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On sums of independent
generalized Pareto random variables

with applications to
insurance and CAT bonds

by

Saralees Nadarajah, School of Mathematics, University of Manchester, Manchester, UK
Yuanyuan Zhaang, School of Mathematics, University of Manchester, Manchester, UK
Tibor K. Pogány, Faculty of Maritime Studies, University of Rijeka, Rijeka, CROATIA

Abstract: A longstanding open problem in statistics is: what is the exact distribution of the
sum of independent generalized Pareto or Pareto random variables? Here, we derive single integral
representations for the exact distribution with the integrand involving the incomplete and com-
plementary incomplete gamma functions. Applications to insurance and catastrophe bonds are
described.

2000 mathematics subject classification: Primary 60E10; Secondary 33C60, 62G32.

Keywords and phrases: Characteristic function; Generalized Pareto distribution; Incomplete
gamma function.

1 Introduction

The Pareto distribution due to Pareto (1964) is the most popular statistical model in economics,
finance and related areas. A most general form of the Pareto distribution is the generalized Pareto
distribution due to Pickands (1975). Its cumulative distribution function (CDF) and probability
density function (PDF) are specified by

F (x) = 1−
[
1 +

ξ(x− µ)

σ

]−1/ξ
(1)

and

f(x) =
1

σ

[
1 +

ξ(x− µ)

σ

]−1/ξ−1
, (2)

respectively, for µ < x < ∞ if ξ ≥ 0 and µ < x < µ − σ/ξ if ξ < 0, where −∞ < µ < ∞ is the
location parameter, σ > 0 is the scale parameter, and −∞ < ξ < ∞ is the shape parameter. The
case ξ = 0 should be interpreted as a limiting case. In this case, (1) and (2) give the exponential
distribution with location parameter −∞ < µ < ∞ and scale parameter σ > 0. The case ξ > 0
gives a heavy tailed distribution. The case ξ < 0 gives a light tailed distribution.

An outstanding research question in statistics is: what is the exact distribution of the sum
of independent generalized Pareto or Pareto random variables? Many authors have attempted to
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answer this question: Hitha (1991, page 9) says “The distribution of a sum of Pareto variables
that are independent and identically distributed is difficult to obtain”; Bean (2001, page 235) says
“There is no simple relationship for an independent sum of Pareto random variables”; Goovaerts
et al. (2005, Theorems 2.1 and 2.2) derive asymptotic forms for the distribution of a sum of
Pareto random variables; Zaliapin et al. (2005) present five different approximations for the sum of
independent Pareto random variables; Hempel (2007) says “Unfortunately, the performance of this
test statistic is impossible to compute analytically and difficult to compute numerically because the
exponential terms in the last summation are Pareto distributed. Pareto distributions are very heavy
tailed and the distribution of the natural logarithm of a sum of Pareto random variables cannot be
derived analytically”; R-forge distributions Core Team (2008) say “The convolution (i.e. sum) of
Pareto I distributions does not have any particular form but the product of Pareto I distributions
does have an analytical form”; Albrecher and Kortschak (2009, Theorem 2.1) derive an integral
representation for the tail of the distribution of a sum of Pareto random variables; Bonfiglioli and
Gancia (2013) say that the “sum of Pareto distributions is intractable”; to mention just a few.

Areas where sums of generalized Pareto or Pareto random variables arise include: ruin theory
and reinsurance pricing (Morales, 2005); modeling of natural and human-induced processes (Zali-
apin et al., 2005); models for significant wave height (Bazargan et al., 2007); track initialization
for multi-static active sonar systems (Hempel, 2007); portfolio’s aggregate losses and waiting time
distributions (Ramsay, 2006, 2007, 2008, 2009).

To the best of our knowledge, the exact distribution of the sum of generalized Pareto or Pareto
random variables has not been derived. But we have come to know of a paper by Nguyen and
Robert (2013) that is currently under review for publication. A preprint of it is available on-line
at http://docs.isfa.fr/labo/2012.16.pdf. The main theorem (Theorem 1) in Nguyen and Robert
(2013) gives an expression for the CDF of X1 + X2 + · · · + Xn, a sum of n independent Pareto
random variables. The expression involves multiple infinite sums, multiple products and multiple
finite sums. In fact, it is easy to see that the expression given by Theorem 1 of Nguyen and Robert
(2013) involves

