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Abstract. Image reconstruction for electrical capacitance tomography (ECT) is a challenging task due to the 

severely underdetermined nature of the inverse problem. A model-based algorithm tackles this problem by 

reducing the number of unknowns to be calculated from the limited number of independent measurements. The 

conventional model-based algorithm is implemented with a finite element method (FEM) to solve the forward 

problem at each iteration and can produce good results. However, it is time-consuming and hence the algorithm 

can be used for off-line image reconstruction only. In this paper, a solution to this limitation is proposed. The 

model-based algorithm is implemented with a database containing a set of prior solved forward problems. In this 

way, the time required to perform image reconstruction is drastically reduced without sacrificing accuracy, and 

real-time image reconstruction achieved with up to 100 frames/second. Further enhancement in speed may be 

accomplished by implementing the reconstruction algorithm in a parallel processing general purpose graphics 

process unit (GPU). 

 

Keywords: Electrical capacitance tomography (ECT), forward problem, image reconstruction, multi-phase flow 

measurement. 

 

 

1. Introduction 

 

Electrical capacitance tomography (ECT) is characterised by being a safe, due to the lack of radiation 

sources, fast and inexpensive technique to image permittivity distributions. One of the major advantages 

of ECT is its high temporal resolution, usually 100 frames/second. Accordingly, an algorithm in real 

time and producing a quantitative estimation of the permittivity distribution is required. 

 

Image reconstruction for quantification of permittivity distribution in ECT is usually performed by the 

utilisation of either single step algorithms like linear back-projection (LBP) or iterative algorithms like 

Landweber [1]. The selection of an appropriate algorithm always represents a trade-off. On one hand, 

single step algorithms have the advantage of producing fast results, whereas iterative algorithms require 
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longer time and usually cannot be used for real-time measurement. On the other hand, images obtained 

by single step algorithms usually provide a qualitative description of the distribution only, whereas 

images by iterative algorithms can provide a quantitative description of the distribution.  

 

Efforts have been made to improve the quality of the images obtained by implementing a variety of 

image reconstruction algorithms. Soleimani and Lionheart [2] reported the use of a non-linear image 

reconstruction algorithm. In this work, sensitivity maps used for solving the inverse problem are 

updated with the use of a finite element method (FEM) solver at each iteration. Ortiz-Aleman et al. [3] 

reported the use of simulated annealing and genetic optimisation algorithms to minimise an objective 

function. In this approach, the image is modified at every iteration and the forward problem is calculated 

using the current distribution. The result is then compared with the measurement vector. This procedure 

is repeated until a minimum error is reached. The forward problem is solved at each iteration using a 

finite volume method. Li and Yang [4] reported a method by updating the sensitivity maps, which are 

calculated using a finite difference method, at every iteration of the Landweber algorithm. The model-

based algorithm was proposed by Isaksen and Nordtvedt [5], with a selection of parameters capable of 

describing as much flow regimes as possible and hence reducing the number of unknowns to be 

determined by the limited measurement data. An initial guess is updated at each iteration by an 

optimisation routine. The forward problem is solved at every iteration by the use of a FEM solver. This 

process continues until the desired minimum objective function is reached. The above algorithms can 

generate high-quality images, allowing to estimate the permittivity distribution accurately. Nonetheless, 

the need to calculate either the sensitivity maps or the forward problem at every iteration represents a 

major drawback of time-consuming. In consequence, these algorithms are limited to be used only for 

off-line monitoring or for research purposes. 

 

Klug and Mayinger [6] reported the use of a reference matrix, i.e. look-up table, to perform image 

reconstruction. Such a matrix contains calibration references compared to the measurement vector to 

identify the flow pattern and void fraction in a gas/oil flow. In such implementation, the reference matrix 

contains capacitance measurements for stratified, annular and central core flow patterns. The generation 

of a look-up table containing measurement vectors for all the possible configurations of uncontrolled 

flow patterns is highly impractical. First, because uncontrolled flow patterns can vary widely over a 

broad range of distributions. Second, a look-up table big enough to contain sets of measurements for all 

those possible variations would result in a vast array and the time to find a match to the measurement 

vector would render this approach impractical for real-time applications.  

