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Abstract:  
 
The type 2 immune response controls helminth infection and maintains tissue homeostasis but 

can lead to allergy and fibrosis if not adequately regulated. We have discovered local tissue-

specific amplifiers of type-2 mediated-macrophage activation. In the lung, surfactant protein A 

(SP-A) enhanced IL-4-dependent macrophage proliferation and activation, accelerating parasite 

clearance and reducing pulmonary injury following infection with a lung-migrating helminth. In 

the peritoneal cavity and liver, C1q enhancement of type 2 macrophage activation was required 

for liver repair following bacterial infection, but resulted in fibrosis following peritoneal dialysis. 

IL-4 drives production of these structurally related defense collagens, SP-A and C1q, and the 

expression of their receptor, myosin 18A. These findings reveal the existence within different 

tissues of an amplification system needed for local type 2 responses. 

 

One Sentence Summary: Specific signals within the tissues are required to enhance IL-4Rα 
mediated macrophage activation and proliferation during infection and injury.  

 
Main Text:  

 
The type 2 cytokines IL-4 and IL-13, which signal through IL-4Rα, trigger a specialized 

macrophage phenotype (M(IL-4)) (1) that promotes control of helminth infection (2) and tissue 

repair (3, 4). M(IL-4)s also contribute to pathology associated with type 2 immunity, including 

allergy, asthma, and fibrosis (4).  However, little is known about tissue-specific factors that 

might promote both beneficial and detrimental actions of M(IL-4)s.  

 

In the lung, alveolar macrophages (aMφs), together with the respiratory epithelium, are covered 

by pulmonary surfactant, a lipid-protein network in which surfactant protein A (SP-A) 

constitutes the major protein component (5). SP-A is a versatile recognition protein (5) that is a 

member of a group of secreted soluble defense collagens that include the first component of the 

complement system (C1q), collectins (e.g., SP-A, SP-D, mannan-binding lectin), ficolins, and 
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adiponectin (6).  Because of its abundance and known role in immune defense (5), we asked 

whether SP-A was involved in the local regulation of M(IL-4) effector function in the lung. 

 
M(IL-4)s have a critical role in lung repair following infection with the lung-migrating nematode 

Nippostrongylus brasiliensis (3).  We therefore infected WT, IL-4Rα-deficient and SP-A-

deficient mice with N. brasiliensis infective larvae. Larvae migrate to the lung where they mature 

for ∼2 days, and reach the small intestine by 3 days post infection (p.i.).  The type 2 response 

peaks 6-7 days after inoculation. We observed an up-regulation of SP-A protein (Fig. 1A) and 

mRNA (Fig. S1A) in lungs of N. brasiliensis infected C57BL/6 mice at 6 days p.i, which was 

dependent on IL-4Rα.  Consistent with a role for SP-A during type 2 immunity to nematode 

infection, SP-A-deficient mice had greater adult worm burdens (Fig. 1B) and egg output (Fig. 

S1B), and significantly impaired lung repair processes (Fig. 1C, D) than wild type (WT) mice.  

The failure to heal was associated with a failure to up-regulate tissue-repair related gene Col1a1 

(Collagen, type I, alpha 1) (Fig. 1E) and increased expression of Mmp12, an extracellular matrix-

degrading enzyme (Fig. 1F).  Greater lung damage in SP-A-deficient mice was indicated by 

increased numbers of red blood cells and neutrophils in bronchoalveolar lavage (BAL) at 6 days 

p.i (Fig. 1G, H).  The absence of SP-A resulted in reduced expression of the M(IL-4) proteins 

RELMα (Fig. 1I), Ym1, and arginase (Fig. S1C,D) in aMφs.  Secretion of RELMα and Ym1 

protein into the alveolar fluid (Fig. S1E) was also reduced in SP-A-deficient mice compared 

with WT mice. 

