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Abstract 

 

We define Multidimensional Value at Risk (MVaR) as a natural generalization of VaR. 

This generalization makes possible a number of important applications. For example, 

many techniques developed for VaR can be applied directly to MVaR. As an illustration, 

we employ VaR forecasting and evaluation techniques. One of our forecasting models 

builds on the progress made in the volatility literature and decomposes MVaR into long-

term trend and short-term cycle components. We compute short- and long-term MVaR 

forecasts for several multidimensional time series and discuss their (un)conditional 

accuracy. 
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1. Introduction 

The interest in multidimensional tail (MT) events is driven by its importance in 

economics, finance, insurance and in many other areas of applied probability, statistics 

and decision theory. In economics and finance, modeling and forecasting MT events is 

paramount for many important applications such as portfolio decisions (e.g., Ang and 

Bekaert, 2002), risk management (e.g., Embrechts et al. 2002; Meine, et al. 2016), 

multidimensional options (e.g., Cherubini and Luciano, 2002), credit derivatives, 

collateralised debt obligations and insurance (e.g., Hull and White 2006; Kalemanova et 

al. 2007; Su and Spindler, 2013), contagion, spillovers and economic crises (Bae et al. 

2003; Zheng, et al. 2012; Hautsch, Schaumburg and Schienle, 2015), systemic risk and 

financial stability (Adrian and Brunnermeier, 2016; Gonzáles-Rivera, 2014) and market 

integration (e.g., Bartram et al. 2006; Lehkonen, 2015). 

 

Tail events are closely related to extreme risk that is generally defined as the potential for 

significant adverse deviation from expected results. In the univariate context, a measure 

of extreme risk widely used in practice is the Value at Risk (VaR). VaR is defined as the 

maximum loss on a portfolio over a certain period of time that can be expected with a 

nominal probability. However, modern risk management generally involves more than 

one risk factor and is particularly concerned with the evaluation and balancing of their 

impacts. For example, multifactor models (e.g., Chen et al., 1986; Ferson and Harvey, 

1998) are used to measure and manage exposure to each of the multiple economy-wide 

risk factors.  
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This paper discusses a new angle on modeling and forecasting multidimensional tail 

events. Building on related recent literature (e.g., Prékopa, 2012; Polanski and Stoja, 

2012; Torres, et al., 2015), we apply a generalized version of VaR, Multidimensional 

Value at Risk (MVaR), that is defined as a value that delimits a multidimensional tail 

with a nominal probability mass under a given density function. MVaR can be seen as an 

illustration of the multiple sources of risk: If VaR is a univariate risk measure, which 

instead of the variance takes into account the entire tail density, then MVaR is a measure 

of multidimensional risk that instead of the covariances takes into account the entire 

multidimensional tail.  

 

Why should we care about MVaR when in typical portfolio applications it is the portfolio 

VaR that matters and not the multidimensional tail risk of the components of the 

portfolio? Although VaR might be the appropriate risk measure in portfolio applications, 

MVaR is useful in other circumstances where risk sources cannot be aggregated to form 

an informative risk measure or the portfolio interpretation of a collection of variables is 

not natural, useful or possible. 

 

A prominent example of the importance of properly accounting for the distributional 

characteristics of the multiple sources of risk comes from stress testing of portfolios or 

financial systems. Typically, stress testing frameworks begin by developing individual 

scenarios with a negative outlook (tail events) for the evolution of certain economic 

drivers (e.g. GDP growth, interest rates, unemployment, stock market performance, 

investor sentiment) and then proceed to evaluate the impact of these on portfolios or 
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systemically important institutions (e.g., Bank of England, 2015). Treating these drivers 

individually presents a problem as they are obviously interdependent. Moreover, it would 

be difficult, if not nonsensical, to construct a portfolio of these factors and use its VaR as 

a tail risk measure. For example, what are the appropriate weights and their 

interpretations for each source of risk in such a portfolio? A sensible alternative in this 

case is to consider the sources of risk jointly. In this case, MVaR can considerably 

simplify the task. 

 

Another example, related to stress testing that highlights the importance of MVaR is 

systemic risk. This is the risk of collapse faced by the financial system as a whole when 

one of its constituent parts gets into financial distress. Due to the interconnectivity of the 

financial institutions, a shock faced by one institution in the form of a tail event, increases 

the probability other financial institutions experiencing similar tail events, leading to a 

domino effect (e.g., Gai and Kapadia, 2010; Rogers and Veraart, 2013; Hautsch, 

Schaumburg and Schienle, 2014). In this case, it would be inappropriate and 

uninformative to treat the financial system as portfolio of banks and compute its VaR.  

 

Therefore, while it is important to have a measure of the aggregate tail risk, often it is 

also important to know the direct dependence on, interrelationships among as well as the 

co-dynamics of the specific sources of tail risk. By focusing on the joint distribution of 

the individual sources of tail risks, we provide a framework to characterize the co-

dependence of these risks. 
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An important advantage of MVaR is that techniques and applications developed for VaR 

can, in principle, be applied directly to MVaR. In this paper, we illustrate this with short- 

and long-term MVaR forecasting and evaluation. First, to obtain one-step ahead MVaR 

forecasts we employ the Conditional Autoregressive Value at Risk (CAViaR) of Engle 

and Manganelli (2004). However, CAViaR is a purely statistical model and does not 

distinguish between long-term and persistent movements in the tails, driven perhaps by 

the macroeconomic and company fundamentals, and transitory movements due to 

investor sentiment or other short-lived effects. With this in mind, we investigate a new 

two-factor forecasting model that we apply to MVaR. The model has several advantages. 

It is simple to estimate and it can easily produce multi-step ahead forecasts. Our Two-

Factor Model (2FM) decomposes MVaR into a long-term trend and short-term cycle 

which can then be examined for relationships with economic and other variables. Finally, 

we use the scaling property of financial and economic time series to forecast MVaR at 

different frequencies and horizons. We evaluate the MVaR forecasts by employing 

adapted conditional and unconditional evaluation techniques of VaR forecasts. This paper 

is, to the best of our knowledge, the first to raise these issues in relation to 

(multidimensional) tail events. 

