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Abstract

Higher amalgamation is a model theoretic property. It was also studied under
the name generalised independence theorem. This property is defined in
stable, or more generally simple or rosy theories. In this thesis we study how
higher amalgamation behaves under expansion by finite covers and algebraic
covers.

We first show that finite and algebraic covers are mild expansions, in the
sense that they preserve many model theoretic properties and behave well
when imaginaries are added to them. Then we show that in pregeometric
theories higher amalgamation over ∅ implies higher amalgamation over pa-
rameters. We also show that in general this is not true. In fact, for any stable
theory with an algebraic closed set which is not a model we construct a finite
cover which fails 4-Amalgamation. With some additional assumption we can
also preserve higher amalgamation over the empty set. We apply this result
to abelian groups and show that (Z/4Z)ω satisfies these assumptions.

Then we take the opposite direction: rather then investigating covers
which have malicious properties towards amalgamation, we construct covers
which will make higher amalgamation become true. First we give a new proof
for the fact that there exists an algebraic cover of any stable T eq

acleq(∅) with
higher amalgamation over ∅. A proof sketch of this was given by Hrushovski
and a full proof appeared in an unpublished work by D. Evans. The new proof
uses the notion of symmetric witness which was introduced by Goodrick,
Kim and Kolesnikov. We also show with a similar approach that there
exists an algebraic cover of any stable, omega-categorical theory with higher
amalgamation over parameters.
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Chapter 1

Introduction

This introduction is split into three parts. The first part will be a summary
of the thesis itself. The second part will put the thesis into context with
earlier results. The third part will discuss what the thesis did not accomplish
and where the author sees potential for future work.

1.1 Summary

This thesis is written for mathematicians with some background in first-order
logic. The requirement for the reader is to have some knowledge in model
theory. The knowledge of some introductory model theory lectures should
be sufficient. It will be very helpful to have seen some variant of forking, for
example the pregeometry of strongly minimal structures, the Morley rank
of totally transcendental theories, the notion of (co)heirs, or the extension
of definable types. In the thesis we work with an axiomatic approach and
avoid the use of any explicit notion of forking when possible. For that we will
introduce it as an abstract notion of independence instead. A reader who does
not know any notion of independence should keep in mind that this notion
naturally appears in many examples such as the algebraic independence in
algebraically closed fields or the independence of subspaces of a vector space.
But at some points we have to use its combinatorial description. Note that
theories which have an abstract notion of independence (in T eq) are rosy
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theories. The notion of independence can be combinatorially described as
thorn-forking. The knowledge of NIP and NTP2 is also assumed in some
very minor parts.

Apart from the notion of independence, Chapter 2 contains several other
things. We start with explaining the notation, which is used for multi-sorted
theories. Then we define the monster model as a saturated model of class-size.
We explain what imaginary elements of a theory are and also give the reason
why they were introduced, namely to obtain stationarity of types over an
algebraically closed set in stable theories (see Lemma 2.7.7). We also define
rosy, stable and simple theories purely in terms of the abstract notion of
independence. Finally we prove some very elementary things in category
theory which will be used later.

In Chapter 3 we introduce the notion of algebraic and finite covers. An
algebraic cover of some structure is an expansion of it with new sorts. In
an algebraic cover the old part is (up to interdefinability) the same, and
the new structure lies in the algebraic closure of the old structure. A finite
cover is an algebraic cover which additionally requires that there is only one
new sort and a finite-to-one function which maps the new elements to (some
of) the old ones. Any algebraic cover of a theory which has its imaginaries
added (T eq) with only one new sort will automatically be a finite cover (see
Corollary 3.2.4). If our language is countable we can also describe an algebraic
cover as a sequence of finite covers. We then prove that adding imaginaries to
the new theory does not destroy its property as an algebraic cover. Further
we prove that going over to a finite cover preserves many model theoretic
properties. For example categoricity, rosiness, stability and simplicity will
be preserved. Moreover, the notion of independence will be preserved in a
canonical way. Finally we give a condition which will help us in proving weak
elimination of imaginaries of finite covers of ω-categorical theories.

Chapter 4 is about the central notion of this thesis, “Amalgamation”
and contains only known results by other authors. We describe what an
amalgamation problem is and what a solution to such a problem is. An
n-amalgamation problem is a functor from P({1, . . . , n}) \ {1, . . . , n} with
inclusions as morphisms to the category of algebraically closed sets of a
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certain theory with partial elementary maps as inclusions. Additionally
we have some independence condition about the images of the functor. A
solution to an n-problem is an extension of this functor to one with domain
P({1, . . . , n}). We further discuss when a solution is considered unique,
namely when any two solution functors are naturally isomorphic. This might
fail even in stable theories (see Example 5.2.1). For the rest of chapter we
reprove known results about amalgamation. We will see how the existence
of a solution of n-amalgamation problem is connected to the uniqueness
of a solution of an (n− 1)-problem. Moreover, this notion can be used
to define stable and simple theories. We (re)prove some things about the
boundary property which is equivalent to the uniqueness of a solution in
stable theories under the assumption that the solution of all lower problems
is unique (see Proposition 4.4.7 and Corollary 4.5.9). To briefly describe the
3-boundary property we take 3 independent points of some model, say a, b, c.
Any automorphism of the algebraic closure of ab which fixes the algebraic
closure of a and the algebraic closure of b pointwise can be extended to an
automorphism which fixes the algebraic closure of ac and bc. Finally we
analyse why amalgamation over models in stable theories is always true.

In Chapter 5 we try to answer the question of whether amalgamation
over parameters is related to amalgamation over the empty set. The first
section gives an explicit description of the connection between the two if the
independence notion is sufficiently nice. We develop for that the notion of
separability of an independence notion. A notion of independence is separable
whenever for any two sets (of some model) A ⊂ B with B algebraically closed
there exists some C ⊂ B independent of A such that acl(AC) = B (in T eq).
This is always fulfilled in pregeometric theories with weak elimination of
imaginaries.

Then we will take a long path to establish a counterexample: a theory
which has amalgamation over ∅, but fails amalgamation over some parameters.
For that we first generalise the construction done in Hrushovski’s original
example of failure of 3-uniqueness (which was a finite cover of the theory of
an infinite set) to arbitrary theories. This construction will preserve weak
elimination of imaginaries if our original theory was stable or ω-categorical.
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We prove by using this construction that any theory (with an independence
notion) which has some algebraically closed set A which is not a model of the
theory has a finite cover which fails 3-uniqueness over A (see Lemma 5.5.1).
We continue our road to a counterexample by establishing some theorems
telling us that this construction preserves amalgamation over ∅ under certain
conditions. We will then apply these theorems to abelian groups whose theory
is closed under products. Finally we use all this to construct a finite cover of
(Z/4Z)ω which has amalgamation over ∅, but fails it over some parameters. In
a sense, this is the simplest example one can find, since any totally categorical
structure which does not interpret an infinite group is in the algebraic closure
of a disintegrated strongly minimal set. Hence the independence notion of
such a theory is separable and therefore as we have seen amalgamation over ∅
implies amalgamation over parameters. We also have such an example where
the original theory does not interpret any infinite group. It is uncountably
categorical, but of course as discussed not ω-categorical. Finally we see
that there is a “natural” example, namely the theory of compact complex
manifolds, which has amalgamation over ∅ but fails it over some parameter.

In Chapter 6 we introduce the notion of an n-witness. We show that
failure of amalgamation gives us the existence of such a witness. On the other
hand the existence of such a witness gives us also the failure of amalgamation.
We also show that if we look at amalgamation problems where the singletons
satisfy the same type, then amalgamation is connected to a Morley witness.

Then in Chapter 7 we let a witness disappear. We do that by construct-
ing a finite cover of T eq

acl(∅) to which we add some generic element of the
corresponding type of a witness. Then we add elements of the witness which
contains this generic element in a canonical way (see “Construction of a Finite
Cover”). Now in this finite cover the old witness will lose its ability to define
an amalgamation problem which has no solution (see 7.2.2.) We then use
this property for every witness and get some algebraic cover which has no
witness of the old sort. We repeat this process countably many times to get
some algebraic cover of T eq

acl(∅) which has amalgamation over ∅.
In the final Chapter 8 we let all witnesses of an ω-categorical superstable

structure disappear. Here we have the nice property that a witness is fully
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determined by some formula without parameter (every realisation of this
formula is a witness). We define a finite cover of the theory (without adding
the parameters acl(∅) to our theory) for any witness (over parameters). With
a similar reasoning (as in the chapter before) we then obtain an algebraic
cover which has amalgamation (over parameters).

We summarise which chapters of this thesis are original. Chapter 2 has
no new ideas. Chapter 3 is only new (for me) in the sense that I could not
find reference for many results, but I expect that most of it is folklore. Also
in Chapter 4 there is nothing new, except that some results are extended to
rosy theories (which is straightforward) and that some proofs are given in
greater detail. Chapter 5 is completely original (apart from what is cited).
Chapter 6 contains only slight modifications of ideas of others. In Chapter 7
the results are not new, but the proof idea is. And finally in Chapter 8 the
results are new, but they are closely related to the results of Chapter 7.

1.2 Related research

The development of good notions of independence started with strongly
minimal theories, then Morley rank and the development of forking for stable
and later for simple theories. Then it was continued beyond to the notion of
thorn-forking in rosy theories. This is closing the development of the notion
of independence for the following reason: this is the weakest of all notions,
i.e. if there is a strict independence notion at all, then thorn-forking will
be a strict independence notion and any elements being thorn-independent
will be independent for any other strict independence notion (see Theorem
5.2 of [Adl09b]). Beyond that, recent work shows that forking still has nice
properties in NTP2 and its subclass NIP (see for example [CK12] and [BC14]).
But this development does not play a crucial part in this thesis.

The notion of (finite, affine) covers originates from the analysis of to-
tally/uncountable categorical structures (see Zilber’s Ladder Theorem 5.0.1
of [Zil93]). Albrandt and Ziegler’s [AZ91] also contains important work.
Furthermore, in [EH93] finite covers of ω-categorical theories were analysed.
The papers most relevant to our work are [Hru12] and [Eva09], where in the
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first the ideas for the relation between finite covers and amalgamation is
started and the latter worked out some of that in greater detail.

The history of amalgamation (we will use) also goes along with the
development of forking. Stationarity of types is nothing more than having
uniqueness of 2-amalgamation of its independent realisations. Elimination
of imaginaries were introduced by Shelah to obtain that any type over an
algebraically closed set is stationary.1 Shelah introduced higher amalgamation
diagrams in [She83]. In [She90] (see Ch XII section 2 p 598) (unique) higher
amalgamation for diagrams of models is proved. Hrushovski proved for
pseudo-finite fields that 3-amalgamation holds. This was generalised to
simple theories: the independence theorem by Kim and Pillay is nothing
more then the proof of 3-amalgamation over models. The notion of higher
amalgamation we use reappeared in [Hru98]. The generalised independence
theorem, which says that a theory has n-amalgamation for every n was proved
for algebraically closed fields with an automorphism (see Theorem after 1.9
in [CH99]). In [Kol05] simple theories were further analysed via the notion
of amalgamation. This was then continued in [KKT08]. The assumption of
4-amalgamation was used in [PKM06] to construct a hyperdefinable group
from the group configuration theorem for simple theories in [BTW04]. In the
same paper [PKM06] it was also proved that (unique) n-amalgamation over
a model in stable theories always holds.

The key paper is Hrushovski’s [Hru12], which became available as a
preprint in 2006. In there, it is shown that in stable theories uniqueness
of 3-amalgamation, 4-amalgamation, generalised imaginaries and certain
finite covers are all strongly connected (see Corollary 4.10 in [Hru12]). Of
special interest is Proposition 4.11 (in [Hru12]), which tells us that for every
stable theory there exists an algebraic cover such that n-amalgamation holds.
Unfortunately the proof was only sketched. In the unpublished paper of
David Evans [Eva09] this proof was worked out.

Research which continues the work of Hrushovski’s paper (i.e. [Hru12])
and also heavily influenced this thesis is a series of publications by Goodrick,

1On page 186 in [Hru12] Hrushovski writes: “Elimination of imaginaries was introduced
in [She78] precisely in order to obtain 2 -exactness for stable theories.”
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B. Kim and Kolesnikov. Namely the papers [GK10], [GKK14a], [GKK13b],
[GKK13a], [GKK14b], [GKK15] and [Kim16]. In there many ideas of Hru-
shovski’s paper (i.e. [Hru12]) are worked out and generalised. A model
theoretic homology and homotopy theory is developed using the notion of
amalgamation and then a sort of (higher) Hurewicz Theorem is proved for this
(see Theorem 2.1 of [GKK14b]). It is also shown that the possible “homotopy”
groups are abelian pro-finite groups and a series of examples is given with
such “homotopy” groups. Also a higher analogue of these corresponding
homotopy groupoids is discussed. The notion of polygroupoid is used for
these “higher homotopy groupoids”. Another version of homotopy theory of
strong types with a not necessarily abelian fundamental group is developed
in [KKL15].

Examples of stable theories (in fact totally categorical theories) which
fail n-amalgamation (but guarantee lower uniqueness) have been constructed
in [PS11]. The same author also showed (in [Pas12]) that, under certain
assumptions, there is a connection between the Hrushovski construction and
higher amalgamation. In [BHM15] it is shown that the theory of compact
complex manifolds fails unique 3-Amalgamation over parameters. Then
in [Pal16] the assumption of total amalgamation is used in some simple
theory. Finally in [Kru15] a slightly different version of higher amalgamation
is used (although they coincide under certain assumptions) to show that
certain non-simple theories are pseudofinite.

1.3 Future work

It is left to be proven that an algebraic cover preserves other model theoretic
notions such as NIP or NTP2. The analysis of a connection between amal-
gamation and the uniqueness over a fixed set of parameters looks complete
in the stable context. But outside that, one could probably try to find a
counterexample with the property that n-amalgamation holds for every n
but (n− 1)-uniqueness fails. It would be interesting to see what the exact
boundaries of this would be. For example, can uniqueness and amalgamation
both fail and hold (for different n) infinitely often in the same theory? Then
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we question if there is a good dividing line between theories where amalgama-
tion over the empty set is linked (i.e. there does not exist an algebraic cover
such that only one of the two holds) to amalgamation over parameters (see
Chapter 5.1) and theories where this not the case (see the (Z/4Z)ω example).

Another question is if we can generalise our cover T2,φ (see Chapter 5)
such that the “homotopy group” (in the amalgamation sense, see [GKK14b])
is any profinite abelian group (if the original theory has amalgamation over
∅). We can also ask if there is an algebraic cover for any (stable/simple)
theory (or even in the rosy non-simple context) such that amalgamation over
parameters holds for any n (outside the stable context 2-uniqueness would
need to fail and outside the simple context 3-Amalgamation). Note that
we only achieved this for superstable, ω-categorical theories. Now if we put
all the ideas together then we can conjecture the following: For any stable
theory and any profinite abelian group G there exists an algebraic cover such
that the “homotopy group” (over ∅) of this cover is G. Is something similar
also true for “higher homotopy groups” (in the sense of [GKK15])?

Moreover, we conjecture that, if in a stable theory forking is complicated
enough (of course here the question is what the precise notion of complicated
is) then for any two pro-finite abelian groups G,H, there exists an algebraic
cover where the “homotopy group” over ∅ is G and the “homotopy group” over
some parameter is H. Of course here we could also formulate some higher
dimensional version of this. Finally we can ask if there is a good notion of
(higher) amalgamation beyond theories with an independence notion. It is
probably wise to try starting with forking in NIP or NTP2, because there the
Independence Theorem for NTP2 theories holds (see Theorem 3.3 of [BC14]),
which we could consider as suitable candidate for 3-amalgamation.
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Chapter 2

Notation and Preliminaries

An apology: I will recurringly use the book [TZ12] to refer to third party
results. So this book should not be viewed as an original source, but as
something which serves my own convenience. A great many of the ideas
around stability stem from [She90] and earlier publications of the same author.

2.1 Many-sorted language

We work in the first-order logic. The symbol T will normally represent some
complete many-sorted first-order L-theory with infinite models. We use
the same notation M for an L-structure and its domain. Also we will not
distinguish between symbols in the language L and interpretation of them
in some L-structure. Remember that a many sorted language L has some
set S of sorts present. This means that variables and constants will be of a
certain sort, relations will be of certain sorts (s1, . . . , sn) ∈ Sn and function
symbols will be of certain sorts, i.e. from some sorts (s1, . . . , sn) ∈ Sn to some
sort s ∈ S. For any many sorted L-structure M we write Ms to denote the
elements of sort s. For more details about many-sorted languages, structures
and theories see for example the “many-sorted” parts of chapter 1 and 2 in
[TZ12].

Definition 2.1.1. Let T be an S-sorted L-theory. By TS0 or T � S0 with
S0 ⊂ S, we mean the restriction of T to the language L � S0. The restriction
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of a language to some S0 is done by removing function, relations, constants
and sorts which are not of sorts in Sn0 . In similar fashion for an S-sorted
L-structure M by MS0 or M � S0 we mean the reduct. The reduct of M is
constructed by removing all functions, relations and constants which are not
of sorts in Sn0 and also all Ms with s ∈ S − S0.

An L-formula φ(x1, . . . , xn) indicates that x1, . . . , xn are all its free-
variables with the possibility that some of them are dummies. We also
allow that formulae have infinitely many variables, but require that all but
finitely many of them are dummies. In classical notation this essentially
means that if we have a formula φ(x, y) and some potentially infinite set A,
then by φ(x,A) we mean a formula φ(x, a) for some tuple a of A. Note that
by this convention the following is true: Let S be the set of sorts of the fixed
variable y. Then for some formula φ(x, y) we can plug in any set A for y, as
long as it contains at least one element for each sort of S.

2.2 Monster model

Definition 2.2.1. The monster model of a complete first-order theory T
with infinite models is a class-size model of T which is κ-universal, strongly
κ-homogeneous and κ-saturated for any cardinal κ. If the reader wants to
work inside ZFC and there exists some saturated models of arbitrary large
size, then they may take one saturated model which is of some large enough
cardinal κ instead. If the reader wants to work inside ZFC and there do not
exist saturated models (of arbitrary large size) the reader may take a large
enough special model (of size κ) instead. A special model is a model M of
cardinality λ which has a specialising chain Mκ : κ < λ. A specialising chain
Mκ : κ < λ (of M) is an elementary chain such that M =

⋃
κ<λMκ and such

that for each κ we have that Mκ is κ+-saturated.

Note that if the reader is working in one of the ZFC cases, then please
make the following replacements in the rest of thesis: Whenever we mention
a (definable) “class”, except when we talk about equivalence classes, then
replace the word “class” by the word “set” (of size ≤ κ) and when we talk
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about a (definable) “set”, then replace the word “set” by “small set” (i.e. of
size < κ).

We denote by C the monster model of T . For details on how to construct
a monster model of class size and on the set-theory required1 see Section 6.1
and the Appendix A of [TZ12]. Moreover, it is noted there that for a stable
theory T there exists a monster model of set-size for every regular cardinal
of size κ|T | = κ. For the construction of special models a good exposition is
Chapter 10.4 in [Hod93].

Now the notation will be that A,B,C . . . will normally denote subsets
(not classes) (if you do not want to work with a class-size monster then
consider them small sets) of the monster model C (see 2.2.1), a, b, c . . . will be
elements of the monster model and will often be confused with tuples. The
same holds for variables x — they can also be considered tuples. As we often
work in T eq this will then be automatic (see next section). The notation
a ≡C b means tp(a/C) = tp(a/C). By Sx(A) we denote the type-space in
the language L(A) where the types have x as their variable(s) (hence they
are of certain sort(s)). We may also write Ss(A) for s a tuple of sorts if we
do not care about the concrete variable and just want them to be of sorts s.
We also omit x and write that S(A) and hope that it is clear of which sort
our types are (we require that the sort is fixed). By a global type we mean a
type in the space S(C).

Recall the following:

Definition 2.2.2. An S-sorted theory T is κ-stable if for all subsets A of
size < κ of the monster model and all sorts s ∈ S we have that Ss(A) is of
size < κ. We say that T is stable if it is κ-stable for some κ.

Note that if a theory is κ-stable, then for all subsets of the monster A of
size < κ and all tuples of sorts s of S we have that Ss(A) is of size < κ (see
Lemma 5.2.2 of [TZ12]).

1It will be the Bernays-Gödel set theory with global choice (in short BGC ). See for
example [Fel71] to note that the BGC set theory is a conservative extension of ZFC (so
any set theoretical statement provable in BGC will be provable in ZFC).
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Fact 2.2.3. (Many-sorted Ryll-Nardzewski Theorem) A many-sorted count-
able theory is ω-categorical if and only if for all n ∈ N and for every given
n-tuple of sorts s we have that Ss(∅) is finite.

This is just as in the single-sorted ω-categorical case. If there are only
finitely many types (in a finite amount of sorts), then any countable structure
will be ω-saturated (i.e. each type is realised). Then this direction follows by
noting that any two countable ω-saturated model (of the same theory) are
isomorphic. The other direction can be also proved by assuming that Ss(∅)
is infinite and then using Omitting Type Theorem.

The group Aut(A/B) contains all automorphisms of A which fix B point-
wise. For A a subset of the monster, dcl(A) is the set of all A-definable
elements or equivalently the elements which are fixed by all automorphisms
which fix A. Further, acl(A) is the set of elements which are algebraic over A
or equivalently the elements which have finite orbit under the automorphisms
fixing A.

2.3 Imaginaries

An imaginary or imaginary element is a equivalence class of an 0-definable
equivalence relation. We will usually add imaginary elements to our theory.
We do that by adding a new sort for every 0-definable equivalence relation
together with the canonical projection from the old sort to the new sort. If
we add imaginaries to M |= T we will call the new structure M eq and the
corresponding theory T eq. We will refer to the elements of the old structure
as real elements. dcleq and acleq will refer to the calculation of the definable
and algebraic closure in T eq (if it is ambiguous whether we are working in
T or T eq). For an explicit construction see Section 8.4 of [TZ12]. All of the
following properties will hold for T eq.

1. We say that a theory has uniform elimination of imaginaries, if every 0-
definable equivalence relation E is the fibration of a 0-definable function
f (i.e. aEb holds if and only if we have that f(a) = f(b)).
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2. We say that a theory eliminates imaginaries or in short has e.i. if every
imaginary is interdefinable with a real tuple.

3. We say that a theory eliminates finite imaginaries if for every finite set
(of real elements) there exists a tuple such that the finite set is fixed by
the same automorphisms as this tuple. We refer to such a tuple as the
code of the finite set.

4. We say that a theory weakly eliminates imaginaries or in short has wei
if for every imaginary e there exists a real tuple d ∈ acl(e) such that
e ∈ dcleq(d).

5. We say that a theory geometrically eliminates imaginaries or in short
has gei if for every imaginary e there exists a real tuple d ∈ acl(e) such
that e ∈ acleq(d).

The only difference between point 1 and point 2 of the last definition
is whether there are some constants for coding of functions. In fact, we
have that a theory has elimination of imaginaries and has at least two 0-
definable elements if and only if it has uniform elimination of imaginaries
(see Lemma 8.4.7 of [TZ12]). By this we can easily see that T eq has uniform
elimination of imaginaries (the equivalence relation x1x2Ey1y2 defined by
x1

.
= x2 ↔ y1

.
= y2 gives rise to two elements).

Fact 2.3.1. (8.4.10 in [TZ12]) A theory has weak elimination and elimination
of finite imaginaries if and only if it has elimination of imaginaries.

Remark 2.3.2. Every automorphism of M extends uniquely to an automor-
phism of M eq.

Fact 2.3.3. (8.4.3 in [TZ12].) If T eliminates imaginaries, then every defin-
able class φ(C) has a canonical parameter (that is a real tuple which is fixed
by the same automorphisms which leave φ(C) invariant).

Going over from T to T eq will preserve many model theoretic properties.
For example it does preserve the following:
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Fact 2.3.4. (8.4.8 in [TZ12])

1. T is uncountably categorical if and only if T eq is uncountably categori-
cal.

2. T is κ-stable if and only if T eq is κ-stable.

3. T is stable if and only if T eq is stable.

2.4 Independence relation

We will now define a rather abstract concept. But the reader may verify that
the notion which will be introduced coincidences in the theory of algebraically
closed fields with algebraic independence.2

Definition 2.4.1. For a complete theory T , a ternary relation a |̂ BC be-
tween finite tuples a and sets B,C which is invariant under automorphisms
is called an independence relation if it satisfies the following properties:

1. (Monotonicity and Transitivity) a |̂ ABC if and only if a |̂ AB and
a |̂ ABC.

2. (Symmetry) a |̂ Ab if and only if b |̂ Aa, where we consider the tuples
on the right side as finite sets.

3. (Finite Character) a |̂ AB if and only if a |̂ AB0 for all B0 ⊂finite B.

4. (Local Character) There is a cardinal κ, such that for all a and B there
is a B0 ⊂ B of cardinality less than κ such that a |̂ B0B.

5. (Existence) For all a,B,C there is a′ such that a ≡B a′ and a′ |̂ BC.

6. (Anti-Reflexive) If a |̂ Aa, then a ∈ acl(A).
2Note that the theory of ACF0 will be strongly minimal and by quantifier elimination

the algebraic closure in the model-theoretic- and algebraic-sense coincide. From this it
follows that the algebraic closure operator will be a pregeometry (which will give rise of
some independence notion by for example Corollary 8.5.13 of [TZ12]).
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Note that an independence relation |̂ directly translates to (or rather defines)
a special class of extensions of n-types @: For p ∈ S(A), q ∈ S(B) with A ⊂ B
we have p @ q if p ⊂ q and there exists a |= q such that a |̂ AB. In simple
theory this special class will coincide with the usual notion of non-forking
extension.

The development of (abstract) notions of independence is an important
part of modern model theory. It started with the notion of matroids (i.e.
pregeometries) in [Wae30] ([Wae31]) and [Whi35]3, then continued with the
Morley rank4 and went on with the development of forking for stable5 and later
for simple theories6. Then continuing beyond to the notion of thorn-forking
(defined first in [Ons02]), which is the weakest of all notions, i.e. if there is
an independence notion at all, then thorn-forking will be an independence
notion and any elements being thorn-independence will be independent for
any other independence notion (see Theorem 5.2 of [Adl09b]).

Just requiring that T has an independence notion (and not T eq) does not
give any deep structure, as Example 4.5 of [Adl09a] shows. We will discuss
more about independence notions in a more meaningful context, i.e. in rosy,
simple and stable theories, later.

But first we will do more abstract nonsense.7

Lemma 2.4.2. An independence notion always satisfies the following addi-
tional properties;

1. (Weak Existence) a |̂ AA holds for any a,A,
3That the algebraic closure of strongly minimal defines an pregeometry was shown

in [Mar66] (see [BL71] for an exposition of this work).
4Implicitly Morley rank is already defined in [Mor65] (see the Historic notes on page 52

in [Bal88]). An axiomatic approach can be found in [BB74] and [Lac76].
5Implicitly already defined by the rank in [She69]. An axiomatic approach can be found

in [She78].
6This was done for weak forking in [She96] and for forking in [KP97] (see Claim 1.5 in

the former and Theorem 4.2 in the latter).
7According to [Mac97] the term “abstract nonsense” dates at least back to 1942. Note

that according to [Mon01] at least “[i]n algebra, the term “abstract nonsense” has a definite
meaning without any pejorative connotation.” I do use this term in a similar way just to
tell the reader that the following proof will be purely axiomatic.
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2. (Right Monotonicity) a |̂ AB if and only if a |̂ AAB,

3. (Base Monotonicity) a |̂ AB implies that a |̂ AB0B for any B0 ⊂ B.

Proof. The first point is given since there exists a′ ≡A a with a′ |̂ AA by
Existence. Then as there is an automorphism fixing A and mapping a′ to a,
we have by invariance under automorphism that a |̂ AA. For the second point
note that a |̂ AAB implies a |̂ AB by Monotonicity and Transitivity. On the
other hand if a |̂ AB holds then we get by Monotonicity and Transitivity
again that a |̂ AAB. The last point is true since a |̂ AB implies a |̂ AB0B

which gives by Monotonicity and Transitivity that a |̂ AB0B holds.

Remark 2.4.3. An independence notion naturally extends so that it is a notion
between triples A,B,C of sets. To see this note that by finite character and
symmetry, we can define that A |̂ CB holds, if a0 |̂ CB holds for some
enumerations a0 of all finite A0 ⊂ A.

Lemma 2.4.4. An independence notion is invariant under algebraic closure,
i.e. A |̂ BC holds if and only if acl(A) |̂ BC if and only if A |̂ acl(B)C if
and only if A |̂ Bacl(C).

Proof. In this proof one should read the notation A |̂ BC as a0 |̂ Bc0 holds
for all a0 which do enumerate a finite subset of A and for all c0 which
do enumerate a finite subset of C. Then A ≡B C means that there is an
enumeration of A and an enumeration of C such that these enumerations
have the same type over B.

If A |̂ BC holds, we can find an A′ ≡BC A (by compactness) with
A′ |̂ BCacl(BC). Hence by the invariance under automorphism we have
A |̂ BCacl(BC). And therefore by Monotonicity and Transitivity we have
A |̂ BCacl(BC). Hence we have A |̂ Bacl(C).

If we assume that this point is true now, then we have A |̂ BBacl(C)

by Monotonicity and Transitivity. By the same argument as before we have
A |̂ Bacl(BC). From here it follows that A |̂ acl(B)acl(BC) and therefore
A |̂ acl(B)C.

If we assume that this point is true, then since A |̂ BB (and therefore
A |̂ Bacl(B) as shown before), we have by Monotonicity and Transitivity
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that A |̂ Bacl(B)C and therefore A |̂ BC. Now by Symmetry acl(A) |̂ BC

holds if and only if the other conditions hold.

Definition 2.4.5. We are now going to define several notions in a theory with
an independence relation. A sequence (ai : i ∈ I) is called an independence
sequence over A if we have a<i |̂ Aai where a<i = (aj : j < i) for all i ∈ I.
An indiscernible sequence which is also an independence sequence is called a
Morley sequence. As the independence of a sequence does not depend on its
ordering by symmetry, we say that {ai | i ∈ I} is an independent set over A
if for any (all) ordering of I it is an independence sequence.

Lemma 2.4.6. Let (ai : 2 ≤ i ≤ n) be an independence sequence over ba1
and let a1 |̂ bai for all i with 2 ≤ i ≤ n. Then the sequence (ai : 1 ≤ i ≤ n)

is independent over the parameter b.

Proof. We prove this by induction, the basis n = 2 is given. Now by the
induction hypothesis we have that (ai : 1 ≤ i ≤ n− 1) is independent over
b. Further we have that a1 |̂ ban and an |̂ ba1(ai : 2 ≤ i ≤ n− 1) by our
assumptions. Hence by transitivity we have an |̂ b(ai : 2 ≤ i ≤ n− 1).

2.5 Rosy theories

Rosy theories are the most general class of theories which have an indepen-
dence notion in T eq:

Fact 2.5.1. (5.2 of [Adl09b]) T eq has an independence notion if and only if
T is rosy.

