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Abstract

It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size.
We compare the performance of two classes of methods which aim to solve this issue: stochastic gradi-
ent MCMC (SGMCMC), and divide and conquer methods. We find an SGMCMC method, stochastic
gradient Langevin dynamics (SGLD) to be the most robust in these comparisons. This method makes
use of a noisy estimate of the gradient of the log posterior, which significantly reduces the per iteration
computational cost of the algorithm. We analyse the algorithm over different dataset sizes and show,
despite the per iteration saving, the computational cost is still proportional to the dataset size. We use
control variates, a method to reduce the variance in Monte Carlo estimates, to reduce this computational
cost to O(1). Next we show that a different control variate technique, known as zero variance control
variates can be applied to SGMCMC algorithms for free. This post-processing step improves the infer-
ence of the algorithm by reducing the variance of the MCMC output. Zero variance control variates rely
on the gradient of the log posterior; we explore how the variance reduction is affected by replacing this
with the noisy gradient estimate calculated by SGMCMC.

Keywords: Stochastic gradient MCMC; Langevin dynamics; scalable MCMC; control variates; computa-
tional cost; big data

1 Introduction

Markov chain Monte Carlo (MCMC), one of the most popular methods for Bayesian inference, scales poorly
with dataset size. This is because standard methods require the whole dataset to be evaluated at each
iteration of the MCMC algorithm. Recent innovations in MCMC methodology have produced scalable
algorithms that are amenable to large datasets and these new algorithms have been successfully applied to
a range of state-of-the-art machine learning problems (e.g. Patterson and Teh, 2013; Wenzhe Li, 2016).

These new scalable algorithms can mostly be divided into two groups: divide and conquer and minibatch.
The divide and conquer methods deliver computational speed-up by splitting the data across separate com-
puter core and running independent parallel MCMC algorithms which are later combined. By comparison,
minibatch methods require a single core, but achieve speed-up over standard MCMC by using only a subset
of the data at each iteration.

Suppose we have data x, then divide and conquer methods split the data into S disjoint subsets, call
these xBs . MCMC is then run in parallel, targeting each subposterior p(θ|xBs). The computational speed-
up compared to running MCMC on all the data is approximately proportional to the number of available
cores. The challenge with using such methods lies in recombining the MCMC output for each subposterior
to approximate the full posterior (Scott et al., 2016; Neiswanger et al., 2014; Wang and Dunson, 2013;
Srivastava et al., 2015; Nemeth and Sherlock; Scott, 2017).
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Rather than parallelizing, the computational cost of MCMC can be reduced by leveraging minibatches,
where only a subset of the data is used at each MCMC iteration. Some methods alter the Metropolis-
Hastings acceptance step to account for the fact that only a subsample of the data is used to calculate
the posterior density (Korattikara et al., 2014; Maclaurin and Adams, 2014; Bardenet et al., 2016). Other
methods combine efficient proposals based on discretized dynamics that uses gradient information. They
reduce the computational cost by using noisy gradient estimates calculated using minibatches of data. They
bypass the acceptance step by choosing a small stepsize (Welling and Teh, 2011; Chen et al., 2014; Ding
et al., 2014; Dubey et al., 2016). These latter methods, known as stochastic gradient MCMC (SGMCMC),
have become popular and are the focus of this paper.

Both the divide and conquer and SGMCMC methods produce algorithms that are computationally more
efficient than standard MCMC. However this comes at the expense of them being approximate: recombine
steps of the divide and conquer methods are often based on strong assumptions; while the introduction
of sub-sampling within most SGMCMC methods produces an MCMC algorithm that no longer has the
true posterior as its invariant distribution. Often it is difficult in practice to quantify the error each method
introduces. The first contribution of this paper is a systematic comparison of methods that attempts to tease
out how different methods perform depending on different features of an application. The conclusion of this
simulation study is that divide and conquer methods work well in situations either where the subposteriors
are unimodal and have roughly elliptical contours; though there has been promising work which focuses on
the 1d case (Minsker et al., 2014). However outside these cases they can be unreliable. As such we generally
recommend the use of sub-sampling based methods. These methods are the focus for the rest of the paper.
In particular we focus on SGLD, which we found to have the best combination of robustness and simplicity
of tuning.

In this paper we show that the computational cost of SGLD is proportional to the dataset size. We do
this by comparing SGLD to a coupled true Langevin diffusion that SGLD is trying to approximate. We
make this comparison over varied dataset size, and show that in order for the squared error of SGLD to
reach a desired level compared with the underlying diffusion, the minibatch size n has to be set proportional
to the size of the data. It follows that the computational cost of SGLD is still O(N).

This motivates us to improve the computational cost of SGLD, and we do this by using control variates
(Ripley, 2009). We show that these ideas can be easily applied to reduce the Monte Carlo variance of the
gradient estimate in stochastic gradient MCMC algorithms. When we compare SGLD with this gradient
estimate to the underlying diffusion we find that we can set a constant minibatch size n0, over any dataset
size N , and the squared error of SGLD will still reach the desired level of accuracy. Thus the computational
cost has been reduced from O(N) to O(1). We show similar results for the computational cost of SAGA
(Dubey et al., 2016), another SGLD algorithm that leverages control variates.

We demonstrate efficiency improvements empirically on a variety of complex models from the machine
learning literature. SAGA uses a previous state in the chain in order to produce its control variate, while
we use a stochastic optimization step which replaces the burn-in of the chain. We show in our experiments
that while SAGA works very well on simpler examples, when it does not have a good starting point on
more complex examples, burn-in can be prohibitively slow. The algorithm also appears to get stuck in local
modes. This is where our method has an advantage, as the stochastic optimization step is often faster than
SGLD burn-in, and does not get stuck. On the other hand, SAGA has the advantage of the control variate
calculation being performed within the SGLD algorithm itself.

Not only can control variates be used to speed up stochastic gradient MCMC by enabling smaller mini-
batches to be used; we show that they can be used to improve the inferences made from the MCMC output.
In particular, we can use post-processing control variates (Mira et al., 2013; Papamarkou et al., 2014; Friel
et al., 2016) to produce MCMC samples with a reduced variance. The post-processing methods rely on the
MCMC output as well as gradient information. Since stochastic gradient MCMC methods already com-
pute estimates of the gradient, we explore replacing the true gradient in the post-processing step with these
free estimates. We also show theoretically how this affects the variance reduction factor; and empirically
demonstrate the variance reduction that can be achieved from using these post-processing methods.
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2 Preliminaries

In this section we outline in more detail the divide and conquer and stochastic gradient MCMC methods
that are investigated in the comparisons. The stochastic gradient methods, especially SGLD, were found to
be most effective and simple to use in our comparisons. We provide a more detailed explanation of SGLD,
as we focus on this method in our control variate analysis.

2.1 Divide-and-conquer methods

Suppose we have data x realised from a model with density p(.) that depends on some parameter vector
θ ∈ Rd. The divide and conquer methods make the assumption that subsets of the data are conditionally
independent wrt θ. We call these subsets xBs . The posterior, up to a multiplicative constant, can then be
written as

p(θ|x) ∝
S∏
s=1

[p(θ)]1/Sp(xBs |θ) =

S∏
s=1

p(θ|xBs), (1)

where we refer to p(θ|xBs) as a subposterior. So if we know the density of the subposteriors, then their
product will be the full posterior. In reality, combining these subposteriors to recover the full posterior
is challenging. We look at three methods to recombine the full posterior from the subposterior samples:
Consensus Monte Carlo (Scott et al., 2016), KDEMC (Neiswanger et al., 2014) and the Weierstrass sampler
(Wang and Dunson, 2013).

2.1.1 Consensus Monte Carlo

The simplest way to recombine the samples from the subposteriors is to approximate each subposterior
as a Gaussian distribution. The samples can be used to estimate the mean and variance of each of the
subposteriors. Then, conditionally on these estimates we can analytically calculate a Gaussian approximation
to the full posterior. This idea was first proposed by Neiswanger et al. (2014). The motivation is that as
N gets large the Bernstein-von Mises theorem states that the posterior will be approximately Gaussian
(Le Cam, 2012).

The consensus Monte Carlo algorithm of Scott et al. (2016) aims to improve on this. It works by
approximating the full posterior as a weighted average of the subposterior samples. The idea behind consensus
Monte Carlo is that, if the subposteriors were Gaussian then this method of combining samples would give
us draws from the true posterior. Moreover, Scott et al. (2016) argue that consensus Monte Carlo is more
robust to deviations from Gaussian subposteriors, as the approximate full posterior that it samples from can
inherent some of the properties, such as skewness or heavy tails.

Suppose we have an MCMC sample θs1, . . . , θsM from p(θ|xBs) for s = 1, . . . , S, Scott et al. (2016)

propose estimating the full MCMC chain, call this θ̂i, as a weighted average of the subposterior samples

θ̂i =

(
S∑
s=1

Ws

)−1 S∑
s=1

Wsθsi, (2)

where Ws ∈ Rd×d is a weight matrix for subposterior s. Scott et al. (2016) suggest letting Ws = Σ−1s , where
Σs is the subposterior covariance matrix. The consensus approach is very scalable: only a weighted average
needs to be calculated after the embarassingly parallel MCMC chains are run. However, the Normality
assumptions are questionable, so in the comparison that follows, we test how well the algorithm performs in
practice.