 

Consistent with the known ability of IL-4 to cause macrophage proliferation during helminth 

infection (7), aMφs from WT mice exhibited significant proliferation (Fig. 1J, K) and increased 

aMφs numbers (Fig. S1F) 6 days following N. brasiliensis infection.  However, SP-A-deficient 

mice failed to exhibit significantly enhanced aMφ proliferation (Fig. 1J, K) resulting in fewer 

total macrophage numbers relative to WT mice (Fig. S1F).  There was no evidence that 

differences were caused by a failure of SP-A-deficient mice to mount appropriate ILC2, TH2 

(Fig. S1G & H) or local type 2 cytokine responses (Fig. S1I).  Importantly, aMφs from 

uninfected SP-A-deficient mice were normal in number, phenotype and ability to respond to IL-4 

ex vivo (Fig. S2A-D).  
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To ascertain if defects in SP-A-deficient mice were caused by defective IL-4Rα responsiveness 

in vivo, WT and SP-A-deficient mice were injected intra-peritoneally (ip) with IL-4 complex 

(IL-4c). IL-4c delivery increased the amount of SP-A protein in BAL (Fig. 1L) in WT mice and 

induced M(IL-4) markers and proliferation in aMφs isolated from BAL (Fig. 1M, N and S3A-C) 

of WT but not SP-A-deficient mice, reflected by diminished secretion of RELMα and Ym1 to 

the alveolar fluid in SP-A-deficient mice (Fig. S3D). IL-4c delivery decreased IL-4Rα 

expression in both WT and SP-A-deficient aMφs (Fig. S3E). 

Enhancement of M(IL-4)s may underlie the previously reported contribution of SP-A to tissue 

integrity in other models of acute lung injury (8, 9).  The pro-type 2 effects we report here 

contrast with reports that associate SP-A with protection in asthma (10).  However, in addition to 

promoting M(IL-4) and proliferation of macrophages, the anti-inflammatory properties of SP-A 

(5, 6, 8, 9, 11) may suppress the strong inflammatory responses that are responsible for more 

severe asthma.  Our data are supported by the finding that SP-D-deficient mice, which lack SP-A 

(12), also have reduced M(IL-4) responsiveness (13).  

To determine whether SP-A acts directly on aMφs, we first tested the ability of adherence-

purified macrophages from the alveolar and peritoneal spaces to proliferate in vitro in response 

to 1 µg/ml of IL-4; aMφ exhibited significant proliferation, but peritoneal macrophages (pMφ) 

failed to proliferate despite expressing M(IL-4) activation markers (Fig. S4A).  We then tested 

the ability of SP-A to enhance IL-4 treatment and included C1q as a control because it is a 

defense collagen structurally homologous to SP-A (5, 6).  We found that SP-A, but not C1q, 

significantly boosted IL-4-mediated aMφ proliferation and M(IL-4) markers (Fig. 2A).  IL-4Rα-

deficient aMφ showed no proliferation or activation when stimulated with IL-4 (1 µg/ml) in the 

absence or presence of SP-A (Fig. S4B).  Notably, SP-A significantly enhanced proliferation and 

activation induced by IL-4 in both human (Fig. S4C) and rat aMφs (Fig. S4D).  

 

To our surprise C1q, but not SP-A, significantly increased IL-4-mediated proliferation and M(IL-

4) marker expression in pMφ (Fig. 2A).  To verify these findings in vivo, IL-4c was delivered to 

C1qa-deficient mice.  Consistent with the in vitro studies, mice lacking C1q exhibited reduced 

IL-4-dependent activation and proliferation in pMφ but not aMφ (Fig. 2B).  Similar to SP-A in 
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the lung (Fig. 1L), C1q levels increased in the peritoneal fluid after IL-4c delivery (Fig. S5A), 

indicating that IL-4 drives production of a local signal to amplify its effect on tissue 

macrophages.  Importantly, the pMφ phenotype, number, and ability to respond to IL-4 ex vivo 

are normal in C1qa-deficient mice (Fig. S5 B-F).  Thus, SP-A and C1q were induced by IL-4 in 

the lung and peritoneal cavity, respectively, where they acted to enhance proliferation and M(IL-

4) activation in a tissue-specific manner.   

 

To determine which receptor mediates SP-A effects on IL-4-stimulated aMφs, we inhibited 

known receptors for SP-A (5).  We observed that the blockade of Myosin18A (Myo18A, aka SP-

R210), but not signal inhibitory regulatory protein α (SIRPα) or calreticulin (aka cC1qR), 

abrogated SP-A-mediated enhancement of IL-4-induced arginase activity in rat aMφs (Fig. S6A).  