 

In this paper, a model-based algorithm capable of real-time and accurate estimation of parameters for 

the defined model is presented which is implemented by databases [7]. The previous knowledge of the 
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permittivity distributions or the ability to constrain them allows the use of databases, which contain a 

set of prior solved forward problems, covering the full range of possible values of the parameters. The 

use of the databases eliminates the need to solve the forward problem at each iteration as the 

conventional model-based algorithm, and hence speeds up considerably the estimation of the 

parameters defining the permittivity distribution.  

 

2. Image reconstruction algorithms  

 

The purpose of solving the inverse problem in ECT is to determine the permittivity distribution 

according to a set of capacitance measurements. This task is usually performed by the use of a sensitivity 

matrix in linear image reconstruction algorithms. Such a sensitivity matrix represents the linearized 

response of the sensor to the presence of a perturbation in a homogeneous permittivity distribution [8].  

 

LBP is a fast and simple single-step algorithm. It uses sensitivity maps to estimate the permittivity 

distribution according to a capacitance measurement vector. It is implemented as 

 

Ĝ = 𝑆𝑇 ∙ 𝐶                                                              (1) 

where Ĝ is the approximate permittivity distribution and ST is the transpose of the sensitivity matrix.  

 

In a model-based algorithm, a set of parameters is selected to define the permittivity distribution, 

relating the relevant characteristics of the permittivity distribution to the capacitance measurement 

vector. Selection of parameters is defined by the access to previous information regarding the 

permittivity distribution. If enough information is available, i.e. if the permittivity distribution is known 

or can be constrained, it is possible to use explicit models as shown in Figure 1. It is possible to 

implement the model-based algorithm with databases only for models with explicit parameters.  

 

 

(a)                                       (b)               

Figure 1 Explicit model parameters. Stratified distribution (a), annular distribution (b). 
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3. Databases 

 

Figure 2 Model-based algorithm with databases flowchart. 

 

3.1. Forward Problem 

The purpose of solving the forward problem in ECT is to calculate the inter-electrode capacitance 

according to a known permittivity distribution. For iterative image reconstruction algorithms, it is 

necessary to obtain the capacitance vector and compare it to the measurement vector, so that the image 

can be modified to reduce the difference between the two vectors.  

 

There are three ways to solve the forward problem in ECT:  

(1) Measuring the inter-electrode capacitance with a known permittivity distribution on an 

experimental setup [9].  

(2) Using linear forward projection (LFP) [10].  

(3) Calculating the capacitance using a computer model and a FEM solver.  

 

The first approach has several disadvantages because it is difficult to set up a known permittivity 

distribution, measurement uncertainties, limitations and the restriction to a certain number of electrodes 

and configurations of the sensor. The second approach is limited by the use of the linearized response 

of the sensor to calculate the capacitance vector. Therefore, the third option, consisting of the use of a 

FEM solver is the most flexible and adequate technique to solve the forward problem. The inter-

electrode capacitance can be obtained by [11] 

 

𝐶 =
𝑄

𝑉
= −

1

𝑉
∬ 𝜀(𝑥, 𝑦)𝛻𝜑(𝑥, 𝑦)𝑑𝛤

𝛤
                                                              (2) 

Where C is the inter-electrode capacitance, Q is the surface charge density in the detection electrode, ε 

is the permittivity at coordinates (x, y), ϕ is the potential at coordinates (x, y), and Γ is the electrode 

surface. 

 

3.2. Database implementation and construction  
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Figure 3 Database generation flowchart. 

 

In the conventional model-based algorithm with an explicit model, an image is first reconstructed using 

a single-step algorithm, such as LBP, and then is used as a first attempt to estimate the parameters 

defining the model. Subsequently, the FEM solver computes the capacitance vector from to the first 

guess and the difference between the computed and measurement vectors is used to define how the 

parameters should be changed. Again, the FEM solver is used to compute the capacitance vector. This 

process is repeated until a desirable discrepancy between the computed and measured vectors is 

achieved. Using an explicit model, as shown in Figure 1, the fixed number of parameters can only be 

changed within a certain range. In consequence, the FEM solver is used repeatedly to compute the 

capacitance vector of a slightly changed permittivity distribution iteration after iteration. Furthermore, 

once a frame is successfully processed and the minimum is achieved, the process is repeated again for 

the next frame. In this iterative process, the same FEM model is solved repeatedly for each frame as the 

capacitance vectors computed are not stored. This represents a waste of computing power and time. In 

consequence, the conventional model-based algorithm is limited for off-line parameter estimation.  