2n +
2n−2∑
i=1

2|θi,n|+1

infinite sums, where {θ1,n, θ2,n, . . . , θ2n−2,n} is the set of all subsets of {1, 2, . . . , n}, excluding the
empty set and the full set. In addition, the expression given by Theorem 1 of Nguyen and Robert
(2013) involves at least

1 +

2n−2∑
i=1

[
1 +

∞∑
k=0

(
k + 1∣∣∣θci,n∣∣∣

)]

products, where θci,n denotes the complement of θi,n. In addition, the expression given by Theorem
1 of Nguyen and Robert (2013) involves an infinite number of finite sums. Clearly, this is a
complicated expression. Its computation will become prohibitive as n becomes large. In this note,
we give expressions for the CDF of X1 +X2 + · · ·+Xn taking the form of a single integral, much
simpler than the expression in Nguyen and Robert (2013). For generality, we consider generalized
Pareto random variables and not Pareto random variables.

One of the tools used to derive the distribution of sums of independent random variables is
the characteristic function (CHF). The CHF of a random variable, X say, defined by φX(t) =

2



E exp {itX}, where i =
√
−1, is a fundamental tool in probability. The CHF can be used to derive

the distribution of X1 +X2 + · · ·+Xn when Xi, i = 1, 2, . . . , n are independent generalized Pareto
random variables.

If X is a generalized Pareto random variable with ξ = 0 then it is well known that

φX(t) =
exp (iµt)

1− iσt
. (3)

The result in (3) has been used to derive the distribution of the sum of independent but not
necessarily identical exponential random variables (this distribution is in general different from the
gamma distribution), see Amari and Misra (1997) and Khuong and Kong (2006).

For generalized Pareto random variables with ξ 6= 0, closed form expressions for φX(t) have not
been known in the literature. Closed form expressions for φX(t) for some related random variables,
the extreme value random variables, were derived only recently, see Nadarajah and Pogány (2013).

The main results of this note are: explicit closed form expressions for the CHF for the generalized
Pareto random variable, a single integral representation for the PDF of the sum of independent
generalized Pareto random variables, and a single integral representation for the CDF of the sum of
independent generalized Pareto random variables; applications to insurance and catastrophe bonds.
The expressions given in Section 2 involve the incomplete and complementary incomplete gamma

functions defined by γ(a, z) =

∫ z

0
ta−1 exp(−t)dt and Γ(a, z) =

∫ ∞
z

ta−1 exp(−t)dt, respectively.

Incomplete gamma functions are included as in-built functions in most mathematical soft-
ware packages, so they can be easily evaluated by the software packages Maple, Matlab and
Mathematica using known procedures. Using these in-built functions, Section 3 describes an ap-
plication to insurance of the results in Section 2. Section 4 describes an application to catastrophe
bonds.

2 Main results

Our main results are Theorem 2.1, Theorem 2.2 and Theorem 2.3. Theorem 2.1 derives an explicit
closed form expression for the CHF for the generalized Pareto random variable. Theorem 2.2
derives a single integral representation for the PDF of the sum of independent generalized Pareto
random variables. Theorem 2.3 derives a single integral representation for the CDF of the sum of
independent generalized Pareto random variables.

Theorem 2.1 Let X denote the generalized Pareto random variable. Its CHF has the closed form:

φX(t) =


−ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)} γ (−1/ξ,−itσ/ξ) , if ξ < 0,

ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)}Γ (−1/ξ,−itσ/ξ) , if ξ > 0

for all −∞ < µ <∞ and σ > 0. The CHF for ξ = 0 is given by (3).
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Proof: Consider first the case ξ < 0. Then,

φX(t) =
1

σ

∫ µ−σ/ξ

µ
exp (itx)

[
1 +

ξ(x− µ)

σ

]−1/ξ−1
dx

= −ξ−1 exp {it (µ− σ/ξ)}
∫ 1

0
exp {− (−itσ/ξ) y} y−1/ξ−1dy.

The result follows from the definition of the incomplete gamma function.

Consider now the case ξ > 0. Then,

φX(t) =
1

σ

∫ ∞
µ

exp (itx)

[
1 +

ξ(x− µ)

σ

]−1/ξ−1
dx

= ξ−1 exp {it (µ− σ/ξ)}
∫ ∞
1

exp {− (−itσ/ξ) y} y−1/ξ−1dy.