Blockade or RNA silencing of Myo18A consistently abolished SP-A-mediated enhancement of 

IL-4-induced proliferation and activation of mouse (Fig. 2C), human (Fig. S6B) and rat (Fig. 

S6C) aMφs.  Myo18A is an unconventional myosin that does not operate as a traditional 

molecular motor, having both intracellular and cell-surface locations (14), and was recently 

defined as CD245 (15).  Immune activation results in Myo18A localization on the cell surface, 

where it binds to the collagen-like domain of SP-A (6, 16) and we confirmed that an intact 

collagen-like domain is required to enhance IL-4-mediated type 2 responses (Fig. S6D). 

 

Because C1q is structurally homologous to SP-A in its supra-trimeric assembly and collagen tail 

(5, 6), we addressed whether Myo18A was also responsible for the actions of C1q.  Indeed, 

blockade of Myo18A prevented C1q enhancement of IL-4 driven activation and proliferation of 

pMφ (Fig. 2C).  In vitro, IL-4 promoted Myo18A localization on the cell surface of both aMφ 

and pMφ (Fig. S7A, B), which was maximal 24 hours after stimulation. Cell surface expression 

of Myo18A was similarly observed in vivo following IL-4c delivery (Fig. S7 C, D), independent 

of the presence or absence of SP-A or C1q.  We confirmed the role of Myo18A in vivo by 

intranasal or intraperitoneal delivery of anti-Myo18A antibody.  Receptor blockade significantly 

reduced IL-4-induced proliferation and M(IL-4) activation of aMφ and pMφ (Fig. 2D), as well as 

secretion of RELMα and Ym1 to the alveolar and peritoneal fluid (Fig. S7E, F).  Thus, Myo18A 

receptor blockade in the lung or peritoneal cavity phenocopied SP-A or C1qa deficiency, 

respectively.  Together these data indicate that Myo18A is a common receptor or co-receptor for 
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defense collagens present on aMφs and pMφs, which determines macrophage capacity to respond 

to IL-4 and whose cell surface expression is itself induced by IL-4. Myo18A lacks a trans-

membrane domain (14), and thus must act in concert with transmembrane co-receptors for signal 

transduction that likely impart tissue-specificity. 

 

The relevance of C1q as a local factor to enhance type 2 responses is supported by the fact that 

unlike most other complement components, the majority of C1q is produced by myeloid cells in 

peripheral tissues (17).  To determine the physiological relevance of C1q in this context, we 

evaluated its role in a murine model of peritoneal fibrosis (18). Peritoneal fibrosis is a frequent 

and serious consequence of peritoneal dialysis (19) associated with alternatively activated 

macrophages in both humans and mice (18-20).  We administered Dianeal-PD4, a clinically-used 

lactate-based dialysate, every other day for 28 days to WT, C1qa-, and IL-4Rα-deficient mice.  

In WT, but not in C1qa-deficient mice, Dianeal-PD4 treatment provoked the induction of C1q 

(Fig. 3A) and morphologic changes in tissue sections of the parietal peritoneum, showing 

significant enlargement of the submesothelial zone caused by collagen deposition (Fig. 3B, C).  

Dianeal-PD4 treatment induced markers of fibrosis including collagen mRNAs (Col1a1 and 

Col3a1) (Fig. 3D and Fig. S8A), alpha-smooth muscle actin (Acta2) (Fig. 3E), and vascular 

endothelial growth factor (Vegf) (Fig. S8B).  Significant upregulation of these markers was not 

observed in C1qa-deficient mice.  Conversely, Mmp12 mRNA was up-regulated in C1qa-

deficient mice relative to WT mice (Fig. S8C) consistent with monocyte infiltration (Fig. S8D) 

(21), and an anti-inflammatory role for C1q (22).  Dianeal-PD4 treatment also induced 

intracellular expression and protein secretion of the M(IL-4) markers RELMα, Ym1, and Arg 

(Fig. 3F-H) and moderate proliferation of pMφs (Fig. 3I) in WT but not C1qa-deficient mice. 