 

2. Multidimensional Value at Risk 

For the continuous and strictly increasing CDF   (PDF  ) of a unidimensional random 

variable   on the real line, the VaR at the nominal level   is usually identified with the 

quantile    for which          More generally, VaR can be defined as the cutoff    

such that the probability mass under   of the interval              for a non-zero 
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number   is equal to  . Depending on the values of  , this definition can apply to the left 

(   ) or to the right (   ) tail of a distribution and it also allows for normalization.   

 

In analogy to VaR, for a joint CDF   (PDF  ) of a vector             of   random 

variables on    with continuous and strictly increasing marginal CDFs, the 

Multidimensional Value at Risk (MVaR) in direction      at the nominal probability 

level   is the unique cut-off value   
    such that the set,  

 

  
                

        ,    (1) 

 

has probability mass   under  . We refer to the set   
  as MVaR-region or 

multidimensional tail. In Figure 1, we illustrate the construction of the multidimensional 

tail    
  as a Cartesian product of univariate tails (VaR-intervals),  

 

  
                

                   
  , 

 

where the probability mass for each VaR-interval               
   can be computed 

from the corresponding marginal CDF. 

 

[Figure 1] 

 

We also say that      is an extreme observation when   lies in the MVaR-region. The 

directional vector   (together with the significance level    defines the region of interest 
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and it has also a distinct financial interpretation. For example, in the case of systemic risk 

the choice of the directional vector hinges on the particular economic metric of interest to 

the regulator. This could be, for example, how much the regulator may have to ‘pour into’ 

an institution in distress to prevent it from ‘infecting’ its counterparties, where Core Equity 

Tier 1 (CET1) capital as one of the most important macroprudential policy ratios for 

financial stability, is an obvious candidate. If a bank gets into distress and ‘eats up’ its 

CET1 ratio, then the regulator may be forced to bail it out by providing funding equal to 

CET1 to take the bank’s capital to its pre-distress level. Suppose a financial system is made 

up of three banks with CET1 of 2, 1 and 4. Then, a directional vector of particular interest 

for the regulator of this financial system is )'4,1,2()',,( 321  dddd  as it succinctly 

represents the exposure of the economy to the systemic risk originating from these three 

banks and thus, the relative level of capital which the regulator may need to pour in to bail 

out these banks in case of their failure. 

  

In spite of their conceptual simplicity, working directly with MVaR can prove challenging 

in higher dimensions. However, the relevant MVaR inference can be easily obtained by 

transforming points in the domain of   into scalars. Specifically, for each      we define 

the point       on the line along the directional vector      as follows, 

 

             where               
           (2) 

 

We illustrate in Figure 2 and show in the Appendix the following property of the projection 

    )   , 
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      (3) 

 

Intuitively, observation   lying in the MVaR-region implies that its projection     ) 

exceeds the MVaR   
  and vice-versa. 

 

[Figure 2] 

 

3. Forecasting MVaR 

For     and      , the multidimensional tail   
  takes the form           

  , 

i.e.,    
  is the  -quantile under the PDF  . Then, the  -quantile computed from a series of 

i.i.d. observations drawn from   is the natural estimator of (M)VaR   
 . In higher 

dimensions, the MVaR   
  for      can be estimated in a similar manner as the  -

quantile of the projections        of multidimensional observations   . When estimating 

MVaR from projections, we omit the reference to the directional vector   and write simply 

  .  

 

In the reminder of this section, we apply three different MVaR forecasting methods to 

obtain forecasts over a horizon of k-steps ahead.
1
 The methods presented in Subsections 3.1 

and 3.2 are useful for forecasting daily MVaR one-step ahead and k-step ahead, where 

    and     refer to short- and long-term horizon forecasts, respectively. The method 

                                                 
1
 We also apply these techniques to VaR and find that the models do a similarly good job 

at forecasting VaR. As MVaR encompasses VaR, in order to preserve space we do not 

report these results. They are available upon request. 
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presented in Subsection 3.3 allows for forecasting low frequency (e.g., monthly) MVaR, 

which due to the limited number of such observations in practice would be difficult 

otherwise. 

 

3.1. Conditional Autoregressive Value at Risk 

Several approaches to short-term VaR forecasting have been proposed (e.g., Kuester et al., 

2006; Nieto and Ruiz, 2016 for surveys of the VaR forecasting techniques). Some estimate 

the volatility of the time series first (e.g., by a GARCH model) and then compute VaR, 

often under the assumption of normality. Others use rolling historical quantiles (e.g., 

Boudoukh et al., 1998) or rely on extreme value theory (e.g., Danielsson and de Vries, 

2000). Engle and Manganelli (2004) on the other hand, propose a different approach to 

VaR estimation and forecasting. Instead of modeling the whole distribution from 

heteroscedasticity-adjusted returns, they model the quantile directly from raw returns. As 

VaR is closely linked to volatility which is clustered in financial data, a natural way to 

model VaR is to use an autoregressive process. Engle and Manganelli (2004) specify the 

evolution of the quantile over time by the Conditional Autoregressive Value at Risk 

(CAViaR) model and estimate its parameters by quantile regression. CAViaR allows for 

many specifications of the autoregressive process which can be used for MVaR forecasting. 

In our empirical exercise in Section 4, we use their asymmetric slope function, 

 

                         
             

       (4) 
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where the next period quantile         is a function of the current period quantile      and 

projection   
 . 

 

The quantile regression estimation of the parameter vector                  in (4) boils 

down to the solution of the minimization problem,  

 

    
 

 
        

           
       

 
   ,    (5)

 

 

where      is computed by (4),      is the indicator function and   is the nominal 

probability. In our empirical study, we use CAViaR not as a competing, but as a 

complementary short-term MVaR forecasting model and obtain the k-step ahead forecasts 

of the MVaR        with a technique that we present next. 

 

3.2. Two-Factor Model 

Similar to GARCH, CAViaR is a purely statistical model which cannot be easily related 

to macroeconomic or company fundamentals. However, tail events – similar to volatility 

– must be connected to fundamentals (see, for example, Bloom, 2009; Massacci, 2016). 