 

In the proposed approach, the database, containing a set of prior solved forward problems allows 

eliminating the use of the FEM solver for computing the forward problem on each iteration. Such a 

database is generated in advance by computing just once and storing the capacitance vector for a group 

of possible configurations of the parameters defining the model.  

 

The characteristics of the 2D FEM model used to calculate the database are: 

• Sensor diameter: 10 cm 

• Number of electrodes: 8 

• Mesh elements: 724 

 

To guarantee the accuracy of the FEM simulation, a comparison between the normalised capacitance 

obtained with a normal mesh formed by 724 elements and a finer mesh with 2040 elements, as shown 



 
6 

 

in Figure 4, is performed. As shown in Figure 5, the difference between the two results is less than 2%, 

confirming the consistency of the results of meshes with different mesh density. 

 

 

Figure 4 FEM mesh. Normal (left), finer (right). 

The dimension of the database depends on the number of parameters selected to define the model. 

Whereas its size depends on the range and steps for the variation in the parameters. Figure 6 shows a 

3D arrangement for a two-parameter model. If the parameters in Figure 1 (b) are selected to define the 

model, with an 8-electrode sensor; the size of the arrangement in the x-direction would be 28 according 

to  

𝑀 =
𝑛(𝑛−1)

2
                                                                                    (3) 

where M is the number of independent measurements and n is the number of electrodes.  

 

 

Figure 5 Normalised capacitance for first 7 measurements. Circle, finer mesh with 2040 elements. Triangle, normal mesh 

724 elements. 
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Figure 6  3𝐷 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒. 𝑋𝑎𝑥𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟. 𝑌 𝑎𝑥𝑖𝑠 𝑟𝑎𝑑𝑖𝑢𝑠 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛, 𝑍𝑎𝑥𝑖𝑠 𝑝𝑒𝑟𝑚𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛. 

 

3.3. Error calculation 

The measurement vector is compared to the vectors in the database to find the one that minimises the 

error. The capacitance vector is composed of an M number of elements as defined by equation 3. The 

error is calculated using the norms of the vectors.  

 

𝑒𝑟𝑟𝑜𝑟 =
‖𝐶𝑑𝑏−𝐶𝑚‖

‖𝐶𝑑𝑏‖
                                                        (4) 

where Cdb is each normalised vector contained in the database, Cm is the normalised measurement vector. 

 

4. Test case: Multi-component gas/oil/water flow 

 

In oil extraction, water and gas are produced alongside oil. It is usual to find water alongside oil and 

gas as a form of brine with dissolved solids. Water flooding is also common in oil extraction, i.e. 

injecting water into the reservoir to increase the pressure and maximise the production. The water 

constituting part of the liquid phase can be present as “free” water, i.e. not entrapped in the oil. It is also 

possible to find the water as an emulsion. Depending on the amount of water being produced, the liquid 

phase can be considered oil-continuous or water-continuous. Although the inversion point is not 

precisely determined, it is considered that a water-oil mixture with a content of more than 50% oil is 

oil-continuous, and more than 50% of water to be water-continuous [12]. In addition, 100% oil or water 

cannot be discarded as a possible composition of the liquid phase. Water cut, also known as water-in-

liquid ratio (WLR) is used as an indicator of the amount of water present in the liquid phase. The water 

volume fraction of the liquid phase can be defined by 

𝑊𝐿𝑅 =
𝑊𝑎𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑞𝑢𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
                                        (5) 
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The relationship between the permittivity and conductivity of liquid mixture and the WLR for an oil-

continuous and water-continuous liquid phase is expressed by [13] 

𝜀𝑙𝑖𝑞
𝑜𝑖𝑙 = 𝜀𝑜𝑖𝑙

1+2𝑊𝐿𝑅

1−𝑊𝐿𝑅
    𝜎𝑙𝑖𝑞

𝑜𝑖𝑙 = 𝜎𝑜𝑖𝑙
1+2𝑊𝐿𝑅

1−𝑊𝐿𝑅
                                      (6) 

                    

