surface are summarized in Figure 3.   
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Figure 2. Ultrafast Transient Absorption. (A) TA spectra from 470 nm to 800 nm showing fast 

decay/rise of the bright/dark state on a 100 fs timescale, followed by a common population decay 

time of 1.6±0.2 ps, leading ultimately to repopulation of the ground state and formation of the 

isomer 1b, which absorbs at <500 nm. (B). The corresponding kinetics in the two transient bands; the 

early time coherent vibrational dynamics are all detailed in supporting information Details on the 

fitting and analysis, including vibronic coherences, are presented in SI4 
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Figure 3. Schematic 1D plot of Energy as a Function of Reaction Coordinate. In this representation 

of the multidimensional reactive potential energy surface the Franck-Condon excited bright state 

absorbs at 760 nm. As structural relaxation occurs in 100 fs toward the dark state the S1 energy 

decreases but the spectrum blue shifts, requiring increasing energy separation to Sn. The dark state 

is formed in 100 fs and absorbs at 550 nm. Its structure is significantly different to the bright state, 

such that the higher (Sn) excited state need not be of the same origin as for the bright state, and 

other intermediate states of lower transition moment may exist. As the dark state forms the S0 

energy increases and internal conversion to the ground state may occur at CIs.  Note that the 

structural coordinate connecting bright and dark states need not be the same as that connecting the 

dark state to the CI and 1b. 

 

The coherently excited vibrational oscillations observed in time resolved fluorescence are also 

observed in the TA data (Figure 2B). The residual data recovered after subtraction of the 1.6 ps 

exponential fit were analysed in terms of a sum of damped cosine functions, with a sum of three 

functions required to obtain a good fit.  The frequencies recovered were 114, 172 and 271 cm-1, 

consistent with earlier fluorescence data.20  The damping time constants have large errors 
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associated with them (SI S4) but a mean value of 530 fs is recovered.  These coherently excited 

modes in the excited electronic state are most apparent in the bright state, but are also present in 

the dark state TA (Figs.2B, SI S6, S7). This is a significant result, showing that the vibronic coherences 

initially excited in the Franck-Condon bright state are preserved during the extensive structural 

reorganisation leading to the dark state. The correspondence between frequencies in the dark and 

bright states, and a mean damping time which is longer than the ca 100 fs required for light to dark 

conversion, suggests an assignment to ‘spectator modes’ i.e. modes that modulate the energy or 

transition moment of the excited state, but are not directly modified during the reaction.  The 

persistence of such coherent vibrational dynamics into the dark state may have implications for the 

quantum yield of the isomerization, as recent simulations suggest that passage through a conical 

intersection is a function of vibrational coherence.42  

For the FSRS measurements the 550 nm wavelength for the Raman pump (see experimental details) 

was chosen to be resonant with the S1 to Sn transition of the dark state (Figure 3). Since the 

transition is strong (Figure 2A) the FSRS spectra will be dominated by resonantly enhanced Raman 

active modes of the dark state. The time dependent FSRS spectra (Figure 4A, B) are compared with 

the steady state stimulated Raman spectra of the 1a ground state and with the long time (averaged 

over 70 - 100 ps) FSRS response shown in Fig. 4C. The latter measurement corresponds to a 

difference spectrum between the stimulated Raman spectra of the 1a and 1b ground states, but 

given that the red shifted absorption spectrum of 1b (Fig. S9) is more strongly resonant with the 

Raman pump wavelength we expect its contribution to dominate the spectrum. The stimulated 

Raman spectrum for 1a is in good agreement with the steady state resonance Raman spectrum (Fig. 

S10), as expected.  
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Figure 4. FSRS Data.  The time dependent evolution of the FSRS data for excited 1a in cyclohexane 

(A) and methanol(B)  (C) The experimental stimulated Raman spectrum of 1a in both solvents (blue 

methanol, green cyclohexane) is compared with the long-time FSRS spectrum (pink) and the DFT 

calculated Raman spectra for 1a (cyan) and 1b (red). (D) EAS recovered through a double 

exponential global analysis of the FSRS data in (A); the quality of fit is shown inset. Complete details 

of the data analysis are presented in SI9 figures S13-15   
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These experimental ground state spectra are complemented by DFT calculations for 1a and 1b, (Fig. 