Moreover, evidence increasingly suggests that volatility is characterised by a multi-factor 

structure, with different dynamic processes governing its long-term and short-term 

dynamics. Engle and Lee (1999) introduce a component GARCH model which 

decomposes volatility into a permanent long-run trend component and a transitory short-

run component that is mean-reverting towards the long-run trend. They find that a two-

factor model provides a better fit to the data than an equivalent one-factor model (see also 
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Alizadeh et al. 2002; Brandt and Jones, 2006). Importantly, the two-factor specification 

makes possible linking the long-term trend of volatility to macroeconomic variables (e.g., 

Engle and Rangel, 2008). There is a significant number of VaR forecasting models in the 

literature but models that link VaR to macroeconomic fundamentals are as yet elusive. 

While perhaps the spline-GARCH model of Engle and Rangel (2008) may be extended to 

MVaR, it would be computationally demanding. The Two-Factor Model that we present 

here offers a simple and efficient way to decompose MVaR into a long-term trend and a 

short-term cycle. This decomposition would then allow for the linking of the long-term 

trend to macroeconomic and company fundamentals while the short-term cyclical 

component may be related to transient investor sentiment or other short-lived effects. For 

brevity, we do not pursue this idea in this paper but are investigating it in a separate 

project. 

 

The finding that volatility has both a highly persistent factor and a strongly stationary 

factor has important implications for modeling and forecasting VaR. As VaR is closely 

related to volatility (e.g., Takahashi, Watanabe and Omori, 2016), any improvements in 

volatility forecasts are inherited by VaR forecasts. Motivated by the interpretation of two-

factor volatility models, we explore an alternative, simple approach to modeling and 

forecasting MVaR over both short and long horizons. Specifically, we hypothesize that 

MVaRs follow a two-factor process given by 

 

                                   (6) 
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where      is the long-term trend component of MVaR,           is the short-term 

cyclical deviation from the long-term trend and    is a random error term with zero mean 

and constant variance. We assume that the long-term trend       is a stationary but highly 

persistent process but leave its precise dynamics unspecified. The parameter    measures 

the speed of reversion of the cyclical component of MVaR to the long-term trend. 

 

We implement the Two-Factor Model given by (6) in two steps. In the first step, we 

extract the long-run component      non-parametrically from the historical estimate of the 

 -quantile      . There are several techniques to extract the long-run component from a 

time series (see, for example, Durbin and Koopman, 2012). Here, we use the low-pass 

filter of Hodrick and Prescott (1997) which extracts a low frequency non-linear trend 

from a time-series and is often employed in applied macroeconomics. We also 

experimented with other filters such as the Christiano and Fitzgerald (2003) band pass 

filter and for some values of the oscillation parameters we obtained similar results.
2
 

 

To implement the Two-Factor MVaR model with the Hodrick-Prescott filter, we set the 

smoothing parameter to the commonly used value of 100 multiplied by the squared 

frequency of the data, which for daily data (assuming 240 trading days per year) is 

5,760,000 (see, for example, Baxter and King, 1999). In the second step, we estimate an 

autoregressive model for the cyclical component:  

 

                                                 
2
 To preserve space, we do not present the results of the MVaR forecasts with the 

Christiano-Fitzgerald (2003) filter. They are available upon request. 
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                                       (7) 

 

where    is a zero mean random error. In order to forecast MVaR using the 2FM, we 

assume that the long-term trend follows a random walk over the forecast horizon, so that 

the  -steps ahead forecast                for all     , and use the estimated 

autoregressive parameter from (7) to forecast the cyclical component. The k-step ahead 

MVaR forecast is therefore given by 

 

                                   (8) 

 

This is a weighted average of the current estimate of the long-term trend       and the 

current estimate of      . For the very long-term horizon, i.e., as    ,              , 

with a speed that is determined by the estimated coefficient   . 

 

3.3. Scaled MVaR 

The fact that financial returns at lower frequencies can be computed as the sum of returns at 

higher frequencies suggests that we can use the latter to estimate the MVaR of the former. 

So far we have focused on the highest frequency which in our empirical section is one day. 

However, often risk forecasts at lower frequencies are needed. For example, Basel Accords 

require financial institutions to model risk using a 10-day holding period. It has become the 

industry standard to estimate daily VaR and then scale it up by       in order to get the 10-

day VaR. This is known as the square-root-of-time rule (SQRT-rule). The SQRT-rule 

originates in the scaling property of i.i.d. Gaussian variables        ,   
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As the financial asset returns strongly violate the assumption of normality, neither 

moments of distributions (such as volatility) nor their quantiles should be scaled 

according to the SQRT-rule.
3
  

 

Generally, the distribution of the random variables         displays a scaling behavior 

if it holds that, 

 

                       
 ,  

 

where   is the scaling exponent. Then, the  -quantile satisfies,  

 

      
 
              

    
(9)

 

 

For many empirical distributions, the scaling property (9) is a good approximation only 

for nominal probability   sufficiently close to zero. For these distributions, one can 

estimate an extreme event at high frequencies for which there is an abundance of data 

(e.g., daily) and then use the scaling laws to estimate the extreme event at the lower 

                                                 
3
 Indeed, the Basel Committee in its technical guidance paper (Basel Committee on 

Banking Supervision, 2002) no longer suggests that the SQRT-rule be used, but that “in 

constructing VaR models estimating potential quarterly losses, institutions may use 

quarterly data or convert shorter period data to a quarterly equivalent using an 

analytically appropriate method supported by empirical evidence”. 
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frequency of interest (e.g., monthly; see Mandelbrot, 1997; McNeil and Frey, 2000; 

Gabaix, 2009). Taking the logarithm of (9),  

 

         
 
                         ,               (10) 

 

makes it obvious why a straight line on the log-log plot is called a signature of scaling 

law. 

 

4. Empirical Evaluation of MVaR Forecasts 

4.1. Statistical Evaluation of MVaR forecasts 

There is a vast number of alternative methods for evaluating VaR forecasts (see, for 

example, Nieto and Ruiz, 2016 for a recent review). Due to their intuitive appeal and 

popularity among practitioners, we focus in what follows on three simple and mutually 

complementary tests. Although these tests have been designed for testing VaR accuracy, 

they clearly also apply to the univariate projection series            
 . 