The reader not familiar with rosy theories may take this fact as a definition
of a rosy theory. The independence notion will be the notion of thorn-forking.
We will not care about the combinatorial description of thorn forking and
just deal with it as an abstract notion. If the reader is more interested in
this, then they could take a look at Adler’s [Adl09a] and Ealy and Onshuus’
[EO07] work.

Fact 2.5.2. (5.3 of [Adl09b]) Every reduct of a rosy theory is rosy.

23



Definition 2.5.3. We say that a rosy theory T is superrosy, if (in T eq) we
can pick the κ in the local character as ω. To phrase this in other terms, for
every type p there exists a finite subset A0 of its domain, such that p � A0 @ p.
If a theory is superrosy and simple or stable we will call it supersimple or
superstable.

Note that in general we can pick κ in the local character definition to be
(|T |+ |A|)+ (see the proof of Theorem 1.6 of [Adl09b]).

2.6 Simple theories

Definition 2.6.1. An independence relation satisfies the Independence The-
orem over Models if for every model M (of the same theory as the one the
independence notion is associated with) and all tuples a, b, c, d with

a ≡M b, c |̂ Md, a |̂ Mc and b |̂ Md,

there exists e such that e ≡Mc a, e ≡Md b and e |̂ Mcd.

Fact 2.6.2. (Kim-Pillay)(7.3.13 of [TZ12]) A theory T has an independence
notion |̂ which satisfies the Independence Theorem over Models if and only
if T is simple. Further |̂ is the non-forking relation and the non-dividing
relation (they coincide) (see Definition 2.6.3). The cardinal κ in the local
character can be picked as |T |+. In addition, if dividing or forking is an
independence notion, then T is necessarily simple.

The reader not familiar with the context may take Fact 2.6.2 as definition
for simple theories. Further, they should not worry too much about the
non-forking (or non-dividing) relation |̂ nf and they can use the abstract
concept defined above most of the time. In addition, the reader should note
that the notion of non-forking extension is just the class @ (coming from the
non-forking independence relation). In some proofs we do need the following
combinatorial definition of dividing and forking:
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Definition 2.6.3. (7.1.4 of [TZ12]) A formula φ(x, b) divides or we say that
φ(x, b) is a dividing formula over A if there is a sequence of indiscernibles
(bi)i<ω over A with b0 ≡A b and such that

⋃
i<ω φ(x, bi) is inconsistent.

A complete type p divides over A if it contains a formula which divides
over A. A partial type divides if all completions divide over A. Moreover, a
formula φ(x, b) or a (partial) type p forks over A if it implies a disjunction
of formulae

∨l
i=1 φi(x), such that for every i with 1 ≤ i ≤ l we have that

φi divides over A. Finally we define the relation a |̂ nfBC to hold, if tp(a/C)

does not fork over B.

Fact 2.6.4. (4.5 of [Adl09b])

1. Every reduct of a simple theory is simple.

2. T is simple if and only if T eq is simple.

2.7 Stable theories

Definition 2.7.1. A type p is called stationary (with respect to some notion
of independence) if for any two types q1, q2 over the same set of parameters
with p @ q1, q2 we have q1 = q2.

Definition 2.7.2. An independence relation has Weak Boundedness, if for
all a,A there is a cardinal κ such that for any B ⊃ A, there are at most κ
(ai)i∈I with ai ≡A a, ai |̂ AB and aj 6≡B ak for k 6= j ∈ I.

Fact 2.7.3. (8.5.10 of [TZ12]) A theory T has an independence notion |̂

which satisfies Weak Boundedness if and only if T is stable. Further |̂ is
the non-forking relation. If T further has elimination of imaginaries then the
cardinal κ in the Weak Boundedness definition can be set as 2|T |. We also
have that any type over a model is stationary. If we further have that T has
(weak) elimination of imaginaries (or work in T eq), then any type over an
algebraically closed set is stationary.

Again if the reader is not familiar with the context, they may take
Fact 2.7.3 as definition for stable theories.
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Fact 2.7.4. [Parameter Separation Theorem](see Theorem 12.31 of [Poi00]
or Corollary 3.19 of [Sim15]) Let M be the model of some stable L-theory,
let φ(x) be some L-formula and let ψ(x,m) be some L(M)-formula. Then
there is some L(φ(M))formula θ(x, a) which is equivalent to φ(x) ∧ ψ(x,m)

(in M).

Definition 2.7.5. A theory has canonical bases, if for every global type
p ∈ S(C) there exists some set B which is fixed point-wise by the same
automorphisms which leave p invariant.

Fact 2.7.6. (2.6 in [CF04]) A theory which has canonical bases is stable and
has weak elimination of imaginaries. If on the other hand the theory is stable
and has elimination of imaginaries then it has canonical bases.

Amalgamation diagrams have been around in model theory at least since
the 1950ies.8 The next lemma is also such an amalgamation diagram (this
time of automorphisms). It is a corollary of the fact that in T eq types over
algebraically closed sets are stationary, which is due to Shelah (see 6.9(1)
of [She90]). It first appeared in [Las91](see 3.3) together with the name
amalgamation.

Lemma 2.7.7. Let T be a stable theory with weak elimination of imagi-
naries. Let A be an algebraically closed set, a, b some tuples, α, β be two
automorphisms with α � A = β � A. Further suppose we have a |̂ Ab and
α(a) |̂ β(A)β(b). Then α � Aa ∪ β � Ab is an elementary map.

Proof. Note that tp(a/A) @ tp(a/Ab) and tp(α(a)/β(A)) @ tp(α(a)/β(Ab)).
Now by stationarity (this by wei and since A is algebraic closed), we have
tp(α(a)/β(Ab)) = tp(β(a)/β(Ab)), therefore we have an automorphism γ

fixing β(Ab) and mapping β(a) to α(a). Now we are finished since

γ ◦ β � Aab = α � Aa ∪ β � Ab.

8In Chapter 6.4 of [Hod93] Hodges writes “It was Roland Fraïssé who first called
attention to the [2-amalgamation] diagram”
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Fact 2.7.8. (see Exercise 8.5.2 of [TZ12] or for a proof [Bal88]) (The Finite
Equivalence Relation Theorem) Let T be stable, A ⊂ B and let q 6= p be types
over B which do not fork over A. Then there is an A-definable equivalence
relation E with finitely many classes such that q(x) ∪ p(y) ` ¬E(x, y).

Proposition 2.7.9. Let T be stable and ω-categorical. Then any type p over
a finite set A has only finitely many non-forking extensions. Hence there
are only finitely many global types (over a fixed set of variables) which are
non-forking over A.

Proof. Let (pi : i ∈ I) be all global non-forking extensions of p. Now by
the Finite Equivalence Relation Theorem, for every two types pi 6= pj there
exists an A-definable equivalence relation Ei,j with pi(x) ∪ pj(y) ` ¬Ei,j(x, y).
Now we use the Ryll-Nardzewski Theorem. Note that it states that in an
ω-categorical theory there are only finitely many inequivalent L-formulae
over some fixed finite tuple of variables. Since T (A) is also ω-categorical,
we have only finitely many different Ei,j . Hence we have only finitely many
non-forking extensions. As there are only finitely many types over a finite
set (by Ryll-Nardzewski) the second point automatically follows.

2.8 Category theory

We establish some elementary things in arbitrary categories:

Lemma 2.8.1. Let S and C be arbitrary categories. Let a : S → C be a
functor and let (a(s)

fs−→ b(s))s∈S be a system of isomorphisms in C. We
define b : S → C by mapping the object s to b(s) and a morphism s

f−→ t to

b(f) = ft ◦ a(f) ◦ f−1s .

Then b is a functor, which is naturally isomorphic to a.

Proof. We check that b is a functor. We have

b(ids) = fs ◦ a(ids) ◦ f−1s = fs ◦ ida(s) ◦ f−1s = fs ◦ f−1s = idb(s)
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For arrows s g−→ u and u h−→ t in S we have

b(h) ◦ b(g) = ft ◦ a(h) ◦ f−1u ◦ fu ◦ a(g) ◦ f−1s
= ft ◦ a(h) ◦ a(g) ◦ f−1s = b(h ◦ g).

Hence b is a functor. The natural isomorphism is given by (a(s)
fs−→ b(s))s∈S ,

because we have ft ◦ a(f) = b(f) ◦ fs.

Lemma 2.8.2. Let S, U and C be categories such that S is a subcategory
of U . Let b− : S → C and a− : S → C be two naturally isomorphic functors
with natural isomorphism (fs : s ∈ S). Further let a : U → C be a functor,
such that a � S = a−. Then there exists a functor b : U → C with b � S = b−,
which is naturally isomorphic to a.

Proof. Let the natural isomorphism between a− and b− be given by the
isomorphisms (fs : s ∈ S). We use Lemma 2.8.1 with

{fs : s ∈ S} ∪ {ida(u) : u ∈ ob(U)− ob(S)}

as our system of isomorphisms to receive a functor b which is naturally
isomorphic to a. It is left to check that b � S = b− holds. First note that it is
clear that the objects are the right ones, i.e. b−(s) = b(s) for any s ∈ ob(S).
So check that the image of any arrow s

h−→ s′ in S is the same under b− and b.
By definition of b we have that b(h) = fs′ ◦ a(h) ◦ f−1s . Also as (fs : s ∈ S)

gives a natural isomorphism between a− and b− we have

b−(h) ◦ fs = fs′ ◦ a−(h)

and therefore

b−(h) = fs′ ◦ a−(h) ◦ f−1s .

As a � S = a− this then gives

b−(h) = fs′ ◦ a(h) ◦ f−1s .

Hence we have b−(h) = b(h) as required.
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Chapter 3

Algebraic and Finite Covers

In this chapter we will analyse some mild expansions of complete theories. We
consider them mild because the algebraic closure (computed in the expansion)
of any model of the original theory will be the domain of a model of the
expansion. Further, the expansions do additionally preserve many model
theoretic properties and also behave well when we add imaginary elements
to them.

I have been unable to find precise references for the results in this section,
though it is likely that many of them are in the realm of folklore (apart from
Section 3.5). I became aware of them via personal communication with David
Evans.

We use the following conventions throughout this chapter.

We let T be a complete S-sorted L-theory and let T ′ be a complete S′-
sorted L′-theory with T ⊂ T ′, L ⊂ L′ and S ⊂ S′. Moreover, we require
that L′ � S = L (this means that any S-sorted function, relation or con-
stant of L′ is already part of L). Moreover (by that), we have T ′ � S = T

(meaning that we forget about any sentence in T ′ with relation and variables
which are not S-sorted). We let C be the monster model of T and M be a
model of T. We let C′ be the monster model of T ′ and M ′ be a model of
T ′. Note that by these conventions (together with Definition 2.1.1) we have
that M ′ � S = M ′ � L = M ′ � (L′ � S). We also use a complete S′′-sorted
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L′′-theory T ′′ with the same properties as T ′ (in relation to T ) and also set
C′′,M ′′ accordingly. Finally we refer to the sorts of S as the old sorts and to
the sorts of S′ − S as the new sorts.

3.1 Definition

Definition 3.1.1. (The conventions are as defined above.) The model M
is embedded in the model M ′, if we have that the 0-definable subsets of M ′

and powers of it are the same in the L and L′ sense. This means that any
S-sorted L′-definable set is definable in the language L. The theory T is
embedded in the theory T ′, if for all models M ′ of T ′ the restriction M of M ′

to the sorts of L is embedded in M ′. The model M is stably embedded in the
model M ′, if we have that the definable subsets of M and powers of it are the
same in the L and L′ senses. This means that any S-sorted L′(M ′)-definable
set is definable in the language L(M). The theory T is stably embedded in
the theory T ′, if for all models M ′ of T ′ the restriction M of M ′ to the sorts
of L is stably embedded in M ′. A model M or a theory T is said to be fully
embedded in M ′ or T ′ respectively, if each of them are embedded and stably
embedded.

LetM be some L-structure and φ some L-formula. If we consider φ(M ′) to
be the induced structure of M (i.e. it has language Lφ(M) = {Rψ(x) | ψ ∈ L}
and the interpretation: for every a ∈ φ(M), φ(M) |= Rψ(a) ⇐⇒ M |= ψ(a))
then we have that φ(M) is embedded in M,φ(M), idφ(M). If M is moreover
stable then we also have that it is stably embedded in M by the Parameter
Separation Theorem (see Fact 2.7.4 and the next Remark 3.1.2)

Remark 3.1.2. Let M ′ be stable. Let M be embedded in M ′. Then we
have that M ′ is stably embedded M . Of course if we have additionally that
M ′ = acl(M) then M ′ is an algebraic cover of M .

Proof. By the assumptions we only need to check that M is stably embedded
in M ′. So take some ψ(x,m′) formula with m′ ∈M ′ and with x of the old
sorts (i.e. the sorts of M). Now by stability and as M is a restriction of
sorts, we can apply Fact 2.7.4 with φ(x) = x

.
= x and ψ. Hence we get some
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L′(M)-formula θ(x,m) which is equivalent to ψ (in M ′). Now as θ(x, y) is
some L′-definable formula defining an subset of M we know by embeddedness
that there is some θ′(x, y) ∈ L equivalent to θ(x, y) (in M ′). Which gives
us stable embeddedness since we have then that θ′(x,m) is equivalent to
ψ(x,m′).

The next result is part of Lemma 1 in the Appendix of [CH99].

Fact 3.1.3. If every automorphism of C extends to one of C′, then T is fully
embedded in T ′. If L,L′ are both countable languages, then the converse is
also true.

We will later see that under the condition that T ′ is an algebraic cover of
T , we have that the converse also holds for uncountable theories. For that
see Lemma 3.1.11.

Definition 3.1.4. For M fully embedded in M ′, we say that M ′ is an
algebraic cover of M , if M ′ is the algebraic closure of M (computed in M ′).
We further require that, if S1, . . . , Sn are any number of new sorts of L′

(compared to L), the restriction of M ′ to the sorts S1, . . . , Sn together with
the sorts of L is fully embedded in M ′. We say that M ′ is a finite cover of
M , if there is only a single new sort M1 and there is a 0-definable function
π from M1 to M which is (boundedly) finite-to-one. For a natural number
n we say that M ′ is a n-cover of M , if it is a finite cover and the definable
function π is n-to-one, by which we mean that the fibre of each point has
exactly n elements.

For T fully embedded in T ′, we say that T ′ is an algebraic cover of T , if
whenever M ′ |= T ′, we have that M ′ is an algebraic cover of the restriction
M of M ′ to the sorts of L. The theory T ′ is a finite cover of T , if it is an
algebraic cover of T and whenever M ′ |= T ′, we have that M ′ is a finite cover
of the restriction M of M ′ to the sorts of L. It is an n-cover, if it is a finite
cover and wheneverM ′ |= T ′, we have thatM ′ is an n-cover of the restriction
M of M ′ to the sorts of L.

A more general definition of a finite cover is given in [Eva97b] (see Defini-
tion 1.1.2 in there). If one only cares about structure up to interdefinability,
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then our notion and the notion in [Eva97b] should coincide. But this proof is
left to future work. We will only use the definition in here, which is suited
for our needs.

Remark 3.1.5. Let T ′ be an algebraic cover of T . Then we have that for every
M |= T the structure aclT

′
(M) is a model of T ′.

Proof. So take some L′-formula φ(z, y) and some m′ ∈ aclT
′
(M). Then by

Tarski’s test aclT
′
(M) will be a model of T ′ if and only if there exists

m′′ ∈ aclT
′
(M) such that T ′ |= φ(m′′,m′) (assuming that φ(z,m′) is satisfi-

able in C′). We take some formula ψ1(y, x1) (with x1 of the old sort) such
that

T ′ |= ∀x∃=n1yψ1(y, x1)

and such that T ′ |= ψ1(m
′,m) for some m ∈M holds. Then by compactness

and as acl(C) = C′ there exist ψ2(z, x2) (with x1 of the old sort) such that

T ′ |= ∀x∃<n2zψ2(z, x2)

and such that ∃x2ψ2(z, x2) covers

∃y, x1φ(z, y) ∧ ψ1(y, x1).

We set θ(x1, x2) to be following L′-formula

θ(x1, x2) := ∀z∃y
(
(φ(z, y) ∧ ψ1(y, x1))→ ψ2(z, x2)

)
.

Now there is some c ∈ C such that C′ |= θ(m, c). Hence by Tarski’s test and
as (by embeddedness) θ(x1, x2) is equivalent to an L-formula we have that
there is some m0 ∈M satisfying θ(m,x2). But this means that φ(z,m′) is
satisfiable by an element algebraic over m0 (more precisely some element
satisfying ψ2(z,m0)).

The next lemma tells us that we only need to check embeddedness (and
not stable embeddedness) in case there is some finite-to-one map in order to
verify that some extension is a finite cover.
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Lemma 3.1.6. Let S′ = S ∪ {s}. If M is embedded in M ′ and there is
a 0-definable finite-to-one map π from s to the S-sorts, then M is stably
embedded in the model M ′.

Proof. Fix some M ′-definable subset φ(m′,M) of M . Now let {(mi)1≤i≤k}
be all the elements with π(m′) = π(mi). For each 1 ≤ i ≤ k fix some

ai ∈ φ(m′,M)− φ(mi,M)

and some

bi ∈ φ(mi,M)− φ(m′,M)

(if the sets are non-empty). Let Ia be the set of all 1 ≤ i ≤ k for which there
exists some ai and let Ib be the set of all 1 ≤ i ≤ k for which there exists
some bi. Then by embeddedness we have that for the L′-formula

∃z[π(z) =̇ x ∧ φ(z, y) ∧
∧
i∈Ia

φ(z, yi) ∧
∧
i∈Ib

¬φ(z, yi+k).

there exists an L-formula

ψ(x, y, (yi)i∈Ia , (yi+k)i∈Ib),

with the same realisations. Now the L(M)-formula

ψ(π(m′), y, (ai)i∈Ia , (bi)i∈Ib) ∈ L(M)

has the same realisations as the L′(M ′)-formula φ(m′, y).

We will show that asking whether M ′ is a finite cover or an n-cover of
M for some models (of T ′ and T ) is the same as asking if T ′ is a finite cover
of T . Note that here we need to require that the finite-to-one function is
bounded. Otherwise, by compactness, the function will not necessarily be
finite-to-one in some bigger model. Moreover, if the models are saturated,
then asking if M ′ is an algebraic cover of M is equivalent to asking whether
T ′ is an algebraic cover of T . The idea to this lemma is due J. Kirby.
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Lemma 3.1.7. If M ′ is a finite cover of M , then T ′ is a finite cover of T . If
M ′ is an n-cover of M , then T ′ is an n-cover of T . If M ′ is |L′|+-saturated
and if M ′ is an algebraic cover of M , then T ′ is an algebraic cover of T .

Proof. First check that if M is embedded in M ′, then for any M∗ ≡M ′

we have that M∗ � S is embedded in M∗. But this is just because for any
variables x, which are of old sorts S, and for any L′-formula ψ(x) there exists
some L-formula φ(x) such that

M ′ |= ∀x(ψ(x)↔ φ(x))

and hence

M∗ |= ∀x(ψ(x)↔ φ(x)),

which shows what we want.
Note that if there is some 0-definable bounded finite-to-one or n-to-one

function from the new sort to the old in one pair of model (M ′,M), then this
is of course true for any pair of models (M∗,M∗ � S) with M∗ ≡M ′. Note
that by Lemma 3.1.6 we have that for finite covers and for n-covers stable
embeddedness follows. Hence we have shown the first part of the lemma.

Now take a pair (M ′,M) which is |L′|+-saturated. Further we require
that M ′ ⊂ aclM

′
(M). Then for a variable z of some new sort s we can

find |L′|-many formulas (φi(z, yi))i∈I such thatM ′ |= ∃≤nizφi(z, yi) and such
that

⋃
i∈I ∃yiφi(z, yi) covers all of M ′s. By compactness we can find a finite

subset of I0 of I such that
⋃
i∈I0 ∃yiφi(z, yi) still covers all of M ′s. But this

is first-order expressible, and hence we do have M∗ ⊂ acl(M∗ � S) for any
M∗ ≡M .

Finally we need to check that stable embeddedness stays true. So take
a pair M ′,M for which M is stably embedded in M ′. So let x be variables
of some old sorts and ψ(x, z) be some L′-formula. Then for every m′ ∈M ′

there exists φm′(x,m) some L(M)-formula such that φm′(x,m)↔ ψ(x,m′).
Now we have that

⋃
φ∈L ∃y∀x(φ(x, y)↔ ψ(x, z)) does cover all of the sort

of z, and hence by compactness we can find an finite set X of L-formulas
such that

⋃
φ∈X ∃y∀x(φ(x, y)↔ ψ(x, z)) does cover all of the sort of z. This

34



is expressible in an L′-sentence and hence stable embeddedness is preserved
for different models of T ′.

Remark 3.1.8. If T ′ is an algebraic cover of T note that then any automorphism
of C can be extended to one of C′. This is just because any automorphism
of C is by embeddedness a partial elementary map and this map can be
extended to its algebraic closure which is all of C′.

A slight complication is given here. A priori the extension of a partial
elementary map f to an automorphism of the monster can only be done if
the domain of that map is a (small) set. Such an automorphism restricted
to the algebraic closure of dom(f) is of course then an extension of f to the
algebraic closure. But as we can do that for any model M (of T ) of arbitrary
size we may just neglect that issue. In fact, if we work in a countable language
then we can also use stable embeddedness to conclude the above remark (see
Fact 3.1.3).

Corollary 3.1.9. Let T ′ be an algebraic cover of the theory T . Then for
every set A ⊂ C we have that algebraic and definable closure on the old sorts
is the same in the T and T ′-sense. This means that the following holds;

dclT (A) = dclT
′
(A) ∩ C and aclT (A) = aclT

′
(A) ∩ C.

Proof. Note that as said in the last remark every automorphism of C extends
to one of C′ and on the other hand we have that every automorphism of C′

restricted to the old sort is an automorphism of C. Hence for elements of C
having a finite orbit or being fixed over A by either an automorphism of C or
an automorphism of C′ is the same.

Lemma 3.1.10. Let T ′ be an algebraic cover of T . Then any automorphism
of C which fixes M pointwise (some model of T ) can be extended to an
automorphism which fixes aclT

′
(M) pointwise.

Proof. Let α be an automorphism of C which fixes M pointwise. We have
that M ′ = aclT

′
(M) is a model of T ′ (by Remark 3.1.5). Now we claim

that α ∪ idM ′ is an elementary map. For that note for any variable x of the
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old sort and any φ(x,m′) L′(M ′) by stable embeddedness there exists some
L(M)-formula ψ(x,m) which has the same realisations in C. Now this means
that the truth of the φ(x,m′) will be preserved under automorphisms of M .
Hence the union α ∪ idM ′ is an elementary map.

Lemma 3.1.11. Let S′ (the sorts of T ′) be S ∪ {s}. Then we have that the
following three points are equivalent;

1. T ′ is a finite cover of T .

2. The reduct C = C′ �S (of the monster model C′ of T ′) is a monster
model of T ; there is an L′-definable finite-to-one function from the new
sort s to C and every automorphism of C can be extended to one of C′.

3. The reduct C = C′ �S (of the monster model C′ of T ′) is a monster
model of T ; there is an L′-definable finite-to-one function from any
finite number of sorts of C′ to C and every automorphism of C can be
extended to one of C′.

Proof. We prove (1) to (2) first. The first point of (2) is clear as any type in
C is a partial type in C′ and therefore satisfiable. The second point is also
given by definition. For the last point we need to check that automorphisms
of C are partial elementary maps of M ′. If this is done we are finished,
since we can extend any elementary map to the algebraic closure which is
C′ (see Remark 3.1.8). But since C is embedded in C′, we have that for any
L′-definable class φ(C) there exists some L-formula ψ satisfied by the same
elements. Now for an automorphism α of C we have C′ |= φ(m) if and only if
C |= ψ(m) if and only if C |= ψ(α(m)) if and only if C′ |= ψ(α(m)).

To prove that (2) implies (3) just note that we can extend the finite-one-
map from the sort s to some finite number of sorts of C′ by defining π(x) = x

for x not of sort s. This the only thing in which the two points differ.
Finally for the direction (3) to (1) note that we need only to check that

T is fully embedded in T ′. But this follows directly from Fact 3.1.3.

The next definition gives us a way of combining two algebraic covers into
a single algebraic cover. This notion will be used in Chapter 7 and Chapter 8.
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Definition 3.1.12. Suppose T is fully embedded in T ′ and also fully embed-
ded in T ′′. If M ′,M ′′ are models (of T ′, T ′′) with a common T -part M |= T

we denote by M ′
∐
M M ′′ the L′ tL L′′-structure which is the disjoint union

over M of M ′ and M ′′ and in which no new instances of atomic relations are
added. Note that by L′ tL L′′ we mean the union of L′ and L′′ such that
any sort and any relation, function or constant symbol which is part of both
L′ and L′′ is already part of L. This of course can always be achieved by
renaming the languages. The theory of this does not depend on the choice of
M ′,M ′′ and we denote it by T ′ ×T T ′′. Clearly Aut(M ′

∐
M M ′′) is the fibre

product

Aut(M ′)×Aut(M) Aut(M ′′) =

{(g′, g′′) ∈ Aut(M ′)×Aut(M ′′) | g′ �M = g′′ �M}.

Note that T is fully embedded in T ′ ×T T ′′ and this is an algebraic cover of
T if T ′ and T ′′ are.

3.2 Relating algebraic covers with finite covers

Remember that we use the conventions defined on page 29.

Lemma 3.2.1. Let S1, S2 be sorts of S such that SC
1 ⊂ acl(SC

2 ). Then there
is some formula φ(x, y) (with x ∈ S1 and y ∈ S2) and some natural number
m such that

C |= ∀y∃<mxφ(x, y) ∧ ∀x∃yφ(x, y).

Proof. For every a ∈ SC
1 we find an algebraic formula φa(x, b) with b ∈ SC

2

with C |= φa(a, b). Further we require that for every b, we have that every
φa(x, b) has strictly less realisations than some fixed number (say ma). We
can do that by replacing φa(x, ya) by φa(x, ya) ∧ ∃<maxφi(x, ya). Note that
all the formulae ∃yaφa(x, ya) together cover SC

1 . Now by compactness there is
a finite number of these formulae such that {∃yaiφai(x, yai) : 1 ≤ i ≤ n} cover
SC
1 . We now set φ(x, y) = φ(x, y1 . . . yn) =

∨
1≤i≤n φi(x, yi). Then ∃yφ(x, y)

is satisfied by every element of SC
1 and |= ∀y∃<m1+···+mnxφ(x, y) holds.
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Lemma 3.2.2. Let S1, S2 be sorts of S such that SC
1 ⊂ acl(SC

2 ) and such
that SC

2 is fully embedded in C. Then there is a 0-eq-definable finite-to-one
function from SC

1 to (SC
2 )eq. This function is 0-definable in the language of

C ∪ (SC
2 )

eq.

Proof. By Lemma 3.2.1 there is some formula φ(x, y) and some natural
number m, such that |= ∀y∃<mxφ(x, y) and ∃yφ(x, y) covers SC

1 . We take
the definable finite-to-one map f which maps a ∈ SC

1 onto the imaginary aE
where the equivalence relation E is given by

E(x1, x2) = ∀y(φ(x1, y)↔ φ(x2, y)).

This function is finite-to-one as there is a common b such that for any a′ ∈ aE
we have φ(a′, b). Now each aE is fixed by the same automorphisms as φ(a,C).
Furthermore, as φ(a,C) ⊂ SC

2 , by stably embeddedness there is some formula
with ψ(z, y) in the language of the restriction of C to the sort S2 such that
φ(a,C) = ψ(c,C) for some c ∈ SC

2 . Hence there is a canonical parameter ba
of φ(a,C) in (SC

2 )
eq. We may assume that for φ(a,C) 6= φ(a′,C) we have that

the corresponding canonical parameters ba and ba′ are not equal.
Now as all aE and ba are interdefinable in Ceq, there is a 0-definable

injective function g from (aE)a∈SC
1
to the canonical parameter ba of

(φ(a,C))a∈SC
1
.

To see this fix for every aE and ba a formula ψ with |= ψ(aE , ba) and

|= ∀x∃=1yψ(x, y) ∧ ∀y∃=1xψ(x, y).

Now all the ∃yψ(x, y) cover SC
1 /E, hence there is a finite number of them

covering SC
1 /E, which we can assume to be disjoint. Hence g ◦ f is a 0-eq-

definable finite-to-one function from SC
1 to (SC

2 )eq. Now note that since the
graph of (g ◦ f) is in C ∪ (SC

2 )eq and by embeddedness of S2 we have that the
function is 0-definable in the language of C ∪ (SC

2 )eq.

Corollary 3.2.3. Let T ′ be an algebraic cover of T = T eq. Then from each
new sort S1 there is a 0-definable finite-to-one map to the old sorts S.
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Proof. Note that S1 is covered by (∃yiφi(x, yi) : i ∈ I) such that

T ′ |= ∃∀yi∃<niφi(x, yi).

By compactness we may take I to be finite. Hence we have S1 is in the
algebraic closure of all sorts of all yi. As we work in T eq we may assume that
all the yi belong to the same sort. Now we are finished as we can apply the
last Lemma 3.2.2

Corollary 3.2.4. Suppose T uniformly eliminates imaginaries and let T ′ be
an algebraic cover of T with only one new sort. Then T ′ is a finite cover of
the theory T .

Proof. Let C be a monster model of T . By the Lemma 3.2.2 there is a
0-definable finite-to-one map f from the new sort to some sort of T eq say
S. As T eliminates imaginaries uniformly, there is a 0-definable function g
from S to Cm such that for every element of S there is a unique element in
Cm. Now g ◦ f is an 0-eq-definable function from the new sort to C. This is
a function whose graph is in the (home) sorts of T ′ and therefore definable
in it.

Corollary 3.2.5. Suppose T uniformly eliminates imaginaries. Further let
T ′ be an algebraic cover of the theory T with only finitely many new sorts.
Then we have that the theory T ′ is interdefinable with some theory T ′′, which
is a finite cover of the theory T .

Proof. The point is that we can interpret any finite number of sorts as a single
sort: Let S1, . . . , Sn be the new sorts of (T ′ compared to T ). Interpret this
as a single sort S′ by adding relation symbols R1 . . . Rn to it with S1, . . . , Sn
as its classes. Changing the language mildly such that the relations of T ′

are relations of sort S′ (and sort of T ) are of the right sort will finish the
construction. Then this new structure is what we were looking for. The proof
of Corollary 3.2.4 shows us that there is a 0-definable finite-to-one map from
S to the sorts of T . Now because the S1, . . . , Sn are definable by the new
sort S, we have that T ′′ is a finite cover.
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By the last Corollary we may start to confuse finite covers and algebraic
covers (with finitely many new sorts) over T eq.

3.3 Imaginaries and covers

Remember that we use the conventions defined on page 29.

The next lemma will help us to understand new imaginaries appearing in
a finite cover.

Lemma 3.3.1. Let M ′ be an algebraic cover of M and suppose M geometri-
cally eliminates imaginaries. Then for every e ∈M ′eq we have

e ∈ aclM
′eq

(aclM
′eq

(e) ∩M).