4C). There is good agreement between calculation and experiment. The Raman spectrum of 1a is 

dominated by two broad modes around 1580 cm-1 matching the intense pair of calculated modes. 

The experiment suggests a red shift for the most Raman active modes between 1a and 1b, which is 

again reproduced in the calculation. The DFT calculations reveal that for both 1a and 1b the cluster 

of modes around 1400 - 1700 cm-1 arise mainly from C=C stretches, with the most intense (for 1a 

calculated at 1564 and 1547 cm-1 and for 1b red-shifted at 1532 and 1503 cm-1) having major 

contributions from the stretch of the olefinic bridging bond; detailed DFT assignments are presented 

in supporting information (Table S1) and the bond displacements for the five most Raman active 

modes of 1a and 1b are shown in Fig S5. A major contribution from bridge localised modes in the 

resonance Raman spectrum suggests that such modes are displaced in the transition between the 

ground and bright states.  DFT calculations of the HOMO and LUMO for 1a are shown in Figure 5. It is 

apparent that the excitation is localised on the C=C bond, and that HOMO and LUMO are bonding 

and anti-bonding with respect to electronic excitation. This is wholly consistent with both the Raman 

enhancements and a reduced bond order in the excited state leading to the twisting and 

pyramidalization reported in calculations. 

 

Figure 5. DFT Calculation The HOMO and LUMO from the DFT calculation (SI S3) showing localisation 

of excitation on the bridging bond. 
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The FSRS signals beyond 170 fs decay monotonically (Fig. 4A). The 100 fs rise resolved in TA is not 

recovered, as the first 170 fs of data are obscured by a coherence artefact during pulse overlap. FSRS 

experiments were conducted in both polar H-bonding methanol and nonpolar cyclohexane which 

yielded very similar spectra (Fig 4A,B) and kinetics. This suggests that intramolecular electronic and 

nuclear structure relaxation dominate the excited state dynamics, and the medium has only a minor 

effect on dark state structure.  

The FSRS decay is non-single exponential (see below), but the mean time constant (1.4 ps) is in 

accord with that for TA decay (1.6 ps). This confirms the assignment of the FSRS to the dark state. 

The most intense FSRS signals are observed at 1430 and 1345 cm-1 (Figure 4A), markedly red shifted 

with respect to the most intense experimental ground state Raman bands (1585 and 1560 cm-1, 

Figure 4B). Similar but smaller red shifts were noted in studies of the “stiff-stilbene” 

photoisomerization, which also proceeds following excitation localised on a bridging C=C bond.43 The 

70 cm-1 red shift in that case was associated with a calculated lengthening of the ethylenic bond by 7 

pm. The larger red shift seen here suggests an even larger change in 1a structure; such large shifts 

are consistent with the results of theoretical calculation. For example, Filatov calculated that the 

bridging bond extends by 13 pm between ground state and the lowest energy CI in an earlier 

generation alkene based molecular motor.18 A similarly large extension of an ethylenic bond was 

calculated upon excitation of diphenyl dibenzofulvene.44 The red shift in the dominant modes 

detected in FSRS is thus interpreted as reflecting localisation of the S0�S1 excitation on the olefinic 

bridging bond (Fig. 5), leading to reduced bond order in the Franck-Condon excited state, which in-

turn allows the structural evolution (pyramidalization and twisting18-19) to form the dark state 

structure, which has a significantly extended bridging bond compared to the ground state.  

An alternative explanation for the red shift is that higher quanta of the C=C stretch are populated in 

the Franck Condon state, and retain their population in the dark state. In that case the FSRS spectra 

may reflect a ‘hot band’ Raman transition from v = 1 to 2, thus red shifted due to the anharmonicity. 
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This is a less likely explanation, as the C=C stretch plays a major role in the electronic transition and 

is thus strongly perturbed upon excitation, undergoing a large frequency shift.  Further, the bridging 

C=C bond is intimately involved in the highly anharmonic reaction coordinate (twisting, stretching 

and pyramidalization). Both of these factors will contribute to very strong coupling with low 

frequency background modes and ultrafast intramolecular vibrational relaxation (IVR) will occur for 

any population initially in the C=C stretch. 