Despite the clear induction of M(IL-4) markers by PD4 delivery and their dependence on C1q, 

responses of IL-4Rα-deficient mice were equivalent to WT mice (Fig. 3A-I and Fig. S8 A-D).  

Although initially surprising, Dianeal-PD4 is a lactate-based solution, and lactate can induce 

M(IL-4) markers by acting downstream of IL-4Rα through stabilization of HIF1α protein (23).  

Indeed, we observed that the induction of proliferation and M(IL-4) markers following Dianeal-

PD4 delivery was essentially absent in mice lacking HIF1α in macrophages (Fig. S9).  Together, 

our data indicate that C1q significantly amplifies peritoneal fibrosis by promoting a type 2 

macrophage phenotype driven by lactate and dependent on HIF1α.  These results are consistent 
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with human studies in which C1q is strongly associated with increased fibrosis of skeletal muscle 

(24). 

 

Critically, we needed to ascertain whether C1q functioned as a type 2 amplifier in tissues beyond 

the peritoneal cavity and settings that are dependent on IL-4Rα.  We thus assessed Myo18A 

expression on the cell surface of resident macrophages from mice treated with or without IL-4c 

(Fig. 4A).  Consistent with our functional data, Myo18A was expressed in macrophages from the 

lung and peritoneal cavity, as well as in liver, spleen and adipose tissue, and significantly 

increased by IL-4 exposure.  In contrast, there was minimal Myo18A on pleural cavity 

macrophages, which explained our failure to identify a role for C1q in the pleural cavity 

following IL-4c delivery (Fig. S10).  As predicted by the Myo18 expression data, we found that 

macrophages from the liver of C1qa-deficient mice had significantly lower levels of proliferation 

and M(IL-4) activation compared with WT mice following IL-4c delivery (Fig. 4B).  

Importantly, we observed C1q upregulation in the liver of IL-4c treated mice (Fig. 4C).  Of 

relevance, the number and phenotype of liver macrophages are normal in C1qa-deficient mice 

(Fig. S11).  Antibody blockade of Myo18A following IL-4 treatment of isolated liver 

macrophages verified that C1q generated its effects through Myo18A (Fig. S12).  We thus 

sought a model in which M(IL-4)s in the liver played a substantive role.  

 

Infection of the liver by the Gram-positive bacteria Listeria monocytogenes causes necroptotic 

death of resident liver macrophages (Kupffer cells) followed by recruitment of monocytes, which 

control L. monocytogenes infection (25) and repopulate the liver macrophage population (26).  

Following an initial type 1 response, the type 2 response begins at 3 days p.i. with IL-4-mediated 

activation and proliferation of liver macrophages acting to repair infection damage (26).  To 

ascertain the relevance of C1q and confirm the role of IL-4Rα in this process, we infected WT, 

C1qa- and IL-4Rα-deficient mice with L. monocytogenes and performed sample analysis 3.5 

days later. Infection resulted in IL-4Rα-dependent up-regulation of C1q mRNA in liver (Fig. 

4C) while enhanced expression of RELMα and Ym1 by liver macrophages (Fig. 4D and Fig. 

S13A) and macrophage proliferation (Fig. 4E and Fig. S13B) were dependent on both IL-4Rα 

and C1q.  Consistent with the requirement for basophil-derived IL-4 in L. monocytogenes-

induced liver macrophage proliferation (26), we observed increases in IL-4 and IL-13 cytokines 
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in liver homogenates (Fig. S13C).  C1q and IL-4Rα deficiency were associated with increased 

liver injury as assessed by liver transaminases in blood (Fig. 4F) and a failure to up-regulate 

tissue-repair related genes (Acta2 and Col1a1) (Fig. 4G).  Notably, at 3.5 days p.i., liver bacterial 

burden was higher in WT than in C1qa- or IL-4Rα-deficient mice (Fig. 4H). Gene-deficient 

mice had increased numbers of recruited monocytes (Fig. 4I) and higher iNOS expression in 

monocytes (CD11b+ Ly6C+) and liver macrophages (CD11b+ F4/80+) (Fig. S13 D, E) but pro-

inflammatory cytokines in liver homogenates were comparable (Fig. S13F). These data suggest 

that C1q, through its ability to orchestrate IL-4Rα-dependent type-2-mediated responses, 

decreases the bactericidal capacity of monocyte-derived macrophages, but also limits liver injury 

and promotes the return to homeostasis (Fig. 4D-I and Fig. S13). 