Proof. Throughout this proof we let aclM
′
be aclM

′eq
. Note that if the map

π : M ′ →M is 0-definable and finite-to-one, then so is

π(n) : M ′
n →Mn : (c1, . . . , cn) 7→ (π(c1), . . . , π(cn)).

Hence we may assume that e is a class of a 0-definable equivalence relation
∼ on M ′ and that e = E is a subset of M ′. Now F = π(E) is a definable
subset of M (by stable embeddedness). Therefore by geometric elimination of
imaginaries there exists f ∈ aclM

′
(e) ∩M such that the canonical parameter

f1 of F is in aclM (f).
Let α ∈ Aut(M ′/f), then as f1 has finite orbit over f (say f1, . . . , fk),

we have α(f1) = α(fi) for some i ≤ k. Let Fi be the definable set which is
corresponding to fi. Then we have α(F ) = Fi and we have that E′ = α(E)

is a ∼-class with π(E′) = Fi for some 1 ≤ i ≤ j.
Pick now any bi ∈ Fi. There is some a′ ∈ E′ with π(a′) = bi and with

E′ = a′/ ∼. Thus the number of possibilities for E′ is at most |
⋃k
i=1 π

−1(bi)|.
But this is finite. So e ∈ aclM

′
(f) and therefore e ∈ aclM

′
(aclM

′
(e) ∩M).

Corollary 3.3.2. Let M ′ be an algebraic cover of M . Further suppose M ′

is a saturated model. Then M ′eq is an algebraic cover of M eq.
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Proof. First note that M ′ is an algebraic cover of M eq: M ′ is in the algebraic
closure of M eq as it is in the algebraic closure of M . The structure M eq also
stays fully embedded in M ′ as this only depends on the definable sets on
the home-sort of M eq and M . We have clearly that aclM

′eq
(M eq) = M ′eq by

Lemma 3.3.1. Now as every automorphism from M eq extends to M ′, we have
that every automorphism of M eq extends to M ′eq as every automorphism
of M ′ extends uniquely to one of C′eq. Hence by Fact 3.1.3 M eq is fully
embedded in M ′eq

Lemma 3.3.3. LetM ′ be an algebraic cover ofM = M eq. Further we require
that the algebraic closure of the empty set is added as parameters to M , i.e
we have M eq

acleq(∅) = M . Then we have that the structure M ′
aclM

′
(∅) (again

this means we add the parameters aclM
′
(∅) to M ′) is an algebraic cover of

M .

Proof. We clearly have that M ′acl(∅) is contained in acl(M). Hence we need
to check that M is fully embedded in M ′acl(∅). It is clear that the parameter
definable sets of M with parameters from M ′ stay the same. So it is left to
check embeddedness. For that take some definable set ofM , say φ(M, c) with
c ∈ aclM

′
(∅). Now over M ′ the tuple c has finite orbit. Hence the canonical

parameter e of φ(M, c) has finite orbit in M ′. Hence e must have finite orbit
in M . But as we required that any canonical parameter with finite orbit is
already added as parameter in M we are finished.

3.4 A cover is a mild extension

Remember that we use the conventions defined on page 29.

If we look at the nature of algebraic and finite covers, one could be tempted
to say that such expansion should preserve any serious model theoretic
property. But this is slightly overconfident. As then one would need to
take some fundamental model theoretic properties such as o-minimality as
non-serious. For that first note that in o-minimal the definable and algebraic
closure coincide (see 2.2 of [Mac00]). The point now is that in any theory in
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which the algebraic and definable closure coincidence we have that the 2-cover
without any new relations (a two-to-one function from a new sort to the
old) will have the property that definable closure and algebraic closure differ.
Hence this kind of 2-cover of an o-minimal theory will be not o-minimal. But
we can still show that many (stability-style) model-theoretic properties are
preserved under extensions of algebraic covers (and finite covers).

Lemma 3.4.1. Let T ′ be an algebraic cover of T . Let κ be a cardinal with
κ ≥ |T ′|+. Then a model M ′ (of T ′) is κ-saturated if and only if its reduct
M of M ′ to the S-sorts is κ-saturated in the theory T .

Proof. The direction left to right is clear, as any type in M is a partial
type in M ′ and can therefore be satisfied by saturation of M ′. Now assume
M is κ-saturated. So take a type p ∈ Sx(A) over some parameters A ⊂M ′

with |A| = λ < κ. By Lemma 3.2.2 there exists a definable (boundedly)
finite-to-one π from the sort of p to some sorts of M .

Now note that the type

q = {∃x(π(x)
.

= y ∧ ψ(x) | ψ ∈ p}

is satisfiable in M : It is finitely-satisfiable since

∃x(π(x)
.

= y ∧
∧
i

ψi(x)) `
∧
i

∃x(π(x)
.

= y ∧ ψi(x))

for any finite number of ψi ∈ p. To see that it is satisfiable, note first that
as M is stably embedded in M ′ we can replace every formula in q by an
L(M)-formula with parameters in M . Now this type will then have equal or
less than λ · |T |-many parameters. As λ · |T | is smaller then κ we know that
q is satisfied.

We now fix m a realisation of q. And let m1, . . . ,mn be all elements of
realising π(x)

.
= m. We claim that one of the mi is a realisation of p. If

not then for all mi there would be a ψi ∈ p with mi |= ¬ψi. But since p is
a complete type, we have

∧
i ψi ∈ p and hence ∃x(π(x)

.
= y ∧

∧
i ψi(x)) ∈ q.

But this is impossible since m would not satisfy ∃x(π(x)
.

= y ∧
∧
i ϕi(x)) ∈ q.
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Corollary 3.4.2. Let T ′ be an algebraic cover of T . Then T ′ is uncountably
categorical if and only if T is uncountably categorical.

Proof. If T ′ is uncountably categorical, then any uncountable model of T ′ is
saturated. As we can extend any model of T to a model of T ′, we have that
any model of T of the size of |T ′|+ is saturated by Lemma 3.4.1. Hence as
two saturated models of T ′ of the same cardinality are isomorphic, we have
that T is |T ′|+-categorical and therefore uncountably categorical.

If on the other hand T is uncountably categorical, then by Lemma 3.4.1
any model of T ′ of size |T ′|+ is saturated as any reduct to T is saturated.
Hence again as two saturated models of T ′ of the same cardinality are
isomorphic, we have that T ′ is |T ′|+-categorical.

Lemma 3.4.3. Let T ′ be an algebraic cover of T . Then T ′ is rosy if and
only if T is rosy. Further for all A,B,C of (C′)eq we have that A |̂ BC holds
if and only if in T eq we have that the following holds;

acleq(A) ∩ Ceq |̂
acleq(B)∩Ceq

acleq(C) ∩ Ceq.

Proof. If T ′ is rosy then (T ′)eq has an independence notion |̂ T ′ . We check
that |̂ T ′ restricted to subsets of Ceq is an independence notion of T eq (this
will give that T is rosy). It is invariant under automorphisms of T as we have
seen that we can extend every automorphism of T to one of T ′. The rest of
the properties directly translate to T eq as well (see Corollary 3.1.9 for the
Anti-Reflexivity).

Let on the other hand T eq have an independence notion. Now by Corol-
lary 3.3.2 we know that (T ′)eq is an algebraic cover of T eq hence we may
assume that T = T eq and T ′ = (T ′)eq. We define that a |̂ BC is true in T ′ if
the followings holds (with C is the monster of T );

acl(A) ∩ C
T|̂

acleq(B)∩Ceq

acl(C) ∩ C.

We need to check that all the properties of an independence notion are
satisfied. As every automorphism of T ′ if restricted to the sorts T is an
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automorphism of T , we have that T ′|̂ is invariant of automorphism. We
have that Monotonicity, Transitivity and Symmetry follows, because T|̂
has this property together with 2.4.4.

We check that Finite Character holds. We just need to check that
acl(A) ∩ C |̂ acl(B)∩Cacl(C0) ∩ C for every finite C0 ⊂ C implies

acl(A) ∩ C |̂
acl(B)∩C

acl(C) ∩ C.

Then this implies of course that acl(A) ∩ C |̂ acl(B)∩CC
′
0 holds for any finite

C ′0 ⊂ acl(C) ∩ C hence by Finite Character of |̂ T we are finished.
For the Local Character we can take max(κ,ℵ0) where κ is from the Local

Character of |̂ T . To see that, note first that (by the Local Character of T )
if the following equation does hold

acl(a) ∩ C
T|̂

acl(B)∩C
acl(B) ∩ C,

we can find B0 ⊂ (acl(B) ∩ C) of cardinality κ such that

acl(a) ∩ C
T|̂
B0

acl(B) ∩ C.

Now for each element b of B0 there is some finite tuple cb in B such that
b ∈ acl(cb) ∩ C. The set {cb | b ∈ B0} has size at most max(κ,ℵ0) and we
have

acl(a) ∩ C
T|̂

acl({cb|b∈B0})∩C
acl(B) ∩ C

since B0 ⊂ acl({cb | b ∈ B0}) ∩ C ⊂ acl(B) ∩ C by Base Monotonicity (which
follows from Monotonicity and Transitivity).

For the Existence Property for a,B,C we need to find a′ ≡B a such that
a′ |̂ BC. Note that there is a 0-definable finite-to-one map π from the sort
of a to the sort of T by Lemma 3.2.2. We can find m ≡acleq(B)∩C π(a) such
that m |̂ acleq(B)∩Cπ(C) by the Existence Property of T . We check that we
have a′ ≡B a for some a′ ∈ π−1(m). If we assume contrary, then there would
be a formula φ(x, y) ∈ L′ (the language of T ′) and a tuple b ∈ B, such that
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a |= φ(x, b) but not that any a′ ∈ π−1(m) satisfies φ(x, b). Hence we have
m 6≡B π(a): we can see this via the formula ψ(z, b) = ∃xφ(x, b) ∧ π(x)

.
= z).

There is again by Lemma 3.2.2 a 0-definable finite-to-one map from the sort
of b to T . We will assume that this is also π. Now the canonical parameter of
ψ(z, b) has finite orbit over π(b) (as it is definable over b ∈ acleq(π(b))). The
canonical parameter of ψ(z, b) can be picked in T by stable embeddedness and
therefore it is in acl(B) ∩ C (since it contains π(b)). Hence m 6≡acl(B)∩C π(a)

which is impossible.
It is left to check Anti-Reflexivity for tuples a and sets A of C′. So assume

that a |̂ Aa. We will show that a ∈ acl(A) then. We fix π some 0-definable
finite-to-one map from the sort of a to some sorts T , which we can do by
Lemma 3.2.2. We now claim that the following holds

acl(a) ∩ C
T|̂

acl(A)∩C
acl(a) ∩ C

if and only if

π(a)
T|̂

acl(A)∩C
π(a).

Note first that we clearly have a ∈ acl(π(a)) and therefore

acl(a) ∩ C = acl(π(a)) ∩ C ⊆ aclT (π(a))

holds by Corollary 3.1.9. Hence the equivalence follows by Lemma 2.4.4.
This gives us then that π(a) ∈ acl(A) ∩ C holds. Therefore we have that
a ∈ acl(acl(A) ∩ C) ⊆ acl(A).

Lemma 3.4.4. Let T ′ be an algebraic cover of T with L,L′ both countable
languages. Then T is ω-categorical if and only if T ′ is ω-categorical.

Proof. We will use the Ryll-Nardzewski Theorem in the proof without men-
tioning it. Let T be ω-categorical. Now for any given tuple of S′-sorts s
by Lemma 3.2.2 we know that there is a 0-definable formula φ(x, y) such
that |= ∀y∃<mxφ(x, y) and ∃yφ(x, y) covers the s-sorts. Now let Ab be the
realisations of φ(x, b). Note the b’s only belong to one of finitely many types
by ω-categoricity of T (say n-many). As we can extend every automorphism
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of C, we can for b ≡ b′ find some automorphism which maps Ab onto A
b
′ .

Hence we know that there can be at most n ·m-many s-sorted L′-types.
If T ′ is ω-categorical then it follows that there are only finitely many

s-sorted L′-definable sets. By embeddedness of T this directly gives finitely
many s-sorted L-definable sets. And hence there exists only finitely many
s-sorted L-formulae modulo T .

Proposition 3.4.5. Let T ′ be an algebraic cover of T . Then T is κ-stable
if and only if T ′ is κ-stable. Hence T is stable if and only if T ′ is stable.

Proof. Note again that T ′eq is an algebraic cover of T eq by Corollary 3.3.2.
As a theory T is κ-stable if and only if T eq is κ-stable, we may assume again
that T ′ = T ′eq and T = T eq.

Let T be κ-stable. Now fix some B in the monster of T ′ with |B| ≤ κ.
What size does ST ′x (B) have, if x is still a variable of the old sorts? There are
|B| · |T ′| ≤ κ many L′(B) formulae φ(x, b). Now since T is stably embedded,
we have that there is a L(C)-formula ψ(x,m) which has the same realisations
as φ(x, b). Let A be the set of these parameters m. It has size ≤ κ as already
noted. Hence ST ′x (B) has the same size as some STx (A) which has by the
κ-stableness of T at most κ many elements.

Let π be 0-definable finite-to-one from some new sort of s′ to the sort s.
Now for a variable y of the new sort s′ we will show, that for every p ∈ ST ′x (B)

there are only finitely many q ∈ ST ′y (B) with π(q) = p. This will then finish
the proof as then |ST ′y (B)| = |ST ′x (B)|. (Define π(q) as in the last proof:
take any a |= q and set p = tp(π(a)/B), then note that it is well-defined via
automorphisms).

We fix some b |= p. So take some realisation of a |= q we know that there
is an automorphism of T ′ fixing B which maps π(a) to b, this of course also
maps a to some element of π−1(b). Hence every element has the same type
over B as some π−1(b). Hence as already discussed |ST ′(B)| ≤ κ.

For the other direction note that any A-type in T is a partial type in T ′.
Hence there is an inclusion from ST (A) to ST ′(A). Thus if T ′ is κ-stable,
then T has to be κ-stable.

46



Lemma 3.4.6. Let T ′ be an algebraic cover of T . Then T is simple if and
only if T ′ is simple.

Proof. The direction right to left follows from Fact 2.6.4, as we know then
that if a theory is simple, then any reduct of it is simple as well.

We start showing the direction left to right. We assume that T is simple
and T ′ is not simple (but we know that it is a least rosy by Lemma 3.4.3).
Note again that T ′eq is an algebraic cover of T eq by 3.3.2. By Fact 2.6.4 we
know that any theory T ′′ is simple if and only if T ′′eq is simple. Hence we
may assume again that T ′ = T ′eq and T = T eq. Note that if an independence
notion implies the non-dividing relation, then T is already simple (see 2.6.2).
As T ′ is rosy non-simple we know that there exists a,B,C with C = acl(C)

and B = acl(B) such that a |̂ BC and some φ(x, c) ∈ tpx(a/C) which divides
over B. To finish the proof we will show that such conditions are not possible.

As φ(x, c) divides over B there is a Morley sequence (ci)i∈Iof realisations
of tp(c/B) such that

∧
i∈I φ(x, ci) is inconsistent. Let π be 0-definable finite-

to-one from some sort of c to the some old sort (we find such a function
by 3.2.2).

This implies that
∧
i∈I ∃x(φ(x, ci) ∧ π(x)

.
= y) is inconsistent: If it were

not, fix a realisation of it (say b), then this implies that some a′ ∈ π−1(b) (be-
cause this set is finite) realises infinitely many φ(x, ci). But this is impossible
since the sequence (ci)i∈I is Morley and

∧
i∈I φ(x, ci) is inconsistent. Now

let (di)i∈I be the canonical parameters of ∃x(φ(x, ci) ∧ π(x)
.

= y). Note that
they can be considered as part of T by stable embeddedness. And also note
that they are a Morley sequence over B. And therefore they are a Morley
sequence over B ∩ C.

Moreover, if d is the canonical parameter of ∃x(φ(x, c) ∧ π(x)
.

= y), then
(di)i∈I is a Morley sequence of tp(d/B ∩ C) (as B ∩ C is algebraically closed
by 3.1.9). As

∧
i ∃x(φ(x, ci) ∧ π(x)

.
= y) is inconsistent, we have that the

conjunction
∧
i “y ∈ di” is inconsistent. Hence “y ∈ d” divides over B ∩ C.

As C |= π(a) ∈ d and d ∈ acl(π(c)), we have tp(π(a)/acl(C) ∩ C) divides over
B ∩ C in (in T ′). But as the 0-definable sets are the same in T and T ′, this
implies that tp(π(a)/C ∩ C) divides over B ∩ C in T . But this is impossible
as being independent implies non-dividing in T .
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For more results about finite covers one may look at [EH93], chapter 2
of [Eva97b] and [Eva97a]. Another interesting publication in which finite
covers are used is [Hru89].

3.5 WEI in ω-categorical theories

Remember that we use the conventions defined on page 29.

The following method for proving weak elimination of imaginaries of split
finite covers of ω-categorical theories was provided by David Evans.

Notation: We denote by A(C) the set of algebraic closures in C of finite
subsets of C. For subsets C1, C2 of some group G, then by 〈C1, C2〉 we denote
the subgroup generated by these two sets.

Fact 3.5.1. (16.17 of [Poi00]) Let T be some theory and C its monster model.
If there is no infinite strictly decreasing sequence A0 ) A1 . . . where each
Ai ∈ A(C)) and for all A,B ∈ A(C) we have

〈Aut(C/A),Aut(C/B)〉 = Aut(C/A ∩B),

then T has weak elimination of imaginaries.

Lemma 3.5.2. Let C be ω-categorical. We have for all A,B ∈ A(C) that

〈Aut(C/A),Aut(C/B)〉 = Aut(C/A ∩B),

if and only if C has weak elimination of imaginaries.

Proof. We show first, that in a countably categorical theory if for any sets
A,B ∈ A(C) we have 〈Aut(C/A),Aut(C/B)〉 = Aut(C/A∩B), then wei must
be true. But we just need to note that due to ω-categoricity we have that
algebraic closure of a finite set is finite and hence there is no infinite strictly
decreasing sequence A0 ) A1 . . . where each Ai is the algebraic closure of a
finite set of parameters (as A0 is finite). Hence then weak elimination of
imaginaries follows from the Fact 3.5.1.
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For the other direction assume that C has wei. Let A,B ⊂ C be finite and
algebraically closed, let a be enumeration of A and let D be the Aut(C)-orbit
containing a. By the Ryll-Nardzewski Theorem we have that D is 0-definable.
Let H be the subgroup of Aut(C) generated by Aut(C/A) and Aut(C/B) and
let E ⊂ D be the H-orbit containing a. By the Ryll-Nardzewski Theorem we
have that E is a class of a 0-definable equivalence relation R on D: To see
that define the equivalence relation R as follows; R(g(a), f(a)) if f−1 ◦ g ∈ H.
Then this equivalence relation will be well defined and Aut(C)-invariant. By
the Aut(C)-invariance and the Ryll-Nardzewski Theorem R is a 0-definable
subset (of C2n). Moreover, H is the stabiliser of E in Aut(C). Let e be the
corresponding imaginary of E. Let X = acl(e) ∩ C. By wei we obtain that
Aut(C/X) ≤ H and H stabilises X set wise. From the first, it follows that
X ⊆ A ∩B; from the second we get that X ⊆ A and X ⊆ B. This then gives
us H = Aut(C/A ∩B) as required.

For the rest of this section we assume that π : C′ → C is a finite
cover such that C has weak elimination of imaginaries The main point
is that wei can be checked in the kernel K = Aut(C′/C).

Assumption/ Notation: If A ∈ A(C) then we define

C′(A) =
⋃
a∈A

π−1(a) ⊆ C′.

Further let K = Aut(C′/C) and KA = Aut(C′/C,C′(A)).

Definition 3.5.3. We say that a cover π : C′ → C splits if there is a closed
subgroup H ≤ Aut(C′) with H ∩K = 1 and Aut(C′) = KH.

The main consequence of this for us is the following:

Lemma 3.5.4. (Lemma 2.2 of [Eva09]): Suppose that the cover π : C′ → C

is split and X1, . . . , Xr ∈ A(C). Then we have that

Aut(
r⋃
i=1

C′(Xi)/

r⋃
i=1

Xi) = Aut(
r⋃
i=1

C′(Xi)/C).
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Moreover, Aut(C′/C′(X1)) = KX1HX1 , where HX1 denotes the pointwise sta-
biliser in H of X1.

Proof. The containment ⊇ is clear. For the converse, it is enough to prove
the case r = 1 as Aut(

⋃r
i=1 C

′(Xi)/C) =
⋂r
i=1Aut(C

′(Xi)/C). So suppose
f ∈ Aut(C′/X1). By assumption, there is is a closed subgroup H ≤ Aut(C′)
with H ∩K = 1 and Aut(C′) = KH. Thus we have that f = kh with k ∈ K
and h ∈ H. So clearly h ∈ Aut(C′/X1).

Consider the restriction map from HX1 to Aut(aclC
′
(X1)/X1). We claim

that this has trivial image. To see this, note that this is a continuous map
and the range is a profinite group. As X1 is algebraically closed in C, it
follows that Aut(C/X1), has no proper open subgroup of finite index. Thus
the only possible continuous image of HX1 inside a profinite group is the
trivial group. So h fixes each element of aclC

′
(X1) and therefore f and k

agree on aclC(X1). As k ∈ Aut(C′/C) we have shown that we can find for
any f ∈ Aut(aclC

′
(X1)/X1) some element in Aut(C′(X1)/C).

Lemma 3.5.5. For A,B ∈ A(C) the following are equivalent:

1. KAKB = KA∩B;

2. Aut(C′(A)/C,C′(B)) = Aut(C′(A)/C,C′(A ∩B)) and the same condi-
tion with A and B interchanged.

Proof. (1)⇒ (2): Take h ∈ Aut(C′(A)/C,C′(A ∩B)). Extend to k ∈ KA∩B.
So there are k1 ∈ KA and k2 ∈ KB with k = k1k2. Then k2 restricted to
C′(A) does what we want, as it fixes C′(B) and as k1 fixes C′(A) it does have
to be the same on C′(A) as h.

(2)⇒ (1): Take k ∈ KA∩B and let h = k � C′(A). There is k′ ∈ KB which
extends h. Then k−1k′ ∈ KA as required.

Lemma 3.5.6. Suppose π : C′ → C is split and ω-categorical and suppose
that C has weak elimination of imaginaries. If we have that KAKB = KA∩B

holds for all A,B ∈ A(C), then C′ has weak elimination of imaginaries.
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Proof. We will use Lemma 3.5.2. So take a splitting Aut(C′) = KH. Let
X,Y ∈ A(C). By Lemma 3.5.4, we have Aut(C′/C′(X)) = KXHX and

Aut(C′/C′(Y )) = KYHY .

We have to show that what they generate contains Aut(C′/C′(X ∩ Y )).
Now, by wei in C (and Lemma 3.5.2) we have 〈HX , HY 〉 = HX∩Y . By

assumption KX∩Y = KXKY , and this suffices.

Note that this and Lemma 3.5.5 gives us a way of checking weak elimina-
tion of imaginaries by the analysing the action of K on finite sets:

Corollary 3.5.7. Suppose that π : C′ → C is split and ω-categorical and
suppose that C has weak elimination of imaginaries. Suppose that whenever
A,B ∈ A(C), then

Aut(C′(A)/C,C′(A ∩B)) = Aut(C′(A)/C,C′(B)).

Then C′ has weak elimination of imaginaries.
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Chapter 4

Known results on
Amalgamation

The nature of this chapter is purely recreational (in its original Latin sense).
All the definitions and results in here (modulo some slight modifications
and some corollaries) are results of other authors and have appeared some-
where else before. The main source of them are the publications [GKK13a]
and [Hru12]. Some similar versions of some proofs in this chapter of results of
others have already been in my Diplomarbeit (see [Zan12]). We will repeat the
proofs for the convenience of the reader. Some readers may wonder why the
categorical approach for defining higher amalgamation is taken and why we
do not just work with the Property B(n). One reason is that the categorical
definition of higher amalgamation directly translates to the generalised inde-
pendence theorem (see Definition 4.1.8 and the Remark thereafter). Another
reason is that lower uniqueness of amalgamation has to be assumed such
that the Property B(n), n+ 1-amalgamation and unique n-amalgamation
(called n-uniqueness) are all equivalent (see Fact 4.2.5). Moreover, to show
this one cannot work over a fixed base but instead has to assume that the
properties are true over all sets. That this makes a difference can be seen via
the examples in Section 5.6 and Section 5.7. Also note that there is some
sort of group configuration theorem for simple theories when assuming higher
amalgamation (see [PKM06] or Chapter 9 of [Kim14]).
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In this chapter we normally work in a complete rosy theory T

with |̂ as its independence notion. Note that some parts make sense
outside the rosy context. We are now going to define the basic notion of
amalgamation.

4.1 Definition of amalgamation

We let ñ with n ≥ 2 be the set {1, . . . , n}. By [S]k for some set S and some
natural number k, we mean the set of all subsets of size k, i.e. it is a set of
the following form {s ⊂ S | |s| = k}. Further we define [n]k to be [ñ]k. By
u ⊂k s we mean that u has size k.

We view the power set P(ñ), the set

P−(ñ) = {s | s ( ñ}

and more generally any S ⊂ P(ñ) which is closed under subsets (i.e. for all
s ∈ S and all t ⊂ s it follows that t ∈ S) as categories; where the objects are
the elements of P(ñ),P−(ñ), S and the morphisms are the inclusion maps.

Let C be the category whose objects are the acl-closed subsets of C. Let
Ceq be the category whose objects are the acleq-closed subsets of Ceq. In
both categories, the morphisms are the partial elementary maps between
the closed sets. If a is a functor from S (a subset of P(ñ) closed under
subset) to Ceq, we write a(s) for the image of the object s ∈ S under a. For
s, t ∈ S with s ⊂ t we write ats : a(s)→ a(t) for the partial elementary map
which is the image of the morphism “s ⊂ t” under a. We will call the maps
ats : a(s)→ a(t) transition maps. We further write ats(s) or at(s) for ats(a(s))

(that is the image of a(s) under the function ats).

Proposition 4.1.1. If T weakly eliminates imaginaries then Ceq and C are
isomorphic. Moreover, we can pick the isomorphism in such a way that it
preserves the independence relation.

Proof. Let T weakly eliminate imaginaries. Now we are going to construct an
isomorphism between the categories Ceq and C. For this it will be enough to
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construct two functors F : Ceq → C and G : C → Ceq with the property that
the composition of them is the identity, i.e. F ◦G = idC and G ◦ F = idCeq .

We start by defining these functors. For any object B of C we set the
functor G to be G(B) = acleq(B). For an object of Ceq set F (B) = B � C.
We clearly have that

F ◦G = G(B) � C = acleq(B) � C = B

because B is already algebraically closed (in C) and hence there are no
new algebraic real elements. We also have that G ◦ F (B) = acleq(B � C) = B.
This is because by weak elimination of imaginaries we have that any imaginary
e ∈ B has a real element a in its algebraic closure (hence it is in B) such that
e ∈ dcleq(a) and therefore e ∈ acleq(B � C).

We let F map a morphism f : B → B′ of Ceq to f � (F (B)) which is a
morphism from F (B) to F (B′). This also shows that F is a functor. Any
morphism f : B → B′ of C will uniquely extend to some elementary map
f ′ from dcleq(B) to dcleq(B). But then dcleq(B) = acleq(B) as acleq(B) has
no new real elements compared to B. Now set G(f) = f ′. Now clearly
F ◦G(f) = f . On the other hand, G ◦ F (f ′) = f ′ as we have seen that an
elementary map on some acleq-closed set is already uniquely determined by
its restriction to the real elements.

It is left to be checked that G is a functor. If an elementary map fixes
some set, then any extension of it also fixes its definable closure. Hence
identities are preserved. Also G(f ◦ g) = G(f) ◦G(g) holds as the maps
on the real elements are the same and hence on the dcleq-closure which
coincidences with acleq-closure as seen. The “Moreover”-part follows now
easily by Lemma 2.4.4.

By the last Proposition if we work in a theory with weak elimination of
imaginaries we can confuse the two categories Ceq and C.

Definition 4.1.2. Suppose that S is a subset of P(ñ) closed under subsets
and a : S → C is a functor.

1. We say that a is independent if for every nonempty s ∈ S we have that
{as({i}) | i ∈ s} is an as(∅)-independent set.
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2. We say that a is closed, if for every non-empty s ∈ S we have

a(s) = acl(
⋃
i∈s

as({i})).

Remark 4.1.3. Note that for two naturally isomorphic functors a, b : S → C
then if one is independent the other is as well. This is because independence
is preserved under automorphisms (which every elementary map can be
extended to). The same is true for closedness, that is either both isomorphic
functors are closed or neither of the two functors is. To see this just note
that any automorphism which maps (as({i})i∈s onto (bs({i})i∈s does maps
acl(

⋃
i∈s a

s({i})) onto acl(
⋃
i∈s b

s({i})).

Lemma 4.1.4. (Remark 1.7. of [GKK13a]) Let S be closed under subsets. A
closed functor a : S → C is independent if and only if for every u, t ⊂ v ∈ S
the following is true

av(t) |̂
av(t∩u)

av(u).

Proof. a is independent if and only if⋃
i∈t

av({i}) |̂⋃
j∈t∩u av({j})

⋃
k∈u

av({k}) for all u, t ⊂ v ∈ S.

Since independence is invariant of applying acl (see Lemma 2.4.4) that
independence of a is equivalent to the following holds

acl(
⋃
i∈t

av({i})) |̂
acl(

⋃
j∈t∩u av({j}))

acl(
⋃
k∈u

av({k})) for all u, t ⊂ v ∈ S.

Since a is closed this is same as

av(t) |̂
av(t∩u)

av(u) for all u, t ⊂ v ∈ S.

Note that the assumption of closedness is necessary in Lemma 4.1.4. In
order to see that, we set up some functor from P(3) to C with the following
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properties;

acl(a{1,2,3}({1})a{1,2,3}({2})) |̂
a{1,2,3}(∅)

a{1,2,3}({3}),

but with
a{1,2,3}({1, 2}) 6 |̂

a{1,2,3}(∅)
a{1,2,3}({3}).

We can do that as it is not required that the functor is closed. Hence we can
pick the object a{1, 2} big enough, such that then the following holds;

a{1,2,3}({1, 2}) 6 |̂
a{1,2,3}(∅)

a{1,2,3}({3}).

Definition 4.1.5. An n-amalgamation problem over A is a closed inde-
pendent functor a : P−(ñ)→ C such that acl(A) = a(∅). A solution to an
n-amalgamation problem a is an extension of it to a closed independent
functor a′ : P(ñ)→ C.

Definition 4.1.6. For a natural number n ≥ 2 we define the following:

1. T has n-existence or n-amalgamation over A (where A is a subset of
Ceq), if every n-amalgamation problem over A in Ceq has a solution.

2. T has n-uniqueness over A (where A is a subset of Ceq), if for every
n-amalgamation problem over A in Ceq any two solutions of it are
naturally isomorphic.

3. T has complete n-amalgamation over A, if it has k-amalgamation
over A for every k ≤ n and T has total amalgamation over A, if it has
n-amalgamation over A for every n.