 

Under the correct forecasting model, the proportion of MVaR violations, i.e., the 

proportion of projections        of observation    that verify (3) should approach the 

nominal probability   for a sufficiently large sample. We refer to this procedure as 

unconditional accuracy. On the other hand, the conditional accuracy requires that the 

number of projections exceeding MVaR should be unpredictable when conditioned on past 

violations. In other words, MVaR violations should be serially uncorrelated. To assess both 

types of accuracy, we resort to the original unconditional accuracy test of Kupiec (1995) 
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and the test of independence by Christoffersen (1998), for consistency labeled here 

conditional accuracy test.
4
 

 

The test statistic of the unconditional accuracy test of Kupiec (1995) is given by, 

 

                                    (11) 

 

where    is the percentage of actual MVaR exceptions (violations),   is the nominal 

probability of exceptions and   is the number of observations. Intuitively, an 

unconditionally accurate model has an exception rate    that is close to  . 

 

The second, more stringent criterion regards the conditional accuracy. The likelihood 

ratio test of Christoffersen (1998) examines the serial independence of MVaR violations 

and is given by 

 

                   (12) 

 

where,  

          
      

          
      

     

                              
      

     

                                                 
4
 Christoffersen (1998) proposes also a test of conditional coverage that simultaneously 

tests for unconditional and conditional accuracy. As we are interested in testing these 

hypotheses separately, we omit it here.  
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and 
 

    
   

       
  

  
       

               
  

 

    is the number of times that state j follows state i. Here, state 0 obtains if no 

exceedence of MVaR forecast occurs and state 1 if such exceedence occurs. This statistic 

has an asymptotic    distribution with one degree of freedom,             

 

Engle and Manganelli (2004) remark that unconditional and conditional accuracy are 

necessary but not sufficient conditions to assess the performance of a quantile forecasting 

model. They construct an example where unconditional exceedances are correct and 

serially uncorrelated but the conditional probability of violation, given the quantile 

forecast, differs dramatically from the nominal level. Their dynamic quantile (DQ) test 

aims at avoiding such errors. Complementary to Kupiec (1995) and Christoffersen (1998) 

tests, we use a version of the DQ statistic to test the null that the conditional coverage, 

given the MVaR forecast, is equal to the nominal level  , 
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where hit and    are     column vectors containing          
          and the 

MVaR forecasts      , respectively. This statistic has an asymptotic    distribution with 

one degree of freedom,           

 

4.2. Data 

We use three different datasets to evaluate the performance of the MVaR forecasting 

models: the main US and European stock indices as well as EU bond indices. The US 

stock index dataset contains daily closing prices for S&P 500, Dow Jones and Nasdaq 

considered here as proxies for the performance of the underlying general sectors; the 

European stock index dataset contains daily closing prices of FTSE100 (UK), DAX 

(Germany), CAC40 (France) and MIB30 (Italy) used here as proxies for the health of 

respective economies. Finally, the European bond index dataset contains daily closing 

prices of 10 year government bonds considered here as proxies for country risk. From the 

raw prices, we compute the continuously compounded daily returns covering the period 

from 1 September 1996 to 31 October 2015, 5000 daily observations for each return 

series. We use the first 2000 observations for the initial estimation and the remaining 

3000 observations for evaluating the out-of-sample forecasts in which the estimation 

window is rolled forward daily.  

 

For each set of returns, we compute the corresponding vector of standard deviations   . 

The projection        for each observation    in this set is then computed by (2) for the 

directional vector      . Note that the projections would be identical if we computed 

them from the standardized returns using the directional vector     . For consistency 
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with the VaR literature, we multiply each projection       by    so that more extreme 

negative returns correspond to lower values of –         

 

In what follows, we refer to the daily (k-days period) returns and MVaRs as frequency-1 

(frequency-k). For example, frequency-5 and frequency-20 MVaRs are computed from 

weekly and monthly returns respectively. 

 

Table 1 reports summary statistics for the daily log return series for the sample. Panel A 

reports the mean, standard deviation, skewness, excess kurtosis and the Bera-Jarque 

statistic for the log returns and their projections. Panel B reports the first six 

autocorrelation coefficients, the Ljung-Box Q statistic for autocorrelation up to six lags 

for the projections and the p-values. All series are highly non-normal with negative 

skewness and positive excess kurtosis. The excess kurtosis for bond returns is almost half 

that of the stock returns. The projected series are highly autocorrelated and have, by 

construction, different empirical properties from the returns from which they originate. 

As discussed above, asset returns are conditionally heteroscedastic. Therefore, to account 

for this feature of the data, we have also performed the analysis for returns standardized 

by the square root of the volatility obtained from a GARCH(1,1) model estimated over a 

rolling window. To preserve space, we present them in Tables 1A – 3A in the Online 

Appendix. 

 

[Table 1] 
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Panel A of Figure 3 plots the projected US stock index returns (US Projections) and their 

“realized” daily MVaR over the period 2 January 2012 to 31 October 2015. The 

“realized” MVaR is estimated as the historical fifth quantile in the estimation window 

rolled forward daily. It is clear that the “realized” MVaR is slowly evolving. Panel B 

plots the same “realized” MVaR (note the different scale from Panel A) together with its 

long-term trend estimated using the Hodrick-Prescott filter over the sample. The trend is 

a smoothed version of the “realized” MVaR and closely tracks it although there are 

periods, for example during 2013, when the deviation is evident. Panel C of Figure 3 

plots the resulting cyclical component of the “realized” MVaR using the Hodrick-Prescott 

filter. It is clear that the long-term trend in MVaR is time-varying and highly persistent, 

while the cyclical component is strongly mean-reverting, lending support to the two-

factor representation of MVaR. 

 

[Figure 3] 

 

Figure 4 shows log-log plots of the frequencies     
   

 
 days (x-axis) vs. the empirical 

frequency-   MVaR estimates for US projections (y-axis) and the corresponding fitted 

straight lines. Estimates of frequency-   MVaRs have been computed from non-

overlapping intervals of length              (i.e. one day to 6.4 months) spanning the 

whole sample of 5,000 observations. We find a good linear fit for all our datasets which 

indicates scaling in the tails of the projected return distributions. For the US (EU) 

projections and for    1%, 2.5% and 5% the scaling exponents   are 0.52 (0.53), 0.56 

(0.57) and 0.59 (0.55) respectively, implying that the underlying distributions have fat 
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tails. These estimates differ markedly from the estimates of around 0.42 in Hauksson et 

al. (2001) for the univariate VaRs. 