𝜀𝑙𝑖𝑞
𝑤𝑎𝑡𝑒𝑟 = 𝜀𝑤𝑎𝑡𝑒𝑟

2𝑊𝐿𝑅

3−𝑊𝐿𝑅
     𝜎𝑙𝑖𝑞

𝑤𝑎𝑡𝑒𝑟 = 𝜎𝑤𝑎𝑡𝑒𝑟
2𝑊𝐿𝑅

3−𝑊𝐿𝑅
                               (7) 

where εliq
oil is the permittivity of the oil-continuous liquid phase, εoil is the permittivity of oil, εliq

wateris 

the permittivity of the water-continuous liquid phase, εwater is the permittivity of water, σliq
oil is the 

conductivity of oil-continuous liquid mixture, σoil is the conductivity of oil,  σliq
water is the conductivity 

of the water-continuous liquid mixture and σwater is the conductivity of water.  

ECT systems have a limit on the amount of water present in the liquid mixture. This limit has been 

proven to be 30% [14]. 

Natural gas is usually present in reservoirs. Alongside with water, it generates pressure over the oil to 

push it up the well in the first stages of oil extraction. Once the pressure is decreased because oil left 

the reservoir, gas is injected to increase the pressure. Usually, natural gas is reinjected into the well. Air 

and carbon dioxide are also commonly used [15]. The increasing amount of gas inside the reservoir is 

reflected in the amount of gas being transported upwards throughout the pipe. Void fraction or gas void 

fraction (GVF) is used as an indicator of the amount of gas in relationship to the total volume [16]. 

𝐺𝑉𝐹 =
𝐺𝑎𝑠 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
                                              (8)        

                                     

4.1. Flow conditioner 

The use of a flow conditioner allows constraining the flow pattern so that the real flow can be described 

accurately by a selected model. In the case of gas/oil/water flow, a Venturi tube is used to accelerate 

the induced swirl in the flow. Due to the higher density of the oil/water mixture, the centrifugal force 

can push the liquid mixture towards the pipe wall, generating an annular distribution as seen in Figure 

7 (a). The external liquid layer consists of an emulsion of oil/water. Whereas the central region is 

composed of the less dense gas core [14].  

 

Another possible configuration for this annular flow pattern is an off-centre gas core, as shown in Figure 

7 (b) because the swirling induced in the flow can also generate the displacement of the gas core away 
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from the centre. In this case, a new set of parameters is required to define the flow pattern, indicating 

the location of the centroid of the gas core, i.e. the x and y coordinates for the centre of the gas core. 

 

(a) Annular central core flow distribution, Gas core 

radius (r) and liquid permittivity (ε). 

 

(b) Annular off-centre core flow distribution, Liquid 

mixture permittivity (ε), gas core radius (r) and 

centroid coordinates (x, y) 

Figure 7 parameters of annular flow distribution  

 

As the distribution shown in Figure 7 (a) is a special case of the distribution depicted in Figure 7 (b) 

when the x and y parameters are zero, only one database is required for characterising the annular flow 

pattern for both, centred and off-centre gas core. The resultant database consists of a 5D array of size 

30, 28, 12, 12, 9 respectively on each dimension. The first dimension of the database is defined by the 

steps on the radius increment. The second dimension is due to the number of independent 

measurements. The third and fourth dimensions are defined by the number of steps on the x and y 

position respectively. Finally, the fifth dimension is defined by the number of steps in the permittivity 

change. Table 1 summarises the range and step length for parameter variation. 

Table 1 Ranges and step length for parameter variations in database construction.  

Parameter Range  Step size  Step size % of full range 

Radius r .1 – 3 cm .1 cm 3.5% 

Position x 0 – 1.2 cm .1 cm 9% 

Position y 0 -1.2 cm .1 cm 9% 

Permittivity ε 2 - 6 .5 12% 

 

4.2. Parameter calculation 

The parameters r, x, y, ε are found by locating a vector in the database that minimises the error. 

Calculated by equation 4, the vector that minimises the error is related to the parameters by the indexes 

of the database. 
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In the case of the off-centre gas core, the area inside the sensor is divided into four quadrants, as shown 

in Figure 8. Variation in parameters x, y in the generation of the database is from the centre of the sensor 

into the quadrant 1. Variation of the parameters is not performed for quadrants 2, 3, 4.  

 

Figure 8 four quadrants 

With the circular symmetry of an ECT sensor, it is not necessary to perform the time-consuming 

calculation of the database for the remaining quadrants. The measurement vector is rotated to match the 

vectors contained in the database as shown in Figure 9.  