2.1.2 KDEMC

Neiswanger et al. (2014) suggest estimating the full posterior by applying kernel density estimation to each

subposterior, p̂(θ|xBs). Then by (1) we can approximate the full posterior by p̂(θ|x) =
∏S
s=1 p̂(θ|xBs).
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If Gaussian kernels are used in the approximation, then p̂(θ|x) becomes a product of Gaussian mixtures.
This product can be expanded to give another Gaussian mixture with O(SM) components, where M is the
number of iterations of the MCMC chain that are stored, and S is the number of subposteriors. Neiswanger
et al. (2014) suggest sampling from this Gaussian mixture using MCMC. We refer to this algorithm as
KDEMC. The number of mixture components increases dramatically with the number of subsets and sub-
posterior samples. This means KDEMC can be computationally expensive and inefficient, but the algorithm
should target more complex posteriors better. Neiswanger et al. (2014) also suggest a similar method based
on semiparametric density estimation.

2.1.3 Weierstrass

The Weierstrass method (Wang and Dunson, 2013) is similar to KDEMC, but uses a Weierstrass transform
to approximate the subposterior densities rather than a kernel density estimate. Using the Weierstrass
approximation rather than a kernel density is associated with a number of better properties, including an
improvement when subposteriors do not overlap, and better scalings with dimensionality. The properties of
the Weierstrass transform allow the approximation to be sampled using a rejection sampler rather than a
Gibbs sampler, which is more efficient.

2.2 Stochastic gradient MCMC

Many MCMC algorithms are based upon discrete-time approximations to continuous-time dynamics, such as
the Langevin diffusion, that are known to have the posterior as their invariant distribution. The approximate
discrete-time dynamics are then used as a proposal distribution within a Metropolis-Hastings algorithm. The
accept-reject step within such an algorithm corrects for any errors in the discrete-time dynamics. Examples
of such an approach include the Metropolis-adjusted Langevin algorithm (MALA; see e.g. Roberts and
Rosenthal (1998)) and Hamiltonian Monte Carlo (HMC; see Neal (2010)).

2.3 Stochastic gradient Langevin dynamics

SGLD, first introduced by Welling and Teh (2011), is a minibatch version of the Metropolis-adjusted Langevin
algorithm. Following the stochastic approximation methods of Robbins and Monro (1951), the SGLD al-
gorithm creates an approximation of the true gradient of the log-posterior by leveraging minibatches of
data.

Suppose we aim to make inference on a set of parameters θ, with data x = {xi}Ni=1. We denote the
probability density of xi as p(xi|θ) and assign a prior density p(θ). The resulting posterior is then p(θ|x) ∝
p(θ)

∏N
i=1 p(xi|θ). A Langevin diffusion of this posterior is given by

dθt =
1

2
∇ log p(θt|x)dt+ dBt, (3)

where Bt is a Wiener process. This equation targets the posterior exactly, but in practice we need to discretize
the dynamics to simulate from it, introducing error. A bottleneck for this simulation is that ∇ log p(θ|x) is
an O(N) operation. So to get around this, Welling and Teh (2011) replace the log-posterior gradient with
the following unbiased estimate

̂∇ log p(θt|x) := ∇ log p(θt) +
N

n

∑
i∈St

∇ log p(xi|θ), (4)

for some subsample St of {1, . . . , N}, with |St| = n. A single update of SGLD is then

θt+1 = θt +
εt
2

̂∇ log p(θt|x) + ζt, (5)

where ζt ∼ N(0, εt).
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MALA uses a Metropolis-Hastings accept-reject step to correct for the discretization of the Langevin
process. Welling and Teh (2011) bypass this acceptance step, which would require calculating p(θ|x) using
the full dataset, and instead use an adaptive rather than fixed stepsize, where εt → 0 as t → ∞. The
motivation is that the noise in the gradient estimate disappears faster than the process noise, so eventually,
the algorithm will sample the posterior approximately. In practice, we found the algorithm does not mix
well when the stepsize is decreased to zero, so generally use a fixed small stepsize, as suggested by Vollmer
et al. (2016).

2.4 Stochastic gradient Hamiltonian Monte Carlo

The stochastic gradient Hamiltonian Monte Carlo algorithm (SGHMC) (Chen et al., 2014) is similar to
SGLD, but instead approximates Hamiltonian dynamics, which underlies Hamiltonian Monte Carlo (HMC)
(Neal, 2010). SGHMC augments the parameter space with momentum variables, ν. The algorithm samples
approximately from a joint distribution p(θ, ν|x), whose marginal distribution for θ is the posterior of interest.
The SGHMC algorithms performs the following updates at each iteration

θt+1 = νt, νt+1 = −η ̂∇ log p(θt+1|x)− ανt + ζt,

where ζt ∼ N(0, 2(α − β̂t)η); η and α are parameters that need to be tuned and β̂t is proportional to an
estimate of the Fisher information matrix. Often the dynamics are simulated for a trajectory of length L
before the state is stored, at which point ν is resampled. This means the computational cost is therefore L
times larger than SGLD.

3 Comparison of MCMC methods for big data

In this Section we aim to provide an extensive comparison of some popular MCMC methods for big data.
As far as we know, there has been limited comparison between stochastic gradient and divide and conquer
methods, and we aim to bridge this gap in the following comparisons. We use simple examples that focus on
important scenarios, and hope to build intuition for where methods should be used. The particular scenarios
we focus on are: heavy tails, multimodality and complex geometry. We end the section with a summary of
each method based on the comparisons.

We compare each method’s performance by measuring the KL divergence between the approximate
sample and a HMC sample, taken to be the truth, using the R package FNN (Li et al., 2013). The HMC
sample is simulated using STAN (Carpenter et al., 2017). The KL divergence is measured over 10 different
runs of the algorithm and plotted as boxplots, or in the case of the dimensionality algorithm a line plot with
error bars. Contour plots for one simulation are also provided to help develop the reader’s intuition. The
only method which does not require tuning parameters is the Consensus method, which is a huge advantage
as this can take a lot of time. The other methods are tuned by minimizing the KL divergence measure which
we use to make the boxplots. The Weierstrass algorithm is implemented using the authors’ R package (Wang
and Dunson, 2013).

3.1 Heavy tails: multivariate-t

We infer the location θ from data x simulated from a bivariate-t distribution with known scale Σ and degrees
of freedom ν. The density of x is given by

p(x|θ) ∝
[
1 +

1

ν
(x− θ)TΣ−1(x− θ)

]−(ν+2)/2

,

where we assume an uninformative prior on θ. In order to test the algorithms we use a relatively small
dataset size of 800. The number of subposteriors used in the divide and conquer methods is 20. We use a
minibatch size of 50 for the stochastic gradient MCMC methods.
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Figure 1: Comparison of method performance for multivariate-t distribution. Contour plots show empirical
densities. Box plots show KL-divergence from the truth.

Figure 1 gives an illustrative comparison of the methods discussed in Section 2. The results show that all
methods are equally equipped to sufficiently explore this heavy tailed posterior. The KDEMC and SGLD
algorithms are the slowest to converge to the posterior. It has been shown in Teh et al. (2016) that the

convergence rate of SGLD is O(T−
1
3 ), and therefore slower than the standard Monte Carlo rate of O(T−

1
2 ).

In this scenario SGHMC performs the best in terms of minimizing KL divergence, closely followed by the
consensus Monte Carlo algorithm and the Weierstrass sampler. The Weierstrass sampler does a good job
of improving the convergence speed of KDEMC. There is an additional advantage in using the consensus
Monte Carlo as it does not require tuning, so is arguably the best choice for this problem.

3.2 Multiple modes: Gaussian mixture

We consider a multimodal target where we infer the locations θ1, θ2 from data x simulated from a bimodal,
bivariate Gaussian mixture. We assume the mixture has known common scale Σ and unknown allocation
probabilities α1, α2. We marginalise out the allocation probabilities to obtain the following density of x

p(x|θ1, θ2) ∝ N (x|θ1,Σ) +N (x|θ2,Σ),

where N (x|θ,Σ) denotes a Gaussian density with mean θ and variance Σ. We assume the priors on θi
are independent Gaussians with mean 0 and a large variance. We use a larger dataset size of 10000. The
number of subposteriors used in the divide and conquer methods is 20. We use a minibatch size of 50 for
the stochastic gradient MCMC methods.

Results given in Figure 2 show that the consensus algorithm performs poorly in this setting. The simple
weighted average scheme (2) leads to a unimodal posterior approximation which does not account for the
bimodality, suggesting that the posterior mass lies between the subposterior modes. KDEMC offers an
improvement over the Consensus algorithm with improved posterior coverage, but still does not capture the
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Figure 2: Comparison of method performance for Gaussian mixture. Contour plots show empirical densities.
Box plots show KL-divergence from the truth.

bimodality. From investigating the subposteriors it appears that this is a result of the kernel bandwidth
being smaller than the width of the posterior, leading to density estimates for each subposterior which tail
off rapidly outside of the region where subposterior samples lie. Therefore, the full posterior is only non-zero
in the region of intersection of all subposterior samples. The Weierstrass method seems to encounter similar
issues to KDEMC, and its performance is not much better.

The stochastic gradient methods perform better than the divide and conquer approaches, and are able
to explore both modes. Given a good starting point, SGHMC performs particularly well. When the starting
point is further from the posterior mass, the algorithm performs worse than SGLD. The algorithm is also
sensitive to the choice of β̂, as in the experimental setup in Chen et al. (2014), we set β̂ = 0 for all the
experiments. As noted in the previous example (Section 3.1), SGLD can be slow to converge and may require
further iterations. Contrasting this with the computational cost of SGHMC, which is L times greater than
SGLD, we suggest using SGLD for this problem and running the algorithm for more iterations.