The result follows from the definition of the complementary incomplete gamma function. 2

Theorem 2.2 Suppose Xi, i = 1, 2, . . . , N are independent generalized Pareto random variables
with parameters (µi, σi, ξi). The PDF of Z = X1 +X2 + · · ·+XN for fixed N can be expressed as

fZ(z) =
1

2π

∫ ∞
−∞

exp

(
it

N∑
i=1

µi − izt

)
·
∏
ξi<0

[
−ξ−1/ξi−1i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)} γ (−1/ξi,−itσi/ξi)
]

·
∏
ξi>0

[
ξ
−1/ξi−1
i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)}Γ (−1/ξi,−itσi/ξi)
]

·
∏
ξi=0

(1− iσit)
−1 dt (4)

for −∞ < z <∞.

Proof: Follows by using Theorem 2.1 and the inversion theorem. 2

Theorem 2.3 Suppose Xi, i = 1, 2, . . . , N are independent generalized Pareto random variables
with parameters (µi, σi, ξi). The CDF of Z = X1 +X2 + · · ·+XN for fixed N can be expressed as

FZ(z) =
1

2
− 1

π

∫ ∞
0

t−1Im

[
exp

(
it

N∑
i=1

µi − izt

)
·
∏
ξi<0

[
−ξ−1/ξi−1i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)} γ (−1/ξi,−itσi/ξi)
]

·
∏
ξi>0

[
ξ
−1/ξi−1
i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)}Γ (−1/ξi,−itσi/ξi)
]

·
∏
ξi=0

(1− iσit)
−1

]
dt (5)

for −∞ < z <∞, where Im(·) denotes the imaginary part.
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Proof: Follows by using Theorem 2.1 and the inversion theorem of Wendel (1961). 2

There is a variety of other inversion formulas than those used in Theorems 2.2 and 2.3. See
Abate and Valkó (2004), Ramsay (2006, 2008) and Albrecher and Kortschak (2009). Of these the
first three have the advantage that the absolute value of the integral is integrable. The last one is
only an approximation.

The integrals in (4)-(5) do not appear to have closed forms. However, they can be easily
computed using known routines for incomplete and complementary incomplete gamma functions.

Theorems 2.2 and 2.3 can be easily extended to the case that N is a discrete random variable.
In this case, the PDF and the CDF of Z will take the form of a single summation with each term
involving a single integral.

Corollaries 2.1 and 2.2 are particular cases of Theorem 2.1. Corollary 2.1 considers the particular
case that 1/ξ is a positive integer or a negative integer. When 1/ξ is a negative integer φX(t) is
reduced to an elementary form. When 1/ξ is a positive integer φX(t) is reduced to an elementary

form except for Ei(·), the exponential integral defined by Ei(x) =

∫ x

−∞
exp(t)/tdt.

Corollary 2.2 considers the particular case that 1/ξ is a half positive integer or a half negative
integer. In these cases, φX(t) is reduced to elementary forms except for Φ(·), the CDF of a standard
normal random variable. In-built routines for Ei(·) and Φ(·) are widely available, even in pocket
calculators.

Corollary 2.1 Let X denote the generalized Pareto random variable with 1/ξ an integer. Its CHF
has the closed form:

φX(t) =



− (−1/ξ − 1)!ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)}

+ (−1/ξ − 1)!ξ−1/ξ−1 (tσ)1/ξ exp {itµ− iπ/(2ξ)}
−1/ξ−1∑
k=0

zk

k!
,

if ξ < 0,

(−1)1/ξ−1

(1/ξ)!
ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)}Ei(−z)

+
(−1)1/ξ−1

(1/ξ)!
ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)} log z

−(−1)1/ξ−1

2(1/ξ)!
ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)} log(−z)

+
(−1)1/ξ−1

2(1/ξ)!
ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)} log

(
−1

z

)
−ξ−1/ξ−1 (tσ)1/ξ exp {itµ− iπ/(2ξ)}

1/ξ∑
k=1

zk−1/ξ−1

(−1/ξ)k
,

if ξ > 0,

where z = −itσ/ξ and (e)k = e(e+ 1) · · · (e+ k − 1) denotes the ascending factorial.