4. T has complete n-uniqueness over A if it has k-uniqueness over A for
every k ≤ n and T has total uniqueness over A if it has n-uniqueness
over A for every n.

If we omit the parameter A in the above definition, then this means that it
should be true for any parameter set A (of Ceq). We sometimes emphasise
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this by saying T has n-existence over every set (instead of omitting “over
every set”).

Any definition of the above points together with the suffix over real
parameters is meant to be the same definition except that we work in C and
C (instead of Ceq and Ceq).

Remark 4.1.7. First note that any of the above definitions over A are true if
and only if they are true over acl(A) (computed in either T or T eq). Note
that in a theory with weak elimination of imaginaries the above definitions
without the suffix “over real parameters” are true if and only if their counter-
parts with the suffix “for real parameters” are true. This can be seen via
Proposition 4.1.1. Of course in the case without the suffix “for real parameters”
as A is a subset of Ceq we have to replace this by some real elements A′ such
that acleq(A′) = acleq(A), which we can do because of weak elimination of
imaginaries.

Definition 4.1.8 (Generalised Independence Theorem). A theory T satisfies
the n’th Generalised Independence Theorem over A = acl(A) if the following
holds: Let for any s ∈ P−(ñ) ps(xs) be complete type over A such that the
following point are satisfied;

1. For s ⊂ s′ we have xs ⊂ xs′ and ps ⊂ ps′ .

2. For any as |= ps we have that {ai | i ∈ s} is independent over A (where
ai is the subtuple of as corresponding to the type p{i}).

3. For any as |= ps we have that every element of the tuple as is contained
in acl(

⋃
ai) (where ai is the subtuple of as corresponding to the type

p{i}).

Then there exists some complete type p{1,...,n} such that the points 1 3 remain
true for all s ∈ P(ñ).

Remark 4.1.9. A theory has n-existence over A if and only if the n’th
Generalised Independence Theorem over acl(A) holds.
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Proof. This is just a matter of translating the properties. Left to right one
has to enumerate the sets appropriately and then take their type over acl(A).
The other direction is just a matter of realising the types and then finding
the appropriate elementary maps. See Proposition 2.10 of [KKT08] for a
worked out proof.

Fact 4.1.10 (Generalised Independence Theorem of ACFA). (see page 3009
of [CH99]) The ACFA (algebraic closed fields with automorphism) has total
amalgamation.

Lemma 4.1.11. (Remark 1.11 of [GKK13a]) T has n-uniqueness over A
if and only if for every two naturally isomorphic n-amalgamation problems
a− and b− over A we have that any two solutions a− ⊂ a and b− ⊂ b are
naturally isomorphic.

Proof. The direction right to left is clear as the cases one as to check for
n-uniqueness are clearly contained in the right hand property. For the other
direction note that by Lemma 2.8.2 we can go over from b to some naturally
isomorphic b̃ such that b̃ is a solution of a−. Then by n-uniqueness over A b̃

is naturally isomorphic to a. Now of course this implies that b is naturally
isomorphic to a.

Definition 4.1.12. For a sequence a1, . . . , an by its canonical S-functor over
A with S ⊂ P(ñ) closed under subsets we mean the functor a : S → C with
a(s) = acl({ai | i ∈ s}A) and ats = id �a(s).

For an independent sequence a1, . . . , an over A by its canonical problem
we mean the canonical-P−(ñ)-functor and by its canonical solution we mean
the canonical-P(ñ)-functor.

Lemma 4.1.13. (Claim 1.13 of [GKK13a]) Any closed independent func-
tor a : P(ñ)→ C is naturally isomorphic to a canonical solution of some
independent sequence.

Proof. For that take all the morphisms of añs . They form a system of isomor-
phisms (if we think about them as arrows to añs (s)) in the sense of Lemma 2.8.1.
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Hence there is a naturally isomorphic functor ã with ã(s) = añs (s) and

ãts = añt ◦ ats ◦ (añs )−1 = añs ◦ (añs )−1 = idañs (s)
.

This shows that ã is a canonical functor of ã({1}), . . . , ã({n}) over ã(∅) which
is naturally isomorphic to a.

Lemma 4.1.14. (Proposition 1.9 of [GKK13a]) The following are equivalent;

1. T has n-uniqueness over A

2. For any independent sequence a1, . . . , an over A (in Ceq) we have that
every solution b of the canonical problem a− of a1, . . . , an, A is isomor-
phic to the canonical solution a of a1, . . . , an, A.

3. For any independent sequence a1, . . . , an over A (in Ceq) we have that
for every solution b of the canonical problem a− of a1, . . . , an, A the
following map is elementary ⋃

s∈P−(ñ)
|s|=n−1

bñs .

Proof. The direction “(1) implies (2)” is clear. For the direction “(2) im-
plies (1)” is enough to show by Lemma 4.1.11 that every solution to an
n-amalgamation problem is isomorphic to a canonical solution. But this has
been done in Lemma 4.1.13.

To prove that (3) is implied by (2) note that if a and b are isomorphic,
then there exists an elementary map σ : a(ñ)→ b(ñ), such that σ ◦ añs = bñs .
Hence σ is an extension of ⋃

|s|=n−1,s∈P−(ñ)

bñs .

On the other hand if point (3) holds, then we can set σ : a(ñ)→ b(ñ)

defined as an extension of
⋃
|s|=n−1,s∈P−(ñ) b

ñ
s to the algebraic closure of its
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image and preimage. Clearly this then gives an isomorphism between a and
b and therefore we have (2).

4.2 Relation between existence and uniqueness

Definition 4.2.1. For any n ≥ 2 and any k ≥ 0 we say that a theory T has
(n− 1, n+ k)-existence over A, if any closed independent functor

a : {u ⊂ {1, . . . , n+ k} | |u| < n} → Ceq

with acl(A) = a(∅) has an extension to a closed independent functor

a : P({1, . . . , n+ k})→ C.

Note (n− 1, n)-existence is by definition the same as n-existence.

Lemma 4.2.2 (4.1 of [Hru12]). Let T be a theory with (n− 1, n)-existence
over every set. Then T has (n− 1, n+ k)-existence over every set for all
k ≥ 0.

Proof. We will prove it by induction, the base case (k = 0) being given. So fix
a partial problem a : S → C with S := {u ⊂ {1, . . . , n+ k} | |u| < n}. Define
U = {u ⊂ {1, . . . , n+ k} | |u| ≤ n, (n+ k) ∈ u}. Since we have n-existence,
for all u ∈ U there exists some closed independent ua : Tu → C extending
a � T−u with Tu = {v ⊂ u} and T−u = {v ( u}.

We claim that
c := a ∪

⋃
u∈U,
|u|=n

u
a:S ∪ U → C

is a closed independent functor. To see this, note that there are no transition
maps between any two distinct u, u′ ∈ U with |u| = |u′| = n (as obviously we
cannot have n ⊆ n′ for any such two sets). Hence c is functor. For the same
reason c is closed and independent as all ua are.

We define a system (ψs)s∈S∪U of elementary bijections. We set

ψs = cs∪{n+k}s
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for |s| < n and ψs = id � c(s) otherwise (i.e. s ∈ U − S). Then with this
system of elementary bijections we go over from c to a naturally isomorphic
functor c′ as described in Lemma 2.8.1. Note that then c

′s∪{n+k}
s = id �c′(s)

for |s| < n. Hence we have

c′ts = id �c′(t) ◦c′ts ◦ id �c′(s)= c
t∪{n+k}
s∪{n+k} �c′(s) for all s ⊂ t ∈ S ∪ U.

Since U is isomorphic to the set to

V := {s ⊂ {1, . . . , n+ (k − 1)} | |s| < n},

in order to apply (n− 1, n+ k − 1)-existence (over c({n+ 1})) on c′ � U we
need make sure that this functor is closed and independent (as a functor from
V ). But it is closed as c′ is closed. For independence use the independence
of c′ together with Lemma 4.1.4 to see that the following holds;

c′v(u) |̂
c′v(u∩t)

c′v(t) for all u, t ⊂ v ∈ U with u ∩ t ⊃ {n+ k},

which then by Lemma 4.1.4 again gives us independence of c � U (over
c({n+ 1})).

Let now
Q = {u ⊂ {1, . . . , n+ k} | (n+ k) ∈ u}.

We get by (n− 1, n+ k − 1)-existence a closed functor from b : Q→ C ex-
tending c′ � U , such that

(bv({i, n+ k}) : i ∈ v)

is an independent sequence over bv({n+ k}). We define now d : Q ∪ S → C
by b ∪ c′ together with

dts := b
t∪{n+k}
s∪{n+k} �c′(s)= c

t∪{n+k}
s∪{n+k} �c′(s)

for s ∈ S ∪ U , t ∈ Q ∪ S.
It is left to define maps for s ∈ S with (n+ 1) 6∈ s and t ∈ Q− U , since
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we have for s ∈ U that dts := b
t∪{n+k}
s∪{n+k} �c′(s)= bts and for t ∈ S ∪ U that

dts := b′t∪n+ks∪{n+k} �c′(s)= c
′t∪{n+k}
t ◦c′ts∪{n+k}◦c

′s∪{n+k}
s = c

′t∪{n+k}
t ◦c′st = c′ts .

Note now that all transition maps of d, can be written as

dts = b
t∪{n+k}
s∪{n+k} �d(s) for all s, t ∈ S ∪Q.

Moreover, d is obviously closed. Hence for s, u, t ∈ S ∪Q with s ⊂ u ⊂ t

dtu ◦ dus = b
t∪{n+k}
u∪{n+k} �d′(u) ◦b

u∪{n+k}
s∪{n+k} �d′(s)= b

t∪{n+k}
s∪{n+k} �d′(s)= dts.

Now we go over from d to some natural isomorphic functor d′ as in
Lemma 2.8.1 with ψs = ds,{1,...,n+k}. Note that

d′ts = d
{1,...,n+k}
t ◦ dts ◦ (d

{1,...,n+k}
t )−1 = id for all s, t ∈ Q ∪ S.

Then extend d′ to
e : P({1, . . . , n+ k})→ C,

by e(v) = acl(
⋃
i∈v d

′({i})) and ets = id for all s, t, v ∈ P({1, . . . , n+ k}). By
closedness of d′, e is obviously extending d′. So functoriality of e is clear since
we just need to check that e(v) ⊂ e(v′) ⊂ e(v′′) for all

v ⊂ v′ ⊂ v′′ ∈ P({1, . . . , n+ k}),

which is clear. Closedness is also clear by the construction of the e(v)’s. Since
we have that

a ⊂ c ∼= c′ ⊂ d ∼= d′ ⊂ e,

we have that e � S ∼= a. Therefore we can find (by Lemma 2.8.2) some closed
a′ : P({1, . . . n+ k})→ C which extends a.

It is now only left to check that e (and therefore a′) is an independent
functor. Since e � Q ∼= d � Q = b and all transition maps of e are trivial, we
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have that
(e({i, n+ k}) : i ∈ {1, . . . , n+ k})

is an independent sequence over e({n+ k}), therefore we have that

(e({i}) : i ∈ {1, . . . , n+ k})

is an independent sequence over e({n+ k}). Moreover, since e � U ∪ S ∼= c

we have that

e({i}) |̂ e(∅)e({n+ k}) for all i ∈ {1, . . . , n+ k − 1}.

So Lemma 2.4.6 gives us that (e({i}) : i ∈ {1, . . . , n+ k}) is an independent
sequence over e(∅).

Proposition 4.2.3 (4.1 of [Hru12]). Assume the theory T has n-existence
over every set and assume that T has n-uniqueness over A. Then we have
that T has (n+ 1)-existence over A.

Proof. Take an (n+ 1)-problem a over A. By the Lemma 4.2.2 we can find for
a �S with S := {u ⊂ {1, . . . , n+ 1} | |u| < n} a closed independent extension

b : P({1, . . . , n+ 1})→ C.

Now look at the sets Tt = {s ⊂ t} for t ∈ P({1, . . . , n+ 1}) with |t| = n.
By n-uniqueness a � Tt is isomorphic to b � Tt (since {s ( t} is isomorphic
to P−(ñ)). We claim that there is a natural isomorphism between a and
the functor b �P({1,...,n+k})− : First note that a � S = b � S. Now (n− 1)-
uniqueness there exists isomorphisms φt : a(t)→ b(t). Hence all these maps
together are a natural isomorphism. So by Lemma 2.8.2 we have found an
extension of a.

We can improve the above result for theories with complete n-uniqueness
over some set. For that, note that any rosy theory has automatically 2-
existence over any set by the Existence property of the independence notion.
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Lemma 4.2.4. Let T be rosy. Suppose that T has m-uniqueness over A for
every 2 ≤ m < n. Then T has n-existence over A.

Proof. Let a : P−(ñ)→ C be an amalgamation problem. Now restrict this
functor to {{i} | 1 ≤ i ≤ n}} ⊂ P−(ñ). Since we have 2-existence over every
set, we can apply (1, n)-existence to this restricted functor by Lemma 4.2.2.
Now the restriction of this functor to P−(ñ) is isomorphic to a since we have
m-uniqueness over A for every m < n. Hence we have also found an extension
of a by Lemma 2.8.2.

Note that at least in simple theories (I suspect this easily extends to rosy
theories and any l < n) we have that the other direction is true, but one has
to assume n-existence/uniqueness over all sets:

Fact 4.2.5. (Corollary 3.17 of [GKK13a]) Let a simple theory T have k-
uniqueness over all sets be true for all l ≤ k < n with 2 ≤ l ≤ 3, then we have
that the following is equivalent:

1. T has n-uniqueness.

2. T has n+ 1-existence.

3. T has Property B(n) (see later this chapter for the definition).

Note that in stable theories by this and Proposition 4.3.1 we have that
3-uniqueness and 4-amalgamation are equivalent.

4.3 Amalgamation in stable and simple theories

The next two results are folklore in the sense that they essentially reduce
to theorems of Shelah and Kim-Pillay. They show that we can define stable
and simple theories only in terms of an abstract independence notion and an
amalgamation condition.

The next proposition reduces to the fact that all types over models
(or algebraically closed sets in the case of elimination of imaginaries) are
stationary if and only if the theory is stable.
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Proposition 4.3.1. Let T be a rosy theory. The following are equivalent;

1. The theory T is stable,

2. T has 2-uniqueness for real parameters over every model of T ,

3. T has 2-uniqueness (over every parameter set).

Proof. We prove “(1) implies (2)” first. In a stable theory any independence
notion is the non-forking independence notion (see Fact 2.7.3). Since non-
forking extension over models are unique in stable theories (see 8.5.4 of [TZ12]),
we can re-prove Lemma 2.7.7 over models without the assumption of weak
elimination of imaginaries. Now we get 2-uniqueness for real parameters
over every model of T : Fix two solutions a′, b of the same 2-amalgamation
problem a. Then we can use our re-proved Lemma 2.7.7 to note that the
following map is elementary

a
′{1,2}
{1} ◦ (b

{1,2}
{1} )−1 ∪ a

′{1,2}
{2} ◦ (b

{1,2}
{2} )−1.

Now any extension of this map to the algebraic closure of its image and
preimage shows us that a, b are isomorphic.

We check that “(2) implies (1)”. For that we show that a theory with
2-uniqueness for real parameters over models then the independence notion
has weak boundedness (see Fact 2.7.3). So for a type p = tp(a/A) and any
B ⊃ A show that there is some κ such that there are only κ-many non-forking
extension of p to B. To see that fix a model M which contains A. There are
only boundedly many say κ extension to this model (and hence at most κ
non-forking extension to M). Now by 2-uniqueness over every model we have
that (pi : i ∈ κ) are all these types extended over MB which are non-forking
over A. Now each non-forking extension of p to B is contained in one of these
types.

The proof that (3) holds if and only if (1) is essentially the same as the
one we see for (1) and (2). This is as T is stable if and only if T eq is stable.
The only thing which is new is that in stable theories types are stationary
over acleq-closed sets (see 8.5.3 of [TZ12]). Hence we get that 2-uniqueness
over any parameter set holds.
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The following results essentially breaks down to the Independence theorem
of simple theories.

Proposition 4.3.2. We have that T is simple if and only if 3-existence over
models holds.

Proof. This is a matter of translating 3-existence to the independence theorem
of simple theories (see Fact 2.6.2) and vice versa. So assume that T is simple.
And let a : P−(3)→ C be an amalgamation problem over some M .

We may assume that a(∅) = as(∅) for any s ∈ P−(3)

a({1}) = a{1,2}({1}) = a{1,3}({1})

and a({2}) = a{1,2}({2}) = a{2,3}({2}) by going over to an isomorphic prob-
lem and solving this instead (which we can do by Lemma 2.8.2): for that
replace a(∅) by a{1,2}(∅) a({1}) by a{1,2}({1}) and a({2}) by a{1,2}({2}). Set
the transition maps of a{1,2}∅ , a{1,2}{1} and a

{1,2}
{2} as the identity. Then extend

the transition maps ats (which are elementary maps) to some automorphisms
f ts for s ⊂ t ∈ P−(3). Set

a({1, 3}) := f
{1,2}
{1} ◦ (f

{1,3}
{1} )−1(a({1, 3})),

a({2, 3}) := f
{1,2}
{2} ◦ (f

{2,3}
{2} )−1(a({2, 3})).

Then set a{1,3}{3} as f{1,2}{1} � (a({3})) and a
{2,3}
{3} as f{2,3}{2} � (a({3})).

We can work in TM and apply the independence theorem to c = a({1}),
d = a({2}), a = a

{1,3}
{1} (a({3})) and b = a

{2,3}
{2} (a({3})). Therefore there exists

e with e ≡c a, e ≡d b and e |̂ cd. Hence we have some automorphism g1 which
fixes c and maps a to e and automorphism g2 which fixes d and maps b to e.
We set then a{1,2,3}({3}) as e. We need to set the transition maps accordingly
by a

{1,2,3}
{1,3} = g1 � a({1, 3}), a{1,2,3}{2,3} = g2 � a({2, 3}) and a

{1,2,3}
{3} = g1 ◦ a{1,3}{3} .

We set the rest of the transition maps to be the identity. This is then a
solution to the amalgamation problem.

For the other direction we translate the setup (same notation as in
Definition 2.6.1) of the independence theorem to an amalgamation functor
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over M . Set a({1}) = acl(c),

a({2}) = acl(d), a{3} = a{1,3}({3}) = acl(a) and a{2,3}({3}) = acl(b)

and all transition maps except a{2,3}{3} to be the identity. We set a{2,3}{3} to be
some elementary map which maps acl(a) to acl(b) (there is one since a ≡M b).
Now a solution a′ to this problem gives also the independence theorem over
models: To make sure that c and d stay the same, extend a

′{1,2,3}
{1,2} to some

automorphism and apply the inverse of it to a′({1, 2, 3}). If we set e to be
the image of a′{1,2,3}{3} we are done.

4.4 Property B(n)

The following two definitions we will give are somehow more model theo-
retically accessible (compared to higher amalgamation). We will see that
they do coincide with higher uniqueness under some additional assumptions.
We can also think about this new property as a condition that a certain
amalgamation functor is isomorphic to some canonical solution functor (for
that see the proof of Proposition 4.4.7).

Notation: For any tuple (a1, . . . , an) by (a1, . . . âi . . . , an) we denote the
subtuple (a1, . . . , ai−1, ai+1, . . . , an).

Definition 4.4.1. Let T be an arbitrary complete theory and let A be some
subset of the monster model of T . A sequence a1 . . . an is said to have Property
B(n) over A, if every c ∈ acl(a1, . . . , an−1A) which is in the definable closure
of

n−1⋃
i=1

acl(a1 . . . âi . . . an−1anA),

is in the definable closure of
⋃n−1
i=1 acl(a1 . . . âi . . . an−1A). A rosy theory is

said to have Property B(n) over A, if in T eq every independent sequence over
A has Property B(n) over A. A rosy theory is said to have Property B(n), if
it has Property B(n) over A for every parameter set A.

We can restate the same definition (see Lemma 4.4.6) with automorphisms:
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Definition 4.4.2. Let T be an arbitrary complete theory and let A be some
subset of the monster model of T . A sequence a1, . . . , an is said to have
Property BAut(n) over A, if we have that the following holds;

Aut
(
acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . an−1anA)
)

=

Aut
(
acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . an−1A)
)
.

A rosy theory is said to have Property BAut(n) over A, if in T eq every
independent sequence over A has Property BAut(n) over A. A rosy theory is
said to have Property BAut(n), if it has Property BAut(n) over A for every
parameter set A.

Again as in the definition of amalgamation and uniqueness by Property
BAut(n) for real parameters over A and Property B(n) for real parameters
over A we mean the same as the above definition but in T (instead of T eq).
By a similar argument as done in the proof of Proposition 4.1.1 we can show
that these notions are equivalent (to the versions without the suffix) in case
weak elimination of imaginaries holds.

Remark 4.4.3. B(2) (over real parameters) is true in any rosy theory. In a
stable theory BAut(2) is always true.

Proof. Just write down the definitions. B(2) over A means that

c ∈ acl(a1A) ∩ dcl(a2A)

is also in acl(A) for any two independent a1, a2 over A. But this is trivially
true by Anti-Reflexivity of the independence notion.

In order to see the second claim, take some f , which is in the automorphism
group Aut(acl(a1A)/acl(A)). Then note that by Lemma 2.7.7, we have that
the union f ∪ id �acl(a2A) is a partial elementary map
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Remark 4.4.4. In a theory where the algebraic closure coincidences with the
definable closure, then Property BAut(n) (and B(n) (see next lemma)) holds
over any set as the automorphism groups are trivial in this case.

The next lemma tells us that B(n) and BAut(n) are the same in T eq. But
I suspect that the following question can be answered positively.

Question 4.4.5. Does there exist a theory with weak elimination of imaginaries
such that B(n) (over A) holds for real parameters but BAut(n) (over A) fails
for real parameters?

Lemma 4.4.6. Let T be any complete theory. If a sequence a1, . . . , an has
Property BAut(n) over A (for real parameters), then it has Property B(n)

over A (for real parameters). If our theory has additionally elimination of
finite imaginaries and we assume that n ≥ 3, then the converse is true, i.e. a
sequence a1, . . . , an has Property B(n) over A (for real parameters), then it
has Property BAut(n) over A (for real parameters).

Proof. Assume that BAut(n) holds for some sequence a1 . . . an. Any

c ∈ acl(a1 . . . an−1A) ∩ dcl
(n−1⋃
i=1

acl(a1 . . . âi . . . an−1anA)
)
,

will be fixed by all automorphisms in

Aut
(
acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . an−1anA)
)
.

By BAut(n) this means that c will also be fixed by all of

Aut
(
acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . an−1A)
)
.

Hence we have that c ∈ dcl(
⋃n−1
i=1 acl(a1 . . . âi . . . an−1A)).

For the second point c be some tuple in acl(a1 . . . an−1A). Let Xc be the
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orbit set of c under

Aut
(
acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . anA)
)
.

Now as Xc has finite size, by elimination of finite imaginaries there is a code
for it in acl(a1 . . . an−1A). Also as Xc is fixed by the automorphism group,
it is in dcl

(⋃n−1
i=1 acl(a1 . . . âi . . . anA)

)
. Now by B(n) of this sequence this

code is then also in dcl
(⋃n−1

i=1 acl(a1 . . . âi . . . an−1A)
)
. But this means that

any such tuple c has the same orbit under the two automorphism groups, so
the groups coincide.

The next proposition is essentially Lemma 3.3 of [GKK13a].

Proposition 4.4.7. Let T be some rosy theory. If T has n-uniqueness over
A (over real parameters), then it has Property BAut(n) over A (over real
parameters).

Proof. In order to prove this, we will translate the automorphism property
of BAut(n) to an amalgamation functor. So take any independent sequence
a1, . . . , an over A. Name the sequence’s canonical problem functor a and
name its canonical solution functor a′. If we can extend

f ∈ Aut
(
acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . an−1A)
)

to some

g ∈ Aut(acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . an−1anA)),

we are finished, since the first automorphism group is bigger than the second.
For that define another solution a′′ of a. The object stays the same, i.e.

a′′({1, . . . , n}) = a′({1, . . . , n}).

The transition maps are inclusions apart from the transition map

a
{1,...,n}
{1,...,n−1} = f.
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By n-uniqueness these two solutions are isomorphic. Hence there exists some
elementary map

g : a′({1, . . . , n})→ a′′({1, . . . , n}),

such that g ◦ a′s,{1,...,n} = a′′s,{1,...,n} for any s ( {1, . . . , n}. This then gives
that g �acl(a1...an−1)= f . As all the other transition maps are identities, we
have that the g is the elementary map we were looking for.

4.5 Total amalgamation and Property B(n)

In this section we show that the Property B(n) over A coincidences with
n-uniqueness over A, if we assume that lower uniqueness over A is also true.

Definition 4.5.1. Suppose 2 ≤ k ≤ n. We say that T has relative (k, n)-
uniqueness (over A), if in T eq for every independent sequence a1, . . . , an over
A with a its canonical solution functor and elementary maps (σu : u ∈ [ñ]k−1)

with σu ∈ Aut(a(u)) and σu � au(v) = id for all v ⊂ u, we have that the union⋃
u∈[ñ]k−1 σu is an elementary map.

We already have seen a similar property in Lemma 4.1.14, but there it
was not required that σu � au(v) = id.

Lemma 4.5.2. ([GKK13a], Lemma 3.10) Suppose n ≥ 2. Then we have
that the theory T has property BAut(n) over A if and only if the theory T has
relative (n, n)-uniqueness over A.

Proof. Assume BAut(n) over A fails. Hence there exists some automorphism

f ∈ Aut
(
acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . an−1A)
)
−

Aut
(
acl(a1 . . . an−1A)/

n−1⋃
i=1

acl(a1 . . . âi . . . anA)
)
.
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This gives us that the following map is not elementary

f ∪
n−1⋃
i=1

idacl(a1...âi...anA).

For the other direction set

Ai = acl(a1 . . . âi . . . anA),

Bi =
⋃
j 6=i

acl(a1 . . . âj . . . âi . . . anA),

Ci =
⋃
j 6=i

acl(a1 . . . âj . . . anA).

Since BAut(n) holds, we can extend every σi ∈ Aut(Ai/Bi) to some

σ′i ∈ Aut(Ai/Ci).

Extend σ′i to some σ′′i ∈ Aut(C/Ci). Now set σ = σ′′n ◦ . . . ◦ σ′′1 . Now as every
σ′′j with j 6= i fixes Ai we have σ � Ai = σi. Hence σ1 ∪ . . . ∪ σn is elementary
as it is the same as σ restricted to A1 ∪ . . . ∪An.

Lemma 4.5.3. ([GKK13a], Lemma 4.4) Suppose n ≥ k ≥ 2 and T has prop-
erty BAut(k) over A. Then T has relative (k, n)-uniqueness over A.

Proof. Use induction for the proof. We already know by Lemma 4.5.2 that
(k, k)-uniqueness does hold. Hence the induction basis is given. We assume
now that (k, n− 1)-uniqueness holds. Let a1, . . . , an be an independent se-
quence (over A), let a be its canonical solution functor and let (σu : u ∈ [ñ]k−1)

be such that σu ∈ Aut(a(u)) and σu � au(v) = id for all v ⊂ u.
We need to show that

⋃
u∈[ñ]k−1 σu is elementary. We set

Vi = {v ⊂k ñ | {i, i+ 1} ⊂ v}.

Now for any v ∈ Vi and any u ⊂k−1 v, if i is the smallest number such that
{i, i+ 1} is not contained in u we set fu to be σu, otherwise id � a(u). Then
by BAut(k) over A we know that

⋃
u⊂v fu is elementary.
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We extend this map to the algebraic closure of its domain (and image),
i.e. a(v) and call it fv. We claim that we can apply (k, n− 1)-uniqueness
to the sequence a(1) . . . a({i, i+ 1}) . . . a(n) together with maps fv : v ∈ Vi.
For that check that for u ( v, with either {i, i+ 1} ⊂ u and |u| = k − 1 or
{i, i+ 1} ∩ u = ∅ and |u| = k − 2, we have that fv � a(u) is the identity. But
this is clear by the construction of fv. Hence we have that fVi :=

⋃
v∈Vi fv is

an elementary map.
Now we claim that fVn ◦ . . . ◦ fV1 is some extension of σ. To see that note

that each σu only does appear in exactly one fVi : for every u ( ñ there is
exactly one smallest i such that {i, i+ 1} not contained in u, hence it is in
some fVi . And then note that for u ⊂k−1 ˜n+ 1, if i is not the smallest such
that {i, i+ 1} not contained in u or if {i, i+ 1)} is contained in u, we have
fVi � a(u) = id. Hence we have that fVn ◦ . . . ◦ fV1 � a(u) = σu.

Corollary 4.5.4. Suppose n ≥ 2 and suppose that T has property BAut(`)

over ∅ for all ` with 2 ≤ ` ≤ n. Then T has relative (k, n)-uniqueness over ∅
for all k with 2 ≤ k ≤ n.

Proof. Use the last lemma.

Corollary 4.5.5. Let T has Property BAut(`) over ∅ for all ` with 2 ≤ ` ≤ n.
Suppose 1 ≤ r ≤ n and a1, . . . , an is a sequence independent over ∅. Fur-
ther let a be its canonical solution functor. Let {σu | u ∈ [n]r} be such that
σu ∈ Aut(a(u)) and σu(x) = σv(x) whenever x ∈ a(u) ∩ a(v). Then⋃

{σu | u ∈ [ñ]r}

is an elementary map.

Proof. We prove this by induction on r, the case r = 1 being straightforward.
Consider the compatible system of elementary maps {τv | v ∈ [n]r−1} given
by τv = σu � acl(ai : i ∈ v) whenever v ⊂ u. By the induction hypothesis, the
union of these is an elementary map. So it extends to an automorphism τ .
By the previous result, relative (r + 1, n)-uniqueness holds. We can apply
this to {τ−1σu | u ∈ [n]r} to obtain an elementary map ρ extending all τ−1σu.
Then τρ is an elementary map extending all σu, as required.
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The following result is similar to 3.5 of [Hru12], but works for a fixed set.
The idea for this is due to David Evans.

Corollary 4.5.6. A rosy theory T with 2-uniqueness over A, which has
Property B(k) over A for every k with 3 ≤ k ≤ n, has n-uniqueness over A.

Proof. Fix two solutions a′, b of the same n-amalgamation problem a. With-
out loss we may assume that a′ is a canonical functor (see Lemma 4.1.14).
Note that by applying 2-uniqueness over A n− 1-many times, we know that
the following union of elementary maps is elementary

n⋃
i=1

a
′{1,...,n}
{1} ◦ (b

{1,...n}
{1} )−1.

Hence by extending this map to some automorphism and moving b we may
assume that b({1, . . . , n}) = a′({1, . . . , n}) and b

{1,...,n}
{i} = id. Now we can

apply Corollary 4.5.5 to note that the following is elementary⋃
{b{1,...,n}u | u ∈ [ñ]2}.

Hence by moving b with this map we may assume that b{1,...,n}{i,j} = id. Then
repeating this argument for 3 and so on, we finally get that a′ and b are
the same. This then of course shows that these maps were already naturally
isomorphic in the beginning.