3.3 Complex geometry: warped Gaussian

We consider a target with complex geometry known as the warped Gaussian. In this case, locations θ1 and
θ2 are inferred from data x with density

p(x|θ1, θ2) = N (x|θ1 + θ22, σx),

where σx is a known scale parameter. We assume the prior for each θi are independent with density
p(θi) = N (θi|0, σθ), where σθ is some known scale parameter. In order to test the algorithms we use a
relatively small dataset size of 800. The number of subposteriors used in the divide and conquer methods is
20. We use a minibatch size of 50 for the stochastic gradient MCMC methods.
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Figure 3: Comparison of method performance for warped Gaussian. Contour plots show empirical densities.
Box plots show KL-divergence from the truth.

The results given in Figure 3 show that again the consensus algorithm struggles to approximate the full
posterior. The consensus approach uses an average of the subposterior samples, re-scaled by their covariance.
One way of understanding why the consensus performs poorly in this example is to consider the situation
where there are only two subposteriors, each with approximately the correct warped Gaussian shape and
location as the full posterior. Averaging samples from each subposterior would lead to some samples located
in the the lower tail of subposterior one being averaged with samples from the upper tail of subposterior
two, thus producing an approximation to the full posterior which lies in the centre, as shown in Figure 3.
The KDEMC works reasonably well on this example, but underestimates the tails for the same reason as
discussed for the mixture example (Section 3.2). The Weierstrass shows some improvement over KDEMC,
though does not perform as well as the stochastic gradient methods.

Finally, the stochastic gradient methods perform better than the divide and conquer algorithms and once
again SGHMC is more sensitive to the starting point than SGLD.

3.4 Dimensionality: multivariate Gaussian

The examples considered so far have been in low dimensional parameter spaces. In this section we explore
how these big data MCMC algorithms scale with increasing the dimension of the posterior. We consider
the posterior for θ given x, where x follows a multivariate Gaussian with known scale Σ. We assume an
uninformative prior for θ. In order to test the algorithms we again use a relatively small dataset size of 800.
The number of subposteriors used in the divide and conquer methods is 20. We use a minibatch size of 50
for the stochastic gradient MCMC methods.

Figure 4 gives the KL divergence between the full posterior and the approximate posterior resulting from
each of the considered algorithms. Kernel density methods are well known to scale poorly with dimension
and this is shown here. The Consensus algorithm performs particularly well. This is unsurprising as the

8



0.0

0.5

1.0

1.5

2 4 6 8 10
Dimension

K
L−

di
ve

rg
en

ce

method

consensus

kdemc

sgld

sghmc

weierstrass

Figure 4: Comparison of method performance for Gaussian. Plot of KL-divergence against dimension for
each method.

consensus algorithm is exact when each subposterior is Normally distributed. The Weierstrass method scales
much better with dimensionality than its KDEMC counterpart, this is due to its sequential rejection sampling
procedure, which ensures that error accumulates linearly in dimensionality, as opposed to exponentially in
dimensionality as is the case for KDEMC. Both minibatch methods work well, but the trend in Figure 4
implies that these algorithms may lose some performance in significantly larger posterior spaces. This can, to
some extent, be mitigated by pre-conditioning the gradient estimates, for example, using stochastic gradient
Riemannian Langevin dynamics (Patterson and Teh, 2013).

3.5 Discussion

When considering unimodal posteriors which do not exhibit complex geometry, the consensus algorithm is
arguably preferred; as the algorithm does not require any tuning and scales well in high-dimensional pa-
rameter spaces. KDEMC is a natural extension to the consensus algorithm, which merges the subposterior
densities rather than the subposterior samples. We found through experimentation that, as with the con-
sensus algorithm, the KDEMC approach tends to underestimate the tails of the full posterior density, which
is particularly an issue when the subposterior densities do not overlap. The KDEMC algorithm also scales
very poorly with dimension. The Weierstrass sampler, which extends ideas of the KDEMC algorithm, fixes
many of these issues. The algorithm scales well with dimensionality; copes better with posteriors that do
not overlap and converges faster than KDEMC. However the algorithm still struggles with multimodality,
and is not quite up to the standard of the SGMCMC methods when it comes to more complex geometry.
The algorithm requires tuning of an acceptance step, but the results are not too sensitive to this choice.

Stochastic gradient methods were found to be robust to the geometry of the posterior as well as handling
multimodality. A major disadvantage of these algorithms is how sensitive they are to the choice of stepsize,
though some work has been done to improve this (Giles et al., 2016; Gorham et al., 2016). We found in
general the extra computational cost of SGHMC did not lead to vastly improved performance over SGLD.
This could be due to sensitivity to the Fisher information estimate, or to the choice of starting point.

It was hard to compare computational cost directly between the two methods, but each algorithm was
run for the same number of MCMC iterations. For most of the comparisons, the dataset size was chosen to
be about 800, so quite small, designed to test the methods. In these cases the computational cost between
SGLD and the divide and conquer methods is similar since the divide and conquer methods have a per
iteration cost of 40 (as the number of batches is 20), and the SGLD algorithm has a per iteration cost of
50 since that was its minibatch size. So the comparisons certainly demonstrate the slow convergence rate
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of SGLD for simple examples. But SGLD demonstrated strength in the more complex geometry of the
warped Gaussian. In the Gaussian mixture example, SGLD has the lowest computational cost by far, but
still performs the best. It’s worth noting that the combining step adds to the computational cost, and for
KDEMC this is a particularly slow process.

On the other hand, the trajectory L for SGHMC was chosen to be 3, so that the momentum parameter
was not refreshed at every step. This means the per iteration computational cost was about 3 times higher
than the other methods. For simple examples, SGHMC did not warrant this extra tuning and computational
cost, as it did not perform much better than consensus Monte Carlo. For more complex examples, the method
again did not warrant the extra cost over SGLD.

In the mixture example, to test SGLD more, the dataset size is 10000, with minibatch size 50, and the
number of batches is still 20, so the computational cost is skewed well in favour of the batch methods.
However the SGLD algorithm still outperforms the other methods.

4 Control variates to improve SGLD efficiency

The stochastic gradient versions of MALA and HMC, i.e. SGLD and SGHMC, presented in Section 2, use
minibatches of the data to calculate unbiased estimates of the gradient of the log-posterior. We found these
methods to be the most robust of those investigated in the comparisons of Section 3, so we focus on them
for the rest of the paper, particularly SGLD.

The SGLD algorithm has a reduced per iteration computational cost compared to traditional MCMC
algorithms. However, in Section 4.3, we compare SGLD with the true, coupled Langevin diffusion that SGLD
is trying to approximate. We show that as we vary the stepsize, in order for the strong error of SGLD to reach
a desired level, the minibatch size has to be set proportional to the dataset size N . Thus the algorithm still
has O(N) computational cost. As we make clear later, this O(N) cost is due to the variance in the gradient
estimate. Therefore, reducing the variance of the gradient estimate should improve the computational cost
of the algorithm.

A natural choice for reducing this variance is through control variates (Ripley, 2009). Control variates
applied to SGLD have recently been investigated by Dubey et al. (2016), who show that the convergence
bound of SGLD is reduced when they are used. They have recently been applied in the continuous-time
MCMC setting by Bierkens et al. (2016) and Pollock et al. (2016). Bardenet et al. (2016) introduce con-
trol variates to develop a Metropolis-Hastings algorithm which approximates the acceptance step using a
subsample of the data.

In Section 4.1, we use control variates to reduce the variance in the gradient estimate used in SGLD.
Then in Section 4.3 we compare SGLD with this improved gradient estimate with the true, coupled Langevin
diffusion. We show that we can set a constant stepsize n0 and the strong error will still reach a desired level
for any dataset size N . This means the computational cost has been reduced from O(N) to O(1). We focus
our theoretical results on SGLD, but the methodology can be applied to any SGMCMC algorithm, since
we are only changing the gradient estimate. While earlier results have demonstrated the benefits of control
variates applied to SGMCMC for a fixed data set, we believe this is the first result to show the beneficial
scaling of control variates for SGLD as the dataset size increases.

4.1 Control variates in the gradient estimate

Let θ̂ be the mode of the posterior p(θ|x). The log posterior gradient can then be re-written as

∇ log p(θ|x) = ∇ log p(θ̂|x) + [∇ log p(θ|x)−∇ log p(θ̂|x)],

where the first term on the right-hand side is a constant and the bracketed term on the right-hand side can
be unbiasedly estimated by[

̂∇ log p(θ|x)− ̂∇ log p(θ̂|x)
]

= ∇ log p(θ)−∇ log p(θ̂) +
N

n

∑
i∈S

[
∇ log p(xi|θ)−∇ log p(xi|θ̂)

]
,
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Algorithm 1 SGLD-CV

Require: θ̂, ∇ log p(θ̂|x), ε
for t ∈ 1, . . . , T do

Update ˜∇ log p(θt|x) using (4.1)
Draw ζt ∼ N(0, εI)

θt+1 ← θt + ε
2

˜∇ log p(θt|x) + ζt
end for

where S is a random sample from {1, . . . , N} with |S| = n. If the gradient of the likelihood for a single
observation is smooth in θ then we will have

∇ log p(xi|θ) ≈ ∇ log p(xi|θ̂)

if θ ≈ θ̂. Hence for θ ≈ θ̂ we would expect the unbiased estimator

˜∇ log p(θ|x) = ∇ log p(θ̂|x) +
[

̂∇ log p(θ|x)− ̂∇ log p(θ̂|x)
]

to have a lower variance than the simpler unbiased estimator (4).