 

[Figure 4] 

 

5. Results 

The out-of-sample MVaR estimation is performed using the last 3000 observations. For 

the out-of-sample forecasts, we moved a window of        observations along the 

time axis. For each window    
          

      
    

where              , we first 

estimate the parameter vector   in (4) by solving the minimization problem (5) 

numerically and   in (7) by a simple regression of the deviations             on their one-

lagged values. For each window, we compute also frequency-k returns in non-

overlapping intervals of length                 within this window. From these 

returns, we estimate the frequency-k MVaR by the relevant quantiles and the scaling 

exponent by regressing the frequency-k log-MVaR on the log-frequencies log(k).  

 

Subsequently, we use the estimated parameters to obtain MVaR forecasts as follows. For 

the CAViaR and 2FM, the  -day ahead forecast         of the daily MVaR is given 

directly by (4) and (8) respectively, where in the case of CAViaR    . Finally, for the 

Scaling Model the formula (9) delivers at date   a forecast of the frequency-  MVaR for 

the period           ) (i.e., weekly, monthly and quarterly MVaR for   

            ). 
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The performance statistics for the MVaR forecasting models are presented in Tables 2 – 

4. These tables report the actual exception rates (  ) as well as the p-values of the   ,     

and DQ statistics to test the null hypotheses of unconditional and conditional accuracy for 

different MVaR specifications and nominal probability levels across the three datasets. 

 

In line with previous evidence, CAViaR performs well for stock indices for one-day 

ahead forecasts both, conditionally and unconditionally. Indeed, the p-values of the    

statistics indicate that the null of unconditional accuracy cannot be rejected for all three 

nominal probabilities. Further, the p-values of the     and DQ statistics suggest that the 

conditional accuracy performance is satisfactory. The results for the bond return 

projections are the exception. In all three cases, CAViaR generates exceptions that are 

considerably below the required nominal probability  . Perhaps, this should be expected 

as CAViaR is a model for forecasting the quantiles of series that are more prone to tail 

events. Focusing on the stock indices datasets (Tables 2 and 3), there are differences in 

performance for different levels of  : it appears that CAViaR is more accurate for higher 

 . For example, in the case of US indices for      the actual exceedance rate     is 

    , whereas for      the actual exceedance rate is     . This finding is similar to 

findings in the VaR literature (e.g., Kuester et al. 2006). 

 

[Table 2] 

 

[Table 3] 

 

[Table 4] 
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The Two-Factor Model on the other hand appears to perform well for all three portfolios 

and at all nominal levels. At the longer end of the forecast horizon (60-day, i.e. 

approximately three months ahead), the forecast errors start to become considerable and 

the p-values of the     statistics suggest that the conditional accuracy performance of the 

model is inadequate. However, for the shorter horizons, the performance on balance, 

seems acceptable. Interestingly, the performance of the 2FM appears more balanced with 

regard to   relative to CAViaR. For example, in the case of one-day ahead MVaR 

forecasts for US indices and     , the actual exceedance rate is        , whereas 

for      it is    . However, in the case of European indices and for      and   , 

these statistics are      and      respectively. This pattern can be observed for the 

longer horizon forecasts, although the relative errors of forecasts increase with horizon. 

For example, in the case of 60-day ahead MVaR forecasts for US indices and      

and   , the actual exceedance rates    are     and     , while for the European indices 

these statistics are      and      respectively.  

 

Importantly, the Two-Factor Model performs remarkably well unconditionally for the 

bond indices and it would appear that the forecasts are more accurate than in the case of 

stock indices. Moreover, the accuracy does not deteriorate substantially with horizon 

(Table 4). For example, in the case of one-day ahead forecasts for      the actual 

exceedance rate    is   , whereas for      the exceedance rate is     . In the case of 

a 60-day ahead forecasts these statistics are      and      respectively. The errors are 

smaller for the shorter horizons. However, the conditional accuracy tests suggest that 

violations are serially correlated for the one-day and 60-day ahead forecasts for      
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but they improve for the intermediate horizons. For        the conditional accuracy 

does not appear to change much with horizon and for      it improves slightly with 

horizon. Thus, on balance the Two-Factor Model produces unconditionally accurate 

MVaR forecasts for all datasets. 

 

The Scaling Model delivers frequency-k MVaR forecasts of reasonable unconditional 

accuracy, especially for shorter periods, except perhaps for the bond return projections. 

However, the p-values of the Christoffersen (1998) test indicate that MVaR violations are 

highly serially correlated. This is not surprising given that we move a relatively long 

window of 2000 observations one day at each step. As a result, the resulting scaling 

forecasts change very slowly and cannot anticipate clusters of turbulence.  

 

There is also an interesting performance discrepancy between bonds and stocks. For 

bonds, the Scaling Model consistently generates pessimistic forecasts with actual 

exception rates below the nominal ones. For stocks, on the other hand, the Scaling Model 

generates optimistic forecasts that are violated more often than they should. Somewhat 

surprisingly, the actual exception rate for      tends to increase for longer periods. 

For example, for US indices the actual exception rates are 0.40, 0.45, 0.48, 0.53 and 0.52 

for horizons of 1, 5, 10, 20 and 60 days ahead respectively. However, the Scaling Model 

forecasts in this empirical exercise should be treated with caution as the scaling 

exponents (slopes of the regression lines in the log-log plots) have been estimated in each 

window from five    MVaRs (         only.  
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For all three models, we observe that the p-values of the DQ and the    statistics are well 

aligned (except in a few instances as e.g. for the 1% Scaling forecast 10-days ahead). 

However, there is no obvious relationship between the p-values of the DQ and     

statistics. The intuition for this regularity is exemplified by a constant forecast. If this 

forecast generates a correct unconditional coverage, then the DQ statistic (13) takes on 

the value of zero and thus, a p-value of one even if violations are serially correlated. On 

the other hand, an unconditional actual coverage that deviates significantly from the 

nominal level will lead to a large value of the DQ statistic (13) and thus, a low p-value.  

 

An interesting question is how does the performance of the MVaR forecasts compare 

relative to that of the VaR forecasts of a portfolio made up of the same underlying series. 

We investigated this issue for an equally-weighted portfolio
5
 and found that, on balance, 

equally-weighted portfolio VaR forecasts are comparable with MVaR forecasts. 