Corollary 4.5.7. A rosy theory T with complete i-uniqueness over A with
i ≥ 2, which has Property B(k) over A for every k with n ≥ k > i, has
complete n+ 1-amalgamation and complete n-uniqueness over A.

Proof. Note that complete i-uniqueness over A implies B(l) over for every
l with l ≤ i (this is by Proposition 4.4.7 and Lemma 4.4.6). Now complete
n-uniqueness over A is obvious by the last corollary. Then complete n+ 1-
amalgamation follows from Lemma 4.2.4.

Corollary 4.5.8. A rosy theory T with weak elimination of imaginaries
and i-uniqueness over A for real parameters with i ≥ 2, which has Property
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BAut(k) over A for real parameters for every k with n ≥ k > i, has complete
n+ 1-amalgamation over A and complete n-uniqueness over A.

Proof. As already noted if a theory has weak elimination of imaginaries we
get that 2-uniqueness over A for real parameters implies 2-uniqueness over
A. Also we have that complete i-uniqueness over A for real parameters
implies BAut(l) over for every l for real parameters with l ≤ i (this is by
Proposition 4.4.7). Then by weak elimination of imaginaries we have that
Property BAut(n) over A for real parameters implies Property BAut(n) over
A. As BAut(n) over A implies B(n) over A (see Lemma 4.4.6), we can then
use Corollary 4.5.7 to finish the proof.

Corollary 4.5.9. A stable theory T with elimination of imaginaries which has
Property B(k) over A for every k with n ≥ k > 2 (or equivalently complete
i-uniqueness for some i > 2 and Property B(k) for every n ≥ k > i), has
complete n+ 1-amalgamation over A and complete n-uniqueness over A. A
stable theory T with weak elimination of imaginaries and Property BAut(n)

over A for real parameters for every k with n ≥ k > 2 (or equivalently complete
i-uniqueness over real parameters for some i > 2 and Property BAut(k) for real
parameters for every k with n ≥ k > i) has also complete n+ 1-amalgamation
over A and complete n-uniqueness over A.

Proof. For both parts note that a stable theory has 2-uniqueness over every
set and in the second case this is true for the suffix “over real parameters”.
Hence we can use Corollary 4.5.7 for the first part and Corollary 4.5.8 for
the second part.

4.6 Amalgamation of Morley sequences

We will show that complete n-uniqueness of Morley sequence implies complete
n-uniqueness.

Fact 4.6.1. (3.11 in [GKK15]) Let T = T eq be stable and with k-uniqueness
for every k < n. Suppose n-uniqueness fails (over A). Then there exists some
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Morley sequence a1, . . . , an over some A such that Property B(n) (over A)
for this sequence fails.

In fact the following is part of the proof of the above fact. We will reprove
it for the convenience of the reader.

Lemma 4.6.2. We fix some stable theory T with elimination of imaginaries.
Let b1, . . . , bn+1 be an independent sequence over A which fails Property
B(n+ 1) over A and let k-uniqueness with k ≤ n be true over b1, . . . , bn−1, A
and over bnA. Then there exists some Morley sequence (of (n+ 1)-tuples)
a1, . . . , an+1 over A with

ai = (a1,i, . . . , an+1,i) ≡A (b1, . . . , bn+1)

where ai,i = bi such that a1, . . . , an+1 fails B(n+ 1) over A.

Proof. We pick in tp(b1, . . . , bn+1/acl(A)) the ai for i with 1 ≤ i ≤ n+ 1

successively such that

ai |̂ Abia1, . . . , ai−1, bi+1, . . . , bn+1.

Now assume by induction that a1, . . . ai−1, bi, . . . , bn+1 is independent over A
Hence we have

bi |̂ Aa1, . . . , ai−1, bi+1, . . . , bn+1

and we have that the following is true by construction

ai |̂ Abia1, . . . , ai−1, bi+1, . . . , bn+1.

This together gives us by Transitivity that a1, . . . , ai, bi+1, . . . , bn+1 is inde-
pendent over A. Hence a1, . . . , an+1 is an independent sequence over A where
all elements satisfy the same stationary type. This gives use that the sequence
(ai : 1 ≤ i ≤ n+ 1) is a Morley sequence.

We now need to check that this sequence fails Property B(n+ 1) over A.
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For that fix some

f ∈ Aut
(
acl(b1 . . . bnA)/

n⋃
i=1

acl(b1 . . . b̂i . . . bnA)
)

which does not extend to some automorphism in

Aut
(
acl(b1 . . . bnA)/

n⋃
i=1

acl(b1 . . . b̂i . . . bn+1A)
)
.

Note also that a1, . . . , an−1, bn is an independent sequence over b1, . . . , bn−1, A.
We set B = acl(b1 . . . bn−1A). We build inductively (by the size of s) elemen-
tary fs for s ⊂ {1, . . . , n} with fs ⊂ ft for s ⊂ t and the following additional
properties,

1. if s ⊂ {1, . . . , n− 1} then fs = idacl(aiB:i∈s),

2. if s = s0 ∪ {n} with s0 ⊂ {1, . . . , n− 1} is an elementary map which
extends f with acl(aibnB : i ∈ s0) as its image and preimage.

To see that this is possible first note that by our assumption of k-uniqueness
for k ≤ n over B, Lemma 4.5.2 and Proposition 4.4.7, we have relative
(k, k)-uniqueness for k ≤ n over b1, . . . , bn−1, A. Now if all ft with |t| < k

are constructed, then for |s| = k construct fs by extending
⋃
t(s ft (which is

elementary by relative (k, k)-uniqueness) to the algebraic closure of its image
and preimage.

Now for the partial elementary map f1,...,n we have that the following two
equations holds for all i ≤ n− 1;

f1...n �acl(b1...bnA)= f and f1...n �acl(a1...ai...an−1bnA)= id �acl(a1...ai...an−1bnA) .

Now use (n, n)-uniqueness over bnA on

f1...n and idacl(a1...âi...an) : 1 ≤ i ≤ n− 1

to obtain the following elementary map;
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f+ ∈ Aut
(
acl(a1 . . . anA)/

n⋃
i=1

acl(a1 . . . âi . . . anA)
)
.

Now if we could extend f+ to some element of

Aut
(
acl(a1 . . . anA)/

n⋃
i=1

acl(a1 . . . âi . . . an+1A)
)
,

then we would also be able to extended f to some element of

Aut
(
acl(b1 . . . bnA)/

n⋃
i=1

acl(b1 . . . b̂i . . . bn+1A)
)
.

This of course by the choice of f is impossible.

Corollary 4.6.3. A stable theory which has Property B(n) for Morley se-
quences over all sets, has complete n+ 1-amalgamation over all sets and
complete n-uniqueness over all sets. Moreover, a stable theory which has
Property B(n) for Morley sequences over all finite sets, has complete n+ 1-
amalgamation over all finite sets and complete n-uniqueness over all finite
sets.

Proof. Assume that n-uniqueness over some (finite) set A fails. Further
assume that k-uniqueness holds for all k ≤ n− 1 over all (finite) sets. By
Corollary 4.5.9 we know that then B(n) fails over A. Now use Lemma 4.6.2
to note that then B(n) fails for some Morley sequence over A, contradicting
our assumptions.

4.7 Amalgamation over models

The following result is Proposition 1.6 of [PKM06].1

Fact 4.7.1. We have total n-amalgamation and n-uniqueness over models
in any stable theory.

1If our amalgamation diagram contains only models (of T ) then this result can be
already found in [She90](see Ch XII section 2 p 598).
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The author cannot resist to make the following silly remark. This result
gives us a (true) class of stable theories with total amalgamation over all sets.
To see that this has actually class-size, note that {TA | A ⊂set-size C}, where
C is the monster-model of T =ACF0, has class size and is a subclass of all
stable theories which have total amalgamation over any set.

Differentially closed fields contain an algebraically closed set which is not
a model of its theory. But I suspect that in DCF higher amalgamation is still
true. The theories of compact complex manifolds with or without a fixed
automorphism (CCM and CCMA) also contain an algebraically closed set
which is not a model of their theory. However in CCM the algebraic closure
of the empty set is a model of the theory (for this see Section 5.7).

To see why the Fact 4.7.1 is true and why its proof cannot be used outside
of the stable context note that the following is proved in [PKM06] (in order
to prove Fact 4.7.1). Remember that a global type q which is the extension
of some type p ∈ S(M) is a coheir, if q is finitely satisfiable in M . Moreover,
in stable theories the notion of a coheir coincides with that of non-forking
extension. See Section 8.1 of [TZ12] for more information.

Lemma 4.7.2. Let T be some arbitrary complete theory and let M be some
model of T . Further let a1, . . . , an be a sequence of tuples. Now if we have that
the type tp(an/acl(Ma1 . . . an−1)) is a coheir of tp(an/M), then a1, . . . , an

has Property B(n) over M .

Proof. This proof is essentially a copy-paste of the proof of Lemma 1.5(2)
of [PKM06]. We will work in TM . Take some

c ∈ acl(a1 . . . an−1) ∩ dcl(

n−1⋃
i=1

acl(a1 . . . âi . . . an−1an)).

We can fix f1, . . . , fn−1 such that (tp(fi/a1 . . . âi . . . an))1≤i<n are algebraic
types, c ∈ dcl(f1 . . . fn−1). Then we fix some formula φi(y, a1, . . . âi . . . , an)

such that it isolates tp(fi/a1, . . . âi . . . , an). Further we fix some formula
ψ(x, f1, . . . , fn−1) such that it isolates tp(c/f1 . . . fn−1) (and has therefore at
most one realisation).
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It is easy to see that the formula

∃y1 . . . yn−1(ψ(c, y1 . . . yn−1) ∧
∧

1≤i<n
φi(a1, a2 . . . âi . . . an−1, x, yi))

is part of the type tp(an/ca1 . . . an−1). Now as tp(an/acl(a1 . . . an−1)) is a
coheir of tp(an/∅) and c ∈ acl(a1 . . . an) we have that there exists an m ∈M
(as we worked in TM ) such that

|= ∃y1 . . . yn−1(ψ(c, y1 . . . yn−1) ∧
∧

1≤i<n
φi(a1, a2 . . . âi . . . an−1,m, yi)).

Hence we have that c ∈ dcl(
⋃
i<n acl(a1 . . . âi . . . an−1M)) as required.

Now from this result the Fact 4.7.1 follows as a corollary. To see that,
note first that in a stable theory every non-forking extension of a type over
a model is in fact a coheir extension. Therefore Property B(n) over models
holds. Note also that in a stable theory any type over a model is stationary
and therefore 2-uniqueness over models holds (see Proposition 4.3.1). Hence
we are finished as we apply Corollary 4.5.9 now, which tells us then that total
amalgamation and total uniqueness over any model is true.
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Chapter 5

Amalgamation over Parameters

We will see in this chapter that amalgamation can fail in finite covers, while
in the original structure it may hold. Moreover, we construct finite covers
such that amalgamation and uniqueness over the empty set hold, but 3-
uniqueness over some parameter set fails. But first we investigate a case
where amalgamation with and without parameters is connected.

5.1 Separable independence notion

We are going to establish results which will show that under some conditions
amalgamation problems over parameters can be translated to amalgamation
problems over ∅. This then shows that in this case total uniqueness over the
empty set implies total uniqueness over all sets.

Definition 5.1.1. We say that a theory T has a separable independence
notion if it is rosy and if in T eq for all sets A ⊂ B there exists some C such
that A |̂ ∅C and acl(AC) = acl(B). We say that a theory has separable
forking if it is simple and non-forking is a separable independence notion.

We will analyse which theories have a separable independence notion.
There are also examples in this thesis which do not have a separable indepen-
dence notion. These are the example in Section 5.6 and the two examples in
Section 5.7. In order to see that this is true, note that these examples do not
satisfy Theorem 5.1.10.
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Remark 5.1.2. We have that theories with a separable independence notion
and 2-uniqueness over ∅ are stable.

Proof. We work in T eq. By Fact 2.7.3 it will be enough to show that the in-
dependence notion has weak boundedness. So take some sequence (ai : i ∈ I),
some set A and some set B ⊃ A such that we have ai ≡A aj for all i, j ∈ I
and ai |̂ AB for all i ∈ I. We will show that the set {tp(ai/B) | i ∈ I} has at
most size 2|T | to finish the proof. Note that we may assume that ai ≡acl(∅) aj

for all i, j ∈ I as there are no more then 2|T | different types in S(acl(∅)).
Hence we may work in T eq

acleq(∅).
Since our theory has a separable independence notion we know that

there exists a′i |̂ A s.t. acl(a′iA) = acl(aiA). Moreover we may assume that
a′i ≡ a′j for all i, j ∈ I (as the ai have that property). We also fix some
formula φ(x, y, z) such that for all a, b we have φ(x, a, b) has less then n-many
solutions and some a ∈ A such that φ(x, a′i, a) has ai in its solution set. We
claim that we can use 2|T | as bound.

Now we have ai |̂ AB and therefore acl(aiA) |̂ AB. Hence a′i |̂ AB and
therefore by transitivity a′i |̂ B. Now by 2-uniqueness we know that a′i ≡B a′j .
As each ai realises φ(x, a′i, a) with a ∈ A (which solution set is smaller then n),
we know that there no more then n-many types p1, . . . , pn ∈ S(B) such that
for any i we can find some j with 1 ≤ j ≤ n such that we have tp(ai/B) = pj .

Lemma 5.1.3. If T has a separable independence notion, then any algebraic
cover of T has a separable independence notion.

Proof. Let T1 be some algebraic cover of T . Then T1 will be rosy because of
Lemma 3.4.3. By Corollary 3.3.2 and as separability has to be checked in
T eq
1 we may assume that T = T eq and T1 = T eq

1 . Now let A ⊂ B be subsets
of the monster model of T1. Let {Si : i ∈ I} be all sorts in which B has
elements. By Lemma 3.2.2 we have that for any finite set of sorts {Si : i ∈ I0}
(where I0 ⊂ I), there is a definable finite-to-one map πI0 to some sorts of
T . Use the separability of T on A0 ⊂ B0 defined as A0 :=

⋃
I0⊂I πI0(A)

and B0 :=
⋃
I0⊂I πI0(B). Now find some C such that we have A0 |̂ ∅C and
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acl(A0C) = acl(B0) in T . We claim that A |̂ ∅C and acl(AC) = acl(B) in
T1. The first point follows, as by Lemma 3.4.3 we have A0 |̂ ∅C in T1 and
then as A ⊂ acl(A0) in T1 we can use Lemma 2.4.4 to show this. The second
point is also true, since we have additionally that B ⊂ acl(B0) = acl(A0C)

in T1 and therefore we have that acl(A0C) = acl(AC) = acl(B) holds in the
theory T1.

Definition 5.1.4. A theory T is said to be pregeometric if the algebraic
closure operator is a pregeometry on C (see Appendix C.1 of [TZ12]).

Lemma 5.1.5. We let T be a single-sorted pregeometric theory with geometric
elimination of imaginaries. Then T has a separable independence notion.

Note that o-minimal and strongly minimal theories are pregeometric. See
2.2.4 of [Mac00] for the former and 5.7.5 of [TZ12] for the latter.

Proof. First note that the notion of independence of a pregeometry defines
some independence relation in the sense of Definition 2.4.1. Then note that
it is enough to check, by geometric elimination of imaginaries, that the
independence notion is separable in the real elements. Let {ai | i < α} be a
basis (in the sense of the pregeometry) of acl(B) such that for some λ < α,
(ai : i < λ) forms a basis of acl(A). Now C = {ai | λ ≤ i < α} is independent
of A and acl(AC) = acl(B).

More about pregeometric theories which do have geometric elimination of
imaginaries can be found in [Gag05] and [Ele05].

Definition 5.1.6. An L-theory T is called almost strongly minimal, if
there exists some strongly minimal (in T ) formula φ(x) ∈ L(C) such that
C = acl(φ(C)).

Lemma 5.1.7. Let T be an almost strongly minimal L-theory with geometric
elimination of imaginaries which has an 0-definable (i.e. L-definable) strongly
minimal formula φ with C = acl(φ(C)) for the monster model C of T . Then
we have that T has a separable independence notion.
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Proof. First note that T is uncountably categorical (see Theorem 4.7.3
of [Hod93]), therefore is stable and hence has an independence notion. By
Lemma 5.1.3, Lemma 5.1.5 and Lemma 3.1.7 it will be enough to show that
C is an algebraic cover of φ(C) (with the induced structure L-structure of C).
To make sense of it in our setup that we replace C by the two sorted structure
(C, φ(C), idφ(C)). We know that φ(C)) (with the induced L-structure) will be
embedded in this two sorted structure. Now since our theory is stable we get
then stable embeddedness by Remark 3.1.2. Now as we have C = acl(φ(C))

by our assumptions.

By the last lemma we know that if we allow the naming of a finite number
of elements of the monster (the elements defining the strongly minimal set)
then each almost strongly minimal theory with gei has separable forking. But
is this true without naming a finite number of elements or without assuming
gei, i.e. have all almost strongly minimal theories separable forking? Hence
then the next fact would give us lot of examples of theories with separable
forking.

Fact 5.1.8. (see 10.2.6 of [TZ12]) Any uncountably categorical structure,
with no definable infinite group in T eq, is almost strongly minimal.

Question 5.1.9. Is the separable independence notion equivalent to any other
model theoretic notion?

The following result is the main use of the separable independence notion.

Theorem 5.1.10. Let T be a rosy theory with a separable independence
notion. Further suppose that T has n and (n+ 1)-uniqueness over ∅. Then
T has n-uniqueness over any set.

Proof. We work in T eq. We will prove the second condition of Lemma 4.1.14
to get n-uniqueness over any set. So take a sequence a1, . . . , an which is
independent over some set A. Then fix the canonical problem a∗ (of this
sequence) and its canonical solution a and fix also some other solution b. We
are going to construct an isomorphism between a and b.
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By separability of the independence notion we can find ci with ci |̂ ∅A
such that acl(ciA) = acl(aiA). Now because ci |̂ ∅A and c1, . . . , cn is an
independent sequence over A, we have by Lemma 2.4.6 that the sequence

c1 . . . cncn+1 with cn+1 = A

is independent over ∅. We take the canonical n+ 1-amalgamation problem
ã− (over ∅) of c1, . . . , cn+1 and its canonical solution to ã.

We will extend b now to say b̃ such that this is solving the problem
ã−. We define b̃ to be equal to ã on P({1, . . . , n+ 1})−. We set the object
b̃({1, . . . , n + 1}) as b({1, . . . , n}). Then we define the transition maps
b̃
{1,...,n+1}
s :

1. We set b̃{1,...,n+1}
s as b{1,...,n}s for s ( {1, . . . , n+ 1} with (n+ 1) ∈ s.

2. We set b̃
{1,...,n+1}
s as (b

{1,...,n}
s � acl(ci : i ∈ s)) for s ( {1, . . . , n + 1}

with (n+ 1) 6∈ s and s 6= {1, . . . , n}.

3. We set b̃
{1,...,n+1}
{1,...,n} as some (arbitrary) elementary extension to the

algebraic closure (of its image and preimage) of the following map⋃
1≤i≤n

(b
{1,...,n}
{1,...̂i...,n} �acl(c1...ĉi...cn)).

We check that b̃ is a functor. We use the fact that b is a functor. Because
of that it is only left to check that b̃{1,...,n+1}

{1,...,n} is well-defined. For that first
note that the maps

b
{1,...,n}
{1,...̂i...,n} �acl

eq(c1...ĉi...cn)

are giving a solution to the canonical problem (over ∅) of the sequence
c1, . . . , cn. Hence by the third point of Lemma 4.1.14 we can see that

f :=
⋃

1≤i≤n
(b
{1,...,n}
{1,...̂i...,n} �acl(c1...ĉi...cn))

is an elementary map. Hence b̃
{1,...,n+1}
{1,...,n} can be picked as an elementary

extension of f to the algebraic closure (of its preimage and image).
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Now b̃ is isomorphic to the canonical solution ã by n+ 1-uniqueness over
∅. Let us take the natural isomorphism (ã

fs−→ b̃)s∈P( ˜n+1) from ã to b̃. Further
we define the following

S := {s ∈ P( ˜n+ 1) | (n+ 1) ∈ s}.

Of course the category S is isomorphic to P(ñ). So if we think about our
original solution functor a and b as functors from S to C, we have that ã �S= a

and b̃ �S= b and hence (ã
fs−→ b̃)s∈S gives a natural isomorphism between

them.

Remark 5.1.11. Note that the proof of this proposition does not use the fact
that we work in T eq, hence it also gives some results for n-uniqueness over
real parameters in any pregeometric theory:

Let T be a theory with a separable independence notion in the real
parameters (same definition but in T instead of T eq). Further suppose
that T has n and n+ 1-uniqueness over ∅ for real parameters. Then T has
n-uniqueness over any set for real parameters.

5.2 The standard example of non-3-uniqueness

We will see later in this chapter that, after adding a finite cover, every
theory which has an algebraically closed set which is not a model can fail
amalgamation. Then we use this construction to establish examples where
amalgamation over some non-empty set will fail, but amalgamation over the
empty set holds.

But first we remember the easiest example, which fails 3-uniqueness over
the empty set. This example is in fact totally categorical and is due to
Hrushovski. It appeared as Example 1.7 in [PKM06].

Example 5.2.1. Let A be an infinite set, [A]2 the set of all subset of A of size
2. Let B = [A]2 × {0, 1} (the double cover of [A]2). Let E ⊂ A× [A]2 be the
membership relation, i.e. (a1, {a2, a3}) ∈ E if and only if a1 = a2 or a1 = a3.
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Further let the relation P be the subset of B3 such that

((w1, i1), (w2, i2)(w3, i3)) ∈ P

if and only if there exists distinct a1, a2, a3 ∈ A such that for

{i, j, k} = {1, 2, 3},

we have wi = {aj , ak} and also we have that i1 + i2 + i3 = 0 mod 2. Also
let π : B → [A]2 be the projection map, i.e. π((w, i)) = w.

Now we let M be 3-sorted structure (A, [A]2, B,E, P, π). This structure
has weak elimination of imaginaries (see Lemma 5.4.6). We check that for pair-
wise non-equal a1, a2, a3 ∈ A Property B(3) over ∅ fails. This then of course
implies that 3-uniqueness fails over ∅ (see Lemma 4.4.7 and Lemma 4.4.6).
Note that for a ∈ A we have acl(a) = {a}. Hence for a1, a2 ∈ A we have that

({a1, a2}, 0) 6∈ dcl(acl(a1)acl(a2)),

as there is an automorphism taking ({a1, a2}, 0) to ({a1, a2}, 1) and fixing
a1, a2. But as ({a1, a3}, 0) is in acl(a1, a3) and ({a2, a3}, 0) is in acl(a2, a3),
and as P (({a1, a3}, 0), ({a2, a3}, 0), x) defines ({a1, a2}, 0), we can see that

({a1, a2}, 0) ∈ dcl(acl(a1, a3), acl(a2, a3)).

Hence we have shown that Property B(3) over ∅ fails.

Now this construction is actually a finite cover of subsets of size 2 of the
theory of an infinite set. The construction (see the next section) done in
this example can be done in a very general way on the 2-sets of a definable
subset of an arbitrary structures. Later we will then see that, if we choose
the definable set right, we can have failure of B(3) for any independent
realisations of this definable set. Also under some additional conditions we
can preserve total amalgamation over ∅. And later this will then gives us
theories where B(3) over some parameters fail, but total amalgamation over
the empty set will hold.
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Also note that this example has inspired many others. In [PS11] a stable
totally categorical theory (of similar type) was constructed with complete
n-amalgamation and complete n− 1-uniqueness but failure of n-uniqueness
over ∅. In similar fashion in [GKK13b] (see Remark 2.29) it was shown that
there are totally categorical theories with failure of 3-uniqueness over ∅ with
a more complicated “homology” group (see that same paper to know what
this means).

5.3 A double cover of a definable set

The structure

We start constructing a 2-cover for some arbitrary L-theory T and some
L-formula φ(x, y). For that we fix some L-theory T and some L-formula
φ(x, y) for the rest of this section. Set

ψ(x1, x2, y) = φ(x1, y) ∧ φ(x2, y) ∧ ¬(x1
.

= x2).

Let S1 be the sort of x1 (and therefore of x2) and let S3 be the sort of y.
Now let S2 be the class which consists of all subsets of S1 of size 2. The
sort S2 is of course a sort in T eq, but if S2 is not already contained, we
add it to our theory T together with the membership relation. Further
we set D = {({a1, a2}, b) ∈ S2 × S3 | (a1, a2, b) |= ψ} (a definable subset of
S2 × S3). We say that d1, d2, d3 are compatible sets if there exist elements
a1, a2, a3 ∈ S1 pairwise non equal and some b ∈ S3 such that the following
elements are part of the definable class D;

d1 = ({a1, a2}, b), d2 = ({a2, a3}, b) and d3 = ({a1, a3}, b).

We fix a new sort Sψ, a new function π from Sψ to S2 × S3, and some
ternary relation symbol R on Sψ. Define Sψ to be a double cover (D × {0, 1})
of D, namely Sψ contains (d, 0) and (d, 1) for every d ∈ D. For readability
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reasons we will write (d, i) ∈ Sψ as id. Further let

π : Sψ → D : π(id) = d.

For id1 , jd2 , kd3 ∈ Sψ (as defined i, j, k ∈ {0, 1} and d1, d2, d3 ∈ D) we define
that R(id1 , jd2 , kd3) holds if and only if i+ j + k = 0 mod 2 and d1, d2, d3
are compatible. Now this L ∪ {Sψ, π,R}-structure is an extension of the
monster model C of T and we will call it C+. If we do this construction for
some model M , we call it M+. Note that Th(C+) = Th(M+).

The axiomatisation

We give an axiomatisation of the L ∪ {Sψ, π,R}-theory Th(C+). We will
prove in Lemma 5.3.3 that this axiomatisation is complete (and defines the
same theory as Th(C+)). But for now we call it T2,φ. The L-part will be the
same as T . The new axioms are the following:

1. π is two-to-one (with range Sψ) and has image D.

∀x1x2z
(
ψ(x1, x2, z)→ ∃=2x(π(x)

.
= ({x1, x2}, z))

)
∀x∀y

(
π(x)

.
= y → ∃z1z2z(ψ(z1, z2, z) ∧ ({z1, z2}, z)

.
= y)

)
2. If R(x1, x2, x3) holds, then the images π(x1), π(x2), π(x3) have to be

compatible sets.

∀x1x2x3∃y1y2y3z
(
R(x1, x2, x3)→

∧
1≤i≤3

π(xi)
.

= ({yi, y(i+1 mod 3)}, z)
)

3. For all x1, x2 for which there exists some x3 such π(x1)π(x2)π(x3) is
compatible, there exists exactly one x3 such that R(x1, x2, x3) holds.

∀x1x2
(
∃z1z2z3z

∧
1≤i≤2

π(xi)
.

= ({zi, z(i+1)}, z)→ ∃=1x3R(x1, x2, x3)
)

4. For all elements x1, x2, x2 for which Rx1x2x3 holds, we have that for
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any permutation of x1, x2, x3 the relation R holds.

∀x1x2x3
(
R(x1, x2, x3)→

∧
σ∈S(3)

R(xσ(1), xσ(2), xσ(3))
)

5. (tetrahedron-like) For all z, for all x1, x2, x3, x4 non-equal points in
φ(x, z) and for all

y12, y13, y14, y23, y24, y34

(of sort Sψ) such that π(yij) = ({xi, xj}, z) and we have that if either
all or exactly one of

R(y12, y13, y23), R(y13, y14, y34) and R(y12, y14, y24)

holds, then R(y23, y34, y24) holds. And if of

R(y12, y13, y23), R(y13, y14, y34) and R(y12, y14, y24)

either 0 or 2 are true, then R(y23, y34, y24) fails.

In formulae with ¬ set accordingly, we can write it as follow:

∀z∀x1x2x3x4∀y12, y13, y14, y23, y24, y34[( ∧
1≤i<j≤4

¬(xi
.

= xj) ∧
∧

1≤i≤4
φ(xi, z) ∧

∧
1≤i<j≤4

π(yij)
.

= ({xi, xj}, z)∧

(¬)R(y12, y13, y23) ∧ (¬)R(y13, y14, y34) ∧ (¬)R(y12, y14, y24)
)

→ (¬)R(y23, y34, y24)

]

Verification

We check that these axioms are true in C+. All but the last point following
directly from the construction. Hence it is left to check that the structure is
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tetrahedron-like. For that we set

y12 = i({x1,x2},z), y13 = j({x1,x3},z),

y14 = k({x1,x4},z), y23 = l({x2,x3},z),

y24 = m({x2,x4},z), y34 = n({x3,x4},z).

We have then that

l = i+ j(+1) mod 2,

m = j + k(+1) mod 2,

n = i+ k(+1) mod 2

(+1 is there, in the case when the corresponding elements are not in the
relation R). In order to fulfil tetrahedron-like, we have that l +m+ n = 0

mod 2 if either 0 or 2 “+1” are present and l +m+ n = 1 mod 2 if either 1
or 3 “+1” are present. But this can be seen by the equation

l +m+ n = i+ j(+1) + j + k(+1) + i+ k(+1) mod 2

= 2i+ 2j + 2k(+1)(+1)(+1) mod 2

= (+1)(+1)(+1) mod 2.

Now a good way to imagine this, is to think about the set D ∩ S2 × {b}
as the lines between elements in φ(C, b). Then Sψ is the double cover of these
lines. Think about 0{a1,a2} as normal line and 1{a1,a2} as a dotted line. Then
a “triangle” is in R, whenever the triangle consists of either 0 or 2 dotted
lines. (see Figure 5.1 on page 92)

Remark 5.3.1. I do not see any obstruction, why the construction in this
section could not be extended to more than a double cover (namely an n-cover
with more complicated group structure than Sym(n)). Instead of covering
2-sets we could surely also cover (n− 1)-sets and replace the tetrahedron-
like property with some polyhedron-like property. Then if we assume lower
amalgamation and uniqueness we should be able to prove a similar result
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Figure 5.1: Double cover
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as Lemma 5.5.1 with Property B(n) (and hopefully also similar results to
Proposition 5.5.15). Moreover, then in this case if T is the theory of infinite
set, then T2,φ should be the same as the example of [PS11].

Having positively answered the last remark one could then ask:

Question 5.3.2. Does there exists some algebraic cover which has Property
B(k) (over empty set) for infinite many k’s and also fails Property B(l) (over
empty set) for infinite many l’s?

Lemma 5.3.3. T2,φ is a complete L ∪ {Sψ, π,R}-theory. Moreover, C+ is
the monster model of this theory.

Proof. Fix some model M∗ (of some completion) of T2,φ. Since M∗ � L |= T

we can extend M∗ � L = M to M+ (as described in the beginning of this
section). We will show that M∗ is isomorphic to M+ to finish the proof. As
we have Th(M+) = Th(C+), this will also give us that the monster C∗ of
T2,φ is isomorphic to C+.

We define an isomorphism from M+ to M∗ which fixes M . Because we
require that M is fixed, we may assume that φ(x, b) has some realisations
for only one b (and ignore it). We enumerate the class φ(M, b) (in any way).
Without loss we may assume that {aα | α ∈ Ord} = φ(M, b) where Ord are
the ordinal numbers.