The gradient estimate ˜∇ log p(θ|x) can be substituted into any stochastic gradient MCMC algorithm in

place of ̂∇ log p(θ|x). We refer to SGLD using this alternative gradient estimate as SGLD-CV. The full
procedure is outlined in Algorithm 1.

Implementing this in practice means finding a suitable θ̂. While we cannot find the true posterior mode,
if θ̂ is within distance O(N−

1
2 ) of the true posterior mode then, as is shown below, the variance reduction

will be by a factor of N . In this case the O(1) computational cost results apply. Under standard asymptotics
this is easily achieved. Under more complex asymptotics there should still be efficiency improvements, and
we ensure to explore these more complex cases in the experiments (Section 6).

In practice, we find θ̂ using a stochastic optimization algorithm (Robbins and Monro, 1951), and then

calculate the full log posterior gradient at this point ∇ log p(θ̂|x). So the algorithm requires a one-off O(N)
pre-processing step. We can then use control variates with a fixed batch size (i.e. independent of N) to
estimate the gradient at each iteration of SGLD. Thus the algorithm has per iteration cost of O(1).

The added computational cost of the optimization procedure is investigated in the simulation studies. We
find in practice that the time to find a good θ̂ is often quicker than the time it takes for SGLD to burn-in. If
the SGLD-CV is then started from θ̂ then the burn-in is minimal, so the cost of the optimization procedure
is offset by the efficiency gain.

4.2 Variance reduction

The improvements of using the control variate gradient estimate (4.1) over the standard (4) become apparent
when we calculate the variances of each. First, we assume the following Lipschitz smoothness and bound
conditions. These assumptions are discussed in Chen et al. (2015).

Assumption 1. Bounded gradients: Assume there exists σ ∈ R such that for all θ ∈ Rd and for all
i ∈ {1, . . . , N}, |∇ log p(θ)| < σ and |∇ log p(xi|θ)| < σ.
Lipschitz smoothness assumption: Assume there is some D > 0 such that

|∇ log p(xi|θ)−∇ log p(xi|θ′)| < D|θ − θ′|,
|∇ log p(θ)−∇ log p(θ′)| < D|θ − θ′|,

for all i ∈ {1, . . . , N} and for all θ ∈ Rd. We assume that D is independent of N .

11



The Lipschitz smoothness assumption is common for working with these kinds of problems (Dubey et al.,
2016; Sato and Nakagawa, 2014). The Lipschitz constant D for the density and prior in Assumption 1 is
assumed not to depend on N . But this is very natural, since these quantities are for single observations or
independent of the data completely.

Define ξ̂t = ̂∇ log p(θt|x) −∇ log p(θt|x) and ξ̃ = ˜∇ log p(θt|x) −∇ log p(θt|x). So ξ̂ and ξ̃ represent the
error in the gradient estimates of SGLD and SGLD-CV, respectively. Under the above assumptions, Dubey
et al. (2016) show that

Var[|ξ̂t|] = E[|ξ̂t|2] ≤ 2N2σ2

n
(6)

Var[|ξ̃t|] = E[|ξ̃t|2] ≤ D2N2

n
E|θt − θ̂|2. (7)

In the case of SGLD-CV, the variance in the gradient estimate depends on how close the current state θt
is to θ̂. Suppose our estimate θ̂ is within O(N−

1
2 ) of the truth. Then, provided our MCMC has converged,

and standard asymptotics hold, we would expect E|θt − θ̂| to also be O(N−
1
2 ).

4.3 Computational cost of SGLD and SGLD-CV

In this section we investigate the computational cost of applying control variates within the gradient estimate
of SGLD; and how this is affected by varying the size of the data N . Denote θ(N) to be the parameters of
interest when we have N observations. The posterior for θ(N) contracts at rate N−

1
2 . Suppose we want to

run the SGLD algorithm so that it samples from the posterior distribution to a given accuracy. Then the
number of iterations, the stepsize ε and the minibatch size n needed for the sample to stay below this error
will change with varying N .

This motivates us to work with a rescaled parameter φ(N) =
√
N
(
θ(N) − θ(N)

0

)
, where θ

(N)
0 is the

posterior mode for the dataset of size N . Under standard asymptotics, the limiting posterior distribution
for φ(N) does not depend on N . So the mixing properties of the Langevin diffusion should be similar as we
increase N . Also, in order to obtain a given Monte Carlo error, we would want to simulate the Langevin
diffusion for a constant length of time under different sizes of N . The Langevin diffusion for φ(N) can be
directly related to the Langevin diffusion for θ(N), defined in (3), via a linear-transformation of time and
space. Hence results on the scalability of SGLD for φ(N) will directly translate into equivalent results for
the SGLD for θ(N) that we run in practice.

We assume that, using this rescaled parameter φ(N), we can fix ε, and the number of SGLD iterations
T , with little effect on mixing. We compare our rescaled SGLD algorithm with the coupled, true underlying

Langevin diffusion φ̄
(N)
t , which we formally define later. We then define our computational cost as the

minibatch size n required for the quantity

E
∣∣∣φ(N)
T − φ̄(N)

T

∣∣∣2 ,
commonly referred to as the strong error, to stay below an arbitrary level ν, for any fixed T . We investigate
how this minibatch size depends on the number of observations N , for both the SGLD and SGLD-CV
algorithms. In order for this to be a valid argument, we need to check that rescaling the parameter leads to
a valid Langevin diffusion, and that other constants in our strong error bound do not implicitly depend on
N .

Define βN (φ) = N−
1
2∇ log p(θ(N)|x), where θ(N) = θ

(N)
0 + N−

1
2φ(N). Our transformation for φ(N) is

independent of t, ∇φ(N)(θ) =
√
N1 and ∇2φ(N)(θ) = 0, where ∇2f is the Hessian of f . So applying Ito’s

Lemma to the Langevin diffusion we defined in (3) we have

dφ
(N)
t =

√
N

2
∇ log p(θ(N)|x)dt+

√
NdBt,

12



We use the well known scaling rule for the Wiener process
√
αBt = Bαt to rescale time by 1/N and get the

diffusion we will work with

dφ
(N)
t =

1

2
βN (φt)dt+ dBt. (8)

We will use the fact that the Langevin diffusion for phi also satisfies Lipschitz and linear growth conditions

Lemma 1. Lipschitz Condition for βN (φ): Under Assumption 1, there is some constant C > 0 that does
not depend on N such that

|βN (φ)− βN (φ′)| < C|φ(N) − φ′(N)|,

for all N > 0, for all φ, φ′ ∈ Rd.
Linear growth condition: Under Assumption 1, there exists C > 0, independent of N , such that

|βN (φ)|2 < C2(1 + |φ|2),

for all N > 0, φ ∈ Rd

The proof for Lemma 1 is given in the Appendix. A particularly important fact from Lemma 1 is that
the constant C does not depend on N in both cases. This, along with Assumption 1, ensures that there is
no hidden dependency on N in the result for SGLD-CV. The assumption also ensures that (8) is a valid
diffusion. In order for there to be no hidden dependency on N in the result for SGLD, we need to make one
more assumption as follows

Assumption 2. Lower bound on empirical Fisher information: Let ḡj(θ) := 1
N

∑N
i=1 ∂θj log p(xi|θ). Then

there exists W > 0 such that

1

N − 1

N∑
i=1

[
∂θj log p(xi|θ)− ḡj(θ)

]2 ≥W, (9)

for all N ≥ 1, for all θ ∈ Rd.

This is a weak assumption as the RHS of (9) tends to E
[
−∂θj log p(X|θ)

]
, i.e. the jth diagonal element

of the Fisher information matrix for 1 observation.
We can see from the results of Dubey et al. (2016) in (7), the computational cost of SGLD-CV will

depend on the distance between our simulated output φ
(N)
t and our estimate of the posterior mode φ̂(N);

where we define φ̂(N) :=
√
N(θ̂(N)− θ(N)

0 ). So this last assumption makes some conditions in order to ensure

the distance between the states of the SGLD-CV algorithm and φ̂ is O(1).

Assumption 3. Distance between φ̂ and the true mode: Assume there exists finite E, that does not depend
on N , such that

E
∣∣∣φ̂− φ(N)

0

∣∣∣2 ≤ E,
for all N > 0, where φ

(N)
0 is the true mode.

Distance between true Langevin diffusion and true mode: Let φ̄
(N)
t be the output from the true Langevin

diffusion (8) initiated from some fixed point φ0. Then assume there exists finite F , that does not depend on
N , such that

E
∣∣∣φ̄(N)
t − φ(N)

0

∣∣∣2 ≤ F
for all N > 0, t ∈ R+.