Moreover, as we discuss in the Introduction the advantage of MVaR relative to VaR is in 

situations where a portfolio cannot be constructed and thus, a portfolio VaR cannot be 

obtained. 

 

Our results above rely on quantile estimates that are computed from samples of 

projections of multidimensional observations on the directional vector. It is well-known 

that sample quantiles are convergent and biased estimators, whose asymptotic variance 

can be derived by the delta-method. A confidence interval (CI) for their true value can be 

                                                 
5
 We would like to thank the reviewer for suggesting this analysis. To preserve space, we 

present these results in Tables 4A – 6A in the Online Appendix. 
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constructed by exploiting the binomial property of quantiles (see, for example, Serfling, 

1980). By this property, the exact confidence coefficient for the quantile    in an ordered 

sample           is calculated from the binomial distribution with parameters n (sample 

size) and  ,  

 

               
 
 
 

   
              (14) 

 

In Table 5, we report the CIs and their lengths, computed by (14) from the projections of 

observations, where    and    are chosen such that the probability on the r.h.s. of (14) 

approximates the nominal confidence coefficient that we set at 95%.  We report further the 

CIs computed by Monte Carlo simulations from samples that were bootstrapped from the 

relevant data set or generated from the multivariate Student-t distribution with parameters 

estimated in the same set.
6
 We find, in particular, that CIs computed from Student-t 

distribution are significantly shorter that the ones computed by (14) and by bootstrapping. 

This observation may cast doubts on the suitability of the Student-t distribution as a 

modelling tool for MVaR estimation. We observe further that the length of CIs decreases in 

 , which suggests stronger confidence in (forecasting) results for higher values of  .  

 

[Table 5] 

 

In line with the 2FM (cf., equation (6)) we argue that an MVaR forecast has two 

components. We conjecture that the first component is slowly evolving and captures the 

                                                 
6
 We would like to thank the Associate Editor for suggesting this analysis. 
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evolution of macroeconomic or other (e.g., company) fundamentals. The second 

component captures the fast and occasionally violent but transitory movements perhaps 

reflecting investor sentiment or other short-lived effects. Changes in sentiment can trigger 

strong liquidity shocks with a significant impact on volatility (Campbell, Grossman and 

Wang, 1993). In the short run, a change in one set of prices may influence investor 

sentiment triggering changes in a seemingly unrelated set of prices (Eichengreen and 

Mody, 1998), thus leading to multidimensional tail risk. 

 

In this context, unconditional Kupiec (1995) and conditional Christoffersen (1998) tests 

can be intuitively linked to these two components of forecasts. The unconditional 

accuracy test effectively examines whether a model is consistent with the fundamentals 

and generates, over the long term, the correct exception rates. The conditional accuracy 

test, on the other hand, examines how well a forecasting model responds to the twists and 

turns of the market “animal spirits” which, by definition, are of a behavioral nature with 

little or no relationship to the long-term fundamentals. 

 

This decomposition highlights the difficulty of long-term (M)VaR forecasting. A 

comprehensive forecasting model should not only capture the long-term general 

movements in fundamentals but also anticipate short-lived bursts of turbulence. As it is 

almost impossible to accurately forecast, well in advance, the latter component, it is too 

demanding to expect any long-term (M)VaR forecasting model to be conditionally 

accurate. Therefore, we argue that the adequacy of long-term (M)VaR forecasts should be 

judged primarily on the basis of the unconditional accuracy test. The conditional accuracy 
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test, on the other hand, is relevant mainly for short-term (M)VaR forecasts. The practical 

implication of these observations is that institutions can only get an indication of average 

long-term exposures from these models but need to monitor their short-term exposures 

with short-term, conditionally accurate forecasting models such as CAViaR. 

 

6. Conclusions 

Aggregation of multiple sources of risk sidelines questions which are paramount for 

hedging, risk management and financial stability. Interesting answers can be obtained by 

considering the individual sources of risks jointly. We propose a simple and flexible 

framework to capture multidimensional tail risk. This framework allows for adapting the 

techniques and applications developed for unidimensional tail risk which is relatively 

straightforward even in higher dimensions.  

 

We apply this framework to forecast multidimensional tail events out-of-sample at 

different horizons and evaluate them statistically. While short horizon forecasts are both 

conditionally and unconditionally accurate, we find that long horizon forecasts are 

unconditionally accurate but fail the conditional accuracy tests. However, we argue that 

this is to be expected. Conditional accuracy is too demanding a criterion for any long 

horizon (multidimensional) tail event forecasting model.  Given our understanding of, 

and ability to model (multidimensional) tail events, only short horizon forecasts should be 

subjected to conditional accuracy tests. Long horizon forecasting models of 

(multidimensional) tail events should be judged primarily on their ability to generate 

unconditionally accurate forecasts. In this context, it would be interesting to understand 
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the relationship of the long-term trend and short-term cycle of MVaR to macroeconomic 

and other fundamentals and investor sentiment, respectively.  

 

Appendix 

 

Proof of (3): 
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Figure 1: MVaR-region as a Cartesian product VaR-intervals for N=2  

 

Notes: MVaR-region   
  (dark shaded area) in the direction of the vector  . Note that the 

upper left corner of   
  corresponds to the point   

   . 

 

 

 

Figure 2: Projections (2) of Observations Inside and Outside of MVaR-region 

 

Notes: All points inside (outside) MVaR-region   
  (shaded area) are projected inside 

(outside)   
 . 
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Figure 3 Decomposition of US Return Projections MVaR into Trend and Cycle Components 

Panel A: Projected Returns and their “Realized” Fifth Quantile 

 

 
 

 

Panel B: Trend of the “Realized” Fifth Quantile Estimated from HP Filter 

 

 
 

Notes: Panel A shows the “realized” MVaR estimator (q5) of the US stock indices return 

projections computed by equation (2). The sample period in the figure is 02/01/2012 to 

31/10/2015 (1000 observations). Panel B shows the “realized” MVaR estimator (q5) and 

its long-run trend (t5) estimated with a Hodrick-Prescott filter with a smoothing 

parameter of 5,760,000. Panel C shows the cyclical component of the MVaR (c5) defined 

as the difference between the original series and the trend. 
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Figure 3 Decomposition of US Return Projections MVaR into Trend and Cycle Components 

Panel C: The Cyclical Component of the “Realized” Fifth Quantile 

 

 
 

Notes: Panel A shows the “realized” MVaR estimator of the US stock indices return 

projections computed by equation (2). The sample period in the figure is 02/01/2012 to 

31/10/2015 (1000 observations). Panel B shows the “realized” MVaR estimator (q5) and 

its long-run trend (t5) estimated with a Hodrick-Prescott filter with a smoothing 

parameter of 5,760,000. Panel C shows the cyclical component of the MVaR (c5) defined 

as the difference between the original series and the trend. 