Now we will describe the automorphism say f . Note that Axiom 4 will
be used without noting it. By Axiom 1 we can map 0{a0,aα} for any α to any
element in π−1({a0, aα}) (ofM∗). Then by Axiom 2 and 3 for every α, β there
exists a realisation a of R(x, f(0{a0,aα}), f(0{a0,aβ})) with π(a) = ({aβ, aα}).
We set the automorphism f on 0{aα,aβ} to be this a. By Axiom 1 we make
this map then a bijection between M+ and M∗ by mapping 1{aα,aβ} to the
other element of π−1({a0, aα}).

It is left to check that the relation R is preserved under f . So we need to
check that i+ j + k = 0 mod 2 if and only if

M∗ |= R
(
f(i{aα,aβ}), f(j{aβ ,aγ}), f(k{aα,aγ})

)
.

For that note that we have that
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M∗ |= R
(
f(i{aα,aβ}), f(0{a0,aα}), f(0{a0,aβ})

)
iff i = 0

M∗ |= R
(
f(j{aα,aγ}), f(0{a0,aα}), f(0{a0,aγ})

)
iff j = 0

M∗ |= R
(
f(k{aβ ,aγ}), f(0{a0,aβ}), f(0{a0,aγ})

)
iff k = 0.

Now by our assumption that R is tetrahedron-like (Axiom 5) these points
give exactly what we want.

Lemma 5.3.4. T2,φ is a finite cover of T .

Proof. By Lemma 5.3.3 we may assume that C+ is the monster model of
T2,φ. Clearly π is a 0-definable finite-to-one map from the new sort of C+

to C. We will show that every L-automorphism of C extends to an L+-
automorphism of C+. This will finish the proof as by Fact 3.1.3 will know
then, that C is fully embedded in C+. For that fix some L-automorphism
f of C. We define hf ∈ Aut(C+) the extension of f . We set hf (id) = if(d)

for all d ∈ D. For that it is enough to check that R(id1 , jd2 , kd3) holds if and
only if R(iα(d1), jα(d2), kα(d3)) for all d1, d2, d3 ∈ D. Hence we need to check
that compatibility is preserved, but this is clear since an automorphism of C
is a bijection on the old sorts. Hence C+ is a finite cover of C.

Remark 5.3.5. We have seen that we can extend any automorphism of C
which fixes A ⊂ C to one of C+ which fixes π−1(A).

5.4 General properties of the cover T2,φ

Lemma 5.4.1. Let C be the monster of T and C+ be the above described
extension (and hence the monster model of T2,φ). We have that G = Aut(C+)

is the inner semidirect product of the following closed subgroup

H = {α ∈ Aut(C+) | α(id) = iα(d) for all d ∈ D}

and the normal, closed subgroup N = Aut(C+/C).
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Proof. It is enough to check that there exists some homomorphism

F : G→ H

which is the identity on H with kernel N . First note that any automorphism
f of Aut(C+) is in Aut(C+/C) if and only if f �C= id. Note that �C is a
homomorphism and its kernel N is a normal subgroup. Then note that
F ′ : Aut(C)→ H defined by extending each α ∈ Aut(C) to some hα ∈ H
by setting hα(id) = iα(d) for all d ∈ D is an isomorphism. In the proof of
Lemma 5.3.4 we already see that this is well-defined.

Then F ′ is a homomorphism because for α, β ∈ Aut(C), we have

hβ ◦ hα(id) = iβ◦α(d) = hβ◦α(id).

It is surjective, as for each h ∈ H we have F ′(h �C) = h. It is injective as for
β 6= α ∈ Aut(C) we have hβ 6= hα (as both are extensions of the former). As
already noted we know that the homomorphism �C has N as its kernel and
hence the kernel of F := F ′◦ �C is also N . Hence F is the homomorphism
with the desired properties and therefore we are finished.

Lemma 5.4.2. A bijective map f on C+ with f �C= idC is in Aut(C+/C) if
and only if the following is true

R(f(0d1), f(0d2), f(0d3))

for all compatible elements d1, d2, d3 in the set D.

Proof. Left to right is clear by definition. For the other direction since
compatibility will preserved by f assume that there exists id1 , jd2 , kd3 ∈ Sψ
with compatible d1, d2, d3 ∈ D such that

|= R(id1 , jd2 , kd3) and |= ¬R(f(id1), f(jd2), f(kd3))

or vice versa. We may assume without loss that the former holds, as otherwise
the latter holds, i.e. |= ¬R(id1 , jd2 , kd3) and |= R(f(id1), f(jd2), f(kd3)) holds,
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but then it is easy to see that the former holds for the elements i′d1 , jd2 and
kd3 with i′ = i+ 1 mod 2.

Hence this implies that i+ j + k = 0 mod 2, but

f(i) + f(j) + f(k) = 1 mod 2.

This means that f cannot be the identity on 1 or 3 of them, as then
f(i) + f(j) + f(k) = 0 mod 2 would hold. Hence either f can only be the
identity on either 0 or 2 of then id1 , jd2 , kd3 . But then

R(f(0d1), f(0d2), f(0d3))

can not hold, as either 1 or 3 of 0’s will be 1’s after applying f .

Lemma 5.4.3. Let C be the monster of T and C+ be the above described
extension (and hence the monster model of T2,φ). Let b be an element of sort
S3. Then for any subclasses A1, A2, C of φ(C, b) with A1 ∩A2 = C and any
f, g ∈ N(= Aut(C+/C)) with

f � π−1([C]2 × {b}) = g � π−1([C]2 × {b}),

we have that

f � π−1([A1]
2 × {b}) ∪ g � π−1([A2]

2 × {b})

is an elementary map which can be extended to an automorphism of N .

Further if A1 ∩A2 = ∅ holds, then for each a1 ∈ A1 and a2 ∈ A2 there
exists automorphisms h, h′ in N both extending

f � π−1([A1]
2 × {b}) ∪ g � π−1([A2]

2 × {b})

with h(0({a1,a2},b)) = 0({a1,a2},b) and h
′(0({a1,a2},b)) = 1({a1,a2},b).

Proof. We will show that

f � π−1([A1]
2 × {b}) ∪ g � π−1([A2]

2 × {b})
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can be extended to an automorphism. As C will be fixed and there is no
interaction between elements of Sψ with different canonical projections to S3,
we may assume that S3 consists only of one b (set the automorphism as the
identity on the rest) and forget about this parameter. This essentially means
that we assume that D ⊂ S2.

We are going to define a map h with preimage and image π−1([A1 ∪A2]
2)

which does extend the following map

f � π−1([A1]
2) ∪ g � π−1([A2]

2)

and moreover fulfils the properties of Lemma 5.4.2, i.e. we need to check that
R
(
h(0d1), h(0d2), h(0d3)

)
holds for all compatible elements

d1, d2, d3 ∈ [A1 ∪A2]
2.

In order to do that we need to define the map h for any element a1 ∈ A1 −A2

and any element a2 ∈ A2 −A1. We may assume that there exist such elements,
because otherwise we would be finished.

To make notation easier we now will start confusing elements 0d with 0

and 1d with 1, hence writing something like id + jd′ = kd′′ mod 2, which is
meant to be i+ j = k mod 2. If A1 ∩A2 = C is non-empty take an element
c of it. Then h(0{a1,a2}) will map to g(0{a1,c}) + f(0{a2,c}) mod 2. We check
that this value does not depend on the choice of c. For that take another
c′ ∈ A1 ∩A2. Note that we have that

f(0{c,c′}) + f(0{a1,c′}) = f(0{a1,c}) mod 2

and we also have that

g(0{c,c′}) + g(0{a2,c′}) = g(0{a2,c}) mod 2

since both f and g are automorphisms (see Lemma 5.4.2). Since f, g are the
same on their common preimage part, this give us that f(0{c,c′}) = g(0{c,c′})
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holds. Hence we have that the following equation is true;

g(0{a2,c}) + f(0{a1,c}) = 2f(0{c,c′}) + g(0{a2,c′}) + f(0{a1,c′}) (mod 2).

So we need check that for a1, a′1 ∈ A1 and a2 ∈ A2 that

(C+) |= R
(
f(0{a1,a′1}), h(0{a1,a2}), h(0{a′1,a2})

)
.

But that can be seen by the following equation:

f(0{a1,a′1}) + h(0{a1,a2}) + h(0{a′1,a2})

= f(0{a1,a′1}) + (f(0{a1,c}) + g(0{a2,c})) + (f(0{a′1,c}) + g(0{a2,c}))

= f(0{a1,a′1}) + f(0{a1,c}) + f(0{a′1,c}) + 2g(0{a2,c}) =

= f(0{a1,a′1}) + f(0{a1,c}) + f(0{a′1,c})

= 0 (mod 2).

The same holds for a1 ∈ A and a2, a′2 ∈ B as we can exchange the roles of
A1 and A2 in the calculation above. Hence we have R(h(0d1), h(0d2), h(0d3))

holds for all compatible d1, d2, d3 ∈ [A1 ∪A2]
2.

If A1 ∩A2 is empty we fix any a1 ∈ A1 and a2 ∈ A2, and set

h(0{a1,a2}) = 0{a1,a2}.

Here we have a free choice, we could also pick h(0{a1,a2}) = 1{a1,a2}. We will
put this in square brackets in our calculations to keep track of it, as this will
show the last part of this lemma. For a′1 ∈ A1 and a′2 ∈ A2 we define

h(0{a1,a′2}) = g(0{a1,a′2})[+h(0{a1,a2})] (mod 2),

h(0{a′1,a2}) = f(0{a1,a′1})[+h(0{a1,a2})] (mod 2),

h(0{a′1,a′2}) = g(0{a2,a′2}) + f(0{a1,a′1})[+h(0{a1,a2})] (mod 2).

We need to check that for a′1, a′′1 ∈ A1 and a′2 ∈ A2

|= R
(
f(0{a′1,a′′1}), h(0{a′1,a′2}), h(0{a′′1 ,a′2})

)
.
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But the following easy calculation shows it:

f(0{a′1,a′′1}) + h(0{a′1,a′2}) + h(0{a′′1 ,a′2})

= f(0{a′1,a′′1}) + g(0{a2,a′2}) + f(0{a1,a′1})[+h(0{a1,a2})]

+ g(0{a2,a′2}) + f(0{a1,a′′1})[+h(0{a1,a2})]

= f(0{a′1,a′′1}) + f(0{a1,a′1}) + f(0{a1,a′′1}) + 2g(0{a2,a′2})[+2h(0{a1,a2})]

= f(0{a′1,a′′1}) + f(0{a1,a′1}) + f(0{a1,a′′1})

= 0 (mod 2).

Therefore we have again, that R(h(0d1), h(0d2), h(0d3)) is true for all compat-
ible d1, d2, d3 ∈ [A1 ∪A2]

2.
Now suppose we take the identity automorphism of C+. Then by the

same argument as in the “A1 ∩A2 = ∅”-case but for A3 = φ(C, b)− (A1 ∪A2)

and (A1 ∪A2), we can extend the following map h �π−1([A1∪A2]2) ∪idπ−1([A3]2)

to some h∗ such that R(h∗(0d1), h∗(0d2), h∗(0d3)) holds for all compatible
d1, d2, d3 from D(= [φ(C, b)]2). Hence by Lemma 5.4.2 again, we have that
h∗ together with idC is an automorphism in N .

Remark 5.4.4. Let the assumption be the same as in Lemma 5.4.3. Then for
any element a2 ∈ φ(C, b)−A1 and for every a ∈ φ(C, b) with a 6= a2, we have
that 0({a,a2},b) is not in the definable closure of C ∪ π−1([A1]

2 × {b}). To see
this take the identity elementary map on π−1(A′1 × {b}) with A′1 = A1 ∪ {a}
and take the identity elementary map π−1(C−A1′ × {b}), then apply the
last part of Lemma 5.4.3.

Corollary 5.4.5. Let T be a countable ω-categorical theory. If T has weak
elimination of imaginaries, then T2,φ has weak elimination of imaginaries.

Proof. We check the conditions of Fact 3.5.7. So take some

f ∈ Aut(C(X)/C, C(X ∩ Y ))

for aclC-closed sets X,Y in C. We may set C(X) =
⋃
x∈X∩D π

−1(x). As
there is no interaction between elements ({a1, a2}, b) and ({a1, a2}, b′) for

99



b 6= b′, we may assume that the sort S3 contains only one element. Note that
by algebraic closedness of X,Y , we have that if ({a1, a2}, b) ∈ D is in X (or
Y ) then so is a1, a2, b. Hence in order to prove the corollary we note we have
C(X) = π−1([X ∩ S1]2 × {b}), C(Y ) = π−1([Y ∩ S1]2 × {b}) and

C(X ∩ Y ) = π−1([X ∩ Y ∩ S1]2 × {b}).

Now we are finished since

f � C(X ∩ Y ) = idC(X∩Y )

and therefore by Lemma 5.4.3 we have that f ∪ idC(Y ) is in

Aut(C(X)/C, C(Y )).

Proposition 5.4.6. Let T be stable with elimination of imaginaries. Then
T2,φ has weak elimination of imaginaries.

Proof. The idea is to use Fact 2.7.6. Because our theory is stable we can fix
some set-size monster model M |= T (see Section 2.2) and denote by M+ its
extension to T2,φ (it will be a set-size monster model as well).

Fix some p ∈ Sn(M+) (in T2,φ) and fix some c0 |= p. Then by elimination
of imaginaries and stability tp(π(c0)/M) has a canonical base B0. We claim
that B0 together with finitely many elements of SM+

ψ is a canonical base of
p. For that we add any of am, b ∈M which is part of d({a,am},b) ∈ c0 to B0.
We call this new set B. Note that this will be independent of the choice of
c0. Now for any am, a′m, b ∈ B with (am, b) |= φ(x, y) and (a′m, b) |= φ(x, y),
we add 0{am,a′m},b and 1{am,a′m},b to B.

We claim that this B is a canonical base of p. So for f ∈ Aut(C+/B)

which fixes M+ set-wise, we must show that if c |= p then f(c) |= p. We
have that tp(π(c)/M) = tp(f(π(c))/M) since the set B contains a canoni-
cal base of tp(π(c)/M). Hence there is some g ∈ Aut(C/M) such that we
have g(π(c)) = f(π(c)). Now this g can be extended to an element h ∈ H,
such that h fixes M+ (see Remark 5.3.5). If we can show that there is
some f ′ ∈ Aut(C+/C) ∩Aut(C+/M+) such that f ′(h(c))) = f(c), then we
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are finished as f ′ ◦ h ∈ Aut(C+/M+) which maps c to f(c). This means that
it is enough to show that the orbit of any c |= p in Aut(C+/C,M+) and
in Aut(C+/C, B) is the same. Note as h−1 ◦ f is in Aut(C+/C, B), we can
then pick f ′′ ∈ Aut(C+/C,M+) with f ′′(c) = h−1 ◦ f(c) and hence then
h ◦ f ′′(c) = f(c).

h−1 ◦ f(c) f(c)
h−1
oo

π

��

c

f

88

h
//

π

��

f ′′

OO

h(c)

π

��
π(c)

g // f(π(c))

Figure 5.2: Canonical base maps

We may assume that there is only one such b, as there is no interaction
between elements d({a,a′},b), d({a′′,a′′′},b′) for different b′, and absorb the pa-
rameter to our theory. Note that by the choice of B, we have that for any
d{a,am} ∈ c with am ∈M we have am ∈ B. We let A be the set of all am ∈M
which are part of some d{a,am} ∈ c. Note that A ∩B = A = A ∩M . Use M ,
A ∪ (C−M) and π(B), A ∪ (C−M) both each time with Lemma 5.4.3 to
note that the automorphisms of Aut(C+/C, B) and Aut(C+/C,M+) are the
same on π−1(A ∪ (C−M)): For f ∈ Aut(C+/C, B) we have by Lemma 5.4.3
that f �π−1(A∪(C−M)) ∪id �M is elementary and (as f �M∩A= f �B∩A= idA)
can be extended to an automorphism of Aut(C+/C,M+). Now since c is a
tuple of elements in π−1(A ∪ (C−M)) we are done.

Question 5.4.7. Does (T eq)2,φ always have weak elimination of imaginaries?

5.5 Amalgamation properties of T2,φ

Now we are ready to use our construction T2,φ, to establish examples of
failure of 3-uniqueness over algebraically closed sets which are not the domain
of a model of theory T .
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Force failure of B(3)

Proposition 5.5.1. Let T be a complete rosy L-theory and let A be some
algebraically closed set which is not a model of T . Then T has a finite cover
T ′ which fails Property B(3) over A for real parameters. In fact, if φ(x, y)

is some L-formulas such that φ(x, a) with a ∈ A is not satisfiable in A, then
T2,φ fails Property B(3) over A for real parameters. Moreover, we can pick
A to be the algebraic closure of some finite set.

Proof. Fix an algebraically closed set A which is not a model of T . Then
by Tarski’s Test there exists some L-formula φ(x, y) and some b ∈ A such
that φ(x, b) is satisfiable but not satisfied in A. Moreover, φ(x, b) has to be
realised by infinitely many elements.

We construct for this φ(x, y) the finite cover |= T2,φ. We check that this
finite cover |= T2,φ fails B(3) over any A′ ⊂ A which contains b in order to
finish the proof. Note that this will then also show the “Moreover”-part.
Therefore fix any type p in S(A′) which contains φ(x, b). Let a1, a2, a3 be
independent realisations of p. We check that B(3) for a1, a2, a3 over A′ fails.
Hence we have to check that dcl(acl(a1A

′)acl(a2A
′)) is a proper subset of

acl(a1a2A
′) ∩ dcl(acl(a1a3A

′), acl(a2a3A
′)). (5.1)

Now note that we have acl(a1A
′) |̂ A′acl(a2A

′) (this is true by Symmetry,
Monotonicity and Lemma 2.4.4 or one could have picked independent elements
in the type tp(acl(a1A

′)/acl(A′)).). By this and by Anti-Reflexivity we have
then that the following is true

acl(a1A
′) ∩ acl(a2A

′) ⊂ acl(A′).

Further there is no element in acl(A) and therefore in acl(A′) which
satisfies φ(x, b). Hence by our choice of ψ (see page 88), we have for all
a′ ∈ acl(a1A

′) and all a′′ ∈ acl(a2A
′) that there is no algebraic element over

A′ which satisfies both ψ(a′, y2, b) and ψ(a′′, y2, b). Hence by Lemma 5.4.3
we can find an automorphism fixing acl(a1A

′), acl(a2A
′) and C and mapping

0({a1,a2},b) to 1({a1,a2},b). Clearly this shows the element 0({a1,a2},b) is not part
of the set dcl(acl(a1A

′), acl(a2A
′)).
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But we have that 0({a1,a3},b) is part of acl(a1a3A
′) and 0({a2,a3},b) is part

of acl(a2a3A
′). The new relation R gives us then, that the 0({a1,a2},b) is the

only element which satisfies R(x, 0({a1,a3},b), 0({a2,a3},b)). Hence of course we
have that

0({a1,a2},b) ∈ dcl(acl(a1a3A
′), acl(a2a3A

′)).

But now we are finished. Since we have shown, that the inequality 5.1 is
fulfilled. This then give us, as we already discussed, that the constructed
finite cover fails the Property B(3) over the set A′.

Remark 5.5.2. Note that the last proof did only use the properties of forking
which are true in any theory. Hence the following is true as well: Let T be a
complete L-theory such that there exists some acl-closed A which is not a
model of T . Then T has a finite cover T ′ which fails B(3) for some Morley
sequence over A.

Corollary 5.5.3. Let T be ω-categorical rosy and let A be some algebraically
closed set which is not a model of T . Then T eq has a finite cover T ′ which
fails B(3) over A.

Note that if T is an ω-categorical theory which does have a sort with
infinitely many elements, then T does have some algebraically closed set
which is not a model of T . This is as due to the Ryll-Nardzewski theorem
the algebraic closure of any finite set of parameters is finite in each sort.

Proof. This follows from Proposition 5.5.1 and Corollary 5.4.5.

Corollary 5.5.4. Let T be stable and let A be some algebraically closed which
is not a model of T . Then T eq has a finite cover T ′ which fails B(3) over A.

Proof. This follows from Proposition 5.5.1 and Proposition 5.4.6.

So this corollary together with Fact 4.7.1 shows that in stable theories
there is no abstract model theoretic reason (i.e. reason based on properties
preserved under finite cover) why 3-uniqueness should be true, except if the
algebraic closure only produces models of the theory.
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BAut(n) is B(n) in T2,φ modulo T

In this subsection we proof a rather technical lemma which shows us that in
T2,φ Property BAut(n) and Bn are more or less the same. For the previous
Subsection (i.e. the first subsection of Section 5.5) this will give us no new
insight. But it will have some use later: we will preserve the Property BAut(n)

over some (fixed) set (and therefore n-uniqueness in stable theories with lower
uniqueness) in the extension T2 phi. After we have done that, we will in some
examples combine this result with Proposition 5.5.1 to get examples with
total uniqueness over ∅ and failure of 3-uniqueness over some non-empty set.

The main assumption in the technical lemma we have to take about the
cover T2,φ will be the following definition.

Definition 5.5.5. If b1 . . . bn is an independent sequence over ∅, we set

B =
n−1⋃
i=1

aclC
+

(b1 . . . b̂i . . . bn−1bn) and B− =
n−1⋃
i=1

aclC
+

(b1 . . . b̂i . . . bn−1).

We say that T2,φ has Property B(n) in Aut(C+/C) if for every independent
sequence in b1 . . . bn over ∅ and every element e in aclC

+
(b1 . . . bn−1) we have

that the orbit of e over Aut(C+/BC) and over Aut(C+/B−C) is the same (i.e.
we have e ∈ dcl(CB) if and only if we have e ∈ dcl(CB−)).

Lemma 5.5.6. Let T be a rosy theory with Property BAut(n) over ∅ for
real parameters. Let φ(x, y) be some formula such that for any a, b |= φ(x, y)

we have that b ∈ acl(a) and such that T2,φ has Property B(n) in Aut(C+/C).
Then we have that T2,φ has Property BAut(n) over ∅ for real parameters. If
T has BAut(n) over ∅ (in T eq) and T2,φ has weak elimination of imaginaries
then we can omit the term for real parameter.

Proof. Let C be the monster of T and C+ the monster of T2,φ. Fix an
independent sequence (of tuples) b1, . . . , bn over ∅ in C (and not C+). Note
that by Corollary 3.1.9 it is indeed enough take elements of C (and not of
the cover). Now we have, since Property BAut(n) over the empty set holds
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in the theory T , that for the sets

BC =
n−1⋃
i=1

aclC(b1 . . . b̂i . . . bn−1bn) and B−C =
n−1⋃
i=1

aclC(b1 . . . b̂i . . . bn−1)

the following automorphism groups are the same;

Aut(aclC(b1 . . . bn−1)/BC) = Aut(aclC(b1 . . . bn−1)/B
−
C ).

By Remark 5.3.5 this then gives that for the same sets in C+, i.e.

B =

n−1⋃
i=1

aclC
+

(b1 . . . b̂i . . . bn−1bn) and B− =
n−1⋃
i=1

aclC
+

(b1 . . . b̂i . . . bn−1)

the following corresponding automorphism groups are the same;

Aut(aclC(b1 . . . bn−1)/B) = Aut(aclC(b1 . . . bn−1)/B
−). (5.2)

Also by Lemma 5.4.1 we know that we can write each f ∈ Aut(C+/B−) as a
composition f = fh ◦ fn with fn ∈ Aut(C+/C) and fh ∈ H (see Lemma 5.4.1
for the definition of H). By Equation 5.2 we know that fh � aclC(b1, . . . , bn−1)

can be extended such that it fixes B and this then extends uniquely (in H) to
aclC

+
(b1, . . . , bn−1). Hence we only need to check that fn � aclC

+
(b1, . . . , bn−1)

can be extended such that it fixes B.
Because of this, it is left to show that for any tuple e ∈ aclC

+
(b1, . . . , bn−1)

the orbit of it over CB− is the same as over CB. As the orbit on the old
sort is trivial in Aut(C+/C), we may assume that e is purely of sort Sψ and
as there is no interaction between elements of Sψ with different canonical
projections to S3, we may assume that S3 consists only of one element and
forget about this parameter, i.e. we may assume D ⊂ S2.

Claim. We may assume that e is a singleton.

Proof(Claim): We assume that the orbit of each singleton of

Sψ ∩ aclC
+

(b1 . . . bn−1)

105



is the same over CB and CB−. Then we will prove by induction of the length
of the tuple, that the tuple (e1, . . . , en) has the same orbit over CB and CB−.
Hence assume that the orbit of tuples of length n− 1 is the same over CB and
CB−. Take some f ∈ Aut(C+/CB−). Then there exists f ′, f ′′ ∈ Aut(C+/CB)

with
f ′(e1 . . . en−1) = f(e1 . . . en−1)

and f ′′(en) = f(en).
We may assume that en 6∈ dcl(e1 . . . en−1), because otherwise we would be

finished. Let A be the projection of e1, . . . , en−1 onto S1. Let en = 0{a1,a2}.
Now we have to consider several cases: If a1 and an are both not in A, then
we can use the last part of Lemma 5.4.3 with A1 = A and A2 = {a1, a2}
and the claim follows. If a1 is in and a2 is not in A or vice versa, then
we can use the last part of Lemma 5.4.3 with A1 = A and A2 = {a2} (or
vice versa) and the claim follows. For a1 and a2 are both in A and as we
have that en 6∈ dcl(e1 . . . en−1), we know that there cannot be a sequence
i{a1,a′1}, j{a′1,a′2} . . . k{a′m−1,a

′
m}, l{a′m,a2} with each element of this sequence be

one of the ei’s with i < n. Hence we can split A into disjoint A1 and A2,
such that a1 ∈ A1 and a2 ∈ A2 and each ei for i < n is either in π−1([A1]

2)

and π−1([A2]
2). Hence applying the last part of Lemma 5.4.3 to this sets

gives us the claim. �Claim

Now by Property B(n) in Aut(C+/C) we have that any singleton

e ∈ aclC
+

(b1, . . . , bn−1)

has the same orbit in Aut(C+/CB) and in Aut(C+/CB−). But this shows
what we wanted.

Keep B(3) over ∅ true

We now examine the situation in which Property B(3) over the empty set
and Property B(3) over parameters can differ.

Definition 5.5.7. Fix some rosy L-theory T . An L-formula φ(x, y) is said
to have only dependent realisations in x over ∅ (in T ), if for all a1, a2, b with
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a1, b |= φ(x, y) and a2, b |= φ(x, y), we have a1 6 |̂ ∅ a2 and b ∈ acl(a1).

Remark 5.5.8. Let T be some rosy L-theory. Then a formula φ(x, y) such
that for any |= φ(a, b) we have b ∈ acl(a) and b 6∈ acl(∅) has only dependent
realisations in x over ∅

Proof. Take any a1, b and a2, b both satisfying φ(x, y), then we have that
b ∈ acl(a1) ∩ acl(a2). As we have b 6∈ acl(∅) we get that by Anti-Reflexivity
that a1 6 |̂ ∅ a2.

By the last remark we can easily see that the following is true

Remark 5.5.9. Let T be a rosy L-theory with acl(∅) finite. Then the L-formula
φ(x1, x2; y) defined as ¬(x1

.
= x2) ∧ x2

.
= y ∧ y /∈ acl(∅) has only dependent

realisations in (x1, x2) over the empty set.

Proposition 5.5.10. Let T be rosy theory with BAut(3) over ∅ for real
parameters and let φ(x, y) be a formula with only dependent realisations in x
over ∅. Then T2,φ has BAut(3) over ∅ for real parameters.

Proof. By the Lemma 5.5.6 it is enough to show that B(3) in Aut(C+/C)

holds. So fix an independent sequence (of tuples) b1, b2, b3 over ∅ in C

(and not C+). We will show B(3) in Aut(C+/C) (for this sequence) by
showing the following; if there is an automorphism α of C+ moving 0({a1,a2},b)

to 1({a1,a2},b) and fixing CB− (with B− = aclC
+

(b1) ∪ aclC
+

(b2), then there
is an automorphism moving 0({a1,a2},b) to 1({a1,a2},b) and fixing CB (with
B− = aclC

+
(b1b3) ∪ aclC

+
(b2b3)).

Claim. We may assume that a1, a2 are in B−.

Proof(Claim): Note that if a1, a2 are in B, then as a1, a2 are in acl(b1, b2)

by independence they will be in B−. But by Remark 5.4.4 we have that if
either one of a1, a2 would not be in B, then it follow that 0({a1,a2},b) would
not be in dcl(B). But then we would be finished as there is an automorphism
moving 0({a1,a2},b) to 1({a1,a2},b) and fixing CB. �Claim

Note that we cannot have a1 ∈ aclC
+

(b1) and a2 ∈ aclC
+

(b2) as a1 6 |̂ a2
holds since φ has only dependent realisations. But then as a1, a2 are part
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of B− we have that they are either both part of aclC
+

(b1) or else they are
both part of aclC

+
(b1). This then of course gives that 0({a1,a2},b) ∈ dcl(B−)

as required.

Corollary 5.5.11. Let T be a rosy theory having BAut(3) over ∅ for real
parameters, let acl(∅) be finite and let A 6= acl(∅) be some algebraically closed
set which is not a model of T . Then there exists some formula φ(x, y) such
that T2,φ has BAut(3) over ∅ for real parameters and fails B(3) over A for
real parameters.

Proof. We pick the same formula (for A) as in Proposition 5.5.1. Further
we may assume that for a, b |= φ(x, y) we have b ∈ dcl(a) and acl(b) 6⊂ acl(∅).
The proof of Proposition 5.5.1 will still work and by Remark 5.5.8 we know
that the formula will also have only dependent realisations. Hence we can
apply Proposition 5.5.10 to finish the proof.

Corollary 5.5.12. Let T (= T eq) be a stable theory with 3-uniqueness over
∅, let acl(∅) be finite and let A 6= acl(∅) be some algebraically closed set which
is not a model of T . Then there exists some formula φ(x, y) such that T2,φ
has 3-uniqueness over ∅ and fails B(3) over A.

Proof. First note that T2,φ has weak elimination of imaginaries (see Propo-
sition 5.4.6). By Corollary 5.5.11 (by weak elimination of imaginaries we
can omit the suffix “over real parameters”) we have as BAut(3) over ∅. Now
Proposition 4.4.7 gives us 3-uniqueness over ∅.

Corollary 5.5.13. Let T be a rosy ω-categorical theory with weak elimination
of imaginaries such that there exists at least one sort of infinite size. Let
Property BAut(3) over ∅ be true as well. Then there exists some formula
φ(x, y) such that T2,φ has BAut(3) over ∅ and fails B(3) over some non-empty
set.

Proof. This is just due to the fact that the algebraic closure of a finite set
is finite (in each sort) and hence not a model of our theory. We can then
apply Corollary 5.5.11. Since we have weak elimination of imaginaries by
Corollary 5.4.5, we can omit the suffix “over real parameters”.
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Keep B(n) over ∅ true for all n

Theorem 5.1.10 shows that if our theory has a separable independence notion,
then there is a connection between total uniqueness over the empty set and
3-uniqueness over parameters (in fact n-uniqueness). We will see that under
certain assumptions there is no connection between these two notions.