The first case of Assumption 3 states that in our transformed φ space our estimate of the mode will be
within constant distance of the true mode. This is equivalent to the estimate θ̂ being O(N−

1
2 ) from the true

mode. This is a common assumption which holds under standard asymptotics. We choose complex scenarios
for our experiments in Section 6, since in these cases the assumption may not be true. This serves to really
test some of the underlying theory.
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In Theorem 1 that we are about to state, we compare SGLD-CV to the true, coupled Langevin diffusion
(8). This assumption states that the true Langevin diffusion is started from some point in our transformed
space that is a constant distance away from true the mode. In the standard θ space, this is equivalent to the
algorithm being started within O(N−

1
2 ) distance from the true posterior mode. Since SGLD-CV is started

in the same position in the theorem, we assume the same thing for SGLD-CV.
This means the scaling results do not apply to the burn-in period if we start SGLD-CV arbitrarily far

into the tail of the posterior. To get around this issue, we use an optimization step to find θ̂, and then start
SGLD-CV at this point. This means that the burn-in step of SGLD is replaced by a single optimization
step. Since SGLD-CV begins at a good starting point, the burn-in will be negligible. In our experiments in
Section 6, we often find this optimization step is quicker than the SGLD burn-in step. So the algorithm has
improved efficiency in both burn-in as well as the simulation step itself. The main cost of these improvements
is in tuning, since you have to tune both a stochastic optimization step and an SGLD step.

Now the framework has been set up, we can state our result. As a result of Lemma 1, (8) is a valid
diffusion (Sato and Nakagawa, 2014). Then we can use Lemma 1 and Assumption 2 to ensure that we do
not have any hidden dependence on N , and our main result follows.

Theorem 1. Let φ̄
(N)
t be output from the true Langevin diffusion (8) and φ

(N)
t be the output from an

equivalent SGLD algorithm with fixed stepsize ε and the same driving Brownian motion. Assume for all
N , both processes are initiated from the same value φ0. Also assume that minibatches are sampled without
replacement from the full observation set. Let ν > 0 be an appropriately chosen error tolerance, which is
attainable for the chosen ε. Then for any fixed T :

1. For standard SGLD, under Assumption 2, we need a minibatch size n of O(N) to obtain E|φ(N)
T −

φ̄
(N)
T |2 ≤ ν.

2. For SGLD-CV, under Assumptions 1 and 3, there exists a fixed minibatch size n0 of O(1) such that

E|φ(N)
T − φ̄(N)

T |2 ≤ ν for all N > 0.

Theorem 1 shows that while SGLD uses minibatches of size n, meaning that the per iteration cost is
much lower than N , the minibatch size n still scales linearly as N changes, if we want to reach a desired
level of accuracy (measured in terms of strong error). In comparison we can fix a minibatch size n for
SGLD-CV and reach a desired level accuracy no matter what the dataset size is. Before we can begin the
SGLD-CV algorithm we need an optimization step to find θ̂, followed by a single O(N) preprocessing step

to find ∇ log p(θ̂|x), but after this startup cost our algorithm has improved efficiency. We demonstrate the
scaling results empirically in the experiments (Section 6) by fitting the same models under different dataset
sizes N .

The efficiency gains of using control variates depends on the distance |θt − θ̂|2. So for SGLD-CV to be

O(1) we require |θt − θ̂|2 to be O(N−1), which holds under standard asymptotics. While this may not hold
in more complex scenarios, in our simulations we find the efficiency gains are considerable, even for high
dimensional, complex examples where these asymptotics may not hold (see the examples in Sections 6.2 and
6.3).

4.4 Other control variate algorithms

Other algorithms that use control variates should benefit from similar computational cost results. The
recently introduced SAGA algorithm (Dubey et al., 2016) is an alternative algorithm that uses control
variates to reduce the variance in the log posterior gradient estimate of SGLD. In this section we introduce
this algorithm, and show that this algorithm has similar efficiency improvements to SGLD-CV. Then in the
next section we compare the two algorithms and discuss their merits.
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SAGA introduces a new set of variables αit for i = 1, . . . , N and gα, initialised at θ0. At each iteration,
αit+1 is set to θt if i ∈ St, otherwise, αit+1 = αit. The updates for the algorithm are then as follows

ĝα,t = gα +
N

n

∑
i∈St

[
∇ log p(xi|θt)−∇ log p(xi|αit)

]
θt+1 = θt +

ε

2
[∇ log p(θt) + ĝα,t]

gα = gα +
∑
i∈St

[
∇ log p(xi|αit+1)−∇ log p(xi|αit)

]
Theorem 2. Let φ̄

(N)
t be output from the true Langevin diffusion (8) and φ

(N)
t be the output from an

equivalent SAGA algorithm with fixed stepsize ε and the same driving Brownian motion. Assume for all
N , both processes are initiated from the same value φ0. Also assume that minibatches are sampled without
replacement from the full observation set. Let ν > 0 be an appropriately chosen error tolerance, which is
attainable for the chosen ε. Then for any fixed T :

Under Assumptions 1 and 3, there exists a fixed minibatch size n0 of O(1) such that E|φ(N)
T − φ̄(N)

T |2 ≤ ν for
all N > 0.

Interestingly the proof of Theorem 2, has a weaker bound than for Theorem 1. So the fixed minibatch
size n0 may need to be up to four times larger for equivalent performance of SAGA compared to SGLD-CV.

4.5 Discussion

In this section we showed that two methods which use control variates to reduce the variance in the gra-
dient estimate of SGLD, SGLD-CV and the previously introduced SAGA (Dubey et al., 2016), reduce the
computational cost of SGLD from O(N) to O(1).

SGLD-CV requires an initial optimization step to find an estimate of θ̂. While this adds to the computa-
tional time required by the algorithm, it essentially replaces the burn-in of SGLD, as we can start SGLD-CV
from this estimate of the mode. We find in our experiments (Section 6) that this initial optimization step
plus the negligible burn-in time for SGLD-CV is often quicker than the time taken for SGLD to burn-in,
especially for complex scenarios. Though it does make tuning more difficult, as the optimization step must
be tuned as well as the stepsize for SGLD itself. SGLD-CV also requires a single O(N) preprocessing step

in order to calculate ∇ log p(θ̂|x).
In contrast, SAGA does not require an initial optimization step, but the fact that previous states are

reused means that minibatch size needed to reach a desired accuracy may need to be larger than SGLD-
CV. In our simulations we found that SAGA works very well for simple problems (see the logistic regression
example in Section 6.1), but for complicated models the algorithm takes a prohibitively long time to converge
(see the probabilistic matrix factorization example in Section 6.2). This is mostly true when the algorithm
starts far from the true posterior mode, as is often the case in complex examples. It seemed to be due to
the algorithm getting stuck or moving very slowly through local modes.

In this section, we have focused on reducing the computational cost of SGLD using control variates. But
the algorithm SGLD-CV only changes the gradient estimate calculation, so the methodology is just as easily
applied to other stochastic gradient MCMC methods such as SGHMC and SGNHT (Chen et al., 2014; Ding
et al., 2014). Similar bounds on the strong error exist for SGHMC and SGNHT, so extending computational
cost results to these algorithms should be possible.

5 Post-processing control variates

Control variates can also been used to improve the inferences made from MCMC by reducing the variance
of the output directly. The general aim of MCMC is to estimate expectations of functions, g(θ), under the
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posterior p(θ|x). Given an MCMC sample θ(1), . . . , θ(M), from the posterior p(θ|x), we can estimate E[g(θ)]
unbiasedly as

E[g(θ)] ≈ 1

M

M∑
i=1

g(θ(i)).

Suppose we introduce a new function h(θ), which has expectation 0 under the posterior. We can then
introduce an alternative function,

g̃(θ) = g(θ) + h(θ),

where E[g̃(θ)] = E[g(θ)]. If h(.) is chosen so that it is negatively correlated with g(θ), then the variance of
g̃(θ) will be reduced considerably.

Mira et al. (2013) introduce a way of choosing h(θ) almost automatically by using the gradient of the
log-posterior. Choosing h(.) in this manner is referred to as a zero variance (ZV) control variate. Friel
et al. (2016) showed that, under mild conditions, we can replace the log-posterior gradient with an unbiased
estimate and still have a valid control variate. SGMCMC methods produce unbiased estimates of the log-
posterior gradient, and so it follows that these gradient estimates can be applied as ZV control variates.
For the rest of this section, we focus our attention on SGLD, but these ideas are easily extendable to other
stochastic gradient MCMC algorithms. We refer to SGLD with these post-processing control variates as
SGLD-ZV.

Given the setup outlined above, Mira et al. (2013) propose the following form for h(θ),

h(θ) = ∆Q(θ) +∇Q(θ) · z,

here Q(θ) is a polynomial of θ to be chosen and z = − 1
2∇ log p(θ|x). ∆ refers to the Laplace operator

∂2

∂θ21
+ · · ·+ ∂2

∂θ2d
. In order to get the best variance reduction, we simply have to optimize the coefficients of the

polynomial Q(.). In practice, first or second degree polynomials Q(θ) often provide good variance reduction
(Mira et al., 2013). For the rest of this section we focus on first degree polynomials, so Q(θ) = aT θ, but the
ideas are easily extendable to higher orders (Papamarkou et al., 2014).

The SGLD algorithm only calculates an unbiased estimate of ∇ log p(θ|x), so we propose replacing h(θ)
with the unbiased estimate

ĥ(θ) = ∆Q(θ) +∇Q(θ) · ẑ, (10)

where ẑ = − 1
2

̂∇ log p(θ|x). By identical reasoning to Friel et al. (2016), ĥ(θ) is a valid control variate. Note
that ẑ can use any unbiased estimate, and as we will show later, the better the gradient estimate, the better
this control variate performs.