 

Figure 9 Vector rotation. Electrode pair measurements. 

Figure 10 shows the effect of rotating the measurement vector to displace the centre of the gas core 

from 2, 3 and 4 quadrants to the quadrant 1. In this way, it is possible to find the four distinctive 

parameters for the gas core on any quadrant of the sensor.  

 

Due to the size of the 5D database containing the measurement vectors, parameter calculation on CPU 

is time-consuming. To reach the minimum error in an adequate time and to perform real-time 

monitoring, the proposed algorithm has been implemented in a parallel computing hardware. The use 

of MATLAB® language alongside with the CUDA® platform allows the fast implementation of 

parallel processing routines on NVIDIA® general-purpose graphics processing unit (GPU). A major 

advantage of using CPU and GPU is the ability to run the same algorithm without changes on both, 

GPU and CPU hardware. The calculation is performed on a Dell laptop with a dual core i7 processor 
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running at 2.8 GHz. GPU calculation is performed on the same computer. The on-board GPU is a 

NVIDIA® GeForce GT 750m. 

 

Rotation LBP image Capacitance vector 

Original vector 

 
 

1st rotation 

  

2nd rotation 

  

3rd rotation 

 
 

Figure 10 Image reconstruction after vector rotation 

To test the time required to compute the parameters using both architectures, a sample of 500 noise-

free capacitance vectors is used to perform image reconstruction. Figure  11 shows the time required 

for each iteration in both architectures. Computation on GPU takes an average of 7.4mS. Whereas 

computation on CPU takes an average of 91.1mS, it is possible to see from this results that calculation 

of GPU is around 12 times faster. In consequence, the implementation of the proposed algorithm in 

parallel computing hardware allows performing real-time computation for ECT systems with a frame 

rate up to 100 frames/second. 
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Figure 11 GPU versus CPU time performance. 

5. Simulation Results 

 

Simulation was performed to evaluate the model-based algorithm with databases. A comparison 

between the proposed approach and LBP algorithm is presented. The model-based algorithm without 

databases is not included in the performance comparison because such an algorithm cannot be used for 

real-time monitoring due to its time-consuming nature. LBP images area characterised for showing 

smooth transitions on the boundaries between materials; this complicates the task of measuring the 

parameters defining the model. In consequence, the image needs to be binarized to allow the calculation 

of the radius of the gas core. Ideally, pixels in the LBP images have values between 1 and 0. Although 

this is not always the case, especially when the permittivity of the materials does not reach the high 

calibration point. Therefore, a medium point between the value of the pixel with the highest and lowest 

value needs to be set as a threshold. Because of this, pixels with values above the average value are set 

to 1. In contrast, pixels with values below the average are set to 0.  Once the image is binarized, it is 

possible to apply the regionprops MATLAB built-in function to calculate the centroid and radius of the 

central gas core. 

 

For all simulation tests, four sets of data are used to perform the comparison: (1) a set of noise-free data, 

(2) 100 dB SNR data, (3) 50 dB SNR data and (4) 30 dB SNR data. Making use of the AWGN built-in 

MATLAB function, white Gaussian noise is added to the capacitance vector before normalisation. The 

SNR is given by the ratio between the power of the signal and the noise as defined by 

𝑆𝑁𝑅𝑑𝐵 = 20𝑙𝑜𝑔10(
𝐴 𝑠𝑖𝑔𝑛𝑎𝑙

𝐴 𝑛𝑜𝑖𝑠𝑒
)                                                        (9) 

Where SNRdB is the signal to noise ratio in decibels, A signal is the amplitude of the signal and A noise 

is the amplitude of the noise. 
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The first test consists of the calculation of the radius with a fixed permittivity. The radius varies from 

0.1 to 4.9 cm whereas the permittivity is set to 6. Figure 12 shows the error for radius calculation with 

LBP and model-based algorithms. The capacitance vectors are normalised with low and high 

permittivity calibration values set at 1 and 15 respectively.   

Excellent agreement can be seen from Figure 12 (b) between the real value and the value calculated 

with the model-based algorithm for the estimation of the radius of the gas core with low noise levels. 