Definition 5.5.14. Fix some rosy L-theory T . An L-formula φ(x, y) is said
to split in x (over ∅) (in T ), if for any two subsets of the monster A1, A2

with A1 |̂ ∅A2 and any a, b |= φ(x, y) with a ∈ acl(A1A2) and b ∈ acl(A1) we
have that there exists a′ ∈ acl(A1) with a′ |= φ(x, b).

We will later see examples of split formulae. But first we examine the
main use of this notion.

Proposition 5.5.15. Let T (= T eq) be a rosy theory with Property BAut(n)

over ∅ for real parameters and let φ(x, y) be a formula which splits in x over
∅ and such that for any a, b |= φ(x, y) we have that b ∈ dcl(a). Then T2,φ has
Property BAut(n) over ∅ for real parameters.

Again by Corollary 5.4.5 and Proposition 5.4.6 as before we can omit "for
real parameters" in the above proposition if we additionally assume either
stability or ω-categoricity. Unfortunately the notion of a split formula is a bit
mysterious to me, as I could not prove an equivalent to the Corollaries 5.5.12
and 5.5.13. Probably the mystery comes from the fact that this notion was
reverse-engineered from the example (Z/4Z)ω.

Proof. By the Lemma 5.5.6 it is enough to show that B(n) in Aut(C+/C).
So fix an independent sequence (of tuples) b1, . . . , bn over ∅ in C (and not
C+). We will show B(n) in Aut(C+/C) (for this sequence) by showing the
following; if there is an automorphism α of C+ moving 0({a1,a2},b) to 1({a1,a2},b)

and fixing CB− (with B− =
⋃n−1
i=1 aclC

+
(b1 . . . b̂i . . . bn−1)), then there is an

automorphism moving 0({a1,a2},b) to 1({a1,a2},b) and fixing CB (with

B =

n−1⋃
i=1

aclC
+

(b1 . . . b̂i . . . bn−1bn)).
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Claim. We may assume that a1, a2 ∈ B−.

Proof(Claim): Note that if a1, a2 ∈ B then as a1, a2 ∈ aclC
+

(b1, . . . , bn−1),
by independence of the bi’s, they are in B−. Hence it is enough to check
that a1, a2 ∈ B. By Remark 5.4.4 we know that if a1 is not in B then we
have that 0({a1,a2},b) 6∈ dcl(CB). But then we would be finished as there is
an automorphism moving 0({a1,a2},b) to 1({a1,a2},b) and fixing CB, which is
impossible. �Claim

We may assume that

a1 ∈ aclC
+

(b2, . . . , bn−1) and a2 ∈ aclC
+

(b1, . . . , bn−2).

As we have that b ∈ dcl(ai) for i ∈ {1, 2} by the assumptions, we have that
b is contained in acl(b2 . . . bn−2): this follows from the independence of the
bi’s and the Anti-Reflexivity axiom, as b is in both aclC

+
(b2 . . . bn−1) and

aclC
+

(b1 . . . bn−2).
By our assumptions we have that φ(x, y) splits in x over ∅. We apply

the splitting of φ to the sets A1 = acl(b2 . . . bn−2) and A2 = b1bn−1bn. Note
that we have shown that b ∈ A1. As we have that a1 ∈ acl(A1A2) and get
therefore some

a′1 ∈ acl(A1) with a′1 |= φ(x, b).

Note that this is already enough as now 0{a1,a′1} is in acl(a2 . . . an−1) and
0{a′1,a2} is in acl(a1 . . . an−2). As then 0{a1,a2} is the only solution of

R(x, 0{a′1,a2}, 0{a1,a′1})

and hence it is in dcl(CB−). This gives us finally B(n) in Aut(C+/C).

5.6 T2,φ of an abelian group

We now will work with modules. For that, fix some ring R and an R-module
M . A module will be of language (0,+,−, r)r∈R where r : M →M has the
obvious interpretation (left multiplication with the ring element). Any module
is stable, this is due to Fisher, E. [Fis72] (implicitly) and independently Baur,
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W. [Bau75] (see Theorem 2.1 of [Zie84] or Theorem 3.1 of [Pre03] for a proof
and the paragraph above the latter for the historic references). And we know
that every formula in such a theory is equivalent to a Boolean combination
of positive primitive formulae. A pp-formula is of the form ∃y(

∧
i γi) where

γi(y, x) are equations (γi(z) = r1z1 + · · ·+ rlzl
.

= 0).

Fact 5.6.1. Let T be the complete theory ofM . The following are equivalent;

1. A complete theory T of some module M is closed under products (i.e.
M ≡Mω).

2. The class of models of T is closed under products.

Moreover, if these points are true then there are no pairs φ > ψ of pp-formulae
such that φ(M)/ψ(M) is a non-trivial finite group.

Proof. That the first two points are equivalent is by Exercise 4 after Proposi-
tion 2.29 in [Pre88]. The “Moreover”-part is by Exercise 2(i) after Theorem
2.12 also in [Pre88].

Fact 5.6.2. (5.36 of [Pre88]) In a complete theory T of modules with quan-
tifier elimination which is also closed under products then following are
equivalent;

1. We have A |̂ ∅B for A,B ⊂M (a model of T ).

2. There exists a direct summand C1
⊕
C2 of M with the property that

A ⊂ C1 and B ⊂ C2.

Note that an abelian group can be considered a Z-module (in the above
described language) since n.x can be written as x+ · · ·+ x.

Lemma 5.6.3. Let T be a {+,−, 0}-theory of an infinite abelian group with
quantifier elimination which is also closed under products. Further let

φ(x, y) = n.x
.

= y ∧ ¬(y
.

= 0)

with n ∈ N− {0}. Then the formula φ(x, y) has only dependent realisations
in x over ∅, and splits in x over ∅.
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Proof. Since the theory is closed under products we have that n.x = 0 has
either only the trivial or infinitely many solutions for every n > 1 (see last
point of Fact 5.6.1). By this and by quantifier elimination we have that
acl(∅) = {0}. Clearly φ satisfies the conditions of Remark 5.5.8 and hence
has only dependent realisations in x over ∅.

It is left to check that the formula splits in x. We take A1, A2 (subsets of
the monster) with A1 |̂ ∅A2 and take a, b |= φ(x, y) with a ∈ acl(A1A2) and
b ∈ acl(A1). Now by Fact 5.6.2 we know that

acl(A1A2) = acl(A1)⊕ acl(A2).

Hence we have a = a1 + a2 with a1 ∈ acl(A1) and a2 ∈ acl(A2). We have
then b = n.a = n.a1 + n.a2. As a2 ∈ acl(A2) and −n.a1, b ∈ acl(A1) holds
and as acl(A1) |̂ ∅acl(A2) also holds, we get −n.a1, b |̂ ∅n.a2. But as we
have that −n.a1 + b = n.a2 and as acl(A1) ∩ acl(A2) = {0} it follows that
n.a2 = 0. Hence we have n.a1 = b and therefore we have shown that the
formula is split.

We will now see an example. (Z/4Z)ω satisfies all conditions of the last
lemma. More generally one could use the following fact to produce more
structures satisfying the assumptions of Lemma 5.6.3.

Fact 5.6.4. (16.3 of [Pre88]) Let T be a theory of an abelian group. Then
this theory has quantifier elimination if and only if some model is the direct
product of elements of either {Q} ∪ {Zp∞ | p prime} or of {Zpn11

, . . . ,Zpnkk }
with p1, . . . , pk are distinct primes.

Also note that any structure satisfying the assumption of Lemma 5.6.3
does have weak elimination of imaginaries. In fact the following is true;

Fact 5.6.5. (3.10 of [KP92]) Let T be a complete theory of modules with
quantifier elimination. Then T weakly eliminates imaginaries.

Example: a finite cover of (Z/4Z)ω

Now construct a finite cover of T = Th((Z/4Z)ω,+,−, 0) which fails amalga-
mation over some non-empty set, but has total amalgamation over ∅.
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Fix C the monster model of T . Note T is totally categorical (see point 5
on page 132 in [Har00]), has elimination of quantifiers (see point 2 on page
134 of [Har00]), has Morley and U-rank 2 (see 1.32 in [Har00]). We have
also weak elimination of imaginaries by Fact 5.6.5. Note that elimination of
quantifiers implies that every formula φ(x1, . . . , xn) is equivalent to a Boolean
combination of formulae

∑n
i=1 zixi

.
= 0 with zi ∈ {−2,−1, 0, 1, 2}. Moreover,

the theory is closed under products as it is the theory of a structure which is
an ω-product.

The only positive basic formulae with a single free variable (i.e. atomic
formulas and there negations, here equations and there negations) which
have non trivial realisations are the formulae of the form (−)2x

.
= a. They

will have infinitely many solutions if a is of order 2 or 0. As the sets of
form 2x

.
= a are the cosets of 2x

.
= 0, we know that any two distinct such

sets have empty intersection. Hence any definable (by a conjunction of basic
formulae) set with more then one solution will contain a cofinite part of some
coset and is therefore infinite. Hence we have “dcl = acl”. Also we have that
acl(∅) = {0} (this was for example shown in the proof of Lemma 5.6.3). Note
that A |̂ BC if and only if 2C ∩ dcl(A) ∩ dcl(C) ⊂ dcl(B). For any a, b 6= 0

with 2a = b the type tp(a/b) forks over the empty set.

Proposition 5.6.6. Let T = Th((Z/4Z)ω) and let φ(x, y) be the formula
saying “x has order 4 and 2x

.
= y”. Then T2,φ has total uniqueness over ∅

and total amalgamation over ∅, but fails 3-uniqueness over every element of
order 2 (in fact over every subset of “2x .

= 0”).

Proof. First note that T2,φ has weak elimination of imaginaries by Corol-
lary 5.4.5. Since “dcl = acl” as already noted, T has total amalgamation and
total uniqueness over every set (see Remark 4.4.4 and Corollary 4.5.7). By
Lemma 5.6.3 we know that the formula “x has order 4 and 2x

.
= y” is split.

Hence we can apply the Proposition 5.5.15 and then use Corollary 4.5.9 to
get that that T2,φ has total uniqueness and amalgamation over ∅. Finally
by the “in fact”-part of Proposition 5.5.1 we see that the cover has failure of
3-uniqueness over elements of order 2.

This finite cover of (Z/4Z)ω which has amalgamation over ∅, but fails it
over some parameters, could be the easiest (totally categorical) example we
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can find (although probably we could take any (Z/p2Z)ω by Lemma 5.6.3,
Fact 5.6.4 and Fact 5.6.5). It should be the easiest as any uncountably
categorical structure, which does not interpret an infinite group, is a almost
strongly minimal set (for that see Fact 5.1.8). Now as Lemma 5.1.7 suggests
there has to be at least some complication if our structure is totally categorical
and does not interpret an infinite group. Maybe it is not possible at all to
find an almost strongly minimal theory which does not have total uniqueness
over the empty set, but fails 3-uniqueness over some set.

5.7 More examples

We will now see an example, which will not interpret an infinite group. By
the last paragraph we know then that this example will therefore not be
uncountably categorical. But note that this can also be easily seen by a direct
argument.

A finite cover of a relational structure

Take the theory T of an equivalence relation E with infinitely many classes
of infinite size which has an extra sort added for the equivalence classes, and
a map π mapping each element to its corresponding equivalence class.

Take a monster model C = (Cn,Ce, E, f) where Cn are the normal elements
and Ce the corresponding equivalence classes. This theory is ω-categorical
and of Morley rank 2. To see ω-categoricity fix two countable models M,N ,
and enumerate all equivalence classes of each model. Then fix a bijection fi
between the i’th equivalence classes of the two models. Then

⋃
i∈N fi induces

an isomorphism between the two models. This can be used to show that the
assumptions of Lemma 3.5.2 hold and hence we have weak elimination of
imaginaries.

Note that “acl = dcl” in this structure, and hence by Remark 4.4.4 and
Corollary 4.5.7 it has total amalgamation and total uniqueness over every
set of parameters. Also note that acl(∅) = ∅. Note that dcl(A) = A ∪ f(A).
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The independence notion A |̂ CB is given by

dcl(A) ∩ dcl(B) ⊆ dcl(C).

Therefore any two sets A,B are independent over ∅ if and only if their
definable closures are disjoint in Ce.

We define φ(x, y) as f(x)
.

= y and construct the finite cover T2,φ. This
theory has weak elimination of imaginaries by Corollary 5.4.5. By looking
at the proof of Lemma 5.5.1, we see that it has failure of 3-uniqueness over
any element in Ce. We check that the assumptions of Lemma 5.5.15 are
fulfilled. Of course for |= φ(a, b), we have b ∈ dcl(a) and b 6∈ dcl(∅) = ∅. But
this already proves that φ has only dependent realisations by Anti-Reflexivity
of forking.

So it is left to show that φ splits. Let A1, A2 be two independent sets
over ∅ and let a, b |= φ(x, y) with a ∈ dcl(A1A2) and b ∈ dcl(A1). We claim
that a ∈ dcl(A1). First note that a ∈ A1 ∪A2 as it cannot be in f(A1A2)

by definition of ψ. If a ∈ A2, then b would be dcl(A2) and hence we would
have the following by independence dcl(A1) ∩ dcl(A2) = dcl(∅) = ∅. This of
course is impossible. Hence we have shown that the formula φ(x, y) splits in
x. So we have found a finite cover with total amalgamation and uniqueness
over the empty set, but failure of 3-uniqueness over some parameters, which
does moreover not interpret an infinite group.

Compact complex manifold

We will now see a “natural” example where total amalgamation and total
uniqueness over the empty set are true, but 3-uniqueness over some parameter
set fails.

Definition 5.7.1. Let A be the structure with a sort for each compact
complex manifold X, and a relation for each complex analytic subset of a
product of sorts. The theory CCM is defined as the first-order theory of A.

The following can be found in [Moo05].
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Fact 5.7.2. CCM is a theory that has quantifier elimination, eliminates
imaginaries and each sort has finite Morley rank (hence CCM is stable).

Remark 5.7.3. acl(∅) of CCM is a model of it. This implies that CCM has
total amalgamation over ∅ and total uniqueness over ∅.

Proof. By definition every tuple c of complex numbers has its own sort. Hence
by definition for every sort all points of the model A will be named in acl(∅).
For the second point we can use Fact 4.7.1 by stability.

Fact 5.7.4. (Theorem 2.1 of [BHM15]) The theory of Compact Complex
Manifolds (CCM) fails 3-uniqueness over some non-empty set.

5.8 Amalgamation over models in T2,φ

In this section we will investigate if it is possible to get failure of amalgamation
over a model in T2,φ. We know by Fact 4.7.1 and Proposition 3.4.5 that it is
necessary that a theory which has such a property is not stable. The question
if amalgamation over models can fail outside the stable context is already
positively answered: see section 5.2 of [GKK13a] for an example of a simple
theory which has failure of B(3) over a model.

One possibility to find many examples of this type, could be to use theories
which eliminate the quantifier ∃∞. If T is such a theory, we can add a generic
predicate P to it (hence work in the theory Tp) as described in [CP98]. Note
that in general Tp is not stable even if T was. It should be possible to check
that (Tp)2,p fails B(3) over some model. Note that this would even make
sense outside the simple context, for example for a geometric T with NTP2

(see 7.3 of [Che14]).

But this is left to future work, and instead we will work out another
approach.

Lemma 5.8.1. Let T be a rosy theory and M be a model of it. If there exists
a formula φ(x, b) not satisfiable in M , which has some realisation a, such
that a |̂ Mb, then in T2,φ Property B(4) fails over M for real parameters. In
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fact, it fails for a1, a2, b, a3 where a1, a2, a3 are any independent realisations
tp(a/bM).

Proof. We will confuse tuples with singletons. We fix φ(x, b) not satisfied in
some (fixed) M and a realisation a of it with a |̂ Mb. We construct T2,φ(x,y)
and work in it. We fix a1, a2, a3 some independent realisations tp(a/bM).

Now we claim that B(4) fails over M for a1, a2, b, a3. Hence we claim
that there exists some element 0({a1,a2},b) which is part of

acl(a1a2bM) ∩ dcl(acl(a1a2a3M), acl(a1ba3M), acl(a2ba3M))−

dcl(acl(a1a2M), acl(a1bM), acl(a2bM)).

It is clear that the following formula is true in our finite cover

R(0({a1,a2},b), 0({a1,a3},b), 0({a2,a3},b)).

Further as 0({a1,a3},b) ∈ acl(a1ba3) and 0({a2,a3},b) ∈ acl(a2ba3) we have that
0({a1,a2},b) ∈ dcl

(
acl(a1a2a3), acl(a1ba3), acl(a2ba3)

)
.

Note that as a1a2M |̂ Mb we have that b 6∈ acl(a1a2M). This is because
we would have b ∈ acl(M) and therefore b ∈M . But this is of course im-
possible as otherwise φ(x, b) would have a realisation in M by Tarski’s Test.
Hence there are no elements of the form 0(∗,b) (where ∗ represents any 2-set)
in acl(a1a2M). Note that as a1 |̂ Ma2bM we have a1 6∈ acl(a2bM). For the
same reason as a2 |̂ Ma1bM we have a2 6∈ acl(a1bM). Hence by Lemma 5.4.3
there is some automorphism fixing acl(a1bM), acl(a2bM) and acl(a1a2M)

and mapping 0({a1,a2},b) to 1({a1,a2},b).

Fact 5.8.2. In all NTP2 theories with the independence property (not NIP)
there is a global type p non-forking over some model M which is not finitely
satisfiable in it (see Section 4 of [CKS16]). There are TP2 theories such that
all global types p non-forking over some model M are finitely satisfiable in it
(see Section 5.3 of [CKS16]). A simple theory is non-stable if and only if it
has the independence property (see for example Remark 2.25 [Cas11]). Every
simple theory is NTP2 (see III.7.11 in [She90]).
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Corollary 5.8.3. In any simple non-stable theory T there exists a formula
φ(x, y) such that T2,φ fails B(4) over some model for real parameters.

Proof. As our theory T is simple non-stable, by Fact 5.8.2 there is a global
type p non-forking over some model M which is not finitely satisfiable in
it. We fix some formula φ(x, b) ∈ p which is not satisfiable in M . Now we
have that p �Mb does not fork over M and hence for any a |= p �Mb we have
a |̂ Mb. Therefore we can apply Lemma 5.8.1 and get that T2,φ fails B(4)

over M . From this it follows by definition of B(4), that T2,φ fails B(4) over
aclT2,φ(M). Now we are finished as T2,φ is a finite cover of T , and hence
aclT2,φ(M) is a model of T2,φ.

We have already noted that B(3) can fail for a Morley sequence over
some algebraically closed set which is not a model even when the theory is
not simple (see Remark 5.5.2). Then next the question is asking in similar
fashion if the last corollary is true for forking outside the simple context.

Question 5.8.4. Let T be a theory with a global type p non-forking over some
model M but not finitely satisfiable in it. Does T have a formula φ(x, y) such
that T2,φ fails B(4) for some Morley sequence over a model?

For that we first remember Lemma 4.7.2. It says that if types are finitely
satisfiable over some model, then B(n) holds for that type. The assertion
in Question 5.8.4 cannot be true in some cases; in particular in some cases
where the assumption fails. The second point of the Fact 5.8.2 tells us that
outside NTP2 this does not need to work. Also it cannot be pseudofinite NIP.
This is due to Exercise 6.19 of [Sim15] which says that in any pseudofinite
NIP theory: a global type is non-forking over a model if and only if it is
finitely satisfiable in it. But by the first point of the Fact 5.8.2 we know that
this is at least true for all NTP2-theories with the independence property.
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Chapter 6

Witnesses of Failure

In this chapter we further analyse the situation when Property B(n) is failing.
The notion of n-witness is nothing special, it is just defining some formulae
and elements which “witness” the failure of the Property B(n). The notion of
a Morley witness is a bit more advanced. It uses the fact that amalgamation
over Morley sequences implies general amalgamation. But these two notions
are less sophisticated than the notions which inspired them, namely the notion
of symmetric witnesses to non-3-uniqueness which appeared in [GK10] and its
generalised version called a symmetric witness to the failure of n-uniqueness
(see 3.12 of [GKK15]). The versions we use have only the minimal amount of
properties needed in this thesis. They will later be used in Chapter 7 and
Chapter 8. There we use them to define some algebraic cover with total
amalgamation. The more advanced notions in [GK10] and [GKK15] were
used to get some definable algebraic structures which were groupoids in the
former and polygroupoids in the latter case.

6.1 Localise failure of B(n)

The next definition is only some re-writing of Property B(n) in a way which
will be more suitable for our later needs in Chapter 7.

Remember by φ(x,A) we mean a formula φ(x, a) for some tuple a of A.
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Definition 6.1.1. We fix some theory T = T eq and some n ≥ 3. Let the
tuple a1, . . . , an, f1, . . . , fn consist of elements of the monster model of T . We
say that this tuple a1, . . . , an, f1, . . . , fn is an n-witness over A, if we have
that it satisfies the following four properties;

1. a1, . . . , an are independent over A,

2. fn ∈ acl(a1 . . . an−1A)− dcl
(⋃n−1

i=1 acl(a1 . . . âi . . . an−1A)
)
,

3. There exists some formulae

φi(x1, . . . x̂i . . . , xn, y; zi) : 1 ≤ i ≤ n− 1

with some natural number mi such that we have

|= φi(a1, . . . âi . . . , an, A; fi) for every 1 ≤ i ≤ n− 1,

and we have that

|= ∀x1, . . . x̂i . . . , xn, y∃<mizφi(x1, . . . x̂i . . . , xn−1, y; zi),

4. fn ∈ dcl(f1 . . . fn−1).

Lemma 6.1.2. Property B(n) over A fails if and only if there exists an
n-witness over A.

Proof. Assume that B(n) over A fails. So this means that there exists some
independent a1, . . . , an such that

B =
(

acl(a1 . . . an−1A) ∩ dcl
(n−1⋃
i=1

acl(a1 . . . âi . . . anA)
))

− dcl
(n−1⋃
i=1

acl(a1 . . . âi . . . an−1A)
)

is non-empty. Then by definition of dcl and acl there exists

fi ∈ acl(a1 . . . âi . . . anA)
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such that a1, . . . , an, f1, . . . , fn is an n-witness over A: Pick any fn in B

and then find the fi ∈ acl(a1 . . . âi . . . anA) accordingly such that fn ∈
dcl(f1 . . . fn−1). Then of course we can find formulae φi such that the
condition 3 is satisfied. Of course if there is an n-witness, then B(n) fails as
well, as we can easily reverse the above process.

6.2 Definition of a Morley n-Witness

Definition 6.2.1. We fix some L-theory T = T eq and some n ≥ 3. A Morley
n-witness over A is a tuple a1, . . . , an, f1, . . . , fn (of elements of the monster
of T ) with the following properties:

1. a1, . . . , an are independent realisations of some type p ∈ S(A),

2. fn ∈ acl(a1 . . . an−1A)− dcl
(⋃n−1

i=1 acl(a1 . . . âi . . . an−1A)
)
,

3. There exists some L-formula φ(x1, . . . , xn−1, y; z) and some natural
number m such that we have

|= ∀x1, . . . , xn−1, y∃<mzφ(x1, . . . , xn−1, y; z)

and we have that

|= φ(a1, . . . âi . . . , an, A; fi) for every i ≤ n− 1,

4. fn ∈ dcl(f1 . . . fn−1).

We use the term “Morley” in the last definition, as we have that a1, . . . , an
is a finite Morley sequence whenever the theory is stable and A is an acleq-
closed set.

Remark 6.2.2. A Morley n-witness is an n-witness. To see that just note that
we can set φi = φ for all i with 1 ≤ i ≤ n− 1.

Remark 6.2.3. Let a1, . . . an, f1, . . . , fn be a Morley n-witness over A. Then
for any elements b1, . . . , bn, g1, . . . , gn and B with

b1, . . . , bn, g1, . . . , gn, B ≡ a1, . . . , an, f1, . . . , fn, A,
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we have that b1, . . . , bn, g1, . . . , gn is a Morley n-witness over B. Moreover,
we can omit the term “Morley” and the statement still remains valid.

Proof. We need to check that all the properties are preserved under applying
some automorphisms. That the bi’s are an independent sequence is clear by
invariance of independence under automorphisms. It is also clear that the
bi’s satisfy the same type over B. Also the third point is clear as we can
use the same φi’s. The fourth point is true as we can find some ψ such that
ψ(f1, . . . , fn−1, y) define fn and such that for any h1, . . . , hn−1 we have that
ψ(h1, . . . , hn−1, y) it has at most one realisation.

Now it is left to check that the second point remains valid. First note
that fn is in acl(a1 . . . an−1A) is witnessed by some formula similar to φ and
hence stays true under automorphisms. It is also true that

fn 6∈ dcl

( n⋃
i=1,i 6=k

acl(a1 . . . âi . . . an−1A)

)

is preserved under automorphisms. For that note that being algebraic over
a1, . . . âi . . . , an−1, A is preserved under automorphisms. Then for any ele-
ments

c1 . . . cl ∈
( n⋃
i=1,i 6=k

acl(a1 . . . âi . . . an−1A)

)
and any formula τ , we have

|= τ(fn, c1 . . . cl)→ ∃y(¬(y
.

= fn) ∧ τ(y, c1 . . . cl)).

6.3 The existence of Morley witnesses

Lemma 6.3.1. Let p ∈ S(A) for some set A and let (ai : i ≤ n) be a Morley
sequence of realisations of p. Suppose d is in

(
acl(a1, . . . , an−1A) ∩ dcl

(n−1⋃
i=1

acl(a1 . . . âi . . . anA)
))

− dcl
(n−1⋃
i=1

acl(a1 . . . âi . . . an−1A)
)
.
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Then there exists f1, . . . , fn−1 such that a1, . . . , an, f1, . . . , fn with fn = d is a
Morley n-witness over A.

Proof. Let a1, . . . , an, d(= fn) be as given in the assumptions. So point one
and two of the witness definition are true. We need to find the elements
f1, . . . , fn−1. Note that we can find ei ∈ acl(a1 . . . âi . . . anA) for (i ≤ n− 1)

such that fn ∈ dcl(e1 . . . en−1).
Further we can find formulae χi(x1, . . . , xn−1, y, zi) with i ≤ n− 1 having

the following property:

• |= ∀x, y∃<miziχi(x1, . . . , xn−1, y, z1)

• ei |= χi(a1 . . . âi . . . an, A, zi)

We now set φ(x1, . . . , xn−1, y, z1 . . . zn−1) =

n−1∧
i=1

χi(x1 . . . xn−1, y, zi).

Also set f i = (f(1,i), . . . , f(n−1,i)) to be some realisation tuple of

φ(a1, . . . âi . . . , an, A, z1, . . . , zn−1) with f(i,i) = ei.

So φ fulfils the third point of the witness-definition. And as ei is part of (the
tuple) fi we also have that fn is in dcl(f1 . . . fn−1).

Corollary 6.3.2. Let T be a stable theory with weak elimination of imaginar-
ies and complete (n− 1)-uniqueness over all finite sets. Let A be some finite
set. Then Property B(n) over A fails if and only if there exists a Morley
n-witness over A. Moreover, the statement stays true if we omit the word
finite.

Proof. We have already seen in Lemma 6.1.2 that the existence of an n-
witness over A implies failure of B(n) over A. As a Morley n-witness is an
n-witness we are done with this direction. If on the other hand the theory fails
Property B(n) over A, then by Lemma 4.6.2 we can find a Morley sequence
which fails property B(n) over A. Now we can use Lemma 6.3.1 to deduce
that there is a Morley n-witness over A.
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Corollary 6.3.3. Let T be a stable theory with elimination of imaginaries
and complete n− 1-uniqueness over all finite sets. Let A be some finite set.
Then n-uniqueness over A fails if and only if there exists a Morley n-witness
over A. Moreover, the statement remains valid if we omit the term “finite”.

Proof. We have seen in the proof in Corollary 6.3.2 that there exists a Morley
n-witness over A if and only if Property B(n) over A fails. Now by elimination
of imaginaries and by Lemma 4.4.6 we have that Property B(n) over A fails
if and only if Property BAut(n) over A fails. Now by Corollary 4.5.9 we
have that Property BAut(n) over A fails if and only if n-uniqueness over A
fails.

6.4 Superstable n-witness

Lemma 6.4.1. Let T be a superstable theory (in fact superrosy is sufficient)
and let a1, . . . , an, f1, . . . , fn be an n-witness over A(= acl(A)). Then there
exists some finite A0 ⊂ A such that a1, . . . , an, f1, . . . , fn is an n-witness over
A0.

Proof. First of all since our theory is superstable, there is some finite A0 ⊂ A
such that a1, . . . , an is an independent sequence over A0. We can add (finitely
many) parameters from A to A0 such that points 2 and 3 of the definition of
an n-witness is true for a1, . . . , an, f1, . . . , fn and A0. The independence of
the sequence over this new A0 is provided by base monotonicity. The fourth
point stays also true (as we did not change fi).

Corollary 6.4.2. A superstable theory with total uniqueness over all finite
sets has total uniqueness and amalgamation over all sets.

Proof. If we have total uniqueness over all sets, then total amalgamation over
all sets will be automatic by Lemma 4.2.4. Assume that n-uniqueness fails
over some set A with nminimal. Note that we have n > 2 by Proposition 4.3.1.
Then by Corollary 6.3.3 we know that there exists a Morley n-witness over
A. Hence by Lemma 6.4.1 we know that there exists an n-witness over some
finite A0. Now by Lemma 6.1.2 we know that Property B(n) over A0 fails.
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Hence by Lemma 4.4.6 we know that BAut(n) over A0 fails. This then gives
failure of n-uniqueness over A0 by Proposition 4.4.7. But this is of course
impossible by total uniqueness over all finite sets.

6.5 An open question about witnesses

Question 6.5.1. Is it enough, in order to obtain total uniqueness, to check
uniqueness over finite sets? Or more precisely, is the following true: a theory
that has n-uniqueness over all finite sets, has n-uniqueness over any set.

We have seen that this is true in superstable theories (see Corollary 6.4.2).
But what about strictly stable theories? First we establish a lemma to further
analyse the situation.

Lemma 6.5.2. Let T be stable with elimination of imaginaries. Let A be
an algebraically closed set, φ(x1, . . . , xn) be an L(A)-formula, a1, . . . , an a
Morley sequence over A such that |= φ(a1, . . . , an). Then for any finite subset
B0 ⊂ A, there is some finite subset A0 ⊃ B0 of A and a Morley sequence
b1, . . . bn over acl(A0) such that |= φ(b1, . . . , bn) and b1 ≡aclA0 a1.