We set Q(θ) to be a linear polynomial aT θ, so our SGLD-ZV estimate will take the following form

ĝ(θ) = g(θ) + aT ẑ. (11)

Similar to standard control variates (Ripley, 2009), we need to find optimal coefficients â in order to minimize
the variance of g̃(·), defined in (11). In our case, the optimal coefficients take the following form (Friel et al.,
2016)

â = Var−1 (ẑ) Cov (ẑ, g(θ)) .

This means that SGLD already calculates all the necessary terms for these control variates to be applied
for free. So the post-processing step can simply be applied once when the SGLD algorithm has finished,
provided the full output plus gradient estimates are stored. With this in place, we can write down the full
algorithm in the linear case, which is given in Algorithm 2. For higher order polynomials, the calculations
are much the same, but more coefficients need to be estimated (Papamarkou et al., 2014).

The efficiency of ZV control variates in reducing the variance of our MCMC sample is directly affected
by using an estimate of the gradient rather than the truth. For the remainder of this section, we investigate
how the choice of the gradient estimate, and the minibatch size n, affects the variance reduction.

Assumption 4. Var[φ(θ)] <∞ and Var[ψ̂(θ)] <∞.
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Algorithm 2 SGLD-ZV

Require: {θt}Tt=1, { ̂∇ log p(θt|x)}Tt=1 . SGLD output

Set zt ← − 1
2

̂∇ log p(θt|x)
Estimate Vz ← Var(z), Cg,z ← Cov(g(θ), z)

âj ← [Vz]
−1
Cg,z

for t = 1 . . . T do
ĝ(θt)← g(θt) + âT zt

end for

Theorem 3. Under Assumption 4, define the optimal variance reduction for ZV control variates using the
full gradient estimate to be R, and the optimal variance reduction using SGLD gradient estimates to be R̂.
Then we have that

R̂ ≥ R

1 + CN−1Eθ|x[ES(|ξS(θ)|)]
, (12)

where ξS(θ) is the noise in the log-posterior gradient estimate, and C is some constant of O(1).

The proof of this result is given in the Appendix. An important consequence of Theorem 3 is that if
we use the standard SGLD gradient estimate, then the denominator of (12) is O(n/N), so our variance
reduction diminishes as N gets large. However, if we use the SGLD-CV or SAGA estimate instead, then
the denominator of (12) is O(n), so the variance reduction does not diminish with increasing dataset size.
So for best results, we recommend using the ZV post-processing step after running the SGLD-CV or SAGA
algorithm, especially for large N . The ZV post-processing step can be immediately applied in exactly the
same way to other stochastic gradient MCMC algorithms, such as SGHMC and SGNHT (Chen et al., 2014;
Ding et al., 2014).

It’s worth noting that there are some storage constraints for SGLD-ZV. This algorithm requires storing
the full MCMC chain, as well as the gradient estimates at each iteration. So the storage cost is twice
the storage cost of a standard SGMCMC run, which is fine. However in some high dimensional cases, the
required SGMCMC test statistic is estimated on the fly using the most recent output of the chain, as the
storage costs are too large. But this is not possible when applying the ZV post-processing step. We suggest
that if the dimensionality is not too high and you plan on storing the chain then it is well worth your time
applying the ZV post-processing step, as it comes for free. However if the dimensionality is large it may not
be worth your while.

6 Experiments

6.1 Logistic regression

We examine our approaches on a Bayesian logistic regression problem. The probability of the ith output
yi ∈ {−1,+1} is given by

p(yi|xi, β) =
1

1 + exp(−yiβTxi)
.

We use a Laplace prior for β with scale 1.
We used the cover type dataset (Blackard and Dean, 1999), which has 581,012 observations, which we

split into a training and test set. First we run SGLD, SGLD-CV and SAGA on the dataset, all with
minibatch size 500. To empirically support the scalability results of Theorem 1, we fit the model 3 times.
In each fit, the dataset size is varied, from about 1% of the full dataset to the full dataset size N . The
performance is measured by calculating the log predictive density on a held-out test set every 10 iterations.
Some of our examples are high dimensional, so our performance measure aims to reduce dimensionality
while still capturing important quantities such as the variance of the chain. We include the burn-in of SGLD
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Figure 5: Log predictive density over a test set every 10 iterations of SGLD, SGLD-CV and SAGA fit to a
logistic regression model as the data size N is varied.
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Figure 6: Plots of the log predictive density of an SGLD-CV chain when ZV post-processing is applied versus
when it is not, over 5 random runs. Logistic regression model on the cover type dataset (Blackard and Dean,
1999).

and SAGA, to contrast with the optimization step required for SGLD-CV which is included in the total
computational time.

The results are plotted against time in Figure 5. The results illustrate the efficiency gains of SGLD-CV
and SAGA over SGLD as the dataset size increases, as expected from Theorems 1 and 2. SAGA outperforms
SGLD-CV in this example because SGLD converges quickly in this simple setting. In the more complicated
examples to follow, we show that SAGA can be slow to converge.

We also compare the log predictive density over a test set for SGLD-CV with and without ZV post-
processing, averaged over 5 runs at different seeds. We apply the method to SGLD-CV rather than SGLD
due to the favourable scaling results as discussed after Theorem 3. Results are given in Figure 6. The plot
shows box-plots of the log predictive density of the SGLD sample before and after post-processing using ZV
control variates. The plots show excellent variance reduction of the chain.

18



0.1N 0.5N N

1.2

1.6

2.0

0 25 50 75 100 0 50 100 150 200 0 100 200 300 400 500
Time (secs)

A
ve

ra
ge

 lo
g 

pr
ed

ic
tiv

e
method

SAGA

SGLD

SGLDCV

Figure 7: Log predictive density over a test set of SGLD, SGLD-CV and SAGA fit to a Bayesian probabilistic
matrix factorization model as the number of users is varied, averaged over 5 runs. We used the Movielens
ml-100k dataset.

6.2 Probabilistic matrix factorization

A common recommendation system task is to predict a user’s rating of a set of items, given previous
ratings and the ratings of other users. The end goal is to recommend new items that the user will rate
highly. Probabilistic matrix factorization (PMF) is a popular method to train these models (Mnih and
Salakhutdinov, 2008). As the matrix of ratings is sparse, over-fitting is a common issue in these systems,
and Bayesian approaches are a way to account for this (Ahn et al., 2015).

In this experiment, we apply SGLD, SGLD-CV and SAGA to a Bayesian PMF problem, using a model
similar to Ahn et al. (2015) and Chen et al. (2014). We use the Movielens dataset ml-100k1, which contains
100,000 ratings from almost 1,000 users and 1,700 movies. We use batch sizes of 5,000, we set a larger
minibatch size in this case due to the high-dimensional space. As before, we compare performance by
calculating the predictive distribution on a held out dataset every 10 iterations.

We investigate the scaling results of SGLD-CV and SAGA versus SGLD by varying the dataset size. We
do this by limiting the number of users in the dataset, ranging from 100 users to the full 943. The results
are given in Figure 7. Once again the scaling improvements of SGLD-CV as the dataset size increases are
clear.

In this example SAGA converges slowly in comparison even to SGLD. In fact the algorithm converges
slowly in all our more complex experiments. The problem is particularly bad for large N . We think this
could be a problem when the starting point of SAGA is too far from the posterior mode. Empirically we
found that the gradient direction and magnitude can update very slowly in these cases. This is not an issue
for simpler examples such as logistic regression. But for more complex examples we believe it could be a sign
the algorithm is getting stuck in, or moving slowly through local modes where the gradient is comparatively
flatter. The problem appears to be made worse for large N when it takes longer to update gα. We suggest
to alleviate this problem that SAGA needs to begin at a good starting point. This is an example where
the optimization step of SGLD-CV is an advantage, as the algorithm is immediately started close to the
posterior mode and so the efficiency gains are quick to take effect.

Once again we compare the log predictive density over a test set for SGLD-CV with and without ZV
post-processing when applied to the Bayesian PMF problem, averaged over 5 runs at different seeds. Results
are given in Figure 6. The plot shows box-plots of the log predictive density of the SGLD sample before and
after post-processing using ZV control variates. The plots show excellent variance reduction of the chain.

1https://grouplens.org/datasets/movielens/100k/
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Figure 9: Perplexity of SGLD and SGLD-CV fit to an LDA model as the data size N is varied, averaged
over 5 runs. The dataset consists of scraped Wikipedia articles.

6.3 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is an important model in document used to describe collections of docu-
ments by sets of discovered topics (Blei et al., 2003). The input consists of a matrix of word frequencies in
each document, which is very sparse. So again over-fitting is a concern which motivates the use of a Bayesian
approach.

Due to storage constraints, it was not feasible to apply SGLD-ZV to this problem, so we focus on SGLD-
CV. We scraped approximately 80,000 documents from Wikipedia, and used the 1,000 most common words
to form our document-word matrix input. We used a similar formulation to Patterson and Teh (2013),
though we did not use a Riemannian sampler.

Once again in our comparison of SGLD, SGLD-CV and SAGA, we vary the dataset size, this time by
changing the number of documents used in fitting the model, from 10000 to the full 81538. We use batch
sizes of 50 documents. We measure the performance of LDA using the perplexity on held out words from
each document, a standard performance measure for this model. The results are given in Figure 9. Here the
scalability improvements of using SGLD-CV over SGLD are clear as the dataset size increases. This time
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the batch size is small compared to the dataset size, which probably makes the scalability improvements
more obvious. The sudden drop in perplexity for the SGLD-CV plot occurs at the switch from the stochastic
optimization step to SGLD-CV. It is probably due to the algorithm making efficient use of the Gibbs step
to simulate the latent topics.