 

Figure 4: MVaR Scaling for US Stock Indices 

 

Notes: A log-log plot of empirical frequency-k MVaR (y-axis) at 1% (top left), 2.5% (top 

right) and 5% (bottom) computed from the returns of US stock indices at different 

frequencies (x-axis, k days). The respective scaling parameters (slopes) are 0.52, 0.56 and 

0.59. The sample period is 1/09/1996 to 31/10/2015 (5000 observations). 

-0.200 

-0.100 

0.000 

0.100 

02/01/2012 02/01/2013 02/01/2014 02/01/2015 

c5 

1 2 5 10 20 50 100

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

1 2 5 10 20 50 100

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

1 2 5 10 20 50 100

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0



36 

 

 

Table 1: Summary Statistics and Autocorrelations 

Panel A: Summary Statistics 

 

  

Mean 

Standard 

Deviation 

 

Skewness 

Excess 

Kurtosis 

 

Bera-Jarque 

      

DJ30 0.023% 1.155% -0.143 7.871 12924.742 

SP500 0.023% 1.227% -0.231 7.994 13356.985 

NASDAQ 0.030% 1.615% -0.050 5.391 6056.037 

US Projections -24.84% 97.88% -0.634 7.698 12681.444 

      

FTSE100 0.027% 1.122% -0.215 6.071 7716.688 

DAX 0.031% 1.265% 0.078 8.855 16339.224 

CAC40 0.035% 1.294% -0.086 4.524 4269.501 

MIB30 0.026% 1.371% -0.162 4.243 3772.200 

E-S Projections  -40.59% 98.06% -0.813 9.600 19752.610 

      

UK Bonds 0.027% 0.381% -0.006 2.146 959.166 

German Bonds 0.025% 0.338% -0.260 2.411 1267.072 

French Bonds 0.025% 0.345% -0.224 2.993 1908.178 

Italian Bonds 0.031% 0.427% 0.537 3.414 1977.693 

E-B Projections -61.01% 98.67% -1.634 13.544 40437.863 

 

Panel B: Autocorrelations 

Projected Returns 

         

 1 2 3 4 5 6 

 

Q P-value 

US Projections -0.046 -0.031 0.009 0.004 -0.008 -0.005 16.356 0.012 

E-S Projections 0.056 -0.019 -0.032 0.056 -0.017 0.009 40.056 0.000 

E-B Projections 0.215 0.127 0.106 0.132 0.103 0.098 557.405 0.000 

         

Notes: Panel A reports the mean, standard deviation, skewness, excess kurtosis and the 

Bera-Jarque statistic for daily log close-to-close returns for US stock indices DJ30, SP500 

and Nasdaq, European stock indices FTSE100, DAX, CAC40 and MIB30 and 10 year 

bond prices for UK, Germany, France and Italy. The corresponding projections are 

computed for the directional vector of standard deviations of the relevant variables. The 

sample period is 1/09/1996 to 31/10/2015 (5000 observations). Panel B reports the first 

six autocorrelation coefficients and the Ljung-Box Q statistic for autocorrelation up to six 

lags, for projected US stock, EU stock and EU bond returns. P-values are also reported. 
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Table 2: MVaR Out-of-Sample Forecasting Results for US Stock Indices 
 

 

k Model                  

 

    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ)    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ)    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ) 

 

 

1 

CAViaR 0.013 0.111 0.298 0.290 0.027 0.571 0.924 0.295 0.052 0.622 0.217 0.183 

2FM 0.017 0.002 0.074 0.009 0.030 0.109 0.023 0.874 0.056 0.132 0.256 0.695 

Scaling 0.009 0.852 0.000 0.533 0.023 0.465 0.005 0.301 0.040 0.005 0.011 0.077 

5 

2FM 0.018 0.001 0.101 0.004 0.032 0.036 0.004 0.138 0.057 0.111 0.164 0.760 

Scaling 0.006 0.012 0.000 0.010 0.016 0.000 0.000 0.000 0.454 0.226 0.000 0.171 

10 

2FM 0.018 0.001 0.018 0.004 0.033 0.010 0.002 0.055 0.057 0.091 0.183 0.713 

Scaling 0.009 0.441 0.000 0.125 0.015 0.000 0.000 0.000 0.048 0.636 0.000 0.318 

20 

2FM 0.018 0.001 0.019 0.011 0.034 0.007 0.003 0.192 0.057 0.098 0.181 0.885 

Scaling 0.011 0.577 0.000 0.257 0.014 0.000 0.000 0.000 0.053 0.417 0.000 0.271 

60 

2FM 0.022 0.000 0.010 0.001 0.038 0.000 0.023 0.055 0.060 0.024 0.088 0.156 

Scaling 0.019 0.000 0.000 0.018 0.019 0.027 0.000 0.005 0.052 0.621 0.000 0.167 

 

 

Notes: The table reports the actual exception rate (  ) for each MVaR forecasting model out of 3000 observations, (i.e. the proportion 

of times the forecasted MVaR is exceeded), the p-value of the t-statistic to test the null hypothesis of unconditional accuracy (formula 

(11)) and the p-values of the LR and DQ statistics (formulas (12) and (13), respectively) to test the null hypothesis of conditional 

accuracy for different confidence levels. The out-of-sample period of 3000 observations is 14 August 2007 to 31 October 2015. For 

CAViaR and 2FM models the daily MVaR forecasts are k-day ahead, while for Scaling the forecasts are for frequency-k MVaR. 
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Table 3: MVaR Out-of-Sample Forecasting Results for European Stock Indices 
 

 

k Model                  

 

    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ)    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ)    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ) 

 

 