However, the estimation from the LBP algorithm diverges greatly from the real value as seen from 

Figure 12 (a), especially for small radius because of the characteristic low spatial resolution of ECT. As 

the centre of the gas core was placed at the centre of the sensor, it is well known that the sensitivity in 

ECT systems decreases sharply towards the centre of the sensor. This generates a further error when 

the radius is calculated with images obtained with LBP. The low sensitivity on the centre of the sensor 

also affects the response of the model-based algorithm for data with a low SNR. Although the response 

of the model-based algorithm is much more sensitive to higher noise levels than the LBP algorithm, the 

absolute error remains lower than the error obtained for the LBP algorithm.  

 

 

(a) LBP radius calculation error. 
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(b) Model-based radius calculation error. 

Figure 12 Radius calculation error with different approaches (a) LBP (b) Model-based. 

 

For the second test, the radius of the gas core is fixed. In this case, at 3 cm whereas the permittivity of 

the liquid is changed from 1.5 to 15. As with the previous test, the capacitance data is normalised with 

the low and high calibration points set to 1 and 15 respectively. Figure 13 shows the error for 

permittivity calculation with LBP and model-based algorithms respectively. It can be seen from Figure 

13 (a) that although the LBP algorithm performs better for estimating the permittivity than the radius, 

there still exists a considerable deviation from the real value. Furthermore, for higher permittivity values 

the error increases. In contrast, the permittivity estimation from the model-based algorithm shown in 

Figure 13 (b) shows an excellent agreement with the real value, even for data with high noise levels. 

Results shown in Figure 13 are expected because the liquid ring is near to the pipe wall. In this area, 

the sensitivity is greater and measurements are less sensitive to high noise levels.  

 

 

(a) LBP permittivity calculation error. 
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(b) Model-based permittivity calculation error. 

Figure 13 Permittivity calculation error with different algorithms. (a) LBP (b) Model-based. 

 

Figure 14 shows simulation results for radius calculation for an off-centre gas core. For this test, the 

permittivity of the liquid mixture is set to 4 and the centroid of the gas core is set to 1.2 in both X 

and Y coordinates according to the model described in figure 7 (b). 

 

 

 

(a) LBP radius calculation error. 
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(b) Model-based radius calculation error. 

Figure 14 Radius calculation error for the off-centre gas core with different algorithms (a) LBP (b) Model-based. 

 

Figure 15 shows the simulations results for the determination of the X coordinate for a model as 

described in figure 7 (b). During this test, the permittivity of the liquid mixture is kept constant at 4, the 

radius at 2.5 cm and the Y coordinate set at 0 cm. 

 

(a) LBP coordinate calculation error. 
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(b) Model-based coordinate calculation error. 

Figure 15 X coordinate calculation error with different algorithms. (a) LBP (b) Model-based. 

Figure 16 shows the simulation result for the estimation of the parameter d according to the stratified 

flow model depicted in figure 1 (a). For this test, the permittivity of the liquid mixture is set to 4.8 and 

the angle θ is set to -90 deg. It is possible to notice from figure 16 (a) the high error levels throughout 

the full range of the parameter d. Due to the smooth shape of the sensitivity distribution in the sensing 

area, it is not possible to achieve sharp boundaries when reconstructing the image with the LBP 

algorithm. In consequence, the estimation of the parameter d generates great deviations from the 

real values.    

 

(a) LBP parameter d calculation error. 
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(b) Model-based parameter d calculation error. 

Figure 16 Parameter d calculation error with different algorithms (a) LBP (b) Model-based. 

 

Figure 17 shows the estimation of the permittivity from simulated data. For this test, the parameter d 

is set to 0 cm. The angle θ is set to -90 deg. As seen on the results from figure 13, the proximity of the 

liquid mixture to the high sensitivity area near the pipe wall allows the estimation of the permittivity 

of the liquid mixture with lower error levels and less noise sensitivity with both algorithms. 

 

(a) LBP permittivity calculation error. 
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(b) Model-based permittivity calculation error. 

Figure 17 Permittivity calculation error with different algorithms. (a) LBP (b) Model-based. 

 

 

6. Experimental validation  

 

To validate the proposed algorithm experimentally an impedance analyser-based ECT system was used, 

as shown in Figure 18. The excitation frequency was set to 500 kHz and the voltage at 1V. The signal-

to-noise ratio of the system is 45dB as calculated with equation 9. 

 

Figure 18 Impedance analyser based ECT system. 