Proof: Follows by using http: // functions. wolfram. com/06.06.03.0009.01 and http: // functions.
wolfram. com/06.06.03.0011.01 to simplify γ (−1/ξ,−itσ/ξ) = Γ (−1/ξ) − Γ (−1/ξ,−itσ/ξ) and
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Γ (−1/ξ,−itσ/ξ), respectively. 2

Corollary 2.2 Let X denote the generalized Pareto random variable with 1/ξ a half integer. Its
CHF has the closed form:

φX(t) =



ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)}Γ (−1/ξ)

−2ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)}Γ (−1/ξ) Φ
(√

2z
)

+(−1)−1/ξ−3/2ξ−1/ξ−1 (tσ)1/ξ exp {itµ− iπ/(2ξ)}
√
z

−1/ξ−3/2∑
k=0

(
1 +

1

ξ

)
−1/ξ−3/2−k

,

if ξ < 0,

2
√
π(−1)1/2+1/ξ

(1/2)1/2+1/ξ
ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)}

−2
√
π(−1)1/2+1/ξ

(1/2)1/2+1/ξ
ξ−1/ξ−1 (tσ)1/ξ exp {it (µ− σ/ξ)− iπ/(2ξ)}Φ

(√
2z
)

−ξ−1/ξ−1 (tσ)1/ξ exp {itµ− iπ/(2ξ)} z−1/ξ
1/ξ−1/2∑
k=0

zk

(−1/ξ)k+1

,

if ξ > 0,

where z = −itσ/ξ and (e)k = e(e+ 1) · · · (e+ k − 1) denotes the ascending factorial.

Proof: Follows by using http: // functions. wolfram. com/06.06.03.0005.01 and http: // functions.
wolfram. com/06.06.03.0007.01 to simplify γ (−1/ξ,−itσ/ξ) = Γ (−1/ξ) − Γ (−1/ξ,−itσ/ξ) and
Γ (−1/ξ,−itσ/ξ), respectively. 2

3 Application to insurance

A probability of importance associated with the sum of independent generalized Pareto or Pareto
random variables is

P = Pr (X1 +X2 + · · ·+XN > u) , (6)

where N could be deterministic or stochastic. For example, (6) could represent the probability that
the total claim amount over some period exceeding a certain threshold (Klugman et al., 2008).

The probability, P , in (6) follows from (5). If Xi are independent generalized Pareto random
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variables with parameters (µi, σi, ξi) then

P =
1

2
+

1

π

∫ ∞
0

t−1Im

[
exp

(
it

N∑
i=1

µi − iut

)
·
∏
ξi<0

[
−ξ−1/ξi−1i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)} γ (−1/ξi,−itσi/ξi)
]

·
∏
ξi>0

[
ξ
−1/ξi−1
i (tσi)

1/ξi exp {−itσi/ξi − iπ/ (2ξi)}Γ (−1/ξi,−itσi/ξi)
]

·
∏
ξi=0

(1− iσit)
−1

]
dt. (7)

Note that (7) is a single integral of known special functions. This representation is perhaps the
simplest means to compute P . The probability, P , can also be computed in other ways. For
example, it can be computed by using the PDF of generalized Pareto random variables. But P
will then be an (N −1)-fold integral, a much more complicated representation than (7). Nadarajah
(2008) derives explicit expressions (involving the Appell function of the first kind and the Gauss
hypergeometric function) for P using this approach when N = 2.
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Figure 1: CPU times taken to compute (7) and the corresponding in Nguyen and Robert (2013)’s
method versus N when u = 1, µi = 0, σi = 1 and ξi = 0.3.
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Figure 2: CPU times taken to compute (7) and the corresponding in Nguyen and Robert (2013)’s
method versus N when u = 1, µi = 0, σi = 1 and ξi = −0.2.

We now present some numerical results with respect to computing (7). Figures 1 and 2 show
the Central Processing Unit (CPU) time in seconds taken to compute (7) for u = 1, µi = 0, σi = 1,
ξi = 0.3 and u = 1, µi = 0, σi = 1, ξi = −0.2. The figures show how the time varies with respect to
N . The figures also show the CPU times taken to compute P by using the expansions in Nguyen
and Robert (2013). The CPU times for (7) appear much smaller for every N . The CPU time
increases with N . The increase appears sharp. However, it is comforting to note that the CPU
times for (7) are manageable even for N as large as ten.

The computations for Figures 1 and 2 were performed using Mathematica. The accuracy
of computations of (7) is not an issue as Mathematica (like most other algebraic manipulation
packages) allows for arbitrary precision.