An interesting aspect of this problem is that it appears to have a pronounced local mode where each of
the methods get stuck in (this can be seen by the blip in the plot at a perplexity of around 850). SGLD-CV
is first to escape followed by SGLD, but SAGA takes a long time to escape. This is probably due to a similar
aspect as the one discussed in the previous experiment (Section 6.2). Similar to the previous experiment, we
find that while SAGA seems trapped, its gradient estimate changes very little, which could be a sign that
the algorithm is moving very slowly through an area with a relatively flat gradient, such as a local mode.
A simple solution would be to start SAGA closer to the mode, using a stochastic optimization or SGLD
scheme to get it there initially.

7 Discussion

We have provided a comprehensive comparison of popular minibatch and divide and conquer methods on a
range of posterior distributions. This motivated our focus towards SGMCMC algorithms, which we found to
be more robust. There has been limited comparison across both divide and conquer and stochastic gradient
methods, so we hope that these comparisons are illustrative of the challenges of big data MCMC methods;
and help direct future research in this area.

Control variates are useful variance reduction techniques for Monte Carlo estimators. We add a significant
contribution to the recent work on applying control variates to gradient estimation for SGMCMC algorithms.
We have shown that both our proposed SGLD-CV and the previously proposed SAGA (Dubey et al., 2016)
algorithms reduce the computational cost of the stochastic gradient Langevin algorithm from O(N) to O(1);
providing more efficient simulation of the posterior after burn-in. We have empirically supported these
scalability results on a variety of interesting problems from the statistics and machine learning literature
using real world datasets; though we found that SAGA could be slow to burn-in on more complex examples.
This was probably due to it getting stuck in or moving slowly through local modes, where the gradient is
flatter. An interesting future extension would be reducing the startup cost of SGLD-CV, along with making
it more automatic.

We showed that stochastic gradient MCMC methods calculate all the information needed to apply zero
variance post-processing control variates. This improves the inference of the output by reducing its variance.
We explored how the variance reduction is affected by the minibatch size and the gradient estimate, and show
using SGLD-CV or SAGA rather than SGLD can achieve a better variance reduction. We demonstrated
this variance reduction empirically. A limitation of these post-processing control variates is they require the
whole chain, which can lead to high storage costs if the dimensionality of the sample space is high. Future
work could explore ways to reduce the storage costs of stochastic gradient MCMC.
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A Computational cost theorems

A.1 Lemmas

A.1.1 Proof of Lemma 1

From Assumption 1 and the triangle inequality

|βN (φ)− βN (φ′)| ≤ D(N + 1)N−
1
2

∣∣∣N− 1
2φ(N) −N− 1

2φ′(N)
∣∣∣

≤ C
∣∣∣φ(N) − φ′(N)

∣∣∣ ,
where C = 2D. We have chosen the looser bound C = 2D, in order to ensure that C does not depend on
N , which is important to make our analysis valid.

Now let’s look at the linear growth condition. We have proven the Lipschitz condition so that

|βN (φ)| = |βN (φ)− βN (0) + βN (0)|
≤ |βN (φ)− βN (0)|+ |βN (0)|
≤ C|φ(N)|+ |βN (0)|

≤ C|φ(N)|+N−
1
2

∣∣∣∇ log p(θ
(N)
0 |x)

∣∣∣
= C|φ(N)|

where the first inequality follows from the triangle inequality, the second follows from the Lipschitz condition

just proven. The last inequality follows from the fact that θ
(N)
0 is the mode of p(θ(N)|x). It follows that

|βN (φ)|2 ≤ C2|φ(N)|2 ≤ C2(1 + |φ(N)|2),

as required.

A.1.2 Distance between Langevin diffusion and estimated mode

Lemma 2. Distance between Langevin diffusion and estimated mode: Under Assumption 3, there exists
H > 0 such that ∣∣∣φ̄(N)

t − φ̂(N)
∣∣∣2 ≤ H (13)

for all N > 0.

Proof. We can trivially apply Cauchy-Schwarz inequality followed by Assumption 3 to get∣∣∣φ̄(N)
t − φ̂(N)

∣∣∣2 =
∣∣∣φ̄(N)
t − φ(N)

0 + φ
(N)
0 − φ̂(N)

∣∣∣2
≤ 2

[∣∣∣φ̄(N)
t − φ(N)

0

∣∣∣2 +
∣∣∣φ̂(N) − φ(N)

0

∣∣∣2]
≤ 2[F + E].

So set H = 2[F + E] and the result follows.

A.2 Proof of Theorem 1

Define β̂N (φ) = N−
1
2 ̂∇ log p(θ(N)|x) and β̃N (φ) = N−

1
2 ˜∇ log p(θ(N)|x). Then set δ̂ = β̂N (φ) − βN (φ) and

δ̃ = β̃N (φ)−βN (φ), so that δ̂ and δ̃ represent the gradient estimate noise of SGLD and SGLD-CV respectively
in the φ space. Let φ̄t be a realization from the true underlying Langevin diffusion at time tε and let φt be
iteration t from an SGLD algorithm.
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In order to calculate the computational cost we bound the strong error E|φT − φ̄T |2 for each of the
different methods. We then measure the minibatch size n which sets this bound at some acceptable level.
We need to bound the strong error in a slightly different way for the two methods SGLD and SGLD-CV,
since for SGLD we need a lower bound and for SGLD-CV we need an upper bound.

A.2.1 Scaling result for SGLD

First we’ll look at the scaling result for SGLD. Suppose we want to look at the square error between φt and
φ̄t at some arbitrary time t. By using the fact that

φt = φt−1 +
ε

2
βN (φt−1) + ζt−1 + εδ̂t−1,

we can get the upper bound for E|φt − φ̄t|2 to depend completely on the gradient estimate noise. Using the

fact that δ̂t−1 is independent of ζt−1 and φ̄t; E(δ̂t−1) = 0 and that the other quantities are not random we
have

E|φt − φ̄t|2 = E
∣∣∣φt−1 +

ε

2
βN (φt−1) + ζt−1 + εδ̂t−1 − φ̄t

∣∣∣2
= E

∣∣∣φt−1 +
ε

2
βN (φt−1) + ζt−1 − φ̄t

∣∣∣2 + ε2E|δ̂t−1|2

≥ ε2E|δ̂t−1|2.

So that if we prove that E|δ̂t|2 is O(N) for any t = 1, . . . , T then it follows that the strong error of SGLD
will be O(N). Since we are proving the result for any t, we drop the dependence on t for brevity. Suppose
the dimension of φ is d, then we’ll set βjN (φ) to be the jth dimensional component of βN . It follows that

E|δ̂|2 = E

[(
β̂N (φ)− βN (φ)

)T (
β̂N (φ)− βN (φ)

)]
=

d∑
j=1

E
[
β̂jN (φ)− Eβ̂jN (φ)

]2
=

d∑
j=1

Var
[
β̂jN (φ)

]
where we have used that Eβ̂jN = βjN .

Now define gj0(θ) = ∂θj log p(θ), gji (θ) = ∂θj log p(xi|θ(N)). We assume that we are sampling without

replacement, so we can represent ̂∇ log p(θ|x) = ∇ log p(θ) +
∑N
i=1∇ log p(xi|θ)Zi, where Zi is drawn from
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a categorical distribution with N possible outcomes, each with probability n/N .

E|δ̂|2 =

d∑
j=1

Var
[
βjN (φ)

]

=

d∑
j=1

Var

[
N−

1
2

(
gj0(θ) +

N

n

N∑
i=1

gji (θ)Zi

)]

=
N

n2

d∑
j=1

Var

[
N∑
i=1

gji (θ)Zi

]

=
N

n2

d∑
i=1

 N∑
i=1

Var
[
gji (θ)Zi

]
+
∑
i6=l

Cov
[
gji (θ)Zi, g

j
l (θ)Zl

]
=
N − n
nN

d∑
i=1

 N∑
i=1

[gji (θ)]
2 − 1

N − 1

∑
i 6=l

[gji (θ)][g
j
l (θ)]

 .

Set ḡj(θ) := 1
N

∑N
i=1 g

j
i (θ) then we have

E|δ̂|2 =
(N − n)

(N − 1)n

d∑
i=1

N∑
i=1

(
gji (θ)− ḡ

j(θ)
)2
.

Now we can apply Assumption 2 to get

E|δ̂|2 ≥ (N − n)

n
Wd

Now suppose we want

E
∣∣∣φ(N)
T − φ̄(N)

T

∣∣∣2 < ν,

then it follows that we would need

ε2Wd(N − n)

n
≤ ε2E|δ̂|2 ≤ E

∣∣∣φ(N)
T − φ̄(N)

T

∣∣∣2 ≤ ν.
So that

n ≥ ε2WdN

ν + ε2Wd
.

It follows that, in order to bound the strong error by an acceptable level ν, then we need to set a minibatch
size of O(N).