 

M(IL-4)s have recently emerged as important players in homeostatic processes (27), but IL-4Rα-

dependent pathways are amplified during helminth infection with uncontrolled amplification 

leading to fibrosis (4, 28, 29).  Our data show that IL-4 drives production of local specific factors 

(SP-A and C1q) and expression of their receptor (Myo18A) on the macrophage surface for full 

M(IL-4) activation and proliferation (Fig S14) .  These findings reveal the existence within 

distinct tissues of an amplification system needed for type 2 function.  SP-A and C1q are 

typically produced by alveolar epithelial type II and myeloid cells, respectively, indicating that 

several different cell types must respond to IL-4 for signal amplification.   

 

The study raises a number of critical questions.  What are the Myo18A co-receptors that mediate 

tissue-specificity?  What factors negatively regulate or stop the positive M(IL-4) loop?  What are 

the intracellular signaling pathways regulated by Myo18A and its co-receptors? Critically, SP-A, 

C1q, and Myo18A are highly conserved across mammalian species, and we have shown the 

ability of SP-A and Myo18A to enhance human alveolar M(IL-4) proliferation.  
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FIGURE LEGENDS 
 
Fig. 1. Higher worm burden, greater nematode-induced lung damage and reduced IL-4-

induced proliferation and activation in mice lacking SP-A. Samples were assessed 6 days 

after N. brasiliensis (Nb) infection. (A) SP-A protein expression in lung tissue of WT and IL-

4Rα-/- mice. (B) Adult larvae in the small intestine. (C) Lung damage, quantified by ‘mean linear 

intercept’ from micrographs of H&E stained lung sections, and (D) microscopy of H&E stained 

lung sections (scale bars, 500 µm) in WT and SP-A-/- mice. (E) Amplification of Col1a1- and (F) 

Mmp12-encoding mRNA in lung tissue. Number of (G) red blood cells and (H) neutrophils 

isolated in BAL. Expression of (I) RELMα by aMφ from BAL. (J) BrdU incorporation and (K) 

Ki67 expression by aMφ from BAL. Data are representative from two independent experiments 

(mean ± SEM; naïve: 3 mice, Nb: 6 mice). (L-N) WT and SP-A-/- mice treated with 5µg IL-4c 

(i.p.) at days 0 and 2 and analyzed at day 4. (L) Relative SP-A levels in BAL (representative 

western blot shown) of WT mice treated with IL-4c or PBS. (M) RELMα expression and (N) 

BrdU incorporation in aMφ. Data pooled from three independent experiments (means ± SEM) 

(PBS: 9 mice, IL-4c: 11 mice). ANOVA followed by the Bonferroni multiple-comparison test 

was used. *p < 0.05, **p < 0.01, and ***p < 0.001 when compared with the untreated/uninfected 

group. °p < 0.05, °°p < 0.01 and °°°p < 0.001 when WT vs. SP-A-/- groups are compared.  

 

Fig 2. SP-A and C1q act through Myo18A to enhance IL-4-induced proliferation and 

activation of alveolar and peritoneal macrophages, respectively. (A) Murine macrophages 

were treated with IL-4 in the presence or absence of SP-A or C1q. BrdU incorporation and Ym1 

secretion are shown. (B) For aMφs (red), 5 µg IL-4c was delivered ip at days 0 and 2, and BAL 

cells analyzed at day 4. For pMφs (blue), 1 µg IL-4c was delivered ip at day 0, and peritoneal 

cells analyzed at day 1: BrdU incorporation and RELMα expression are shown. (C) Murine 

macrophages were treated with anti-Myo18A or rabbit IgG plus either IL-4+SP-A (aMφ) or IL-