4 Application to catastrophe bonds

Catastrophe risk bonds, also known as CAT bonds, are a specific insurance product that creates
risk-linked securities which transfer a specific set of risks commonly through catastrophe and natural
disaster risks from an issuer or sponsor (insurance or reinsurance companies) to the investors. In
this scenario, the investors take on the liability of a specified catastrophe or event occurring in
return for an attractive rate of investment. However, in the event of a catastrophe or an extreme
event occurring, the investor will forgo the principal that they invested and the issuer will receive
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this money to cover their losses.

The data represents the value of monthly catastrophe bond deal (in millions of dollars) executed
from December 1996 to November 2016. The data were obtained from the Artemis Catastrophe
Bond deal directory, see http://www.artemis.bm/. The catastrophe bonds were assigned into two
broad location categories, these are the USA, and Asia / Europe. Within the two categories, Catas-
trophe bonds were further sorted into three types of catastrophe groups. These catastrophe groups
are earthquakes, wind storms (hurricane, typhoon and cyclone) and other catastrophe (property
catastrophe, mortgage, life insurance and medical benefit claims levels).

USA Asia / Europe
Earthquakes Wind storms Others Earthquakes Wind storms Others

Minimum 3.75 7.32 25.00 3.75 43.00 47.67
Q1 38.00 75.00 135.00 65.22 91.75 100.00
Median 150.00 187.50 234.00 150.00 108.00 130.00
Mean 176.00 215.40 238.00 188.30 150.90 170.80
Q3 259.00 300.00 300.00 265.20 200.00 235.00
Maximum 1100.00 1500.00 750.00 1100.00 400.00 700.00
Variance 29258.75 44148.33 20473.05 33355.73 7579.681 13021.26
Skewness 2.274 3.086 0.891 2.633 1.205 2.044
Kurtosis 11.883 17.961 4.100 13.015 3.566 9.455
CV 0.972 0.976 0.601 0.970 0.577 0.668

Table 1: Some summary statistics of the data.

The following summary statistics of the data are given in Table 1: minimum, first quartile
(Q1), median, mean, third quartile (Q3), maximum, variance, skewness, kurtosis and coefficient of
variation (CV). The data are generally positively skewed and have peakedness greater than that of
the normal distribution. For the USA, the minimum, first quartile, median and mean are largest for
other catastrophe while the third quartile, maximum, variance, skewness, kurtosis and coefficient
of variation are largest for wind storms. For Asia and Europe, the minimum and first quartile
are largest for other catastrophe while the median, third quartile, maximum, variance, skewness,
kurtosis and coefficient of variation are largest for earthquakes.

We are interested in determining the distributions of the total catastrophe bond due to earth-
quakes, the total catastrophe bond due to wind storms and the total catastrophe bond due to other
disasters. The total catastrophe bond due to earthquakes are the sum of the catastrophe bonds
for earthquakes in the USA and earthquakes in Asia and Europe. Similarly, the total catastrophe
bond due to wind storms are the sum of the catastrophe bonds for wind storms in the USA and
wind storms in Asia and Europe. Similarly, the total catastrophe bond due to other disasters are
the sum of the catastrophe bonds for other disasters in the USA and other disasters in Asia and
Europe.
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Figure 3: Probability plots of the fit of the generalized Pareto distribution to the catastrophe bond
data for earthquakes in the USA (top left), wind storms in the USA (top middle), other disasters
in the USA (top right), earthquakes in Asia and Europe (bottom left), wind storms in Asia and
Europe (bottom middle) and other disasters in Asia and Europe (bottom right).
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Figure 4: Quantile plots of the fit of the generalized Pareto distribution to the catastrophe bond
data for earthquakes in the USA (top left), wind storms in the USA (top middle), other disasters
in the USA (top right), earthquakes in Asia and Europe (bottom left), wind storms in Asia and
Europe (bottom middle) and other disasters in Asia and Europe (bottom right).

The results in Section 2 can be used to estimate the distributions of the total catastrophe
bond. We fitted the generalized Pareto distribution to each of the six data sets. The method of
maximum likelihood was used. The parameter estimates and standard errors are given in Table 2.
The standard errors were obtained by inverting the observed information matrix.