A.2.2 Scaling result for SGLD-CV

We want to prove that we can pick a minibatch size n0, fixed for all N > 0, such that

E
∣∣∣φ(N)
t − φ̄(N)

t

∣∣∣2 ≤ ν. (14)

We will do this by induction. First note that for t = 0, SGLD-CV and Langevin diffusion are started at
the same point. So trivially the distance between the two will be less than ν for any minibatch size n. Now

assume such a minibatch size n0 can be picked for all time points up to t− 1, so E
∣∣∣φ(N)
s − φ̄(N)

s

∣∣∣2 < ν for all

s ≤ t− 1. We prove the result for t.
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We can use the result of Sato and Nakagawa (2014) in their proof of Theorem 5 to write

E[|φt − φ̄t|2] ≤ A+B max
t∈1...t−1

E[|δ̃t|2], (15)

where A and B are constants depending only on the fixed quantities that we have determined to be inde-
pendent of N (the Lipschitz constants and the linear growth constant due to Lemma 1, the starting point
and the stepsize). Notice that using the result of Dubey et al. (2016) specified in (7), we have that

E|δ̃t|2 = N−1E

∣∣∣∣ ˜∇ log p(θ
(N)
t |x)−∇ log p(θ

(N)
t |x)

∣∣∣∣2 (16)

≤ D2N

n

∣∣∣θ(N)
t − θ̂t

∣∣∣ (17)

=
D2

n

∣∣∣φ(N)
t − φ̂(N)

∣∣∣ , (18)

where the first inequality follows from (7), the last equality follows from the definition of φ(N).

Define τ := argmaxtE[|δ̂|2], then we can use (7) to obtain

E[|φt − φ̄t|2] ≤ A+
BD2

n0
E
∣∣∣φ(N)
τ − φ̂(N)

∣∣∣2 (19)

where we have used the Lipschitz condition of Assumption 1, so that D does not depend on N , and we have

defined φ̂(N) :=
√
N
(
θ̂ − θ(N)

0

)
. This bound still relies on the distance between φ

(N)
τ and φ̂, but we know

that τ ≤ t− 1, so we can apply the Cauchy-Schwarz inequality followed by the inductive hypothesis to get

E[|φt − φ̄t|2] ≤ A+
BD2

n0
E
∣∣∣φ(N)
τ − φ̄(N)

τ + φ̄(N)
τ − φ̂(N)

∣∣∣2
≤ A+

2BD2

n0

[
E
∣∣∣φ(N)
τ − φ̄(N)

τ

∣∣∣2 + E
∣∣∣φ̄(N)
τ − φ̂(N)

∣∣∣2]
≤ A+

2BD2

n0
[ν +H] ,

where the second inequality follows from the Cauchy-Schwarz inequality, the third inequality follows from

the inductive hypothesis and Lemma 2. So define ν = A + 2BD2

n0
[ν + H], and the result holds for t, and so

the result is proved for all t by induction. Thus pick n0 = 2BD2(ν+H)
ν−A , then E

∣∣φt − φ̄t∣∣2 ≤ ν for all t as

required. So specifically, for this choice of n0, E
∣∣φT − φ̄T ∣∣2 ≤ ν.

A.3 Proof of Theorem 2

We assume that αit is initialized at φ
(N)
0 , so that it is either at this point or set to θ

(N)
τ for some τ = 1, . . . , T .

So the parameter does not need to be transformed. For brevity we drop the (N) superscript for αit. Then

define g
(N)
α,t := gα + N

n

∑
i∈St

[
N−

1
2∇ log p(xi|θ(N)

t )−N− 1
2∇ log p(xi|αit)

]
. We define δ̂t to be the error in

the SAGA log posterior gradient estimate at time t, so that it’s given by δ̂t := ∇ log p(θ
(N)
t ) + g

(N)
α,t −

∇ log p(θ
(N)
t |x).

Similar to the proof of Theorem 1, we proceed by induction. Again since both the true diffusion and the
SAGA algorithm are initialised at the same point, the distance between the two is less than ν at t = 0, for
any minibatch size n. Now for s ≤ t − 1, assume that we can pick a constant minibatch size n0 such that

E
∣∣∣φ(N)
s − φ̄(N)

s

∣∣∣ ≤ ν for all N > 0. Now we prove the result for t as follows

Similar to the proof in Theorem 1, we can use the result of Sato and Nakagawa (2014) in their proof of
Theorem 5 to write

E[|φt − φ̄t|2] ≤ A+B max
t∈1...t−1

E[|δ̂t|2], (20)
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where A and B are constants depending only on the fixed quantities that we have determined to be indepen-
dent of N (the Lipschitz constants and the linear growth constant due to Lemma 1, the starting point and
the stepsize). We can use the result in Dubey et al. (2016) applied in the transformed space, which follows
similarly to (18), to find that

E|δ̂t|2 ≤
D2

Nn

N∑
i=1

E
∣∣∣φ(N)
t − αit

∣∣∣2 . (21)

Again the Lipschitz constant D2 is a result of Assumption 1, so does not depend on N . We replace the
minibatch size n by its fixed counterpart n0. Then subbing this into (20) we get

E[|φt − φ̄t|2] ≤ A+B
D2

Nn0
max

t∈1,...,t−1

N∑
i=1

E
∣∣∣φ(N)
t − αit

∣∣∣2 .
Set τ = argmaxt

∑N
i=1 E

∣∣∣φ(N)
t − αit

∣∣∣2, we can then use Cauchy-Schwarz to obtain the following

E[|φt − φ̄t|2] ≤ A+B
D2

Nn0

N∑
i=1

E
∣∣∣φ(N)
τ − αiτ

∣∣∣2
≤ A+B

D2

Nn0

N∑
i=1

E
∣∣∣φ(N)
τ − φ̂(N) + φ̂(N) − αiτ

∣∣∣2
≤ A+B

2D2

Nn0

N∑
i=1

[
E
∣∣∣φ(N)
τ − φ̂(N)

∣∣∣2 +
∣∣∣αiτ − φ̂(N)

∣∣∣2] .
But αit is a previous state in the SAGA algorithm, call this previous state φ

(N)
αi , then we have

E[|φt − φ̄t|2] ≤ A+B
2D2

Nn0

N∑
i=1

[
E
∣∣∣φ(N)
τ − φ̂(N)

∣∣∣2 +
∣∣∣φ(N)
αi − φ̂

(N)
∣∣∣2]

= A+B
2D2

Nn0

N∑
i=1

[
E
∣∣∣φ(N)
τ − φ̄(N)

τ + φ̄(N)
τ − φ̂(N)

∣∣∣2 +
∣∣∣φ(N)
αi − φ̄

(N)
αi + φ̄(N)

αi − φ̂
(N)
∣∣∣2]

≤ A+B
4D2

Nn0

N∑
i=1

[
E
∣∣∣φ(N)
τ − φ̄(N)

τ

∣∣∣2 +
∣∣∣φ̂(N) − φ̄(N)

τ

∣∣∣2 +
∣∣∣φ(N)
αi − φ̄

(N)
αi

∣∣∣2 +
∣∣∣φ̂(N) − φ̄(N)

αi

∣∣∣2]
≤ A+B

4D2

n0
[ν +H + ν +H]

= A+B
8D2

n0
[ν +H]

the second inequality follows from the Cauchy-Schwarz inequality and the third inequality follows from the

inductive hypothesis and Lemma 2. Thus set ν = A + B 8D2

n0
[ν + H] and the result is proved for t, thus

by induction proved for all t > 0. Thus pick n0 = 8BD2(ν+H)
ν−A , then E

∣∣φt − φ̄t∣∣2 ≤ ν for all t as required.

So specifically, for this choice of n0, E
∣∣φT − φ̄T ∣∣2 ≤ ν. Notice that the bound is slightly weaker than in

Theorem 1 and n0 will need to be set up to four times as large compared with SGLD-CV to reach the desired
accuracy.
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A.4 Postprocessing Theorems

A.5 Lemmas

Lemma 3. Define A =
∑d
i=1 a

2
i , and let ξS(θ) = ̂∇ log p(θ|x) − ∇ log p(θ|x) be the noise in the gradient

estimate. Then
Eθ|x [a · ξS(θ)]

2 ≤ AEθ|xES |ξS(θ)|2.

Proof. We can condition on the gradient noise, and then immediately apply the Cauchy-Schwarz inequality
to get

Eθ|x [a · ξS(θ)]
2

= Eθ|xES [a · ξS(θ)]
2

≤

(
d∑
i=1

a2i

)
Eθ|xES |ξS(θ)|2

Lemma 4. Eθ|x [h(θ)]
2

is O(N).

Proof.

Eθ|x [h(θ)]
2 ≤ 1

4

(
d∑
i=1

a2i

)
Eθ|x |∇ log p(θ|x)|2

=
A

4

d∑
j=1

Varθ|x
[
∂θj log p(θ|x)

]
=
AN

4

d∑
j=1

Ijj(θ)

A.6 Proof of Theorem 3

We start from the bound in Theorem 6.1 of Mira et al. (2013), stating for some control variate h, the optimal
variance reduction R is given by

R =

(
Eθ|x [g(θ)h(θ)]

)2
Eθ|x [h(θ)]

2 ,

so that in our case we have

R̂ =

(
Eθ|x

[
g(θ)ĥ(θ)

])2
Eθ|x

[
ĥ(θ)

]2
=

(
Eθ|x [g(θ)h(θ)]

)2
Eθ|x [h(θ)]

2
+ 1

4Eθ|x [a · ξS(θ)]

=
R

1 +
1
4Eθ|x[a·ξS(θ)]
Eθ|x[h(θ)]

2

.

30



Then we can apply Lemmas 3, 4 to immediately get the desired result

R̂ ≥ R

1 + CN−1Eθ|xES |ξS(θ)|
. (22)
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