1 

CAViaR 0.012 0.247 0.562 0.735 0.026 0.731 0.413 0.319 0.048 0.609 0.324 0.211 

2FM 0.013 0.147 0.106 0.679 0.027 0.433 0.275 0.575 0.054 0.333 0.000 0.903 

Scaling 0.009 0.431 0.500 0.183 0.023 0.465 0.098 0.159 0.046 0.296 0.005 0.290 

5 

2FM 0.013 0.189 0.096 0.768 0.027 0.427 0.278 0.492 0.055 0.224 0.000 0.818 

Scaling 0.011 0.595 0.000 0.755 0.024 0.729 0.000 0.198 0.049 0.747 0.000 0.316 

10 

2FM 0.013 0.108 0.119 0.523 0.028 0.261 0.135 0.580 0.056 0.189 0.000 0.613 

Scaling 0.015 0.017 0.000 0.007 0.025 0.887 0.000 0.466 0.051 0.653 0.000 0.348 

20 

2FM 0.014 0.043 0.146 0.576 0.031 0.052 0.094 0.924 0.056 0.176 0.000 0.571 

Scaling 0.021 0.000 0.000 0.000 0.034 0.007 0.000 0.170 0.057 0.114 0.000 0.267 

60 

2FM 0.017 0.005 0.050 0.172 0.032 0.040 0.000 0.130 0.058 0.059 0.000 0.325 

Scaling 0.026 0.000 0.000 0.002 0.036 0.002 0.000 0.084 0.058 0.059 0.000 0.217 

 

 

Notes: The table reports the actual exception rate (  ) for each MVaR forecasting model out of 3000 observations, (i.e. the proportion 

of times the forecasted MVaR is exceeded), the p-value of the t-statistic to test the null hypothesis of unconditional accuracy (formula 

(11)) and the p-values of the LR and DQ statistics (formulas (12) and (13), respectively) to test the null hypothesis of conditional 

accuracy for different confidence levels. The out-of-sample period of 3000 observations is 14 August 2007 to 31 October 2015. For 

CAViaR and 2FM models the daily MVaR forecasts are k-day ahead, while for Scaling the forecasts are for frequency-k MVaR. 
 

 



39 

 

 

 

 

Table 4: MVaR Out-of-Sample Forecasting Results for European Bond Indices 
 

 

 

k Model                  

 

    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ)    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ)    

p-val. 

(
ut ) 

p-val. 

(
cLR ) 

p-val. 

(DQ) 

 

 

1 

CAViaR 0.006 0.011 0.623 0.096 0.019 0.010 0.110 0.166 0.039 0.003 0.060 0.025 

2FM 0.012 0.314 0.009 0.944 0.025 0.908 0.103 0.161 0.050 1.000 0.053 0.301 

Scaling 0.007 0.049 0.586 0.346 0.019 0.024 0.445 0.051 0.042 0.037 0.134 0.058 

5 

2FM 0.012 0.311 0.077 0.924 0.026 0.809 0.063 0.205 0.050 0.920 0.025 0.168 

Scaling 0.007 0.089 0.000 0.127 0.013 0.000 0.000 0.000 0.041 0.042 0.000 0.003 

10 

2FM 0.012 0.307 0.078 0.790 0.026 0.711 0.064 0.255 0.051 0.838 0.029 0.173 

Scaling 0.005 0.000 0.000 0.013 0.013 0.000 0.000 0.000 0.041 0.011 0.000 0.007 

20 

2FM 0.012 0.378 0.071 0.340 0.026 0.775 0.067 0.278 0.050 0.997 0.113 0.122 

Scaling 0.007 0.054 0.000 0.048 0.011 0.000 0.000 0.000 0.046 0.336 0.000 0.157 

60 

2FM 0.014 0.068 0.001 0.262 0.025 0.955 0.098 0.289 0.051 0.870 0.201 0.238 

Scaling 0.004 0.000 0.000 0.008 0.009 0.000 0.000 0.000 0.053 0.370 0.000 0.442 

 

 

Notes: The table reports the actual exception rate (  ) for each MVaR forecasting model out of 3000 observations, (i.e. the proportion 

of times the forecasted MVaR is exceeded), the p-value of the t-statistic to test the null hypothesis of unconditional accuracy (formula 

(11)) and the p-values of the LR and DQ statistics (formulas (12) and (13), respectively) to test the null hypothesis of conditional 

accuracy for different confidence levels. The out-of-sample period of 3000 observations is 14 August 2007 to 31 October 2015. For 

CAViaR and 2FM models the daily MVaR forecasts are k-day ahead, while for Scaling the forecasts are for frequency-k MVaR. 
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Table 5: 95% Confidence Intervals (CI) and their Lengths for MVaR Estimates 
 

 

 

Dataset CI                  

 Formula (14) (-3.62, -2.82), 0.80 (-2.48, -2.19), 0.29 (-1.99, -1.73), 0.26 

EU equities Bootstrap (-3.49, -2.70), 0.79 (-2.46, -2.16), 0.30 (-1.97, -1.73), 0.24 

 Student-t (-3.29, -2.85), 0.44 (-2.57, -2.31), 0.26 (-2.08, -1.90), 0.18 

 Formula (14) (-4.27, -3.26), 1.02, (-2.99, -2.55}, 0.43 (-2.33, -2.11), 0.23 

EU  bonds Bootstrap (-4.22, -3.21), 1.01 (-2.93, -2.52}, 0.40 (-2.32, -2.11), 0.21 

 Student-t (-3.91, -3.57), 0.34 (-2.92, -2.72}, 0.20 (-2.29, -2.16), 0.12 

 Formula (14) (-3.43, -2.63), 0.79 (-2.32, -1.94), 0.38 (-1.69, -1.48), 0.21 

US indices Bootstrap (-3.29, -2.58), 0.70 (-2.31, -1.91), 0.40 (-1.67, -1.47), 0.20 

 Student-t (-3.13, -2.90), 0.23 (-2.43, -2.30), 0.13 (-1.99, -1.90), 0.09 

 

 

Notes: Formula (14) computes the (approximate) 95%-CI from the projections of the last 3,000 observations (between 1/05/2004 and 

31/10/2015) in the relevant data set. Bootstrap (Student-t) computes the 95%-CI from 1,000 samples of size 3,000 each, drawn from 

projections of the last 3,000 observations in the relevant data set (from multivariate Student-t with parameters estimated from the last 

3,000 observations in the relevant data set).  

 