The goodness of fit of the generalized Pareto distribution is assessed by the probability and
quantile plots shown in Figures 3 and 4. Also shown in these figures are simulated 95 percent
confidence intervals. The plots appear reasonable, showing that the fits are reasonable.
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USA Asia / Europe

Earthquakes σ̂1 = 179.130(25.119), σ̂2 = 192.119(32.487),

ξ̂1 = −0.023(0.091) ξ̂2 = −0.024(0.105)
Wind storms σ̂1 = 217.204(28.749), σ̂2 = 216.676(32.995),

ξ̂1 = −0.014(0.078) ξ̂2 = −0.508(0.104)
Others σ̂1 = 302.204(34.239), σ̂2 = 197.92(29.030),

ξ̂1 = −0.369(0.062) ξ̂2 = −0.214(0.074)

Table 2: Fitted estimates of the generalized Pareto distribution.
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Figure 5: Fitted PDFs of the total catastrophe bond data for earthquakes (left), wind storms
(middle) and other disasters (right).

We used Theorem 2.2 to estimate the PDFs of total catastrophe bond due to earthquakes, wind
storms and other disasters. The estimated PDFs are shown in Figure 5. These PDFs can assist
in the pricing of catastrophe bonds for catastrophes around the world. We can compute the Value
at Risk for the different catastrophes which can provide us with information about the different
quantile levels of the pricing of the catastrophe bonds.
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Level Earthquakes Wind storms Others

0.9 700.732 661.508 682.658
0.95 849.183 806.854 780.092
0.99 1171.807 1139.005 968.836
0.999 1599.569 1601.842 1176.331
0.9999 2000.824 2049.847 1328.213
0.99999 2382.421 2482.279 1439.309
0.999999 2748.23 2904.446 1517.236
0.9999999 3100.806 3310.414 1658.039

Table 3: Estimates of Value at Risk for catastrophe bonds.

Table 3 gives Value at Risk estimates of catastrophe bonds for the three types of catastrophes.
For quantile levels from 0.9 to 0.99, the earthquakes give the largest Value at Risk estimates. For
quantile levels greater than 0.99, the wind storms give the largest Value at Risk estimates. For all
quantile levels, other catastrophes give the smallest Value at Risk estimates.
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[1] Abate, J. and Valkó, P. P. (2004). Multi-precision Laplace transform inversion. International
Journal for Numerical Methods in Engineering, 60, 979-993.

[2] Albrecher, H. and Kortschak, D. (2009). On ruin probability and aggregate claim repre-
sentations for Pareto claim size distributions. Insurance: Mathematics and Economics, 45,
362-373.

[3] Amari, S. V. and Misra, R. B. (1997). Closed-form expressions for distribution of sum of
exponential random variables. IEEE Transactions on Reliability, 46, 519-522.

[4] Bazargan, H., Bahai, H. and Aminzadeh-Gohari, A. (2007). Calculating the return value using
a mathematical model of significant wave height. Journal of Marine Science and Technology,
12, 34-42.

[5] Bean, M. A. (2001). Probability: The Science of Uncertainty: With Applications to Invest-
ments, Insurance, and Engineering. American Mathematical Society, Providence.

[6] Bonfiglioli, A. and Gancia, G. (2013). Heterogeneity, selection and labor market disparities.
Working Paper 734, Barcelona Graduate School of Economics, Spain.

[7] Goovaerts, M. J., Kaas, R., Laeven, R. J. A., Tang, Q. and Vernic, R. (2005). The tail
probability of discounted sums of Pareto-like losses in insurance. Scandinavian Actuarial
Journal, 6, 446-461.

[8] Hempel, C. G. (2007). Track initialization for multi-static active sonar systems. OCEANS
2007 - Europe, pp. 1-6.

[9] Hitha, N. (1991). Some characterizations of Pareto and related populations. Ph.D. Thesis,
Department of Mathematics and Statistics, Cochin University of Science and Technology,
Kochi, India.

13



[10] Khuong, H. V. and Kong, H. -Y. (2006). General expression for pdf of a sum of independent
exponential random variables. IEEE Communications Letters, 10, 159-161.

[11] Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008). Loss Models, third edition. John
Wiley and Sons, Hoboken, New Jersey.

[12] Morales, M. (2005). On an approximation for the surplus process using extreme value theory:
Applications in ruin theory and reinsurance pricing. North American Actuarial Journal, 8,
46-66.

[13] Nadarajah, S. (2008). Generalized Pareto models with application to drought data. Environ-
metrics, 19, 395-408.
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