Two other features of the FSRS spectra deserve comment. The Raman linewidths in the excited state 

(Fig. 4A,B) are on the order of 50 cm-1, significantly broader than those measured in the ground state 

(Fig. 4C), the widths of which mainly reflect the instrumental resolution. The broad linewidth can in 

part be ascribed to lifetime broadening, with the 1.5 ps lifetime yielding a line width of ca 15 cm-1. In 

addition, as noted above (Fig. 3), the dark state is formed rapidly in an energetically downhill 

process. Thus the dark state is expected to have considerable excess energy residing, after rapid IVR, 

in low frequency modes. Coupling between this hot vibrational distribution and the higher frequency 

stretch modes probed in FSRS will also contribute to an increased linewidth. The second noteworthy 

feature is that a significantly larger number of modes contribute to the excited state Raman spectra 

than appear in the ground state. The appearance of numerous Raman active modes is not in itself 

surprising. The ground state DFT calculation reveals numerous modes in this region, largely 

associated with C=C stretches localised on the fluorene and naphthyl rings of 1a (SI3, Table S1). We 

assign the difference between the sparse ground state and rich excited state spectra observed here 

to the dominance of the bridge C=C stretch in the S0-S1 resonance enhanced spectrum, arising from 

the expected large displacement (Fig. 5). The FSRS spectrum on the other hand is resonant with S1 to 

Sn, and thus need not show the same enhancement pattern. The detailed assignment of the FSRS 

spectrum therefore requires both high quality calculations of the dark state spectrum, and further 

experiments with isotopically labelled samples; progress in this direction is encouraging.25  
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One further possible origin of additional modes in FSRS is a contribution from the Sn state, arising 

from coherence Stokes Raman scattering (CSRS). Ernsting et al recently showed the appearance of S1 

vibrations in broadband CSRS measurements resonant with S0 � S1 transition.45 This seems less 

likely here as the inherently ultrafast lifetime of higher excited Sn states will make any such 

contribution extremely broad and thus difficult to resolve. 

Significantly, the shape of the FSRS spectrum evolves over time (Figure 4A). In particular the pair of 

higher frequency modes at 1590 and 1520 cm-1 are well resolved at 170 fs but ill-defined by 1 ps. The 

evolution persists for ca 10 ps when the final state is formed. The final state (time averaged 

spectrum in Figure 4C) is readily identified as 1b by a comparison with the calculated Raman 

spectrum (see below). Thus to a first approximation the spectral evolution can be considered simply 

as decay of the dark state to form 1b (and 1a), where the formation of 1b yields the mode at ca. 

1560 cm-1 which ‘fills in’ the intensity between the 1590/1520 cm-1 pair. Such a mechanism predicts 

an evolution with a single time constant and single final species, 1b. The FSRS were analysed using a 

global analysis procedure assuming this model, and the evolution associated spectra (EAS) are 

presented in Fig. S13b. While qualitatively satisfactory the single exponential fit does not adequately 

describe the data; for example the deviation between experimental and fitted intensities around 2-4 

ps at 1430 cm-1 is apparent.  Secondly the recovered time constant is 1 ps, which is less than the 1.6 

ps dark state decay time measured accurately in TA. Finally, the long-time ‘final’ spectrum has a non-

physical sloping baseline that does not correspond to 1b (Figure 4BC). Consequently we added an 

additional component to the global analysis. In that case the fit is good (Fig. S16), the mean decay 

time reflects the time constant recovered from the TA and the final spectrum has a flat baseline.  

Essentially the same results as in Fig 4 d were obtained for methanol (Fig. S13, S14). 

The global analysis shows the FSRS relaxing in 400 fs to an intermediate spectrum which already 

contains part of the 1b spectrum but is otherwise similar to the early time spectrum.  We suggest 

that the origin of the non-single exponential decay of the dark state lies in its ultrafast formation. 
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Being formed in ca 100 fs the initial dark state will appear with a nonthermal population in low 

frequency modes which will depend on the initial excitation energy and the intramolecular coupling. 