4+C1q (pMφ). BrdU incorporation and Ym1 secretion are shown.  (D) Concurrently with IL-4c 

delivery, some WT mice were treated intra-nasally or ip with either anti-Myo18A or rabbit IgG 

antibody. BrdU incorporation and RELMα expression are shown in aMφs and pMφs. All 

statistical analysis was performed by ANOVA followed by the Bonferroni multiple-comparison 
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test.  (A and C) Results are presented as means (± SEM) from three different cell cultures with at 

least three biological replicates.  *p < 0.05, **p < 0.01, and ***p < 0.001, when compared with 

untreated cells; °p < 0.05, °°p < 0.01, and °°°p < 0.001, when SP-A+IL-4- or C1q+IL4-treated 

are compared with IL-4-treated; ##p < 0.01, and ###p < 0.001, the effect of anti-Myo18A 

antibody on cells treated with SP-A+IL-4 or C1q+IL4.  (B and D) Data were pooled from three 

independent experiments (means ± SEM) (PBS: 6 mice, other groups: 9 mice). *p < 0.05, **p < 

0.01, and ***p < 0.001, when compared with PBS treated mice; °p < 0.05, when WT vs. C1qa-/- 

mice treated with IL-4c are compared (B); °p < 0.05, °°p < 0.01, and °°°p < 0.001 when anti-

Myo18A vs rabbit IgG treatment is compared in IL-4c-treated mice (D). 
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Fig. 3. C1q enhances peritoneal fibrosis induced by a lactate dialysate. WT, C1qa-/- or IL-

4Rα-/- mice were either untreated (C) or injected ip with Dianeal PD-4 every other day for 28 

days. Samples were analyzed a day after the last delivery. (A) Total amount of C1q in the 

peritoneal washes was determined by ELISA. (B) Quantification of the thickness of the 

submesothelial compact zone from (C) microscopy of Masson’s trichrome stained parietal 

peritoneum slices (scale bars, 0.1 mm). Amplification of (D) Col1a1- and (E) Acta2 -encoding 

mRNA in peritoneal tissue. Expression of (F) RELMα, (G) Ym1, (H) Arg and (I) Ki67 by 

pMφs. Results are representative from two independent experiments (means ± SEM) (untreated: 

3 mice, PD4: 6 mice). ANOVA followed by the Bonferroni multiple-comparison test or 

Student’s t-test (A) was used. *p < 0.05, **p < 0.01, and ***p < 0.001 when compared with 

control group; °p < 0.05, °°p < 0.01, and °°°p < 0.001 when WT vs. C1qa-/- mice treated with 

Dianeal PD-4 are compared. 

 

Fig. 4. C1q is required for appropriate macrophage activation in the liver during Listeria 

monocytogenes infection. (A, B, C) WT or C1qa-/- mice received 1 µg IL-4c (ip) at day 0, and 

samples were analyzed at day 1. (A) Myo18A expression on the surface of resident macrophages 

(identified as described in the methods) from the indicated tissues. (B) BrdU incorporation and 

RELMα expression of liver macrophages. (C) (upper panel) IL-4-induced amplification of C1q-

encoding mRNA in the liver. (C-I) WT, C1qa-/-, or IL-4Rα-/- mice were left uninfected or 

received intravenous infection with 104 L. monocytogenes (Lm) c.f.u., and samples were 

assessed at 3.5 days p.i. (C) (lower panel) L. monocytogenes-induced amplification of C1q-

encoding mRNA. (D) Expression of RELMα by liver macrophages. (E) BrdU incorporation by 

liver macrophages.  (F) Quantification of ALT and AST in serum. (G) Amplification of Acta2- 

and Col1a1-encoding mRNA in the liver.  (H) Liver bacterial load. (I) Number of monocytes in 

liver single cell suspensions. Data are representative from two independent experiments (mean ± 

SEM; naïve: 4 mice, Lm: 5 mice). ANOVA followed by the Bonferroni multiple-comparison test 

was used. *p < 0.05, and ***p < 0.001, when compared with the uninfected group; °p < 0.05, °°p 

< 0.01, and °°°p < 0.001 when WT vs. C1qa-/- or IL-4Rα-/- infected groups are compared. 