A permittivity distribution is set with an empty glass cylinder (r = 1.85 cm), representing the gas core 

(ε = 1) and an emulsion generated with tap water (ε = 80) and corn oil (ε = 1.6), as shown in Figure 19. 

The characteristics of the sensor with internal electrodes are the following: 

 Number of electrodes N = 8 

 Electrode width: .5 cm 

 Inter-electrode radial gap: 1 cm 

 Container diameter: 7.3 cm 
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 Wall thickness: 0.1 cm 

 

Figure 19 Real permittivity distribution. Water-oil emulsion ring. An empty tube as the gas core. 

Three different measurements were obtained by using water/oil emulsions with different rates: (1) 0% 

WLR (100% oil, 0% water), (2) 20% WLR (80% oil, 20% water) and (3) 30% WLR (70% oil, 30% 

water). The capacitance vector is normalised with the low and high permittivity values, set at 1, sensor 

full of air, and 3.6, sensor full of 30% WLR emulsion, respectively. Figure 20 shows the images 

reconstructed with the LBP algorithm alongside the binarized images.  
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Figure 20 LBP and LBP binary images. 
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Table 2 shows experimental results for the proposed approach. It is possible to notice from the results 

on table 2 and 3 that the low SNR achieved with the impedance analyser based ECT system affects the 

performance of the results. In addition, expanding the data points in the database would increase the 

accuracy of the measurements.  

Table 2 Radius and permittivity estimation with LBP and model-based algorithm for a central gas core. 

GVF WLR 

Radius 

(r) 

cm/GVF 

Theoretical 

value 

(ε) 

LBP Model-based 

r ε  GVF WLR r ε GVF WLR 

24% 0% 1.8 1.6 1.6 1.3 21% -6% 2.0 2 30% 7% 

24% 20% 1.8 2.8 2.0 3.1 30% 23% 1.8 2.5 24% 15% 

24% 30% 1.8 3.6 2.0 3.9 30% 32% 1.9 3.5 27% 28% 

 

Table 3 Radius and permittivity estimation with LBP and model-based algorithm for an off-centre gas core. 

Real Values LBP Model-based 

GVF WLR X Y X Y  GVF WLR X Y GVF WLR 

24% 0% 0.6 0.0 0.7 0.1 21% -6% 0.6 0.0 30% 7% 

24% 20% 0.6 0.0 0.5 0.0 30% 23% 0.7 0.0 24% 15% 

24% 30% 0.6 0.0 0.5 0.1 30% 32% 0.6 0.0 27% 28% 

 

7. Conclusions 

 

The model-based algorithm can reduce the possible solutions to the underdetermined inverse problem. 

This is because the number of unknowns is reduced drastically to a few of parameters that describe the 

permittivity distribution. Although the conventional model-based algorithm is successful in calculating 

a quantitative estimation of the permittivity distribution, solving the forward problem on each iteration 

makes this algorithm not suitable for on-line parameter estimation. Single-step algorithms can generate 

a fast estimation of the distribution. However, such images are a quantitative representation only. 

Therefore, such algorithms cannot be used for quantitative monitoring of complex distributions, like 

gas/water/oil flow. A model-based algorithm with sets of prior calculated forward problems 

successfully overcomes the problem of accurately estimating permittivity distributions in real time. This 

is because the tedious and time-consuming task of solving the forward problem is performed in advance. 

In addition to drastically reducing image reconstruction time, the use of databases reduces the hardware 

requirements on the equipment performing image reconstruction, because the error calculated with 

equation 4 is considerably computationally less expensive than solving the forward problem with a 

FEM solver on each iteration.  
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Although in this work the test case is focused on an annular gas/oil/water flow, the flexibility of using 

a computational model to solve the forward problem in advance allows creating databases for a variety 

of permittivity distributions, making this approach flexible to be implemented in a wide range of 

applications. 

 

In addition, as discussed by Sun and Yang [17] and Rodriguez-Frias and Yang [18]. ERT systems with 

voltage excitation (ERTv) use an identical sensor structure and measurement scheme, i.e. applying an 

alternating voltage and measuring the resultant current in the detection electrode. Having the same 

sensor structure and excitation-detection approach, the numbers of independent measurements on ECT 

and ERT are the same, as defined by equation 3. In consequence, the results shown in this paper of 

implementing the model-based algorithm with databases can be replicated with an ERTv system.  
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