On a picosecond timescale this population evolves, leading to different mode coupling patterns 

which will in turn modify the high frequency spectra observed in Fig. 4. Similar spectral evolution has 

been seen in other systems by FSRS.46  There is no reason to expect a priori such an intramolecular 

relaxation to be governed by an exponential decay law, so the intermediate EAS simply reflects a 

continuous evolution of the dark state spectrum, and it is this spectral evolution which lends the 

FSRS a nonexponential relaxation while the dark state population decay kinetics are 

monoexponential. 

A second important feature of the FSRS is the long lived (permanent on the 100 picosecond 

timescale) pair of transitions at 1550 and 1510 cm-1. As mentioned above, these are assigned to 

vibrational modes of the metastable 1b form, even though 1b is not fully resonant with the Raman 

pump (Fig. S9).  Since FSRS records the difference spectrum, these transitions, if they are from 1b, 

must arise from a vibrational mode which is shifted with respect to 1a. The DFT calculation indeed 

predicts two such shifted modes with significant Raman amplitude and contributions from the 

olefinic C=C stretch (Fig. 4C, SI S5); this is consistent with an assignment of the long lived FSRS to 1b. 

These data thus show that 1b forms directly from the dark state. We further note a slow (tens of 

picoseconds) shift of the 1b mode to higher frequency (Fig. 4A), which we ascribe to excess energy in 

S0, which is formed with a high vibrational temperature by isoenergetic internal conversion from the 

S1 dark state. The initially formed hot ground state will relax by IVR to populate a distribution of low 

frequency modes.  The effect of anharmonic coupling of these low frequency modes to the C=C 

stretch is to shift the Raman active mode to lower wavenumber.47 As the low frequency modes 

transfer energy to the solvent on a picosecond time scale the C=C mode shifts to higher 

wavenumber, as observed.  
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Finally we note the occurrence of a weak and persistent negative signal at 1590 cm-1. A long-lived 

negative feature is not expected from the S1� Sn resonance used to generate the FSRS.  Such 

features have been observed in other FSRS experiments41, 48 and may reflect the appearance of 

dispersive lineshapes48. However, we note that this negative signal matches closely the most intense 

ground state feature in the Raman spectrum.  There are additional (albeit non-resonant) pathways 

through which the ground state could contribute to the FSRS spectrum.41  Consequently, the 

possibility of ground state modes contributing even in the fully resonant S1�Sn FSRS spectrum is a 

complicating feature which should be borne in mind when analysing such data. 

Conclusion 

We have investigated excited state dynamics of the best established light driven molecular motor. 

Both ultrafast population dynamics and the vibrational structure of an intermediate dark excited 

electronic state in the photocycle have been characterized. The bright Franck-Condon excited state 

decays in <100 fs to establish an equilibrium with the dark state. This excited state structure change 

is accompanied by coherent excitation of vibrational modes. The vibrational coherences are 

attenuated in the dark state but nevertheless survive the 100 fs structural evolution from the bright 

state.  The dark state spectrum is characterized by a marked decrease in the frequency of Raman 

active modes. This is assigned to elongation and weakening of the bridging olefinic bond. Other C=C 

ring-localised modes are resolved in the dark state with greater amplitude compared to the ground 

electronic state, due to a change in the resonance condition.  Further intramolecular relaxation was 

observed in the dark state through evolution of the FSRS spectral profile. The excited dark state 

population decays directly back to the ground electronic state in 1.6 ps, partitioning between the 

original (1a) and metastable (1b) forms. The photochemical product 1b is formed from the dark state 

with considerable excess vibrational energy. This excess energy relaxes via ultrafast IVR and 

subsequently cools by energy transfer to the solvent on the tens of picoseconds timescale. 



17 

 

Experimental Details. The synthesis and characterization of 1a has been described elsewhere.11 

Measurements were made in a 0.2 mm cuvette with an OD of 0.4; excitation was at 390 nm. The 

laser source is detailed elsewhere.49 The spectrometers used for TA and FSRS and the measurement 

and signal processing procedures are detailed in supporting information. The global analysis 

software used has been described elsewhere.50 
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