Proof. We prove this by induction on number of variables xi. The case
n = 1 is obvious. Now assume we have proved the result for n− 1. So take
a1, . . . , an a Morley sequence over some algebraically closed A such that
|= φ(a1, . . . , an). Also fix some finite B0 ⊂ A. Now as tp(an/A, a1, . . . , an−1)

is non-forking over A, it φ-types are all definable over acleq(A) and therefore
definable over A by elimination of imaginaries (see for example Theorem
8.5.1 of [TZ12]). Hence let ψ(x1, . . . , xn−1) ∈ L(A) be the definition of the
φ(x1, . . . , xn−1;xn)-type of the type tp(an/Aa1 . . . an−1). Moreover, let C0

be set of all parameters of ψ. Now by induction for ψ(x1, . . . , xn−1) there
exists a Morley sequence b1 . . . bn−1 over acl(A0) for some finite A0 ⊃ B0C0

such that tp(a1/acl(A0)) = tp(b1/acl(A0)) and |= ψ(b1, . . . , bn−1) holds.
Now take the unique global non-forking extension p of tp(b1/acl(A0)). If

we show that the global φ(x1, . . . , xn−1;xn)-type qφ of tp(an/A, a1, . . . , an−1)

is contained in p we are finished. This is because by |= ψ(b1, . . . , bn) we have
that φ(b1, . . . , bn−1, xn) ∈ p and hence any bn |= p � acl(A0), b1, . . . , bn−1 will
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give us the desired Morley sequence b1, . . . , bn over acl(A0). To see that this
φ-type is contained in p, it is enough to check that tp(a1/acl(A0)) ∪ qφ is
non-forking over A0. But this is clear since it is definable over acl(A0), hence
non-forking over acl(A0) and therefore non-forking over A0.

Now we try to show that from a witness over an arbitrary set, we can
construct a witness over a finite set. Let (a1, . . . , an, f1, . . . , fn, A) be a Morley
n-witness. Note that by a slight modification of the Morley witness, we may
assume that

(a1, . . . , an−1, fn) ≡A (a1, . . . âi . . . , an, fi)

for any 1 ≤ i ≤ n (see the Definition 3.12 of [GKK15] for that (this is the so
called symmetric witness to the failure of n-uniqueness)). We may By the
definition of the witness we may replace our fi’s by the tuples

(a1, . . . âi . . . , an, fi).

We now fix φ(x1, . . . , xn−1, y) some L(A)-formulas as in Point 3 of the Morley
n-witness such that |= φ(a1, . . . âi . . . , an, fi) holds. Then we require that for
all b1, . . . , bn and 1 ≤ i ≤ n we have

∀y1, . . . ŷi . . . , yn∃=1yi[φ(b1, . . . , bn−1, yn) ∧ . . . ∧ φ(b2, . . . , bn, y1)→

ψ(y1, . . . , yn)],

where ψ(y1, . . . , yn) has the following properties: |= ψ(g1, . . . , gn), for all
elements g1, . . . , gn−1 we have that ψ(g1, . . . , xi, . . . , gn−1) has either exactly
one or no realisations. Now apply the previous lemma to the Morley se-
quence a1, . . . , an over acl(A). Let B0 be the parameters appearing in the
formula φ. Hence we find b1, . . . , bn−1 a Morley sequence over acl(A0) such
that |= ∃yφ(b1, . . . , bn−1, y) where A0 ⊃ B0 is a finite subset of A. Now ex-
tend the Morley sequence b1, . . . , bn−1 by bn. Now it is left to check that
b1, . . . , bn, g1, . . . , gn, A0 for |= φ(b1, . . . b̂i, . . . , bn, gi) is a Morley witness. Ev-
erything to be checked is quite straightforward except for the following
remaining question: Does tp(gn/acl(b1A0) . . . acl(bn−1A0)) have more than
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one realisation (at least after adding a finite number of parameters to A0)? I
was not able to answer this question.
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Chapter 7

An Algebraic Cover with Total
Amalgamation over ∅

We will now eliminate what Hrushovski named generalised imaginaries in
his paper [Hru12]. In our case we will construct a finite cover such that an
n-witness will lose property 2 of its definition in this cover. This means it
loses its property which corresponds to the failure of Property B(n). For
any witness we will take every such cover and add them all to our theory.
We repeat this ω-many times in order to get an algebraic cover which does
have total amalgamation and total uniqueness over ∅. Although the result is
already known, for that see 4.3 of [Hru12] and the proof of 4.11 of [Hru12]
done in [Eva09], the method there used differs from the proof in here. The
method used, does establish that certain finite, internal covers split in order
to show total amalgamation and total uniqueness over ∅. In [Hru12] only
canonical-2-amalgamation (2-uniqueness) over ∅ was assumed. Here we will
assume that the theory is stable, i.e. has 2-uniqueness over any (algebraically
closed) set (see Proposition 4.3.1). However I do not see any obstruction as
to why we could not do this kind of construction in any arbitrary first-order
theory.

Note: All mentioned in the next two sections is either directly taken from
chapter 3 of D. Evans’ [Eva09] or is a slight modification of it.
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7.1 Construction of a finite cover

The following construction is taken from the proof of ([Hru12], 4.3).

We work in a monster model of a complete stable L-theory T . For our
purposes we can assume that L is relational and T has quantifier elimination.
Suppose (θi(x, yi, zi) : 1 ≤ i ≤ m) are L-formulae with the property that
θi(a, b, zi) is algebraic with the same amount of realisations for all a, b. If
yi, zi of θi(x, yi, zi) and yj , zj of θj(x, yj , zj) are of the same sort we replace
these formulae by θ′ = θi ∨ θj . (Note that if θ0(x, y, z) is any L-formula
and a0, b0 are such that θ0(a0, b0, z) is algebraic with m realisations, realised
by c0, then there is an L-formula θ(x, y, z) such that ∀x, y∃=mzθ(x, y, z),
|= θ(a0, b0, c0) and |= θ(x, y, z)→ θ0(x, y, z).)

Suppose p(x) is a complete stationary type over ∅. Fix θi (for 1 ≤ i ≤ m)

as above. LetM |= T andM∗ be a sufficiently saturated elementary extension
of M (as we work in a stable theory we may assume that both are set-size
monster models). Let a∗ ∈M∗ realise p|M , the definable extension of p to
M .

Define

Ci = Θ(a∗,M) = {(b, c∗) | c∗ ∈M∗, b ∈M and M∗ |= θi(a
∗, b, c∗)}.

Note that by the algebraicity, this only depends on the choice of a∗ and not
on the choice of M∗. We make the disjoint union M ∪

⋃m
i=1Ci ∪ {a∗} into a

structure M+ = C(M,a∗) by giving it the induced structure from (M∗, a∗).
We define T+ to be the following theory Th(M+).

More formally we let L+ ⊃ L be a language with new sorts NCi for i with
1 ≤ i ≤ m, function symbols πi from NCi to some L-sorts, a new constant
symbol ∗, and for each L-formula R a new relation symbol NR. To make
M+ into an L+-structure we give M its L-structure, take NCi(M+) = Ci,
define πi((b, c∗)) = b, interpret the new constant symbol as a∗, and for a new
n-ary relation symbol NR and e1, . . . , en ∈M+ we define that the following
holds;

M+ |= NR(e1, . . . , en)⇔M∗ |= R(e1, . . . , en).
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We do think about NR as a union of relation
⋃
S∈S NRψ,S . Where S is

constructed inductively as follows. S0 contains the sort of R say S1, . . . , Sn.
If we have (S′1, . . . , S

′
n) ∈ Si, and S′j = Sj has the same sort as yi, zi (of θi)

then replace Sj by NCj and add this new tuple to Si. We then repeat this
process until S does not grow anymore. Note that this S will be finite.

It is clear that if a∗, a∗∗ |= p|M then C(M,a∗) and C(M,a∗∗) are iso-
morphic over M (assume M∗ is sufficiently homogeneous, and use an auto-
morphism over M which takes a∗ to a∗∗). By construction, the map π is
finite-to-one.

Lemma 7.1.1. With the above notation, T+ is a finite cover of T .

Proof. We check that the equivalent conditions of 3.1.11 hold. First note
that for any saturated model M+ of T+, the reduct of M+ to its L-sorts is a
saturated model of T . The functions πi are finite-to-one and have the new
sorts NCi as its preimage.

Now fix a saturated model M+ of T+, name its L-part M . It is left to
prove that every L-automorphism of M extends to an L+-automorphism of
M+. For that we view M+ as an L-structure M̃+; first we have deal with
the new constant and sort a∗ and NCi. We do think about them as if they
were part of the old sorts (so they are of the same sorts as x,yi and zi of
θi(x, yi, zi) are). We interpret each L-formula ψ by interpreting it as the
corresponding

⋃
S NRψ,S .

By definition of T+ the quantifier-free diagram of M̃+ is consistent with
T , and therefore we can consider M̃+ as a substructure of the monster model
of T . Furthermore, we have that aM̃+ ≡M a∗ in T . Now because of that we
can extend any automorphism of M to one of the monster model of T and fix
aM̃+ . This stabilises the set of M+ and further preserves the L+-structure.
Hence it can be considered an L+-automorphism of M+.

7.2 The finite cover eliminates a witness

Definition 7.2.1. If T , p and θi for 1 ≤ i ≤ m are as above, we denote by
Tp,θi:1≤i≤m the L+-theory of C(M,a∗), where M is an ω-saturated model of
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T and a∗ |= p|M . We will also refer to this as a definable finite cover of the
theory T .

In the last section we proved that we can construct a certain finite cover.
The following proposition combines the above construction and the n-witness
of failure of amalgamation. Hence here our proof starts to differ from [Hru12]
and [Eva09].

Proposition 7.2.2. Let T (= T eq) be a stable theory. Let A be some alge-
braically closed set, let a1, . . . , an be an independent sequence over A and let
d be any element of the set

(
acl(a1 . . . an−1A) ∩ dcl

(n−1⋃
j=1

acl(a1 . . . âj . . . anA)
))

− dcl
(n−1⋃
j=1

acl(a1 . . . âj . . . an−1)
)
.

Then there exists a finite cover (TA)+ of TA such that

d ∈ dcl(TA)
+(n−1⋃

j=1

acl(TA)
+

(a1 . . . âj . . . an−1)
)
.

By dcl(TA)
+

and acl(TA)
+

we mean the evaluation of acl and dcl in the theory
(TA)+.

Proof. We will work in T eq
A . By Lemma 6.1.2 we can fix an n-witness

a1, . . . , an, f1, . . . , fn over ∅ with d = fn. Let φi(x1, . . . x̂i . . . , xn−1; zi) for
all i with 1 ≤ i ≤ n− 1 be the formulae satisfying condition 3 of the witness
definition. Now extend T to the finite cover Tp,φi:1≤i≤n−1 as defined in 7.2.1
with p = tp(an). We may assume that an = a∗ by Remark 6.2.3, where a∗ is
the new generic constant of the finite cover.

Then because T |= φi(a1, . . . âi . . . , an; fi), we have that fi is in the finite
set π−1(a1, . . . âi . . . , an−1). This then gives that

fi ∈ aclM
+

(a1, . . . âi . . . , an−1, A).
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Now there is a formula ψ(y1, . . . , yn−1; yn) such that T |= ψ(f1, . . . , fn−1; fn)

and T |= ∃=1yψ(f1, . . . , fn−1; y). Note NRφ,NC1...NCn−1,S′ denotes the new
relation symbol (coming from φ) of sorts (NC1, . . . , NCn−1, S

′). Hence if S′

is the sort of fn, we have that

NRφ,NC1...NCn−1,S′(f1, . . . , fn−1; y)

isolates fn and therefore shows that fn ∈ dclT
+

(fj : 1 ≤ j ≤ n− 1). This
shows that

d ∈ dclM
+(n−1⋃

i=1

aclM
+

(a1 . . . âi . . . an−1)
)
.

Hence Tp,φi:1≤i≤n−1 is the finite cover we are looking for.

7.3 Eliminate all witnesses

The next theorem will be proved by adding every possible finite cover (as
described above in this chapter) and then repeat this process ω-many times.

Theorem 7.3.1. Let T be stable. There exists an algebraic cover T ∗ of
T eq
acleq(∅) which has total amalgamation and uniqueness over ∅.

Proof. First a brief description of the proof. Add any possible finite cover
constructed in the first section of this chapter to our theory. Then use
the Proposition 7.2.2 to note that B(n) over ∅ is true for any independent
sequence of old sort. Then repeat this process ω-many times to eliminate
any malicious behaviour (in terms of failure of B(n)) in any of these new
algebraic covers.

We start the real proof. We may assume that T = T eq
acleq(∅). For that first

note that we only need to prove total uniqueness over ∅ by Proposition 4.2.3.
Denote the language of T by L0. Fix a set-size monster-model M of T . We
will construct a chain (Mi : i ∈ ω) of algebraic covers of M with language
Li such that Mi = (M eq

i )acleq(∅), M0 = M and Mi is a monster model. Note
that it will be enough to prove that Mi is an algebraic cover of Mi−1 as then
by induction it follows that Mi is an algebraic cover of M . Note that the
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requirement Mi = (M eq
i )acleq(∅) can be made true as it holds for M0 and we

can just go over to (M eq
i )acleq(∅) (and preserve that it is an algebraic cover)

inductively by Lemma 3.3.1 and Lemma 3.3.3.
We construct all finite covers (M̂i)p,φi:1≤i≤m for some type p in SMi(∅)

and φi(x, y, z) ∈ Li some formulae such that there is a ki ∈ N such that
for any b, a ∈Mi we have M ′i |= ∃=kφ(b, a, z). Then join all these covers
(Mi)p,φi:1≤i≤m together to a new structure Mi+1, by making the languages
disjoint over L′i, i.e. use

∐
M of Definition 3.1.12. Let Ti+1 be the theory of

Mi+1. This structure is a monster model as it is saturated by Lemma 3.4.1.
By Proposition 7.2.2 we have that for any Mi the following holds (*): for any
independent sequence ai : 1 ≤ i ≤ n in Mi (which is from SM ′i (∅)) and any d
in the set

(
aclMi(a1 . . . an−1) ∩ dclMi

(n−1⋃
j=1

aclMi(a1 . . . âj . . . an)
))

− dclMi
(n−1⋃
j=1

aclMi(a1 . . . âj . . . an−1)
)
,

we have

d ∈ dclMi+1
(n−1⋃
j=1

aclMi+1(a1 . . . âj . . . an−1)
)
.

Take M∗ =
⋃
i∈NMi and T ∗ its theory. M∗ is an algebraic cover of M . It

has elimination of imaginaries (in fact M∗ = (M∗)eq), as any imaginary of
M∗ is already an imaginary of some Mi and hence an element of Mi+1. We
claim that T ∗ has complete amalgamation for every n. It will be enough to
prove it for the model M∗ since it is saturated by Lemma 3.4.1.

By Corollary 4.5.7 it is left to check that Property B(n) over ∅ holds for
every n to finish the proof. So take d in

(
aclM

∗
(a1 . . . an−1) ∩ dclM

∗(n−1⋃
j=1

aclM
∗
(a1 . . . âj . . . an)

))
for a1, . . . , an be some independent sequence in M∗. Now we have that these
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a1, . . . , an are part of some Mj . We can then find some Mi (with i ≥ j) such
that d is in(

aclMi(a1 . . . an−1) ∩ dclMi
(⋃
j 6=n

aclMi(a1 . . . âj . . . an)
))

but then as already noted we have

d ∈ dclMi+1
(n−1⋃
j=1

aclMi+1(a1 . . . âj . . . an−1)
)
.

Corollary 7.3.2. Let T be a stable theory with a separable forking. Then
T eq
acleq(∅) has an algebraic cover which has total amalgamation and uniqueness

over every set.

Proof. Use Theorem 7.3.1 and Theorem 5.1.10 to conclude that the theory
has an algebraic cover with total uniqueness over every set. Now total
amalgamation follows from Proposition 4.2.3.

Remark 7.3.3. Let T be rosy with 2-uniqueness over the empty set. Then
the above construction should work as well in there. If this theory does not
have 2-uniqueness we still should be able to use it in order to construct an
algebraic cover with Property B(n) over the empty set.

134



Chapter 8

ω-categorical Algebraic Cover
with Total Amalgamation

In the last chapter we constructed an algebraic cover with total amalgamation
(and uniqueness) over ∅. Denote this cover as T geq as for generalised imagi-
naries sorts (see [Hru12]). We have seen in Chapter 6 that this construction
does not necessarily guarantee that total amalgamation (and uniqueness) over
arbitrary set holds. In fact, by looking at the cover of (Z/4Z)ω, i.e. Exam-
ple 5.6, we can see that this is not true. The problem here is that realisations
of the global non-forking (over ∅) types will not produce an element a with
2a = c with c non generic and failure of 3-uniqueness persists. But at least
2-uniqueness of stable theories suggests that this should be true: It is easy to
see that (T eq)A is essentially the same as (TA)eq. So the natural question is if
we can, by altering the construction of the algebraic cover in the last chapter,
have some T geq such that (T geq)A and (TA)geq are the same. In this chapter
we will produce an algebraic cover of an ω-categorical stable theory such that
(T geq)A and (TA)geq have the same higher amalgamation properties. To see
what we need to do, we take a look at Proposition 7.2.2. In that Proposition
we can see, that the construction of our finite cover was dependent on the
type p0 and the formulae φi. We will get rid of the dependency on p0 and
make our construction only dependent on the formula φ.
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8.1 Construction of a cover

The construction in this section is very similar to that of the last chapter.

We fix a stable L-theory T (= T eq). We further fix a saturated M |= T

of size |M | ≥ |T |+. This is in fact a set size monster model. Further, fix a
formula φ(x, y, z) such that for some fixed m ∈ N we have that for any b, c
the formula φ(b, c, z) has either m realisations or is not satisfiable at all. For
any b which has the same sort as the variable x in φ, we define

Cb = {q ∈ Sy(M) | ∃=mzφ(b, y, z) ∈ q, q non-forking over b}.

Further let
CM =

⋃̇
b∈M

Cb.

Now fix one realisation ap for each p ∈ CM such that they form an independent
set over M . We further fix the set A consisting of the pairs (b, ap) where ap
is the generic (over M) element and b the corresponding parameter where
the type p came from. Then we define

CA = {(b, a, c) | (b, a) ∈ A, c |= φ(b, a, z)}.

We are ready to define an extension M+ of M . Extend L to L+ with
a new sort NA, a function symbol π from NA to an L-sort, a new sort
NC and a function symbol ρ from NC to NA. Further for every L-formula
ψ(x1, . . . , xn) and a tuple of sorts S ∈ Sψ (we define Sψ in the next paragraph)
a new relation symbol NRψ,S .

We define Sψ inductively as follows. Let the variables of ψ be S1, . . . , Sn.
We set Sψ = {(S1, . . . , Sn)} in the beginning. If Si is of the same sort as x, y
(or x, y, z) of φ(x, y, z), then Si will be replaced by the new sort NA (or NC).
Add this new tuple to S. Repeat until Sψ does not grow any more.

Make M+ a L+ model with M its L-part by setting NA(M+) = A,
π(b, a) = b, NC(M+) = CA, ρ(b, a, c) = (b, a), and the NRψ,S on M+ will
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be interpreted as ψ would be in the monster model of T , i.e. for

e1, . . . , en ∈ (M+)
n ∩ (S1, . . . , Sn)

let M+ |= NRψ,S(e1, . . . , en) if and only if C |= ψ(e1, . . . , en) where C is the
monster of T . We name the corresponding theory T+.

If we are given a model M and the set A, then C is uniquely determined
by them. We write M+ = C(M,A), if it is constructed out of M and A.
Further the interesting part of our construction depends only on the formula
φ(x, y, z). To indicate that the construction was done using φ, we denote T+

by T+
φ and M+ as M+

φ .
Let A,M be fixed set-wise by some automorphism f of the monster of T .

Then its values on A are determined by the values of the automorphism on
M . Obviously this will also fix the set C set-wise.

Lemma 8.1.1. We can extend every automorphism f0 ∈ Aut(M), to some
automorphism of the monster of T which fixes A set-wise.

Proof. We take some automorphism f0 of M . We enumerate the set A.
Without loss let (bα, aα) with α < κ) be the enumeration. We inductively
construct elementary maps fα with α ≤ κ (starting with f0) such that the
domain of fα is M ∪ {aβ | β < α} and the image of fα is part of M ∪A.
Moreover we require that for any ordinals α′ < α ≤ kappa we have

fα �M ∪ {aβ | β < α′} = fα′ .

So let all fβ such that β < α be constructed, where α is some ordi-
nal less or equal to κ. If α is a limit ordinal, then set fα =

⋃
β<α fβ. So

take α with α = β + 1. We can extend fβ to some automorphism of the
monster model say f . By invariance under automorphisms now we have
that f(A) is also an independent set over M . Let f((bβ, aβ)) = (b′, a′).
By invariance under automorphisms aβ |̂ bβM implies a′ |̂ b′M . Moreover
we have aβ |̂ M (aγ : γ < β) and hence f(aβ) |̂ Mf(aγ : γ < β) by invari-
ance under automorphism. Hence by transitivity of forking there is some
p ∈ S(M ∪ fβ({aγ | γ < β})) which is non forking over over the set b′ and
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contains ∃zφ(b′, y, z) with a′ |= p. Hence by construction of A there is some
(b′, a′′) ∈ A with (b′, a′′) ≡M∪fβ({aγ |γ<β}) (b′, a′). This means that there is an
automorphism f ′α mapping (b′, a′) to (b′, a′′) and fixing

M ∪ fβ({aγ | γ < β}).

Now we set fα to be the restriction of the automorphism f ◦ f ′α to

M ∪ {aβ | β < α}.

8.2 Verifying the finiteness of the cover

In general stable theories it will not be true that this construction is a finite
cover. The problem is that the set Cb will not be finite and therefore π will
not be a finite-to-one function. So to analyse the situation in the general
context could be to leave the first order context. Another solution would be
to work with this non-saturated structure. If we want to have a finite cover
in general, one has to make a choice in Cb. Then of course we need some
additional assumptions to have something similar to Lemma 8.1.1. Maybe
additional symmetry assumptions of the formula φ (coming from a more
sophisticated Morley witness) could be the solution. But this is all left to
future work, and instead we make additional assumptions:

From now on we assume that T is countable, ω-categorical and
stable for the rest of this chapter.

Hence by Proposition 2.7.9 we have that Cb is finite for every b. The
reader may keep in mind that this is the only time where ω-categoricity is
used, hence we may take any theory such that all Cb are (boundedly) finite.
This then gives us that π and therefore π ◦ ρ are finite-to-one maps.

Remark 8.2.1. Because the maps are bounded finite-to-one the following
trivially holds in T+: For any element (b, a, c) in the NC-sort, we have
(b, a, c) ∈ aclT

+
(π ◦ ρ((b, a, c))).

Lemma 8.2.2. T+ is a finite cover of T .
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Proof. We do similar things as in Lemma 7.1.1. We check that the equivalent
conditions of Lemma 3.1.11 hold. First note that for any saturated model
M+ of T+, the reduct of M+ to its L-sorts is a saturated model of T . The
function π and ρ ◦ π are both finite-to-one and have the new sorts as their
preimage. Now fix a saturated modelM+ of T+, name its L-partM . It is left
to prove that every L-automorphism of M extends to an L+-automorphism
of M+.

For that we view M+ = C(M,A) as an L-structure M̃+: first we view
the new sorts NA and NC, as part of the old sorts, i.e. the sort of x, y and
the sort of x, y, z of φ(x, y, z). We interpret each L-formula ψ by interpreting
as the corresponding

⋃
S NRψ,S . By definition of T+ the quantifier-free

diagram of M̃+ is consistent with T , and therefore we can consider M̃+ as a
substructure of the monster of T . Furthermore, we have that AM̃+ ≡M A in
T . Now because of that we can extend any automorphism of M to one of
the monster of T and fix AM̃+ point-wise (see Lemma 8.1.1). This stabilises
the set of M+ then and further preserves the L+-structure and is hence an
automorphism of M+.

8.3 The finite cover eliminates witnesses

In similar fashion as in Proposition 7.2.2 we will combine now the finite cover
above and the Morley n-witness.

Theorem 8.3.1. Let T be a stable and ω-categorical L-theory. Let b be some
finite tuple, let (ai : i ≤ n) be an independent sequence of p ∈ S(b) and let
the element d be in the following set,

(
acl(a1 . . . an−1b) ∩ dcl

(n−1⋃
j=1

acl(a1 . . . âj . . . anb)
))

− dcl
(n−1⋃
j=1

acl(a1 . . . âj . . . an−1b)
)
.
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Then we can find a finite cover T+ of T such that

d ∈ dclT
+(n−1⋃

j=1

aclT
+

(a1 . . . âj . . . an−1b)
)
.

Proof. Use Lemma 6.3.1 to find a Morley witness a1, . . . , an, f1, . . . , fn over
b such that d = fn. For our purposes we may assume that an is generic
over M , i.e. an realises some non-forking extension of p with parameter set
M . For the φ(x1, . . . , xn−2;xn−1, y1; y), which are given by condition 3 of
the Morley witness, construct a finite cover C(M,A) of a model M which
contains a1, . . . , an−1. We can construct the cover such that (b, an) ∈ A as
we already assumed that an is generic.

Therefore we have fi ∈ aclT
+

(a1, . . . âi . . . , an−1, b): to see this let S be
the old sort of ai. Then as NRφ,S...S,NA,NC is interpreted as φ in T , we
have that (a1, . . . âi . . . , an−1; an, b; fi) |= NRφ,S...S,NA,NC and also that the
following formula is algebraic

NRφ,S...S,NA,NC(a1, . . . âi . . . , an−1; an, b; y).

Now there is a formula ψ(y1, . . . , yn−1; yn) in L such that we have

T |= ψ(f1, . . . , fn−1; fn) and T |= ∃=1yψ(f1, . . . , fn−1; y).

Hence if S′ is the sort of fn we have that

NCψ,NC...NC,S′(f1, . . . , fn−1; y)

showing that fn ∈ dclT
+

(fj : j 6= n). We have already shown that

fi ∈ aclT
+

(a1 . . . âi . . . an−1b).

Hence this gives use what we required, namely that

fn ∈ dclT
+(⋃

j

aclT
+

(a1 . . . âj . . . an−1b)
)
.
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8.4 Eliminate all witnesses

Similar to Theorem 7.3.1 the next theorem will be proved by adding every
possible finite cover (of the covers described above in this chapter) and then
iterating this process ω-many times.

Theorem 8.4.1. Let T be a stable and ω-categorical theory. There exists an
algebraic cover T ∗ which has total amalgamation and total uniqueness over
all finite sets.

Proof. Denote the language of T (= T eq) by L. Fix a set-size monster-model
M of T . We will construct an increasing chain (in terms of “⊂”) of Li-
structures (Mi : i ∈ ω) of algebraic covers (with countable language) with
M = M0. We may assume that Mi = M eq

i by Lemma 3.3.1.
So let Mi be constructed. Construct all algebraic covers (M̂i)φ for all

formulas φ(x, y, z) ∈ Li for which there exists some k ∈ N such that for any
b, a ∈Mi we have

Mi |= ∃zφ(b, a, z)→ ∃=kzφ(b, a, z).

Then join all these covers (M̂i)φ together to a new structureMi+1, by making
the languages disjoint over L, i.e. use the

∐
M operator of Definition 3.1.12.

Let Ti+1 be the theory of Mi+1.
By Proposition 8.2.2 it is clear that for any Mi the following holds (*):

for any finite set of parameters B, for any independent sequence (ai : i ≤ n)

of realisations of a type p ∈ S(B) and any d in the set

(
aclMi(a1 . . . an−1B) ∩ dclMi

(n−1⋃
j=1

aclMi(a1 . . . âj . . . anB)
))

− dclMi(

n−1⋃
j=1

aclMi(a1 . . . âj . . . an−1B)),

we have that this d is in the following set

dclMi+1
(n−1⋃
j=1

aclMi+1(a1 . . . âj . . . an−1B)
)
.
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We defineM∗ =
⋃
i∈NMi and let T ∗ be its theory. ThisM∗ is an algebraic

cover of M . Note that it has already elimination of imaginaries, as any
imaginary of M∗ is already an imaginary of some Mi(= M eq

i ). We claim that
T ∗ has total amalgamation and total uniqueness over all finite set. It will be
enough to prove it for the model M∗ since it is saturated by Lemma 3.4.1.

To finish the proof note that by Corollary 4.6.3 it is enough to check that
for every Morley sequence a1, . . . , an over any finite set B Property Bn holds.
So let a1, . . . , an be some independent sequence (over B) in M∗ such that
the following set is non-empty;

aclM
∗
(a1 . . . an−1B) ∩ dclM

∗(n−1⋃
j=1

aclM
∗
(a1 . . . âj . . . anB)

)
.

We fix some element d of this set. Now we have that these a1 . . . an, B are
part of some Mj . We can then find some Mi (with i ≥ j) such that d is in

aclMi(a1 . . . an−1B) ∩ dclMi
(n−1⋃
j=1

aclMi(a1 . . . âj . . . anB)
)
.

But then as already noted in Theorem 8.3.1 we have

d ∈ dclMi+1
(n−1⋃
j=1

aclMi+1(a1 . . . âj . . . an−1B)
)
.

Corollary 8.4.2. Let T be a superstable (in fact ω-stable) and ω-categorical
theory. There exists an algebraic cover T ∗ which has total amalgamation over
all sets and total uniqueness over all sets.

Proof. Take the algebraic cover of Theorem 8.4.1 to get total uniqueness over
all finite sets. Then apply Corollary 6.4.2 to finish the proof.

Of course we should ask whether the last result extends to general super-
stable or even strictly stable theories.

Question 8.4.3. Does every (super)stable theory have an algebraic cover with
total amalgamation and total uniqueness over all (finite) sets?
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Outside the stable context, formulating a good question becomes more
difficult. We remember for example Corollary 5.1.2. From there we see that
we cannot find a non-stable theory, which has a separable independence
notion and 2-uniqueness over the empty set. This is due to the fact that
an algebraic cover is stable if and only if the old theory is stable. Hence in
this situation in which we lack 2-uniqueness, we cannot hope to apply our
techniques in order to construct an algebraic cover with 3-uniqueness, at
least, not without seriously modifying our construction.

We could still ask positively;

Question 8.4.4. For any theory T with k-uniqueness over the empty set, does
there exist an algebraic cover of T such that it has n-uniqueness over the
empty set for all n ≥ k?

We could ask this in terms k-uniqueness over parameters.

Question 8.4.5. For any theory T with k-uniqueness over some set A, does
there exist an algebraic cover of T such that it has n-uniqueness over A for
all n ≥ k?

Maybe it is not true for the very first of such k, but instead from some
point on. Also we could also try to answer these questions above, instead
of the case of n-uniqueness, for the Property B(n). See also Remark 7.3.3
for this. On the other hand if one is a pessimist by nature, then one would
probably ask for a malicious structure.

Question 8.4.6. Does there exist a structure which fails k-uniqueness (over
the empty set) and such that any algebraic cover of this structure fails
k-uniqueness as well?

Or an infinite version of this question:

Question 8.4.7. Does there exist some structure which fails l-uniqueness (over
empty set) for infinite many l’s and such that any algebraic cover of it still
fails l-uniqueness (over empty set) infinitely many times?

And then finally something more similar to Question 5.3.2.

Question 8.4.8. Does there exist some structure which has k-uniqueness (over
empty set) for infinite many k’s and also fails l-uniqueness (over empty set) for
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infinite many l’s and such that any algebraic cover of it still fails l-uniqueness
(over empty set) infinitely many times?
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ñ, 53

old sorts, 30
only dependent realisations in x, 106
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